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Abstract

The integration of wearables into our lives has revolutionized the way we interact with technology. A diverse

array of form factors, including glasses, earphones, rings, watches, pendants, and VR headsets, are now

equipped with advanced processors and sensors, facilitating effortless communication with other smart devices.

This integration has given rise to quick microinteractions, with users relying on body-based gestures to

perform various tasks. However, as we increasingly rely on body-based gestures to interact with technology,

ensuring their usability and security becomes crucial.

Designing and implementing usable body-based gestures involves a multifaceted challenge that requires a

fine balance between minimizing false activations and ensuring the gestures are intuitive and user-friendly.

This balance is crucial for creating gestures that are not only easy to perform and remember but also

socially acceptable and independent of specific devices. A good gesture is characterized by its ease of

execution, memorability, compatibility across various devices, accurate recognizability with a minimal error

rate, and social acceptability. Additionally, maintaining the integrity of the performed gesture is paramount,

highlighting the importance of the gesture’s reliability and consistent interpretation by the system.

This dissertation addresses the challenges in the design and implementation of user-friendly, memorable,

and false-activation-resistant body-based gestures. It introduces SequenceSense, a tool that empowers gesture

designers to easily modify gestures, assess recognition performance, and pinpoint potential false activations

without resorting to extensive data gathering or experimental efforts. Addressing gesture compatibility and

reusability across devices, the dissertation presents UnifiedSense. This novel method facilitates the detection

of device-dependent gestures using sensors from various wearable devices, even in the absence of the device

originally intended for gesture detection. Finally, to tackle the gesture integrity of the performed gesture,

this dissertation proposes ManipulaSense, an Autoencoder -based anomaly detection technique that leverages

users’ inherent hand movements to identify manipulations of the hand movements, thereby preserving the

integrity of application use.

This research significantly improves usability, efficiency, and reliability in gesture interactions for wearable

devices, promoting their broader adoption and enhancing the overall user experience.
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Chapter 1

Introduction

1.1 Motivation and Scope

The rise of wearable technology and gesture-based interactions indicates a significant transformation in human-

computer interaction (HCI), reshaping our engagement with digital systems through intuitive and natural body

movements. Wearables such as glasses, earphones, rings, watches, pendants, and VR headsets are embedded

with advanced processors and sensors, facilitating direct communication with an array of smart devices. This

technological evolution empowers users to employ diverse body-based gestures for interacting with technology

in a manner that is both instinctive and seamless [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19],

promoting uses across various platforms for enhanced convenience, efficiency, and social acceptability. For

example, Spotify allows users to control the music playing on smart speakers connected to a smartphone

by using controls on their smartwatches [20], and researchers proposed using a wearable device as an input

device for another wearable device [21, 22]. Ensuring the usability of body-based gestures is essential for

maintaining user satisfaction and the widespread adoption of wearable technologies. Several challenges

arise when designing and implementing usable gesture interactions. This thesis presents an overview of the

challenges involved and outlines the research questions addressed for designing usable gestures.

I start with defining a good gesture aligned with the state-of-the-art gesture design. A good gesture,

within the context of designing usable body-based gestures, is defined by several critical properties. It must

be comfortable to perform, ensuring ease of execution [23]; memorable, facilitating easy recall by users [1, 24];

compatible across different devices, allowing for a consistent user experience irrespective of the specific

technology in use [23]; accurately recognizable, maintaining a balance between false positive1 and false

1False positives occur when a user does not intend to perform a gesture, but the system recognizes one anyway.

1
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negative2 errors [23]; and socially acceptable, not drawing undue attention in public settings [1, 25]. Moreover,

the integrity of the performed gesture is paramount, underscoring the importance of reliable and consistent

interpretation by the system. Figure 1.1 illustrates the properties of a good gesture. Here, I introduced a new

gesture property (i.e., gesture integrity) in this thesis.

Figure 1.1: Properties of a Good Gesture

Designing body-based gestures for user interfaces presents a multifaceted challenge that revolves around

achieving a balance between reducing false activations and ensuring the gestures are simple and user-friendly.

This requires a repetitive approach to balancing false positive errors against the need for gestures to be

memorable, socially acceptable, and easily executable. Secondly, the same gesture should be compatible

across devices to enhance its reusability. Moreover, a good gesture design should consider the consistency

and reliability of the gestures, which is, a performed gesture should result in a consistent outcome all the

time it is being performed by a user. Next, I discuss each of the challenges in more detail.

The first challenge revolves around a balance between reducing false activations and ensuring simplicity

and user-friendliness [26]. On one hand, complex gesture designs may help mitigate false activations, but

they introduce additional hurdles related to memorability [27, 24] and social acceptability [28, 1]. Complex

gestures are often difficult to perform and remember, diminishing their overall usability. Moreover, such

gestures may attract unwanted attention from others, rendering them socially unacceptable in public settings.

In contrast, the goal is to implement simple and user-friendly gestures that can be easily executed and

remembered by regular users. However, achieving simplicity and user-friendliness while minimizing false

activations presents a significant challenge [29]. Designers must thoughtfully consider these factors to create

intuitive and efficient gesture interactions that seamlessly integrate with users’ everyday activities. The

process entails careful adjustments to the gesture recognizer and modifications to gestures, which can involve

extensive manual tweaking and rigorous validation studies in both controlled laboratory settings and real-world

contexts [23, 30, 31]. Effectively addressing this challenge allows for an optimal balance between gesture

recognition accuracy, usability, and user satisfaction, facilitating the efficient iteration and advancement of

gesture design.
2False negatives occur when a user has performed a gesture correctly, but the system does not recognize it.
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Secondly, the principles of compatibility are paramount in gesture design, as they facilitate user compre-

hension of action effects, thereby mitigating frustration and elevating the interaction experience [32]. To

this extent, once users learn a certain gesture to perform a specific task, the gesture interactions should

facilitate users with the same outcome when they perform the same gesture. The designers have to ensure

this compatibility to help users reuse their muscle memory, which is what users learn through repetitively

performing a gesture for specific tasks. For example, if a user used to perform swipe-right gestures on their

earphones to receive a call on their phones, this gesture should facilitate the user all the time, even if the user

wears different earphones or is not even wearing earphones. However, these compatibility are not present in

the current gesture interactions since many gesture recognition systems are closely tied to specific devices or

sensors. This dependency restricts users to perform gestures only when wearing or utilizing those specific

devices, hindering the efficiency and flexibility of interaction. Users may experience frustration if they attempt

to perform a gesture while wearing non-smart devices or if they forget to wear their smart devices. To enhance

usability, it is necessary to explore methods that allow gestures to be independent of the specific devices used,

enabling users to interact seamlessly across a range of wearable devices.

Mitigating false activations and ensuring device-independent design are crucial for facilitating usable

gesture interactions when gestures are detected in a discrete manner. However, the usability of gestures

while the system needs to detect the gestural interaction continuously might add a burden to the designer

to make it usable and secure for the users. For example, in-air hand interactions are prevalent in Virtual

Reality (VR), and people are using hand gestures for continuous interactions with different applications. Prior

studies have shown that manipulating the visual movement of the hand to be different from the actual hand

movement, i.e., perception manipulation (PM), could create a more immersive and engaging VR experience.

However, this manipulation risks degrading task performance and, if maliciously applied, poses a threat to

user safety [33, 34, 35]. For example, it might impact users’ gained muscle memory of what they learned

through repetitive usage of gestures. Since manipulations might negatively affect users while performing in-air

hand gesture interactions, it is important for the designers to ensure the usability of these performed gestures

in terms of making the environment secure. Understanding the implications of PM on gesture interactions

in VR is also crucial for creating secure and user-friendly experiences. Hence, this thesis delves into the

investigation of this challenge and its effects on user performance.

There are many dimensions of designing usable body-based gestures, and this dissertation explores the

following aspects of them:

1. How a framework be designed and developed to help designers efficiently design gestures that are free

of false activations with minimal effort, ultimately benefiting the users;
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2. How a system can be developed to allow users to seamlessly reuse their gestures across different devices

by utilizing the muscle memory they have developed;

3. How perception manipulation affects task performance while performing gestures, particularly in virtual

environments;

4. How a system be developed to ensure that gestures performed by users produce consistent and reliable

outcomes.

1.2 Contributions

I have developed a set of solutions addressing the challenges mentioned earlier. The primary issue addressed

is the efficient design of body-based gestures, enabling designers to create user-friendly, false-activation-free

gestures. By providing tools that facilitate efficient gesture creation, I directly benefit users by ensuring the

designers can produce usable gestures, thereby enhancing the system’s adaptability for the users. Designers

often resist engaging in the intricate process of gesture design due to its time-consuming and labor-intensive

nature. This reluctance can lead to the development of impractical gestures, resulting in user frustration,

decreased system usage, and, eventually, abandonment of the application.

Existing methods like Mogeste [36] and MAGIC [1] have been developed to facilitate the design of usable

body- and motion-based gestures. However, these methods have limitations. Mogeste allows designers to create

and test gestures in real-world scenarios but still requires testing in realistic scenarios for usability evaluation

and re-collection of samples for recognizer training when modifying gestures. MAGIC provides insights

into gesture performance and potential conflicts but requires the recollection of samples and modifications

for usability assessment. To address these challenges, SequenceSense is developed as an efficient tool for

constructing robust body-based gesture sets. It utilizes a sequence-based gesture recognizer and an automatic

conflict analyzer, allowing designers to easily modify gestures and evaluate recognition performance without

re-collecting samples or conducting experiments. SequenceSense prioritizes gesture usability over robustness.

I validated SequenceSense’s efficacy in designing robust gestures with low false positives through a user study

with nine gesture designers.

Secondly, to achieve device-independent gesture interactions, I developed UnifiedSense. UnifiedSense is a

system that enables device-independent gesture interactions by leveraging sensors on wearable devices. It

trains a recognition model using gestures detected on a reliable primary device and collects sensor data from

all available devices. I named this process as “over-the-shoulder training” method. This approach eliminates

the need for explicit training for each device. The over-the-shoulder training method automatically trains
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the model by collecting samples as users perform gestures on their wearable devices. Users can use gestures

associated with a primary device even when they are not wearing it. While researchers have previously

explored the concept of indirectly sensing gestures using user-worn devices, such as using a mobile device

in the pocket to detect foot gestures [10] or earbuds to detect touch gestures on the face [37], the diversity

of wearable devices and user configurations makes it impractical for users to train the model for each new

device or combination of devices. In contrast, the proposed over-the-shoulder training method enables the

system to automatically train the model by collecting training samples as users perform gestures on their

wearable devices. I conducted a technical evaluation with data collected from 15 participants with four

types of wearable devices. It showed that UnifiedSense could correctly recognize 5 gestures (5 gestures × 5

configurations) with an accuracy of 90.9% (SD = 1.9%) without the primary device present.

In addition to addressing the challenges of designing usable body-based gestures, this research investigated

the effect of perception manipulation on the learning of optimal reaching movement in VR through two

user studies where participants completed simple tasks with varying levels of orientation and magnitude

manipulation on the user’s hand movement. Our findings indicate that, while the task completion times were

not different by the existence of the manipulation, the movement behavior showed differences. Participants

used more corrective movements to complete the tasks, as the accuracy of the initial ballistic movement was

worse when the level of manipulation was higher.

Finally, to enhance the usability of the performed gestures through real-time feedback, I developed

ManipulaSense, an Autoencoder -based anomaly detection technique that leverages users’ inherent hand

movements to identify perception manipulation, thereby preserving the integrity of application use. Our

model is trained on regular (i.e., non-manipulated) hand movement patterns and employs a stochastic

thresholding approach for anomaly detection. I validated our method through a technical evaluation involving

21 participants engaged in reaching tasks under manipulated and non-manipulated scenarios. The results

demonstrated a high accuracy of perception manipulation detection at 93.7%, with an F1-score of 93.9%.

In summary, this dissertation makes the following major contributions:

• Development of SequenceSense, a gesture designing tool that enables efficient modification and evaluation

of gestures to minimize false activations, without extensive data collection or experiments. SequenceSense

facilitates user-friendly, easy-to-perform, and memorable gesture design with minimal effort, ultimately

benefiting the general users. Our system is made publicly available here.3

• Introduction of UnifiedSense, a system that enables device-independent gesture interactions by leveraging

sensors on other wearable devices, ensuring seamless interaction even when the primary detecting device

3https://github.com/aashikazim/SequenceSenseUI

https://github.com/aashikazim/SequenceSenseUI
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is unavailable. UnifiedSense facilitates the reusability of the gestures across devices and promotes the

compatible gesture design. The dataset used to build UnifiedSense is publicly available here.4

• Investigation into the impact of perception manipulation on user experience and task performance

during gesture interactions in VR environments, providing insights into the effects of manipulation on

gesture execution. This dataset will be shared with other researchers upon request.

• Introduction of ManipulaSense, a novel deep-learning approach for detecting the presence of perception

manipulation in VR from user’s hand movement behavior. To our knowledge, this is the first method to

automatically detect the perception manipulation in VR from the user’s behavior data. ManipulaSense

facilitates users in knowing the status of the gestures being performed, thereby enhancing their integrity.

The dataset used to build ManipulaSense is publicly available here,5 addressing the absence of publicly

available datasets for perception manipulation research.

1.3 Thesis Statement

Leveraging heterogeneous sensor data from wearable smart devices enables the design and implementation of

secure, compatible, and conflict-free body-based gesture interactions with minimal effort.

1.4 Dissertation Outline

The organization of the rest of this dissertation is given below.

• Chapter 2 first discusses different body-based gesture interactions. Then, it discusses the state-of-the-art

works related to designing usable gestures and tools, the challenges of mitigating false activations,

and their current state-of-the-art works. Next, I discuss wearable cross-device interactions and the

state-of-the-art of wearable gesture recognition algorithms. Finally, I discuss the pros and cons of

perception manipulation of the in-air hand movement in various contexts and discuss the state-of-the-art

anomaly detection techniques in relation to our approach to perception manipulation detection.

• Chapter 3 describes SequenceSense, a tool developed to help designers efficiently build a usable foot-based

gesture set using a sequence-based gesture recognizer and an automatic conflict analyzer.

• Chapter 4 proposes a new method, UnifiedSense, to enable device-dependent gestures even when the

device that detects such gestures is missing by utilizing sensors on other wearable devices.
4https://github.com/aashikazim/UnifiedSense_DataSet
5https://github.com/aashikazim/perception-manipulation-dataset

https://github.com/aashikazim/UnifiedSense_DataSet
https://github.com/aashikazim/perception-manipulation-dataset


1.4 Dissertation Outline 7

• Chapter 5 presents the results of our investigation of perception manipulations while performing reaching

tasks in VR through in-air gestures.

• Chapter 6 proposes ManipulaSense, an autoencoder-based anomaly detection technique that can

be integrated with the current VR system to enhance the usability of using gesture by making the

environment secure for the user through real-time feedback of the performed gestures.

• Chapter 7 summarizes the contributions presented in this dissertation. It concludes the dissertation by

providing directions for future research.



Chapter 2

Related Work

2.1 Body-Based Gesture Interactions

Prior research has developed many techniques for body-based gesture inputs. Here, I discuss gestural

interactions that use different parts of the body.

2.1.1 Using the Arm, Wrist, and Fingers

For arm-based inputs, significant research has explored sensing hand or finger postures through Electromyogram

(EMG) [38, 13], camera vision [5, 39], and acoustic sensors [15, 16, 14]. Crossan et al. showed wrist rotation

could be used for input in stationary situations [40], while Costanza et al. looked into isometric upper arm

contractions for unobtrusive and socially acceptable interactions [41].

As the human wrist is dexterous with flexion-extension, radioulnar deviation, and rotation movements [40,

42], some approaches such as WristWhirl [43] and “With a Flick of the Wrist” [44] explore the idea of

leveraging the wrist joint as a controller. Indeed, many of the distal pointing related tasks [45, 46] involve

the combination of the arm and wrist motions. This also gives rise to text entry techniques based on wrist

tilting [47, 48, 49] and tilt-based gesture typing [50, 51].

The growing availability of smartwatches and smart rings have prompted researchers to explore new forms

of human-computer interaction and augmentation. Duet [52], VibRing [53] and Expressy [54] leverage the

smartwatch or smart ring to add expressiveness to touch-based interactions on a phone or tablet device.

Digital digits [55] and “Ring Form Factor” [56] surveyed and explored the design space of smart rings for

interaction. Webb et al. [57] [64] explored using wearable devices such as a smart ring as context for surface

and pen-based interaction. Magic Finger [58] and TouchCam [59] enables users to interact with surfaces

8
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using optical sensor embedded in a wearable ring form factor. DeformWear [60] is a tiny finger worn device

that enables precise input using pressure, shear and pinch deformations. PredicTouch [61] and Moschetti et

al. [62] explore the combination of wrist and finger IMU for reducing touch screen latency and for recognition

of daily gestures. SynchroWatch [63] uses rhythmic correlation between a user’s thumb movement (magnet

ring) and on-screen blinking controls (smartwatch).

2.1.2 Using the Head, Eyes, and Face

Interactions using the head, eyes, and face have also been studied. Head movements, such as orientation

and nodding [64] or left and right tilting [11], have been used for hands-free input. The eyes are a common

interaction modality for those with limited motor movements [65]. The nose has been used for hands-free

indirect pointing [66] and to perform touch interactions [67, 68]. The physical movement of the tongue [69, 70]

and blowing with one’s mouth [71, 72] have also been effective for input.

For able-bodied users, head movement is a valuable interaction channel. Studies have shown that sensing

head orientation and position can help the calibration of gaze interaction and promote the accuracy of

gaze-based selection tasks [73, 74]. Head movements were also leveraged to control desktop cursors [75, 66]

and mobile devices [11], by mapping the position of the head to the cursor. Head gestures were also proposed

for performing discrete operations on the desktop [76, 77, 78] and HMD glasses [79, 80]. HeadTurn [77]

enables users to adjust input numeric values by turning their heads left or right beyond the range threshold.

HeadPager [78] enables users to turn pages in two directions by leaning their heads to the left or the right

area. HeadNod [76] supports quick dialogue answering via a nod or shake of the head. Glassgesture [79] was

the first work to leverage head gestures to achieve user authentication on AR headsets. Smoothmoves [80]

requires users to follow the movement trajectory of the target with the head to select it, on AR headsets.

Besides the preceding techniques only leveraging head movements, previous research also studied to

combine the use of gaze and head movements [81, 82, 83]. As gaze can reflect the focus and intention of

the user [84], it has been naturally leveraged as an input method [85]. Additionally, gaze changes have a

strong correlation with head movement [86], this can promote the recognition of head orientation and head

gestures [87]. Studies [82, 83] also showed that by combining the use of gaze and head movement data, target

selection techniques can achieve higher performance than using only one of them (faster than head pointing,

more accurate than eye pointing).
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2.1.3 Using the Feet

Many researchers have been exploring interaction techniques with the foot. Pearson et al. [88] proposed a

foot-operated cursor-positioning device called the “planar slide mole" and assessed its performance against a

mouse for target selection. Takeuchi [89] proposed foot tap gestures to operate a navigating map system.

Scott et al. [10] evaluated the use of four foot gestures: lifting a toe/heel and foot rotations pivoting the

heel/toe. They exploited the mobile’s accelerometer placed in the pocket to determine the gestures. As an

example of systems using footwear pressure sensors, Paradiso et al. [90] proposed a dance system where a user

can control background music by using foot-based gestures. As another example of a pressure-sensor-based

foot gesture, Papetti [91] proposed a sandal-placed foot-tapping interface with audio-tactile feedback. Yin

and Pai [92] showed a user-controlled virtual character using only foot gestures (specifically foot pressure).

However, the authors mention that it is impossible to recreate full-body motion by using foot pressure alone.

Lv et al. [93] presented an augmented foot interaction interface that detects and tracks the user’s foot motion

and foot gestures using computer-vision-based algorithms. Two implementations were presented in the paper,

an augmented football game and an augmented foot piano, both controlled by foot pressure or gestures only.

Another study suggested controlling a mobile phone menu by “kicking" the wanted option [94]. Han et al. [95]

explored how to control various mobile actions such as navigation and zoom with kick gestures. Moreover,

few researchers have demonstrated the use of foot gestures as an interaction mechanism alongside other input

modalities such as hand. For example, Johannes et al. [96] demonstrated how multi-touch hand gestures,

in combination with foot gestures, can be used to perform navigation tasks in interactive systems. They

showed an application of combining foot (indirect input) with hand (direct input) as a multimodal input

for Geographic Information System (GIS). They applied foot pressure input to navigate (with pan, zoom,

rotate, and tilt) a spatial document. Ricardo et al. [97] represented the feet interaction mechanism with

vertical surfaces. They implemented interaction techniques for interacting with the bottom part of vertical

displays, where the hands would not be able to reach typically. Fukahori et al. [30] presented a user-defined

gesture study of foot pressure and pattern recognition. Recently, Daniel and Cooperstock [98] have shown

that foot can compare with traditional hand-based interfaces in a pointing task based on Fitts’s law task,

by using variable friction to assist users in reducing pointing overshoot and increasing accuracy. Besides,

several types of research have proposed foot-based interaction techniques to move around the virtual reality

(VR) environment [99, 100, 90, 101]. To be more precise, NCSA’s CyberBoots use a pressure sensor array

in an overshoe to provide walking interaction in a virtual reality environment [99]. Haan et al. used foot

gestures to present simplified locomotion [100]. ShoeSoleSense [90] presents a navigating system in virtual

environments. Müller et al. [101] investigated direct and indirect foot-based interaction with virtual contents.
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2.1.4 Using the Full Body

Full-body interaction includes the use of body movements and gestures for interacting with computers,

which may be categorized into four kinds: (i) full-body only (e.g., Kinect), (ii) full-body plus external

devices, (iii) external device only (e.g., Wii Remote), and (iv) body-centric interaction (i.e., using the body

as interaction space). In full-body only interaction, users interact with computers (e.g., TV, games) using

full-body movements and gestures through motion-camera sensing devices. To enhance realism, full-body

only interaction may be augmented with external devices such as artificial gun [102] for interaction. In

external device only interaction, body movement is recognized through controllers (e.g., Wii Remote) or

mobile sensors‘[103], rather than from a motion-camera sensing device. In body-centric interaction, designers

explored extending the interaction space to the body. For example, Chen [104] investigated “body-centric

interaction” for mobile phones which extends the mobile device interaction space from only the 2D screen to

body space, e.g., using the arm as menus. Shoemaker et al. [105] also conducted similar work but on a large

display, e.g,. touching the hip to open a toolbar on a map application. Harrison et al. [106] investigated how

the body can become the input space, e.g., using the palm as a phone input screen.

A large body of work has been conducted regarding full-body interaction. Bianchi-Berthouze [107]

investigated how body movement affects game engagement, and found that body movement enhances affective

and social experiences in gameplay. In relation to movement, Isbister et al. [108] suggested that a greater

amount of movement appears to lead to a greater amount of enjoyment. Nijhar et al. [109] found that

increasing movement recognition precision leads to player’s higher level of immersion. Pasch et al. [110]

identified movement-related factors that influence player engagement: natural control, mimicry of movements,

proprioceptive feedback, and physical challenge. Tholander and Johansson [111] studied what makes movement

enjoyable by observing non-digital artefacts (e.g., real-world sports) and proposed eight design guidelines,

e.g., allowing users to significantly improve their skills by allowing only small changes in movement could

increase their sense of pride and mastery. Gerling et al. [112] explored full-body interaction for the elderly.

Some suggested guidelines include fatigue management, accessibility support, simple setup and easy gesture

recall. Isbister and DiMauro [113] analyzed movementbased design patterns such as kinesthetic mimicry and

piecemeal movement. Overall, few studies have considered the simultaneous use of game gestures.

Regarding the application area of full-body interaction, it has greatly expanded in recent years, and

includes using full-body interaction for interaction with large public displays [114, 115], TV controls [116],

storytelling [117] and collaborative virtual environments [118]. A recent research effect focuses on using

full-body interaction for promoting physical well-being (i.e., exergames). Some research findings suggest

that exergames motivate users in physical activity [119, 120, 121] and enhance physical health [122, 123].
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Exergames have also been used to address serious health problems such as cerebral palsy [124], stroke [125],

and chronic back pain [126].

2.2 Designing Conflict-Free Body-Based Gestures

Over time, to assist gesture designers in creating effective gestures, numerous design tools have been developed

by researchers. This section will explore various gesture design tools, highlighting their advantages and

disadvantages. Additionally, it will cover strategies researchers have employed to reduce false activations in

gesture design.

2.2.1 Gesture Design Tools

Gesture design is a time- and effort-requiring process. Researchers have been developing tools to make

the process more efficient and more accessible for gesture designers without expertise in developing gesture

recognizers. Early research on gesture interfaces focused on the design of tools to improve the specification,

mapping, and recognition of gestures by providing gesture templates or allowing designers to demonstrate

gestures [127, 128, 129, 130, 131, 132]. While these tools help designers easily design gestures and build

gesture recognizers without programming, evaluating gesture performances, such as gesture classification

accuracy and the number of false activations, requires conducting a user study.

To expedite the gesture design process by reducing the need for conducting user studies, some gesture

design tools provide gesture performance prediction. For example, Hartmann et al. [133] developed Exemplar

which assists the designers in the fast prototyping of gesture interactions by connecting real-world hardware

components with the Exemplar. Once the hardware is connected, the designer trains the system by providing

examples of samples to be recognized. However, the system does not differentiate between testing and actual

use and therefore does not provide information on performance with respect to between-class differentiability.

Such information is essential when designing multiple gestures that should not interfere with one another,

and most importantly with daily activities. MAGIC proposed by Ashbrook and Starner [1] tried to reduce

the gap between gesture interference within classes, and also with daily activities. Akin to Exemplar, MAGIC

considers information about consistency between samples, the chances of getting false activations, and the

distinctiveness of classes of gestures, all of which are used to improve the recognition rate of the motion

gestures created by designers. In MAGIC 2.0 [134], Kohlsdorf et al. extended MAGIC to better account for

the false positive motions that could occur in everyday life. By integrating indexable Symbolic Aggregate

approximations, a designer could search through a database of everyday motions to determine if a given

gesture could be accidentally triggered. Although MAGIC and MAGIC 2.0 facilitate false positive detection
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in the process of gesture design, the designers have to reiterate throughout the process as these systems do

not support modification of the already designed gesture for further false positive checking. Subsequently,

Mogeste [36] developed by Parnami et al. is a mobile tool to allow gesture designers to design, modify, and

test motion gestures anywhere. By letting gesture designers be at the site where the gestures will be used

and test and modify the gestures at the site, Mogeste can help them identify potential gesture conflicts and

accelerate the gesture design process. However, it still requires the designers to test the gestures in a realistic

scenario to evaluate the usability, and modifying gestures needs recollection of gesture samples to train the

recognizer.

Studies have shown that visualizing sensor data and using graphical markup language may allow easy and

exploratory gesture prototyping for gesture designers [135, 136]. As the continuous sensor data is visualized

as trajectories on display in real-time, these tools can help gesture designers to identify the patterns and try

alternative gestures. The metaphors used in these systems, such as the hurdles [135] and the mass-spring model

[136], also made the recognition algorithm easier for the designers to understand than machine-learning-based

recognizers [135], although this limits the types of usable features. While this method allows the designers to

quickly experiment with different gestures, this does not provide the gesture performance analysis, making a

formal user study necessary to understand the performance.

The above-discussed tools were developed to make the motion gesture design process more efficient,

particularly for gesture systems that use IMU data. Previous studies have also shown that the approaches

that are useful for IMU-based gesture sensing systems could be useful for gesture systems that use other

sensors, such as depth cameras that track user’s body movement. For example, CUBOD [137] developed by

Tang and Igarashi follows a similar approach to MAGIC; it shows the prediction of classification performance,

false activations, and gesture consistency based on gesture Goodness Measure so that the designers can

know whether the gesture is good or bad without conducting the study. GestureAnalyzer [138] proposed by

Jang et al. provides interactive clustering and visualization techniques to help gesture designers categorize

and characterize gestures collected during gesture elicitation studies. Similar to the previous IMU-based

approaches that visualize the motion data [133, 1], the study found that the visualization of gesture features

could help designers better understand the gesture characteristics, including the similarities of the designed

gestures. However, modifying the gestures when potential conflicts were found still remains as a challenge.

To summarize, many attempted to make the gesture design process easier and more efficient by developing

a user-friendly design tool [36, 1, 133], easier recognizer modification [136, 135], and a database of everyday

motions for false positive testing [1, 134, 137]. However, they do not offer the designer to 1) test the

classification and false-activation performance of body-based gestures and 2) modify and test gestures without

re-recording them. In SequenceSense, I provide these to allow designers to identify potential issues with the
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gestures and fix them without recollecting gesture samples.

2.2.2 Mitigating False Activations

As false activations have direct implications on the adoption of a particular technology that results in user

frustration [23], several techniques were developed and tested. One of the most common approaches is to use

delimiter gestures. By using delimiter gestures that are unique and different from regular body motion, the

system may ignore any motions detected without the delimiter gesture [13, 139, 140, 141, 142]. A drawback

of any delimiter action is the disruption in the user’s workflow [143, 1]; the user must first perform the

delimiter and then the intended gesture, therefore using the gestures less efficiently. Another approach for

mitigating the false activation problem is to simulate the false activation performance using an everyday

motion database [134, 134, 137]. While promising, these methods only support false activation checking

against the whole gesture, so the designers cannot modify gestures in the design process, so they iterate

through the process to make gestures usable. However, studies have shown that providing false activation

analysis could help designers make gestures more usable in real deployment [144, 143, 145]. Inspired by

these studies, I also use an everyday motion database for designers to easily identify gestures with potential

conflicts with daily activities. Moreover, our method supports the analysis of the false activation against

modified gestures, so the designers do not need to recollect data in the design process.

To summarize, designing good motion gestures involves important technical challenges, such as gesture

classification performance and false activations, in addition to ensuring their usability. While the development

of designer-friendly gesture design tools and the false activation simulation could accelerate the gesture design

process, getting good motion gestures still requires multiple iterations of gesture design, data collection, and

testing/analysis. SequenceSense aims to significantly reduce the effort of a gesture designer by eliminating

the need for repetitive data collection when modifying gestures.

2.3 Making Gestures Compatible Across Devices

The recent advancement in technology and science has introduced numerous mobile and wearable devices

equipped with lightweight sensors. These sensors have made it possible to establish new interaction prospects.

These interactions can be categorized into several aspects, such as single-device to multi-device, multi-device

to cross-device, cross-surface to multi-surface, cross-display to multi-display [146] interactions. Here, first, I

discuss approaches that utilize single- and multi-device(s) for interactions. These interactions are mostly

device-dependent, and they are not compatible across devices. Ultimately, I highlight how I can make a

system like UnifiedSense to reduce device dependency in cross-device interactions and facilitate users to
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reuse their learned gestures, promoting compatible gesture interactions. Finally, in this section, I discuss the

state-of-the-art for recognizing gestures researchers explored over time and the choice of a state-of-the-art

algorithm (i.e., Time-Series Transformer) to develop UnifiedSense.

2.3.1 Wearable and Cross-Device Interactions

Various commercial devices have emerged (e.g., Fitbit Versa [147], Oura Ring [148], and Google Glass [149])

and made it possible for researchers to create new interaction techniques using the device or for that device.

For instance, wrist-worn and mobile devices can track people’s physical activities (e.g., Fitbit Versa [147]) and

perform daily tasks such as automatic voicemail playback (e.g., iPhone [150]). Wrist-worn devices also support

various gestures such as pinch [151, 152, 153, 154] and hand gestures [155, 156, 157, 158, 159, 160, 161]

for quick interactions. Similarly, finger-worn devices (e.g., Oura ring [148]) have been leveraged to detect

interaction like click and drawing motions [162], detecting finger gestures [163], making a 3D signature [164],

providing text input to computers [165], adjusting the lights in a home environment [166], controlling smart

glasses using the thumb and middle fingers [167], scrolling for the computers [168], enabling in-pocket

smartphone operation [169]. Eyewear enable users to blend digital content with the physical world [170],

navigate content with eye blinks [171] or hand-to-face gestures [172], and control remote objects [173]. Many

eyes-free interaction techniques have been developed to improve access to and awareness of the features

offered by a mobile device, such as gesture-based authentication [174], and indirectly interacting with a phone

with foot gestures while the phone is in the user’s pocket [10]. Recently, the earbuds’ microphone has been

leveraged to detect touch gestures near ear positions (e.g., temple) and to interact with smartphones to access

music players, phone calls, and notifications [37].

Prior work has also investigated novel interactions across multiple devices. Studies have revealed

that users tended to allocate a complex task across multiple devices based on device form factors and

functionalities [175, 176]. For example, Duet demonstrates various intriguing interactions, such as cross-

device pinch gestures and touches made with a finger knuckle or a fingertip enabled by fusing sensor input

across a watch and a phone [52]. Mayer et al. [177] proposed to combine the capabilities of head- and

wrist-worn computers to interact with objects that are in the focus of a head-mounted display. Some research

has shown cross-device sensing (e.g., sensing beyond itself [178]) for gesture recognition. EchoFlex [179]

detects hand gesture using ultrasound imaging. Laput and Harrison presented hand activity detection using

smartwatches [180]. TapID [181] indirectly senses touch interactions using wrist-worn wearable devices,

though it is for more fine-grained finger identification beyond just sensing touches. Similarly, Ahn et al. [21]

introduced an indirect text entry technique using a smartwatch for smart glasses. Furthermore, to enhance
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robust interactions with cross-device modalities, some research has shown synchronous input signals by

combing inputs from different devices [182, 63, 183, 184, 185, 142]. Besides, existing commercial products

have started supporting cross-device behaviors such as using a watch as a remote to control the content on a

phone [186] or automatic task continuation when the user moves from a phone to a computer [150].

Prior body-centric cross-device work has investigated interaction in coordination between two smart

devices [52, 177], use of one smart device as input for another [21], and combining devices for synchronous

input signals [182, 63, 183, 184, 185, 142]. Our motivation for designing UnifiedSense is somewhat different

from these works. UnifiedSense assumes that users would wear multiple devices simultaneously. Subsequently,

our system automatically learns gesture patterns by leveraging sensor data from available devices and the

input on the primary device so that users can use gestures even without a primary device on them.

2.3.2 Wearable Gesture Recognition

For the last few decades, gestures have become a salient medium for natural interaction with computers,

and various wearables have emerged to detect hand gestures. Here I present prior work on hand gesture

recognition using wearable devices.

While some systems detect hand gestures using devices that are not worn on the arm or the hand, such as

head-mounted devices (e.g., Meta Quest VR headset) and shoulder-mounted devices (e.g., FingerInput [187]),

many use hand-worn and arm-worn devices that can detect the gestures at a closer distance. A wide range of

sensors can be embedded or attached to a wristband or armband for hand gesture recognition, such as infrared

(IR) ranging sensors [156, 188, 189, 190, 191], cameras [192, 193, 194, 195, 58], electromyography (EMG)

sensors [196, 38, 13], acoustic sensors [14, 197, 157, 180], and stretch sensors [44]. The mostly used sensor for

detecting hand gestures might be the Inertial Measurement Unit (IMU) [198, 199, 200, 8, 154, 201, 202], due

to its ability to accurately and responsively detect motions, small sensor size, low cost, and being already

deployed in many wearable devices possibly because of the aforementioned benefits.

Detecting hand gestures using hand- and arm-worn sensors is often done by using time-series analysis

and machine-learning algorithms. For instance, several trajectory-based gesture recognition methods, such

as dynamic time warping (DTW) [203, 198] and hidden Markov models (HMM) [204, 205], can recognize

gesture trajectories (e.g., line, square, circle, star [205]) using few samples while achieving high accuracy.

However, these methods may not work well for more complex and fine-grained gestures. More sophisticated

techniques have emerged, relying heavily on data-driven approaches. For example, machine learning models

such as support vector machines (SVM) and decision trees, e.g., [188, 197] are leveraged to design gesture

recognizers. The gesture recognizers designed with traditional machine learning models do not scale well for a
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high volume of data in case the model is deployed in the wild. Therefore, deep learning models have emerged

for training a robust recognizer model which could be used in the wild, e.g., [192, 206, 202]. Motivated by

these works, our approach also trains a high-performance Time-Series Transformer (TST) model [3, 2] from a

moderate amount of data (collected from our user study).

In selecting the TST model for gesture recognition in UnifiedSense, I considered the reported performance

and capabilities of various state-of-the-art algorithms, including TST, as described in the paper by Zerveas et

al. [2]. The evaluation results presented in the aforementioned paper demonstrate that TST outperforms

other methods, such as ROCKET [207], dilation-CNN [208], XGBoost [209], and LSTM [210], on a range

of datasets, achieving the best average rank across multiple dimensions. Although our study primarily

focused on simpler gestures, I chose the TST model due to its proven effectiveness in handling complex and

fine-grained gestures. I acknowledge that the gestures used in our experiments may not be as intricate as

those mentioned in the reasoning for algorithm selection. However, I believe that leveraging a powerful and

versatile algorithm like TST allows us to establish a strong foundation for recognizing and understanding

gestures in various contexts. Furthermore, our dataset consists of high-dimensional time-series data derived

from multiple channels, with each channel comprising 8 tuples. Given the TST model’s demonstrated efficacy

in handling high-dimensional time-series data, it aligns well with our dataset characteristics, reinforcing our

decision to employ TST in UnifiedSense. Although simpler approaches may yield better recognition rates for

certain cases, our objective was to explore the potential of state-of-the-art machine learning technologies,

such as transformers, in gesture recognition. I discuss the details of our approach in Section 4.1.1.

2.4 Investigation of Hand-Movements Manipulation

This section focuses on previous studies related to hand-movement manipulations, also known as perception

manipulations, along with their advantages and limitations. It then moves on to how individuals develop

motor skills through repetition, influenced by their previous experiences, and examines the potential negative

impact of manipulations on this learning process when applied to hand movements. Additionally, it delves

into the ways in which people adapt to these manipulations over time.

2.4.1 Perception Manipulation

Perception manipulation in VR refers to the technique that alters and controls an individual’s perception of

their own body and the virtual environment they are immersed in. It involves creating a sense of embodiment

and ownership over a virtual body and manipulating sensory information to influence the perception of the
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virtual environment [211, 212]. VR is a robust platform for employing perception manipulations, attributed

to its capacity to create an illusion of non-mediation [213, 214, 215, 216].

A key application of perception manipulation is in retargeting user interactions to provide tangible haptic

feedback from a limited set of physical objects. Techniques such as redirected touching and haptic retargeting

allow users to feel physical contact in VR, despite the virtual nature of the objects they see [217, 218, 219].

This approach cleverly uses the visual-haptic discord to create realistic tactile sensations, enhancing the user’s

engagement with the virtual world. In addition to tactile feedback, VR perception manipulation extends to

simulating weight sensations and scaling haptic feedback [220]. These methods adjust the perceived weight or

size of virtual objects, enabling users to experience a more diverse range of interactions without the need

for complex hardware setups. Such manipulations contribute to a richer, more varied virtual experience,

offering new possibilities for VR applications beyond simple locomotion or visual immersion. Redirected

walking is another significant aspect of perception manipulation, allowing for the exploration of large virtual

spaces within physical confines [221, 222, 223, 224, 225]. This technique subtly adjusts the user’s direction of

movement, making rotational manipulations particularly effective due to their less noticeable nature compared

to translational changes [226, 222].

Despite the innovative potential of these manipulation techniques, they could inadvertently affect the

accuracy of skilled motor activities honed over repeated practice. Individuals depend on both visual and

kinesthetic feedback to refine their movements, adjusting for discrepancies between intended and executed

motions [227, 228, 229, 230]. The cultivation of such motor proficiency and muscle memory is essential for

achieving task execution with greater velocity, consistency, and stability while minimizing the cognitive

burden [231]. Nevertheless, the dynamic essence of perception manipulation, which alters the congruence

between virtual and actual hand movements, introduces obstacles to achieving such automatism. Moreover,

the scope of perception manipulation traverses beyond beneficial uses, intruding upon ethical dilemmas and

hazards like cybersickness and potential exploitation, adversely affecting users’ psychological and physiological

well-being [35, 232]. For example, Casey et al. [34] uncovered a software flaw enabling the manipulation

of VR safety boundaries, thereby orchestrating the “Human Joystick Attack” that secretively directs users’

movements.

2.4.2 Motor Learning, Proprioception, and Kinematic Adaptation

Motor learning involves learning, retaining, and using physical skills. This process improves over time through

practice and real-world use [233, 231]. Proprioception, on the other hand, is the internal sense that informs

the body of its spatial position, accounting for limb and body movement. It is a vital component for effective
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motor control [231]. These two things work closely together, especially when it comes to complex movements

in VR [234, 235].

One well-known method in motor learning literature is classic visuomotor training. It uses two kinds of

signals to teach. The first is error-based signals, which are differences between what humans intended to do and

what actually happened. These are used for what’s known as model-based learning [236, 237, 238, 239]. The

second is visual-proprioceptive discrepancy signals, which are differences between where humans think of their

hand is and where it actually is. These help humans adjust their movements on the fly [239, 240, 241, 242].

It is worth mentioning that humans can adapt very quickly to these signals, often within just six classic

training trials [243, 244].

Another training method is exposure training, which refers to a training paradigm that involves the

manipulation of sensory feedback to recalibrate proprioception and update predicted sensory consequences.

This type of training typically involves a combination of robot-controlled hand movements with rotated visual

feedback, which eliminates the ability to update predicted sensory consequences [245]. Despite the limitation

of being used with robot-controlled hand movements, the method is just as effective for adjusting humans’

sense of body position and movement [240, 241, 242, 246].

In this context, VR offers new opportunities and challenges for improving body position sense. The use

of head-mounted displays (HMDs) can introduce visual-proprioceptive discrepancies, which may not only

disrupt proprioception but also induce motion sickness[234]. Despite these disruptions, VR offers a convenient

setting for dynamic manipulations, broadening the scope of motor learning to include not just sensorimotor

adaptations but also knowledge-based action selection [247].

Artificial perturbations in perception, often delivered via distorted visual or tactile feedback, act as a

catalyst for kinematic and proprioceptive adaptations. Such dynamic environments force the central nervous

system to update its internal models, culminating in a robust and adaptive motor learning framework[235].

In summary, motor learning in dynamically perturbed environments constitutes a complex interplay

between sensorimotor signals and cognitive strategies. While traditional motor learning predominantly

depends on error-based and visual-proprioceptive discrepancy signals, emerging paradigms are emphasizing

the significance of sensory recalibrations and knowledge-based action selection [239, 240, 241, 242, 247].

Moreover, the speed of these motor adjustments and proprioceptive recalibrations, often occurring within a

few training trials, highlights the neural plasticity and adaptability of motor systems [243, 244].

This research narrows its focus to the investigation of motor performance metrics in VR environments

subjected to perceptual manipulation. The study’s primary aim centers on elucidating the trajectory changes

in motor tasks as proficiency develops rather than identifying the contributory factors affecting such proficiency

during manipulation.



Related Work 20

2.5 Detecting Hand-Movements Manipulation

Hand-movement manipulations can be detected through various techniques. In this context, I have opted to

use a specific deep-learning strategy known as the anomaly detection approach, utilizing hand-movement data

to pinpoint manipulations. Subsequently, I will briefly discuss the anomaly detection method, prior works

using the anomaly detection approach, and the rationale behind selecting this approach for our research.

Anomaly detection has significantly evolved since the 1960s, diversifying into areas such as surveil-

lance [248], network quality [249, 250], and sensor systems for automated vehicles [251], driven by deep

learning advancements. Deep learning’s ability to analyze complex, high-dimensional, and temporal data has

enhanced anomaly detection methodologies, particularly for temporal and sequential datasets.

Given the sequential nature of our hand-movement time-series data, I opted for Long Short-Term

Memory Networks (LSTMs) [252, 253, 254]. LSTMs excel in handling sequential data through their Encoder-

Decoder architecture, which processes variable-length input sequences to produce a comprehensive vector

representation. This representation is then decoded to reconstruct the sequence, enabling precise anomaly

detection in hand-movement data by learning speed and acceleration patterns.

Anomaly detection techniques are categorized into supervised, unsupervised, and semi-supervised models,

with the choice largely dependent on data labeling and specific dataset challenges [255, 256, 257, 258].

Supervised models are accurate but constrained by label scarcity and imbalance issues. Unsupervised models,

which use unlabeled data to detect patterns, can be compromised by noise [255]. Semi-supervised models

utilize available normal data labels to improve outlier detection, offering an effective compromise by leveraging

the relative ease of obtaining normal data over anomalous labels [259]. This approach is notably effective

in network traffic analysis, where it outperforms unsupervised methods [255]. Inspired by these findings

and given the challenges associated with gathering manipulated labeled data for hand movements in VR

environments, I have chosen to employ a semi-supervised learning approach. This method allows our model

to be trained to recognize the patterns of normal movements, effectively addressing the constraints of our

specific application context.

In summary, ManipulaSense’s adoption of the LSTM model is strategically chosen to leverage its proficiency

in sequential data analysis, which is essential for the nuanced understanding of hand-movement time-series

data. This decision aligns with the broader trend in anomaly detection towards utilizing deep learning models

capable of sophisticated temporal data analysis.



Chapter 3

Designing Conflict-Free Body-Based

Gestures

Designing and implementing usable body-based gestures is challenging as regular body movements (uninten-

tional) can easily be interpreted as gestures and cause false activations [260]. Adjusting the gesture recognizer

or modifying gestures to cause fewer false activations may lead to false negative errors, where the system

does not recognize intended gestures. Furthermore, only focusing on the gesture recognition performance

may result in a gesture with poor usability. To make gesture systems good at preventing false positive and

false negative errors, designers “have to get down and dirty with your recognizer, and manually tweak your

gestures using the tools and methods . . . ” [23]. This process often involves validating recognizer performances

through human subject studies [30, 31] in both lab and real settings that makes the process time-consuming

and expensive, resulting in difficulties in efficiently iterating on the gesture design.

Several methods have been developed to ease the process of designing usable body- and motion-based

gestures [36, 1]. For example, Parnami et al. developed Mogeste [36], a mobile tool to allow gesture designers

to design, modify, and test motion gestures anywhere. By letting gesture designers be at the site where the

gestures will be used and test and modify the gestures in a realistic scenario, Mogeste can help them identify

potential gesture conflicts and accelerate the gesture design process. However, it still requires the designers

to test the gestures in a realistic scenario to evaluate the usability, and modifying gestures needs re-collection

of gesture samples to train the recognizer. On the other hand, MAGIC [1] allows gesture designers to quickly

gain insights into the designed gestures’ performance, recognition performance, and potential conflicts. A

designer can design a set of gestures on MAGIC and record gesture samples, similarly to Mogeste [36]. The

recorded samples are used to train a gesture recognizer, which provides inter- and intra-class classification

21
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performances. In addition, MAGIC uses an everyday hand motion repository to estimate potential conflicts

so that the designer does not have to run a user study to test its usability. However, once a gesture with

potential conflicts is identified, the gesture designer should modify the gesture and re-collect the gesture

samples to check the usability of the new gesture, which can be costly, especially if multiple iterations are

required (Figure 3.1).
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Figure 3.1: This figure depicts the difference between the conventional method of usable gesture design,
MAGIC [1], and SequenceSense. Using the conventional method, the designer has to perform multiple user
studies (double-border boxes) for gesture data collection and performance evaluation in real settings to design
a usable gesture set. MAGIC [1] compares the gestures with the regular movements in the loop of designing
gestures to avoid false activations; it does not automate finding the usable gesture set if false activation
occurs with the selected gesture set. With SequenceSense, designers do not need to redesign the gesture and
re-collect gesture samples; rather, they can modify the atomic action sequence of conflicting gestures.

This chapter presents SequenceSense, a tool developed to help designers efficiently build a usable body-

based gesture set using a sequence-based gesture recognizer and an automatic conflict analyzer. Instead of

training a gesture recognizer using raw features, SequenceSense detects atomic actions in a gesture and uses

their sequence to define and recognize gestures. This allows the gesture designer to easily modify the gestures

by reconfiguring atomic actions in the gesture sequence and to immediately check the recognition performance

and potential false activations without re-collecting the gesture samples or conducting experiments (Figure

3.1). I believe that this will allow gesture designers to focus more on the usability of gestures and less on

their robustness.

SequenceSense has three main components: recognizer, analyzer, and editor (Figure 3.2). The gesture

recognizer segments gesture samples into smaller movements and classifies them as atomic actions so that a

gesture can be represented as a sequence of atomic actions (e.g., a foot tap to the right: foot lift, move to the

right, foot land with tapping). The use of a sequence-based gesture recognizer can help designers find and

modify atomic actions that cause conflicts with other gestures and/or daily activities. The gesture analyzer

compares gesture sequences against each other and estimates the possible conflicts between gestures and false

activations during daily activities using a database containing atomic actions collected during daily activities.
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The gesture editor is the front-end of the system where the designer can check recognition performance,

identify possible conflicts, and modify gestures.

To evaluate the feasibility of SequenceSense, I chose foot gestures, which are shown to be preferred over

other body-based gestures in scenarios where users cannot use their hands [9]. I adopted 17 foot gestures

(Table 3.2) from prior work on body-based and foot gestures [25, 261, 262, 263] that focused on usability.

I conducted a user study to validate our tool in effectively designing gestures and compare its effectiveness

over MAGIC [1]. I measured the quality of the designed gestures, the efficiency of designing gestures, and

the overall user experience. The results from our user study showed that using SequenceSense, participants

were able to design usable gestures with shorter gesture sequences, requiring approximately half of the time

compared to MAGIC. Moreover, all the participants in our study preferred using SequenceSense over MAGIC

to design gestures as gesture design with SequenceSense requires less effort and especially does not require

participants to re-collect modified gesture samples when conflicts occur.

Figure 3.2: Designing usable gestures using SequenceSense. Once gestures are designed and recorded,
SequenceSense 1) segments and classifies atomic actions forming the gestures, 2) finds the sequence of atomic
actions for each gesture, and 3) analyzes gesture classification performances and possible conflicts with daily
activities. With the visualizations and the gesture sequence editor in SequenceSense, the designer can modify
the gestures to be more usable.

3.1 SequenceSense

SequenceSense is a gesture designing tool that allows designers to efficiently design, test, analyze, and modify

usable foot-based gestures. While there exists several tools for designing and analyzing gestures [1, 36, 264, 138],

the highlight of SequenceSense is its gesture design process which eliminates the need for multiple data

collection studies to evaluate the gestures’ usability, and instead requires only the initial gesture sample

collection (Figure 3.2). This enables the designers to make gesture modifications without requiring them to

re-collect the modified gesture data. SequenceSense achieves this by representing gestures in terms of their

primitive movement units, atomic actions, which the gesture designer can use to compose new gestures by
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Figure 3.3: SequenceSense Gesture Designer Tool. The gesture a step backward has a very high false activation
detection rate of 0.86 for a confidence threshold of 0.65. Using SequenceSense, I can redesign that gesture by
appending a foot tap to it, consequently reducing the overall false activation detection rate to 0.03.

sequencing these atomic actions in various combinations. This technique can be especially helpful in creating

usable gestures with low false activations since it eliminates the bottleneck of re-collecting gesture samples,

facilitating rapid iterations.

I implemented SequenceSense as a web application using approximately 5,000 lines of JavaScript (ReactJS)

and Python code (Figure 3.3). For our implementation, I focused on the foot-based gesture design scenario. I

chose 17 foot gestures (listed in Table 3.2), the first 14 of which were taken from the elicitation study by

Felberbaum and Lanir [25], and the last three were complemented from the user-defined elicitation studies on

foot gestures and interactions [261, 262, 263], as the baseline gesture set.

Designing Gestures Using SequenceSense

The workflow of designing usable gestures with minimal false activation using SequenceSense is described

below.

Step 1: Classifying Gesture Samples

The designer first collects samples of foot gestures and uploads them into SequenceSense. SequenceSense

supports both labeled and unlabeled gesture samples in CSV format containing 3-axis acceleration and
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orientation represented as quaternions. Once the designer has uploaded all the gesture samples, SequenceSense

classifies the samples and shows the gesture recognition accuracy through a confusion matrix.

Step 2: Analyzing Gesture Conflicts

SequenceSense compares the uploaded gesture samples against a repository of daily foot activities and reports

the overall gesture conflicts (Figure 3.3d). The detection rates of these conflicts are visualized along with the

corresponding gesture accuracies for confidence values ranging from 0 to 1. The designer can now adjust the

confidence threshold and observe the classifier performance in terms of gesture accuracy and false activations

for the selected confidence value (Figure 3.3e).

Step 3: Visualizing Gesture Components

If the false activation detection rates of the uploaded gesture samples are high, SequenceSense allows the

designer to break down the gesture samples into their individual acceleration and orientation components and

visualize them separately to intuitively identify the cause of conflict (Figure 3.3f). Based on their observations,

the designer can plan gesture modifications accordingly to avoid false activations.

Step 4: Redesigning Gestures

Once the designer has planned their gesture modification, they can use the Sequence Designer panel

(Figure 3.3b) provided by SequenceSense to compose the new gesture through a sequence of atomic actions

(Figure 3.3a). SequenceSense also allows the designer to visualize the redesigned gesture through animation

(Figure 3.3c). After redesigning the gesture, the designer can check for conflicts by simply clicking on

the Calculate Conflict button. In this way, the designer can iteratively design gestures and evaluate their

corresponding conflicts until they are satisfied with the usability of the redesigned gesture, without having to

manually perform or collect these gestures.

Step 5: Exporting Recognizer

Finally, once a usable gesture is designed, the designer can export the gesture recognizer model along with

the associated configurations to deploy in their machine learning pipeline.

3.2 Gesture Recognition

In this section, I discuss the device used for data collection, data preprocessing, feature sets, atomic action

detection, and the sequence-based gesture recognizer that SequenceSense uses.
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3.2.1 Device for Data Collection

I designed a wearable device to collect foot movement data, as illustrated in Figure 3.4. The device was

designed to be attached on top of a shoe. The device comprises a SAMD21 microcontroller, a BNO080

9-DOF IMU, a micro-SD card, and a 3.7 V, 900 mAh Lithium polymer battery in a 3D-printed case

(52× 34× 22 mm). The device collects acceleration and orientation with sampling rates of 200 Hz.

Figure 3.4: (a) The data collection device worn on the shoe and (b) components in the device.

3.2.2 Data Preprocessing

SequenceSense uses the time-series data from the device’s IMU sensor which includes the timestamp t,

acceleration (a(t)), and device orientation represented in quaternion (Q(t)), which is then denoised using

Kalman filter [265]. The data preprocessing pipeline ensures that the position and orientation are aligned with

the user’s foot (Figure 3.5). Our technique for representing the collected sensor data in the local body frame

is inspired by the method used by Ruoyu [266]. Once the sensor data is aligned with the foot orientation, our

system segments the data into stationary and non-stationary parts using the zero velocity update (ZUPT)

algorithms [267, 268]. I derive distance from acceleration using double integration (from acceleration to

velocity and then to distance). The noise accumulated by this method is offset by the ZUPT algorithm.

Finally, I derive relative orientation in Euler angles from relative quaternions [269] as follows. First, the

relative quaternion is calculated for the zero velocity update portion as Qr(t) = Qst−1 ∗ Q′
t, where Qst−1

is the quaternion of the previous stationary period at time t − 1, and Q′
t is the conjugate quaternion of

Qt. Second, for the velocity, v(t) ̸= 0, the relative quaternion Qr(t) = Qt ∗ Q′
t is calculated. Finally, the

quaternion to Euler transformation method is employed to calculate Roll(t), Pitch(t), and Y aw(t) angles

from the combined Qr(t).
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Figure 3.5: Local body frame, global reference frame, and foot reference frame.

Figure 3.6: Number of gestures for different non-stationary detection threshold ath values. I chose ath of 0.03
because it is in the middle of the plateau, and using the value, our system segmented the desired number of
the non-stationary segments.

Recall the segmentation of the stationary and non-stationary parts mentioned above, which is done using

a threshold. I named this threshold to non-stationary detection threshold, (ath). The threshold is calculated

by aggregating 57 segmented a step forward gestures. These 57 gestures are arbitrary time-length stationary

period readings of acceleration and orientation. The same zero-velocity update algorithm was employed to

detect the stationary and non-stationary portions. Then the number of the different non-stationary portions

is measured for the different values of ath ranging from 0 to 0.5 (see Figure 3.6). Using a mathematical

phenomenon widely used for threshold detection named plateau (between 0.0 and 0.1 in Figure 3.6), the

threshold is found to be 0.03 in our case.
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3.2.3 Feature Set

The foot movement kinetics can be determined using distance and orientation measures. For example, the

Z-axis distance measure can correspond to the lifting and landing of the foot. Similarly, the pitch orientation

measure is affected by the lifting and lowering of the toes. I thus use a dynamic-length 6-dimensional

feature set, similar to a trajectory-based dynamic hand-gesture-pattern representation system [270]. These

features are the distance measures in meters towards X,Y , and Z directions and angle measures in degrees

corresponding to roll, pitch, and yaw angles. After analyzing the features, I discovered that the Z-axis

distance measure follows a rising and falling pattern for all gestures except for dragging gestures and drawing

a circle. For the rotate toes left and right gestures, the Z-axis distance measure is barely noticeable, but the

pitch angle indicates that the foot is lifting and lowering. Both the Z-axis distance measure and pitch angle

remain silent during dragging gestures and drawing a circle. The walk in place and run in place gestures

exhibit the same repeating pattern. A step to the side gesture has a significant positive Y -axis distance

measure, while a step forward and step backward gestures have a large positive and negative X-axis distance

measure, respectively. The left and right turn gestures can be understood by observing the yaw angles, which

reflect each other. Observing these features allows for easy and intuitive identification of gesture patterns.

Other interesting observations are left for the reader to discover. A complete list of features illustrating the

17 gestures is reported in Figure 3.14a - Figure 3.14q.

3.2.4 Atomic Action

I define atomic actions as the building blocks of gestures. Atomic actions are small, primitive movements,

such as lifting the foot up, moving the foot to the right, and placing the foot down. For example, a foot

tap gesture can be constructed using two atomic actions – lifting the foot up and placing the foot down.

This process of compositionally designing gestures using primitives has been extensively explored in prior

literature and has yielded promising results in terms of increasing the accuracy or reducing the training

set [271, 272, 273, 274, 275].

To detect atomic actions, our system segments the gestures based on the Z-axis distance measure and/or

pitch angle. These two features are used to segment gestures because they provide insight into whether the

foot is lifted from the ground. Gestures with both of these features silent (barely noticeable) are considered

to be atomic action as a whole. Whether the Z-axis distance measure and pitch angle are silent or not is

determined based on the slope. The slope is calculated by detecting the peak of the Z-axis distance measure

and pitch angle. If the absolute positive slope is less than a threshold value, then both the distance and angle

measures are considered silent, and the gesture is considered an atomic action. I found that the threshold
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Table 3.1: Atomic actions explained with 6 positional and rotational features. The following symbols represent
the features’ pattern: “↗”: increasing, “↘” : decreasing, “→”: flat or silent, “⟳”: clockwise circular, “d”:
don’t care.

Atomic action Interpretation X Y Z Roll Pitch Yaw

a0 Foot/Toes lifting d d ↗ d ↗ d

a1 Foot down (while jumping) d d ↘ d ↗ d

a2 Foot down (while running in place) ↘ ↘ ↘ ↘ ↘ ↘
a3 Foot down (while stepping to right side) → ↗ ↘ d ↗ ↘
a4 Foot down (while turning left) d ↘ ↘ d d ↘
a5 Foot down (while turning right) d ↗ ↘ d d ↗
a6 Foot down (while stepping forward) ↗ → ↘ d ↗ d

a7 Foot down (while stepping backward) ↘ → ↘ d ↗ d

a8 Foot down (while walking in place) → d ↘ ↗ → →
a9 Toes down (while rotating toes left) → ↘ ↘ ↘ ↘ ↘
a10 Toes down (while rotating toes right) → ↗ ↘ ↗ ↘ ↗
a11 Toes down (while tapping) d d ↘ → ↘ →
a12 Toes down (while tapping to the right) d d ↘ ↗ ↘ ↗
a13 Toes down (while tapping to the left) d d ↘ ↘ ↘ ↘
aw1

Foot drag (while drawing a circle) ⟳ ⟳ → d → d

aw2
Foot drag (while dragging from front to back) ↗ d → d → d

aw3
Foot drag (while dragging from left to right) d ↗ → ↗ → ↗

aw4
Foot drag (while dragging from right to left) d ↘ → ↘ → ↘

A Step Backward Double Foot Tap

Time

Acceleration
x
y
z

Quaternion
Roll
Pitch
Yaw

a0 a0 a11 a0 a11a7

Figure 3.7: Illustrative examples of the segmentation process. A step backward gesture is segmented into two
atomic actions (a0a7) (left side). Double foot tap gesture is segmented into four atomic actions (a0a11a0a11)
(right side).
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slope for both the Z-axis distance measure and pitch angle is 8 degrees. For non-silent gestures, our system

detects a pattern of increasing (moving forward/rightward/upward) and decreasing with a positive peak value

for the Z distance measure, followed by the same pattern for the pitch angle. Our system then segments the

gesture into two parts: from the zero crossing to the next positive peak as the first segment and from the

peak to the next zero crossing as the second segment. This process is repeated until the entire gesture has

been segmented. Two examples are illustrated in Figure 3.7, showing the segmentation of a step backward

and double foot tap gestures, respectively.

Some atomic actions are more complex than others due to a lack of sudden changes in the atomic action.

For example, the dragging and drawing circle gestures are classified as single atomic action gestures. The run

in place, walk in place, double foot tap, foot tap to the right, and foot tap to the left gestures are segmented

into four atomic actions. The first and third segments and the second and fourth segments are the same for

these gestures. Therefore, the number of atomic segments is halved for these gestures. However, for the foot

tap to the right and foot tap to the left gestures, the first and third segments are the same but not the second

and fourth. The third segment of foot tap to the right is the same as the fourth segment of foot tap to the left

and vice versa because the gestures are mirrored versions of each other. Except for these gestures, all other

gestures (Indices 1, 3-7, 11, 12 in Table 3.2) are segmented into two segments, and the last segment clearly

describes each gesture individually.

I identified 18 unique atomic actions in our system, which I obtained by segmenting the 17 gestures in

our gesture set. Thirteen gestures from our gesture set start with lifting the foot up, which is defined by

the atomic action a0. Subsequently, these gestures are concluded by atomic actions a1 through a13. The

remaining four gestures from our gesture set do not involve foot lifting and instead require the dragging of

the foot. These gestures are considered atomic actions as a whole and are represented by atomic actions aw1

through aw4
. Table 3.1 reports the identified atomic actions, which are represented based on the 6-dimensional

feature set. Finally, I admit that the 18 atomic actions defined here are not representative of all foot gestures

and only represent the 17 gestures that I selected for our system. The breakdown of each gesture into atomic

actions is illustrated in Table 3.2.

3.2.5 Classification

I implemented an atomic action classifier using the k-nearest neighbors (k-NN) [276] algorithm. The input

dimension of the classifier was 400 samples (2 secs). I empirically found k = 5 to be ideal for our classifier.

Since I are using time-series features such as distance and orientation measures, I used the Dynamic Time

Warping (DTW) [277] algorithm to calculate the distance metric for the k-NN classifier.
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Table 3.2: The chosen gesture sets and their definition by sequencing atomic actions.

Index Gestures Sequence of atomic actions

1 Jump a0a1

2 Run in place a0a2a0a2

3 A step to the side a0a3

4 Turn left a0a4

5 Turn right a0a5

6 A step forward a0a6

7 A step backward a0a7

8 Walk in place a0a8a0a8

9 Draw a circle aw1

10 Drag from front to back aw2

11 Rotate toes left a0a9

12 Rotate toes right a0a10

13 Drag from left to right aw3

14 Drag from right to left aw4

15 Double foot tap a0a11a0a11

16 Foot tap to the right a0a12a0a13

17 Foot tap to the left a0a13a0a12

Figure 3.8: A state-machine-based gesture recognizer.

3.2.6 Sequence-Based Gesture Recognizer

I implemented a sequence-based gesture recognizer using a finite state machine which has shown to be effective

in modeling human gestures [278]. Figure 3.8 represents the gesture recognizer based on the atomic actions

detected (Table 3.2). Our sequenced-based gesture recognizer consists of four states. The initial state (s0) is

the stationary state, implying that the state-machine is in this state if there is no movement at all. Once

the non-stationarity of the device is detected, the state-machine reaches the next state (s1). Being in the

state s1 means that there may be a gesture to be detected. Next, the state-machine determines whether the
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movement is done by lifting or dragging the foot. If movement is done by dragging the foot, the state-machine

segments the whole movement into an atomic action by classifying it into one of aw1
– aw4

, and then reaches

to the final state (s3). Otherwise, if the state-machine detects the movement done by lifting the foot, then it

reaches an intermediate state (s2) by detecting the initial part of the gesture, i.e., a0. In state s2, the machine

segments the remaining foot movements, and then classifies them into one of the atomic actions (a1 – a13),

finally reaching state s3. The final state s3 is responsible for constructing complete gestures from previously

classified atomic actions. If the stationarity of the foot movement in this state is over 1 second, then the

machine outputs the sequenced gesture and resets it to the initial state s0. Otherwise, if there exists foot

movement within 1 second, the machine returns to state s1 and continues to detect additional atomic actions.

3.3 Gesture Recognizer Performance Analysis

In this section, I evaluate the performance of our gesture recognizer in terms of its recognition accuracy and

its ability to reject false activations.

3.3.1 Data Collection

I conducted a data collection study to collect foot movement data. The study was divided into two phases –

(1) collecting natural foot movement during daily activities, and (2) collecting foot movement while performing

the aforementioned 17-foot gestures (Table 3.2). The study was approved by the University of Virginia–

IRB (#3446) and conducted while following the guidelines provided by the public and institutional health

guidelines.

Participants

I recruited 12 participants (6 female, 6 male) from our university through email groups and word of mouth,

with participants’ ages ranging between 23 and 34 years (M = 28.75, SD = 3.09). All participants were

right-footed, and they wore the device on their right foot. Participants were compensated with 50 USD for

their time.

Phase 1: Daily Activities

The purpose of the first phase was to collect foot movement during daily activities. In this phase, participants

were asked to wear the wearable device on their shoes for at least 6 hours a day, for two days. The participants

performed their usual daily activities while wearing the device. In total, the daily activities dataset contains

about 160 hours of data from 12 participants.
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Phase 2: Base Foot Gestures

In this phase, I collected the foot movement while the participants performed the foot gestures (Table 3.2).

After the researcher demonstrated the gestures to the participants, they were asked to perform each of the

gestures in front of the researchers while wearing the device. They performed each of the gestures 10 times

while being seated and standing, individually. For the seated condition, four gestures (turn left, turn right,

run in place, and a step forward) were not performed due to the difficulties associated with performing them

while being seated. In total, this phase resulted in the collection of 2040 standing gestures (17 gestures×

10 samples× 12 participants) and 1560 sitting gestures (13 gestures× 10 samples× 12 participants), and

took about 50 minutes for each participant to complete.

3.3.2 Gesture Performance

I performed our gesture performance evaluations using leave-one-participant-out cross-validation. Our state-

machine-based recognizer achieved a high accuracy of 97% in classifying 17 gestures. From Table 3.3, I observe

high recall and F1-scores for all gestures except jump and run in place. These aberrations can be attributed

to the undirected foot orientations that may occur while performing such gestures, and distance/orientation

measures may not be sufficient in capturing these nuances. Figure 3.9 illustrates the confusion matrix for the

17 gestures.

3.3.3 Conflict Analysis

Natural body movements while performing daily activities may inadvertently trigger false gesture activations [4,

23]. I used our state-machine-based recognizer to identify all the falsely triggered gestures from the daily

activities data that I collected in phase 1, and subsequently used it to detect the overall conflict of our 17

predefined gestures. Figure 3.10a illustrates the conflicts analysis for all of the 17 predefined gestures. Here, I

can observe the overall false positive rate to be 58.5% for a confidence threshold of 0.85. Gestures with four

highest false positive rates were identified as – a step forward (18%), turn left (16%), turn right (14%), and a

step backward (12%).

3.3.4 Modifying Gestures to Reduce False Activations

In our conflict analysis, I observed a significant amount of false activations for most of the 17 predefined

gestures. While these gestures may individually have a high probability of occurrence during daily activities,

sequencing these gestures along with other gestures can potentially reduce their occurrence probability since

it is unlikely for multiple gestures to occur within a short period of time. I thus modified all 17 foot gestures
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Figure 3.9: Confusion Matrix (CM)

by prepending the atomic actions corresponding to a foot tap (a0a11) to each of the original gestures using

SequenceSense. Running the conflict analysis procedure again on these modified gestures yielded a false

positive rate of 2.6% for the same confidence threshold of 0.85. The conflicts between both the modified and

unmodified gestures are illustrated in Figure 3.10.

3.4 Tool Evaluation

I conducted a user study to determine the effectiveness of SequenceSense in allowing gesture designers to

design usable gestures with low false positives. In particular, I compared our method against the MAGIC

approach [1] to measure the efficiency of designing gestures, the quality of the designed gestures, and the

overall user experience of using the atomic action sequence editor.
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Table 3.3: Precision, recall, and F1-score of the gesture recognizer.

Index Gestures Precision Recall F1-score

1 Jump 1 0.93 0.97

2 Run in place 1 0.92 0.96

3 A step to the side 1 1 1

4 Turn left 1 1 1

5 Turn right 1 1 1

6 A step backward 1 1 1

7 A step forward 0.94 1 0.97

8 Walk in place 1 0.96 0.98

9 Draw a circle 1 1 1

10 Drag from front to back 1 1 1

11 Rotate toes left 1 1 1

12 Rotate toes right 1 1 1

13 Drag from left to right 1 1 1

14 Drag from right to left 1 1 1

15 Double foot tap 0.95 1 0.97

16 Foot tap to the left 1 1 1

17 Foot tap to the right 1 1 1
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(b) Modified Gesture.

Figure 3.10: Comparison of conflicts between unmodified and modified gestures using SequenceSense. Red
lines indicate the trade-off region between true positive (TP) rate and false positive (FP) rate while choosing
confidence there.
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3.4.1 Study Design

I designed a 2×2 within-subject study of designing 2 sets of gestures (each containing 3 unique gestures) using

2 methods – (1) MAGIC [1], and (2) SequenceSense. The MAGIC condition uses a modified SequenceSense

tool that does not have the sequence editor so that the workflow of designing gestures involves the re-collection

of gesture samples after gesture modification, as in its original design [1].

3.4.2 Procedure

The participants were asked to design three usable gestures unique to each method. For our study, I defined

a usable gesture as a gesture having over 90% recognition accuracy and less than 10% false activations

from daily activities. I chose 10% false activations because I found from the experimental analysis that

the number of false activations is approximately nine conflicts/hour on average if I set the false activations

percentage to 10%. This analysis was done on the collected daily activities database. The order of methods

was counterbalanced to minimize the order effect.

The participants were required to attach the motion data collection device (Figure 3.4) on the shoe of their

dominant foot for recording gesture samples. Before designing gestures using each method, the experimenters

gave a brief demonstration of performing the gestures and designing gestures using the method. For each

method, the participants were first asked to record one sample for each unmodified gesture from the gesture

set. After recording the samples, the experimenters collected the gesture data from the device and provided

it to the participants. The participants then imported the gesture samples into the tool to check their overall

recognition accuracy and false activation. If the recognition accuracy and false activation of any gesture did

not meet our predefined criteria, the participants had to modify that gesture until it satisfied the criteria.

The participants were given a maximum of 30 minutes to design and modify the three gestures for each

method. At the end of each method, the participants were asked to complete a survey on their experience of

designing gestures using that method. Additionally, at the end of the study, the participants were asked to

complete a final survey about their experiences of using both methods.

3.4.3 Participants

I recruited 9 participants (1 female, 8 male) with participant ages ranging between 24 and 32 years (M = 28.5,

SD = 3.5). Participants were required to have prior experience in gesture design. All the recruited participants

were graduate students from our university, and were right-footed. Participants were asked to rate their

experiences in (1) using motion-based gestures, (2) implementing user interfaces, and (3) designing gestures

using a 5-point Likert scale, with 1 being novice and 5 being expert. On average, the participants rated
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Table 3.4: Quality and efficiency of designing gestures using MAGIC and SequenceSense (SS).

Gesture Set Gestures Average Accuracy (%) Average False
Positive (%)

Average no.
of Iteration

Average Seq.
Length

MAGIC SS MAGIC SS MAGIC SS MAGIC SS

1
A step to the
side

100 97.5 3.5 2 1.25 1 5.5 4

Turn left 100 98 0.6 2.5 2.2 1 5.8 4

A step back-
ward

100 97.5 0.75 2 1.75 1 6.5 3.75

2
Turn right 100 98.4 3.3 2.4 1.3 1.2 5.3 4.6

Rotate toes
right

96.7 98.8 4.3 1.4 3 1 5.3 4.8

A step for-
ward

100 98.8 3 2.2 2.25 1 5.5 5

Overall Avg. 99.45 98.17 2.58 2.08 1.96 1.03 5.65 4.36

Std. Devia-
tion

1.35 0.6 1.53 0.39 0.66 0.08 0.45 0.51

4.3 (SD = 0.5) for (1), 3.6 (SD = 1.2) for (2), and 3.8 (SD = 1.4) for (3). The study was approved by the

University of Virginia–IRB (#4312).

3.4.4 Results

The participants designed a total of 27 usable gestures (9 participants × 3 gestures) using each method. For

SequenceSense, participants were able to design all 27 gestures within the time limit, whereas for MAGIC,

the participants could not complete the design of 4 gestures (two participants, two gestures each). Table 3.4

reports the average accuracy, the average false positive, the average number of iterations, and the average

sequence length of the designed gesture using both the MAGIC and SequenceSense for the chosen gesture

sets. It also reports the overall average in each category and their standard deviation. The complete list of

original and modified gestures is in Table 3.5.

Quality of Designed Gestures

Figure 3.11 illustrates the gesture accuracy, false positive rate, and the gesture sequence length of the designed

gestures using both methods. A repeated measures ANOVA revealed no statistical significance for gesture

accuracy and false positive rate between the two methods.1 This may indicate that both the methods are

sufficiently comparable in recognizing gestures and minimizing false positives. However, the method effect

was statistically significant on the designed gesture sequence length (F (1, 5) = 12.41, p < 0.05). Using

SequenceSense, participants were able to design usable gestures with shorter gesture sequences, implying

more user-friendly gestures since shorter gestures are easier to remember and perform [25].

1p-value annotation legend in the reported figures (Fig. 3.11 - Fig. 3.12):: ∗ : 1.00e−02 < p <= 5.00e−02, ∗∗ : 1.00e−03 <
p <= 1.00e−02, ∗ ∗ ∗ : 1.00e−04 < p <= 1.00e−03, ∗ ∗ ∗∗ : p <= 1.00e−04, and ns : p >= 0.05, not significant.
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Figure 3.11: Quality of designed gestures. (a) Gesture Accuracy, (b) False Positive Rate, and (c) Gesture
Sequence Length.

Efficiency of Designing Gestures

Figure 3.12 illustrates the number of iterations and the total time required for the participants to complete

designing usable gestures using both methods. A repeated measures ANOVA revealed that the method effect

was statistically significant for both measures. Participants required approximately twice the total number of

iterations using MAGIC as compared to SequenceSense for designing usable gestures (F (1, 5) = 10.25, p <

0.05). A larger effect was observed for task completion time, where participants took approximately 2.5 times

longer to design usable gestures using MAGIC as compared to SequenceSense (F (1, 8) = 216.41, p < 0.00001).

These results hint at the efficiency benefits of using SequenceSense.

Overall User Experience

All participants in our study preferred using SequenceSense over MAGIC to design gestures. Through a

5-point Likert scale, participants reported their experience regarding ease of use and efficiency of designing

and implementing gestures using both methods (illustrated in Figure 3.13). An Aligned Rank Transform

(ART) [279] ANOVA revealed that the method effect was statistically significant for both ease of use

(F (1, 16) = 23.21, p < 0.001) and design efficiency (F (1, 16) = 28.31, p < 0.00001) responses.

The participants appreciated the fact that they did not need to “re-collect” gesture samples multiple times

when designing gestures using SequenceSense (P1, P2, P4, P5, P7, P9). “I don’t need to collect data very
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Figure 3.12: Gesture design efficiency. (a) Number of Iterations and (b) Task Completion Time
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Figure 3.13: Qualitative User Study Results. (a) Easy to Use and (b) Efficient

often; I can easily use the interface to merge many new gestures that I didn’t even perform” (P2). Participants

also appreciated the fact that SequenceSense required less effort (P1, P2) to design new gestures: “there

is less effort needed to come up with a good gesture, i.e., one that is easy to perform and is discernible”

(P2). Particularly, the participants commented on how they did not need to do “trial and error” (P4, P7)

and “guesswork” (P9) when coming up with gesture modifications using SequenceSense’s gesture editor as

“[SequenceSense] took the guesswork out of collecting data and having it fail” (P9).
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3.5 Discussion

All the designers rated SequenceSense positively. They found SequenceSense’s gesture design process to be

easier, more effective, and less time-consuming as compared to MAGIC, since SequenceSense did not require

the designers to collect additional gesture samples for creating usable gestures. Since the designers can see

the gestures as a sequence of atomic actions, they can easily understand which sequences conflict with daily

activities and modify them with a simple change of atomic actions using the drag-and-drop gesture editor

interface instead of recording an updated gesture. The sequence-based gesture recognizer is also efficient in

storing the dataset and analyzing conflicts since it does not need the full sensor measurements.

No one would argue with the gesture design guideline that the gesture should be easy to understand, easy

to use, having low false positive errors, and having low false negative errors [23]. However, designing such

gestures can be challenging. Our study revealed that the user-friendly gestures [25, 9] may not be essentially

usable gestures in real life, as similar movements may frequently happen during daily activities. However,

I also saw a silver lining for which a small modification to such gestures could make them be significantly

more usable; the simple addition of an atomic action to high-conflict gestures could significantly reduce

potential conflicts. With SequenceSense, the iterative analysis and gesture modification could be done without

additional user studies nor with performing and recording of the new gestures.

3.5.1 Design Implications

• Easy-to-perform or intuitive gestures are not necessarily usable gestures. SequenceSense

utilizes the foot gestures from prior literature that were found to be instinctive and easy to perform [25,

261, 262, 263]. However, our analysis showed that these gestures can have many conflicts if used in

everyday life (58.5% false activations), which can cause user frustrations. This highlights the importance

of considering in situ gesture performance in the gesture design process.

• Instant gesture performance analysis leads to a more optimized gesture design. From the

study results, I observed that the average length of the resulting gestures was shorter when designed

using SequenceSense than MAGIC. I conjecture that this is due to the participants wanting to ensure

the gestures are not triggered by daily activities without having to record the gesture samples again.

With SequenceSense, the participants further optimized the gestures as they could immediately check

the potential recognition performance of the gestures without recording gesture samples. Gesture design

is an expensive process, and I believe that allowing gesture designers to modify gestures and inspect

their performances will help the designers focus more on the usability of the gestures.
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• Testing is still essential to ensure usability. While SequenceSense allows designers to quickly

modify and inspect gestures to ensure that the gestures can be recognized at high accuracy, to design

usable gestures, designers should still test the gestures by themselves or with other participants. In our

study, I observed two participants who designed gestures with high-recognition performances finding the

gestures difficult to actually perform. For example, a step backward followed by a quick foot tap could

cause a loss of balance. After trying them, the participants modified the gestures. This shows the need

for actually testing the gestures even with an advanced gesture-designing tool that provides an in-depth

analysis of recognition performances. However, the gesture recognition performance analysis can help

designers isolate the recognition performance and usability issues for a more efficient design process.

3.5.2 Limitations and Future Work

• I have demonstrated the use of SequenceSense for designing usable foot gestures; I believe that it can

be used for other body-based gestures with some considerations. One of the biggest potential challenges

of using SequenceSense for other body-based gestures is to segment movement into atomic actions. In

SequenceSense, I used two types of behaviors as delimiters – 1) sudden directional or orientational

changes in the movement (e.g., foot moving down after moving up) and 2) stable foot movement due to

making contact with the ground. While the first behavior can be found in other body-based gestures,

frequent contact with the ground or other stable surfaces is not very common for body movements other

than those made with the foot, which may cause challenges in segmenting body movements. However,

as similar behavior, which is raising and keeping the wrist still, has been used in smartwatch interfaces

as a delimiter for wrist-based gestures [280, 281], I anticipate the method would also be useful in other

body-based gesture interfaces.

• I validated SequenceSense with 17-foot gestures chosen from the literature and further segmented them

into atomic actions. These detected atomic actions do not guarantee that they are representative

enough of other foot gestures not included in SequenceSense. Additionally, to develop SequenceSense, I

have chosen foot gestures that are discrete in nature; however, a thorough evaluation and experiments

are required to support more nuanced gestures.

• While the current SequenceSense implementation predicts the recognizer performance, such as accuracy,

and false positive rates, it may be extended to predict the overall usability (e.g., the ease of use,

fatigue). However, it would be challenging to incorporate the usability prediction feature into the system

because the compound gesture is composed of atomic actions. The overall accuracy and usability of

the compound gesture may be computed as the sum of the usability and accuracy of the individual
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atomic action, which cannot be guaranteed since the difficulty of performing an atomic action may

also depend on adjacent atomic actions. For example, moving the foot to the right may be easy when

starting from the resting position, but it may be more difficult if the same atomic action comes after

foot forward atomic action due to the position of the foot is farther away from the user’s center of

mass. However, if some models (e.g., estimating gesture execution difficulty by Vatavu et al. [282] and

estimating shoulder fatigue for midair interactions by Hincapié-Ramos et al. [283]) take a sequence into

account for predicting the usability/ease of use, then it may be possible to predict the overall usability

of the compound gestures as well. It requires further in-depth investigation for ease of use in various

aspects, which can be a possible future direction.



3.5 Discussion 43

Table 3.5: The detailed similarity or dissimilarity metrics of the designed 27 gestures by the designers.

Participant Method Gestures Accuracy
(%)

False
Positive
(%)

Final Gesture Sequence No. of
Itera-
tions

Duration
(mins)

Is
Com-
plete?

P1

MAGIC
A step to the side 100 8 a0a4a0a5a0a3 2

25 YesTurn left 100 0 a0a11a0a11a0a4a0a11 2
A step backward 100 3 a0a3a0a14a0a7 2

SS
Turn right 98 3 a0a1a0a5 1

8 YesRotate toes right 100 0 a0a11a0a10 1
A step forward 100 2 a0a3a0a14a0a6 1

P2

MAGIC
A step to the side 100 0 a0a3a0a11a0a11 1

29 YesTurn left 100 0 a0a11a0a11a0a4a0a11a0a11 3
A step backward 100 0 a0a7a0a11a0a11a0a11 2

SS
Turn right 98 3 a0a5aw4 1

10 YesRotate toes right 98 3 a0a4a0a10 1
A step forward 98 3 aw2a0a6 1

P3

MAGIC
A step to the side 100 0 a0a3a0a11a0a11 1

30 YesTurn left 100 1 a0a11a0a4a0a11a0a11 3
A step backward 100 0 a0a7a0a11a0a11 2

SS
Turn right 100 0 a0a11a0a11a0a5 2

13 YesRotate toes right 100 0 a0a10a0a11a0a11 1
A step forward 100 0 a0a6a0a11a0a11 1

P4

MAGIC
A step to the side 100 6 a0a3a0a11 1

21 YesTurn left 100 2 a0a4aw1
3

A step backward 100 0 a0a7a0a11a0a11 1

SS
Turn right 98 4 a0a5a0a12a0a13 1

10 YesRotate toes right 98 1 a0a10a0a12a0a13 1
A step forward 98 3 a0a6a0a12a0a13 1

P5

MAGIC
A step to the side – – — –

30 NoTurn left 100 3 a0a11a0a4a0a11 1
A step backward – – — –

SS
Turn right 98 2 a0a4a0a5 1

13 YesRotate toes right 98 3 a0a4a0a10 1
A step forward 98 3 a0a6a0a7 1

P6

SS
A step to the side 98 2 a0a11a0a3 1

8 YesTurn left 98 3 a0a11a0a4 1
A step backward 98 2 a0a11a0a7 1

MAGIC
Turn right 100 7 a0a11a0a5a0a11 1

25 YesRotate toes right 100 8 a0a6a0a10a0a7 4
A step forward 100 9 a0a10a0a9a0a6 2

P7

SS
A step to the side 98 2 a0a11a0a3 1

9 YesTurn left 98 1 a0a4a0a11 1
A step backward 98 2 a0a11a0a7 1

MAGIC
Turn right – – — –

30 NoRotate toes right – – — –
A step forward 100 0 a0a6a0a11a0a11 3

P8

SS
A step to the side 98 4 a0a3a0a10 1

12 YesTurn left 98 3 a0a4a0a6 1
A step backward 98 3 a0a7a0a11 1

MAGIC
Turn right 100 0 a0a5a0a11a0a11 2

28 YesRotate toes right 100 3 a0a11a0a10a0a7 3
A step forward 100 0 a0a11a0a11a0a6 3

P9

SS
A step to the side 96 0 a0a3a0a1 1

7 YesTurn left 98 3 a0a4a0a6 1
A step backward 96 1 a0a7aw1 1

MAGIC
Turn right 100 3 a0a5a0a1a0a11 1

18 YesRotate toes right 90 2 a0a10a0a7 2
A step forward 100 3 a0a6a0a3 1
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(b) Features of “Run in place”
gesture.
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(c) Features of “A step to the
side” gesture.
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(d) Features of “Turn left”
gesture.
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(e) Features of “Turn right”
gesture.
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(f) Features of “A step for-
ward” gesture.
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(g) Features of “A step back-
ward” gesture.
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(h) Features of “Walk in
place” gesture.
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(i) Features of “Draw a circle”
gesture.
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(j) Features of “Drag from
front to back” gesture.
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(k) Features of “Rotate toes
left” gesture.
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(l) Features of “Rotate toes
right” gesture.
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(m) Features of “Drag from
left to right” gesture.
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(n) Features of “Drag from
right to left” gesture.
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(o) Features of “Double foot
tap” gesture.
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(p) Features of “Foot tap to
the Right” gesture.
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(q) Features of “Foot tap to
the Left” gesture.

Figure 3.14: Six-dimensional feature of the gesture. Distance measure in meters (left side) and orientation
measure in degrees (right side) correspond to the number of samples for each of the subgraphs.



Chapter 4

Making Gestures Compatible Across

Devices

The always-expanding proliferation of smart devices has allowed individuals to integrate technology into

their ways of life in the form of wearables. Wearables like glasses, earphones, rings, watches, and pendants

are now equipped with processors and sensors and can communicate with other smart devices. These

integrations have enabled smart devices to facilitate quick microinteractions [4, 5, 6, 7, 8], more accessible

interactions [9, 10, 11, 12, 13, 14, 15, 16], and even eyes-free interactions [17, 18, 19]. These interactions are

often used across different devices for various reasons, including convenience, efficiency, and social acceptability.

For example, Spotify allows users to control the music playing on smart speakers connected to a smartphone

by using controls on their smartwatches [20], and researchers proposed using a wearable device as an input

device for another wearable device [21, 22]. Modern wearables often act as an extension of our physical

body as on-body interfaces to such an extent that people may build up muscle memory while performing

gestures associated with those devices. However, these interactions are reliant upon the devices that support

them, which could cause frustration when the user wears a non-smart device or forgets to wear the smart

device. In such situations, the user has to find alternative ways of interaction, which may not be efficient. To

make gesture interactions more usable by facilitating the users’ reuse of muscle memory, which is what they

gain through repetitive usage of gestures, the gesture should be made independent of specific devices. To be

specific, the gesture should be compatible across devices to facilitate the same outcome, even if the original

gesture-sensing device is missing or not worn.

This chapter proposes UnifiedSense to serve the purpose mentioned above. I propose utilizing the input

gesture recognized on a wearable device (primary device) and the sensor data from all other connected

45
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Figure 4.1: Over-the-shoulder training concept. When a user uses gestures on a smart device (primary device),
data from other devices (secondary devices) will also be collected to train a unified gesture recognizer model.
The gesture recognized by the primary device will be used as a label for training. Once the gesture recognizer
is sufficiently trained, the users can use primary device gestures without wearing it.

wearable devices (secondary devices) to train a unified gesture recognition model, UnifiedSense, to enable

interactions for the primary device even when the device is absent. As wearable devices are becoming more

prevalent, it is not uncommon to see people wear multiple wearable devices. These wearable devices are

equipped with various sensors such as inertial measurement units (IMU), microphones, and touch sensors.

While worn on different locations on the body, their sensing is not completely exclusive and is often relatable

to each other. For example, tapping the headphone’s touchpad involves the movement of the hand, which can

be measured by the smartwatch’s IMU on the wrist, and the collision between the finger and the headphone,

which can be measured by the IMUs on the smartwatch, smart glasses, and the headphones. As many smart

wearable devices connect to a central device, such as a smartphone, I believe that the data from those sensors

can be collected together along with the label created by the intended interaction device to train a unified

gesture recognition model (Figure 4.1). I named this process over-the-shoulder training.

The idea of exploiting relatable actions is not new; researchers have demonstrated the feasibility of

indirectly sensing gestures using devices on a user [10, 37, 284]. For example, Scott et al. used a mobile device

in the pocket to detect foot gestures [10], and Xu et al. used earbuds to detect touch gestures on face [37],

without attaching a sensor or a device at the location of interaction. While promising, these methods only

work for a specific configuration and require a user to train the model before using the gestures. However,

given the diversity of the types of devices one can wear today and the variety of configurations available for

a user, it may not be practical for a user to train the model each time they have a new device or wear a

different set of devices on them. Our over-the-shoulder training, on the other hand, lets the system train the

model by itself by collecting training samples as users perform gestures on wearable devices. I assume that a

wearable device can reliably recognize input gestures designed for it (e.g., touch gestures on a smartwatch)

and the recognition result can be used for labeling a gesture training sample. As the user continues using
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gestures on their wearable devices, the unified gesture recognizer will be trained automatically over time.

Once the model is sufficiently trained, users can use gestures associated with a primary device without

wearing it. To verify the feasibility of our method, I implemented a gesture recognition system that collects

data from multiple body-worn devices. When the gesture recognition system detects a gesture on one of

the primary devices (e.g., touchpad on smart glasses), it segments movement data from the IMUs on other

devices. I used segmented data to train a Time-Series Transformer (TST) [2] model to classify gestures. For

validation, I conducted an experiment with 15 participants. Our system collected sensor data from four

wearable devices (headphones, smartwatch, smart ring, and smart glasses) with the participants performing

five touch gestures (tap and four directional swipes) on the devices. The experiment results showed that, if

a user performs gestures for the first time, the system can only detect gestures at an average accuracy of

81.01% using a model trained by other users wearing the same configuration of devices. However, if the new

user continues to use the gestures, after the gesture set was used 20 times by itself, the recognition accuracy

increases to 95.2%.

Designing a practical unified gesture recognition model that can be used in the wild comes with the

inherent challenge of eliminating false gesture activations associated with natural body movements. To

address this, I implemented a binary classifier using the TST model to differentiate intended gestures and

natural body movements. To train the binary classifier, I collected 20 hours of regular activity data from

12 users. When tested with artificially generated real-time data that include both natural movements and

intentional gestures, the system could recognize the gestures at an average accuracy of 90.9% with a gesture

recognizer trained with 22 samples per gesture.

UnifiedSense uses the data collected from secondary devices while the users perform gestures on primary

devices. Therefore, if the user adds a new device or changes the device configuration, the model may not

reliably recognize the gestures until enough interactions are performed on the primary device while the user

wears the new setup. While the training can be done within a few days (see Section 4.4.1), this process can

be confusing to users. Therefore, I developed an Android app that shows the readiness of the model (i.e., the

likelihood of properly recognizing gestures) so that the user can know if they can start using the gestures

without the primary device.

4.1 UnifiedSense

UnifiedSense uses data from heterogeneous sensors and the true label obtained from the primary device to

train the model, which I call an over-the-shoulder training approach. For instance, consider performing a

touch gesture on a smartwatch. When a user moves their hand to perform the gesture, the sensor data from
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other on-body smart devices, such as a smart ring or a smart glass, can be leveraged to learn the hand’s

movement pattern. For this interaction, I consider the smartwatch as the primary device, whereas all the

other devices are considered secondary devices. Similarly, when a gesture is performed on another on-body

device, that device becomes the primary device, whereas all the other devices are considered secondary devices.

Such scenarios can potentially generate more alternative ways to learn gestures performed for the primary

device by other available sensors. I can merge those alternate ways to build a unified gesture recognizer

through our method.

4.1.1 System Design

UnifiedSense system has two main components, one for training the personalized gesture recognizer model

and another for recognizing gestures. For model training, the system collects sensor data from the secondary

devices and uses the primary device’s input as a label for the collected data to be used for the training sample.

Once the model is trained on enough data, UnifiedSense uses the trained model to recognize gestures for the

primary device.

UnifiedSense recognizes gestures in two steps. First, a gestures detector judges whether a gesture is

present. If a gesture is detected, it is then recognized by a classifier. Figure 4.2 illustrates the overall pipeline

of the system.

Device Implementation

Our implementation assumes a scenario in which a user has four wearable devices: a smartwatch, smart

glasses, smart headphones, and a smart ring, although the method is not limited to the assumed scenario.

For the proof-of-concept implementation, I used a set of custom sensor devices that mimic a smartwatch, a

smart ring, and smart headphones for efficient real-time multi-sensor data acquisition. A smartwatch was

implemented by attaching a 9-DOF IMU (Sparkfun BNO080) and a touchpad (28 × 33 mm) to a Velcro

band (Figure 4.3a). An Arduino Uno microcontroller was used to collect the measurements and send them to

a laptop. A smart ring was implemented by attaching a 9-DOF IMU (Sparkfun BNO080) to a Velcro band

(Figure 4.3b). To simulate the smart headphones with touch input, I attached a touchpad (46 × 64 mm) on

one side of the headphones (Figure 4.3c). Google Glass XE (Figure 4.3d) that has a touchpad on its frame

was used as smart glasses. The four devices were connected to a laptop computer for data collection and

training of the unified model. Arduino Uno microcontrollers and the touchpads were connected to the laptop

using USB cables. The smart glasses communicated to the laptop through Wi-Fi using UDP protocol. The

complete system setup is shown as a block diagram in Figure 4.4.
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Figure 4.2: UnifiedSense pipeline overview. A sliding window with a duration of 1.6 s and a step size of 0.4 s
is applied to the sensor data. Raw features are extracted, combined, and fed into a binary TST classifier
(Gesture Detector). A majority voting scheme is used to merge adjacent sequences of consecutive 1’s (green)
and handle noise (Smoothing). Gestures are identified when there are at least 3 consecutive 1’s (Filtering
Noise). Detected gestures are further classified (Gesture Classifier), and another round of majority voting
(Majority Voting) is employed for final gesture recognition.

Figure 4.3: Simulated smart devices: (a) smartwatch – implemented with an IMU, Velcro band, and a
touchpad, worn on the wrist, (b) smart ring – implemented with an IMU and Velcro band, worn on the index
finger, (c) smart headphones – attached with a touchpad on them, and (d) Google Glass XE.

Device Configuration

In reality, people may wear different sets of wearable devices. To test the feasibility of our method used in

different configurations, I set up five configurations with different primary (P) and secondary (S) devices. The

considered five configurations are: Configuration 1 (C1) – P: smart glasses, S: smart ring and smartwatch.

Configuration 2 (C2) – P: smart headphones, S: smart ring, smartwatch and smart glasses. Configuration

3 (C3) – P: smartwatch, S: smart ring and smart glasses. Configuration 4 (C4) – P: smart headphones, S:

smartwatch, smart ring and smart glasses. Configuration 5 (C5) – P: smart glasses, S: smartwatch and smart

ring.
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Figure 4.4: The block diagram of the UnifiedSense system showing sensor connections and communication
protocols.

The smart ring was worn on the user’s right index finger, and the smartwatch was worn on the user’s

left wrist (C1 - C4). For C5, the primary device was the same as C1, and the secondary devices were worn

on different hands (smartwatch on the right wrist and smart ring on the left index finger). Please refer to

Figure 4.5 for the configurations in more detail. Prior work by Gu et al. [285] has shown that an IMU-based

ring worn on the index finger can accurately sense touch contact. Based on this, I placed the smart ring on

the index finger in our experimental setup. Note that participants in the experiment wore all devices for all

configurations, but the data was selectively collected based on the configuration.

Gesture Detection

Gesture detection starts by setting a 1600-ms sliding window with a step size of 400 ms. Twenty-four raw

features are extracted and combined from the window and fed into a binary TST classifier. The classifier

outputs 1 if the sensor content belongs to a gesture and 0 otherwise. To reduce noise, UnifiedSense uses a

majority voting scheme, where adjacent sequences of consecutive 1’s are merged if separated by one or two

0’s. A gesture is present when there are 3 or more consecutive 1’s, corresponding to a minimum gesture

duration of 1200 ms. Whenever a gesture occurs, UnifiedSense feeds those 1600-ms segments into the gesture

classifier again and uses another majority voting scheme for the final classification of the gesture. The first

occurring gesture is used as a tie-breaker during the final majority voting scheme.
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Figure 4.5: Different configuration setups for collecting sensors data while performing the touch gestures to
the primary device.
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Figure 4.6: TST [2] model architecture based on Multi-Head Attention [3].

Classifier

I adapted Time-Series Transformers (TST) for gesture classification, as recent research has shown it to

outperform other deep learning classification models for multivariate time-series classification [2]. The

basic architecture of the TST model follows the original transformer work by Vaswani et al. [3]. The core

architecture of TST depends on a transformer encoder. However, TST does not use the decoder part of the

architecture. A schematic diagram of the generic part of the TST model (with adaptation) is illustrated in

Figure 4.6. Here, I briefly describe how I adapted the TST model for our purpose.

First, the input feature vectors xt are normalized (for each dimension, the normalization is done by

subtracting the mean and dividing by the variance across the training set samples) and then linearly projected

onto a d-dimensional vector space, where d is the dimension of the transformer model sequence element

representations (typically called model dimension). Second, outputs from this layer become the queries,
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keys, and values of the self-attention layer after adding the positional encoding and multiplying by the

corresponding matrices [3]. Third, since the transformer is a feed-forward architecture that is insensitive

to the ordering of input, to make it aware of the sequential nature of the time series, TST adds positional

encodings [2]. Fourth, the next layer performs batch normalization. Finally, outputs from the previous layer

are fed to a linear layer and then perform a softmax for classification.

In our implementation of TST, I used 3 parallel attention heads (Figure 4.6). To alleviate the over-fitting

issue during training, I used two separate dropouts [286] in the model. A residual dropout (p = 0.4) was

applied in the encoder (Multi-Head Attention). Another dropout was applied to the classification block’s

final fully connected (p = 0.9) layer. Our TST model was trained for 20 epochs on the training set. I

use a batch size of 64, with a categorical cross-entropy loss function and the Adam optimizer. Both the

dropout parameters (residual dropout, p = 0.4, and fully-connected dropout, p = 0.9) and batch size (64)

were empirically decided. I used GELU [287] activation function throughout our implementation. In total,

there are 425,730 parameters in the model.

Real-Time System Implementation

UnifiedSense was tested on a laptop with an Intel Core-i7 processor (2.60 GHz, RAM: 16 GB) to perform

real-time gesture recognition. The smart glasses send acceleration and orientation data through UDP in

10-ms chunks, while the smartwatch and smart ring send data through a serial port in 10-ms chunks. The

three channels’ data are combined and fed into the gesture detection and classification pipeline, and zero

padding is applied for absent channels. The pipeline runs on the CPU and has an average computation time

of 30 ms, with an average delay of 600 ms between gesture completion and classification result.

4.1.2 Data Preprocessing

Data Labeling

UnifiedSense collected the timestamp and the detected gesture from the primary device to segment and label

the time-series data (3-axis acceleration, a(t), and orientation in quaternions, q(t)) from secondary devices.

Our system used a segmentation window with a duration of 1.6 s for each gesture, which includes 100 samples

before the trigger and 60 samples after the trigger (Figure 4.7). The segmentation window size was chosen

empirically based on the gesture-classifying accuracy tested during the development (Section 4.1.2).
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Figure 4.7: Data labeling process: UnifiedSense segments and labels the data from secondary devices using
the gesture input detected on the primary device.

t

a(t)

q(t)

tjty tk

1.6s

1.6s

1.6s

1.6s

Original Segmented Window

before after

tx titz

60 samples20 

samples

Figure 4.8: Data augmentation process: UnifiedSense augments data by cropping overlapping windows.

Data Augmentation

After data segmentation, I used several data augmentation techniques to generate sufficient samples. First, I

generated overlapping samples from the original segmented window sample (from time ty to tj , where the

gesture was triggered at time tz) by increasing the segmentation window by 20 samples before the original

segmented window and 60 samples after the original segmented window (Figure 4.8). This uneven enlargement

was made to keep the original segmented window in the middle (from time ty to tj) by ensuring the trigger

from the primary device in the center. Keeping the original segmented window as a center, I increased 80
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samples from one sample, starting from time tx with a sliding window size 1.6 s with hop size 1 sample. For

example, the first sample was cropped from time tx to ti, the second sample was cropped from time tx+1 to

ti+1, and so on. Second, I used two time-series data augmentation techniques [288] such as time-warping to

simulate gesture temporal variance, with 2 interpolation knots, and warping randomness was used to increase

the number of samples by two times. I also employed the same augmentation techniques to increase the

number of negative samples.

Uniform Input Shape

UnifiedSense uses a device identifier (id), 3-axis accelerations (a(t)), and device orientation presented in

quaternion (q(t)) from each device to be fed into the TST model. The data preprocessing pipeline ensures

that the input to the TST model is consistent through all five configurations. To make the consistent input

shapes for all the gestures across the configurations, I combined sensor data from three devices (smart ring,

smartwatch, and smart glasses) into 24 tuples (8 tuples from each device). The preprocessing phase applies

zero padding for devices not present to maintain consistency in input shape.

Window Size Calculation

I determined the window size for our gestural data by conducting an empirical analysis and using a 70-30

train-test split. I used two parameters, pre-length and post-length, with a range of 0-120 to fix the window

length. I generated all combinations for these parameters and trained and tested the classifier for each

window size to determine the highest accuracy. Our analysis found that the highest accuracy was achieved by

several combinations, such as [120, 100], [100, 60], and [100, 100]. I ultimately chose to use a pre-length of

100 samples and a post-length of 60 samples as the window size to reduce computational time and allow for

real-time recognition. The time-series input shape for our model is (24, 160), with a window size of 160, and

a dimension of three input sensors is 24 (3 × 8).

4.1.3 System Implementation

UnifiedSense consists of four major components: data collection, segmentation, training unified gesture

recognizer, and real-time gesture detection and recognition. All the components were implemented using

python. The data collection and segmentation components were merged into the same pipeline. A program

with three separate threads was implemented to collect sensor data from three IMU-based devices, such as a

smartwatch, smart ring, and smart glasses. In the same program, another three threads were implemented for

collecting the touch input data from the touchpads (one for headphones and another for smartwatches) and
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smart glasses. All six threads ran simultaneously and received the sensor and touch input data from all the

devices. When our system detected any touch and the corresponding type from a primary device, it segmented

the data using the system time by cropping the 100 samples before and 60 samples after the touch input

detection and then labeled the data accordingly. Later the labeled data was saved into files with different

threads. It is worth mentioning that UnifiedSense also stored all the raw data received from the IMU-based

sensors and the touch input type from the primary devices. It allowed us to analyze the data to determine the

best window size for building the unified gesture recognizer. I analyzed the data and built a unified gesture

recognizer offline using PyTorch [289] python library. I also built a binary model to incorporate it in the

pipeline (Figure 4.2) for real-time gesture detection and recognition. Once the binary and gesture recognition

models were built, I used those pre-trained models to make a pipeline for real-time gesture detection and

recognition implementation. This pipeline was also implemented with Python and PyTorch-library. An

Android application was implemented for gesture detection on the Smart Glass by leveraging the legacy of

Google Glass’s touch detection algorithm. This application also collected accelerations and orientations in

quaternion. Finally, the sensor data (IMU and touch input) were sent to the laptop using the UDP protocol.

4.2 Evaluation

I conducted three data collection studies to develop and evaluate UnifiedSense. The first study focused on

collecting data from users performing gestures while wearing multiple wearable devices to build a gesture

recognition model and test its gesture classification performances. The second study was conducted to

collect negative data from users performing regular activities to make the model distinguish gestures and

false activations and to test the performance of the model in a more realistic setting. The third study was

conducted to understand the recognition performance characteristics when users use UnifiedSense while

wearing a device similar to the primary device and not wearing the primary or similar device. In this section,

I describe the details of these studies and discuss the evaluation results.

4.2.1 Gesture Data Collection

To build a gesture recognizer model for UnifiedSense, I conducted a user study to collect sensor data. I chose

five basic touch gestures for data collection and evaluation. These are tap and four directional swipes: up,

down, left, and right. The data collection study was held in a single session. The study was approved by the

institutional review board (IRB) and fully complies with national laws and institutional regulations related

to COVID-19.
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The goal of the study was to collect the sensor data from the smart wearable devices while performing the

touch gestures for the primary devices. Our system collected different sets of sensor data for each configuration

from the connected devices at a sampling rate of 100 Hz. These devices collected 3-axis acceleration (raw

acceleration) and its orientation in quaternion calculated by the AHRS (Attitude and Heading Reference

System) algorithm implemented in the BNO080 module and Android sensor framework. The collected

orientation output has no specific reference for heading, while roll and pitch are referenced against gravity, as

it is produced by fusing the outputs of the accelerometer and the gyroscope (i.e., no magnetometer). Besides,

our system collected touch gesture types and triggered timestamps to label the sensor data. As the time-series

sensor data tuples are the same across four devices, our system recorded the samples from different devices

with a device identifier (id) tag. The device identifier tags for the smartwatch, smart ring, smart glass, and

smart headphones were 1, 2, 3, and 4, respectively. The collected movements and gesture types for each

configuration are reported in Table 4.1. The collected size of the times-series data tuple is 16, 24, 16, 24, and

16 for the configurations C1-C5, respectively, excluding the timestamp. The dataset is publicly available.1

Table 4.1: Collected sensor data and gesture type for each configuration from each smart device. t refers to
the timestamp, a(t) refers to the 3-axis acceleration (3-tuples), q(t) refers to the orientation in quaternion
(4-tuples), and gt refers to the gesture type (e.g., tap, swipes).

Devices

Configuration smart glasses smart ring smartwatch smart headphones

C1 <t, id, gt> <t, id, a(t), q(t)> <t, id, a(t), q(t)> –
C2 <t, id, a(t), q(t)> <t, id, a(t), q(t)> <t, id, a(t), q(t)> <t, id, gt>
C3 <t, id, a(t), q(t)> <t, id, a(t), q(t)> <t, id, gt> –
C4 <t, id, a(t), q(t)> <t, id, a(t), q(t)> <t, id, a(t), q(t)> <t, id, gt>
C5 <t, id, gt> <t, id, a(t), q(t)> <t, id, a(t), q(t)> –

Participants

A total of 15 participants (Male = 10, Female = 5) ranging from 23 to 34 years of age (Mean = 29.76, SD =

4.3) were recruited from a local university. All participants were right-handed. Participants were given $25

each for their participation.

Procedure

Researchers helped participants to wear all devices with Velcro bands properly, helping them to adjust the

wearing until they felt comfortable with the devices. After the participants wore the devices, a researcher

demonstrated how to perform the five gestures for each configuration to the participants. Then the participants

1https://github.com/aashikazim/UnifiedSense_DataSet

https://github.com/aashikazim/UnifiedSense_DataSet
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practiced using the gestures for 5 minutes to familiarize themselves with the gestures for the five configurations.

Then, participants were asked to perform the five touch gestures on the primary device for each configuration.

Participants were asked to perform each gesture 40 times in each configuration. The participants performed

the gestures from the resting position, and they were asked to move their hands back to the resting position

after performing each gesture. Between each gesture, the participants were asked to rest for 2 seconds to

avoid consecutive repetitions of the same movement, which may lead to the overfitting of the model. Once all

gestures were performed in one configuration, the participants were given a 2-minute break before performing

the gestures for the next configuration. During the break, researchers made necessary changes in wearing the

devices in different places if required. After the break, the participants performed the gestures on a primary

device of the new configuration. As a result, I collected a total of 15, 000 gesture samples (5 configurations ×

15 participants × 5 touch gestures × 40 samples). The study lasted about 75 minutes on average for each

participant.

This study served as the foundational step in developing a robust gesture recognition model. By collecting

data on various gestures performed by participants, I obtained a dataset that allowed us to train and fine-tune

the gesture recognition algorithms. This study laid the groundwork for subsequent studies by providing the

necessary analysis and model development dataset.

4.2.2 Negative Data Collection

I conducted another study to collect negative data to prevent the gesture model from causing false gesture

activations during daily activities. I recruited 12 participants (Male = 10, Female = 2) from a local

university where 11 of them were participants of the previous study. All participants are right-handed and

their age range is between 24 to 35 (Mean = 30.03, SD = 4.9). Researchers helped the participants wear

the devices. I used a 4-meter-long USB extender to connect wired devices to the laptop. Therefore, the

participants performed their daily activities within the perimeter of a 4-meter circle, which is similar to

the size of the living room where the study was conducted. In this session, I asked participants to perform

normal indoor daily activities in sitting and standing conditions, such as walking, phone browsing, typing, or

working on a laptop. They were also asked to behave freely for about an hour and a half. I observed that the

participants performed activities such as, leaning on the chair, exercising, moving a rolling chair, nudging

their head, scratching head/hands, using a mouse/touchpad, playing/writing with pens, opening bottles,

using phones, and drinking water. The total negative samples amounted to about 20 hours. The participants

received $15 for their time.
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4.2.3 Offline Analysis

I first performed an offline analysis to understand the performance of the gesture recognizer.

Population (within-subjects) Results

In our study, I opted for a personalized model in the offline analysis for several reasons. Firstly, our intention

was to mimic the online training process where each participant’s data is used to train the model individually.

By employing a personalized approach, I aimed to assess the model’s performance in detecting gestures for

individual users and evaluate its robustness in handling missing devices. This decision allows us to understand

the effectiveness of personalized training in capturing user-specific gesture patterns and adapting to their

unique device configurations. Furthermore, it provides insights into the potential of the UnifiedSense system

to accommodate diverse user preferences and device combinations, enhancing its applicability and usability

in real-world scenarios.

To make a personalized model, I combined data in a leave-one-participant-out (LOPO) fashion with a

slight moderation, i.e., first, I combined data for 14 participants. Next, from the leave-one-participant (LOP),

I randomly selected 50% of data (50-50 train-test split). Then, I combined these 50% data from the LOP

with other 14 participants’ data to make a final training set. Finally, I used the remaining 50% data from the

LOP as a test for the gesture classification. To investigate the personalized models, I trained and tested our

gesture classification model (TST) 15 times with different participants’ setups. Using these train-test splits,

our TST model achieved 95.2% (SD = 2%) of accuracy and 94.7% (SD = 1.99%) of F1-score, on average.

Figure 4.9 shows the confusion matrix for the 5 gestures using moderated LOPO train-test split as

mentioned earlier. It is interesting to report from the confusion matrix that there are almost no inter-

configuration conflicts between gestures. I used a device identifier for each device, which allows the classifier

to distinguish between configurations. However, a few number of intra-scenario gestural conflicts exist, which

are less than 2%.

In addition, to estimate the general effectiveness of our TST model in classifying gestures, I performed

cross-validation [290, 291]. Specifically, I performed a stratified 10-fold cross-validation with an 80-20 train-test

split by mixing all the 15 participants’ gestural data. In this case, the gesture classification model (TST)

achieved an average of 96.1% (SD = 2.2%) accuracy and an average F1-score of 95.1% (SD = 1.8%). Though

I measured the model’s effectiveness with a 10-fold cross-validation, the results found with the personalized

model (discussed above) are used for further analysis in later experiments.
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Figure 4.9: Confusion Matrix (CM). The labels are annotated as T for Tap, SR for Swipe Right, SL for Swipe
Left, SU for Swipe Up, and SW for Swipe Down. Here, C1 - C5 represent the configurations. For example,
C1_T represents the tap gesture performed in C1, C5_SR represents the swipe right gesture performed for
the C5, and so on.

Leave-One-Participant-Out (between-subjects) Results

The time-series data of acceleration and orientation for the same gesture can appear different across users for

a couple of reasons: (a) users may perform gestures in unique ways, or (b) users’ unique body structure can

produce different orientations while performing the gestures, or (c) users’ gesture performing speed may vary

from user to user. To investigate the feasibility of our model that could recognize gestures by new users, I
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trained our model using leave-one-participant-out (LOPO) cross-validation. This gave us an overall accuracy

of 81.01% (SD = 1.2%) (F1-score: 80.02% (SD = 1.4%)), a 14.19% drop in accuracy from the best-trained

model within-subjects.

UnifiedSense will automatically train the model as the user performs gestures. To understand how the

new user’s gesture use improves the gesture recognition performance, I conducted an analysis by saving our

leave-one-participant-out model and training it on a few examples of each gesture from the ignored participant.

Figure 4.10 illustrates average accuracy and F1-scores by the number of additional training samples. It is

evident from the figure that, with just eight gestures, the performance accuracy and F1-score improved from

81.01% to 90.3% and 80.02% to 90%, respectively. The performance approached near the population test

accuracy with additional samples, reaching 94.2% accuracy and 94.1% F1-score with 18 additional gesture

samples.
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Figure 4.10: Offline analysis: results with the leave-one-participant-out (LOPO) data plus the ignored
participant’s additional samples range from 1 to 20 while performing offline analysis

4.2.4 Real-Time Simulation

I performed a real-time simulation to demonstrate the practicality of UnifiedSense by streaming the testing

data. All trained models constructed in the offline analysis are stored and used for the real-time simulation.
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Figure 4.11: Real-time simulation: results with the leave-one-participant-out (LOPO) data plus the ignored
participant’s additional samples range from 1 to 30 while performing the real-time simulation.

A sliding window of 1600 ms was used for data streaming with a hop size of 400 ms. The data were streamed

with a sampling rate of 100 Hz.

Population (within-subjects) Results

For each of the personalized models I constructed for the offline analysis, I loaded them into our real-time

settings. Next, I streamed 50% testing data for each participant that I separated in offline analysis. These

stream data were then fed to a real-time gesture detection and recognition setup. Note that these 50% data

are continuous data with negative samples. UnifiedSense achieved 89.2% (SD = 3.2%) of accuracy and 88.3%

(SD = 3.87%) of F1-score, on average.

Leave-One-Participant-Out (between-subjects) Results

I performed a real-time simulation similar to the within-subject analysis by streaming the LOP’s data and

feeding them into the real-time gesture detection and recognition settings. While performing the simulation

for each participant, the corresponding stored model was loaded and used during real-time simulation. I

stored all the trained models for each participant during an offline analysis in between-subjects conditions.
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Finally, this gave us an overall accuracy of 73.4% (SD = 1.5%) (F1-score: 71.5% (SD = 1.89%)), a 15.8%

drop in accuracy from the best-trained model within-subjects.

Further, I simulated the incorporation of additional samples for the ignored participant that I reported

in Figure 4.10 in the case of offline between-subjects analysis. In the real-time simulation, I loaded the

corresponding model that I saved earlier in offline between-subjects analysis and then streamed the LOP’s

data and fed them into the real-time settings. Figure 4.11 illustrates how the inclusion of a small amount of

data from the user per gesture can improve the model performance in real-time simulation. The improved

average accuracy and F1-score are reported in the same figure for LOPO using additional samples ranging

from 1 to 30. It is evident from the figure that, with just ten gestures, the performance accuracy and F1-score

improved from 73.4% to 84.01% and 71.5% to 82.1%, respectively. The performance approached near the

population test accuracy beyond the inclusion of 22 additional samples, reaching 90.9% (SD = 1.9%) accuracy

and 90.5% (SD = 1.6%) F1-score, which is also promising in real-time simulation.

4.2.5 Handling False Positives

In this section, I report the performance of the binary classification model in the UnifiedSense pipeline in

rejecting false positives. The non-gesture examples were generated from the collected negative data by setting

a 1600-ms sliding window with a step size of 50 ms. Then, I mixed all participants’ gesture and non-gesture

samples. With a 10-fold cross-validation using 70-30 train-test split, our binary classification model achieved

an average accuracy of 99.8% (SD = 0.53%) and an average F1-score of 99.9% (SD = 0.42%). Moreover, the

false-positive rate is 1.4 times per hour. Figure 4.12 reports the confusion matrix for the binary classification

on the best model. It is evident from the figure that all the gesture examples are correctly classified as

gestures. On the contrary, a small amount of non-gesture examples are being classified as gestures (<1%),

thus occurring false activations.

4.2.6 Gesture Performance Without Primary Device

The use-case of UnifiedSense hinges on a user being able to use a smart device even when that device is not

physically present. Our offline and real-time evaluations have demonstrated promising results in recognizing

gestures without using the data from the primary device. However, since the model is trained using the data

collected while users are wearing the primary device, the model’s performance may be affected if users wear a

different wearable device or do not wear any device instead of the primary device. For instance, the way a

user taps and the measurements captured by secondary devices may vary when tapping on a different watch

or directly on their skin, compared to tapping on a smartwatch (primary device).
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Figure 4.12: Confusion matrix of binary classification between gestures and negative data.

Figure 4.13: (a) Soft-hit profile and (b) Hard-hit profile.

I conducted a study to understand how the performance changes when the user wears a different device,

which I call a hard-hit profile, where the user’s finger collides with the physical object (e.g., Figure 4.13b),

and when the user does not wear any devices, which I call soft-hit profile, where user’s finger would collide

with the user’s skin (e.g., Figure 4.13a).
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Participants

I recruited 6 participants (Male = 5, Female = 1) from a local university, who also participated in the first user

study. I intentionally recruited participants who participated in the first user study to have a better comparison.

All participants were right-handed, and their age range was between 23 to 35 (Mean = 29.2, SD = 4.02).

Procedure

Akin to the first user study, the researcher helped participants to wear all the smart devices except the

primary device for both C1 and C3. The participants were instructed to perform touch gestures on “the right

side of the forehead” for C1 and on “the wrist flesh” for C3, assuming the smart glasses and the smartwatches

were present in the corresponding locations, respectively. The participants were asked to perform each gesture

for 20 times consecutively in each configuration. Like the first user study, the participants were asked to

reset their pose before performing each gesture. In this way, I collected the soft-hit profile data for both

configurations. In addition, I also collected hard-hit profile data for evaluation by asking participants to wear

non-smart devices in place of smart devices. For example, the participants wore regular sunglasses for C1 and

wore an analog wristwatch for C3 to substitute smart glasses and smartwatches, respectively. This hard-hit

profile data on these devices were collected to investigate the efficacy of our model even if users forget to

wear smart devices and instead wear non-smart devices. Similar to the soft-hit profile, the participants were

asked to perform each gesture 20 times in each configuration during hard-hit profile data collection. In total,

I collected 2, 400 gesture samples in both configurations and both profiles (2 configurations × 6 participants

× 5 touch gestures × 20 samples × 2 profiles). It took 25 minutes on average to complete the study. The

participants were compensated with $10 each for their time.

Results

Using the best-personalized trained model, I tested the performance of the collected gestures from the third

study for both soft-hit and hard-hit profiles. I saw that the model achieved an average accuracy of 92.8%

(SD = 3.7%) and an average F1-score of 91.95% (SD = 5.3%) for the C1 configuration in the case of a

hard-hit profile. On the contrary, the model achieved an average accuracy of 91.2% (SD = 2.3%) and an

average F1-score of 90.5% (SD = 3.3%) for the same configuration in the case of a soft-hit profile. Similarly,

for C3, the model achieved an average accuracy of 91.5% (SD = 1.4%) and an average F1-score of 90.4%

(SD = 3.6%), and an average accuracy of 89.8% (SD = 3.1%) and an average F1-score of 89.6% (SD = 2.7%)

for the hard-hit profile and the soft-hit profile, respectively. Figure 4.14 - Figure 4.17 report the confusion



4.2 Evaluation 65

C1_T C1_SR C1_SL C1_SU C1_SD
Predicted label

C1_T

C1_SR

C1_SL

C1_SU

C1_SD

Tr
ue

 la
be

l

0.90 0.02 0.03 0.04 0.01

0.01 0.90 0.04 0.01 0.04

0.00 0.00 0.95 0.03 0.03

0.01 0.00 0.00 0.96 0.03

0.01 0.00 0.02 0.02 0.94

Figure 4.14: CM for C1 (hard-hit).
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Figure 4.15: CM for C1 (soft-hit).

matrix for the configurations C1 (hard-hit profile), C1 (soft-hit profile), C3 (hard-hit profile), and C3 (soft-hit

profile); respectively.

It is evident from the results that the hard-hit profile is slightly better than the soft-hit profile in terms of

performance (accuracy and F1-score). The hard-hit profile’s accuracy and F1-score are particularly higher
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Figure 4.16: CM for C3 (hard-hit).
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Figure 4.17: CM for C3 (soft-hit).

than the soft-hit profile by roughly 1%. It is obvious because the model trained for the UnifiedSense uses

hard-hit profile data collected using the actual smart devices. In contrast, the testing data I used for evaluation

were collected using hard-hit profiles (e.g., simulating a smart device with a non-smart one) and soft-hit

profiles (e.g., performing gestures on skin surfaces such as wrist flesh). However, the performance of the
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gestures in both of the profiles is comparable. UnifiedSense could be usable in practical situations, which can

be interpreted from the confusion matrix (Figure 4.14 - Figure 4.17) with careful observations.

4.3 USense: UnifiedSense Dashboard

UnifiedSense utilizes a personalized gesture recognition model trained on gestures performed with the primary

device. Our analysis indicates that the model can achieve a gesture recognition accuracy of over 90% after a

few days of use. However, if the user changes the device configuration and the system fails to accurately

recognize their input, it can lead to user frustration. To address this, I developed USense, an Android

dashboard application that communicates the status of device connections and the gesture model to users.

Using USense, the user can access the list of available smart devices connected to their mobile device

and their connectivity status (Figure 4.18a). USense also displays the supported gestures for each device

(Figure 4.18b), with visualizations of the likelihood (as a percentage) of successfully detecting a gesture

performed with and without the primary device. Additionally, users can test the gestures on USense and

understand how the gesture was detected (Figure 4.18c).

While UnifiedSense can still function without USense, it provides a concise and intuitive interface for users

to understand the connectivity, supported gestures, and performance of the UnifiedSense system, enabling

effective cross-device interactions.

4.4 Discussion

One of the most distinctive characteristics of UnifiedSense is that the system gradually and automatically

trains the model as the user continues using gestures over time, which is possible as the training data could

be reliably labeled using the primary device input. As more wearable devices are being deployed and used

by people, and more device-specific custom gestures are being used [202] to provide better functionalities, I

anticipate that users will face the challenge of learning and remembering a large number of gestures. Also, as

these devices offer efficient controls, their frustration can grow when they do not have the device. In such

scenarios, I believe that UnifiedSense will allow users to continue using gestures that are familiar to them.

Here, I discuss the feasibility and potential of UnifiedSense, the limitations of this work, and future work.

4.4.1 Feasibility and Potential of UnifiedSense

As UnifiedSense trains the gesture model as the user uses the gestures, the recognition performance will

improve over time. However, if the configuration of wearable devices of a user is similar to that of other users,
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Figure 4.18: USense user interface: a) shows the connection status of the smart devices, b) shows the
likelihood of correctly detecting gestures for each device, and c) shows the recently recognized gesture.

a model trained with others’ data can help accelerate the training process. In the evaluation, I developed

and evaluated our model using a LOPO method, simulating this scenario of using a model without any of

the actual user’s data. The results showed that UnifiedSense achieved 81.01% and 73.4% accuracy in offline

analysis and real-time simulation, indicating that a generalized model could offer some level of recognition

performance.

People have different ways of performing gestures, which could be the reason for the low performance of

the generalized model. Our evaluation with a different number of user-specific training samples showed that

just an additional eight training samples for each gesture could improve the gesture recognition accuracy

to 84.01% for real-time simulation, and an additional 22 samples could achieve 90.9% real-time gesture

recognition accuracy. Based on a study by Min et al., which reported that smartwatch users perform 95.6

interactions per day on average [292], I might expect that the model would be trained within a few days to be

ready. This duration for additional training is longer than other methods, such as EarBuddy [37], which only

requires 5 additional training samples to achieve 90% accuracy. However, different from methods that need

the model to be completely trained for users to start using the gestures (e.g., [37]), in UnifiedSense, users can
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immediately use the gestures on their primary devices. While the user is using the gestures, UnifiedSense

automatically trains the model in the background. Therefore, the training process will not affect the primary

device gesture recognition performance or user experience.

I believe UnifiedSense would enhance operating smart devices’ usability with a unified gestural interaction

technique because unified touch gesture recognition across the different configurations can improve gesture

reusability [24] and interaction efficiency [293]. Moreover, UnifiedSense has the potential to improve user

satisfaction in case a user forgets to wear a specific device, whereas our system facilitates the interaction

technique for that device. To be precise, UnifiedSense does not substitute state-of-the-art interactions (i.e.,

touch gestures) on the primary device; rather, it creates the scope of alternative ways of interaction with the

primary device, even if that device is absent.

UnifiedSense builds upon the assumptions that people will wear more wearables in the near future, and

the problem of frustration will arise when they forget to wear smart devices or wear non-smart devices. It is

innately difficult to design for a context that does not yet exist [294], in this case of designing for a potential

future where usage of body-worn wearables is more far-reaching. A critical reflection on external validity for

this work means looking forward to the projective validity [294] – do our results hold valid as more wearables

become widely adopted and worn?

I anticipate that UnifiedSense will open the door for new research as more smart devices become available

and people are wearing them simultaneously. A centralized system is required to monitor all the devices and

check their statuses. Our UnifiedSense system opens the door for this purpose and future research. I admit

that there will be potential engineering and research challenges regarding scalability and generalizability

when more smart devices will be available at once. However, keeping those challenges aside, I argue that the

UnifiedSense system has the potential to be implemented beyond context, which requires further investigations.

UnifiedSense hints towards “enabling proactive cross-device interactions” [146]. For instance, it is users

who are “doing the ubicomp” [295], and Dourish argues that users, not designers, appropriate technology

and thus create meaning for their interactions [296]. Therefore, instead of blending devices and hiding the

boundaries between them, designers should embrace and leverage the heterogeneity and flexibility of devices

and their “seams” [297, 295] – ultimately creating an ecology of devices that builds the conceptual foundation

of cross-device computing [146]. The current design of UnifiedSense creates an ecology of connected devices

and thus hints toward a proactive cross-device interaction.
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4.4.2 Promoting Uniform Gestures Across Applications

While our focus in UnifiedSense lies in enabling device-independent gesture recognition, I acknowledge that

the problem of inconsistent gestures can extend beyond device boundaries to different applications running

on various platforms.

By incorporating a provision to integrate other recognizers like UnifiedSense into application design,

developers can establish a standardized approach to gesture recognition. If all applications support the

incorporation of uniform gesture recognition systems, it becomes possible to create a cohesive ecosystem

where users can rely on consistent gestures across different applications.

It is important to note that UnifiedSense provides a framework for device-independent gesture recognition,

and its impact on applications relies on the willingness of app designers to adopt such a system. If an app

designer chooses to use their own recognizer, our methods have no direct influence. However, by encouraging

the adoption of recognizers like UnifiedSense across the application landscape, I can promote a harmonized

user experience with uniform gestures, enhancing usability and reducing the cognitive load associated with

learning and remembering different gesture sets for various applications.

4.4.3 Low Accuracy Analysis

Achieving high accuracy in gesture recognition is crucial for the utility and usability of UnifiedSense. While our

evaluation results demonstrated promising performance, there were instances where the recognition accuracy

may be lower than desired. Several factors can contribute to the reduced accuracy, and understanding these

limitations is essential for further improvements in the system.

As reported earlier in the chapter, the base model achieves a low accuracy of approximately 80% when used

by a new user. This result could be attributed to the varied nature in which people perform gestures, which

makes it challenging to develop a generalized gesture recognition model. This challenge can be more significant

when trying to indirectly measure the gesture as there can be more factors affecting the measurements.

Increasing the amount of user-specific training data and personalizing the model can improve the recognition

accuracy. The main goal of UnifiedSense is to enable such training without explicit data collection sessions

by making the system automatically collect the training samples as the user continues to use gestures.

4.4.4 Comparison to Other Recognizers

UnifiedSense utilized the TST model for gesture recognition. The reason for choosing the TST model was

based on its reported state-of-the-art performance in various datasets, particularly in high-dimensional

time-series data. While the gestures used in the study themselves were simple, the dimensionality of the
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data is very high due to the use of multiple secondary devices. Given the high dimensionality of our dataset

consisting of 24 tuples from 3 multiple channels, the TST model was deemed suitable for our purposes. Since

the main focus of UnifiedSense is on the demonstration of the idea of automatically training the gesture

recognizer while the user uses the gestures on a primary device and recognizing the gestures without primary

devices, achieving the optimal performance was out of our scope. Future research could involve comparing

the performance of different recognizers, including simpler approaches, in the context of UnifiedSense to gain

further insights and optimize the gesture recognition system.

4.4.5 Limitations and Future Work

• In building UnifiedSense, I only considered IMUs, while wearable devices are equipped with an increasing

number of sensors. I believe that utilizing multiple types of sensors would make the unified gesture

recognizer support more diverse types of gestures at a better recognition performance. However, given

the differences in the measurements, this will need further investigation.

• I only tested four smart wearable devices, a smart ring, a smartwatch, smart glasses, and smart

headphones, while there are more diverse types of wearable devices available, such as earbuds, smart

pendants, and smart footwear. The different placements of such devices would have different impacts

on the recognition, which would require further study.

• The recognition of composite gestures (e.g., double-tap), which involve combining multiple individual

gestures, may pose additional challenges. The majority voting approach I used in the real-time

implementation pipeline may limit the construction and accurate recognition of composite gestures.

Investigating and implementing more sophisticated techniques, such as sequence modeling or hierarchical

recognition, could address this limitation and improve the system’s ability to handle composite gestures

effectively.

• While UnifiedSense achieved comparable gesture recognition performances with other wearable-based

gesture recognition systems (e.g., [202, 169]), I think that the performance could be further improved

by using a more careful tuning of the deep learning model and by introducing few-shot learning [202].

• I used USense only to inform the user of the system’s current status. Future work would expand its use

to allow users to reconfigure gestures across devices and design custom gestures to increase the input

vocabulary.



Chapter 5

Investigation of Hand-Movements

Manipulation

Over the past few years, Virtual Reality (VR) has gained popularity. With the high-fidelity 3D visual display

and 6-degree-of-freedom (DOF) tracking, VR systems are now used for various applications ranging from

entertainment and education applications to productivity and work-related tools. Since VR is a unique

computing platform that offers immersive experiences by separating the virtual and physical environment, it

has also opened up many possibilities for enhancing user experiences by manipulating the users’ perceptions,

utilizing the dominance of the visual sense over other senses [298]. For example, slightly diverging the

trajectory of the visual hand movement from the actual hand movement could redirect the user’s hand to

a limited number of haptic props and surfaces [299, 217, 218]. Manipulating the amount of visual hand

movement for the same physical hand movement could create the illusion of weight change [220] and the

illusion of object size change [300]. A study also investigated the use of dynamic movement gain to make VR

interactions more ergonomic [301].

With the great potential to improve the immersion and usability of VR, these perception manipulation

techniques have been intensively studied. Researchers have investigated the thresholds for the level of

perception manipulation before participants notice the discrepancy between the real and virtual hands and

break the body ownership [302, 303, 304, 305]. While promising, dynamic perception manipulation may also

impose a potential side effect of affecting the skilled motor movement, which humans acquire by repeating the

same movement for an extended period [306, 307, 308]. Humans rely on both visual and kinesthetic senses,

and they learn to use the optimal hand movement based on the mismatch between the intended and the

actual movement [227, 228, 229, 230]. The learning of optimal motor movement requires repeated practice to

72
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build muscle memory and makes users complete tasks involving motor movements faster, more consistently,

and more stably with reduced attention demand [231]. With dynamic perception manipulation that changes

the virtual-real hand mappings over time, it can be difficult for a user to build up muscle memory to reach

the level of automaticity. However, there is little study about the potential effect of perception manipulation

on motor skill learning.

In this chapter, I investigate the effect of two commonly used perception manipulation techniques for hand

interaction – orientation and magnitude manipulation techniques, on hand movement and task performance

during reaching tasks. My investigation is situated within the theoretical framework of Woodworth’s two-

component model, a construct that has been foundational since 1899 [309]. Grounded in Woodworth’s

two-component model, which delineates goal-directed movements as comprising an initial ballistic phase and a

subsequent corrective phase for trajectory adjustments using visual cues [309]. Meyer et al. expanded on this by

highlighting how the corrective phase merges visual and proprioceptive feedback, ensuring movements are both

precise and coordinated [230]. This phase is crucial for proprioceptive adjustments, aiding in limb positioning

and real-time corrections [230]. Research has shown a preference for proprioceptive feedback in motor task

refinement and indicated that visual feedback alterations necessitate proprioceptive recalibration [310].

Goal-directed reaches are a foundational building block of everyday human motor behavior, and they

have therefore been studied extensively in the motor control literature. Given that virtual hand reaches

are effectively goal-directed reaching movements performed in VR, this body of work and its associated

tools may be useful for understanding users’ behaviors during virtual hand reaching. Moreover, kinematic

analysis (KA) is a vital tool for understanding goal-directed reaches, and it has been extensively studied

in motor control literature. With virtual hand reaches in VR resembling these movements, KA techniques,

employed for over a century, offer insights into various aspects of such reaches (e.g., [311, 312, 313, 314]).

These techniques involve analyzing motion-tracking data to quantify properties like speed, efficiency, and

smoothness of the reaches. As modern VR systems easily capture this data, KA metrics can be applied to

assess virtual hand reaches, proving particularly beneficial in applications such as monitoring arm function

recovery in stroke rehabilitation or tracking learners’ progress in motor skills training within VR environments

(e.g., [315, 316, 317]). Understanding how perception manipulations might influence the kinematic properties

of virtual hand reaches would bolster numerous research and design efforts at the intersection of human

movement science and virtual reality. Considering this, I focused on analyzing the users’ hand movement

with kinematic metrics in this study.

By conducting two user studies focusing on orientation and magnitude manipulations in VR, I found that

movement behaviors significantly altered while task completion times remained unchanged with manipulations,

especially at higher manipulation levels. Notably, the proprioceptive quality, or ballistic movement, was
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markedly affected, requiring participants to perform additional corrective actions to accurately reach targets.

This necessitated quicker corrective movements to compensate for initial inaccuracies, maintaining overall

task completion times but potentially increasing user effort and coordination [230]. Such adjustments could

elevate cognitive load, impacting motor control strategies and possibly detracting from motor performance

efficiency [230].

5.1 Method

Figure 5.1: (a) The sequence of events for the performed task used in the study. (b) The distances between
the VR user, the start position (blue sphere), and the target positions (red spheres) are shown. (c) The study
sessions are shown as a sequence of blocks in a diagram. Here, BPF and BPL refer to “Baseline Padded First”
and “Baseline Padded Last,” respectively.

Two user studies were conducted to investigate the effects of perception manipulation on hand movements

during object manipulation tasks in VR. The designed task required participants to grab an object, move it,

and place it into a designated target position. This task essentially amalgamates elements of both target

selection and point-to-point reaching tasks. The two studies conducted were (a) angle redirection manipulation

(also referred to as Orientation Manipulation (OM)), and (b) gain redirection manipulation (also referred to

as Magnitude Manipulation (MM)). Both studies maintained an identical experimental setup and design,
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with variations solely in the applied manipulations. No same participant was enrolled in either study. The

study protocol was approved by the Institutional Review Board (IRB).

5.1.1 Participants

OM Group: A total of 17 participants were recruited for the OM condition. All participants were right-

handed (Male = 10, Female = 7). The group’s average age was 25.7 years (SD = 3.8). Participants were

asked to provide their experiences in using VR through a short questionnaire before the study. Within this

group, seven participants reported prior VR experience for gaming, four for research studies, two had never

used VR, and the remainder used VR occasionally. One participant could not complete the tasks within the

allotted time due to impaired depth perception and was subsequently removed from the study.

MM Group: For the MM condition, 17 right-handed participants were recruited (Male = 7, Female = 10).

The average age was 23 years (SD = 2.8). Nine participants had previously used VR for gaming, two for

research studies, five had no prior experience, and the rest used VR occasionally.

Participants in both groups were recruited through mailing lists, Slack channels of student groups, and

word-of-mouth referrals. Each participant received a $20 gift card as compensation for their time.

5.1.2 Study Design and Procedure

The study employed a within-subjects design and was conducted in a controlled lab environment. All

participants were provided with an Oculus Quest Pro VR headset and Controllers. The participants sat in a

comfortable stationary chair that was secured to the floor. The experimenter sat at a desk to the side of

the participants and monitored their performance. They were briefed that the study focused on “usability”,

disguising the actual research purpose to mitigate expectation biases.

In each task, participants were asked to grab a blue sphere located at the center of their view by using the

trigger button and place the blue sphere inside the red target sphere (Figure 5.1a) as quickly and accurately as

possible. If the blue sphere was not correctly placed inside the red sphere, the trial was considered incomplete

and the participant was asked to try it again. After the trial, the participants were asked to answer if their

hand movement felt natural or not, using the buttons shown on the VR display. After answering the question,

the participants started the next trial.1 The participants were also instructed to rest as needed between trials

to minimize any effects of fatigue.

1In the manipulated trial, the manipulation was initiated the moment participants grabbed the blue sphere and persisted until
they released it inside the red sphere. Upon completion of this task, the controller was rendered invisible for a 0.5-second duration
to facilitate the repositioning to its original, unmanipulated state. This temporary invisibility was strategically employed to
ensure that the repositioning occurred without the participants’ awareness. Concurrently, a pop-up window was displayed at the
point of task completion.
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The position and size of the objects were defined using Unity units (1 unit ≡ 1 meter). At the beginning

of each session, the experimenter calibrated the VR headset to ensure that the location of targets relative to

participants would remain consistent across all participants and sessions. The size of the red spheres was

3.5 cm in radius and the size of the blue sphere was 2.5 cm in radius. The testbed with these nine spheres

was placed on a surface in front of the VR user, which is 25 cm away from the shoulder level of the VR user

(Figure 5.1b). The distance between the blue and red spheres was 35 cm. The targets in the circumference

were placed 45° apart from each other.

The whole study was divided into three sessions (Figure 5.1c). The first session served as a practice round

and consisted of one block that included 16 trials across eight different target orientations. No manipulations

were applied during this practice session. I moved to the actual study as soon as they completed the practice

and felt comfortable with the settings. The data collected during the practice session were discarded from

the analysis.

In the second session, baseline data were collected. This session comprised five blocks, each containing 16

trials to ensure consistency. Within each block, every target orientation was represented in exactly two trials,

resulting in a total of 80 trials per participant for this baseline session. Breaks were provided between blocks

as necessary to minimize fatigue, and participants were given a 2-3 minute break and asked to take off the

VR headset at the end of this session. The target order was randomized in this session.

The third and final session introduced manipulation trials. Like the baseline session, these sessions also had

five blocks each. However, each of these blocks contained 64 trials. The first and last eight trials within each

block were not manipulated to serve as control data, whereas the remaining 48 trials were manipulated across

six levels and eight target orientations. Non-manipulated trials were intentionally placed at the beginning

and end of each block to mitigate any biases; I refer to these baselines as Baseline Padded First (BPF)

and Baseline Padded Last (BPL), respectively. A cumulative total of 320 manipulated trials were collected

from each participant during this session. Participants were given two-minute breaks between each block

to rest. Given the higher number of trials in these blocks, participants were also asked to rest within each

block as needed. Both the target and the level selection were randomized for the manipulated trials. The six

different levels of manipulation for the OM group were ±18°, ±12°, and ±6°. The angle for the baseline level

is 0°. Similarly, six scaling levels were employed in the MM group: 1.0±0.30, 1.0±0.20, and 1.0±0.10, with a

baseline scaling factor of 1.0. Equation 5.1 and Equation 5.2 were used to calculate the manipulated hand

positions during the trials, respectively, for the OM and MM. Here, θ represents the applied angles for OM,

whereas scaling_factor represents the applied scales for MM. The manipulations were only applied on the

XY plane, which can be observed from the equations. I did not apply manipulations on the Z-axis (i.e., the

depth) because the participants are sensitive to depth sensing, which was found in the study by Benda et
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al. [305].

In Equations 5.1 and 5.2, ∆X, ∆Y , and ∆Z represent the change in hand position along the X, Y, and Z

axes, respectively, calculated as the difference between the current and previous hand positions. The angles

∆X_Angle and ∆Y _Angle are derived from the original changes in position (∆X, ∆Y ) adjusted by the

rotation angle θ, facilitating the manipulation of hand movement in the VR space. The updated current

hand position is then recalculated by applying these angular adjustments to the original positions, effectively

simulating the hand’s movement within the virtual environment. This approach allows for a nuanced control

and manipulation of hand movements in VR.

For the OM group, the total number of trials collected was: (a) baseline session: 16 participants × 5 blocks

× 16 trails = 1280, and (b) manipulated session: 16 participants × 5 blocks × 64 trails = 5120. Similarly, for

the MM group, the baseline session had 1360 trials, and the manipulated session had 5440 trials.

∆X = current_hand_position_X − previous_hand_position_X

∆Y = current_hand_position_Y − previous_hand_position_Y

∆Z = current_hand_position_Z − previous_hand_position_Z

∆X_Angle = ∆X × cos θ − ∆Y × sin θ

∆Y _Angle = ∆X × sin θ + ∆Y × cos θ

current_hand_position = V ector(current_hand_position_X + ∆X_Angle,

current_hand_position_Y + ∆Y _Angle,

current_hand_position_Z + ∆Z)


(5.1)

∆X = (current_hand_position_X − previous_hand_position_X) × scaling_factor

∆Y = (current_hand_position_Y − previous_hand_position_Y ) × scaling_factor

∆Z = (current_hand_position_Z − previous_hand_position_Z) × 1.0

current_hand_position = V ector(current_hand_position_X + ∆X,

current_hand_position_Y + ∆Y,

current_hand_position_Z + ∆Z)


(5.2)

5.1.3 Deception and Debriefing

Participants were initially informed that the study aimed to examine the usability of VR technologies. At

the end of the study, a debriefing session was conducted. Participants were provided a printed debriefing

statement clarifying the study’s true objectives. They were also presented with a post-debrief consent form,

inquiring about their permission to use their data now that the study’s actual intent had been revealed.

5.1.4 Data Analysis

The experimental software captured the virtual controller’s x-, y-, and z-position with the timestamp at

a sampling rate of 72 Hz since the VR’s refresh rate was 72 Hz. The software collected the actual virtual
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Table 5.1: Kinematic Metrics in the Study.

Metric Notation Description

Movement Time MT Time from trial start to end in seconds. Higher values signify less efficient
movements.

Primary Submovement Time T1 Duration of the initial submovement.
Secondary Submovement Time T2 Duration of subsequent submovements. Related to Movement Time as

MT = T1 + T2.
Peak Velocity PV Max speed of the controller in cm/s. Higher values denote faster movements

and occur during the ballistic phase.
Primary Submovement Distance PSD Distance covered in T1. Greater values suggest more distance covered

through ballistic movement.
Secondary Submovement Distance SSD Distance covered in T2. Greater values indicate a higher extent of distance

covered through corrective movements.
Peak Velocity in Secondary Submovement PVss Max speed during T2 in cm/s. Higher values signify faster corrective

movements.
Average Speed in Secondary Submovements AvgSss Average speed during T2 in cm/s. Higher values imply faster corrective

movements.
Secondary Submovement Point-to-Point Distance SSDp2p Euclidean distance from end of T1 to target. Greater values signify more

distance covered via corrective movements and indicate a greater separation
from the target after ballistic movement.

controller position data when the perception manipulations were applied. The experimental software also

collected each trial’s start and end timestamps. The start timestamp is when the participant grabbed the

blue sphere; the end timestamp is when the participant dropped the blue sphere into the red sphere. The

software did not log the unsuccessful trials, such as when the participants dropped the sphere incorrectly.

Individual trial’s positional data was segmented using these start and end timestamps. Missing position

data were interpolated using spline interpolation, and the data were resampled to a constant 72-Hz sampling

rate. Filtered position data were then used to calculate the cumulative Euclidean distance traveled by the

controller for each trial and the resulting profiles were differentiated to derive the velocity and acceleration

profiles used to calculate kinematic metrics reported in Table 5.1. The velocity profile was smoothed using a

Gaussian kernel filter with a standard deviation parameter of 5 [318]. Similarly, the acceleration profile was

smoothed using a Gaussian kernel filter with a standard deviation parameter of 4 [318]. I used the smoothed

velocity and acceleration profiles to segment the primary and secondary submovements, a similar approach

leveraged from [319].

The effects of movement time, peak velocity, speed, and distance traveled during different submovements

were assessed using a one-way repeated-measures ANOVA. Significant differences involving more than two

means were examined using Tukey’s HSD post hoc comparisons (p < 0.05).2

2p-value annotation legend in the reported figures (Figure 5.3 - Figure 5.13): ∗ : 1.00e−02 < p <= 5.00e−02, ∗∗ : 1.00e−03 <
p <= 1.00e−02, ∗ ∗ ∗ : 1.00e−04 < p <= 1.00e−03, ∗ ∗ ∗∗ : p <= 1.00e−04, and ns : p >= 0.05; ns are not marked in the figure.
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5.2 Results

5.2.1 Detection of Perception Manipulation

Figure 5.2 displays participants’ reports of hand movement unnaturalness across both studies, with baseline

conditions (B, BPF, BPL) set at an angle of 0° and a scale factor of 1.0. Participants more frequently perceived

movements as unnatural with increased manipulation intensity. In orientation manipulation, unnaturalness

perceptions were similar for removedboth clockwise and anti-clockwise adjustments (Figure5.2a). For

magnitude manipulation, the ratio of feeling the movement unnatural was higher when the manipulation

reduced the hand movement than when the manipulation increased the movement by the same ratio

(Figure 5.2b).

Applying a 50% threshold to detect noticeable unnaturalness, orientation manipulations were perceptible

between ±10° to ±12°, slightly exceeding findings by Zenner and Kruger [303]. This discrepancy might be

attributed to participants being unaware of the study’s true aim, potentially reducing their sensitivity. For

magnitude manipulations, sensitivity was greater for scaling down (threshold at 0.8 or higher) compared to

scaling up (threshold above 1.2, nearing 1.3), consistent with observations by Benda et al. [305].

Figure 5.2: Percentage of “Unnatural” responses for (a) Orientation Manipulation, and (b) Magnitude
Manipulation.

5.2.2 Level-Wise Analysis

Impacts in Kinematic Metrics for OM

In this investigation into the effects of orientation manipulation within VR, my findings illustrate the

adaptability of participants for manipulations. Despite manipulations, task completion times remained

consistent across different manipulation levels, underscoring the participants’ capacity to swiftly adapt to VR

manipulations (Figure 5.5 (a)).
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Figure 5.3: Level-wise – (a) SSD and (c) SSDp2p for OM study.

Figure 5.4: Level-wise – (a) PVss and (c) AvgSss for OM study.

Analysis of the primary (T1) and secondary submovement times (T2) revealed no significant differences in

response to the manipulations, indicating a stable approach toward the target throughout the experiment. This

stability suggests robustness in participants’ initial movement strategy, unaffected by the VR manipulations

introduced.

Further examination into the distances covered during these movements unveiled more nuanced effects.

While PSD showed little change, the SSD and point-to-point SSD (SSDp2p) increased with greater levels

of manipulation. This increase in SSD and SSDp2p highlights how participants compensated for the VR

manipulations, undertaking larger corrective movements as the discrepancy between expected and actual

virtual environments grew (Fig 5.3).

On the other hand, PV metrics did not exhibit any significant differences across manipulation levels.

However, in the case of corrective actions, both the peak velocity during secondary submovements (PVss) and
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Figure 5.5: Level-wise – (a) MT for OM study and (c) MT for MM study.

the average speed during these movements (AvgSss) escalated with higher levels of manipulation (Fig 5.4).

Impacts in Kinematic Metrics for MM

In the case of MM, the participants’ MT remained consistent compared to the baseline condition except for

the scale factor of 0.7. This showed us that extreme manipulations make the participants move differently

(Figure 5.5 (b)).

Figure 5.6: Level-wise – (a) SSD and (c) SSDp2p for MM study.

Observing movement time during ballistic movement (T1) and subsequent corrections (T2), a similar

pattern emerged. With the exception of the extreme condition (scale = 0.7), participants’ initial movements

and subsequent adjustments remained relatively consistent across MM. This indicates that magnitude

manipulation beyond certain thresholds might degrade users’ performance during corrections. Interestingly,

while assessing the distance traveled by participants during these tasks (PSD), I observed minimal differences

across most conditions, except for instances when objects appeared significantly closer than usual (scale down).
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Figure 5.7: Level-wise – (a) PVss and (c) AvgSss for MM study.

This consistency suggests that our ability to estimate distance in VR remains relatively steady unless the

manipulation is quite extreme (Fig 5.6). Upon delving deeper into how participants adjusted their movements

(SSD) and aimed for precision (SSDp2p), I noted that creating the illusion of objects being closer (scale down)

posed considerable challenges. Participants made more substantial corrections and exerted greater effort to

achieve accuracy, especially when VR compressed distances (Fig 5.6). Lastly, when examining the speed of

participants’ corrective movements (PVss) and their average speed (AvgSss), I observed significant increases

with higher levels of VR manipulations, particularly during scale-down manipulations. This heightened speed

was most evident during scale-down manipulations since participants were required to move farther to reach

the goal. (Figure 5.7).

5.2.3 Block-Wise Analysis

Delving further into our study’s block-wise analysis unveils insights into participants’ responses, particularly

when exposed to orientation and magnitude manipulations over time. For this analysis, kinematic metrics,

as detailed in Table 5.1, are plotted against block numbers. The graph depicts the first five blocks from

the baseline (session 2), followed by the subsequent five blocks from the manipulation phase (session 3).

Additionally, session 3 incorporates baseline measurements, both at the beginning and end.

Impacts in Kinematic Metrics for OM

Initially, in the baseline phase (first five blocks), participants were getting accustomed to the VR environment,

with the first two blocks showing noticeable differences in movement time (MT) compared to later blocks

(Figure 5.8a). This suggests an initial learning curve as participants adjusted to their hand movements.
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Figure 5.8: Block-wise – (a) MT, (b) T1, and (c) T2 for OM study.

As I transitioned into the manipulation phase (last five blocks), a significant adaptation process was

observed. Despite the introduction of perception manipulations, participants demonstrated adaptability,

as evidenced by the consistency in movement time (MT) across different blocks. Analyzing both primary

(T1) (Figure 5.8a) and secondary (T2) (Figure 5.8b) submovement times revealed a learning effect. Initially,

participants took longer for ballistic movements (T1), but as they progressed, particularly beyond the baseline

session, their speed increased, indicating optimization of their movement strategy to counteract the VR

manipulations.

Figure 5.9: Block-wise – (a) PSD, (b) SSD, and (c) SSDp2p for OM study.

Interestingly, while primary submovement distance (PSD) remained unaffected by practice over the

blocks, secondary submovement distance (SSD) and point-to-point distance (SSDp2p) were different. These

metrics increased significantly in manipulation blocks, indicating participants were employing larger corrective

movements to achieve accuracy. In addition, the participants also became better over the practice in the

manipulation session, which is seen from the significant difference in the SSD value between the sixth block

and the tenth block (p=0.0043) (Figure 5.9).

Moreover, the speed of these corrective movements, as measured by PVss and AvgSss, also increased

significantly during manipulation blocks. This increment in secondary submovements showcases participants’

efforts to refine their corrective strategies over time, further emphasizing the dynamic nature of human

adaptation to sensory manipulations in VR (Figure 5.10).

Through this detailed block-wise analysis, I observed human resilience and adaptability, where participants



Investigation of Hand-Movements Manipulation 84

Figure 5.10: Block-wise – (a) PV, (b) PVss, and (c) AvgSss for OM study.

not only learn to navigate the initial challenges posed by VR but also dynamically adjust their strategies to

maintain performance under varied manipulations.

Impacts in Kinematic Metrics for MM

Likewise, I explore the block-wise analysis for MM, which mirrors the insights gained from the OM analysis

but offers its unique perspective on the participants’ experiences through perception manipulations.

Figure 5.11: Block-wise – (a) MT, (b) T1, and (c) T2 for MM study

Similar to OM, movement time (MT) significantly differed in the early stages but converged as participants

progressed through the sessions. This trend suggests an early adjustment to the VR environment, particularly

evident in the primary submovement time (T1), where the initial slowness gave way to quicker, more confident

movements as the sessions advanced (Figure 5.11).

Figure 5.12: Block-wise – (a) PSD, (b) SSD, and (c) SSDp2p for MM study.
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Upon transitioning to the manipulation phase, notable changes emerged in participants’ approaches,

particularly concerning their secondary submovements (T2). The introduction of magnitude manipulations

prompted participants to refine their corrective movements, evidenced by an increase in secondary submove-

ment distance (SSD) and point-to-point distance (SSDp2p) during these blocks. This augmentation signifies

an adjustment aimed at preserving precision amidst manipulations (Figure 5.12).

Interestingly, while the peak velocity (PV) across blocks showed minimal variance, indicating consistency

in movement speed, the narratives of peak velocity during secondary submovement (PVss) and average speed

(AvgSss) unfolded differently. Upon facing manipulations, participants not only sped up their corrective

movements but also improved their efficiency, as seen in the significant uptick in PVss and AvgSss speeds

during later blocks. This increment suggests an adaptation of movement strategies to counterbalance the VR

manipulations (Figure 5.13).

Figure 5.13: Block-wise – (a) PV, (b) PVss, and (c) AvgSss for MM study.

Through this detailed exploration, the block-wise analysis for MM shows human adaptability and resilience

within immersive VR environments. Participants navigated initial learning curves, adjusted to manipulations,

and optimized their movement strategies to maintain performance.

5.3 Discussion

The study explored the effects of orientation and magnitude manipulations on different movement kinematics.

Firstly, I present our findings regarding the impact of these manipulations on each kinematic metric. Secondly,

I delve into how manipulations affect optimal motor learning strategies, comparing our results with existing

literature. Lastly, I discuss the practical implications of perceptual manipulation in Human-Computer

Interaction (HCI) across various applications.
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5.3.1 Adaptability and Impact Across Perception Manipulations

In the level-wise analysis, MT, T1, and T2 showed differences due to manipulations, while only initial

conditions BPF and BPL differ meaningfully from the baseline B. Learning effects are clear, as BPF and

BPL data were gathered later. However, orientation manipulation alone did not significantly affect these

metrics. In contrast, SSD and SSDp2p were highly sensitive to different manipulation levels, highlighting their

responsiveness to control adjustments. PV and AvgSss also increased with higher manipulations, pointing to

the specific impact on speed metrics in secondary movements.

In the block-wise analysis, the data confirmed the role of practice across session blocks. Metrics like

MT, T1, T2, and SSD revealed significant differences in early blocks from later ones. Specifically, SSD and

SSDp2p showed that users adapt their control strategies over time, becoming more efficient in both types of

movements. The significant differences in PVss and AvgSss indicated this adaptation extends to the speed of

secondary movements.

While similar differences were noticeable in both types of manipulations, the impact during scale-up

(magnitude) is not prominent. This could be the reason that scaling up the movement helped the participants

to reach the target earlier than other manipulations. However, discrepancies in certain kinematic metrics

(e.g., PVss and AvgSss) were noticed during extreme scale-up manipulations, such as for a scale factor of 1.3.

5.3.2 Contrast of Perception Manipulation Effects with Prior Work

An early work by Kohli et al. [306] investigated the impact of spatial warping in virtual reality on user

performance and perception. The study leveraged the concept of passive haptic feedback and redirected

touching to explore how discrepancies in virtual and real object orientations affect task performance, error

rates, and user detection of discrepancies. The study provided evidence that users can interact with warped

virtual spaces without significant detriments to task performance or error rates compared to unwarped spaces

within specific bounds of manipulation. They found that the task performance changes when users are

presented with orientation manipulation beyond ±18°. The study also suggested that users can adapt to

manipulations in virtual and real object orientations. Similar to this, our study did not find any significant

differences in task performances within these ranges of orientation manipulations, which aligns with the prior

study.

Another study by Han et al. [307] investigated by evaluating two distinct hand remapping techniques

– translational shift and interpolated reach – for enhancing hand interactions with passive haptics in VR.

They presented a series of experiments and a case study and explored the efficacy, adaptability, and usability

of these techniques in VR environments. In one experiment, their findings revealed that translational shift
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generally outperforms interpolated reach in terms of speed and accuracy, especially in scenarios with larger

mismatches between virtual and physical objects. The experiment also uncovered that offset direction (toward

or away from the user) significantly affects reach time, with away offsets facilitating faster reaches. Another

experiment focused on users’ ability to adapt to the remapped reach techniques over time. The results

showed improvement in task performance with practice, indicating that users can adjust to remapped motions.

However, the degree of acclimation varied between techniques, with translational shift showing more consistent

adaptation than interpolated reach. In our study, we utilized the interpolated reach approach. Similar to this

study, we noticed improvement in task performance with practice.

A very recent study by Yang et al. [308] provided insightful findings on the impact of different redirected

strategies (Redirected Reach (RR), Redirected Placement (RP), and a combined RR&RP method) on ballistic

and corrective movements during VR interactions. The study’s analysis focused on how these strategies

influence the participants’ movement profiles when interacting with virtual objects. The study observed

that redirection strategies influence the proportion of ballistic movement in the overall task performance.

Specifically, the proportion of the ballistic phase tends to decrease as the redirection offset increases, indicating

that participants adjust their initial, rapid movement strategy based on the perceived alignment between

the virtual and physical environments. Similarly, the study found that corrective movements became more

prominent with higher redirection offsets, suggesting an increased reliance on visual feedback to align the

virtual and physical hand positions. This was particularly evident when the redirection offset was beyond the

detection threshold, leading to a noticeable discrepancy between virtual and physical spaces that participants

needed to correct. Their findings specific to each redirected strategy:

• RR-only: When redirection was applied only during the “reach-to-grasp” phase, participants exhibited

increased corrective movements, especially as the redirection offset increased. This indicates that

participants were more sensitive to discrepancies during the grasping phase, necessitating more correction

to align their movements with the virtual object.

• RP-only: In the RP-only condition, where redirection occurred only during the “reach-to-place” phase,

a similar pattern was observed. Higher redirection offsets led to more pronounced corrective movements,

highlighting the challenge participants faced in aligning the virtual and physical positions during object

placement.

• RR&RP: The combined RR&RP method aimed to distribute the redirection offset across both the

“reach-to-grasp” and “reach-to-place” phases. This strategy was found to optimize the balance between

ballistic and corrective movements. Participants exhibited a more natural movement pattern with this
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approach, indicating that distributing the redirection offset made the discrepancies less noticeable and

reduced the need for extensive corrective movements.

Similar to Yang et al. [308], the manipulations significantly affect the secondary submovement distance,

which increased with a higher degree of manipulations. This happened because the traveled distance using

the ballistic movement has been decreased with the presence of higher manipulations. This phenomenon

underscored the impacts of manipulations on motor performance. In contrast to Yang et al. [308], I explored

other kinematic mercies, such as I also noticed that the participants sped up their movements during

corrections to reach the target as quickly as possible, indicating adapting to the manipulations. For this

adaptation, people primarily relied on visual feedback, indicating that proprioceptive reliance might decrease in

the presence of higher degrees of manipulations. Moreover, increasing speed during secondary submovements

requires additional effort and coordination from the users [230].

5.3.3 Learning Effects

The lack of significant Movement Time (MT) changes between baselines and manipulated sessions pointed to

learning effects that confound the outcomes. For example, the participants improved their performance in

baseline sessions over time. However, as soon as they were exposed to the manipulations in the later sessions,

they could not maintain their earlier learned skills; rather, they were taking a significant amount of time to

complete the tasks. This suggested a reassessment of whether the traditional comparisons between baselines

and manipulations were effective for evaluating such manipulations. Future research might benefit from

utilizing a counterbalanced design to control for learning effects in a mixed environment.

5.3.4 Adaptation Mechanisms

During the block-wise analysis, I observed that participants covered greater distances with higher degrees

of manipulation (e.g., SSD and SSDp2p metrics). Additionally, participants accelerated their movements to

expedite task completion in the presence of manipulations. This behavior suggests that participants not

only reacted to changes in the system (i.e., manipulations) but also adjusted to the systems over time. The

incremental patterns in the kinetics metrics during manipulated sessions indicate engagement of cognitive load

and motor adaptation strategies [230]. Hence, understanding the underlying factors driving these strategies

is crucial for developing more efficient and less intrusive manipulations in future human-computer interaction

systems.
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5.3.5 Implications for Human-Computer Interaction

The observed patterns in kinematic metrics, particularly in PVss and AvgSss, indicating increased speed in

secondary submovements, may have broader implications for user interactions with orientation-dependent

interfaces or applications. These findings could inform design and user experience strategies for real-world

systems involving orientation manipulations.

Magnitude manipulations seem to impose cognitive load, affecting both the speed and accuracy of

interactions. This has implications for interface designs incorporating force or pressure-sensitive interactions,

where high-magnitude manipulations may hinder fine-grained control, while low-magnitude manipulations

may facilitate quicker interactions.

Further exploration is needed to understand the observed learning effects and adaptation mechanisms more

deeply. Future studies should isolate and examine these factors closely, expanding the range of orientation

manipulations examined to gain insights into scalability and practical application.

Finally, our findings offer a foundation for further research into the enduring impact of VR-induced

perception manipulations on motor skills. By analyzing user responses to different manipulations, we advocate

for balanced manipulation strategies in VR system design, optimizing user experience while preserving motor

efficiency and minimizing cognitive demands.

5.3.6 Future Directions

Through our investigation of the impacts of manipulations on kinematic metrics, I observed phenomena of

learning effects and adaptation mechanisms, which, although intriguing, remain partially explained. Future

research could concentrate on isolating these variables to gain a better understanding of their individual

contributions to performance. Moreover, deploying a wider range of orientation manipulations can further

validate the scalability and applicability of these findings.



Chapter 6

Detecting Hand-Movements

Manipulation

In Chapter 5, I explored the effects of perception manipulations on kinematic metrics during reaching tasks.

These manipulations can disrupt movement strategies, impairing the efficiency of hand movements and leading

to decreased task performance [306, 308]. In some cases, if employed maliciously, they may even jeopardize

user safety. Additionally, dynamic manipulation techniques may inadvertently affect the precision of finely

tuned motor movements, which rely on visual and kinesthetic feedback for refinement. Acquiring motor skills

and the development of developing muscle memory is vital for performing tasks quickly, consistently, and

stably while minimizing cognitive load [231]. However, the dynamic nature of perception manipulation, which

alters the mappings between virtual and real hand movements, poses challenges to the development of such

automaticity. Moreover, there are concerns that perception manipulation could be maliciously exploited to

harm users, with potential adversaries including VR developers who might intentionally or unintentionally

introduce harmful manipulations [35]. Instances of such exploitation have been documented, including

manipulation of VR safety boundaries to control user movement without their awareness [34]. I advocate for

a user’s prerogative to be informed of any such potential manipulations before application usage. To this

extent, recognizing the importance of user awareness regarding third-party applications that incorporate

perception manipulations, I propose a method to detect them and mark them accordingly in VR stores,

enhancing app usage integrity and informing user choices.

This chapter introduces ManipulaSense, a novel approach to detecting perception manipulations in VR,

leveraging natural hand movements within the theoretical framework of Woodworth’s two-component model

of goal-directed movements, established in 1899 [309]. According to this model, goal-directed actions comprise

90



Detecting Hand-Movements Manipulation 91

Figure 6.1: Perception Manipulation alters the user’s behavior or perception during the interaction in VR.
While these perception manipulations are often unnoticed by the users, their movement may be affected by
the manipulation. Our work presents an Autoencoder-based method that detects the anomaly in the user’s
hand movement and identifies the perception manipulation.

an initial ballistic phase, directing the limb toward the target, followed by a corrective phase that adjusts

for trajectory errors using visual feedback. Our observations indicate that the speed of users’ corrective

movements varies in response to perception manipulation, a variation not present under normal conditions.

This phenomenon occurs when perception manipulation is applied in a particular direction, causing users to

adjust their hand movements in the opposite direction. One can quickly notice this adjustment, which is

evident in the hand movement trajectories shown in Figure 6.1 and Figure 6.5. This observation forms the

basis of our hypothesis that the characteristics of hand movements during corrective phases, such as speed,

acceleration, and jerk, can serve as indicators to differentiate between manipulated and normal movement

patterns.

To test our hypothesis, I developed ManipulaSense, a semi-supervised machine learning model based on

an Autoencoder (AE) [320, 321] for anomaly detection. ManipulaSense distinguishes between manipulated

and non-manipulated instances by learning to reconstruct normal movement patterns, with the premise that

anomalies—manipulated movements—will exhibit higher reconstruction errors [322, 321]. This approach

leverages the assumption that normal instances are more accurately reconstructed from learned representations.

At the same time, anomalies deviate significantly, resulting in higher reconstruction errors. The determination

of an anomaly is contingent upon a reconstruction error exceeding a predetermined threshold. I conducted

multiple evaluations of our model to optimize this threshold, selecting the optimal threshold based on the

differentiation between normal and manipulated data.

The efficacy of our approach was validated through a user study involving 21 participants, where I

collected hand movement data in VR under both normal (non-manipulated) and manipulated conditions. Our

study design incorporated orientation manipulation at two levels (±10°) to simulate manipulated movement

conditions. Data collection was structured into three sessions: an initial session to establish baseline hand
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movements (S1), a second session to collect data under manipulated conditions (S2), and a final session to

gather additional baseline data (S3). The model was trained in a semi-supervised manner using only S1 data

to learn regular hand movement patterns, with S2 and S3 data serving to evaluate the model’s ability to

accurately detect manipulated instances as anomalies and baseline instances as normal. Our findings, derived

from a within-subject analysis employing a 70-30 train-test split, demonstrate that our model achieves an

anomaly detection accuracy of 97.7% (F1-score: 98.1%). Further validation through leave-one-participant-out

(LOPO) cross-validation confirmed the robustness of our model in detecting anomalies across new users, with

an accuracy of 93.7% (F1-score: 93.9%).

6.1 ManipulaSense

Our methodology for detecting perception manipulation through user hand movements is inspired by the

two-component model of rapid aimed limb movements, as described by Woodworth [309]. This model depicts

hand movements into primary submovements (PS) for the initial target approach and secondary submovements

(SS) for fine-tuning the position. The initial, primary submovement is believed to be ballistic and almost

entirely preprogrammed and serves to propel the limb most of the distance between the starting position and

the target. If the PS does not land in the target region, then a corrective SS may also be produced [319, 230].

I observed that manipulations in perception, such as changes in orientation, distinctly affect the speed of

these corrective movements. This variation and differences in acceleration form the basis of our hypothesis:

the dynamics of corrective movements, particularly their speed and acceleration, are indicative of manipulated

versus normal movements.

Figure 6.2: ManipulaSense overview.

Our methodology for detecting anomalies using VR hand movements follows a structured process. First,

I compute the speed as the initial temporal derivative of the 3D hand movements captured from the VR
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controller and then calculate the acceleration as the speed’s derivative. I then smooth the speed and

acceleration profiles using a Gaussian filter to ensure a cleaner analysis. The identification of the SS is

crucial to our approach. Similar to Abrams & Pratt’s method [319], I identify the start of SS at the second

zero-crossing in the acceleration profile, which occurs right after the peak speed. This zero-crossing signifies a

transition from deceleration to acceleration, marking the beginning of corrective movements. I then segment

the raw speed and acceleration data based on the identified SS start point. Finally, I utilize the raw speed

and acceleration data, specifically from the SS segment, as input features for our model training.

Leveraging these segmented corrective movements, I employ anomaly detection via an Autoencoder – a

deep learning model renowned for its capacity to identify abnormal patterns by learning to compress and

reconstruct normal data with minimal error. An LSTM-based Autoencoder is particularly suited for this task

due to its proficiency in handling sequential data. By training exclusively on data representing unmanipulated

hand movements, the Autoencoder develops a normative model of such movements. Consequently, manipulated

movements produce a notable deviation in reconstruction, showing increased reconstruction loss, which I use

to identify manipulations.

After training, I establish a threshold for anomaly detection by analyzing reconstruction errors, enabling

the differentiation of manipulated movements. This threshold, determined through offline analysis, is then

applied in a real-time system to identify manipulation as it occurs. The methodology – from offline analysis

to real-time application – is illustrated in Figure 6.2. Now, I discuss the LSTM Autoencoder and threshold

selection process in detail.

6.1.1 LSTM Autoencoder (AE) Architecture

Our LSTM AE model comprises two main components: an encoder and a decoder. The encoder compresses

the input sequence of hand movement data into a lower-dimensional latent space, while the decoder aims to

reconstruct the original sequence from this compressed representation.

• Encoder: It transforms the input sequence (x) into a compact latent representation (z). The encoding

function can be represented mathematically as z = f(x), where f is a nonlinear transformation

learned during training. The encoder consists of LSTM layers, starting with an input dimension of

2 (representing kinematic features such as speed and acceleration) and culminating in an encoding

dimension of 7. Intermediate hidden dimensions are set to 64 (Figure 6.3).

• Decoder: It attempts to reconstruct the input (x) sequence from the compact latent representation (z).

The reconstruction x̂ is obtained by applying a reverse transformation g to the latent representation:

x̂ = g(z). The goal is to make x̂ as close to x as possible, reflecting a minimal loss of information during
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encoding. The decoder’s architecture mirrors the encoder, utilizing LSTM layers to expand from the

encoding dimension back to the original feature space (Figure 6.3).

The composition of these two functions can describe the entire AE: x̂ = g(f(x)). The reconstruction

error (loss) quantifies the difference between the original input x and its reconstruction x̂. For our model,

the Mean Absolute Error (L1 loss) is used as the loss function, which is defined for each data point as:

L(x, x̂) =
∑n

i=1 |xi − x̂i|, where n is the dimensionality of the input data. The objective during training is to

minimize this loss across all data points in the training set, thereby improving the AE’s ability to accurately

reconstruct the input data from its latent representation.

Figure 6.3: AutoEncoder (AE) Architecture.

In anomaly detection, the reconstruction error serves as a critical metric. Since the AE is trained only

on normal (non-manipulated) data, it learns to reconstruct these data points accurately, resulting in a

low reconstruction error for similar data. However, for anomalous (manipulated) data points, the model’s

reconstruction will be poor, leading to a higher reconstruction error. To detect anomalies, a threshold τ is set

based on the distribution of reconstruction errors on a validation set comprising normal data. An input x is

considered anomalous if L(x, x̂) > τ .

6.1.2 Threshold Selection

Our methodology for detecting perception manipulation leverages an AE trained exclusively on normal

data. This approach is predicated on the principle that such an AE will accurately reconstruct normal

data, indicated by a low reconstruction error, while failing to do so for manipulated data results in a high

reconstruction error. The key to detecting manipulation lies in setting an appropriate anomaly threshold

based on the reconstruction error (RE). A test sample exceeding this threshold in RE is classified as an

anomaly. In contrast, samples below the threshold are considered normal. The selection of this threshold is

critical; an inadequately set threshold could lead to a significant number of false detections.



6.2 Experiments 95

In this chapter, I proposed ManipulaSense, a perception manipulation detection model that employs a

stochastic approach to select the anomaly threshold, which is crucial for distinguishing between normal and

manipulated samples. Our methodology is rooted in the balance between maximizing the True Positive Rate

(TPR) and minimizing the False Positive Rate (FPR), using the Receiver Operating Characteristic (ROC)

curve [323] to find the optimal threshold, τ . The formal equation for determining τ is:

τ =
τ=lmax
argmax
τ=lmin

(λ× TPR(τ)− (1− λ)× FPR(τ)) (6.1)

Here, τ is the threshold, TPR(τ) is the True Positive Rate at threshold τ , FPR(τ) is the False Positive

Rate at threshold τ , and λ is a weighting factor that balances the importance of maximizing TPR against

minimizing FPR. Moreover, lmin and lmax represent the minimum and maximum reconstruction error (loss)

from the training dataset. The choice of λ depends on the application’s tolerance for false positives versus

false negatives. A λ closer to 1 emphasizes maximizing TPR, whereas a λ closer to 0 emphasizes minimizing

FPR.

To integrate this approach within ManipulaSense, I focus on the significance of the threshold value by

analyzing the distribution of reconstruction loss in our dataset. During the training phase, our model is

exposed solely to normal samples. In contrast, normal and manipulated samples populate the validation and

testing datasets. The threshold τ is calculated based on the reconstruction errors observed in these datasets. I

investigate the range of reconstruction errors (minimum to maximum) derived from the training set at intervals

of 0.2 to ascertain the most effective threshold. This process ensures our model’s ability to accurately detect

manipulated movements, leveraging a stochastic method for threshold selection that reflects the nuanced

interplay between maximizing detection accuracy and minimizing false positives. In our methodology, I found

the detection threshold for perception manipulation to be 6, which equals µ(train_loss)+3.4×σ(train_loss).

Here, µ(train_loss) represents the average loss incurred during training, while σ(train_loss) denotes the

variability or standard deviation of the training loss. This threshold is consistent across new users and

effectively works for hand movement data (Section 6.2.5).

6.2 Experiments

6.2.1 Dataset

In the absence of publicly available datasets, I conducted a user study to gather manipulated and non-

manipulated hand movement data during reaching tasks within a VR environment. Participants were

instructed to execute a task that involved grabbing an object, moving it, and placing it in a specified target
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location, thereby incorporating both target selection and point-to-point reaching elements. To collect data

on manipulated hand movements, I employed angle redirection manipulation, also known as Orientation

Manipulation. Specifically, I implemented two degrees of orientation manipulation, ±10°, based on insights

from previous studies [303, 302, 304]. These angles were selected to ensure the manipulation remained

imperceptible to the participants. The study protocol was approved by the Institutional Review Board (IRB)

– UVA.

Participants

A total of 21 participants were recruited for the study. All participants were right-handed (M = 16, F = 5).

The group’s average age was 21.8 years (σ = 4.8). Among the participants, 17 had previously used VR for

gaming and academic research, one routinely used VR in their daily life, and three had no prior exposure to

VR. Participants were recruited through mailing lists, Slack channels of student groups, and word-of-mouth

referrals. Each participant received a $20 gift card as compensation for their time.

Figure 6.4: (a) Screenshot of the task scene. (b) The study sessions are shown as a sequence of blocks in a
diagram.

Study Design and Procedure

The study employed a within-subjects design and was conducted in a controlled lab environment. All

participants were provided with an Meta Quest Pro VR headset and Controller. The participants sat in

a stationary chair that was secured to the floor. The participants were briefed on the study’s purpose

and possible manipulation within some trials. However, they were not informed about which specific trials

included these manipulations.

In the study, the participants were asked to complete a series of reaching tasks in VR. In the study

environment, the blue sphere was positioned at the shoulder level of the participant, approximately 25 cm

away from the shoulder. The red target sphere was placed 35 cm away from the blue sphere in one of the eight

directions (See Figure 6.4a). In each task, participants were asked to grab a blue sphere at the center of their
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view and place it inside the red target sphere as quickly and accurately as possible. If the blue sphere was

not correctly placed inside the red sphere, the trial was considered incomplete, and the participant was asked

to try it again. The participants were instructed to rest as needed between trials to minimize any effects of

fatigue. Spatial parameters were standardized in Unity units, with object sizes and distances predefined to

maintain uniformity across sessions. The experimenter calibrated the VR setup at each session’s onset to

ensure consistent target locations for all participants. Once the participants became familiar with the setup

and study environment, the experimenter started the actual data collection session.

The study was divided into three sessions (Figure 6.4b) to gather baseline and manipulated hand movement

data separately. The initial session (S1) has the largest number of trials (224 trials) and aims to establish a

baseline by allowing participants to familiarize themselves with the VR environment and refine their hand

movements to reach an optimal movement strategy.

The second session (S2) introduced manipulations to observe how participants adjusted their strategies in

response. The final session (S3) revisited baseline conditions to assess if participants could return to their

original movement strategies after experiencing manipulations, providing a test set for our model.

The S1 consisted of seven blocks that included 32 trials across eight different target orientations (trials per

participant = 7× 32). The S2 focused on collecting manipulated data through two blocks of 40 trials each

(trials per participant = 2× 40). I randomized the two orientation manipulations such as ±10° during S2. In

S3, I again collected baseline trials, structuring five blocks containing 16 trials each (trials per participant =

5× 16). During all the sessions, the target sequence was randomized to ensure unbiased results, with breaks

interspersed to alleviate fatigue. Manipulations were confined to the XY plane to account for participants’

depth perception sensitivity [305]. The manipulative adjustments were calculated using designated equations

tailored to orientation manipulation conditions (Equation 6.2).

∆X = current_hand_position_X − previous_hand_position_X

∆Y = current_hand_position_Y − previous_hand_position_Y

∆Z = current_hand_position_Z − previous_hand_position_Z

∆X_Angle = ∆X × cos θ −∆Y × sin θ

∆Y _Angle = ∆X × sin θ +∆Y × cos θ

current_hand_position = V ector(current_hand_position_X +∆X_Angle,

current_hand_position_Y +∆Y _Angle,

current_hand_position_Z +∆Z)



(6.2)
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In Equation 6.2, ∆X, ∆Y , and ∆Z represent the change in hand position along the X, Y, and Z axes,

respectively, calculated as the difference between the current and previous hand positions. The angles

∆X_Angle and ∆Y _Angle are derived from the original changes in position (∆X, ∆Y ) adjusted by the

rotation angle θ, facilitating the manipulation of hand movement in the VR space. The updated current

hand position is then recalculated by applying these angular adjustments to the original positions, effectively

simulating the hand’s movement within the virtual environment. This approach allows for a nuanced control

and manipulation of hand movements in VR. The study yielded 4,704 baseline, 1,680 manipulation, and 1,680

baseline trials from sessions S1, S2, and S3, respectively.

Figure 6.5: Hand Movement Trajectories (True Controller’s Position) – (a) Under Normal Conditions, (b)
Experiencing −10° Manipulations, and (c) Subject to +10° Manipulations.

Figure 6.6: (a) Training and evaluation loss trends across epochs ranging from 1 to 50. (b) It depicts velocity
and acceleration profiles for a single hand movement, showing actual velocity and acceleration alongside
velocity scaled by a factor of 5 for clearer visualization. This part also marks the segmentation between PSs
and SSs, with the initiation of the SS indicated by a vertical dashed line.
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6.2.2 Data preprocessing

The experimental software recorded the virtual controller’s position in X, Y, and Z axes at a 72-Hz sampling

rate, matching the VR system’s refresh rate. It captured the true controller position during both standard

and manipulation phases, displaying an altered controller position to participants during manipulations. A

few hand movement samples showing their trajectories are illustrated in Figure 6.5. The software logged each

trial’s start and end times – marking the grabbing and placing of the blue sphere, respectively – excluding

trials where the sphere was misplaced. Positional data between start and end points were segmented and

interpolated for consistency at 72 Hz. This processed data facilitated the calculation of cumulative Euclidean

distances, velocities, and accelerations per trial, with velocity and acceleration profiles smoothed using

Gaussian kernel filters with standard deviations of 5 and 4, respectively [318]. These profiles helped identify

PSs and SSs, adopting a method from [319, 230]. The segmentation between PS and SS is illustrated in

Figure 6.6(b). After identifying the SS portion, I extracted the time-series speed and acceleration profiles as

features for training the AE model. Since the SS portion from the users’ data has a dynamic length, I made

a uniform length of 72 time-series samples, which is a 1-s (sampling rate: 72 Hz) window. Therefore, the

time-series input shape for our model is (2, 72), with a window size of 72 and a dimension of two features

(speed and acceleration). To make the input uniform length, I resampled the SS portion using scipy [324].

To standardize the feature scales within our dataset, I applied Min-Max Normalization, rescaling each

feature to a [0, 1] range. This normalization was executed using the Equation 6.3:

zi =
xi −min(x)

max(x)−min(x)
(6.3)

Here, xi denotes the d-dimensional feature vector from the training dataset, and zi represents the

normalized data for the i-th instance. I determined min(x) and max(x) using the training dataset (S1) and

applied these values consistently to normalize subsequent datasets (S2 and S3) for uniformity across the data

processing pipeline.

6.2.3 Evaluation Metrics

I used accuracy and F1-score to evaluate the performance of our proposed method. In addition, I used

True Positive Rate (TPR), aka Recall and False Positive Rate (FPR), to determine the anomaly detection

threshold, τ . These metrics are calculated using four measures: true positive (TP), true negative (TN), false

positive (FP), and false negative (FN). A TP is when a manipulated hand movement instance is correctly

labeled and measured as TP. Similarly, a TN is when a normal hand movement instance is labeled as normal

and measured as TN. On the other hand, an FP is when a normal instance is labeled as a manipulated
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instance and measured as an FP. Similarly, an FN is when a manipulated instance is labeled as normal and

measured as FN. Based on these metrics, accuracy, F1-score, TPR, and FPR are calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(6.4)

F1-score =
2× Precision×Recall

Precision+Recall
(6.5)

Precision =
TP

TP + FP
(6.6)

Recall or TPR =
TP

TP + FN
(6.7)

FPR =
FP

FP + TN
(6.8)

6.2.4 Experimental Setup

The training involves optimizing the AE to minimize the reconstruction error between the input and output

sequences. I employ the Adam optimizer with a learning rate of 1× 10−3, leveraging its adaptive learning

rate properties to efficiently converge to optimal weights. The loss function used is the Mean Absolute Error

(L1 Loss), selected for its robustness to outliers, which sums the absolute differences between predicted

and true values, facilitating a direct measure of reconstruction fidelity. The input dimension is 2 × 72,

where 2 represents the kinematic features such as speed and acceleration, and 72 is the time-series sequence

length. The intermediate encoding and hidden dimensions (for both the encoder and decoder) are 7 and 64,

respectively. The model was trained for 50 epochs for both analyses discussed below.

In our study, I implemented two distinct analytical approaches: 1) a within-subjects analysis, also known

as population analysis, and 2) a leave-one-participant-out (LOPO) cross-validation, referred to as between-

subjects analysis. The choice to conduct a within-subjects analysis was driven by multiple factors. Primarily,

I sought to explore the effectiveness of our model in personalized settings, especially in scenarios where it

would be deployed online. This analysis framework allowed us to closely monitor the model’s capability to

identify anomalies individually, thereby assessing its accuracy and robustness across varied personal user

data.
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To facilitate the within-subjects analysis, I merged all participants’ data from the first session (S1). I then

proceeded to partition this data, allocating 70% for training the AE model, adhering to a 70-30 train-test

split ratio. The residual 30% of data was further divided equally into two segments (50-50 evaluation-test

split), with one half reserved for validation during the model’s training phase and the other half set aside

for final evaluation, alongside data from sessions two (S2) and three (S3). The trend between training and

evaluation loss over epochs during within-subjects training is reported in Figure 6.6(a).

Given the inherent variability in users’ hand movement data, attributed to distinct movement styles,

unique physiological characteristics, and varying speeds of hand motion, it was imperative to evaluate our

model’s adaptability to new users. The LOPO cross-validation method was employed to address this aspect.

This involved training the model on the S1 data from twenty participants and testing it on the data from the

remaining participants alongside the S2 and S3 datasets. This process was repeated 21 times, corresponding

to the total number of participants in our study, ensuring that each participant’s data was used as a test set

once. The cumulative findings were synthesized by calculating the average of all iterations.

ManipulaSense was implemented using the PyTorch deep learning framework. The experimental setup

was conducted in JupyterLab, hosted on a server cluster equipped with an NVIDIA A100 GPU, 256 GB of

RAM, and an 8-core CPU.

Figure 6.7: Within-subjects analysis – (a) shows the TPR and FPR across reconstruction losses ranging from
0 to 12, with the optimal threshold marked at 6, and (b) illustrates the reconstruction loss distribution for
data across three sessions.

6.2.5 Experimental Results

Within-subjects Results

In the within-subjects analysis, our AE model achieved an accuracy of 97.7% and an F1-score of 98.1%. The

TPR and FPR across varying reconstruction losses from 2 to 12 are illustrated in Figure 6.7(a). At the
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anomaly threshold of 6 – marked by a vertical line in the figure – our model recorded a TPR of 96.3% and an

FPR of 0.0%. Figure 6.7(b) presents the distribution of reconstruction loss for data from all three sessions,

supporting the selection of 6 as the optimal threshold. This distribution substantiates the model’s ability to

differentiate between normal and anomalous instances, justifying the threshold choice. Moreover, I report the

ROC curve for this analysis in Figure 6.8(a).

Figure 6.8: ROC curves for – (a) within-subjects analysis and (b) LOPO analysis.

LOPO Results

In the between-subjects analysis, our AE model demonstrated an average accuracy of 93.7% and an average

F1-score of 93.9%. The TPR and FPR for reconstruction losses ranging from 2 to 12 are depicted in

Figure 6.9(a). At the established anomaly threshold of 6 – indicated by a vertical line within the figure – the

model achieved an average TPR of 92.4% and an average FPR of 4.7%. Figure 6.9(b) shows the reconstruction

loss distribution (aggregated from 21 models) for the dataset spanning all three sessions, reinforcing 6 as the

optimal threshold. This distribution confirms the model’s efficacy in distinguishing normal from anomalous

instances, validating our choice of threshold. It is important to note that the same threshold was found to

be optimal in both our within-subjects and between-subjects analyses, illustrating the model’s consistent

performance in maximizing TPR and minimizing FPR. Additionally, the ROC curve for this analysis is

reported in Figure 6.8(b).

6.3 Discussion

In this chapter, I demonstrate that users’ hand movement behavior is influenced by the presence of orientation

perception manipulation, even when the manipulation degree is subtle enough to go unnoticed by the users.

Through the development and validation of an AE-based algorithm, I further show that variations in hand
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Figure 6.9: LOPO analysis – (a) presents the TPR and FPR over reconstruction loss values from 0 to 12,
pinpointing the optimal threshold at 6, and (b) depicts the distribution of reconstruction loss across three
session datasets in the LOPO evaluation, showcasing aggregated frequencies from all 21 models.

movement can effectively detect the presence of perception manipulation. Our experimental results indicate

that the behavioral changes induced by perception manipulation are significant across participants, and using

a heuristically determined threshold enabled the classification of manipulated interaction samples with high

accuracy (93.7%). It is important to note that this high accuracy was achieved using only interaction samples

without perception manipulation. In actual scenarios, the system will not know the presence of perception

manipulation, making it impossible to train the detection model with manipulated interaction samples. Our

anomaly detection approach will enable the automatic detection of manipulation based on the user’s behavior,

provided that the user has engaged in a sufficient number of interactions with the VR system.

Here, I discuss the considerations for implementing this approach in a VR system and the limitations of

ManipulaSense.

6.3.1 Applicability of Anomaly Threshold in Online Settings

The method I used to set the anomaly threshold (τ), relying on TPR and FPR, is based on having both

normal and manipulated data available, which is the case in offline experiments. However, in real-world

situations, access to both data types is often impossible.

A promising aspect is that, from our analysis, the anomaly threshold determined was consistent across both

within-subject and LOPO analyses. This consistency across different analyses indicates that the threshold

can effectively differentiate between types of hand movements, even with new users in the LOPO analysis.

Therefore, I believe this threshold can be applied to online settings. However, a larger-scale study is needed

to validate it. If there are significant differences in the anomaly threshold across different people in the

larger-scale study, I may employ adaptive thresholding based on the distribution of the user’s normal data.
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6.3.2 Selection of Velocity and Acceleration as Features for Model Training

In our research, velocity and acceleration profiles of secondary submovements were chosen as key features for

anomaly detection. This decision stems from the observable significant differences in these profiles between

normal and manipulated hand movements during tasks. Unlike higher-order derivatives such as Jerk (the

rate of change of acceleration), velocity and acceleration provided distinguishable patterns that were critical

for effective anomaly detection.

Figure 6.10: Secondary Submovement Kinematic Metrics – (a) Mean Velocity, (b) Mean Acceleration, and (c)
Mean Jerk across data collected over different sessions.

The impact of these kinematic metrics was tested using a one-way repeated-measures ANOVA, with

any significant differences across multiple means further analyzed using Tukey’s HSD post hoc comparisons

(p < 0.05). The analysis did not yield significant distinctions in the Jerk profile, leading to its exclusion

from the model training process. The detailed statistical outcomes supporting this decision are presented in

Figure 6.10, underscoring the rationale behind focusing on velocity and acceleration as primary features for

detecting anomalies in hand movement within virtual environments. Additionally, I want to emphasize not

including PS as a feature since the ANOVA test did not find an effect on kinematic metrics in the case of

manipulations.

6.3.3 Potential Integration with VR Systems

Our research presents a viable approach for the real-time detection of manipulated movements within

VR environments, aimed at bolstering user safety through early identification of potential manipulations.

Although our initial analysis was performed offline, I envision two distinct deployment strategies aligning

with our within-subject and LOPO analyses, each with its accuracy and user convenience trade-offs.

The first strategy involves a preparatory phase where a session is dedicated to collecting hand movement

data from each user upon their first interaction with the VR application. This personalized data collection

aims to fine-tune the anomaly detection model to the user’s specific movement patterns, mirroring the

within-subjects analysis approach. While this method promises higher accuracy (e.g., 97.7%) in identifying
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manipulations by tailoring the detection to individual behaviors, it requires users to undergo an initial data

collection process, potentially delaying their access to the VR environment.

Alternatively, the second strategy bypasses the data collection session, deploying the model based on a

generalized dataset akin to our LOPO analysis. This approach allows users immediate access to the VR

system without the need for preliminary data gathering. However, while convenient, it may not achieve

the same level of personalized accuracy (rather 93.7%) as the first method, given the model’s reliance on a

broader dataset to identify anomalies.

Regardless of the deployment method, upon detecting manipulative behaviors in any third-party VR

application, our system would proactively issue warnings within the VR app store, alerting users to potential

risks before they engage with the content. This mechanism is vital for ensuring users are informed about

the applications they choose to interact with, particularly when it comes to distinguishing between harmless

entertainment apps and those that potentially compromise their personal data or pose a physical threat.

By providing users with preemptive warnings, the system would empower them to make informed decisions

regarding application usage, thereby mitigating the risk of exposure to malicious software.

Our proposed integration of anomaly detection into VR systems offers a strategic choice between person-

alized accuracy and immediate deployment. By considering the trade-offs between these approaches, VR

platforms can adopt a model that best suits their operational requirements and user safety priorities, marking

a significant step forward in enhancing the security and user experience of VR technologies.

6.3.4 Adopting a Semi-Supervised Approach for Personalized Anomaly Detec-

tion

Given the personalized nature of VR experiences, detecting manipulations requires an approach that can

adapt to individual user behaviors. Recognizing that each user has unique hand movement patterns, a tailored

anomaly detection model becomes essential for ensuring robust and personalized protection. The challenge,

however, lies in the difficulty of acquiring manipulated movement data in real time within a VR environment,

as collecting normal hand movement data is comparatively straightforward.

To address this, I have chosen to implement a semi-supervised learning approach. This strategy allows the

model to initially learn from a substantial amount of easily obtainable normal behavior data. Subsequently,

it can incrementally adapt to each new user by integrating a small subset of their data, thereby enhancing

its ability to discern between normal and abnormal (manipulated) movements. This method facilitates the

continuous refinement of the model, ensuring its effectiveness across a diverse user base without the necessity

for explicit examples of manipulated movements.
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The challenge of deploying manipulation detection in the practical scenario is to fine-tune the model for

personalized settings. This is because I cannot differentiate between normal and manipulated movements in

real-world scenarios, making it difficult to fine-tune the model using supervised learning. However, I can

overcome this challenge by leveraging semi-supervised learning, which takes advantage of the abundance of

normal movement data in real-world situations since I can collect normal data by having controlled sessions

where I can ensure that there is no manipulation. Once the model is fine-tuned, the same anomaly detection

threshold can be applied to online settings, as demonstrated by our analysis. Our methodology not only

enhances the accuracy of anomaly detection but also ensures that the VR system remains user-centric,

providing personalized protection against manipulative behaviors.

6.3.5 Limitations and Future Work

• Our study presents a novel approach for detecting manipulation within VR environments, yet it is

not without its limitations. A primary constraint stems from our reliance on analyzing SSs in users’

hand movements. Notably, not every hand movement includes an SS; certain movements conclude

with just the PS, especially when users efficiently reach their target, aligning with the principles of

optimality in movement [230]. In our dataset segmentation, this phenomenon was evident, with a

proportion of movements across sessions S1, S2, and S3, concluding with PM alone. Specifically, 8.2%,

10.12%, and 10.29% of movements in sessions S1, S2, and S3, respectively, lacked SS. Despite this, our

analysis supports the premise that a significant majority (≈ 90%) of hand movements do encompass

SS, suggesting that even with habitual VR use, sufficient data for manipulation detection remains

accessible.

• Another limitation pertains to the duration of our study. The research was conducted over a single

hour-long session, capturing normal and manipulated hand movements within this timeframe. The

impact of extended VR usage on user behavior, potentially spanning multiple days, remains unexplored.

Changes in user behavior over longer periods could influence the study’s outcomes, necessitating further

exploration to understand these dynamics fully.

• Additionally, our investigation focused exclusively on orientation manipulation, specifically at ±10°

levels, without considering other forms of manipulation prevalent in VR settings, such as gain manipu-

lations [217, 220].
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• Some perception manipulation techniques, such as redirected walking [325, 224, 226, 326], do not involve

hand movement. A future study will need to investigate if similar approaches can be used for detecting

different types of perception manipulations.

• The threshold I used to build ManipulaSense proved effective for orientation manipulation detection, its

applicability to other forms of manipulations, such as those involving magnitude changes, might require

additional study to identify a suitable threshold for those scenarios. This aspect highlights the need for

further research to extend the threshold’s utility across various manipulation types in VR environments.



Chapter 7

Summary and Future Work

This thesis focuses on making gestures more usable so that users can adopt gesture interactions for micro-

interactions on an everyday basis. I proposed SequenceSense, which helped the designers build more conflict-

free user gestures. Essentially, this tool helps general users indirectly since the designers are responsible

for gesture design. If the designed gestures are not good enough, the general users will quit using the

system in the long run. Therefore, ensuring an efficient gesture design process is important so that the

designers can easily design conflict-free gestures with minimal effort. During the gesture design process, the

gesture designers consider the gestures to be comfortable, memorable, and socially acceptable. However,

they struggle to make those gestures free of conflict. Therefore, they often develop complex gesture sets that

might be uncomfortable to perform; moreover, general users find those gestures hard to remember. This is

where SequenceSense would benefit the designers in the process of designing more conflict-free gestures by

considering other properties of gestures, such as comfortability, memorability, and social acceptability. In

a user study with gesture designers, I found that using SequenceSense, the designers were able to design

easy-to-remember, shorter-length gestures that are also conflict-free. In this way, SequenceSense covers a

broader range of good gesture properties, as shown in Figure 7.1.

On the other hand, the UnifiedSense system directly helps general users reuse their gestures even when

the original gesture-sensing device is missing. It facilitates users’ reuse of their muscle memory by unifying

interactions across devices. While developing UnifiedSense, I integrated a gesture detector that rejects false

activations to ensure the gestures are usable in the wild. In this way, UnifiedSense contributes to the design

of conflict-free gestures. Moreover, the gesture sets I targeted for implementing UnifiedSense are chosen from

existing gestures that people use these days. They are easy to perform, remember, and socially acceptable.

How UnifiedSense contributes to achieving good gesture properties for usable gesture interactions is shown in

108
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Figure 7.1: Revisiting the properties of a Good Gesture by illustrating how each of the properties is connected
to this thesis.

Figure 7.1.

Finally, I introduced gesture integrity as a new property in the gesture design process to facilitate users’

reliable and consistent gestural interactions. To ensure gesture integrity during continuous hand movements

in VR, I proposed ManipulaSense, which will eventually help users get the status of their performed gestures.

This new property inclusion is also shown in Figure 7.1. This new property is not only applicable to VR

situations but also to situations where intruders inject IMU signals to change the outcome of the performed

gestures [327, 328]. However, ensuring the integrity of performed gestures to avoid IMU signal injections is

out of the scope of this research.

Although these three components operate independently, they can be interconnected to enhance usable

gesture interactions. For instance, SequenceSense could detect gestures by sequencing atomic actions, which

could then be integrated with UnifiedSense to make gestures more adaptable for general users. Since gestures

designed by designers may not always suit general users’ preferences, combining these modules could allow

users to customize gestures, thereby increasing gesture adaptability. Lastly, I can incorporate a model akin

to ManipulaSense to safeguard gesture integrity during real-world usage and examine potential IMU signal

injections, which may warrant further investigation.

Here, I summarize the solutions and the findings from the experiments. This chapter concludes by

providing directions for future research.
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7.1 Summary

7.1.1 Designing Conflict-Free Body-Based Gestures

• In Chapter 3, I presented SequenceSense, a framework developed to help designers efficiently build a

robust body-based gesture set using a sequence-based gesture recognizer and an automatic conflict

analyzer. Instead of training a gesture recognizer using raw features, SequenceSense detects atomic

actions in a gesture and uses their sequence to define and recognize gestures. This allows the gesture

designer to easily modify the gestures by slightly modifying atomic actions in the gesture sequence and

to immediately check the recognition performance and potential false activations without re-collecting

the gesture samples or conducting experiments. I believe that this will allow gesture designers to focus

more on the usability of gestures and be less concerned about their robustness.

• I evaluated the feasibility of our system with foot gestures, which are shown to be preferred over other

body-based gestures in scenarios where users cannot use their hands [9]. I adopted 17 foot gestures

from prior work on body-based and foot gestures [25, 9] that focused on usability.

• In our evaluation with 12 participants, SequenceSense showed higher gesture classification accuracy

(95%) to that of the machine-learning-based gesture recognizer that uses statistical features (90%),

while keeping false positive rates during daily activities to be approximately 58.5%, which is lower than

that of ML-based recognizer (70%). The false-positive rate of 58.5% would cause approximately 59 false

activations per hour in our dataset collected from two days of daily activities, which is still high. I used

the gesture conflict analysis provided by SequenceSense to identify gestures that are similar to daily

activities and slightly modified them to avoid conflicts. The modified gestures could reduce the average

number of false activations per hour to 2.3, which is more than 96% lower than the original gestures.

• I conducted a user study to validate our tool in effectively designing gestures and compare its effectiveness

over MAGIC [1]. I measured the quality of the designed gestures, the efficiency of designing gestures,

and the overall user experience. The results from our user study showed that using SequenceSense,

participants were able to design usable gestures with shorter gesture sequences, requiring approximately

half of the time compared to MAGIC. Moreover, all the participants in our study preferred using

SequenceSense over MAGIC to design gestures as gesture design with SequenceSense requires less effort

and especially does not require participants to re-collect modified gesture samples when conflicts occur.
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• Finally, SequenceSense is a new gesture design tool that uses the sequence of atomic actions and an

instant gesture performance analysis to help gesture designers efficiently design, test, and modify usable

foot-based gestures by minimizing the number of user studies.

7.1.2 Making Gestures Compatibility Across Devices

• To make gestures reusable and compatible across devices, I presented UnifiedSense in Chapter 4.

UnifiedSense is a system that utilizes the input gesture recognized on a wearable device (primary device)

and the sensor data from all other connected wearable devices (secondary devices) to train a unified

gesture recognition model to enable interactions for the primary device even when the device is absent.

Using the over-the-shoulder training method, the UnifiedSense system trains the model by itself by

collecting training samples as users perform gestures on wearable devices. I assume that a wearable

device can reliably recognize input gestures designed for it (e.g., touch gestures on a smartwatch), and

the recognition result can be used for labeling a gesture training sample. As the user continues using

gestures on their wearable devices, the unified gesture recognizer will be trained automatically over

time.

• I verified the UnifiedSense system by conducting a user study with 15 participants. UnifiedSense

collected sensor data from four wearable devices (headphones, smartwatch, smart ring, and smart

glasses), and the participants performed five touch gestures (tap and four directional swipes) on the

devices. The experiment results showed that, if a user performs gestures for the first time, the system

can only detect gestures at an average accuracy of 81.01% using a model trained by other users wearing

the same configuration of devices. However, if the new user continues to use the gestures, after the

gesture set was used 20 times by themselves, the recognition accuracy increases to 95.2%.

• To address the usage of the UnifiedSense system in the wild by alleviating the challenge of eliminating

false gesture activations associated with natural body movements, I implemented a binary classifier to

differentiate intended gestures and natural body movements. I collected 20 hours of regular activity

data from 12 users. When tested with artificially generated real-time data that include both natural

movements and intentional gestures, UnifiedSense could recognize the gestures at an average accuracy

of 90.9% with a gesture recognizer trained with 22 samples per gesture.

• I developed an Android app that shows the readiness of the model (i.e., the likelihood of properly

recognizing gestures) so that the user can know if they can start using the gestures without the primary

device.
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• Finally, UnifiedSense is a novel mechanism to train the gesture recognition model using redundant

sensor data collected from secondary devices while users perform gestures on primary devices using the

over-the-shoulder training method.

7.1.3 Investigation of Hand-Movements Manipulation

• In this thesis, I was more interested in building a method that would ensure gesture integrity by providing

feedback to the users on their natural hand movements. However, before deep-diving into building the

solution, I first investigated the impacts of manipulations by carefully examining the kinematic metrics

of users’ hand movement. Specifically, I explored the impact of perception manipulation in VR on the

relationship between motor learning and proprioception, particularly in adapting to kinematic changes,

with a focus on the implications for hand movement and proprioception [230].

• I investigated the effect of two commonly used perception manipulation techniques for hand interaction,

orientation, and magnitude manipulation techniques, on the performance and movement behavior

during reaching tasks in Chapter 5. I conducted two user studies to separately investigate the effect of

orientation and magnitude manipulation techniques in VR.

• For both cases, our results revealed that the task completion time remains consistent in the presence

of manipulations. However, I observed that the movement behavior changed after participants were

exposed to perception manipulations, and the behavior difference was more prominent when the level

of manipulation was higher.

• The most significant difference in the movement behavior was the quality of proprioceptive movement,

also known as ballistic movement. The distance to the target after the ballistic movement was

significantly higher with the presence of perception manipulation, indicating the participants had to

make more corrective movements to properly reach the target.

• While participants used faster corrective movement to make up for the error in the ballistic movement,

which resulted in a similar overall task completion time, it may require additional effort and coordination

from the users.

• This increased effort may lead to higher cognitive load, as individuals need to adjust their motor control

strategy in real time to compensate for the manipulations. Higher cognitive load can potentially interfere

with the execution of the movement and may negatively impact overall motor performance [230].

• Finally, I performed an in-depth investigation of the effect of orientation and magnitude manipulation

techniques on the user’s hand movement behavior in reaching tasks in VR through two user studies.
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7.1.4 Detecting Hand-Movements Manipulation

• Since hand manipulation risks degrading task performance and, if maliciously applied, poses a threat to

user safety, I advocate for a user’s prerogative to be informed of any such potential manipulations before

application usage. To enhance the integrity of hand movements in VR, I introduced ManipulaSense in

Chapter 3. ManipulaSense is an Autoencoder -based anomaly detection technique that leverages users’

inherent hand movements to identify perception manipulation.

• I trained ManipulaSense on regular (i.e., non-manipulated) hand movement patterns and employed a

stochastic thresholding approach for anomaly detection.

• I validated ManipulaSense through a technical evaluation involving 21 participants engaged in reaching

tasks under manipulated and non-manipulated scenarios.

• The results demonstrated a high accuracy of perception manipulation detection at 93.7%, with an

F1-score of 93.9%.

• To our knowledge, this is the first study to specifically address the detection of perception manipulations

in VR, establishing a foundational contribution to the field.

• Finally, I made the dataset used to build ManipulaSense public to facilitate future research, addressing

the absence of publicly available datasets for perception manipulation research.

7.2 Directions for Future Research

Research is a continuous endeavor, offering ample scope for further improvements and experimentation. The

solutions proposed in this dissertation are efficient and effective, yet they possess limitations that carve

avenues for future research. Below, I outline potential directions for future research endeavors.

• Cross-Modal Sensor Fusion for Enhanced Gesture Recognition: I envision developing a

comprehensive sensor fusion model by leveraging the insights from UnifiedSense’s use of IMUs and

exploring the integration of additional sensors across various wearables. This model would aim to

enhance gesture recognition across a broader spectrum of body movements, addressing SequenceSense’s

challenges in segmenting gestures into atomic actions without relying on specific behaviors like foot-

ground contact. Incorporating diverse sensor inputs could facilitate more accurate segmentation and

recognition of subtle gestures beyond foot movements.



Summary and Future Work 114

• Unified Gesture Vocabulary Across Devices and Environments: I envision developing a unified

gesture vocabulary that can be recognized consistently across different devices and settings, including

VR. This involves creating a framework that not only recognizes gestures made with different parts of

the body but also understands the context of these gestures within various environments, potentially

enhancing user experience in both physical and virtual settings.

• Gesture Usability and Adaptation: Building on the usability prediction challenges identified in

SequenceSense, future research should focus on developing adaptive models that can predict the ease

of use and potential fatigue associated with compound gestures. This involves creating a dynamic

model that considers the variability in gesture execution (e.g., changes in user behavior over time or in

different contexts, as highlighted by ManipulaSense). Such a model would be invaluable in tailoring

gesture-based interfaces to individual user needs, enhancing long-term usability and comfort.

• Composite and Contextual Gesture Recognition: Addressing the composite gesture recognition

challenges from UnifiedSense and the specific manipulation detection from ManipulaSense, future work

should investigate advanced recognition techniques that can accurately identify complex gestures and

manipulations. This includes exploring hierarchical and sequence-based models that can understand

the context and sequence of gestures, potentially enabling more sophisticated interaction paradigms in

both physical and virtual environments.

• Cross-Device and Cross-Environment Gesture Interaction: Finally, I envision a cross-device,

cross-environment gesture interaction ecosystem that seamlessly integrates the strengths of Sequence-

Sense, UnifiedSense, and ManipulaSense. This ecosystem would allow for a fluid interaction experience,

where gestures initiated on one device could be continued or complemented by gestures on another

across both physical and virtual spaces. Investigating the design of such an ecosystem requires a deep

understanding of the interplay between gesture recognition technologies, user interface design, and user

experience optimization.

• Enhancing Gesture Recognition Accuracy through UnifiedSense: A promising avenue for future

research lies in the further development and application of the UnifiedSense framework to address and

correct gesture mis-detections. This endeavor involves harnessing sensor data from secondary devices to

improve the accuracy of primary gesture recognition systems, which often exhibit limitations in reliably

detecting user interactions. The observed discrepancies, such as the mis-detection of a wipe-right gesture

as a tap, underscore the potential for UnifiedSense to significantly enhance user experience by ensuring
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that gestures are interpreted correctly, even in the presence of sensing inaccuracies by the primary

device.

Future studies should focus on refining the mechanisms through which UnifiedSense leverages secondary

sensor inputs to compensate for mis-detections. This includes exploring adaptive algorithms that can

dynamically interpret sensor data from a range of devices to provide a more accurate and reliable

recognition of user gestures. Moreover, investigating the integration of machine learning models capable

of understanding the context and nuances of different gestures could further improve the robustness of

gesture recognition systems. The potential impact of this research extends beyond merely correcting

mis-detections; it promises to enhance the way we interact with technology by creating a more intuitive

and error-resilient interface. By enhancing the fidelity of gesture recognition, we can significantly reduce

user frustration and increase satisfaction, paving the way for more seamless and natural human-computer

interactions.
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7.3 Appendix

7.3.1 Accepted Publications

1. UnifiedSense: Enabling Without-Device Gesture Interactions Using Over-the-shoulder Training Between

Redundant Wearable Sensors

Md Aashikur Rahman Azim, Adil Rahman, and Seongkook Heo

PACM, MobileHCI, Athens, Greece, 2023

2. SequenceSense: A Tool for Designing Usable Foot-Based Gestures Using a Sequence-Based Gesture

Recognizer

Md Aashikur Rahman Azim, Adil Rahman, and Seongkook Heo

International Journal of Human-Computer Studies, Elsevier, 2023

3. Take My Hand: Automated Hand-Based Spatial Guidance for the Visually Impaired

Adil Rahman, Md Aashikur Rahman Azim, and Seongkook Heo

In Proc. of CHI, ACM, Hamburg, Germany, 2023

Best Paper Award

4. Over-The-Shoulder Training Between Redundant Wearable Sensors for Unified Gesture Interactions

Md Aashikur Rahman Azim, Adil Rahman, and Seongkook Heo

In Proc. of UIST Adjunct, Oregon, 2022

5. FluidMeet: Enabling Frictionless Transitions Between In-Group, Between-Group, and Private Conver-

sations During Virtual Breakout Meetings.

Erzhen Hu, Md Aashikur Rahman Azim, and Seongkook Heo

In Proc. of CHI, ACM, Louisiana, 2022

7.3.2 Under Review

1. Your Hands Can Tell: Detecting Perception Manipulation in VR Using Hand Movement

Md Aashikur Rahman Azim, Zihao Su, and Seongkook Heo

ISS, 2024
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2. “It Feels Like I am Invited to Communicate”: Mediating Ad-Hoc Bystander-VR User Interruptions

Through Proactive Proxies

Adil Rahman*, Wen Ying*, Md Aashikur Rahman Azim*, Michelle Annett, and Seongkook Heo

DIS, 2024 (*equal contribution)

3. ThingMoji: Object-based Emojis Captured from Live Stream to Support In-Stream Visual Communica-

tion

Erzhen Hu, Qian Wan, Changkong Zhou, Md Aashikur Rahman Azim, PiaoHong Wang, Xingyi

Hu, Yuhan Zeng, Zhicong Lu, and Seongkook Heo

CSCW, 2024

4. Investigating the Impacts of Perception Manipulation in VR on Proprioceptive Movement during

Reaching Task

Md Aashikur Rahman Azim, Zihao Su, Peiyu Zhang, and Seongkook Heo

(Under Preparation)
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