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A 2-Dimensional mm-scale Network-on-Textiles (kNOTs) for Wearable Computing with Direct Die-to-

Yarn Integration of 0.6mm x 2.15mm SoC and bySPI Chiplets  

This paper proposes a scalable, 2-dimensional Network-on-Textiles (kNOT) comprised of systems-on-chip 

(SoCs) and “bySPI” networking chiplets that are jointly capable of supporting heterogeneous programming, 

multiple sensing modalities, and a distributed memory system. Emerging e-textiles must retain the flexibility 

and comfort of their host garment to be viable in wearable applications for healthcare, virtual reality, and 

sports [1]-[4]. Prior integration efforts have demonstrated textile computing by weaving flexible filament 

circuits [5]-[7], embroidering conductive yarns [8], and fabricating electronic fibers [9]-[10]. Still, these works 

suffer from a combination of bulky, rigid components, high cost, or 1-dimensionality (Fig. 1). To preserve the 

textile’s look and feel, SoCs for fabric integration must also be highly miniaturized, feature minimal area-

hungry IO interfaces, be easily programmable, and be fully integrable. The e-textile system in [11] integrated 

a health sensing chip onto a planar fashionable circuit board, yet the board (25mm x 25mm) is 40x larger 

than the chip itself. The System-in-Fiber from [12] is fully autonomous but has many IO pads, is limited to 1D 

networks, and requires an interposer (4.7mm x 3.7mm) that is 3.8x larger than the die. Most recently, a 

battery-less e-textile system in [13] integrates cm-scale harvesting tiles and an inductor onto a shirt, but it 

lacks an integrated SoC. Many wearable applications also demand substantial on-garment storage, yet large 

memories are unsuited for comfortable textile integration due to their sizable footprint. Our proposed kNOT 

solution addresses this by replacing monolithic memory units with a distributed set of smaller memories. 

However, networking these chiplets via existing bus standards incurs significant area and power penalties 

[14]. Existing Body Area Networks highlight the potential of multi-chip solutions, but they lack seamless textile 

integration [15-17]. Hence, to truly realize a fabric computing system, we propose a board-and interposer-

free 2D kNOT built with the direct-die attachment of two miniaturized chiplets: 1) an SoC with an array of 

reconfigurable pads, fault-tolerant global bootup, SoC-to-SoC clock synchronization, and dynamic network 

configuration; and 2) a bySPI chiplet which is a COTS-compatible, reduced-wire enhancement of the bypass-
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SPI (bySPI) protocol [14] capable of connecting to any number of receivers (RXs) using three wires. The 

chiplets are directly interconnected to braided composite yarns, which are comprised of para-aramid 

structural yarns and insulated 25µm-diameter conductors [26]. For each pad, a yarn is embroidered into a 

cotton substrate and its insulation is selectively ablated using a laser. Solder paste is deposited, the chiplet 

is placed to align its pads with the yarns, and the solder is reflowed. The interconnections are then 

encapsulated to provide mechanical and environmental protection. This textile-chiplet interconnection 

approach is compatible with automated high-throughput 2.5D electronics manufacturing methods, enabling 

the production of textile-integrated systems at scale (Fig. 1). 

Fig. 2 shows a system diagram of the proposed kNOT, where SoCs are linked with other SoCs, sensors, and 

memories via bySPI chiplets in a 2D tree-like network that can be distributed across a garment. To provide 

a scalable and distributed approach towards wearable computing, our kNOT system utilizes a miniaturized 

SoC with a Cortex M0+ core and 32kB SRAM (Fig. 2), optimized for kNOTs using: 1) a linear array of 

reconfigurable pads spaced at a pitch of 180um (Fig.7), which dominate the chiplet size. To meet IO 

requirements despite the limited area for pads, the pads are internally muxed to different signals at runtime. 

2) a custom bySPI-compatible receiver (RX) that enables SoCs to boot up globally from the upstream 

network, reducing the number of off-chip components (i.e., NVMs) required in the network compared to 

previous SoCs [18]-[22]. Using this feature, different SoCs can be programmed with either the same or 

different programs via bySPI protocol. 3) an on-chip clock architecture with tunable fast and slow clock 

sources that can be synchronized across SoCs using a high-precision clock synchronization algorithm. The 

bySPI architecture (Fig. 2) supports kNOT routing with: 1) A one-to-many 3-wire SPI protocol that allows the 

transmitter(TX) to bypass signals to the intended RX, 2) A group access feature that allows for simultaneous 

access to multiple chiplets within a downstream group, 3) A Chip Select (CS)-free soft reset to address the 

lack of a conventional CS signal and a timeout state to address dropped clock edges (Fig.2, bottom left), 4) 

a CS generator to interface with COTS modules using 4-wire SPI. Both chiplets communicate at 1.8V, with 
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the digital core running at 1.1V generated by a fully-on-chip low-dropout regulator (LDO) (Fig. 3) comprising 

a PMOS pass transistor, 300mV Vref, and a 1:4 feedback network of 4 pseudo resistors to save area. An RC 

circuit is added for stability compensation, and the on-chip output capacitor is a well-biased MOS [23] 

+MOM+MIM design to achieve a high capacitor density of 9.95fF/μm2(simulated value) over existing designs 

[24]. 

In our kNOT system, both chiplets can interface with COTS sensor and memory nodes by reconfiguring their 

pads to use 4-wire SPI. The upstream network can be any preprogrammed SoC or TX capable of sending 

SPI signals and setting up the network. Fig. 3 explains the tailored algorithms we developed for this kNOT 

system. We propose a global bootup process based on asynchronous handshaking between upstream 

chiplets and SoCs, where the TX reads back and validates the written program to correct any data corruption 

in the yarns. The handshake and timeout features collectively ensure that the SoCs in a kNOT are 

programmed reliably. We introduce a clock and timestamp synchronization protocol [25], depicted in Fig. 3 

(right), that surpasses traditional schemes requiring a crystal oscillator (XO) for each chip in a network. 

Timestamps are appended to data packets before storage to ensure seamless reconstruction during read-

out. Addressing the impracticality of using XOs for each SoC, this approach employs a periodic reference 

timestamp sent by the upstream network. Downstream SoCs compare this reference to a locally generated 

value from a timer peripheral, enabling precise tuning of on-chip clocks based on the difference in timestamp 

values. The custom bySPI chiplet uses a SPI-like protocol with 8-bit commands to identify the access target 

in the downstream network and reduce pad count vs. conventional SPI. By sending bypass instructions to 

set the output direction of the bySPI chiplet, the TX can build a channel in the kNOT system to communicate 

with the target. The Function and Direction Controller block (Fig. 2) decides whether to enter the "selected" 

or "unselected" state based on instructions received from the TX. To enter the “unselected” state, bySPI must 

receive a bypass command, after which it transmits signals to the downstream chip. To enter the “selected” 

state from the “unselected” state, bySPI must receive a reset path command followed by an access 
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command, enabling it to respond to future read and write commands. The soft-reset instruction resets the 

bySPI state machine upon receiving at least fifty 1's followed by a 0, allowing communication to be recovered 

following a partial signal loss.  

The SoC and bySPI chiplets are fabricated in 65nm CMOS. Fig. 4(top) shows a demo kNOT system of SoCs 

(S1-S3) and bySPI chiplets (b1-b3), with a COTS sensor (BME280) and memory (MX25U12843G). Once S1 

is programmed, it sets up the bySPI link b1-b2 and performs read and write operations with the sensor and 

memory. The measured waveform in Fig. 4 shows the b1-b3 bySPI tree being configured to bypass signals 

in the desired direction and transmit to multiple leaf nodes. While programming S1, we intentionally send 

some corrupted data packets to validate the fault-tolerant bootup algorithm. The read and write operation 

with COTS components is achieved using the protocol conversion feature of b2, and Fig. 4 (bottom right) 

shows in-textile measured waveforms. Fig. 5 shows the measured electrical performance of the LDO and 

measured waveforms for example operations from the bySPI protocol. At a frequency of 10 MHz, the SoC 

consumes 3.3318 mW while the bySPI chip consumes 1.9296 mW.  The LDO consumes a quiescent current 

of 9.8 μA, and its output voltage is 1.125 V when the load current is 0 A. The LDO has a voltage variation 

(ΔV) of 98 mV when the load current (ΔI) changes by 10 mA in 40 μs.  

Fig.6 compares the proposed kNOT solution with state-of-the-art textile integrated systems and SoCs. The 

kNOT system excels in textile integration while offering capabilities for processing, networking, and data 

collection using the bySPI and SoC chiplets. Fig 7. shows the die micrograph of the SoC and bySPI chiplets 

and a comparison with miniaturized SoCs. The seamless integration of yarns, chiplets, and protocols 

positions the kNOT as an integratable, scalable choice for creating a distributed garment-wide, 2D network 

of interconnected chiplets. 

[Placeholder for acknowledgements] 
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Fig. 3:  

Fig. 5:  Fig. 6:  

Fig. 4:  

Fig. 2:  Fig. 1:  The proposed Network-on-Textiles (kNOT) with direct-die attached SoC and 
bySPI chiplets (top); Comparison of the State-of-the-art Textile Integrated 
Systems(bottom left); Integration of a chiplet in textiles (bottom right)

System Diagram of kNOT demonstrating SoC and bySPI chiplets linked 
together(top); Architecture of the proposed SoC and bySPI chiplet(bottom 
left);bySPI soft-reset behavior independent of CS signal (bottom right)

Proposed 3-wire bySPI Protocol (top left); Global Bootup Algorithm (top 
middle); Architecture of Fully-Integrated LDO with high density cap (bottom 
left); Clock and Timestamp synchronization (bottom right)

Test setup for kNOT (top); measured waveforms for SoC bootup and bySPI 
link configuration (left), for program execution (top), and in-textile bySPI 
(bottom).

Measured electrical performance for the on-chip LDO and measured 
waveforms for example operations from the bySPI protocol.

Comparison of kNOT with prior state-of-the-art textile integrated systems. 
kNOT scales to 2D and has the smallest integratable processing modules.
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Fig. 7:  Fig. S1:   

Fig. S2:  Example of in-textile integrated testing setup for measuring communication 
using textile-attached bySPI die. 

Fig. S3:  

Testing setup for chiplet characterization using packaged dies on PCBs for 
rapid network testing of different SoC and bySPI configurations.

Testing setup for chiplet characterization using packaged dies on PCBs for 
rapid network testing of different SoC and bySPI configurations.
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