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Abstract 

The use of robots in the Computer Engineering department of the University of Virginia 

has been increasing in recent years due to their effectiveness in teaching fundamental system 

design and programming concepts in an entirely engaging and hands-on way. The Mariobots 

class takes advantage of a graphical dataflow programming paradigm to develop an 

autonomous robot. National Instrument’s LabVIEW is the programming language of choice and 

myRIO is the processing unit controlling the iRobot Create. Six labs were designed to familiarize 

students with various Computer Engineering concepts such as signal processing, control 

systems, and pathfinding algorithms. The labs are tightly connected and are building blocks of 

an autonomous driving robot. Therefore, the labs serve as milestones toward an ultimate goal. 

Students begin the course by learning the fundamentals of dataflow programming. Due to the 

continuous nature of the labs, students are able to receive feedback on the algorithms and 

systems they design each session. As a result, they have the chance to improve upon their 

approach since almost each lab becomes an essential part of the Mariobot’s behavior as the 

course progresses. This thesis is a compilation of the six labs that were created, including 

relevant background information, detailed concept explanation, and hints to possible 

approaches and solutions.  
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Preface 

 The content of this thesis is centered on a newly designed course, Mariobots, here at the 

Computer Engineering Department of the University of Virginia. The name Mariobots stems from 

combining the names of the robot used in the course called iRobot and the processing unit called 

myRIO. I have outlined the thesis to include the history and motivation behind the course. I describe 

various sources that inspired the creation of this course and justify the underlying educational ideas 

behind the creation of the course. One of the main driving factors in this course is the idea of teaching 

theory of various concepts in computer science or electrical engineering using practical real life lab 

exercises.  

As the title, “Mariobots: A Lab-Based Course on Autonomous Driving Robots”, suggests the 

course is hands-on and involves a series of lab exercises. In addition to the concepts introduced 

individually in each lab the overarching motif of the course is autonomous driving. Autonomous driving 

of the robots is the ultimate goal and the premise of the final lab exercise in the course where all the 

building blocks from each lab emerge and are integrated to control the robots autonomously.  

There are six labs and each one is explained in details providing background information and 

describing the underlying concept as well as the problem description. There are also hints, suggestions, 

and things to look for in good solutions to both help the instructor and students. Finally, I mention the 

ongoing developments and possible future additions to the course to improve the quality and enrich the 

learning experience.  
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Motivation & History 

 The Mariobots class evolved from a class in spring of 2014, taught by Philip Asare a computer 

engineering PhD student, Joanne Bechta Dugan the director of the computer engineering program, and 

Ronald Williams an associate professor in the computer engineering department. The class was 

facilitated by a teaching fellowship awarded by the SEAS (School of Engineering and Applied Sciences) 

graduate office. The class was titled: Model Based Engineering Embedded (MBEE) and was inspired by a 

class taught at University of California Berkeley. MBEE class comprised of fourth year and graduate 

students and the focus of the class was on developing models of systems and approaching design in a 

model based manner. As part of the class curriculum there were lab exercises which were adapted from 

the inspiration course at UC Berkeley. The platform and the equipment was however slightly different. 

Instead of the myRIO 1950 used in the original course, we had access to a more powerful and complete 

version of the processor, myRIO 1900. Additionally, Philip adopted and slightly modified a piece of 

LabVIEW software as a link of communication between the myRIO and the iRobot. The software was 

originally developed by a group called LabVIEW Hacker which has now rebranded to LabVIEW 

MakerHub.  

 I was a fourth year undergraduate student in the MBEE class and was introduced to the trio of 

LabVIEW, myRIO, and iRobot. The lab exercises and projects in that class encountered a number of road 

blocks most of which consequences of not being familiar with the programming language, the data flow 

paradigm, and the hardware. Once the class ended, I decided to dig deeper and learn all the nooks and 

crannies of the hardware and the software. Thereafter, professor Dugan decided to offer a 1.5 credit lab 

in fall of 2014 to continue working with the robot setup we had to explore several possibilities. I became 

the teaching assistant for the course and worked alongside the students to develop and design modules 

and state machines to serve showcase one final project. The project consisted of several robots traveling 

through an intersection and stopping at the traffic signal depending on the color of the light. They 
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stayed between lanes using a very simple strategy by employing the IR sensors. The learning curve was 

steep and students were lost at more points than one throughout the semester. As a result I decided to 

design a few check points to serve as semi lab exercises to guide the students throughout the course. 

That became the plan for the class offered in the following semester, spring of 2015, as a 3 credit class. 

The idea was to work towards a large scale obstacle course as the end goal of the class where robots 

avoid obstacles, read barcodes and stay within their lanes. The course was an overall success; however 

there was one negative consequence of my methodology: students tended to hack solutions together 

and spend more time optimizing parameters as opposed to programmatically and methodologically 

solving the problems. That experience made me realize the essential need for a series of well-structured 

lab exercises to introduce the concepts formally and require complete designs ever so free of tweaking 

parameters. As the last iteration of the class which I am part of, the students have successfully 

completed a series of six labs and as of the time of writing this thesis they are completing their final 

projects.   

The remainder of this thesis is as follows: first I mention some of the related works and similar 

programs at other universities which help in formulating ideas for the Mariobots course, next there is a 

brief introduction to the course followed by a series of six lab exercises each containing introduction and 

objective, description of the underlying concept, statement of the problem, deliverables, and additional 

areas of consideration. At last there is a conclusion and future works section to layout current and 

possible future developments and additions to the course.  
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Related Works 

Computer engineering, computer science, and electrical engineering concepts have long 

been taught with a theoretical approach throughout classrooms. However, in recent years a 

more hands-on approach has proven to be more effective in truly conveying the underlying 

concepts. Implementing an algorithm or designing a system based on a theory and then 

witnessing the resulting work as a physical example, greatly enhances the learning experience. 

Numerous engineering programs across the country are applying these methods to better serve 

and educate their students.  

For instance, in the fall of 2010, Harvey Mudd College revamped their entire core 

curriculum to include more relevant elective courses. Traditionally, elective courses were solely 

designed for upperclassmen due to the belief that these courses had multiple prerequisites. 

However, they were able to design classes that would also be suitable for freshmen to allow 

more students the experience, without requiring extensive prior knowledge of the subject 

matters. 1One of the courses Harvey Mudd College faculty introduced was titled E11: 

Autonomous Vehicles, which offered an interdisciplinary hands-on introduction to design and 

engineering concepts, ultimately motivated by a robot design competition. One of the main 

goals of the class was to whet the appetite of students and encourage them to seek and learn 

more advanced topics in the field.  

2In a similar and related class at the Mechanical and Electrical Engineering Technology 

Department at Georgia Tech University, fourth year students focus on team-based, semester 

long projects where they design and assemble mobile robots that accomplish various tasks. This 
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course is particularly concerned with breaking the notion of theoretical education in 

engineering disciplines, specifically those concerning electrical, computer, and mechanical 

engineering. Most engineering programs follow methodologies regarding system design that 

are focused mainly on the theoretical aspects of systems. 3This class provides students with 

hands-on laboratory experiences to ultimately enable more complex system designs. A 

significant chunk of the class is devoted to integration of embedded systems, hardware, and 

software. 

5A class taught at the University of California, Berkeley as EECS 149, an undergraduate 

class on embedded systems, has been a role model for the creation of the course designed here 

at the University of Virginia. The UC Berkeley course provides students an overview to the 

analysis and design of computational systems that interact with physical processes. 

Applications of such systems are visible in just about every field, such as medical devices, traffic 

system control, automotive systems, energy management, consumer electronics, 

communication systems, etc.  One of the major themes of the course is the exploration of 

embedded and cyber-physical systems through analysis of their interactions with the physical 

world. The emphasis is on basics of analysis tools, models, and design of embedded and cyber-

physical systems. The physical world is modeled using continuous-time ordinary differential 

equations and computations are modeled using state machines. The course intends to 

familiarize students with formal modeling techniques, which incorporate both physical 

dynamics and computation. Formal techniques are used to specify, describe, and desired 

behavior. Lab exercises are designed to engage the students with the lowest levels of 

abstraction for programming embedded design systems, to the highest levels of abstractions 
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such as concurrent models of computation and graphical approach to system design. At the top 

level, LabVIEW, from National Instruments is utilized to teach model based design to students.   

The robot chosen for the task is prebuilt and ready out of the box. The robot is called 

the iRobot Create and was first introduced back in 2007. This robot is modeled after Roomba, 

the vacuum cleaning automated robot, and is intended for research and development. The 

iRobot is particularly suitable for education due its compactness, ease of use, and robustness. 

4The iRobot has an open interface which allows it to communicate with virtually any other 

device or platform. The electronic interface consists of a 7 pin Mini-DIN connector and a DB-25 

connector in the cargo Bay to allow other types of hardware such as additional sensors or 

actuators to be added. There is also a piece of software on the iRobot to allow for polling the 

sensors and commanding the robot. The software accepts a series of commands including 

mode commands, actuator commands, song commands, demo commands, and sensor 

commands which are sent to the robot’s serial port from a computer or a micro controller 

connected to the Mini-DIN connector or Cargo Bay Connector. 

The processing unit for computation and deployment of models to control the iRobot 

has been chosen to be the myRio produced by National Instruments. The myRio serves as the 

central controller and the link between what is developed on students PCs and what is run on 

the iRobot to control its’ behavior and communicate with its’ sensors. The National Instruments 

myRio is an all-purpose multiprocessor microcontroller with a Xilinx reconfigurable field-

programmable gate array (FPGA). The processor is dual core that includes a fixed set of 

peripherals and is preconfigured with Linux including real-time extensions. The FPGA consists of 
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memory, logic units, general input/output, and other reconfigurable blocks at the hardware 

level. It is especially useful when there is a need for precise and fast parallel processing and the 

CPU architecture fails to deliver. A group called LabVIEW MakerHub, formerly known as 

LabVIEW Hacker, developed a program to be used as a platform in LabView called iRobot 

Navigation to deploy to the myRio as the brain of the iRobot. The iRobot Navigation project 

uses statechart module in LabView to allow students to easily implement their state machines. 

Additionally the project bundles sensor data and command information in an easy to use and 

compact way.  

The class taught at UC Berkeley has been modified and extended to introduce a more 

hands-on and project focused class here at the University of Virginia. The combination of the 

myRio and the iRobot is called the Mariobot and is referred as such hereon. The iRobot 

Navigation, created at UC Berkeley, is taken as the base level of every lab and students attempt 

to build on top of that. The goal was to not require the students to spend much time creating 

interfaces between the hardware and software, but rather devote their time to designing and 

implementing algorithms and state machines, and see the result of their work in a real physical 

example using the robots. In contrast to the course created at UC Berkeley, whose primary 

purpose was to teach students model-based design engineering, the purpose of this course is to 

effectively teach students several key engineering design, computer science, and electrical 

engineering concepts, while simultaneously working towards creating an autonomous driving 

vehicle. These concepts include designing finite state machines, being able to understand and 

implement priority based design, learning how to design, implement and use a PID controlled 

system, understanding how to incorporate hierarchical state machines, designing and applying 
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the path finding algorithm of A*, and being able to combine all of the above, coupled with the 

use of a new sensing mechanism, to create a fully autonomous vehicle that can avoid obstacles 

and recognize traffic signals based on vision.  

To fulfill this goal, six labs were created to build the course, each of which introduces a 

new concept that the students can use to implement a solution to the issue at hand. The 

resulting system designed in each lab becomes one of the building blocks of the ultimate 

autonomous driving vehicle. As a result, labs are continuous, connected, and improve on past 

implementations or designs as the labs evolve in complexity. The ultimate lab consists of 

autonomous driving vehicles roaming around an intricate physical recreation of roads and 

traffic lights.  

It is important to keep in mind the cost feasibility of tools, platforms, and other needed 

materials when planning hands-on courses. While this thesis does not include cost analysis of 

the equipment used in the lab, it was necessary to mention the different pieces and their 

creators. The focus of this course is not to teach the students how to assemble robots or build 

the underlying electronics communicating with sensors. It was rather to teach more high level 

concepts of engineering design, computer science, and electrical engineering.  
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Lab01 – Stay in Bounds  

Introduction 

 A mobile robot is an automated machine that is capable of moving through a given 

environment. Mobile robots have the freedom to roam around without the need of a fixed 

physical location, and can be further developed to be autonomous. An autonomous robot's 

goal is to gather necessary information from the environment it is placed in and couple that 

with preexisting knowledge of certain rules and regulations to achieve the utmost degree of 

autonomy. Such robots must work without human intervention and try to avoid situations 

where the safety of people or the surrounding area is compromised.  

 Autonomous mobile robots must possess an arsenal of sensors to extract information 

from their surrounding area. Such information is vital in the process of decision making. 

Environmental sensors come in different forms or shapes such as electromagnetic spectrum, 

vision, chemical, touch etc. For instance, some vacuum cleaning robots determine the amount 

of time they have to spend in one particular area based on the rate at which dirt is being 

vacuumed.  Perhaps the most basic need of a mobile robot is to detect the boundaries of the 

environment it is traveling through. Depending on the situation and the type of robot, such 

boundaries could be signified with various distinctive areas such as land vs water, dirt road vs 

pavement, black background vs white background etc.  

 This lab’s objective is to detect the boundaries of a road using the Mariobot’s bottom 

infra-red sensors and to drive between those boundaries. The background color is distinctively 
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different from that of the boundary lanes. The Mariobot must be able to continuously drive 

forward and adjust itself every time it goes over any of the boundaries.  

Concept 

All objects emit heat energy in the form of radiation as long as they are above absolute 

zero temperature. Such radiation is invisible to the naked human eye, since the wavelengths 

are not within that of the visible light spectrum. However, such radiation can be detected 

through electronic sensors designed to measure infrared radiation. These sensors often act in a 

passive manner, meaning they do not emit any radiation for detection purposes, but rather 

work entirely based on radiation reflected from other objects.  

The IR light entering the sensor is transformed into an electric current and thereafter 

detected by a voltage detector. This is due to a unique property of Light Emitting Diodes. LEDs 

are able to emit light at a specific wavelength when supplied a certain level of current. On the 

other hand, they are also able to be wired to produce a certain current when subjected to that 

same light radiation. IR emitters and detectors are found in many devices used every day, such 

as remote controls or a computer mouse. Each one uses IR for a different purpose: remote 

controls use it to transmit data from one device to another and a computer mouse uses it to 

track the direction of movement.  

Infrared sensors could be used to detect the surface brightness of various objects. They 

are effective in distinguishing between dark and light objects. Infrared sensors, in their most 

basic form, come in pairs. Such pair consists of a sender and a receiver placed adjacent to one 

another, where the sender emits rays and the receiver records the reflection. Objects with 
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different colors reflect different amounts of the emitted IR. This enables us to distinguish 

between so called “dark or black” and “light or white” colors.  The following diagram shows an 

example of such setup.  

 

 

The current value detected through the IR receiver is then used to detect the brightness 

of object surfaces in comparison to one another. This is the underlying concept of detecting 

boundaries, where the background of the road is given to be vastly darker or lighter than that 

of the boundaries themselves.  

Problem Description 

In this lab we will use the IR sensors at the bottom of the Mariobot, shown in the 

following figure, to detect when the Mariobot has crossed the boundaries of the road. The 

robots will be navigating on grey mats (the road) and will have to stay within bounds of white 
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tapes specifying the boundaries of the road. There are various algorithms you could implement 

to keep the Mariobots on the road. However, keep the followings in mind when making design 

choices:  

 Time it takes to complete the path 

 Easy calibration step to adapt to the mat and tape color 

 The state machine should be deterministic  

 

Deliverables 

 Detailed state machine of your design 

 Demo  

Additional Areas for Consideration 

 This is the first step to making an autonomous Mariobot and the IR sensors are the first set 

of input signals. There is one set of sensors in the front and one set on the side of the 

Mariobot. It is important to utilize them in combination, but realize the different situations 
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they might be triggered in. For instance, the front sensors should be interpreted as the 

Mariobot is currently headed straight towards the boundary and perhaps a sharper turn is 

required to adjust, whereas the side ones might only require a slight adjustment. 

Additionally, depending on how fast the Mariobot is moving, it might be beneficiary to keep 

a temporary queue of sensor readings along with timestamps, to determine whether the 

Mariobot has fully or partially exited the track and adjust accordingly.  

 The solution should not have the values of the white tape hard coded into the states. The 

value should be a control on the front panel, so that it is easily modified and adjusted for 

calibration purposes, or in the case, where the tape color changes.  

 All four sensors do not behave the same. For any reasons including but not limited to dust 

accumulation, varying voltage, or simply manufacturing differences, there might be an 

offset associated to each one. This is resolved by correcting the value after the sensors are 

polled, and before they are made available to the state machine. The data cluster in the 

main VI of the Mariobot navigation project carrying the sensor data can be unbundled, 

changed, and re-bundled. 
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Lab02 – Reading  Barcodes 

Introduction 

 The behavior of a system or the functionality of it can be modeled in numerous ways, 

the oldest technique being through finite state machines. These machines describe the system 

by being in different states at any particular time. Each state has its own characteristics and 

handles inputs and outputs in a defined manner. The idea of finite state machines could 

potentially be traced back to some early considerations of physical matters’ states. For 

example, water in nature is available in one of the following three states: gaseous, liquid, solid. 

Depending on which state it is currently in, the same chemical compound, H2O (water), 

assumes different behaviors. As a result, transitions from one state to another are well-defined.  

 The same concept can be generalized to say that a system, whether man-made or 

natural, can be defined by the set of possible states that it occupies at any given time. Such 

states have particular behaviors associated with them, along with well-defined transitions 

between the states. The collection of states list, states behaviors, and transition logic comprise 

the definition of a finite state machine. The following figure shows a simple finite state machine 

with two states and two transitions. The two states describe the behavior of a heater which 

turns on if the temperature (Temp) drops below some threshold (Thresh1), and consequently 

turns off if it goes above another threshold (Thresh2). Note that this design is very simplistic 

and has many flaws, but nevertheless represents a finite state machine.  
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 Finite state machines are either deterministic or non-deterministic, depending on their 

design. Deterministic finite state machines have exactly one transition for each input-state pair, 

and are additionally not allowed to make any transitions without the presence of an input. On 

the other hand, non-deterministic finite state machines can have zero or more transitions for 

each input-state transition. It is beyond the scope of this lab to provide a proof of equivalency 

between Deterministic Finite Automata (DFA) and Non-Deterministic Finite Automata; 

however, it must be mentioned that for any DFA there exists an NFA and vice-versa. Note that 

analysis of deterministic finite state machines is much simpler and is required for the purposes 

of these labs; therefore, all state machine designs must be deterministic.  

 The objective of this lab is to model a sequential process, such as reading a barcode, 

into a deterministic finite state machine, to act as the processing unit of the Mariobot reading 

the barcode. This lab is comprised of two phases, where phase one deals only with the solution 

to reading a barcode, and the second phase contains error checking, calibration, and alignment.  

It is important to design the state machine before implementing it, in order to identify correct 

transition logic, state behavior, and overall functionality.  
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Concept 

A barcode is an optical machine-readable representation of a particular piece of data. It 

is much easier to recognize and understand than regular numbers . Thus, since the creation of 

the first barcode in the 70s, it has become a ubiquitous part of everyday life. Barcodes are 

found on almost every product as the standard tool of labeling. Traditional barcodes 

represented data by varying the widths and spacing of parallel dark and light lines. As a result, 

they are referred to as one dimensional or linear barcodes. The following figure shows an 

example of one.  

 

 The mapping between the data and the barcode is called symbology, which typically 

specifies two common properties. The first one pertains to the barcode being continuous or 

discrete, signifying the number of bars and spaces. The second one is two-width vs. many-

width. In this lab the symbology is a discrete two-width, also called a binary barcode, which is 

defined and used to map messages or actions to barcodes. In a binary barcode there are two 

varying widths, “narrow” and “wide.” The width of the bars is not particularly important, and 

the wide bars are typically twice or three times as wide as the narrow ones.  

 As the Mariobot moves over the barcode, it distinguishes between bars and spaces, 

generating a signal. This signal is essentially the input of the state machine that is in charge of 
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interpreting the barcode. Depending on the sequence of bars and spaces and the symbology, 

the state machine deciphers the message as the Mariobot goes over the barcode. Once the 

barcode is over, the message is complete and recorded.   

Problem Description 

Traditional barcodes consist of parallel lines of varying width and spacing. The barcode 

symbology used in this lab includes dark and light bands. The dark ones are represented with 

masking tape and the light ones with the background mat (road). The width of the light lines is 

constant throughout, but the width of the dark lines could be equal to or double the width of 

the light lines. As the Mariobot moves over the barcode and senses the light and dark bands, 

your program should detect a series of Ls (light) and Ds (dark). As a result, dark lines with twice 

the unit width will translate into DD, where single dark and single light lines translate to D and 

L, respectively.  

We now introduce a pattern where a logical 0 is encoded as LD, and a logical 1 is 

encoded as LDD. This is where a finite state machine comes in handy to translate any given 

sequence in terms of L’s and D’s into logical 0’s and 1’s. The barcode is only 4 digits, which 

makes it easy to determine when the Mariobot should be done reading the barcode. The 

beginning of a barcode is specified with a single D, which means the barcode is about to begin. 

The finite state machine should be in a state of Wait as long as it is receiving L’s (seeing the 

background mat). As soon as it receives the first Dark line (D), it should realize the barcode is 

starting. The following figure shows an example of a barcode.  
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As the Mariobot approaches the barcode, it is detecting Ls, which should keep the state 

machine in a wait state. As soon as the first D appears, the state machine should expect the 

barcode to start. Therefore the next L, D, and D are processed and translated into a logical 1. 

Then there is an L and D followed by two more LDDs, which translate into logical 0 and two 

logical 1s. As a result, the barcode above is equivalent to 1011.  

In this lab you are given barcodes, the meaning of each code, and a set of simple actions 

such as speed up, turn left, turn right, play a song etc. Your Mariobot must be able to read the 

barcodes and use the lookup table to perform an action. The following table shows the 

corresponding action for each barcode.  

Barcode Action 

1010 Turn Right 

1100 Turn Left 

1110 Speed Up 

1111 Stop 
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 Phase1: In this phase the direction of the Mariobot can be perpendicular to that of the 

barcode, such that there is no need for adjustments. Additionally, no error checking such as an 

incomplete barcode, a different colored tape, or a barcode longer than 4 digits is necessary. In 

this phase, the state machine must be able to simply identify the barcode and perform the 

specified action. 

 Phase2: In this phase your Mariobot must be able to adjust its own direction when 

coming to a barcode, such that it is going over the barcode in a direction perpendicular to that 

of the barcode lines. The barcode is placed in between lanes, as introduced in the Stay in 

Bounds lab, and covers the width of the road. Therefore, the Mariobot must be able to detect 

and stay in bounds even when reading the barcode. Additionally, incomplete barcodes must be 

discarded and ignored. This means that if a barcode only has 3 digits or does not follow the 

symbology provided, it should be ignored. It is imperative to realize the state machine before 

implementing, as the complexity grows tremendously in this phase and might lead to non-

deterministic behavior.  

Deliverables 

 Detailed finite state machine of your design 

 Demo 

Challenge 

 Given the IP address of a server, establish a TCP/IP connection to communicate your 

barcode and receive the action corresponding to it. The communication protocol is as follows: 



23 
 

1. Send “H:” to establish a connection 

2. If the response is also a “H:” proceed with sending the barcode by “C:XXXX” where each 

X is either a logical 1 or 0  

3. The response will be in the form of “R:Y” where Y could be R, L, U, and S which translate 

to Right Turn, Left Turn, Speed Up, and Stop respectively 

Additional Areas for Consideration 

 Possible alignment algorithm: 

o One way to align your Mariobot with the barcode is to use the inverse tangent 

function in order to compute the angle at which you are hitting the tape, and 

adjusting accordingly.  To do this, use a timer which starts as soon as either front 

sensor sees the barcode tape.  At this point, keep track of which sensor saw the 

tape first, and continue driving forward.  Once the opposite sensor sees the 

barcode tape, stop the timer and record the time.  Next, compute the distance 

that the robot traveled by multiplying the current wheel speed with the elapsed 

time recorded in the last step.  Then find the angle by finding the inverse tangent 

with the distance traveled and the distance between the two sensors on the 

Mariobot which is a configurable constant.  Finally, drive backwards, with the 

wheel on the side of the first sensor moving faster until Mariobot has turned the 

calculated amount (in degrees). With this process the angle is effectively 

calculated as follows: 
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 Calibration: Width of the tape should not be important since the Mariobots must use 

the first tape as calibration to learn the unit width 

 De-Bounce: Sensors are known to bounce at the boundaries of tape and background. 

One solution to this is to use a de-bouncing mechanism based on time. When tape is 

detected first, it is validated only if it is detected some epsilon later as well.  

 Priorities: it is important to realize detection priorities. For instance, it is of utmost 

priority to stay within bounds even if the Mariobot is in the middle of reading barcodes 
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Lab03 - Hill Climb 

Introduction 

Automatic control systems have been used in a variety of forms for over 2000 years. 

Early philosophers and engineers devoted their time to designing control systems with the goal 

of developing the idea of automation. A control system is a mechanism, device, or a process 

with the sole responsibility of regulating another mechanism, system, or process. Almost all 

ancient control systems utilized water as their controlling mechanism due to its versatility of 

states and availability. However, this field has matured and grown exponentially over the years 

and its traces are seen in every part of our modern-day lives. Most control systems have a 

feedback mechanism as part of their logic. The word “feedback” was formally used by radio 

engineers in the 1920s, referring to the parasitic, positive feeding back of the output signal 

from an amplifier to the input of the circuit. This 20th century word has found its place in 

everyday language ever since. 

Robotics’ and control theory’s evolution have been intertwined throughout history. 

Early philosophy insisted on single-input single-output (SISO) linear systems, where each 

actuator was controlled independently. The growth in the industry has necessitated higher 

operation speeds of machinery, which in turn required analysis of non-linear dynamics. Such 

requirements motivated the development of control theory. Today, robot control systems 

integrate all ranges of sensors such as sonar and vision, and are highly advanced. 

This lab’s objective is to explore one of the simplest forms of a feedback system. In this 

lab, the robot must be able to always work towards an upward direction while navigating to the 
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top of an incline, without having information of its whereabouts, and regardless of any 

disturbances. To complete the lab, a feedback system must be implemented to control the 

direction of the robot.  

Concept 

Systems are either categorized as open loop or closed loop. The following figure is a 

simple example of an open loop system. In this system, the input acts on the plant or the 

system to be controlled, and as a result some output signal is generated. It is important to note 

that more often than not, the performance of such a design does not satisfy the requirements. 

For example, if the task is to navigate the robot from point A to point B at some distance away, 

one can determine the speed of the robot to find out how long the robot should drive to 

complete the path. This type of control is called open loop since the amount of time the robot 

has to drive is not adjusted based on the position of the robot at every moment. Open loop 

controls are sufficient for systems that do not undergo many changes and/or accuracy is not 

the main concern. However, in this case, any drop in voltage of the robot’s battery could result 

in a change of speed, which is not accounted for in the calculations and thus, would result in 

the robot being unable to complete the path successfully.  
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 The solution to this problem is feedback control, where the output is fed back so the 

system can make adjustments accordingly. In a feedback system, your ultimate goal is the 

target signal. This is compared to the measured value and the difference indicates the error, or 

in other words, how far off the system is from its goal. A controller takes in the error signal and 

converts it into a command that is then passed to the system as the new adjusted input. The 

primary goal of the controller is to minimize error over time, so that the target is reached. The 

following diagram shows the simple feedback system mentioned here.  

 

 

One of the most widely used control systems is called a PID (Proportional, Integral, 

Derivative) control loop feedback system. Each of the three terms in PID describes how the 

error term is treated before being summed and received by the system. In the proportional 

path, the error term is multiplied by a constant called proportional gain. Similarly, the integral 

and derivative paths are multiplied by some constant as their gains. The three terms are then 

summed together to make up the controller’s output. The gains are adjusted or tuned and 

signify how sensitive the controller’s output is to each of the three paths. The following 

equation describes the control system.  
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑇)𝑑𝑇 + 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡) 

𝐾𝑝, 𝐾𝑖 𝑎𝑛𝑑 𝐾𝑑are gain parameters 

The following figure shows how each of the three components react to different error 

values separately. The error in the system is represented by the damped sinusoidal signal. In 

the proportional path, the output is the error scaled by the gain Kp. Naturally, when the error is 

large, the proportional path produces a large output, and when the error is negative the output 

is negative also. The integral path sums up the error as time goes on and multiplies it by 

constant KI. It is evident that the integral path is the area under the curve. The purpose of the 

integral path is to remove steady-state errors, also known as constant errors, in the control 

system. This is useful since, no matter how small the error is, the summation would be large 

enough to adjust the controller’s output. In the derivative path, the rate of change of the error 

is what is accounted for in the output signal. When the rate of change is small, the derivative 

path is also small, and similarly when the rate of change increases, so does the derivative path. 

It should be noted that not all three components are always necessary, thus their respective 

gains could be set to zero. For instance, if KD is set to zero, the controller becomes of the type 

PI, which has only the proportional and the integral paths.
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Problem Description 

In this lab you will be given an inclined surface. The goal is to drive up the incline 

regardless of your starting position or orientation. The boundaries of the incline are marked 

using white tape; therefore, you should use the Stay in Bounds lab to not allow the Mariobot to 

fall off the edges. There will also be a few obstacles that you will need to avoid along the way. 

Use the implementation for the Obstacle Avoidance lab to maneuver. The obstacles will not be 

in a form as to corner or trap your Mariobot. They are simply placed to change the direction of 

motion, to test the effectiveness of your PID controller implementation.  Note that your starting 

orientation will not be pointing down, and thus you should not be worried about finding the 

uphill direction.  

Deliverables 

 Detailed state machine of your design 

 Sketch of the PID system designed with sensors and actuators labeled 

 Choice of your tuning parameters and reasoning behind it (𝐾𝑝, 𝐾𝑖 𝑎𝑛𝑑 𝐾𝑑) 

 Demo  

Additional Areas for Consideration  

 In this lab you are required to find the direction of uphill. The suggested sensor for this 

is the accelerometer on the myRIO. Hold the myRIO in different positions and observe the 

readings of the accelerometer to decide which of the axes is suitable as the input signal to your 

PID. You must also decide what signal it is that your controller is controlling. Once you have a 
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clear view of your control signal, actuators, and target point, you should be able to conquer this 

lab.  

 Bumper sensors are far from perfect and might give off bad readings specially in head 

on or semi head on collisions. This results in a trap specifically when the obstacle is 

adjacent to the boundaries. In such cases the Mariobot should be able to use the 

boundaries to realize whether the direction it decided to turn to was correct and if not 

make proper adjustments.  

 PID should work smoothly and not result in over shooting or under shooting when the 

Mariobot is turning.  That is dependent on parameter tuning which should be 

accomplished manually or programmatically as a challenge using a feedback loop  

 Mariobots should be able to run at various speeds to really test the feasibility of 

algorithms controlling them. As a result wherever possible, hard coding constants 

should be replaced with programmatic solutions.  
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Lab04 - Road Race 

Introduction 

Mobile robots navigate through any environment with the goal of going from one point 

to another, with utmost safety and a high degree of accuracy. Such navigation requires obstacle 

avoidance algorithms, which are slightly different than path planning. Obstacle avoidance is 

often designed as a reactive system, while path planning involves pre-processing and 

computation of a path free of obstacles to guide the robot to the target. This field has been 

growing exponentially in recent years due to rapid development of unmanned air vehicles and 

autonomous cars. There are a number of different sensors and tools that provide the necessary 

information about the surrounding environment for decision making. Vision, Sonar, LIDAR, and 

Ultrasonic sensors are just a few of such devices, often used in conjunction with one another to 

provide more accurate information. 

The objective of this lab is to design and implement hierarchical state machines. The 

road race comprises of obstacle avoidance and the Stay in Bound lab. The bumper sensors on 

Mariobot are used to avoid obstacles. The obstacle avoidance algorithm’s sophistication 

reduces the time it takes to complete the path. The lab is setup as a road race to encourage fast 

and efficient algorithms.  

Concept 

 Abstraction layers help declutter and detach details from the overall vision of a solution. 

A simple system design of a finite state machine might include a few states, and transitions that 

suffice as the solution. However, a more complex system requiring a few hundred states is not 



32 
 

so easy to keep track of and organize when designing and implementing. One simple way to 

ease the organization part is the use of abstraction. Abstraction is a technique for managing the 

complexity of any system. It works by removing a level of complexity and establishing a new 

level for interaction with the system. Abstraction is a vital step to fully understanding the 

problem and better proposing a solution.  

 The idea of abstraction can very well be applied to finite state machines to ease the 

process and reduce the overall complexity. Theoretically, every state could represent a finite 

state machine in itself which determines the behavior of that state and handles the transitions 

in and out of it. Such a setup is called a hierarchical state machine. LabVIEW’s State Char 

Module has the following element definitions and use cases: 

 Statechart Regions: A region is a designated area that houses states.  Hierarchical state 

machines are achieved through the use of regions within states. Each region needs to 

have an initial pseudostate for initialization purposes. The following diagram shows a 

simple example of a region within a state. 
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 Statechart States: States are placed inside regions and require at least one incoming 

transition. Each state has an Entry and Exit Action which execute upon entrance into the 

state and leaving the state, respectively.  

 Orthogonal Regions and Concurrency:  When there is more than one region in a given 

state, the regions are said to be orthogonal and the states within them are concurrent. 

For example, in the following figure, regions 1 and 2 are orthogonal and states 2 and 3 

are concurrent. Furthermore, substates in orthogonal regions are also concurrent. This 

means that while the superstate is active, the statechart can only be in one substate 

from each orthogonal region during each iteration.  

 Transitions: Transitions define the conditions that statechart moves from one state to 

another. Transitions are comprised of ports and transition nodes. Ports connect the two 
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states together, and transition nodes specify the behavior through triggers, guards, and 

actions. Triggers, guards, and actions behave similar to that in states. A transition 

responds to a trigger and if the guard ‘s logic evaluates to true, the specified action is 

taken. If the logic’s result is false, then the transition is not taken and the action code is 

not executed. 

 Pseudostates: a pseudostate is a statechart object representing a state including the 

followings: 

o Initial State: signifies the starting state when entering a region. Every region 

must have one initial state 

o Terminal state: signifies the last state of the region, which terminates the 

execution of all the other states within that region 

o Shallow history: signifies that when the statechart exits out of a region and 

returns to it, the state chart resumes by entering the highest level substates that 

were previously active when the exit happened 

o Deep history: signifies that when the statechart exits out of a region and returns 

to it, the state chart resumes by entering the lowest level substates that were 

previously active when the exit happened 

 Connectors: a connector links multiple transition segments and comes in the following 

forms:  

o Fork: splits one transition segment into multiple segments 

o Join: merges multiple transitions into one segment 

o Junction: connects multiple transition segments 
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Utilizing the aforementioned tools, one can abstract away complexity, layer by layer to 

achieve a hierarchical design. This design technique becomes more and more relevant as the 

complexity and size of the finite state machine governing a system grows. 

Problem Description   

 In this lab, the Mariobot should complete a track in the least amount of time possible. 

The track lane is marked with white tape, as in the Stay in Bounds lab. There are also bricks as 

obstacles along the track. The Mariobot must be able to avoid the obstacles by sensing through 

the bumper sensors and finding the right path to continue and complete the track. Each 

Mariobot is given a preset amount of time, in which as many trials as possible can be recorded. 

Each trial is timed and thus Mariobots are ranked based on their time trails. Note that obstacles 

are not laid out in a manner to corner Mariobots into a trap.  

Deliverables 

 Detailed finite state machine of your design 

o Hierarchical design is a requirement 

 Demo 

Additional Areas for Consideration 

 Obstacle Avoidance: the algorithm used in hill climb is inadequate and must be 

improved. Here are a few suggestions: 

o Resume the direction of motion after circumventing the obstacle 

o When an obstacle is avoided and the Mariobot immediately sees a boundary a 

major correction should be done to pull out of the trap 
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o Challenge: keep a temporary (time based) queue of previous actions such as 

turns, corrections, and backups to help make a more informed decision next 

 Speed is important in this lab thus completion should not be the only goal. Speed does 

not have to constant through out, so it is encouraged to speed up when having the 

chance to. However it is imperative the barcode alignment algorithm is revisited to 

account for when the Mariobot runs over the tape fast enough that it passes the tape 

before aligning 

 Hierarchical state machines are absolutely vital from this lab onward 
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Lab05 – Autonomous Driving  

Introduction  

 The objective of this lab is combining the pieces implemented in previous labs to 

demonstrate an autonomous driving robot. An autonomous robot is able to use an array of 

sensors to collect information about its surrounding area, in order to make safe and informed 

decisions while completing a task. Up until now, the robots did not have vision as part of their 

arsenal. Vision is introduced in this lab as an additional sensor.  The vision processing unit is 

black-boxed and able to detect the state of traffic signals, as well as recognizing other robots 

based on the specific mark installed on top of them. For those interested in improving or 

modifying the vision unit, a detailed explanation is given in the following section. 

Concept 

 Vision is perhaps the most vital part of an autonomous vehicle. Detecting the 

boundaries of the road, keeping the robot on track, detecting hazards, recognizing obstacles, 

and many more tasks are made possible using machine vision. For the purposes of this lab, the 

vision processing unit is in charge of detecting a traffic signal’s state and the position of other 

Mariobots by identifying the mark on top of them. The front panel of this unit is displayed in 

the following figure and each indicator is explained below.  
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 Unprocessed Webcam: the real time raw feed from the camera  

 Processed Traffic Light: a binary image isolating the traffic light based on intensity  

 Processed Obstacle: a binary image isolating any obstacles in the image, based on color 

 Detection settings: a set of parameters to tailor the detection to obtain desired results 

o Traffic Light Brightness: controls the intensity interval between 0 and 255 to 

isolate the light. Traffic light has a high brightness, thus the interval should be in 

the high range 

o Traffic Light Min Max Radius: this interval should be set depending on the 

distance the Mariobot should recognize the traffic light. The unit is in pixels.  

o Obstacle Hue Range: defines the interval of where the obstacle’s color should fall 

within 
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o Obstacle Light Min Max Radius: determines the minimum and maximum radius 

of an obstacle to be detected. This range should be chosen based on how and in 

what range the obstacle needs to be detected. The unit is in pixels.  

 Camera Settings: depending on the quality of the camera, it may be necessary to adjust 

the white balance and exposure in here. The default should be set to default.  

 Results 

o Red Light: Boolean indicator to show if the traffic signal is Red 

o Green Light: Boolean indicator to show if the traffic signal is Green 

o Obstacle: Boolean value to show if any obstacles are present 

The detection algorithm for traffic signal is quite similar to that of the obstacle is outlined 

below:  

1. Acquire an image from the webcam  

2. Color plane extraction : this step extracts the specified color plane, thus changing the 

image into a gray scale image. HSL (Hue Saturation Luminance) is used as opposed to 

RGB color space to obtain color and intensity independent of one another for filtering 

purposes. 

a. Extract the Hue plane for obstacle detection  

b. Extract Luminance plane for traffic signal detection 

3. Threshold: Use the specified ranges for obstacle’s Hue and traffic signal’s intensity to 

filter threshold the gray scale image and produce a binary image containing the desired 

parts 
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4. Morphology (Basic and Advanced): the binary contains noise and thus could cause false 

positives. In this stage a series of basic morphological operations such as erosion and 

dilation, as well as several advanced methods such as fill holes and remove small objects 

to clean up the image.  

5. Circle Detection: circles are detected in the binary image using a Hough transform circle 

detection algorithm, according to the minimum and maximum specified radii. The 

coordinates of the circle along with its radius is recorded as output 

6. Classification: the detected circles’ data is processed to determine its classification 

a. Traffic signal: to detect whether the circle found in the intensity image is green 

or red. 

i. Based on the circle’s coordinates and radius, a full color mask is created 

out of the original image.  

ii. Histogram of distribution of Red and Green in the mask is extracted and 

the mean is computed  

iii. The one with the highest mean is labeled as the condition of the color 

b. Obstacle: to detect if the circle found in the hue image is the obstacle (orange)  

i. Based on the circle’s coordinates and radius, a full color mask is created 

out of the original image.  

ii. Histogram of distribution of Red and Blue in the mask is extracted and 

the mean is computed  
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iii. If the mean of the Red histogram is at least 1.5 times that of the blue, the 

obstacle is said to be detected. Such analysis could be done on the Hue 

plane of the HSL color space to detect other colors as well. 

The following diagram shows the full block diagram of the mentioned algorithm. The vision 

assistant script is also shown at the bottom of the diagram in details.  
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Problem Description 

In this lab  the code which identifies the state of the traffic signal through outputting 

two Boolean values for Red and Green light is given through a black-boxed vision unit. 

Additionally, the vision code is able to detect other Mariobots by recognizing a circular orange 

sign placed on top of each one. The information outputted is the coordinates of the center of 

that circle along with its radius. It is your job to decide how to interpret the information and 

react to it. Keep in mind that the circle will seem to increase in size as the Mariobots get closer 

to one another, thus you could use that information to slow down or possibly come to a full 

stop before crashing into other Mariobots. The boundaries and stationary obstacles (bricks) 

should be treated the same as previous labs. The road is marked with a single tape (same one 

used for barcodes) to signify the line before a traffic signal where the Mariobots must come to 

a stop if the light is Red.  

The objective is to drive through the track while staying in your lane, avoiding obstacles, 

obeying traffic signals, and maintaining a safe distance with other Mariobots. You should 

attempt to define your algorithms and or state machines to account for all possible states. That 

does not mean modeling every possible event, rather it is a way of responding to certain events 

and grouping the rest into a default case so that your design is in a way fail safe.  

Deliverables 

 Detailed finite state machine of your design 

 Demo 
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Lab06 - Solve a Maze 

Introduction 

 A maze is a collection of pathways or just a single pathway between two points. Mazes 

are built with rooms and walls, hedges, colored lines, or pretty much anything that can 

constrain the straight path between two points. Mazes can have one start and finish or multiple 

entry and exit points, depending on their designs. More complex mazes have many dead ends 

deep rooted in their design, which intently make them more difficult to solve. Mazes can be 

drawn on paper to be solved by humans, designed virtually to be solved by computers, or laid 

out physically to be solved by robots. Typically there are two types of maze solving algorithms. 

One in which the traveler has absolutely no prior knowledge of the layout, and the other where 

the person or the program is aware of the map beforehand and must find the shortest path. 

The following figure demonstrates a simple maze by highlighting the entrance and exit points.  

 

The objective of this lab is to find the shortest path from the start to the finish point 

using the well-known A* search algorithm. The robot will be given a map of the entire maze 

with the walls and the start and finish points highlighted. The robot must then compute the 
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shortest path and complete the maze following that path. The mapping and position of the 

robot is black boxed and given using an omniscient camera overlooking the maze at all times.  

Concept 

 There are various algorithms that can be used to solve a maze and find the shortest path 

from start to finish. Dijkstra’s algorithm and Bredth-first search are some examples of different 

algorithms that can be used. However, the algorithm that is most popular in the field of 

pathfinding is called A*(A-Star). A* is not a BFS (Bredth-First Search), nor it is a DFS (Depth-First 

Search). In fact, it is a combination of Dijkstra’s algorithm and Best-First, which is a greedy 

algorithm. The improvement that A* makes to DFS and BFS is that it tries to pick the next node 

to visit not as blindly as those two do. It attempts to pick the next move based on how 

promising that move might be and that is where A* shines. Simply put, A* generates all the 

possibilities at each stage and picks the one with the least projected cost. When a possibility is 

generated and the associated costs are computed, they are saved in a list along with other 

possibilities until all of the better nodes have been searched before it.  

 The cost function is defined which the decision making is based on is defined in the 

following manner. 

𝐹 = 𝐺 + 𝐻 

 Where F is the cost of a given node and is equal to the sum of G, the cost of getting from 

start to that point, and H, the guess or heuristic cost of getting from that node to the target node. 

A heuristic is not necessarily a series of steps toward a solution; rather it helps determine the 

answer in an approximate form. Note that if the calculation of H is perfect, A* is capable of 
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finding the best path in a very short time. However, that is almost never the case and the heuristic 

calculation is at best, a rough estimate. The following figure shows an example map where the 

green square signifies the start, the red square signifies the target, and the walls are represented 

by black squares. In mazes such as the one below, it is feasible to choose the heuristic function to 

be the Euclidean distance between the node in question and the target.  

 

Each node should have the following information stored in it: parent node, position, F, G, 

and H. Having a cost function for each node, the following steps should be to find the path. Two 

lists, one called open and one called closed can keep track of nodes as the algorithm progresses 

through the map. Thereafter, the following steps must be taken to find the desired path: 

1. Add the starting node to the open list  

2. While the open list is not empty do the following: 

a) Find the node with the least F associated with it in the open list and call it p 

b) Remove p from the open list and generate p’s 8 successors and set their parent 

nodes to be p also 

c) For each successor check the following: 

 If the successor is the goal, the path is complete and you can thus exit 
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 Calculate the successor’s G by adding p’s G component to the distance 

from p to the successor. Also, the H component is naturally the distance 

from the target to the successor 

 If there exists a node in the open list which has the same position as the 

successor and has a lower F, then continue and skip the current successor 

 If there exists a node in the closed list which has the same position as the 

successor and has a lower F, then continue and skip the current successor 

 if none of the conditions are met, then add the node to the open list 

d) Add p to the closed list and go back to step 2 

Note that when using this algorithm a node might be searched and visited many times. 

However, that only happens if the node is part of a better path than the last time it was part of 

the search.  

Problem Description 

The goal of this lab is to solve a maze using Mariobot. The maze is designed using 

squares slightly larger than the size of the Mariobot, each of which could have one of the 

following four different labels: 

 Start (S): This square signifies the starting position of the Mariobot  

 Finish (F): This square signifies the target positon  

 Wall (W): This square signifies an occupied space where the Mariobot is not allowed to 

go over 

 Empty (E): This square signifies the space that Mariobot is allowed to travel through 
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Details of the map are provided through a black-boxed vison processing unit that 

analyze the live feed overlooking the entire space with an omniscient point of view. The 

map is given in the form of a 2D array containing Start, Finish, Wall, and Empty as S, F, W, 

and E respectively, to communicate the content of each square.  Once the map details are 

made available, your Mariobot must compute the best path from start to finish, while 

avoiding the walls using an implementation of the A* maze solving algorithm. Up to this 

point the Mariobot must remain outside of the maze.  The following figure shows a sketch 

of the setup. 

 

 After the best path is determined, the Mariobot should be placed in the square marked 

as start. The vision unit provides the location of the Mariobot in a real time feed by specifying 

the X and Y coordinates of the Mariobot’s center. Using the location of the Mariobot, the 

predetermined steps of the best path, and the coordinates of each square’s center location, the 

Mariobot must navigate from start to finish. Navigation of the Mariobot is best accomplished 
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using a PID controller. The design is similar to that of the Hill Climb lab, with the input signal 

being the position of the Mariobot instead of the accelerometer’s signal.     

 The design of this lab should be broken up into two phases- pre-process and the process 

itself. The pre-processing is in charge of computing the best path from start to finish and the 

process is to navigate the Mariobot on that path. Therefore it is highly advised to make use of 

abstraction tools such as sub-Vis and hierarchical state machine designs to keep everything 

organized, understandable, and easy to debug.   

Deliverables 

 Detailed state machine of your design 

 Demo  
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Future works 

 There are number of different lab exercises which did not make the cut for the purposes 

of this thesis and have not yet been implemented. Two of the ones that should be investigated 

in the near future and incorporated into the course are the following:  

 Calibration Lab: This lab would appear in the beginning of the series and deals almost 

entirely with digital signal processing (DSP) concepts. One of the major issues students 

deal with in various labs is the manual calibration phase of interval detection for IR 

sensors to differentiate between different colored tape. This lab would require the 

robot to drive in a straight line and record all the readings coming from the IR sensors 

and plot them as a time series. In addition to the background mat, the different colored 

tapes are laid out in parallel to one another for the robot to go over, as it continues to 

move in a straight line. Once the reading phase is done, the program must be able to 

find all the different intervals of IR readings from the colored tapes for each sensor. This 

lab’s purpose is to thoroughly calibrate the IR sensors individually for all kinds of colored 

tape.  

 Collision Detection Based on Accelerometer: One of the major drawbacks of detecting 

collisions using the bumper sensors of the iRobot is the inaccuracy and nondeterministic 

behavior of them. There are many corner cases where the general angle of collision is 

not detected properly and the robot is not able to handle the obstacle correctly. This lab 

attempts to take advantage of the accelerometer on board the myRIO to record the 

collision data. Once the data is acquired, theoretically it is possible to isolate the 
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collision on all major axes and determine the angle of collision using relatively simple 

geometry.  

In addition to the aforementioned lab suggestions, there is one module that could 

potentially improve the ability of the robot in scanning its surrounding environment in each lab 

and as a result, greatly increase the degrees of freedom students have in each exercise. The 

module which is currently being developed takes advantage of vision to stay within the bounds 

of a given line using the two side lines. If and when this module is complete, it will be packaged 

and given to students as part of the lab files so they have yet another system to control and 

design various behaviors for. In short, the vision module will detect the two sides of the road 

and uses a PID controller to hold on to the center of the lane.  

 

Conclusion 

 In recent years, there has been a strong push in engineering education to incorporate 

physical and hands-on projects in classrooms in order to enhance the learning experience. 

Traditionally, many engineering disciplines focused on analysis of concepts, phenomenon, or 

systems primarily using a theoretical approach. However, the creation of more project based 

classes has proven to not only be effective in the specific field, but it also has encouraged 

interdisciplinary cooperation amongst students with various backgrounds.  

 The Mariobot course was designed as a series of laboratory exercises that uses the 

aforementioned hands-on approach to familiarize students with a data flow programming 

paradigm, LabVIEW, as well as introducing several key engineering and design concepts in the 
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fields of computer science and electrical engineering. Each lab exercise introduces a concept 

and presents a problem statement as the objective. Additionally, each lab is a building block for 

a larger project, an autonomous driving vehicle, which is the ultimate goal of the class.  

So far, almost three iterations of the class have been offered and each iteration has led 

to a series of corrections and improvements. Additionally, I have developed two vision modules 

to assist students with traffic signal recognition and obstacle detection. The goal of the class 

was to remove the heavy lifting of integrating software and hardware and dealing with low 

level programming assignments so that students have tools and platforms ready to use out of 

the box. The emphasis was on the elegant, safe, and effective design of systems to take 

advantage of the prepackaged software and hardware to showcase various concepts in lab 

exercises. The Mariobots class has gained popularity and is becoming more and more 

established here at Computer Engineering Department of the University of Virginia. It is worth 

mentioning that since the class audience is intended for third year students, the ones taking 

this class learn a powerful and fresh set of tools and platforms, which are used throughout the 

industry. The knowledge and skill set acquired are both helpful for their future careers and 

more importantly, broadens their horizons as they decide on the final year capstone project for 

their majors.  
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