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Abstract

The largest portion of a home’s energy consumption is attributed to its Heating, Ventilation and Cooling

system(HVAC). Since the early 1900s, programmable thermostats have been studied as a potential tool

to achieve energy savings in the home. However, studies have shown that conventional programmable

thermostats are not used to their full potential due to several factors- difficult to use interfaces, lack of

knowledge of working of HVACs and fading user interaction with the thermostats over time. To overcome this,

‘Smart’ thermostats detect the occupancy trends of a home and auto-generate schedules; thus eliminating

the need for users to program their thermostats. Studies indicate that feedback of energy consumption

has the potential to keep homeowners engaged with the energy usage in their homes and motivates them

to take action to reduce energy consumption. This thesis presents ThermoCoach- An occupancy-based

self-programming thermostat with eco-feedback. ThermoCoach uses occupancy sensors to detect occupancy

patterns of a home and generates customized recommendations of thermostat schedules for a home. Schedule

recommendations are provided to users through an online interface. ThermoCoach is evaluated against

conventional programmable thermostats and the Nest Learning thermostat. For this pilot study, sensing

systems were installed in thirty nine homes for a period of three months. ThermoCoach schedules reduced

energy cost by 5% while Nest schedules increased costs by 7% when compared to programmable thermostats.
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Chapter 1

Introduction

1.1 The Importance of Energy Use

Energy, in its various forms, plays an important role in our lives today. Energy is used to heat/cool our

homes and offices, power our devices and machines and fuel our cars. Energy is also consumed majorly by

manufacturing and other industries and also for transportation of goods. In our day to day lives, we take the

availability of energy for granted and we are not always conscious of the impacts of wasteful energy use. In

2011, in the United States, total energy use per person (or per capita consumption) was 312 million British

thermal units (Btu) [1]. For bituminous coal, this translates to approximately between 24,000-50,000 lbs of

coal per person(or per capita consumption).

Over the years, energy consumption has increased faster than energy production. Main sources of energy

include coal, natural gas and petroleum(Oil). Increasing demand on these resources is increasing the pressure

to produce energy from these depleting resources, to meet tomorrow’s needs. Significant amount of energy is

wasted annually, costing homeowners and businesses financially. Hence energy conservation is vital.

Excessive burning of fossil fuels has lead to carbon pollution. Large concentrations of greenhouse gases

have caused global warming. Global warming is causing glaciers to melt and sea levels to rise. Weather

patterns have been altered and climate change is also having an effect on wildlife. Climate change is affecting

agriculture and other industries. It has impacts on human health and more countries are at risk of water

shortages as temperatures rise. The primary sources of greenhouse gases is the burning of fossil fuels for

energy (3/4th’s of total emissions) [2]. 32% of greenhouse emissions are from electricity production. In 2013,

39% of electricity was generated from Coal and 27% from Natural gas in the US [1]. Aggressive extraction of

natural resources is causing deforestation which increases carbon dioxide percentages. As the planet is getting

1



Chapter 1 Introduction 2

warmer, temperatures are on the rise throughout the globe [3]. Erratic weather, hurricanes, droughts are

side-effects of climate change and increasing consumption of energy are putting a strain on energy resources

around the world.

Figure 1.1: Carbon Dioxide Emissions by Sector

The Stern Review [4] predicts the global gross domestic product (GDP) to fall several percent due to

climate change. Increasing energy demands have caused rising conflicts of resources. If domestic production

is insufficient to satisfy energy needs of a country, it depends on foreign reserves. Out of the total energy

needs, 84% of the US needs were satisfied by domestic sources [1](2013).

In order to address these issues, efforts are being made to address climate change and energy consumption.

Renewable resources are being explored as alternative sources of energy. Technology is being improved to

make appliances, infrastructure and vehicles more energy efficient than before. Several policies are in effect

to curb greenhouse gas emissions. People are being made aware of the problems associated with excessive

energy consumption. How energy is consumed impacts the environment and efforts are being made to reduce

energy consumption.

1.2 Heating, Ventilation and Cooling(HVAC) Energy Usage

In 2010, the United States total energy consumption was about 19% of world total primary energy consumption.

In 2011, 18% of the total energy was consumed in the world by the residential buildings while 12% of the

total energy was consumed by commercial buildings, as shown in Figure 1.2. In the US, 40% of total energy
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consumption was consumed in residential and commercial buildings(2013) [5]. Homes are major source of

energy usage. 49% of homes use natural gas and 15-20% use coal [6]. Out of the total global greenhouse

gas emissions, 8% are from residential and commercial buildings. Homes and offices are good candidates for

employing energy saving habits and mechanisms, at an individual level.

Figure 1.2: World Energy Consumption by Sector

In 2013, 11% of the US’s energy consumption was from cooling residential and commercial buildings.

Heating and Cooling homes consumes a significant amount of energy. 45% of a home’s energy usage is

attributed to Heating and Cooling and 6% to cooling alone [7]. Currently 2/3rd of the homes in the US have

air conditioning which translates to about 85 million homes. Households have spent more than $11 billion

annually on powering their Heating,Ventilation and Cooling (HVAC) systems. Homeowners pay anywhere

between $700 - $2500 on their electricity bill [6] and average electrical prices in the US are on the rise,

increasing 3.2% between 2013 and 2014 [7].

Significant amounts of energy can be conserved by reducing the amount of energy spent on heating and

cooling spaces. Billions of dollars can be saved. Energy can be conserved in buildings and homes in a number

of ways. Good design, better insulation and energy efficient equipment will reduce a home or building’s

energy needs. One of the cost effective ways to reduce the impact of Heating, Ventilation and Cooling

(HVAC) systems is through the use of Programmable thermostats. Programmable thermostats have been

around since the 1900s. The Residential Customer Characteristics Survey 2009 reported that programmable
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thermostats were installed in approximately 51% of households [8]. Programmable thermostats allow users to

set temperature schedules to heat or cool their homes at different temperatures through the day.Programmable

thermostats have been long thought to be a major source of energy savings in homes and studies have shown

that annual energy usage in a home can be reduced by 10% to 30% [7].

Programmable thermostats however require users to program them manually. Studies have shown that

occupants often do not have a good understanding of their daily patterns [9] and are thus unable to program

their thermostats. Most people cannot remember the exact times that they typically wake up or leave the

house and identifying occupancy patterns for multi-person homes is more difficult. Over the years, several

features have been added to programmable thermostats. However, the complex user interfaces have made the

thermostats difficult to use and often the programming feature is not used [10]. Often people lack motivation

to adjust settings on their thermostats and keep track of energy usage. This is especially the case if the

thermostat is installed in a room in the home that is not used. Most occupants do not bother changing

the thermostat settings when they change their schedules, either temporarily or permanently. This leads

to discomfort and users generally turn off the programming feature and begin to operate it manually. In

addition to design issues, there are additional issues hindering potential energy savings, including lack of

understanding of how HVAC systems work [10].

To overcome some of the challenges in the adoption and continual use of programmable thermostats,

several studies have made a few common recommendations. The recommendations include better user

interfaces, tutorials and guidelines on usage, enhanced user support, feedback on energy consumption and

smart thermostats that can program themselves [10] [11]. Smart thermostats aim to gather information

about a home’s daily lifestyle and auto generate setpoint schedules. Ideally, these thermostats are designed

to be able to generate tailored setpoint schedules for a home. Thus these system are designed to change the

temperature when the home is unoccupied, without an input from homeowners. However, any defects in such

systems would cause occupants to be uncomfortable and frustrated with the system and ultimately may lead

to discontinuation of use.

1.3 Overview of Proposed Approach

This thesis presents ThermoCoach- a pilot study on the effects of occupancy-based thermostat schedule

recommendations on energy cost and user comfort levels, in homes. ThermoCoach uses occupancy sensors

such as motion sensors to detect and infer occupancy patterns of a home. The learned trends are then used to

generate schedules that are presented to users through an online interface. Three schedules were presented to

users with varying energy costs and comfort levels, in addition to feedback on energy consumption. The claim
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is that eco-feedback in the form occupancy-based schedule recommendations is more effective in keeping users

involved in their home’s energy consumption, leading to more energy savings as compared to no feedback

or only energy-based eco-feedback. 39 volunteer homes were recruited for the study and custom sensors

were installed in each of them. Data was collected for about twelve weeks. In this thesis, ThermoCoach is

evaluated against a conventional programmable thermostat and the Nest Learning Thermostat- a state of the

art, learning thermostat.



Chapter 2

Background & Related Work

Several programmable thermostats have been in the market since the early 1900s. The basic approach is to

program a comfortable temperature when people are home and a more energy efficient temperature when

they are away or asleep. Studies have shown that more than 50% of energy consumption in a home is by the

HVAC, and programmable thermostats have the ability to reduce usage and costs by 20-30% [7]. In 2009

more than 33 million of U.S. households, had a programmable thermostat. Survey results conducted by the

Department of Energy suggest that 14.5 million of these households do not currently use their thermostat for

daytime setbacks and 11.6 million do not use nighttime setbacks [1] [12].

Programmable thermostats require users to set various parameters. Users are burdened with having to set

their thermostats based on their schedules. Most people cannot remember the exact times that they wake up

or leave the house over time and identifying occupancy patterns for multi-person homes is more difficult. A

study by Krumm and Brush [9] show that people are not good at predicting their daily patterns. Participants

were asked to carry a GPS device with them. Any GPS point within 100 meters of a participant’s home was

considered to be part of the participant’s home. Participants of the study were asked to fill out a schedule of

when they thought they were at home, away from home or sleeping. GPS data was used as ground truth.

The authors found that their participants predicted that they would be home when they were actually away

about 68% of the times. They concluded that most participants were good at predicting their bedtime but

were poor at predicting home/away patterns.

Some households do not bother changing the thermostat settings when they change their schedules,

either temporarily or permanently. This leads to discomfort and the users generally turn off the preset

schedules and begin to operate it manually. Studies show that 20-30% of households that have programmable

thermostats do not use setback temperatures when sleeping or away from home [13] [10]. Over time, people

6
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stop interacting with their thermostat. They are less interested in updating the schedules. User expectations

and understanding of these devices do not line up with actual functioning of them, leaving users frustrated

and ultimately leads to discontinuation of use of these devices. Studies show that a large number of people

often do not know how to program their thermostats. [14] [13]

In the past few years, WiFi connected thermostats have come into the market. These allow users to

remotely program and control their thermostat. This feature has been found to be useful to users but

with time, homeowners lose interest. [11] Previous research has shown that very few people program their

thermostat and the most common reason is that they find it difficult to do so because of poorly designed user

interfaces. Only 50% of programmable thermostats are actually programmed to adjust temperatures at night

or unoccupied times during the day, and thus they do not save much energy [10] [12]. Thus, programmable

thermostats are not being used to their full potential.

This chapter introduces some terms associated with programmable thermostats and their schedules and

the current state of programmable thermostats.

2.1 Background

Programmable thermostats allow users to set temperature schedules. In addition to setting the temperature,

programmable thermostats today have complex user interfaces that provide a number of features, for example,

In addition to being able to control their HVAC on some thermostats, homeowners can also view their past

energy usage, view their home’s past temperature settings, humidity levels and so on.

2.1.1 Terminology

A setpoint is a target temperature value an HVAC system should reach. With a programmable thermostat, a

setpoint schedule can be set. Setpoints can be set at different times of the day to achieve different temperatures

during the day. Thus a thermostat schedule consists of one or more setpoints scheduled to take effect at

specific points.

Programmable thermostats can be used to set temperature schedules. A different schedule can be set for

every day of the week. Alternatively, different schedules can be set for weekdays and weekends.

When a cooling system reaches a setpoint value, it cycles off. Temperature setbacks help save cost by

reducing how often the heating/cooling system runs. A setback allows the home to slowly drift into a

higher(during warm seasons) temperature or lower(during cold seasons) temperature. Setbacks can be set

when the occupants of a home are away or when they are asleep. When occupants are away or asleep, a more

energy efficient setpoint can be used. According to a study by the US Department of Energy, it is estimated
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that 1% energy savings can be achieved for every one degree Fahrenheit setback for an eight hour period.

Thus a 5 degree setback at night and when the home is unoccupied, has the potential of 10% savings of

utility bills. [7]

2.1.2 Current User Interfaces

Early thermostats had a simple dial with two needles to indicate current and target temperatures. User

interfaces for programmable thermostats have evolved over time and today they often have electronic and a

large amount of information is provided- the current and target temperatures, outside temperature, humidity

levels, past energy usage, interface to set schedules, system status information and so on. Various new features

are constantly being added by manufacturers.

As thermostats became more sophisticated, however the user interface also became complex and users

often did not know how to program the thermostat and use its advanced features. Studies show that most

participants find thermostat controls very difficult to use [12] [15] [13]. Users end up using it in HOLD

mode ( as a manual thermostat) and true potential savings are not achieved. Studies have highlighted

some of the issues of complicated interfaces, including terms and abbreviations that homeowners are not

familiar with, poorly layed out and hard-to-navigate interfaces. A review by the US Environmental Protection

Agency(EPA), along with other studies have indicated that people find programmable thermostats difficult

to program. [10]. Users lack the motivation to understand how to use their programmable thermostat. [16]

Peffer et al. show that homeowners sometimes did not know how to override their settings when their schedule

changed [10]. They ended up using the thermostat as a manual thermostat, relying on themselves to setback

the temperature when they left home. Studies show that homeowners want devices with advanced features

but an easy-to-use interface that does not need a lengthy user manual. Lack of understanding of setpoints

and complex user interfaces are causes for programmable thermostats to not be used effectively.

S. Karjalainen [17] found that good thermostat controls are essential for user comfort in addition to energy

savings. Research into better interface design has been conducted [13] [18]. Some of the recommendations

include: grouping settings into basic and advanced features, providing energy usage feedback, simplistic

controls, identifiable and enhanced symbols that are intuitively understandable.

2.1.3 Energy Feedback

Household energy consumption is invisible to consumers and is a major cause of waste. Occupants typically

have only a vague idea of their energy fingerprint which makes energy management difficult; Most homeowners

are ignorant of their energy use, making it harder for them to adopt energy conserving measures. Research
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has been conducted into energy-feedback or eco-feedback [19] [20] [10] as a source of providing users with

their energy usage data to motivate them to improve their energy usage. Knowledge of energy use will

allow homeowners to make changes to their daily behaviors. Without any feedback on energy usage, most

homeowners are ‘blind’ to their energy consumption. [21] The only feedback generally is in the form of their

monthly utility bill showing the cost and total energy used in terms of number of Kilowatt-hours(kWh)

Energy feedback gives households the flexibility on how energy savings can be achieved. Energy feedback was

evaluated as early as in 1979 by McClelland & Cook [22]. Early research focused on the type of feedback that

is useful in motivating remedial action. Later on the type of delivery method for the information was studied.

[20]

Mcclelland et al. [22] found that homes with energy feedback saved on average 12% more than homes

without any feedback. More recent studies have shown that feedback has the potential for 4-14% energy

savings depending on the technology used. [20] Several studies [19] have indicated that homes with energy

feedback tend to discuss their energy use and change their usage patterns. A survey conducted by Wood et

al. [23] showed that 80-93% of their participants changed their behavior pattern by reducing the use of the

air conditioner or turned down the temperature of their heaters. Another study by Lutzenhiser et al. showed

that approximately 48% of the households in their survey modified their heating/cooling behavior. [24]

Behavioral research [25] [26] has been conducted to study the relationship between energy consumption

and behavior. One analysis [25] suggests that feedback has three stages. A learning stage during which the

occupants become aware of their energy consumption and they make a number of minor changes. Minor

changes lead to habits (the second stage) and finally ‘internalization of behavior’ when people behave in an

energy conserving way without being actively conscious of it. Feedback can be direct or indirect feedback.

Direct feedback provides real time input on how changes to settings will affect energy cost. Sources of indirect

feedback include utility bills, energy audits and contain average or summarized usage value. Historical

feedback of previous energy usage has been found to be useful. [27] Studies have shown that feedback in the

form of utility bills, energy audits or weekly feedback can lead to consumption savings of up to 10% [27].

Neenan B et al. [25] show that on thermostats, feedback on how changes to the temperature affect energy

usage and energy bills is useful to homeowners when they make decisions on their thermostat use. Thus

continual direct and indirect energy feedback has energy saving potential.

2.1.4 Commercial Buildings

HVAC systems in commercial buildings consume a lot of energy. Commercial spaces are significantly different

from homes. Occupancy patterns of homes and commercial buildings is very different.Most commercial spaces
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are occupied during fixed working hours and are unoccupied most of the other times. Most commercial

buildings have centralized heating and cooling. In some cases, room level control is provided. Large buildings

have zoning systems allowing different zones to be heated/cooled independently. The majority of the

commercial buildings have motion sensors and other sensing systems to identify when a building or specific

room is occupied or unoccupied. These sensors could be coupled with zoning systems to only condition

occupied spaces. Unoccupied rooms can be set to a setback temperature. Occupancy patterns in commercial

buildings do not change often and generally an operator is in charge of controlling the settings and modifying

schedules on the thermostat(s). Irrespective of whether occupancy data is used, there is always an operator

that has knowledge of the building usage or has access to occupancy data. This operator can then make

informed decisions on the thermostat schedules. On the other hand, most homes do not have zoning systems

and occupancy behavior in homes changes often. Changes in occupancy behavior need to be reflected in

thermostat schedules and this needs to be done by one of the home’s occupants. Many people do not update

their thermostat schedules, ultimately leading to discomfort and/or energy wastage.

2.2 Related Work

To overcome the challenges in the use of programmable thermostats, several researchers developed and

presented Smart thermostats that were able to detect and learn occupancy patterns of a home and eventually

be able to predict occupancy, which was then used to program thermostats. Each of these approaches used

different sensing systems and machine learning algorithms to learn and predict occupancy.

2.2.1 Research Prototypes

Mozer et. al present NeuroThermostat [28] an adaptive control algorithm that uses Neural Nets to predict

occupancy. The tradeoff between energy savings and user comfort is combined into a single metric which is

optimized with their model. The system was evaluated on simulated data. Real occupancy was collected

from their NeuralHouse, a smarthome instrumented with 75+ sensors, results of which were not presented. In

the evaluation presented, NeuroThermostat required 5+ months of training data. NeuroThermostat performs

well under the assumption that occupants have regular, weekly occupancy patterns. Thus it does not respond

quickly to changes in schedules.

Gupta et al. used live data from mobile phones or in-vehicle GPS devices to control home heating and

cooling [29]. Their system heats the home during time it takes a person to travel home from the current

location. However this method requires the users to always carry their smartphones or GPS device with

them. While GPS today has improved, GPS enabled devices still drains power and require users to carry the
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device or a GPS enabled smartphone with them. This system is not sensitive to different states of occupancy

within the home. Activity levels of the home are not available and its not possible to identify times when the

occupants of the home may be asleep. Knowledge of sleep times can be used to program setbacks during

sleep time.

J. Scott et al. [30] present a system called PreHeat which uses occupancy prediction to create efficient

setpoint schedules. PreHeat used motion sensors and RFID tags to detect occupancy. Participants of the

study were made to carry around RFID tags and these tags were attached to the keys for the home. Guests

and visitors were also given tags. Participants were requested to take their keys with them whenever they left

their home. Thermostats in their test homes were replaced by custom hardware. All the units (sensors and

custom hardware) had ZigBee radio modules. When a space is not occupied, the system tries to predict when

it will be occupied next using collected historical data. K-nn was used to classify a new instance. K was set

to three. Hamming distance was used as the evaluation metric. The mean prediction accuracy of the system

for the whole house lies between 80-85%.

Lu et al. present SmartThermostat, an HVAC control algorithm that uses Hidden Markov models [31].

Occupancy is predicted from occupancy data collected from 8 homes using X10 motion and door sensors.

The approach was evaluated using simulation. The approach works for two-stage HVAC systems with two

stage setbacks- shallow and deep.

Gao et al. present the Self-Programming Thermostat that automatically generates schedules based on a

home’s occupancy patterns. x10 motion sensors were used to detect occupancy. The generated schedules

with varying energy use and comfort levels were presented to users and users could then accept one of the

schedules. Users could were given feedback on energy use and comfort levels of the schedules as users made

modifications to a schedule, in real-time [32].

2.2.2 WiFi Thermostats

Recently several thermostats connect to WiFi are available commercially. The first WiFi thermostat was

released in the market in the early 2000s. These thermostats connect to WiFi and thermostat usage data is

collected. Web and mobile interfaces are provided to users, thus allowing them to control their thermostats

remotely- change the temperature, turn their AC on or off, set schedules and even begin heating or cooling

before they reach home. In addition to remote availability, some thermostats also provided periodic reports of

energy usage. Knowledge of how many hours their system was running, a history of energy usage is useful in

helping occupants make informed decisions to reduce their energy usage. These thermostats however require
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users to manually program schedules and are not capable of auto generating schedules tailored to a home.

Ecobee, Honeywell, Bayweb along with other manufacturers WiFi enabled versions of their thermostats.

2.2.3 Learning Thermostats

The Nest Learning Thermostat, is one of the few learning thermostats available in the market today [33].

In addition to providing users with remote control of their thermostat, the Nest thermostat automatically

generates setpoint schedules for the home. It learns from temperature changes made by users in an initial

learning phase that lasts about fourteen days. It uses this information to automatically generate schedules for

a home. The thermostat has an inbuilt motion sensor which is used to detect when occupants typically leave

home and automatically sets back the temperature to an away value. This feature is called as Auto-Away.

The details of the learning algorithms are not available.

Nest has several additional features such as monthly energy reports, eco feedback on the thermostat,

making users more conscious of their interaction with the Nest [33].

Some of these features are listed below along with a brief description [33]:

1. Auto Away: Nest senses that occupants may have left the house and will adjust temperature to avoid

conditioning an empty home. It sets a setback temperature when it thinks the home is unoccupied. For

Auto-Away to work,the Nest is required to be installed in a room where it can detect activity whenever

occupants are home [33].

2. Auto Schedule: Nest generates setpoint schedules automatically by learning from temperature changes

made by users in the past. The thermostat is then programmed to follow the setpoint schedule generated.

3. Time-to-Temp: Nest estimates how long it takes to heat or cool the home and it shows how long it will

take to reach the target temperature. For users this may reduce the temptation to set a new target

temperature if the previous target temperature has not been reached but users know how long it would

take to reach it.

4. Early On: Based on the Time-to-Temp and the weather, Nest begins pre-heating or per-cooling in

order to achieve the target temperature at the right time. This allows the home to conditioned before

the specified time and ensures that home is comfortable, reducing the number of manual temperature

changes made by occupants.

5. CooltoDry: If this feature is on, Nest will turn on air conditioning to decrease humidity if it senses high

humidity in the home.
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6. SunBlock: This feature is set only if direct sunlight falls on the thermostat . If the thermostat is in

direct sunlight, Nest adjusts the indoor temperature it reads.

7. Airwave: If this feature is set, Nest turns the compressor off a few minutes before the target temperature

is attained, using only the fan to cool.

8. Lock: Users can set a specified temperature range in which the target temperature should be. This will

ensure that the thermostat is not set to a temperature not in that range accidently, unless a 4-digit pin

is entered.

The Nest learns changes to settings made by users and does not take into account the occupancy of the

home. Thus it does not learn occupancy patterns of the home and is sensitive to the changes made by the

users. Thus even a temporary change may be picked up by the learning mechanism and reflected in the

schedule. The learning algorithm seems to rely on users to update settings. Overtime however the novelty of

the device wears off and occupants stop interacting with thermostat. A single motion sensor is not sufficient

to detect when a home is typically unoccupied.This method assumes that people pass by the thermostat

before exiting the home, which may not always work. One of the major problems in the use of the Nest is the

misunderstandings people have with its working. Yang et al. [11] present findings from a year-long study in

which participants with Nest thermostats in their homes, were interviewed periodically about their experience

with it. The study shows that after some time, the novelty of the product wears out and occupants interaction

with their thermostat reduces. The motivation to make changes to the schedule faded and users ended up

using the thermostat as a manual thermostat. Unless the system made a significant change, people began to

ignore the device, expecting it to work on its own. Users over-relied on the thermostat to identify changes in

their schedule. They expected it identify when they went on vacation and turn their HVAC off. Hence some

of those homes were conditioned even when occupants were away on vacation since the occupants did not

turn off the system before they left home. This lead to increase in energy usage in those homes over time.
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ThermoCoach

ThermoCoach is a self-programming thermostat which creates thermostat schedules based on occupancy

patterns of a home, while providing eco-feedback to users. In addition to giving users remote access to their

thermostats, ThermoCoach provides setpoint schedule recommendations to users periodically, thus keeping

them engaged in their energy usage. The claim of this work is that periodic eco-feedback in the form of

schedule recommendations, along with the features available in most WiFi thermostats today, will help in

maintaining energy savings using programmable thermostats.

ThermoCoach relies on occupancy sensors that help the system infer when a home is typically occupied,

unoccupied, when most occupants are asleep and when they typically wake up. Occupancy data collected over

time are used to detect activity patterns which are then used by the system to make schedule recommendations

through an online interface.

3.1 Occupancy State Detection

To generate customized schedules for homes, it is essential to identify states of the home through the day.

Once historical data of a home’s state is gathered, schedules can be generated. ThermoCoach defines the

home to be in one of three states: Away, Asleep or Active. A home is in Away state when all the occupants

of the home are not at home and the home is unoccupied. Asleep is a state that represents when people

are asleep at night time. When a home is neither in Away state nor Asleep state, it is in Active state.

Thermocoach detects and infers the state of the home at 15 minute intervals. During a twenty four hour

period, there are 96, 15-minute long, intervals. For each home, an Occupancy vector is created. The vector

is a two dimensional array. Each row is indexed by the date the data corresponds to. Each row of the two

14
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dimensional vector is a vector itself, with 96 elements, each representing 15-minute intervals. Each entry in

the Occupancy vector can take one of the three values: Asleep , Away and Active.

3.1.1 Away State

Occupancy sensors are used to detect if a home is occupied or not. From the data of occupancy sensors the

location of a person with respect to the sensor can be inferred. These sensors can also been used to infer

periods of time when there’s no activity in the home. There are several types of occupancy sensors that could

be used- Motion sensors that detect movement in their field of view, GPS devices can be used to know how

far occupants are from their homes or RFID tags can be used to detect when an occupant wearing the tag is

within range of a receiver installed in the home.

A home is identified as occupied or not based on occupancy sensor data and from that, an Away event is

defined as a 15 minute interval such that the interval before and after it are unoccupied. If an interval is not

labelled as Away, it is labelled as Active.

Once Occupancy vector for a home is processed, an Away percentage vector is computed. It defines the

percentage of times the home was unoccupied at the corresponding 15-minute interval.

Awayi =

∑
day εawayDays[∀Occupancy[day][i] = Away ]

numAway
* 100 (3.1)

where numAway is the number of days Away events were detected for the home and awayDays is the set of

days when both Away and Active events were detected

During the study, home occupants went on vacations. Days when they left for vacation and days when

they came back from vacation do not represent their typical patterns. Data loss also prevented detection of

Away states on certain days. In order to exclude these days in further analysis, any days on which the home

was not occupied for atleast 10 hours were removed.

3.1.2 Sleep Detection

Sleep detection is defined as inferring periods in a home when occupants are asleep. This information

can be used to detect changes in lifestyle and can also is useful for smart thermostats that can set back

to a temperature suitable when the home’s occupants are asleep. ThermoCoach uses this information to

generate thermostat schedules in which the temperature is set back to a sleep temperature-defined by the

participant-when the home is in sleep state.

If a home is occupied at an interval i, it is labelled as Asleep if it is night time and there is no activity

in the home. A Sleep event is defined as the last interval before 3AM that the home was active. A Wake
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event is defined as the first interval after 4AM that shows activity. The period between sleep and wake is

when the home is Asleep. Detection of any of the above events occurs only if the occupants are home at the

corresponding points in time. If the home is unoccupied, no sleep period is detected. Asleep is defined as

the period between Sleep and Wake. Occupancy vector is populated with these states. Due to data loss, on

some days, it is possible to detect only one of Sleep or Wake.

Asleep Percentage vector is computed as the percentage of times the occupants of the home are asleep at

interval i

Asleepi =
∑

day ε sleepDays

[∀Occupancy[day][i] = Sleep]

numSleep
−

∑
day εwakeDays

[∀Occupancy[day][i] = ’Wake’]

numWake

(3.2)

where numSleep is the number of days sleep events were detected for the home and sleepDays is the set of

days when sleep events were detected , numWake is the number of days wake events were detected for the

home and wakeDays is the set of days when wake events were detected

Due to data loss from sensor failures, on some days only one the two events- sleep or wake, were detected.

The data pre-processing step is also responsible for discarding certain events that are not typical for a home,

for example on days when occupant’s are returning from vacation. Thus numSleep and numWake may not

have the same value.

In addition to the above vectors, two more are computed-

1. Asleep’: Defines the percentage of times occupants were home and alseep at interval i

Asleep′i = (100−Awayi) ∗Alseepi (3.3)

2. Active Percentage: Defines the percentage of times the home is occupied and active at interval i

Activei = 100−Awayi − SleepPrimei (3.4)

3.2 Schedule Generation

Recommended schedules are generated using an implementation of the algorithm in the Self-Programming

Thermostat [31]. The algorithm outputs schedules with four setpoints. The algorithm generates all possible

schedules with four setpoints. Four setpoints are used, corresponding to the four states a home can be in-

Asleep setpoint, Wake setpoint, Leave and Arrive setpoints. The times these setpoints are set at are denoted
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as tSleep, tWake, tLeave and tArrive. The algorithm generates schedules with varying tWake, tLeave, tArrive

and tLeave setpoint times. This order of the four setpoints is maintained in all of the schedules generated.

For each time interval, the algorithm calculates the percentage of times the home was in a particular

state at that interval. The interval was chosen to be 15 minutes long, since Nest allows scheduling at the

same granularity. The algorithm uses this data while trying to optimize two functions: Energy Cost and

Miss Time(defined in the section below) and generates three schedules with varying Energy Cost and Miss

Time values. The three schedules have decreasing energy cost and increasing miss time. This gives users the

choice of selecting an energy efficient schedule with high Miss Time, a energy costly schedule with lower Miss

Time or something in between.

To generate the schedules for each home, ThermoCoach determines the percentage of times a home was

Away, Asleep and Active at different intervals throughout the day as described above.

3.2.1 Miss Time Function

Miss Time is used to indicate the number of minutes during the day that occupants may be uncomfortable.

Alternatively, it is number of minutes the temperature is not what it should be for the state of the home in

consideration. ThermoCoach uses two setbacks- a four degree setback for Asleep states and an eight degree

setback when the home is unoccupied. These setbacks are relative to the temperature the home’s occupant

set in the Active period. Thus this value was obtained from the home’s manually set temperature setting.

Miss Time is used to calculate how many times the schedule expects the home to be unoccupied(or asleep)

but the home is actually occupied at that time.

Away MissTime is defined as the number of minutes the home is considered unoccupied by the schedule,

even though it is not.

Away MissT ime =
∑

i=(tLeave,tArrive)[
(Activei ∗ 15) + (SleepPrimei ∗ 7.5)

100
] (3.5)

Asleep MissTime is defined as the number of minutes the home is considered to be ’asleep’ by the schedule,

even though it is active.

Asleep MissT ime =
∑

i=(tSleep,tWake)[
(Activei ∗ 7.5)

100
] (3.6)

The sleep time setpoint(tSleep) can be either higher than or lower than the setpoint occupants use when

they are active.(twake) When the sleep time temperature can be the same temperature or a temperature

higher than tWake, Asleep Miss Time can be calculated using Equation 3.6. In some cases, homes may prefer
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their sleep temperature to be lower. Thus occupants may be uncomfortable if tWake is before the actual

time they wake up. Similarly, if tSleep is much later than a home’s bedtime, some amount of discomfort will

occur. For such cases, Miss Time for sleep is calculated using the equation below.

Asleep MissT ime′ = (
∑

i=(tWake,tLeave)[
(SleepPrimei ∗ 7.5)

100
])+(

∑
i=tArrive to tSleep[

(SleepPrimei ∗ 7.5)

100
])

(3.7)

Finally, Miss Time is the sum of Away and Asleep Miss Times, calculated as-

MissT ime = Away MissTime + Asleep MissTime (3.8)

3.2.2 Energy Cost Function

This cost function scores the energy use of a schedule. Cooling a home at lower temperatures and for longer

periods is expensive. The function estimates a cost of a schedule by adding up the costs of cooling a home at

the setpoints for the corresponding durations.

The lowest temperature in a schedule is calculated as-

lowestTemp = min{all temperature setpoints in a schedule} (3.9)

The cost function for a schedule is defined as-

cost =
∑

[(1− (0.06 ∗ (setpointTempi − lowestTemp))) ∗ (setpointT imei+1 − setpointT imei)] (3.10)

where i = 1 to n , where n is the number of setpoints in a schedule, setpointTemp is the temperature value

of the setpoint and, setpointTime is the time the setpoint is set at.

A schedule that wastes energy the most, by keeping a constant temperature throughout the day, has an

energy cost of 1. As the efficiency of schedules increases, the cost value decreases. As energy cost decreases,

Miss Time increases.

3.3 Schedule Recommendations

For each generated schedule its Miss Time and Energy Cost is computed. Once the set of schedules are

generated, three schedules are selected to be presented to the user. These schedules have minimum Energy
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Cost and their Miss Time is less than a defined upper bound. The upper bound is defined as a certain

percentage of the typical, daily total Active time for a home. Three schedules called High Comfort, Energy

Saver, Super Energy Saver are generated with the minimum costs and miss times within the bounds below.

totalActiveT ime =
∑

i=(0,95)

[Activei ∗ 15] (3.11)

1. Upper bound of acceptable MissTime for High Comfort

0.10 ∗ totalActiveT ime (3.12)

2. Upper bound of acceptable MissTime for Energy Saver

0.20 ∗ totalActiveT ime (3.13)

3. Upper bound of acceptable MissTime for Super Energy Saver

0.30 ∗ totalActiveT ime (3.14)

Figure 3.1 shows a sample historical plot. The dark regions depict percentage of times the home is asleep

at each 15 minute interval. Away events are depicted by the light curve and the region below it. The schedules

generated vary in beginning and ends of Sleep events and Away events. The different times are selected along

the curve.

In Figure 3.1, the home typically is unoccupied from 10AM(interval number 40 in the figure) until

4:30PM(interval = 66),about 70% of the time. During 12:30AM(interval = 2) to 5AM (interval = 20) the

home is typically is asleep.

Schedule recommendations are emailed to homeowners. The email contains snapshots of four categories

of schedules. One is the home’s current schedule and the remaining are recommended schedules. The

recommendations vary in Energy Cost and Miss Time. Each category of recommendations has two schedules-

for the week and one for weekends. Each recommendation is annotated with possible energy saving per-

centages and the impact on comfort level. Figure 3.2 shows a sample email generated. Users can accept a

recommendation as is or edit a recommendation. If they choose to Edit a recommendation, they are redirected

to the ThermoCoach webpage. Figure 3.3 shows a webpage from one of the recommendations for a home. In

addition to the schedules, estimated energy savings over keeping the same temperature, are displayed. An
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Figure 3.1: Historical State Information

occupancy graph is also displayed. The graph depicts the occupancy trends of the home. It displays how

often a home was active at different times through the day calculated from Equation 3.4.
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Figure 3.2: ThermoCoach Email Recommendations
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Figure 3.3: ThermoCoach Webpage



Chapter 4

Implementation

While occupancy data can be obtained from a number of different sensors, for this study, ZWave Motion

Sensors and Bluetooth 4.0 key fob sensors were used. Instead of using expensive devices and data collection

platforms such as HomeOS [34], a new platform Piloteur was designed and implemented as a part of this

study [35]. Data was collected using Raspberry Pi’s running Piloteur. A Nest thermostat was installed in each

home and usage data was collected. ThermoCoach currently does not include design or implementation of the

hardware of the thermostat or the control algorithm. The commercially available Nest Learning Thermostat

was used. The system relies on Nest’s Time-to-Temp feature to precondition a home such that it reaches

the target temperature gradually just as the time of the setpoint is reached. The ability to turn on or off

the various features of the Nest thermostat allowed for a comparison between ThermoCoach and the Nest

thermostat.

4.1 Occupancy State Detection

4.1.1 Motion sensors

To detect active periods in a home, commercial off-the-shelf, ZWave PIR motion sensors were used. Passive

Infrared (PIR) based motion sensors sense movement within their field of view. A differential in the received

infrared radiation indicates a change of state. PIR sensors have found popular use in home automation

systems and security systems. PIR sensors generally have a field of view between 110 ◦ to even 360 ◦. They

are small, inexpensive and low power devices.

ZWave is a propriety wireless protocol used for home control and monitoring. ZWave also allows applications

to be built in such a way that ZWave devices talk to each other, thus enriching the home environment in

23
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many ways. ZWave requires a gateway or controller to be installed in a home which communicates with the

ZWave products in the home. Applications can be written that interface with the gateway, making it possible

for homeowners to control the appliances in their home from PCs, tablets, smartphones, etc. Besides its use

for home automation, ZWave devices have been used in applications to conserve energy; for example, various

ZWave thermostats can be controlled via the Web and in home security systems.

This study used Schlage S200HC V N N SL motion sensors. These are battery operated PIR sensors

that communicate with a ZWave controller. They have a detection area is approximately 9 x 12 meters,

with about 120 ◦ wide angle detection pattern. They can see up to 100 feet (30.5 meters) line-of-sight. The

sensors are event driven and sleep to conserve battery. They wake up periodically, when polled by the ZWave

controller, or when their state has changed. [36]

Figure 4.1: Top View of Motion Sensor Range Figure 4.2: Front View of Motion Sensor Range

4.1.2 Bluetooth Low Energy Sensors

Bluetooth Low Energy(BLE) wireless technology consumes only a small percentage of the power of classic

Bluetooth radios. [37] These small, low power and low cost, coin-cell battery operated sensors were created

with the vision to be used in wearable devices, human interface devices such as keyboards and other smart

devices. The battery is designed to last about a year without recharging. ThermoCoach uses these Bluetooth

4.0 sensors to detect occupancy. Participants in the study were asked to carry these sensors with them

whenever they left home. StickNFind Bluetooth 4.0 tags [38]- small, quarter-sized, battery operated BLE
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sensors, were used in the study. They have a range of approximately fifty meters, line of sight. However, the

range depends on the range of the Bluetooth Adapter used and most of the commonly available Bluetooth

4.0 USB adapters have a range of seven to eight meters. Bluetooth Low Energy technology has a advertising

functionality that makes it possible for a slave devices(sensors) to announce that it has something to transmit

to other devices that are scanning. Advertising messages can also include an event or a measurement value,

Media Access Control (MAC) addresses, a device name, etc. [37] The StickNFind tags were programmed to

advertise their MAC addresses.

Figure 4.3: Bluetooth 4.0 Key fob sensor Figure 4.4: Bluetooth 4.0 sensor Range

4.1.3 Data Pre-Processing

During preliminary analysis of Bluetooth data, it became apparent that in a few homes, the script logging

Bluetooth data was logging a number of different MAC addresses. Each home had about 3-4 BLE tags. In

addition to the tags, other devices such as smartphones, tablets etc. may have their Bluetooth turned on.

Some of the MAC addresses of electronic devices of home occupants may have been logged as well. To filter

these out, stray MAC addresses that occurred only a few times (order of tens and hundreds), were removed.

Since BLE data collection script was always running, typically on an 8 hour workday, any given tag was

logged 1000+ times in data files. Tags that were seen only on one day and never seen again in consequent

weeks, were filtered out too. Participants were requested to carry their tags with them. Even then, often an

extra tag was left behind, especially in homes that had attached them to their car keys and had multiple cars.

Tags that were always at home were filtered out and feedback from participants was used to verify that they

did indeed leave a key tag behind. Participants were also periodically reminded via email to carry their tags

with them.
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4.1.4 Removal of Partial Data

Throughout the study, some homes had intermittent data. Days that had partial data were removed from

future analysis as they are not representative of a home’s daily patterns. A day is considered to have partial

data if only Leave or Arrive events were detected but not both. A day is also considered to have partial

data if no Asleep state was detected on the day. Days on which occupants were on vacation or returning

from vacation were also removed. Days on which the home was unoccupied for less than 10 hours were

removed from the data for that home. The assumption is that most homes in the study were unoccupied for

at most 8 hours a day. This resulted in removal of days when participants were on vacation and also days

where a sensor failed. In some cases, occupants left their keys behind when they left home. This violates the

assumption that participant’s carry their keys with them when they leave home. For a home, MAC addresses

that were logged by the Bluetooth 4.0 driver on less than 50% of the study duration were filtered out as noise

and were not considered in any analysis.

ZWave motion sensors have their own set of false positive and false negative rates. ThermoCoach assumes

that in each home, there was at least a three hour period when all occupants of the home were asleep, between

9pm at 1pm. Homes with pets were identified before the study began. Any movements at night time which

caused a sleep period to be less than three hours was attributed to movement by a pet and were ignored.

Days with sleep periods less than three hours were considered days with partial data. A filter was created to

parse occupancy data and remove days with partial data for the homes.

Figure 4.5 shows the Bluetooth data from different homes in the study. Each sub-figure represents data

for one day. (A) shows a case where multiple Bluetooth addresses were logged. The home had only two tags

but the graph shows a total of five Bluetooth Low Energy devices being detected. (B) shows a typical day

where tags were taken by participants when they left home. (C) is an instance when a tag was left at home

all day. In the absense of any additional information, it impossible to say if a participant left the tag behind

or was genuinely home on a day. For this reason, tags are filtered over multiple days.

4.1.5 State Detection

Bluetooth Low Energy (BLE) tags were used to determine if a home is occupied or not. When tags were

present, the system assumes that the home was occupied and assumes that it was unoccupied when no tags

were present. Each participant was given a BLE tag to place on their keys or the one item they always carry

with them when they leave their home. Participants were asked to always keep their keys in the same place

when home. A Bluetooth receiver was placed at that location to detect the tags. Each home had three

receivers that collected BLE data, to mitigate data loss due to Bluetooth range limitations and sensor failures.
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Figure 4.5: Raw Bluetooth Data

Each BLE data entry in the Bluetooth data collected contained the timestamp, MAC address of the tag

and signal strength. Each entry was passed through a filter which determined whether to keep or discard

the entry. If the entry was not discarded by the filter described in the previous section, the timestamp wass

converted to the corresponding fifteen minute interval number (each interval is 15 minute long, there are 96

such intervals in 24 hours). An interval was labeled as ‘1’ for occupied and ‘0 for unoccupied. If a Bluetooth

tag was present in a home at an interval , then that home was labelled as occupied at that interval. This was

then used to detect Away events as described in Chapter 3. An interval is labelled as Away if the home is

unoccupied in the intervals before and after it.

4.1.6 Sleep Detection

Sleep detection is defined as inferring periods in a home when occupants are asleep. This information can

be used to detect changes in lifestyle and can also be useful for self-programming thermostats that can set

a setback when the homes occupants are asleep. ThermoCoach uses this information to generate setpoint

schedules in which the temperature is set back to a sleep temperature.

The first step to detect sleep time is to determine if the occupants of the home are asleep and inactive or

if the home is unoccupied. In the second step, the system proceeds to detect an asleep state for a night only

if the home is occupied during that night.

Similar to Bluetooth data, ZWave data is processed to populate a 96-element array representing if the

home is active at a particular fifteen-minute interval or not. The interval corresponding to the timestamp of a

motion sensor firing is set to ‘1’. All others are ‘0’ by default, indicating no activity. ThermoCoach assumes

that all sleep events occur between 9PM to 1PM. While this assumption has limitations, use of better sensors

could provide better data and will only make the results better. Thus these results for sleep detection could

be considered as a lower bound for sleep detection accuracy.
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Due to significant false negative detection rates of motion sensors, on some days, only one of sleep events

and wake events were detected. Thus the total number of sleep events detected may not be the same as the

as the number of wake events detected.

Detecting the time when people go to bed is challenging, especially in multi-occupant homes. Presence

of pets further complicates the problem. To avoid false postives, motion sensors were not installed inside

bedrooms where they can see a large part of the inside of the bedroom. This however means that sleep time

is denoted as the time when people enter their bedrooms for the night and not actual sleep time. Thus, in

cases where people have a study table or office inside their bedroom or if they watch television at night before

bed, the beginning of that period is labeled as asleep. With PIR motion sensors alone, it is not possible to

distinguish between sensor events triggered by humans versus pets.

Figure 4.6 show’s Bluetooth data, ZWave data and Asleep and Active states. The top two lines represent

ZWave data and the other’s represent BLE data. The pink shaded regions indicates when homes are occupied

and the purple shaded regions indicate Asleep states of a home.

Figure 4.6: Raw Data and State Inference

4.2 Hardware Platform

Occupancy sensors described in section 4.1 were used to obtain occupancy data. To collect data from these

sensors in homes, a Raspberry PI running a smarthome platform Piloteur [35]was used.

4.2.1 ZWave Data Collection

To collect ZWave data from Motion sensors, a ZWave controller is needed to communicate with the sensors.

Aeon Lab S-2 Z-Stick connected to a Raspberry PI running a custom Open-ZWave [39] driver was used to

communicate with the sensors. The driver ran continuously waiting for messages from the motion sensors.

When a motion sensor detects motion, an On state is logged along with system’s timestamp.

RF signal strength decreases as it passes through dense objects such as ceramic tiles, concrete, granite

or other hard stone and large metal objects. Too many wireless devices may saturate the environment and

it’s advised to place these sensors at least 5 feet away from devices with radios such as wireless controls
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and sensors, security systems, cameras, cell phones, stereo receivers, TV’s, baby monitors, cable boxes,

game systems, microwave ovens, etc. Thus location of the sensors played an important role in reliable data

collection.

4.2.2 Bluetooth 4.0 Data Collection

IOGear Bluetooth 4.0 USB adapters connected to Raspberry PI’s were used to detect BLE tags. The

driver/interface used Linux’s hcitool ’s lescan feature to scan for Bluetooth Low Energy devices and ‘hcidump’

was used to get Received Signal Strength Indication(RSSI) values, for tags within the range of the adapter.

Timestamp, MAC address and RSSI signal values were recorded every second. Thus when an occupant

entered their home with tags attached to their key chains, information about the tag was logged. The study

assumed that occupants carried their tags with them whenever they left their home. Participants were

reminded to carry their keys with them.

4.2.3 Raspberry PI

To collect data from the sensors in a home, Raspberry PI model B boards were used. Each PI ran Debian

optimized for Raspberry PI. Additionally, Piloteur was installed on each PI. A PI running Piloteur is called a

endpoint [35]. The platform is responsible for running and monitoring scripts that collect data from sensors.

It also has various monitoring and fault analysis scripts. These endpoints connect to WiFi and sync data to

a backend server. Raspberry PI boards are small and powerful and are noiseless, making them convenient

for deploying in homes for data collection. The model B uses between 700-1000mA depending on what

peripherals are connected to the PI and the maximum power the Raspberry PI can use is 1 Amp. A micro

USB cable connected to a 5V USB power adapter from Enercell was used to power the Pi’s. endpoints

were enclosed in plastic project boxes. The boxes had vents to prevent the PI’s from overheating. All USB

attachments were secured with tape to prevent them from being accidently pulled out.

4.2.4 The Nest Thermostat

Each home was installed with a Nest 2nd Generation Learning Thermostat. The Nest thermostat is a

state-of-the-art Learning thermostat that learns from changes to temperature settings made by the user. It

then generates schedules for the home. It connects over WiFi and allows users to control their thermostat

remotely through the web or their mobile app. It tries to learn the time taken by the HVAC system to

heat/cool.



Chapter 4 Implementation 30

Figure 4.7: An endpoint

Each Nest used in the study was set up with a custom email account that researchers had access to.

Each Nest had a unique home number as an identifier and a unique password. A script was written to log

thermostat data through an un-official REST API since Nests official API had not been released at the time of

hardware design. The current setpoint schedule, target temperature values, current conditions of the HVAC

and states of the advanced features of the Nest were logged along with timestamps. The script continouously

logged Nest data. Ten accounts were processed at a time to avoid being rate limited by Nest’s servers.

The Nest Learning thermostat was installled in homes by the installer, with ease. In some homes, the

thermostat had trouble maintaining WiFi connectivity. The main reason for this is was that the thermostat

was located further away from the router in those homes. The Nest thermostat currently does not work well

with routers set up as access points, hence use of access points is not recommended. Two of the homes in the

study found ice in their air filters a few weeks into the study causing the homes to not cool. It was not clear

if the Nest thermostats were responsible but nonetheless one particpant dropped out of the study due to this.

4.3 Software Platform: Piloteur

Homes are hazardous environments to sensors. There are several causes of hardware failure: poor wireless

connectivity, power outages and crashed software. Homes are remote environments and researches do not

have regular access to them. Visiting a participant’s home entails scheduling and planning and results in

several days and often even weeks of data loss. Thus, a reliable, easy-to-use platform for collecting sensor data

is needed. Piloteur takes into consideration the guidelines presented in The Hitchhiker’s guide to successful
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residential sensor deployments [40] and includes additional features that address issues that were brought

to light by this study. The Hitchhiker’s guide [40] presented several issues typically faced during a typical

large scale deployment in homes and guidelines to overcome those issues along with general advice on the

architectural design of sensing systems.

Plitoeur [35] is an open-source platform that was designed and implemented to satisfy the requirements of

this study and is also available to other researchers for modification and use. The platform was responsible

for collecting and managing sensor data. Piloteur is a user-space software that is installed on top of a

machine’s base operating system. Piloteur currently supports two platforms: Amazon Web Services (AWS)

EC2 instances and Raspberry PI B embedded computers. It must be installed on an endpoint machine, that

will be installed in a home, to physically interface with the sensors and controllers and a server machine that

will backup, manage, and monitor the endpoints.

Piloteur was installed on all the PI’s deployed in the homes. The platform’s monitoring service monitored

the installed sensors and alerts were generated when sensors failed. The sections below list the important

issues to be considered in deployments and the features of Piloteur that help mitigate, if not eliminate, a

number of these issues.

4.3.1 A Simple Architecture for large scale and long term deployments

Large scale pilots may involve dozens or hundreds of houses and devices. Management of these systems

becomes difficult. Management is needed to ensure that all sensors are operating as expected. During a

long term study, software may require updates, licenses may need to be updated or sometimes a major

change in a software component is needed. Sensing systems require continuous maintenance and a platform

should be designed to deal with these issues. Using different platforms in a single deployment increases

the complexity of the system and adds to possible failure points. Piloteur currently runs on Linux and can

be used to interface with a number of different sensors, depending on the hardware on which it runs. The

need for different software platforms is eliminated since Piloteur can run on any hardware running a Linux

distribution, from Laptops and Tablets to Raspberry PI’s.

4.3.2 Simplified Setup

Before performing a deployment, the developer needs to create two directories that are accessible online: one

to hold software drivers used during the deployment, and another to hold configuration files for all endpoints.

In this study, repositories on GitHub were used. Piloteur provides a simple interface on the endpoint in the

form of three “magic directories”: a software directory, a data directory, and a logs directory. Any executable
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that is put into the software directory is guaranteed to be executed upon startup, monitored, and restarted if

it crashes.

Piloteur’s configuration service is used to set up and maintain the Piloteur environment on an endpoint.

It ensures that all software dependencies are installed and that data and code is downloaded and installed.

Before starting a new deployment, the user needs to create two directories that can be accessed via the

Internet: one to store the scripts for hardware drivers used during the deployment and another to store

configuration files for all the endpoints in the deployment. Configuration parameters are specified as key-value

pairs in JSON format. Top level directory configuration applies to all endpoints in the deployment. New

classes of endpoints are created with subdirectories with the class name. Subdirectories can have directories

within them, running a number of levels deep, defining a hierarchy of endpoint classes. Configuration for

a specific endpoint can be defined by creating additional sub-directories with the node’s unique ID and in

the case of conflict of parameter names, values from subclasses override values from super-classes. These

hierarchical endpoint classes allow the use of a single configuration file for parameters that are shared among

an entire class of endpoints. In this study, all of the endpoints had a top level configuration file, specifying

details about the backup server; all the ZWave endpoints were grouped under a ZWave class and Bluetooth

endpoints under a BLE class. Each endpoint had its own configuration specifying details such as home

identifier, WiFi credentials and so on.

To create a new endpoint, Piloteur’s configuration needs to be executed from a host machine such as a

laptop. The user points it towards the new endpoint machine, and either gives a unique identifier(ID) for the

new endpoint or a unique ID is generated automatically by a tool called uuidgen which creates a random id.

An Ubuntu 12.4 virtual machine was used as the host machine in this study. Each endpoint was given a unique

id based on the home number, endpoint number and class of endpoint(ZWave,BLE,etc). The configuration

service downloads the files associated with that ID and configures the new Piloteur endpoint accordingly,

installing Piloteur services, software dependencies and all hardware drivers in a drivers directory (in this

case the Bluetooth driver, ZWave driver and Nest driver) on the endpoint automatically. The configuration

service itself is installed.

The configuration service runs itself periodically on an endpoint, to keep the system up-to-date. It

periodically updates the hardware drivers, configuration files, and system files. If one or more drivers have

been updated, those drivers are gracefully terminated and then restarted. If the change is to any other service,

all active drivers are gracefully terminated. The configuration service rolls the system back if it thinks there’s

a problem with the new configuration, but it can detect only a limited set of problems. Authentication

information and data location is specified through configuration files. Piloteur allows researchers to add their

own scripts to monitor drivers. The tests are executed by a monitoring server for each endpoint that has the
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corresponding driver enabled according to its configuration.

Thus Piloteur’s configuration design makes it easier to set up large scale deployments and manage them

by allowing a hierarchy of configuration file classes.

4.3.3 System Monitoring

A watchdog service runs entirely on the endpoint to ensure that the hardware drivers, endpoint hardware

and Piloteur services are always running. For each driver loaded on an endpoint, the watchdog validates

that the driver is located in the software directory and ensures that the driver is running and starts it if it

isn’t. If the driver process crashes or fails , the watchdog will restart it. It checks to see if all the drivers that

need to be running on a endpoint are operational, every minute. The watchdog also periodically checks the

network connection and tries to resolve the issue. The watchdog checks the network connection by opening a

socket to the server. In the case of interface failure, the watchdog resets the network interfaces. Additionally,

the watchdog periodically generates operational logs of the endpoint platform, including CPU utilization,

RAM utilization, running processes, status of hardware peripherals, core temperature, and kernel failure or

hardware reboots, cpu utilization, disk usage, RAM usage, etc.

4.3.4 Remote Access

One of the major issues in deployments is that homes are remote environments and researches do not have

regular access to them. While certain failures such as a broken sensor or battery failure require human

intervention, in many cases bugs could be fixed if researchers have access to the remote endpoints.

Reverse Tunnel

Each endpoint is connected to WiFi in order to sync data to backend servers. Additionally, for each endpoint

a reverse ssh tunnel was set up, allowing researchers to log in to the endpoint remotely even though it sat

behind the home’s firewalls. This feature allows researchers to debug the actual endpoint without having to

retrieve the endpoint from the home. It significantly reduces an endpoint’s down time.

Automatic code updates and continuous deployments

For long term and large deployments, the ability to update code remotely is a very useful feature. Bugs can

be fixed and new features can be added without having to stop data collection during an ongoing deployment.

The platform uses Ansible, an automation tool, to download the newest code pushed to our online repository.

The endpoints can also be rolled back to previous code. Endpoints check for new updates periodically.
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This feature was found to be useful during this study, especially when new code had some bugs and was

then rolled back to a previous stable version in order to analyze the cause of the bug.

Ease of interfacing new sensors

The platform allows researchers to interface new drivers easily. A driver is a script that interfaces with

sensors and their adapters(wherever applicable). The platform redirects output of stdout to log files and

manages the rotation and syncing of the files making it possible to add new drivers in short period of time.

While the new sensors may have to be remotely deployed, new drivers can be added to the endpoint remotely

through the automatic update feature.

Time Syncing

For time series data, it is essential that the timestamps on all the sensors and data receivers are synced. In

this study, Raspberry PI’s running Piloteur were used and the PI’s do not have an internal clock and use

Network Time Protocol (NTP) to set the time. Instead of using the Net work Time Protocol (NTP) which

creates unrecorded shifts in system time, the watchdog periodically logs the local system clock simultaneously

with the remote server’s system clock for post-facto time synchronization to be performed.

Monitoring and Altering

The watchdog service attempts to diagnose and recover from problems that require autonomous corrective

actions on an endpoint. Piloteur’s monitoring service attempts to recognize failures that may require manual

intervention and, when detected, it emails an alert message to the operator. The monitoring service infers

endpoint state from the data and log files using a predefined ruleset. For example, if no logs are synced for a

day, it can be assumed that the endpoint is down. If all endpoints in a home are down, network issues could

be assumed. The monitoring service runs on a separate monitoring server and processes the most recent log

files and returns the endpoint’s status. In addition to the monitoring service, Piloteur provides a RESTful

Web interface that details the software versions and operating status of the endpoints. This was useful during

deployments to assess success/failure of installs. The overall status of a endpoint is reported as a color. The

following states were reported:

• Red: needs manual repair; no network connection.

• Yellow: needs remote repair; network connection is up and all hardware peripherals are working, but

there is a software error.

• Green: does not need repair; end-to-end data delivery is operational.
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When the endpoint is being deployed by a non-expert, the color status can help quickly decide whether

an endpoint should be deployed or returned to the lab.

4.4 Deployment

190+ endpoints, 40 Nest thermostats, over 250 motion sensors and 135+ Bluetooth low energy(BLE) tags

were deployed across thirty nine homes. A third party installer was hired to do the installation in participant’s

homes. A commercial online tool called ScheduleOnce was used to schedule installations. Participants were

asked to choose suitable times and the installer would coordinate with them. For each home a kit was created

containing necessary equipment needed for deploying the sensors in homes. Each kit consisted of-

1. 4 endpoints (Rapberry PI Boards running the Smarthome platform, Piloteur)

2. 6 ZWave motion sensors

3. A minimum of 2 BLE tags and key fobs

4. Router

5. Nest Thermostat

6. Wire clips, 3M Command strips, power extension cords and expansion plugs

7. Deployment Information Sheet

8. Smartphone

4.4.1 Deployment of endpoints

The ZWave endpoint was installed in the heart of the home to ensure that it was within range to most of the

motion sensors. One BLE endpoint was installed near each external door, to detect occupants when they

entered their homes and one endpoint was placed in the room where occupants typically kept their keys. The

location of this endpoint varied from home to home.

4.4.2 Motion Sensors Deployment

To keep cost low and also to keep the ZWave network at a manageable size, the aim was to use as few sensors

as possible to determine the state of the home effectively. In majority of the homes no motion sensors were

installed in bedrooms. If sensors were needed to be installed in bedrooms they were installed in a way that
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they looked at the door entrance, away from the interior of the room. A home can be thought to have two

zones- an Active Zone and a Transition Zone. The Transition Zone may be Hallway leading to bedroom, a

common wall outside all bedroom doors, or stairway leading to upstairs bedrooms. ThermoCoach assumes

that whenever a person enters the transition zone in order to go to the bedroom(s), a sensor in the transition

zone can detect them. The Active Zone is commonly used areas when participants are not sleeping, e.g.

living room, kitchen, dining room, study etc. Sensors were placed on a wall so that it is facing the most

active portion of the room. (Eg. Wall opposite couch, opposite the range or sink in kitchen, etc) Sensors were

installed in the Active zone and one sensor in the Transition zone of the home. The sensor in the Transition

zone captured people walking in and out of bedrooms, defined as the Sleep zone. The ideal location of a

sensor in a room is such that it can always capture activity in the room within an interval of 2 hours or

less. Details on where these sensors were placed and the reasoning for doing so are in the section on sensor

deployment in a home(on the next page).

The sensors were placed at least five feet above the floor, but not closer than two feet from the ceiling, for

maximum coverage. Placing a sensor close to the ground or ceiling increases the likelihood of interference from

furniture, support structures and other objects. To avoid wireless competition, the installer was instructed to

place the sensor about 5ft feet from electronic devices with RF radios such as microwave ovens, televisions,

etc, whenever possible to do so. Sample floor plans with sensors mapped on them, were provided to the

installer to explain expected sensor locations.

Sensor Deployment Guidelines

Motion sensors should be installed to cover the Active and Transition Zones

1. Transition Zone Sensors (One or two sensors)

2. Active Zone Sensors (4 in total)

The Active zone sensor should be placed on the wall approximately one foot higher than the tallest

occupant (About five-six feet on average but not closer than two feet from the ceiling.) Face the sensors away

from transition and sleep zones if possible.

Transition Zone Sensor/Hallway Sensor should be placed on a wall facing the bedroom and facing away

from the Active Zone if possible. Sensor should face bedroom doors if possible or close to doors. If there is

no wall opposite the bedroom door, the Transition Zone sensor can also be placed inside the bedroom facing

the doorway, but facing away from the bed. The sensor can also be placed on the wall above the door frame,

in line with the door.
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Figure 4.8: Example floor plan and sample endpoint placement. The * indicates a BLE endpoint that also
collected Nest thermostat data for the home.

The Transition Zone sensor should not cover any of the Sleep Zone(Bedrooms). The area of the Active

Zone covered by the transition sensors should be minimal; no overlap is ideal. To ensure that this sensor does

not see any of the Active Zones of the house, a blinder could be added to the sensor to restrict its vision to

the left or the right. A blinder may be needed only in some homes and will depend on the home’s layout. In

some homes, it may be necessary to use more than one Transition sensor to cover sleep areas. Active Zone

sensors must not cover any of the Bedrooms and may cover the Transition Zone if necessary.
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Figure 4.9: A sample floor plan indicating Motion Sensor locations and ranges. Red regions are considered a
homes Active region. As shown, most active regions are covered by at least 1 motion sensor. The purple
region shows a Transition region. A transition region is typically a hallway, separating the living space from
the bedrooms.

4.4.3 BLE Tags

BLE tags in advertising mode were attached to key Fobs and given to participants to be attached to their

key chains. Participants were requested to carry it with them whenever they left home.

4.4.4 Nest Thermostat

Each kit also contained a 2nd Generation Nest Learning Thermostat. Each Nest was configured in the lab

before deployment to connect to the router provided as part of the study. Nests data was retrieved and

logged and the account information was also provided to the participant. A central endpoint running Piloteur

collected data from the thermostats. Each participant was given access to the Nest thermostat’s online

interface and mobile app.
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Figure 4.10: A sample endpoint install

4.4.5 Deployment Tools

Each kit contained a router that was configured to work with a home’s existing router. This allowed for

endpoints to be configured to connect to WiFi before the actual deployment and eliminated the need to

obtain the participant’s WiFi network credentials.

For aesthetic purposes and to prevent the power adapters of the endpoints being unplugged, wire clips,

extension cords and expansion plugs were used to attach the endpoints to walls. Based on an outlet’s usage

in a home, furniture around the outlet and location of the outlet, the installer used a combination of solutions

provided to mitigate the chances of the adapter being disconnected. To avoid leaving marks on the walls, 3M

Command strips were used to install all the sensors on the walls of a home.

A deployment sheet was used as a checklist by the installer and to note down any issues faced during

deployment. The installer was instructed to note down the home’s floor plan and location of installed sensors

for researchers to verify that sensors were installed in desired locations. An example can be found in the

Appendix.

The installer was also given a smartphone that was used to connect to Piloteur’s online tool that provides

the status of an endpoint, given an endpoint’s identifier or a similar search string. This allowed the installer

to verify quickly if data collection had started and was working, before he left the home. The installer was

also instructed to note down model numbers of the home’s HVAC system and its power usage in various

modes.



Chapter 4 Implementation 40

4.5 Maintenance

Continuous maintenance of sensors was performed through the study. Right after deployment, endpoints had

a 17% failure rate and the rate of failure remained anywhere between 7-17% through the three months of

the study. The cause of failure is uncertain and could be due to poor WiFi connectivity, disconnection of a

endpoint from power or a software or hardware failure. Some endpoints were offline because they were located

in parts of the home with weak WiFi connectivity especially since other endpoints running the same software

stack in the home were working as expected. The locations of endpoints in a home were constrained by the

requirements of the study. As a result, some endpoints were offline quite often and synced data intermittently

whenever they came back online. This issue was detected at the time of initial deployment and to address

this issue the deployment tool was modified to display the WiFi signal strength at the location of deployed

endpoint. This helped the installer make better decisions on location of installation of endpoints in later

deployments and also helped determine cause of endpoint failure.

For endpoints that were offline, visits were scheduled to switch out the failing endpoints. WiFi signal

strength was a consideration when re-deploying replacement endpoints. 95% of the endpoints retrieved worked

on reboot. This indicated that the PIs needed to be rebooted periodically. In about two or three cases one or

more endpoints were unplugged in a home. Participants informed the installer of this and the endpoints were

connected back to power. This often happened in homes with pets.

ZWave data was not consistent in a number of homes in the study. On many days, the controller and

sensors failed to log any motion. There could be several possible reasons- A malfunctioning ZWave adapter,

faulty sensors, or even the type of home(ZWave signal attenuates through concrete, etc.) and location of

the sensors from the ZWave adapter. Wireless signals are attenuated by concrete, cement, thick walls and

suffer from interference from large electronic devices such as televisions, microwaves and so on. In most cases,

the ZWave network repaired itself in a couple of days. In nine homes, ZWave sensors and the Aeon Lab

ZStick were replaced. In these cases, the endpoints were online, but the ZWave network failed to log activity

detected by the motion sensors. When restarting the driver failed, the motion sensors and ZWave endpoint

were replaced since they were hard to debug remotely. Throughout the study period only 1/3rd of the homes

had consistent ZWave data.

In total, about twenty six visits were made to fifteen different homes for switching out motion sensors and

endpoints. 1/3rd of the endpoints were online again once they were rebooted. In at least three visits, some

endpoints were disconnected from power when the installer visited the home for a repair. In five endpoints,

sections of the SD card were found to be corrupted and had to be replaced.

Seven participants lost their key fob sensors. After one month, participants reported that their key fobs
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had fallen off. New key fob sensors were mailed to participants. In one case, the BLE tag began pinging

loudly, probably due to a dying battery. The participant was informed to discard the sensor and replacements

were mailed to them.

4.6 Hardware Removal

At the end of the study, participants were asked if they would like to keep the sensors and the Nest thermostat.

If they wished to return the hardware, they were given the option of either setting up an appointment for

the installer to visit their home and retrieve the sensors or alternatively, they were mailed pre-paid shipping

materials and were asked to take down the sensors themselves.

4.7 Analysis of Piloteur

Right after deployment endpoints had 17% failure rate, i.e. 83% of the endpoints collected data on the server.

As mentioned earlier, dailure rate remained between 7% to 17% per week. Analysis of the operation logs

indicate that, all of the 156 endpoints deployed experienced potentially fatal failures. All thirty eight Z-Wave

endpoints had at least one hardware driver failure, if not more than one. In total, the Z-Wave driver was

restarted 15,206 times across thirty eight end-points. About twenty six endpoints experienced problems with

the Ansible system that is used to auto-update the endpoint.

30 endpoints had configuration errors. Thirteen endpoints had power failures. Twenty four endpoints

had hardware failures. On thirty eight endpoints the hardware drivers were fixed by remotely updating the

code, where the Open ZWave code was updated to another version. In thirty cases, a node was repaired or

revived by remotely updating the configuration files which contained account information for Nest drivers

that was no longer valid. Forty two endpoints were manually revived through the reverse SSH tunnel. Fifty

two endpoints with hardware or critical software failures were fixed with a total of twenty six maintenance

visits across 15 homes.

Maintenance visits were tedious to schedule and were usually scheduled several days in advance by a

combination of email and phone calls with the study participants. Physical maintenance visits to all failed

endpoints would not have been feasible.

All 156 endpoints had network failures at some point and the sync service actually failed to connect

to the server over 21,000 times across all endpoints. Most endpoints simply had network drops due to

intermittent network connectivity and regained the connected shortly after. Throughout the study, endpoints

lost connection with the server when the house’s network connection was dropped, but regained connectivity.
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Forty endpoints had poor WiFi signal strength at the time of deployment and eventually lost the network

connection permanently. Ten of them were moved to locations with better signal strength. Buffering data

locally on the endpoint was extremely useful since network failures were common and in some cases rsync

failed to sync data to the server. Even when a manual repair of the endpoint was required, data was synced

manually through the SSH tunnel before any repairs were attempted, to minimize the loss of data.

All endpoints running the BLE drivers also had hardware driver failures and the BLE driver was restarted

33,268 times over all endpoints. However, this failure rate is in part due to the nature of the driver that

required the hardware to be periodically reset. It was assumped that Piloteur’s watchdog would always

restart the driver.

Due to sensor failures, endpoint failures, network failures etc., days of training data were removed by the

data pre-processing filter. Days with partial data, days with detection of too few events, days when occupants

were away on vacation, were removed. Figure 4.11 shows the number of actual training days used to generate

schedule recommendations for homes.
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Figure 4.11: Number of training days used for homes in ThermoCoach group are shown here. These days
represent days with ‘good’data as described in section on data pre-processing
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Evaluation

To evaluate ThermoCoach, a three month long study was conducted and for the evaluation, it is essential

to compare ThermoCoach’s performance with the current state-of-the-art thermostats. ThermoCoach

is compared against manually programmable thermostats with energy feedback and the Nest Learning

Thermostat. Thirty nine volunteer homes were recruited. Participants that were recruited had homes in

neighboring areas with similar weather conditions. All participating homes were single family homes and most

participants worked outside the home for at least 8 hours during the day. Participants were randomly divided

into three groups. Group1 represented users of manually programmable thermostats, Group 2 represented

Nest thermostat users and Group 3 represented users of ThermoCoach. After 6 weeks, an intervention was

performed. At the time of intervention homes in Group 3 were given ThermoCoach recommendations. In

addition, all homes in the study were given energy feedback in the form of Nest’s monthly energy report.

Each home was emailed with the previous months monthly report. The report contained information on

the total number of hours the air conditioning was on in a home during the previous month, general energy

savings tips and promotional material from Nest. The design of the study, response to recommendations and

their effectiveness are described in this chapter.

5.1 Study Design Overview

A Nest thermostat was installed in each home and its settings were modified based on the group the

homes belonged to. Thus the same hardware and HVAC control algorithms were used in all the homes.

Features of the Nest were enabled or disabled to emulate the type of thermostat represented by the group.

Auto-Schedule(schedule learning feature) and Auto-Away(feature that learns when the home is typically

unoccupied) were turned off for Groups 1 and 3. All other features were left on. Participants were provided

44
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with information about Nest’s features and a list of features they could use during the study. During the

study, any overrides made to settings were logged. Occupancy sensors were installed in homes by the installer

and key fob sensors were given to participants. On the day of installation, participants were provided account

credentials for their thermostat and instructions on how to use the thermostat. When the system was initially

installed, the thermostat was not programmed with a setpoint schedule.

Feature Programmable Nest Learning Thermostat ThermoCoach
Nest’s Auto Schedule (Schedule Learning) Off On Off*

Early on (Pre-heat feature) On On On
Auto Away Off On Off

Flexible Scheduling On On On
Usage History On On On
TimetoTemp On On On

Mobile + web interface available available available
Eco-feedback available available available

Schedule Recommendations un-available available available

Table 5.1: Nest Settings Across Groups. *ThermoCoach recommendations provided. Explanation of features
can be found in section 4.2.4

Table 5.1 describes the Nest thermostat settings for each group. The thermostats were programmed with

these settings during time of install. Participants were also emailed instructions containing a summary of

features they could and couldn’t use. Group 1 and 3 were asked to use the Nest as a manual programmable

thermostat. No suggestions were made to participants regarding scheduling. They were asked to keep Nest’s

Auto-Away(feature that learns when the home is typically unoccupied) and Auto Schedule(schedule learning

feature) features turned off. They were given access to Nest’s web and mobile interface, allowing them to

access their thermostat remotely. On similar lines, Group 2 homes were sent instructions and told to use all

the features of the Nest. ‘Auto Schedule’ was turned on for Group 2 homes during installation of the Nest

thermostat.

At the time of recruiting all participants were informed that they may receive recommendations on energy

savings but were not informed that the recommendations could be setpoint schedules. Occupancy data was

collected from all the homes even though recommended schedules were sent only to participants in Group 3.

All homes had the same hardware installed and were asked to use their Nest as a manual programmable

thermostat. The exception to this is Group 2 homes in which Nest automatically set schedules for the

thermostats. Hence in the training period, homes in Group 1 and Group 3 behaved similarly.

Most homes were had the common features described in Table 5.2. Two weeks after all homes were

instrumented, entry interviews were conducted to understand people’s interaction with their thermostat,

energy needs, weekly schedules, etc. Participants were reminded via email to carry their key fob sensors with
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them whenever they left home. Besides this, no other feedback was provided and participants were told to

interact naturally with their thermostat.

Groups 1 and 2 were the control groups. Group 3 formed the treatment group and received three schedule

recommendations: an energy efficient one, a comfort based one and a balanced one.

After a six week long training period, the intervention was performed and all three groups were emailed

their Nest energy reports that outline the number of hours the home was cooled/heated. It also provides

a “Leaf” rating. A home earns a “Leaf” if energy usage is not excessive. Occasionally, a tip for the home’s

schedule is given along with promotional information. This kind of energy feedback has been found useful

in making the participants aware of their energy usage. Participants in Group 3 were additionally emailed

three schedule recommendations in addition to the Nest energy report. Participants were asked to make a

selection within forty eight hours of receiving the email. All participants received the email on the same

day. Participants were allowed to change the thermostat or schedule at any point during the study. Once

a selection was made by the participant, their thermostats were programmed manually by the researchers

based on their selections within twenty four hours. At the time of writing, an automatic mechanism for

programming the Nest thermostat was not available.

Features Type
Type of home Independently owned

Type of household Single family
HVAC equipment Single stage heat pump for

heating and cooling
Pets Yes/No

Children(Below 4 years) Yes/No
Number of hours a home is typically unoccupied 8-10 hours per day

Number of occupants per home 2-6

Table 5.2: Common features across homes

5.2 Intervention

Out of the thirteen homes in Group 3, twelve participants had responded to the email within forty-eight

hours. Eight homes out of the twelve selected schedules other than their current schedule. Out of those eight,

four selected ThermoCoach recommendations as is, while the rest made modifications to the recommended

schedules. One of the four homes that modified a schedule changed the setback temperature from 87 to

81 degrees. Two homes made minor changes to the times of the setpoint and the third changed both the

times and temperatures to a highly comfort-oriented schedule with an Away setback that differed only by

two degrees from the temperature set when the home is occupied. Out of the homes that kept their current
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schedule, only one home did not have a schedule before intervention. At time of intervention, three homes

changed the time of the setpoints in the chosen recommended schedule. One home moved the end of the

Asleep period by one hour for weekdays. One home moved the end of the Asleep period by one hour for

weekends. One home changed the period when the home was unoccupied by a total of one hour. Since there

is no ground-truth for occupancy data, the accuracy of state detection and the schedules can be estimated as

the number of changes(overrides) made to the schedule.

One participant had seen the email but not made a selection. One participant did not respond. The

response to the emails was high. Eco-feedback seems promising though the response rate may be biased since

the participants were conscious of the fact that they were participating in a study.

The temperatures for the different states of the home were set based on participant’s preferred temperature

settings that they made before the intervention. Setbacks were determined based on these values. At time of

intervention, one participant reduced the setback temperature when the home was unoccupied. All others

made no changes to the temperature values in the schedule. Four participants modified the time of a setpoint

in their respective schedules. Two participating homes kept their current schedules. One of the homes had a

good setpoint schedule before the intervention period. Three homes choose HighComfort(or some variation

of it); the schedule that maximized comfort and had least energy savings. Energy Saver was chosen by three

homes, with slightly more Miss Time and higher energy savings. Two homes chose Super Energy Saver.

Figure 5.1 shows the schedules for Group 3 (ThermoCoach Group). Three recommended schedules along

with pre- and post-intervention schedules of homes, are shown. The schedules are plotted against energy cost

on the x-axis and Miss Time on the y-axis. Schedules with energy cost as “1” are energy expensive schedules.

As the Miss Time increases, comfort decreases. The energy cost of a home’s pre-intervention schedules are

plotted. For home’s that did not have a schedule, miss time is considered zero. The assumption is since

only one setpoint is used, the occupants are always comfortable. Miss Time is considered as in indication of

comfort; as Miss Time increases , comfort levels decrease.

The graph shows that Super Energy Saver schedules are the most energy efficient of the three recom-

mendations and energy efficiency decreases as Miss Time decreases. In some of the homes with a schedule

before intervention, there is significant Miss Time. This indicates that the schedules were not accurately

programmed and a reason for this could be that occupants may not have known how to accurately do so. Even

though about seven of homes either kept their own schedules or accepted comfort oriented recommendations,

majority of them had a 4 to 8 degree setback when the home was unoccupied.
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Figure 5.1: Schedule Recommendations for Group3. Relative Cost values are estimated from Equation 3.10

5.3 Panel Data Regression Analysis

Impact analysis was performed to analyze the effectiveness of the treatment applied in the study. A randomly

controlled trial approach was used to randomly allocate participants to treatment and control groups. With

panel studies one can model for changes in weather and time-invariant unobservable factors that may impact

energy usage and costs. A panel dataset measures changes in one or more characteristics in the same set of

individual samples over time. Weather effects and other fixed effects can be modeled using regression analysis

of the panel data.
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5.3.1 Regression Model

The model used to estimate the impact is taken from the guidelines on Measurement and Verification of

behavior-based energy-efficiency programs. [41]

Ln costit = α0 + α1 ∗ Treatmenti + α2 ∗ Postt + α3 ∗ TreatmentxPostit + β1 ∗ CDDt + β2 ∗ CDDxTreatmentit

+ β3 ∗ CDDxPostt + β4 ∗ CDDxTreatmentxPostit + vi + ui

(5.1)

where :

Ln costit : Natural log of the cost of conditioning home i on day textitt

Treatmenti : Dummy variable that takes the value of 1 if home i is a treatment home

Postt : Dummy variable that takes the value of 1 if t is in the treatment period

TreatmentxPostit Dummy variable that takes the value of 1 if home i is measured in the treatment

period

CDDt : Cooling degree days for day t

CDDxTreatmentit : Interaction of CDDt with Treatmenti

CDDxPostt : Interaction of CDDt with Postt

CDDxTreatmentxPostit : Interaction of CDDt with TreatmentxPostit

5.3.2 Schedule Cost Analysis

Regression Analysis was performed using the model above on data that represented the daily cost of

conditioning the home. All the temperature setpoints used on a particular day for a home were used to

calculate the cost of conditioning the home using Equation 3.10. Data was obtained from Nest logs for the

homes. The average change in the cost of conditioning a home in the pre-intervention and post-intervention

period is compared across Groups 1,2 and 3. The beginning of the Post-intervention period was the day by

which most thermostats in Group 3 were programmed with selected schedule recommendations, as opposed

to the day the recommended schedules were emailed to participants of Group 3.

Panel Study Between Group 1 and 3

Equation 5.1 is estimated using data from both treatment and control groups, during the training and

treatment periods. Homes from Group 1 formed the control group and homes from Group 3 formed the

treatment group. Data from the entire study period was used.
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Data was converted to the format of variables in Equation 5.1. Cooling Degree Days is defined as the

amount of energy required to cool a space relative to a baseline temperature, derived with respect to the

outside temperature, on a given day. The base temperature is a typically an indoor temperature suitable for

human comfort. The Cooling Degree Days (CDD) values for the period of the study are available from a

number of online resources. CDD values used in the estimation here were obtained from [42]. The natural

log of the daily cost was used as the dependent variable.

Parameter Coefficient Estimate Standard Error of Coefficient
Constant -0.4912 0.0249

Treatmenti -0.0211 0.0354
Postt -0.0325 0.0534

TreatmentxPostit -0.0829 0.0755
CDDt 0.00334 0.00367

CDDxTreatmentit -0.00890 0.00525
CDDxPostit -0.0028 0.00760

CDDxTreatmentxPostit 0.0063 0.0108

Table 5.3: Estimated Coefficients

Regression Analysis was performed using MiniTab. The estimated coefficients of the model are presented

in Table 5.3 The baseline temperature for CDD estimation used in the model was 70 degrees Fahrenheit.

The model in Equation 5.1 measures the cost of conditioning a home, given a set of independent variables.

To measure the impact of recommendations, Average Treatment Impact is used. Treatment Impact is the

measure of the causal effect of a treatment on the outcome variable, in this case, energy cost. The treatment

indicator is generally a binary variable indicating whether treatment was performed on the sample or not.

For an individual home, the treatment effect is given by costi1 - costi0

The Average Treatment Impact across all individual samples(ie. homes) is the measure of the difference

in the expected values of cost(the outcome variable) before and during treatment(post-intervention period).

The Average Treatment Effect/Impact is denoted as E[costi1 - costi0] where costi1 is the cost in the post-

intervention period and costi0 is the cost in the pre- intervention period(without the treatment being

evaluated). The Average Treatment Impact is the expected effect of the treatment for a randomly drawn

individual sample(in this case a home) from the population.

The resultant estimated parameters of the terms involving the treatment variable in the regression model,

indicate the estimated average change in the dependent variable due to the treatment.

Average Treatment Impact(ATC) is estimated using the equation:

ÂTC = α̂2 + β̂3 ∗ CDDt (5.2)
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CCDt is the average Cooling Degree Days in the treatment period.(post-intervention period) CDDt was

5.72 for the treatment period. Substituting the values from Table 5.3 and converting to the impact into

percentages(since change in natural log is an approximation of percentage change), the Average Treatment

Impact is -4.86%. A negative percentage indicates decrease in the value of the dependent variable. Thus,

schedule costs decreased by 4.68% by ThermoCoach when compared to programmable thermostats.

Confidence intervals of this point estimate can be calculated as-

ÂTC = ÂTC ± c ∗ se(ÂTC) (5.3)

For a 95% confidence interval c is the 97.5th percentile in a tdf distribution, Degrees of Freedom(df) is

calculated as

df = n− k − 1 (5.4)

where n is the number of samples and k is the number of independent variables in the model

For the model, k = 7 and n = 1678. On substituting the values, c = 1.96. The standard error obtained

from the model is 0.319.

Thus for the specified model, the confidence interval for ATC is

Lower Bound = 3.9 (in percentages)

Upper Bound = 5.45 (in percentages)

In addition to the panel study above, two more studies were performed with Groups 1 and 2 forming the

control groups and Group 3 forming the treatment Group. The summarized results of the study are shown in

the table Table 5.4

Treatment Group Control Group ATC** 1

Group1 Group 2 +7.79%
Group2 Group 3 -12.39%
Group1 Group 3 -4.686%

Table 5.4: Average Treatment Impact on Schedule Cost [All Days]

Row 1 of Table 5.4 is the result of a panel study of the energy usage of Group 2 is compared to that of

Group 1. Group 1 formed the control group and Group 2 formed the treatment group. Group 1 represents

homes with programmable thermostats and Group 2 represents homes with Nest thermostats.

Table 5.4 contains results from models that used data from the entire study duration. The Nest thermostat’s

Auto Schedule feature(scheduling learning) takes about two weeks to learn a home’s schedule. Thus the panel

studies above were repeated with data from the first two weeks and last two weeks of the study. The first

1**alpha=0.01
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two weeks formed the training period where all three groups behaved like users of manually programmable

thermostats and the last two weeks of the study formed the treatment period. This allows for a comparison

between Nest’s Auto schedule feature, manually programmable thermostats and ThermoCoach. The results

in Table 5.5 follow similar trends of Table 5.4.

Treatment Group Control Group ATC** 2

Group1 Group 2 +9.96%
Group2 Group 3 -10.37%
Group1 Group 3 -1.069%

Table 5.5: Average Treatment Impact for Group-wise Panel Study on Schedule Cost [4 weeks]

Figure 5.2: Energy Usage ColorMap across all homes

Figure 5.2 represents the daily energy cost estimated in a similar manner to equation 3.10. Each cell

in Figure 5.2 represents the energy cost of the thermostat schedule used on a particular day. Each day’s

thermostat schedule was parsed from Nest data being logged for each home’s thermostat. Each horizontal

line represents data for a home. The homes are arranged based on the group they belong to. Energy costs

over time for all homes in the study are estimated. Darker shades indicate higher energy cost and lower

shades are ideally desired. The graph also indicates the intervention day. All days after the vertical line at

intervention day includes data from only the post-intervention period. White cells indicate days of when

data loss was significant.

2**alpha=0.01
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It is clear from the graph that thermostat recommendations reduced energy costs significantly for seven

out of eight homes that chose recommended schedules at time of intervention . One home choose a schedule

that looked very similar to their pre-intervention schedule. Thus significant change in energy usage is not

seen for that home. Homes that did not change their schedules continued to have similar energy usage as

compared to their pre-intervention usage. For the homes that selected recommended schedules, change in

energy consumption is visible soon after the intervention date. For two homes however, the effect of the

schedule is seen a few days later. The Nest thermostats in these homes were having WiFi connectivity issues

and were offline at time of intervention . This prevented the schedules from being programmed remotely.

Once this issue was fixed, the effect of the schedules is seen. Red bars in Figure 5.2 indicate when significant

reduction in energy usage was first seen for a home.

After intervention , energy usage of only one home changed in groups 1 and 2 and Group 1 seems to have

consumed more energy than Group 2 and 3. The one home that decreased energy use post-intervention , did

not have a schedule before intervention and a schedule with a Away setback was set soon after intervention .

Overall, it seems that energy based eco-feedback alone may not be sufficient to keep users engaged in their

energy utilization. Participants may have looked at their energy usage but failed to do anything about it in

the absence of any actionable feedback. This is however impossible to ascertain due to several independent

factors and variability of energy usage across homes. From looking at Group 2, it is also apparent from the

figure that Nest’s schedules have not improved energy usage over time.

It is interesting to note that about 50% of the homes across all groups had some schedules even though

some may have used more energy than others. A weekday-weekend pattern and increase in energy usage on

weekends is quite clear.

5.3.3 OnTime Analysis

Similar to the analysis described in the previous section, panel studies were performed on data that represented

the fraction of the day the air-conditioning was on and actively cooling the home. The same model as in

Equation 5.1 was used. The dependent variable in this case was the log values of the fraction of the day the

air conditioning was on. Table 5.9 contains the resultant treatment effect values. All days of the study were

used in the model.

Treatment Group Control Group ATC* 3

Group1 Group 2 -1.5%
Group2 Group 3 -4.63%
Group1 Group 3 -6.15%

Table 5.6: Average Treatment Impact on OnTime [All days]
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OnTime analysis was also performed with data from the last two and first two week of the study. These

results give greater confidence for the impact involving Group 2, ie. the Nest group.

Treatment Group Control Group ATC* 4

Group1 Group 2 1%
Group2 Group 3 -5%
Group1 Group 3 -3.89%

Table 5.7: Average Treatment Impact on OnTime [4 weeks]

Figure 5.3: OnTime ColorMap accross all homes

Figure 5.3 shows the fraction of the day the air conditioning was on. Days are plotted on the x-axis and

homes are plotted on the y-axis. Each row represents data from one home. Each cell represents the fraction

of the day the air conditioning was on that day. Cells that are completely white indicate days when data was

lost hardware issues.

5.3.4 Overrides Analysis

Throughout the study, participants made manual changes to the target temperature in their homes. These

changes were anywhere between 1-8 degrees Fahrenheit changes. Instead of the number of temperature

changes made, the average degrees changed daily can be considered as an indication of a user’s comfort level

for the thermostat schedule. This measure does not penalize homes for making a one degree change to the

3*alpha=0.05
4*alpha=0.05
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temperature which is not really indicative of user comfort. A change in target temperature that is not part of

the thermostat’s schedule is considered an override. The panel study data indicated the average change in

degrees made on a day. Group 1, 2 and 3 were evaluated and the results are presented in Table 5.8. The

models used data from the entire study period.

Treatment Group Control Group ATC* 5

Group1 Group 2 -3.29%
Group2 Group 3 -45.67%
Group1 Group 3 -47.43%

Table 5.8: Average Treatment Impact on Average Degrees Changed [All days]

Similar to the analysis in previous sections, panel studies represented in Table 5.9 were performed with

data from the first and last two weeks of the study. The average daily degrees changed by ThermoCoach

users is compared to that of Nest and manually programmable thermostat users.

Treatment Group Control Group ATC* 6

Group1 Group 2 -3.13%
Group2 Group 3 -68.34%
Group1 Group 3 -61.8%

Table 5.9: Average Treatment Impact on Average Degrees Changed [4 weeks]

Figure 5.4: Colormap of daily Average Degrees Changed across all homes

Figure 5.4 shows the average degree change per day when compared to the day’s setpoint schedule. In

some homes in the ThermoCoach group, manual overrides were made post-intervention. These changes were

5*alpha=0.05
6*alpha=0.05
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changes made to the target temperature at a particular time in the day and not changes made to the schedule.

Each row in the figure represents data from a home. Days are plotted on the x-axis and and homes on the

y-axis. Each cell represents the number of manual changes made on a particular day. These changes could

have been made on the actual thermostat or through its web or mobile interface. In many homes changes

made were reverted back to reflect the setpoint schedule. In most cases, the temperature was changed by one

or two degrees Fahrenheit, while in some cases the temperature was changed by four to six degrees Fahrenheit.

Changes in the treatment period can be considered an indication of comfort levels. It can also be attributed

to warmer weather in the post-treatment period.
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Discussion

The results indicate that ThermoCoach’s schedules are more energy efficient compared to Nest’s schedules

and those set on programmable thermostats. In addition, ThermoCoach reduced the OnTime by 6%. The

number of overrides decreased post-intervention indicating that residents were comfortable with their selected

schedule recommendation.

6.1 Cost of Conditioning a home

Post-intervention, the energy cost to condition a home(derived from setpoint values) decreased for Groups

1(programmable thermostats) and 3(ThermoCoach) and energy usage did not change for Group 2(Nest users).

ThermoCoach reduced the amount of energy needed to condition a home by about 5% when compared to

programmable thermostats. In the pre-intervention period, T-tests between energy cost of Group 1 and 3

indicate that Group 1 homes used more energy than Group 3 homes. This difference increased in the post

intervention period by 65% in the post intervention period. Thus even though Group 1 homes did use more

energy than Group 3 homes in the pre-intervention period, schedule recommendation significantly reduced

the energy usage of Group 3 homes. Two homes in group 1 had significant reduction in their energy usage

post-intervention. One home modified their existing schedule to make it more energy efficient while the other

home did not have a schedule pre-intervention and set a schedule after receiving energy feedback. Thus energy

feedback did motivate two homes to reduce their energy usage. In Group 3, eight homes choose a schedule

recommendation or some variation of it. Even though two of these homes had schedules pre-intervention,

they choose recommendations that were more energy efficient. The other homes that accepted schedules

did not have any schedule prior to intervention. Thus significant reduction in energy usage is seen for these

homes. Energy usage of did not vary in homes that did not change their schedule post intervention.
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Cost of conditioning the home with ThermoCoach decreased by 10% when compared to the Nest thermostat.

Pre-intervention, there was no statistically significant difference between energy use between homes in Group 2

(with Nest thermostats)and homes in ThermoCoach group (Group 3). However, in the post intervention period,

T-tests confirm that energy usage in Group 3 homes was significantly less. Thus schedule recommendations

did have an impact on energy savings and did better than Nest’s Auto Schedule feature.

When compared to Group 1, Nest schedules increased the cost of conditioning a home by 9.96% During

the pre-intervention period, Group 1 homes used 13.6% more energy to condition their homes(schedule cost)

when compared to Group 2 homes. In the treatment period, energy cost of homes in Group 1 decreased

significantly. Thus difference in the mean energy costs between homes in Group 1 and 2, decreased in the

treatment. Group 1 used 6% more energy than Group 2. This caused the results to indicate that the Nest

group did worse than Group 1(conventional programmable thermostats). Hence the Nest(Group 2) did not

use more energy, only the impact of the treatment(Nest’s Auto Schedule) decreased in the treatment period

when compared to conventional thermostats. A paired T-Test for samples from Group 2 before and after

intervention indicate that there was no significant change in energy usage for the Nest group.

6.2 OnTime Analysis

ThermoCoach decreased the average time for which the air conditioning was on, on a given day(onTime) by 6%

when compared to conventional programmable thermostats. The setbacks in ThermoCoach’s recommended

schedules ensured that the air conditioning was not on when occupants were Away and the nighttime setback

in some homes also reduced energy use. These results indicate that ThermoCoach did indeed reduce the

actual energy use of homes.

Nest reduces energy use by about 1-2% when compared to programmable thermostats. This result is

applicable to the model that used data from the entire study duration. Nest’s Auto-Schedule(learning)

feature becomes available about fourteen days after the thermostat has been installed. The limitation of this

model is that it does not really compare Auto-Schedule and programmable thermostats, instead it compares

Auto-Schedule before and after intervention. Because of this, analysis was performed using the first two

weeks of the study as the training period and the last two weeks as the treatment period. This analysis

indicates that Nest increases onTime by 1%. However, varying lifestyles and other factors may have biased

the result. The first week of the training period included a long weekend and there may have been an unequal

distribution of homes between Group 1 and 2 that went on vacation in the training period(and hence used

less energy) may have biased this result.
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Auto-Away may have also affected energy use in Group 2 homes and may have played an important factor

in the analysis. For Auto-Away to work effectively, one or both of the following are essential [33]:

• The Nest thermostat is installed such that it can sense activity when occupants are home. It then tries

to infer when a home is typically unoccupied during the day.

• The time occupants leave their home in the mornings is predictable.

This understanding of Auto-Away’s functioning implies that Auto-Away may not have been effective in

some homes in which the thermostat was installed in a less frequently used part of the home. In such homes

the Nest may have failed to detect activity whenever the home was occupied. Auto-Schedule learns from

changes made to settings by users. If users did not set a setback when they left home during the learning

period, it is possible that the automatically generated schedules may not have had a setback for times when

the home was unoccupied. Because of all these factors it cannot be said with certainty that Nest increased

energy usage in homes when compared to programmable thermostats. T-tests indicated that Nest used less

energy than the programmable thermostats before and after intervention.

6.3 Number of Overrides

The number of overrides made on a thermostat can be an indication of the extent to which residents are

comfortable with their thermostat schedule. An override is any change made to the temperature that is not

part of the thermostat’s setpoint schedule. Instead of the number of overrides, the average change in degrees

made on a day is computed and evaluated. This eliminates cases where the temperature was changed by

just 1 degree Fahrenheit on a given day. Average change in degrees made is referred to as an override in the

following discussion. The average number of overrides increased for all the three groups after intervention.

Five homes in Group 3 always made significant changes to their thermostat throughout the study period.

For these homes it is unclear if changes were made because occupants were uncomfortable or if it was just

due to their habit of interacting with the device. The number of overrides decreased for Group 2 over time.

A reason for this could be that the Nest was always keeping the homes at a cooler temperature, compared to

ThermoCoach’s schedules. The Nest schedules rarely had a setback of more than 3-4 degrees Fahrenheit. If

the homes were always conditioned, it seems clear why the number of overrides decreased for the Nest group

over time. Another reason could be that since the Nest learns from changes made by the user, overtime, it

learned not to keep the temperature lower.

The daily average temperature change due to overrides reduced for Group 3 by 47% post-intervention

when compared to conventional programmable thermostats. There was no statistically significant difference in
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the number of overrides between Group 1 and Group 3 in the pre-intervention period. These results indicate

that most home in Group 3 were comfortable with the recommended schedules they chose.

The average degrees overridden by Nest group was 3.13% lower compared to programmable thermostat

users(Group 1). In the pre-intervention period, the T-tests indicate that the number of overrides in Group 2

were higher than the number of overrides made by Group 1 homes. However, after intervention, the number

of overrides increased for Group 1 when compared to Group 2. The reason for this could be that energy

feedback made homeowners in Group 1 more conscious of their energy usage and instead of modifying or

setting a schedule, they changed the target temperature on their thermostat. Paired T-tests for Group 2

before and after intervention indicate that there was no statistically significant difference in the number

of overrides for Group 2. Thus though the impact analysis indicate that Nest group had lower number of

overrides, the number of overrides increased for Group 1 post-intervention, which resulted in 3.13% decrease

in the number of overrides by the Nest group.
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Limitations and Future Work

7.1 Regression Analysis

The regression analysis performed in the previous chapter has certain limitations. One of the most critical

issues with using regression analysis is the assumption that specified model is correct. If variables are omitted

from a model and those missing variables are correlated with one or more independent variables, the estimates

could be biased. Any measurement error will lead to biased and inconsistent estimates of parameters. If

the error terms are auto-correlated(errors in the treatment and pre-treatment are correlated), the standard

error estimate may be biased [43]. The P-values of many coefficients in the models used for the different

datasets in the analysis in Chapter 6, indicate that those coefficients were insignificant. In most cases, only

the variables indicating treatment, the CDD values and their interactions were influential on the value of the

dependent variable.

The models in the previous chapters had high residuals and this may have caused the estimates to be

biased. R2 ranged between 5-30% for the different models. T-Tests were performed on the three metrics for

all three groups. The tests validate the general trends seen in the impact analysis. The T-tests compared the

mean values for groups before and after intervention for all combinations of the three groups in the study.

7.2 Other Limitations

During the training period, there was some confusion about what features of the Nest could be used amongst

a few homes in Group 2. Some participants were under the assumption that they could not use Nest’s

‘Auto-Away’ feature. This feature estimates when a home is typically unoccupied and sets the temperature

to a setback value. A few participants did not change the temperature as they thought that the settings were
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provided by researchers as part of the study, which was not the case. Because of this confusion about Nest’s

settings, the training period was extended from four weeks to six weeks. All participants were sent an email

reminding them that they could change the temperature and schedule at any point during the study.

At time of intervention, the system that processed the selections made by participants was not functioning.

Selections were manually verified from participants of Group 3, over the phone. Each participant was asked

if they had viewed the email and made a selection. Then they were asked to repeat the selection they

made. Eleven out of thirteen participants had a made a selection before the phone conversation, thus it is

likely that the response to eco feedback was not biased by the phone call. However, participants were more

likely to view the email since they were a part of the study. Thus the response rate to eco-feedback in the

form of recommendations may vary in longer use cases, but the results are promising and worthy of further

investigation.

The recommended schedules had only four setpoints. While this made the recommendations easier to

understand, it is limited and some homes may require flexible scheduling options. The Nest thermostat also

has an advantage over ThermoCoach since it allows for flexible scheduling which has been found to be useful

to users [11]. The current implementation of the scheduling algorithm creates two schedules: one for the

week and one for weekends. ThermoCoach also does not generate separate schedules for each day of the week.

Flexible scheduling is extremely useful to have since some homes may have a three day schedule during the

week and may need a different schedule based on the day of the week. The ThermoCoach UI allows users to

modify and set different daily schedules. Thus even though the system did not generate different schedules

based on the day of the week, homes could have flexible schedules if the users manually made changes to the

ThermoCoach’s suggestions. Hence, the absence of this feature does not affect the energy saving potential of

ThermoCoach. The only concern would be user comfort. Users are given a chance to modify the schedules

before they are programmed on the thermostat. Additionally, users can always override schedule setpoints.

The current algorithm can be easily expanded to add this feature. In this pilot study however, the data was

too noisy and insufficient for the system to generate any meaningful daily schedules.

ThermoCoach currently is not capable of programming the Nest with new schedules automatically and

requires human intervention. At intervention, schedules for homes in Group 3 were manually programmed.

Future work includes use of thermostat that can be better interfaced with.

Occupancy data can be improved with better sensors. Many participants occasionally forgot their key

tags at home. This was particularly prevalent in homes with multiple vehicles. ZWave motion sensors too

have their drawbacks. Since these ZWave battery operated sensors sleep, they often miss events or fail to

report an event to the controller. Also as the number of nodes increases, the performance of the ZWave

network decreases. Motion sensors and ZWave controller had to be replaced in about nine homes. In others,
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the network would repair itself in a couple of days. Only 1/3rd of the homes had good consistent ZWave data.

The Hubs often required to be manually rebooted by disconnecting and reconnecting them to power. Since

the system stored data on tmpfs partition, data was lost on reboot in cases where it was not successfully

synced before the endpoint went down. The platform could be modified in the future to copy and restore

data from tmpfs partition at every reboot. Failures of Hubs or weak WiFi lead to loss of data, including

energy data from Nest, allowing for only limited energy usage analysis before and after intervention.

This pilot study lasted for only one season over a period of three months. The summer season during

which the study conducted was a relatively mild summer for the region. This may have caused people to use

their air-conditioning less often. A study over multiple seasons would help to reduce the effect of any other

external factors that may have affected energy usage behavior. A study of longer duration would give useful

insights into the performance of the system. It would be useful to analyze the minimum number of training

days needed to detect changes in occupancy patterns with significant confidence. Future work would include

a study that lasts twelve to eighteen months.

ThermoCoach did not present to users a history of their setpoint schedules used in the past, due to the

short duration of this study. However, the current thermostat schedule was presented to users at the time of

intervention. Additionally, the Nest web interface allows users to browse their energy usage history where

they can view how many hours the system was cooling over the last one month and day by day usage of the

past week. Studies have shown that users find it useful to have the ability to view past schedules when they

make decisions about their current settings [11]. At time of writing, the web interface did not give a dynamic

estimation of schedule cost while users modified a recommended schedule. Future work includes real-time

feedback with estimates of change in cost and comfort as users increase or decrease temperatures and change

setpoints.

Current evaluation of ThermoCoach uses an estimation of energy cost and use. Actual energy used was

not measured. A more realistic cost evaluation could be done by using models that include information about

the type of equipment in a home and other factors that may affect energy use.

ThermoCoach currently does not generate recommendations daily and it does not immediately respond

to changes in a home’s occupancy patterns. Future work will include analysis of the minimum number of

training days needed to make a credible detection of change in patterns. ThermoCoach also does not perform

room-level occupancy prediction. The number of sensors needed would increase with the number of rooms.

This would be worth exploring once room-level control of HVAC becomes prevalent in homes. ThermoCoach

is currently designed to work in homes. For ThermoCoach to be useful in offices and commercial buildings,

significant changes to the sensing systems, control algorithms and schedule generation algorithms will be

needed.



Chapter 8

Conclusion

Self-programming thermostats have the potential to reduce HVAC costs. Self-programming thermostats

detect a home’s occupancy patterns and generate tailored setpoint schedules. They reduce the amount of

human effort needed to program or update a thermostat schedule. ThermoCoach uses low cost, off-the-shelf

motion sensors and Bluetooth 4.0 sensors to detect occupancy in a home. Setpoint schedules based on

learned occupancy patterns are generated and presented to users through a web interface. The schedule

recommendations vary in user comfort levels and energy usage. This form of eco-feedback makes homeowners

aware of their energy consumption and motivates them to modify their behavior to conserve energy.

ThermoCoach was evaluated against a programmable thermostat and the Nest Learning Thermostat. 39

participant homes were recruited for the study. The system was trained for six weeks and data collection

lasted three months. Energy savings in homes with ThermoCoach were found to be statistically significant.

ThermoCoach schedules reduced cost by 5% and reduced energy use(onTime) by 6% when compared to

programmable thermostats.

Actionable eco-feedback that puts users in control, in addition to energy usage data, has the potential to

save energy in homes by allowing homeowners to make conscious decisions about their energy consumption. In

this study too, eco-feedback in the form of schedule recommendations was found to be useful in achieving lower

energy costs. Homes and HVAC systems in particular, are major consumers of energy. With a system like

ThermoCoach, it will become easier to achieve the true energy saving potential of programmable thermostats,

in the long term. Annually, such systems can reduce energy cost by 10-20% and billions of dollars can be

saved.
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Appendix

A sample Deployment Sheet is included. It was used by the installer to note down details during deployment.

Email recommendations to homes in Group 3 are also presented here. Each image contains four schedules.

The Current schedule is the schedule that was set by participants before intervention. The three schedules-

High Comfort , Energy Saver and Super Energy Saver are ThermoCoach’s recommendations for a home.
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 Thermocoach: Deployment Information Sheet  

1 
 

ThermoCoach 

 

Participant Name: ABC UVA 

Phone Number: 434-xxx-xxx 

Address:  xxx,yy,zz 

Hub Ids:  thermocoach-hx-x-ble , thermocoach-hx-y-ble, , thermocoach-hx-x-nble, thermocoach-hx-

x-zwave 

 

Returned Thermostat to Participant:                      Yes                      No 

Nest Install Successful:                                              Yes                      No 

 

HVAC Power Reading (State:  Off): 

HVAC Power Reading (State:  On): 

IDs of Hubs Not Working:   

Number of Tags Given:   

Notes: 

 

 

 

 

 

 

 

 

 

  

  

Figure 1: Deployment Sheet
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Figure 2: Deployment Sheet
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Figure 3: Recommendations For Home 1

Figure 4: Occupancy Graph for Home 1



Chapter Appendix 73

Figure 5: Recommendations For Home 11

Figure 6: Occupancy Graph for Home 11
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Figure 7: Recommendations For Home 13

Figure 8: Occupancy Graph for Home 13



Chapter Appendix 75

Figure 9: Recommendations For Home 15

Figure 10: Occupancy Graph for Home 15
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Figure 11: Recommendations For Home 18

Figure 12: Occupancy Graph for Home 18
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Figure 13: Recommendations For Home 20

Figure 14: Occupancy Graph for Home 20
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Figure 15: Recommendations For Home 22
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Figure 17: Recommendations For Home 25
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Figure 19: Recommendations For Home 28
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Figure 25: Recommendations For Home 37
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Figure 27: Recommendations For Home 38
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