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Abstract

Elastic optical networks (EONs) have been proposed to meet future communi-

cation demands [1]. Planning the resource usage of EONs has been the subject of

extensive research. Routing and spectrum assignment (RSA) algorithms are used

to minimize the network resources used. Estimation of physical-layer impairments

(PLIs) in EONs plays an important role in the network planning stage. The trans-

mission reach (TR) model and the Gaussian noise (GN) model are broadly considered

in the estimation of the PLIs. However, due to the nature of these models, their per-

formance remains problematic. Thus, based on the GN model, this thesis proposes a

physical layer estimation model, referred to as the conservative linearized Gaussian

noise (CLGN) model. In addition, we improve upon the existing TR model with a

novel algorithm for obtaining the parameters, leading to a fairer comparison between

the TR model and the CLGN model. We then introduce a link-based mixed integer

linear programming (MILP) formulation to address the RSA problem to quantify

the performance of each PLI model. Suffering from the large computational burden

brought by the MILP, we propose a heuristic algorithm, referred to as the sequential

allocation (SA) algorithm. The SA algorithm can solve a large number of demands

in a large scale network with a reasonable computational burden. Lastly, we show

through simulation that network resources such as spectrum and regeneration nodes

can be saved by utilizing the CLGN model, compared with the TR model. We also

show that the SA algorithm has notably better optimization solutions, compared

with a published algorithm, the recursive MILP [2]. Moreover, we also show that our

proposed system, which is based on the CLGN model and the SA algorithm, speeds

up the optimization process and provides similar resource usage, compared to the

published benchmark system in [3].
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Chapter 1

Introduction

1.1 Background and Motivation

With the enormous growth of the communication industry and traffic heterogene-

ity, the next generation of long-haul elastic optical networks (EONs) has been pro-

posed (motivated from dense wavelength division multiplexing (DWDM) networks)

to meet future communication demands [1].

In accordance with the industry standard ITU G.694 [7], 88 channels, each chan-

nel spaced 50 GHz apart, are supported by dense wavelength division multiplexing

(DWDM) networks. In the DWDM network, multiple demands are accommodated in

50 GHz frequency slots with slightly different center frequencies. Because the conven-

tional DWDM network uses a fixed grid of 50 GHz between two adjacent frequency

intervals [8], the optical spectrum supporting data rates beyond 100 Gb/s using stan-

dard modulation does not fit in the 50 GHz ITU grid [1]. Therefore, DWDM networks

are not able to satisfy the growing demands of communications. Consequently, EONs

are proposed to meet the requirements of the next generation of communications. Un-

like conventional DWDM networks, EONs can use bandwidth variable transceivers

1
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(BVT), making them suitable for heterogeneous traffic demands. Intrinsically, EONs

use the continuous flexible optical bandwidth by partitioning the bandwidth into in-

finitely many frequency slots with the infinitely small granularity, resulting in the

network bandwidth appearing elastic and continuous [4]. Without the limitation of

the 50 GHz ITU grid, EONs would be able to switch the broader spectrum channels

in order to support high bit rate (such as 400 Gb/s or 1 Tb/s) demands [1,9]. Hence,

EONs are considered to be broadly applicable in the future.

However, the resources needed to build EONs (spectrum, regeneration nodes,

optical amplifiers, etc.) are limited. Planning the resource usage of EON, the so-called

routing and spectrum allocation (RSA) problem, has been the subject of extensive

research [3–5, 10–12]. This thesis proposes a series of algorithms that are able to

reduce the network resources needed to implement continental-scale EONs.

Physical-layer impairments (PLIs) such as fiber loss, dispersion and nonlinearities

can impair the quality of transmission (QoT) in long-haul networks [5]. The QoT

identifies the network’s capability of recovering the transmitted information. PLIs of

EONs have been studied for the past several years. Estimation of the PLIs plays an

important role in the network stage planning [13–15]. The most common model for

estimating the PLIs is the transmission reach (TR) model [13], which approximates

the maximum distance a signal can travel without regeneration. However, the TR

model lacks sufficient flexibility and accuracy. This model estimates the worst case

PLIs instead of considering the real-time network state. When we apply the TR

model in realistic scenarios of routing and spectrum allocation for EONs, it severely

overestimates the PLIs. In order to obtain a more accurate estimate of channel PLIs,

a state-dependent model, the Gaussian noise (GN) model [11,15], has been proposed.

However, the GN model is nonconvex and suffers from nonlinearities and complexity,

making it less usable when applied to the RSA problem for EONs. Thus, we propose
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a linearized GN model to overcome the nonlinearity and complexity of the standard

GN model.

The complexity of the RSA problem itself increases exponentially as the network

dimensions expand. The optimal method of solving the RSA problem is to use a

mixed integer linear programming (MILP). MILP engines do not perform well on

large dimension networks and consequently cannot find the optimal solution within

a reasonable time [16]. Therefore, in order to overcome this shortcoming, heuristic

algorithms have been proposed to provide a sub-optimal solution within a reason-

able time. Scalability, near-optimality, and time-consumption remain a problem for

heuristic algorithms in published literature [2–4,17]. Therefore, we propose a heuris-

tic algorithm, the sequential allocation (SA) algorithm, that performs at relatively

high speeds, works with different PLI models, and has superb performance. The SA

algorithm is capable of solving the RSA problem for large network topologies and

traffic dimensions.

In summary, our proposed work applies a linearization of the GN model to estimate

the PLIs of EONs, and solves the RSA problem through the application of the SA

algorithm. Our work not only provides a significant saving of resources, but also

solves the RSA problem in a reasonably short time. The high scalability as well as

the close-to-optimal output of the proposed technique makes it suitable for practical

networks.

1.2 Literature Review

In 1995, R. Ramaswami et al. published research on the routing and wavelength

assignment (RWA) problem in fixed grid transparent networks [18]. The RWA prob-

lem is modeled as an integer linear programming (ILP) in a WDM optical network.
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Ramaswami’s research provides a meaningful study of the RWA problem at that time,

and has been significantly referenced by subsequent studies [19–22].

In 2005, X. Yang et al. published research based on translucent optical networks

(optical network implemented with regeneration nodes) [23]. They propose heuristic

algorithms to optimize the allocation of regeneration nodes while solving the RWA

problem. Yang’s work is meaningful for subsequent studies on translucent optical

networks [24–26].

In 2010, K. Christodoulopoulos et al. published research on the static resource

allocation problem in EONs [27]. That paper considers the RSA problem for EON

and analyzes several heuristic algorithms, testing the performance of each algorithm.

While Christodoulopoulos’s research had a great influence on MILP formulations and

future studies on the RSA problem, his paper only considers the basic RSA problem

without PLIs.

In 2014, X. Wang et al. solved the RSA problem in a large scale EON (NSF-

24) with a fast heuristic algorithm, referred to as the recursive MILP (re-MILP),

for solving the RSA problem in a short time [2]. Wang’s work also introduces the

allocation of regeneration nodes and their impact on RSA. Wang’s work guarantees

the QoT using the TR model. However, in addition to the fact that the TR model

overestimates the signal to interference plus noise ratio (SINR) condition in EONs,

the parameters of the TR model used in Wang’s work were based on samples acquired

through laboratory results [13]. Thus, Wang’s TR model is not universally applicable.

The performance of Wang’s re-MILP, compared with the optimal solution, has the

potential to be improved.

In 2015, J. Zhao et al. published research on resource provision algorithms in

EON suffering from PLIs [4]. The authors use the standard GN model with a lookup

table to translate the nonlinear standard GN model into a linear model. They model
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the RSA as an ILP problem. However, this algorithm is extremely time consuming

and only applicable to a limited number of demands in small network topologies.

In 2015, L. Yan et al. published research on RSA problem in flexible grid networks

with the impacts of PLIs. The authors use an MILP model with a finely linearized

GN model applied to flexible grid networks [6, 12]. However, because of this finely

linearized GN model, the process of Yan’s RSA problem is again time-consuming

because of the massive computation resources required.

In 2016, M. Klinkowski et al. published research on the routing, spectrum, transceiver

and regeneration allocation (RSTRA) problem that is an extension of the conventional

RSA problem [28]. In order to efficiently address the RSTRA problem in EONs, the

authors propose a heuristic algorithm, referred to as the minimum cost light-paths

assignment for ordered demands algorithm. They use a simplified transmission reach

model to ensure the QoT, resulting in over-provisioning, and thus unnecessary costs.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we introduce some terms, back-

ground knowledge and definitions used in the research. In Chapter 3, we describe

the proposed models: the conservative linearized Gaussian noise (CLGN) model

and a novel transmission reach model, the Gaussian-noise-based transmission reach

(GNTR) model. In Chapter 4, we then elaborate on the MILP model of the RSA

problem and our heuristic algorithm, referred to as the sequential allocation algo-

rithm. Chapter 5 provides numerical results and analysis based on simulation. In

Chapter 6, we draw conclusions and list opportunities for future work.



Chapter 2

EON Description and Problem

Formulation

In order to completely understand the RSA problem for EONs suffering from PLIs,

we introduce the fundamental concepts of EONs and two kinds of analytical models for

ensuring the QoT requirements in Sections 2.1-2.3. Furthermore, signal regeneration,

as a modern technique to enhance the performance of EONs, is explained in Section

2.4. Finally, in Sections 2.5-2.6, we introduce the overall picture of the RSA problem

and heuristic algorithms.

2.1 Elastic Optical Network

EONs exhibit great potential in regard to being highly efficient and flexible, which

saves network resources. EONs are able to support both low transmission rates and

high transmission rates simultaneously [8]. EONs are able to choose a modulation

format for each demand that satisfies the QoT requirements through transmission

with minimal spectrum usage. However, in conventional DWDM networks, the optical

transmission reach, the channel bit rate, and the optical spectrum are fixed [1].

6
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However, some literature [8, 29] considers that full elasticity, i.e., an infinitely

small granularity of the sub-carriers, might not be easily accomplished by current

techniques. Therefore, less-elastic optical networks, referred to as flexible grid net-

works, have been proposed as a more realistic version of EONs. [8]. Flexible grid

networks have a granularity of 12.5 GHz, dividing the spectrum into specific non-

overlapping slots. Although the flexibility of the flexible grid network with 12.5 GHz

granularity is better than the ITU DWDM with a 50 GHz grid, there is still finite

granularity in the network. Through further development of techniques such as more

advanced flexible bandwidth transmitters and receivers, the full elasticity of the net-

work can successfully be achieved. In addition, the flexible grid optical network can

be considered as a special case of an EON. To make this research more general, this

thesis focuses on general EONs instead of flexible grid networks.

In summary, there are two main properties of EONs. First, the light-path can

be generated with heterogeneous bit rates. Second, the BVT can generate an arbi-

trary spectrum. These two properties of EONs enable the high efficiency and the

flexibility [1]. Because of these properties and the merits of EONs, proper planning

for EONs could bring enormous benefits. However, the PLIs are unavoidable in large

EONs, especially when we consider that a great number of demands are transmitted

in backbone networks [30]. The PLIs affect the channel quality and therefore the

quality of the received signal. Estimation of PLIs in EONs is important in the net-

work planning stage (designing networks and planning usage of network resources)

because using conservative estimates leads to resource over-provisioning.
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2.2 Gaussian Noise Model and Quality of Trans-

mission

There are several main types of PLIs: nonlinear noise, chromatic dispersion and

amplified spontaneous emission (ASE) noise. Since the chromatic dispersion can be

compensated by digital signal processing, we only need to consider the impairments

caused by the nonlinear interference (NLI) (caused by the interaction of nonlinearity

and dispersion) and the ASE noise (caused by the Erbium-doped fiber amplifiers

(EDFAs)). Hence, the NLI and the ASE are important when estimating the QoT

[12].

The fiber loss in an optical network is usually 0.2 dB/km. Each span, i.e., the

length between two EDFAs, is usually 100 km. The transmitted power is attenuated

by 20 dB at the end of each span [5]. The photo-detector at the receiver is unable to

detect the signal with sufficient quality, leading to the necessity of using EDFAs as

signal amplifiers at the end of each span [5,31]. However, the amplifying process will

cause ASE noise, which is modeled as additive Gaussian noise with power spectral

density (PSD) given as [5]

Gspan
ASE = (eαL − 1)~νnsp, (2.1)

where nsp represents the spontaneous emission factor, ~ represents Planck’s constant,

α represents the fiber power attenuation, and L represents the fiber length per span.

Note that we assume the gain of the EDFAs is frequency flat [6] and an EDFA exactly

compensates the span loss [5].

The GN model used for analytically estimating the NLI PSD is valid based on

several assumptions, as stated in [5,6]: The fiber links are dispersion uncompensated
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fibers (i.e. the fiber link is purely compensated by digital signal processing) with

enough length. The signal PSD is homogeneous for each polarization. The fiber

loss and chromatic dispersion are totally compensated and negated. The NLI PSD

is accumulated along the light path. The affecting channels are non-overlapping in

spectrum.

With the above assumptions, the GN model can be applied to estimate the signal

QoT. The NLI effects can be divided into self channel interference (SCI) and cross

channel interference (XCI) [6, 32]:

Gspan
NLI,i = Gspan

SCI,i +Gspan
XCI,i. (2.2)

where Gspan
NLI,i represents the ith channel’s NLI PSD per span, Gspan

SCI,i represents the

ith channel’s SCI PSD per span, and Gspan
XCI,i represents the ith channel’s XCI PSD

per span [5]. SCI is caused by the channel itself, only varying with the bandwidth of

that channel [6, 32]:

Gspan
SCI,i = µGi

(
G2
i arcsinh(ρ∆f 2

i )
)
, (2.3)

where ρ = (π2|β2|)/2α, µ = (3γ2)/(2πα|β2|), γ represents the fiber nonlinear pa-

rameter, β2 represents the group velocity dispersion parameter, ∆fi represents the

ith channel’s bandwidth, and Gi represents the ith channel’s signal PSD. When ∆fi

is large, the inverse hyperbolic sine function and the logarithm function are simi-

lar [6, 32]. Equation (2.3) can thus be replaced by [15]

Gspan
SCI,i = µGi

(
G2
i ln(ρ∆f 2

i )
)
. (2.4)

The XCI is caused by the interaction between channels. It depends on the difference
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in center frequencies and bandwidths of the affecting channels [6, 32]:

Gspan
XCI,i = µGi

(
G2
j

Mc∑
j=1;j 6=i

ln(
|fi− fj|+ ∆fj/2

|fi− fj| −∆fj/2
)

)
, (2.5)

where Mc represents the total number of channels on the same fiber link as the ith

channel and fk represents the kth channel’s center frequency.

The QoT for each channel at the receiver side is the bit error rate (BER), which

is related to the SINR, given the modulation format. This thesis focuses on the BER

before the forward error correction (FEC) process, referred to as the pre-FEC BER.

The pre-FEC BER used in this thesis is 4×10−3 [5]. In order to guarantee the desired

QoT, which is measured by the pre-FEC BER, the actual SINR over each transparent

segment (light-path segment without signal regeneration) must satisfy the threshold

SINR [5]:

SINRi ≥ SINRth
i , (2.6)

where the SINRi is the actual signal to interference plus noise ratio for the ith channel

and SINRth
i is the threshold SINR (the minimum SINR satisfying the QoT require-

ments) for the ith channel [5]. Hence, the SINR constraint (2.6) becomes:

SINRi =
Gi

(Gspan
NLI,i +Gspan

ASE,i)Ns

≥ SINRth
i , (2.7)

where Ns represents the number of spans on the transparent segment. For common

modulation formats, values for threshold SINR are listed in Table 2.1.
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Table 2.1: Modulation Format, Spectral Efficiency and Threshold SINR
(pre-FEC BER = 4× 10−3) [5]

Modulation Format spectral efficiency η (bit/s/Hz) SINRth
i

PM-BPSK1 2 3.52

PM-QPSK2 4 7.03

2.3 Transmission Reach Model

As a simpler alternative to the GN model, the TR model is broadly used for

estimating PLIs to ensure the QoT is met in long-haul transmission systems. The

TR model is applied in most research addressing the RSA problem because of its

simplicity [16]. Additionally, the TR model is linear, so it can easily be implemented

in linear programming algorithms.

The TR model estimates the longest transparent segment length a signal can

travel and still satisfy a conservative estimate of the SINR. The disadvantage of the

TR model is that it does not take the instantaneous channel state into account. More-

over, the parameters of the TR model applied by some researchers are obtained from

experimental results [13]. These experimental results are drawn based on different

experimental setups, thus lead to questions on the universality of these results. Ad-

ditionally, the laboratory results are discrete values instead of a continuous function,

resulting in model inaccuracies [2]. Instead of implementing the TR model based

on experimental data, we implement a GN model based analytic algorithm to gen-

erate the parameters of the TR model in order to make the comparison with the

1PM-BPSK: polarization-multiplexed binary phase-shift keying
2PM-QPSK: polarization-multiplexed quadrature phase-shift keying
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CLGN model fair. In general, because of the state-independence of the TR model,

using this model in the network planning stage leads to resource over-provisioning

and unnecessary costs.

2.4 Signal Regeneration

Because the accumulated PLIs constantly harm the systems, the transmitted sig-

nal may not satisfy the desired QoT. Consequently, detecting the transmitted signal

and recovering the original information may fail at the receiver side. Hence, regen-

eration nodes that perform optical-electrical-optical (OEO) conversion for reducing

the impairments are needed as intermediate nodes [31]. The regeneration (including

re-timing, re-shaping and re-amplification) is an electrical process functioning at the

intermediate nodes. We assume the PLIs are fully negated through the regeneration

process [2].

A plan for allocation of regeneration nodes should account for the high cost of high-

speed electronic equipment. This equipment’s high cost necessarily implies a similar

cost for OEO conversion. These considerations require a careful and conservative

aforementioned allocation plan [2]. Because one regeneration circuit can only serve

one signal, and a limited number of regeneration circuits per regeneration node is

assumed, not all signals can be regenerated at a regeneration nodes. And again, the

appropriate allocation of regeneration nodes could bring significant benefits.
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2.5 Routing and Spectrum Allocation (RSA) Prob-

lem

Routing and wavelength allocation (RWA) algorithms are proposed to coordinate

the wavelength routing and the assignment simultaneously in order to obtain the

best solution for light-path deployment in fixed grid DWDM networks with 50 GHz

frequency spacing [33]. In the conventional RWA problem, routing and wavelength

assignment for demands are optimized to obtain the minimum resource usage.

The RSA problem in EONs is an analog of the RWA problem in DWDM net-

works [34]. Unlike the RWA problem, the demands in the RSA problem may be

deployed with various transmission rate requirements and modulation schemes [5].

In the RWA problem, a demand is transmitted in a 50 GHz frequency slot with a

fixed discrete center frequency [6, 12]. However, in EONs, the 50 GHz frequency

slot is further divided into infinitely many narrow frequency slots. Therefore, in the

RSA problem, a demand is transmitted in a flexible spectrum (a number of narrow

frequency slots) from its source to its destination [1, 29,34].

In EONs, without the constraints of a fixed grid in the network, the frequency

slots, also known as the spectrum, can be assigned seamlessly. The RSA problem

in EONs is to appropriately route the path of the demands and to carefully assign

the required spectrum for the demands, in order to save network resources. Since

a demand can be assigned a modulation format that provides desired performance,

selection of the modulation formats for each demand along its light-path affects the

resources needed by the EONs.

Moreover, when regeneration is considered, the noise accumulated along the light-

path is reduced after the OEO conversion process. Hence, with the implementation
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of regeneration nodes, constraints based on either the TR or the GN models are able

to guarantee that all demands satisfy the QoT for practical networks.

2.6 Heuristic Method

Heuristic algorithms are used for solving optimization problems to achieve a trade-

off between the complexity of the problems and a guarantee of optimality. RSA

problems are NP-hard [35], usually formulated as MILPs. An MILP is an algorithm

to realize the best outcome in a mathematical model with linear constraints and

objective function. Some variables in MILP are integers, whereas other variables are

non-integers [36]. Unlike heuristic algorithms, MILPs are able to provide the optimal

solution. However, due to the existence of integer variables, which come from the

decision variables in the RSA problems, MILP solvers must spend a significant amount

of time determining the integer variables. Therefore, optimal solutions are not able

to be obtained within a reasonable time using MILPs. Especially with large problem

dimensions, obtaining the optimal solutions requires astronomically high computation

resources [2].

However, heuristic algorithms are proposed to solve optimization problems within

a reasonable time and obtain near-optimal solutions. Because of the high scalability as

well as the lower computational resources required, heuristic algorithms [31] have been

broadly applied [2,17,27,37,38]. [37] accommodates demands in accordance with the

length of the routing paths in order to appropriately coordinate the network resources

usage while speeding up the solving process. [27] proposes a heuristic algorithm,

referred to as the R+SA algorithm, which decomposes the RSA problem into two

sub-problems (a routing problem and a spectrum allocation problem). After solving

the routing problem, the R+SA algorithm then assigns spectrum to these routed
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light-paths. Heuristic algorithms are efficient sub-optimal algorithms for solving the

RSA problem [31]. However, when the complexity of the problem increases, the entire

variable space is not explored within a permitted time period, leading to non-ideal

performance of these algorithms [2, 12,31,39].



Chapter 3

Conservative Linearized GN Model

In this chapter, we introduce the CLGN model in Section 3.1. In Section 3.2, we

introduce the GN model based TR model, referred to as the GNTR model. In Section

3.3, we simulate the GN model, the CLGN model, and the GNTR model in order to

analyze their link level performance.

3.1 Conservative Linearized Gaussian Noise (CLGN)

Model

In order to be processed by the MILP engines, we propose a linearized version of

the standard GN model. The principles for linearizing the standard GN model are

listed as follows. First, the linearized GN model cannot exceed the QoT estimation of

the standard GN model. Second, the linearized GN model should have similar QoT

estimation for the most realistic cases. Third, the linearized GN model needs to be

linear in the variables used by the MILP.

For the RSA problem, the bandwidth of demands (∆fi, ∆fj) are given as opti-

mization inputs. However, the total number of demands on the fiber link (Mc) and

16
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the center frequencies of demands (fi, fj) are decision variables in this optimization

problem. Therefore, the SCI term is a linear function of the MILP variables in the

standard GN model equation (2.3). The term that needs to be linearized is the XCI

term. Since the variable |fi− fj| is inside a logarithm function, we consider an upper

bound on the XCI term as

Gspan
NLI,i = µGi

(
G2
i ln(ρ∆f 2

i ) +
Mc∑

j=1;j 6=i

G2
j ln

(
|fi− fj|+ ∆fj/2

|fi− fj| −∆fj/2

))
, (3.1)

= µGi

(
G2
i ln(ρ∆f 2

i ) +
Mc∑

j=1;j 6=i

G2
j ln

(
∆fj

|fi− fj| −∆fj/2
+ 1

))
, (3.2)

≤ µGi

(
G2
i ln(ρ∆f 2

i ) +
Mc∑

j=1;j 6=i

G2
j ln

(
∆fj

∆gb + ∆fj/2
+ 1

))
, (3.3)

where Gspan
NLI,i is the ith channel’s NLI PSD per span, and ∆gb is the guard band. We

refer to this linearized version of the standard GN model as the conservative linearized

Gaussian noise (CLGN) model.

From a spectrum perspective, for the CLGN model we consider that all connec-

tions j that contribute to the XCI for demand i are located as close as possible to the

demand (without considering the actual center frequency difference |fi − fj|). The

CLGN model is a conservative XCI estimation. When there are a large number of

demands deployed on the same fiber link, the CLGN model provides an overestimated

XCI compared with the standard GN model. On the other hand, when there are few

demands on the fiber link, the CLGN model is able to provide a similar XCI estimate

compared with the standard GN model.
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3.2 Gaussian Noise Based Transmission Reach (GNTR)

Model

In order to quantify the benefits of the CLGN model, we wish to compare the

CLGN model with the TR model, a model that is broadly applied in published re-

search. However, the disadvantages of the existing TR model are listed below. In-

stead of imposing a constraint on the QoT as the CLGN model does, the TR model

imposes a constraint over the transparent transmission distance. Most existing TR

models applied in published research are based on experimental data. Different exper-

imental setups (fiber parameters, experimental circumstances, signal PSD and QoT

requirements) result in different experimental results. Hence, the TR parameters

based on existing experimental data remain problematic when comparing with the

CLGN model. Furthermore, the experimental data values are discrete values instead

of a continuous function of transmission distance. Hence, we propose a GN-based

analytic algorithm to generate the parameters for a TR model in order to make the

comparison with the CLGN model fair.

The GN-based transmission reach (GNTR) is the shortest transmission reach

based on the standard GN model given the bandwidth of a demand, input PSD,

and QoT requirements. In order to obtain this TR, we first consider the worst case

noise level: NGNTR = max
Mc,∆fj

(Gspan
NLI,i + Gspan

ASE,i), where NGNTR denotes the worst case

noise for the GNTR model, and max
Mc,∆fj

(Gspan
NLI,i + Gspan

ASE,i) denotes the process of ob-

taining the worst case noise level over Mc and ∆fj. After obtaining the worst case

noise level, the GNTR can be calculated as

TGNTRi =
Gi

SINRth
i max

Mc,∆fj
(Gspan

NLI,i +Gspan
ASE,i)

× L, (3.4)
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Figure 3.1: Illustration of interfering demands positioned in the optical spectrum.

where TGNTRi is the GNTR of the ith channel.

In (3.1), given ∆fi (fi is at the center of the spectrum), the input PSD, and the

fiber parameters, the XCI term is the only part that can vary. The XCI term depends

on Mc and ∆j. Therefore, as shown in Figure 3.1, we vary Mc and ∆j (fully occupying

the 4000 GHz spectrum [40]) in order to obtain the worst case noise:

arg max
Mc,∆fj

Gspan
XCI,i = µGi

(
G2
j

Mc∑
j=1;j 6=i

ln(
|fi− fj|+ ∆fj/2

|fi− fj| −∆fj/2
)

)
, (3.5)

s.t. ∆gb × (Mc − 1) + ∆fi +
Mc−1∑
j=1

∆fj = 4000,

where the fiber parameters are listed in Table 3.1. We assume the input PSD for each

channel is the same, denoted as G.

Based on Figure 3.2, we can obtain the GNTR based on the worst case noise level

calculated by the standard GN model, given the threshold SINR and modulation

format. As shown in Figure 3.3, the worst transmission reach occurs when a large

demand is allocated on each side of the test demand i, as proved in [41,42].

After comparing the GNTR model with the TR model based on experimental

data [2], our algorithm reveals fairness, because the GNTR and CLGN models are

GN model based analytic algorithms. The GNTR algorithm can serve demands with

an arbitrary bandwidth. Moreover, our GNTR is independent of experimental results
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Table 3.1: Fiber Parameters [6]

∆gb spectral guard band: 12.5 GHz;

G input signal PSD: 0.015 W/THz

α attenuation of fiber: 0.22 dB/km

~ Planck’s constant

nsp spontaneous emission factor: 1.58

γ fiber nonlinearity coefficient: 1.32× 10−3 (W ·m)−1

β2 fiber group velocity dispersion parameter: −21.7 ps2/km

L fiber length of per span: 100 km

ν optical carrier frequency: 193.55 THz

ρ ρ = (π2|β2|)/2α

µ µ = (3γ2)/(2πα|β2|)
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Figure 3.2: NLI PSD per span versus the number of demands shared on the same
fiber link, Mc, filling the 4000 GHz spectrum.
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Figure 3.3: Illustration of the worst case interference on test demand i.
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and therefore does not require interpolation. Our proposed algorithm is able to obtain

the transmission reach for systems that have not been tested experimentally. In this

thesis, the TR model we implement for simulation is based on the GNTR algorithm.

3.3 Link Level Analysis

We simulate the standard GN model, the CLGN model and the GNTR model

in order to analyze the link level performance of each estimation model of PLIs, for

various QoT requirements.

In this thesis, we define NCLGN = CL(Gspan
NLI,i +Gspan

ASE,i), NGNTR = max(Gspan
NLI,i +

Gspan
ASE,i), and NGN = (Gspan

NLI,i +Gspan
ASE,i), where NCLGN is the noise level estimated by

the CLGN model. CL represents the conservatively linearizing process of the GN

model:

CL(Gspan
NLI,i +Gspan

ASE,i)
.
=µGi

(
G2
i ln(ρ∆f 2

i ) +
Mc∑

j=1;j 6=i

G2
j ln(

∆fj
∆gb + ∆fj/2

+ 1)

)

+ (eαL − 1)~νnsp. (3.6)

NGNTR is the noise level estimated by the GNTR model, and NGN is the noise level

estimated by the standard GN model. In all our analysis we assume the GN model

yields an accurate approximation to the PLIs.

We consider two simulation scenarios to compare the various PLI models. In the

first scenario, there are several equal-bandwidth demands deployed on the same fiber

link: ∆fi = ∆fj for j = 1, 2, . . . ,Mc (demand i is at the center of the spectrum). We

simulate four cases separately: Mc = 3, 5, 7, 9. We then obtain the GNTR, the TR

based on the CLGN model, and the TR based on the standard GN model for each

Mc. The GNTR (TGNTRi ) is shown in (3.4). The TR of the CLGN model (TCLGN
i ) is
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Figure 3.4: Comparison of the transmission reach generated by the GNTR, the CLGN,
and the GN models, for various Mc, with BPSK modulation.

obtained by

TCLGN
i =

Ginput,i

SINRth
i NCLGN

× L. (3.7)

The TR of the standard GN model (TGN
i ) is obtained by

TGN
i =

Ginput,i

SINRth
i NGN

× L. (3.8)

Figures 3.4 and 3.5 show that for both QPSK and BPSK modulation formats, the

CLGN model provides a better estimate of the true TR compared with the GNTR

model. When Mc increases, the gaps between the TR based on the CLGN model

and the standard GN model increases. When Mc = 9 and the bandwidth of each

demand exceeds 78 GHz, the GNTR model outperforms the CLGN model in providing



24

30 40 50 60 70 80 90 100

3500

4000

4500

5000

5500

6000

Figure 3.5: Comparison of the transmission reach generated by the GNTR, the CLGN,
and the GN models, for various Mc, with QPSK modulation.

an estimate of the TR, because the CLGN model is a conservative approximation.

However, the GNTR model curve does not depend on Mc.

We compute the normalized link noise estimation error, using the standard GN

model as a reference, as

Err∗ =
|N∗ −NGN |

NGN

, ∗ = CLGN,GNTR. (3.9)

Figure 3.6 shows the link noise estimation error comparison between the GNTR

model and the CLGN model. The estimation error of the CLGN model is always

smaller than that of the GNTR model when Mc ≤ 7. When Mc = 9 and the band-

width of each demand exceeds 78 GHz, the estimation error of the CLGN model is

worse than that of the GNTR model. In general, we can conclude that the CLGN

model has a better estimation accuracy than the GNTR model. In addition, the
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Figure 3.6: Comparison of the estimation error (Err∗) generated by the GNTR, the
CLGN, and the GN models, for various Mc.

estimation accuracy of the CLGN model decreases as Mc increases, as expected.

In the second scenario, we simulate several demands with random bandwidths

deployed on the same fiber link. A probabilistic analysis is implemented in this

scenario for comparing the performance of the standard GN model, the CLGN model,

and the GNTR model. Each demand has a bandwidth uniformly distributed from

30 to 100 GHz, ∆fi,∆fj ∼ U [30, 100]. After completing 10000 simulation trials for

different values of Mc (Mc = 3, 5, 7, and 9), we estimate the probability distribution of

both normalized (count or frequency of observations [43]) noise level (NGN , NGNTR,

and NCLGN) and the transmission reach (TGN
i , TGNTR

i , and TCLGN
i ) using histograms.

In Figures 3.7 and 3.9, we show that the CLGN model is better at estimating

the performance of the PLIs than the GNTR model for Mc ≤ 7, assuming the GN

model yields an accurate approximation to the PLIs. When Mc = 9, the CLGN

model has a greater than 60% probability of having a better performance than the
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Figure 3.7: Histogram of normalized noise level in BPSK with various Mc.

Figure 3.8: Histogram of transmission reach in BPSK with various Mc.
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Figure 3.9: Histogram of normalized noise level in QPSK with various Mc.

Figure 3.10: Histogram of transmission reach in QPSK with various Mc.
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GNTR model. In Figures 3.8 and 3.10, the CLGN model estimates the TR better

than the GNTR model, when Mc < 9. When Mc = 9, the CLGN model has a greater

than 60% probability of outperforming the GNTR model in transmission reach. In

this simulation scenario, the simulation settings are similar to settings used in [2], [3],

and [4]. Hence, based on these link level analyses, we can conclude that the CLGN

model has better performance in estimating PLIs than the GNTR model for many

cases of practical interest.



Chapter 4

Heuristic Algorithm for RSA in

EONs

In this chapter, we introduce the MILP model for the RSA problem and our pro-

posed heuristic algorithm. In Sections 4.1-4.2, we introduce a basic MILP formulation

for addressing the all-optical RSA problem without considering PLIs. In Sections 4.3-

4.4, we extend the basic MILP with consideration of QoT requirements and signal

regeneration. In Sections 4.5-4.6, we propose a heuristic algorithm, referred to as

the sequential allocation (SA) algorithm, and compare the performance of the SA

algorithm with the optimal benchmark for a small test network. We adopt notations

and formulations from [2,27].

4.1 Notation for the Basic MILP

First, we introduce the optimization objective of the MILP. In the basic RSA

problem, the optimization objective, C, is the total spectrum usage. In other words,

if the lowest frequency assigned is denoted as 0 Hz, C is the highest frequency assigned

in the EONs.

29
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Second, we introduce the sets used in the MILP. The EON is formulated as an

all-pass graph with nodes denoted by N and unidirectional links denoted by L. N is

the set of all network nodes in the EON. L is the set of all fiber links in the EON.

Each link has its source node i ∈ N and destination node j ∈ N. We denote a certain

link by its source and destination, Li,j ∈ L. The sets of nodes N and links L are

based on the topology of the EON. `i,j is the length of Li,j. D is the set of demands.

The set of demands D is independent of N and L. In simulations, the demands D

could be generated by a probabilistic model or based on data collected by industry.

Each demand needs to be routed from its source node s ∈ N to its destination d ∈ N.

The notation for a certain demand from s to d is Ds,d ∈ D. In addition, the required

data-rate for Ds,d is Rs,d, where s ∈ N and d ∈ N. η is the spectral efficiency, which

depends on the modulation format applied to demands.

Third, we introduce the parameters used in the MILP for the basic RSA problem.

∆s,d is the bandwidth of demand Ds,d, where ∆s,d = η ×Rs,d. Sn;s,d is used for orga-

nizing the relationship between nodes in N and demands Ds,d ∈ D. The parameters

Sn;s,d are obtained by the relationship between demands D and network topology N,

L. Sn;s,d is used for flow conversation,

Sn;s,d =


1 if node n is the source node of demand Sn;s,d and n = s

−1 if node n is the destination node of demand Sn;s,d and n = d

0 otherwise

.

(4.1)

Lastly, we introduce the decision variables used in the MILP for the basic RSA

problem. Fs,d denotes the real-valued decision variable that represents the starting

frequency allocated to demand Ds,d. USEi,j;s,d denotes the binary decision variable
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that represents link usage corresponding to demand Ds,d,

USEi,j;s,d =


1 if Li,j is assigned for demand Ds,d

0 if Li,j is not assigned for demand Ds,d

. (4.2)

USEi,j;s,d, and USEi,j;ŝ,d̂ are used to represent whether or not the two demands, Ds,d

and Dŝ,d̂, are deployed on the same link Li,j ∈ L. δs,d,ŝ,d̂ is a binary decision variable

that represent the relationship between the spectrum allocated to Ds,d and Dŝ,d̂,

δs,d,ŝ,d̂ =


1 if Fs,d ≤ Fŝ,d̂

0 if Fs,d > Fŝ,d̂

. (4.3)

The decision variables δs,d,ŝ,d̂, Fs,d, USEi,j;s,d are used to obtain the optimization

objective C in an MILP solver.

4.2 Basic MILP Constraints

The basic MILP algorithm to solve the RSA problem requires these sets of con-

straints:

• Total spectrum usage constraint:

C ≥ Fs,d + ∆s,d, ∀s, d ∈ N (4.4)

• Flow conservation constraint:

Sn;s,d =
∑

j=n;Li,j∈L

USEi,j;s,d −
∑

i=n;Li,j∈L

USEi,j;s,d, ∀s, d, n ∈ N (4.5)
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• No spectrum overlap constraint:

δs,d;ŝ,d̂ + δŝ,d̂;s,d, = 1, ∀s, d; ŝ, d̂ ∈ N (4.6)

(Fs,d − Fŝ,d̂ + ∆s,d + ∆gb) ≤ (L+ ∆gb)×

(1− δs,d,ŝ,d̂ + 1− USEi,j;s,d + 1− USEi,j;ŝ,d̂) (4.7)

Equation (4.4) is used to enforce the relationship between the optimization objective

C and the highest frequency used in the EON. Equation (4.5) ensures that each

demand has only one path from source to destination without bifurcations, loops,

or dead-ends during the transmission through intermediate nodes. Equations (4.6)

and (4.7) ensure the starting frequencies of each demand are far enough to prevent

overlapping. L is a large fixed number.

4.3 QoT Requirements

We extend the MILP for the basic RSA problem to implement QoT constraints

based on the TR and the CLGN models, separately.

4.3.1 GNTR Model

The constraints based on the TR model ensure the QoT by limiting the route

length when each demand travels from its source to destination node. This thesis

extends the basic MILP by adding constraints based on the GNTR model.

T is the set of transmission reaches corresponding to demands. Ts,d represents the

TR for demand Ds,d. The set T can be obtained by our proposed GNTR algorithm,

given the set D; the algorithm would work for any method used to generate the TR.

The GNTR constraint is used to enforce the desired QoT requirements:



33

• GNTR constraint

∑
∀Li,j∈L

USEi,j;s,d × `i,j ≤ Ts,d, ∀s, d ∈ N (4.8)

Equation (4.8) ensures that for each demand, from its source to destination node, the

transmitted length is no longer than the permitted length calculated by the GNTR

algorithm. Since T is pre-calculated by the GNTR model, the multiplication of the

decision variable USEi,j;s,d and the length of each link `i,j, can be processed by the

MILP engine.

4.3.2 CLGN Model

Similarly, we extend the MILP for the basic RSA problem to implement the QoT

constraints based on the CLGN model.

SINRth
s,d denotes the required SINR for a given demand Ds,d and a specified QoT,

corresponding to η. η represents the spectral efficiency of the modulation chosen.

The SINRth
s,d and pre-FEC BER thresholds are consistent with the required SINR

and pre-FEC BER threshold used in the GNTR algorithm.

The following constraints are needed to incorporate the CLGN into the basic

MILP:

• ASE PSD for demand Ds,d:

GASE;s,d =
∑

(Li,j∈L)
⋂

(USEi,j;s,d=1)

`i,j
L
×Gspan

ASE;s,d, ∀s, d ∈ N (4.9)
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• NLI PSD for demand Ds,d:

GNLI;s,d =
∑

(Li,j∈L)
⋂

(USEi,j;s,d=1)

`i,j
L
×CL(Gspan

NLI;s,d), ∀s, d ∈ N (4.10)

• QoT constraint based on the CLGN model:

GASE;s,d +GNLI;s,d ≤
Gs,d

SINRth
s,d

, ∀s, d ∈ N (4.11)

where the Gs,d is the input PSD for demand Ds,d. Equation (4.9) obtains the ASE

PSD by summing up all links on the route selected for demand Ds,d ∈ D. GASE;s,d

is the ASE PSD accumulated along the route. The ASE noise only depends on

the length that the transmitted signal travels. In (4.10), CL(Gspan
NLI;s,d) is the NLI

PSD per span, calculated by the CLGN model. Moreover, this equation sums up

the propagation distance of Ds,d in order to obtain the NLI PSD accumulated along

the route, denoted as GNLI;s,d. Equation (4.11) enforces that each deployed demand

should satisfy the desired QoT.

4.4 MILP with Regeneration Nodes

In Section 4.3 of this thesis, we extended the MILP for the basic RSA model to

implement the QoT requirements. Because of the accumulated noise along the route,

a demand might not be able to route from its source to destination and still satisfy the

QoT constraints. Therefore, when we apply these two models in large scale network

topologies, such as the NSF-24, the MILP may not yield a viable solution. Hence,

we need to consider using regeneration nodes to negate the accumulated noise effects

and attain the desired QoT.

To model the regeneration nodes and their OEO function in the MILP formula-
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tions, this thesis assumes the following facts for the GNTR model and the CLGN

model:

1. In the GNTR model, the transmission reach can be extended after the signal

is regenerated at the regeneration nodes. In other words, the propagation dis-

tance accumulated along the route becomes zero when the demand passes the

regeneration node and uses a regeneration circuit.

2. In the CLGN model, the total noise caused by ASE and NLI accumulated along

the route becomes zero when the light-path passes the regeneration node and

uses a regeneration circuits. The accumulated noise along the route is canceled

by the regeneration nodes with the input PSD unchanged.

Based on the two assumptions above, we can extend the MILP described in Section 4.3

to incorporate regeneration nodes. We use existing formulations from [2] for modeling

signal regeneration. After adding constraints at signal regeneration nodes, these two

MILPs, the GNTR-model-based MILP and the CLGN-model-based MILP, are able

to function for practical continental-scale networks. With regeneration nodes, the

optimization objective becomes a multi-objective function with a weighting factor,

either C + εT or T + εC, where ε is a small number, C is still the spectrum used,

and T is the number of regeneration nodes. Note that basic assumptions are listed

as follows: no wavelength conversion, no modulation conversion, and all demands use

the same modulation format.

4.4.1 GNTR Model with Regeneration Nodes

YTR
n;s,d denotes a real-valued decision variable that represents the physical propa-

gation distance. YTR
n;s,d = 0 when demand Ds,d does not route through node n. Oth-

erwise, YTR
n;s,d is the physical propagation distance of demand Ds,d from the beginning
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node of the transparent segment to node n ∈ N. zTR
i,j;s,d is a real-valued decision vari-

able that represents the relationship between the physical traveling distance YTR
n;s,d

and the usage of the link Li,j, USEi,j;s,d. zTR
i,j;s,d = 0 if demand Ds,d is not assigned

on link Li,j, i.e., if USEi,j;s,d = 0. Otherwise, zTR
i,j;s,d is the accumulated propagation

distance from the beginning node of the transparent segment on the light-path to

node i, i.e., zTR
i,j;s,d = YTR

i;s,d, where i ∈ N is on the route of demand Ds,d. In;s,d de-

notes a Boolean decision variable representing the allocation of a regeneration circuit

on node n ∈ N, corresponding to demand Ds,d. The regeneration nodes contain a

limited number of regeneration circuits and the maximum number of regeneration

circuits used per regeneration node is Imax. In;s,d = 1 if a regeneration circuit for a

demands Ds,d is allocated on node n. Otherwise, In;s,d = 0. In, a Boolean decision

variable, represents whether node n is a regeneration node or not. In is related to

In;s,d (for In;s,d = 1, node n has to be a regeneration node, i.e., In = 1, and its regen-

eration circuit has to be used by demand Ds,d). If Ds,d needs a regeneration circuit,

node n has to be a regeneration node. kTR
i,j;s,d denotes a real-valued decision variable

that manages the relationship between the regeneration node In and the accumulated

length zTR
i,j;s,d. If node n is a regeneration node and the regeneration circuit is needed,

In;s,d = 1, then kTR
i,j;s,d = 0. Otherwise, kTR

i,j;s,d = zTR
i,j;s,d, which means that demand

Ds,d is not regenerated at node n and the accumulated length is not affected.

The resulting constraints that must be added to the MILP to implement regener-

ation nodes are:

• Link usage and accumulated traveling distance constraint:

zTR
i,j;s,d = YTR

n;s,d × USEi,j;s,d ,∀i, j, s, d ∈ N (4.12)
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• Transmission reach constraint (QoT constraint of the GNTR model:

YTR
n;s,d ≤ Ts,d, ∀s, d, n ∈ N (4.13)

• Accumulated traveling distance constraint:

YTR
n;s,d =

∑
Li,j∈L;j=n

kTR
i,j;s,d + USEi,j;s,d × `i,j, ∀s, d, n ∈ N (4.14)

• Regeneration circuits and accumulate length constraint:

kTR
n;s,d = (1− In;s,d)× zTR

i,j;s,d, ∀s, d, n ∈ N (4.15)

• Regeneration circuits and regeneration nodes constraint:

In × Imax ≥
∑
∀Ds,d∈D

In;s,d, ∀n ∈ N (4.16)

Equation (4.12) builds the relationship between YTR
n;s,d and zTR

i,j;s,d [44]. Equation

(4.13) is used to replace constraint (4.8) when regeneration nodes are employed. It

ensures that a demand is transmitted with the desired QoT. Equation (4.14) is used

to obtain YTR
n;s,d by a recursive accumulation of the propagation distance along the

route of the demand. Equation (4.15) is used to ensure the relationship between

regeneration circuits and the accumulated length. Equation (4.16) ensures the number

of regeneration circuits on one regeneration node is bounded by the maximum allowed,

Imax. In addition, we assume that if there is a regeneration circuit on node n, then

node n must be a regeneration node.
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4.4.2 CLGN Model with Regeneration Nodes

YCL
n;s,d denotes a real-number decision variable representing the accumulated noise,

both ASE and NLI, along the route corresponding to demand Ds,d from the beginning

node of the transparent segment on the light-path to node n ∈ N. YCL
n;s,d = 0 if the

demand does not route through node n. Otherwise, YCL
n;s,d is the sum of the ASE and

NLI noise along the route from its last regeneration node to node n. zCLi,j;s,d, also a real

valued variable, represents the relationship between the accumulated noise YCL
n;s,d and

the link usage USEi,j;s,d. zCLi,j;s,d = 0 if demand Ds,d is not assigned to link Li,j, i.e.,

USEi,j;s,d = 0. Otherwise, zCLi,j;s,d is the accumulated noise from the beginning node

of the transparent segment on the light-path to node i ∈ N, and i is on the route

of demand Ds,d, i.e., zCLi,j;s,d = YCL
i;s,d. kCLi,j;s,d is a real-valued decision variable that

manages the relationship between regeneration node n and the accumulated total

noise zCLi,j;s,d. If node n is a regeneration node and the regeneration circuit is needed,

In;s,d = 1, then kCLi,j;s,d = 0. Otherwise, kCLi,j;s,d = zCLi,j;s,d, which means demand Ds,d is

not regenerated at node n and the accumulated length is not be affected.

The resulting constraints that must be added to the MILP to implement regener-

ation nodes are:

• Link usage and accumulated noise constraint:

zCLi,j;s,d = YCL
n;s,d × USEi,j;s,d, ∀s, d, i, j ∈ N (4.17)

• QoT constraint of the CLGN model:

YCL
n;s,d ≤

Gs,d

SINRth
s,d

, ∀s, d, n ∈ N (4.18)
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• Accumulated noise constraint:

YCL
n;s,d =

∑
Li,j∈L;j=n

kCLi,j;s,d + USEi,j;s,d ×
`i,j
L

(GASE;s,d +GNLI;s,d), ∀s, d, n ∈ N

(4.19)

• Regeneration circuits and accumulated noise constraint:

kCLn;s,d = (1− In;s,d)× zCLi,j;s,d, ∀s, d, n ∈ N (4.20)

• Regeneration circuits and regeneration nodes constraint:

In × Imax ≥
∑
∀Ds,d∈D

In;s,d, ∀n ∈ N (4.21)

Equation (4.18) is used to replace (4.11) when regeneration nodes are employed. It

ensures that each demand transmitted satisfies the desired QoT. Equation (4.19) is

used to obtain YCL
n;s,d by a recursive accumulation of the total noise along the route.

Imax in (4.21) is again the maximum number of regeneration circuits used on each

regeneration node.

4.5 Heuristic Algorithm: Sequential Allocation

4.5.1 Motivation of the Sequential Allocation

With the development of modern communication techniques leading to expansion

of the number of demands (such as more users involved in communications) and the

dimensions of topologies (such as a larger scale inter-continental backbone networks)

in EON, the complexity of the RSA problem goes beyond the capacity of current
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solvers. Even though the CLGN model provides less complexity than the standard

GN model, the RSA problem cannot be properly solved within a reasonable time,

using the standard MILP algorithm. For example, for large network topologies, such

as the NSF-24 network with 24 nodes and 86 links, or the DT-14 network with 14

nodes and 46 links, current computational resources are not able to successfully solve

the RSA problem. Therefore, heuristic algorithms are used to provide acceptable

sub-optimal solutions to these complex RSA problems.

The heuristic algorithm we propose is called the sequential allocation (SA) al-

gorithm. The SA algorithm is a recursive and iterative method to solve the RSA

problems and saves on computational resource consumption. It optimizes the routing

of the demands and the assignment of spectral resources simultaneously and recur-

sively. The merit of the recursiveness is to shrink the number of variables and to

provide a near-optimal starting point at each iteration.

MILP problems are much more complex than basic linear programming problems

because, in MILP problems, there are integers that have to be solved by the method

of exhaustion. Therefore, for optimal MILP methods, during the solving process an

unacceptably long time is spent solving for the integers values in intermediate results.

These scenarios are likely to be considered as impasses of the optimization processes.

The SA algorithm can mostly avoid these impasses, where the optimal MILP methods

are usually overwhelmed. The SA algorithm reduces the number of integer variables,

thus leading to savings in computational resources by using iterations. In addition,

the SA algorithm applies randomness in order to enhance the performance of each

iteration. The randomness allows the algorithm to explore many non-contiguous areas

of the variable space, resulting in a closer approach to the optimal solution.
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4.5.2 SA Process

The process of the SA algorithm is shown in Algorithms 1-5.

In Algorithm 1, when the number of demands optimized is less than the number

of demands needing to be optimized (i.e., D∗ 6= D), we iteratively expand the size of

the optimization problem (i.e., D∗∪Dnew=AddNewDemands(D∗,D,m)) and optimize

it, until the expanded size equals the desired size (i.e., D∗ = D). In addition, between

two expanding process (i.e., the number of demands |D∗| remains unchanged), we

reoptimize the problem (with the number of demands unchanged) for N iterations by

applying randomness to each iteration.

In Algorithm 2, when the number of optimized demands is less than the number

of demands needing to be optimized (D∗ 6= D), we add m more demands into the

optimization problem. The demands to be used in the optimization process (i.e.,

Algorithm 4) become D∗ ∪ Dnew, where |Dnew| = m.

In Algorithm 3, we randomly select a set of demands, Dout from the set of op-

timized demands, D∗. The size of the selected demand set is half of that of the

optimized demands (i.e., |Dout| = b|D∗|/2c). We then apply the remaining selected

demands into Algorithm 5.

In Algorithm 4, D∗∪Dnew represent the set of demands that needs to be optimized.

δ(D∗) represent the optimized spectrum information obtained from the last iteration

when the set of demands is D∗. USE(D∗) represents the optimized routing information

obtained from the previous iteration when the set of demands is D∗. This MILP

process optimizes the expanded demands set (D∗ ∪ Dnew) based on the optimized

spectrum and routing information from the optimized demands set D∗.

In Algorithm 5, Dout represent the set of demands randomly selected from the

optimized set of demands D∗. In this algorithm, we delete the routing USE(Dout)
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Algorithm 1 Sequential Allocation

Input:

• Network topology with a set of links L
• Set of demands D
• The number of iterations per stage N

• The increment (granularity) of the number of demands m at the beginning of
each stage

Set definitions:

• D∗ is the set of demands processed in the current iteration, with initial value
D∗ = ∅

• δ(D∗) = {δs,d;ŝ,d̂|Ds,d ∈ D∗} is the pair-wise spectral ordering of demands in
D∗, with an initial value δ(D∗) = ∅

• USE(D∗) = {USEi,j;s,d|Ds,d, Dŝ,d̂ ∈ D∗, Li,j ∈ L} is the link usage of demands
in D∗, with an initial value USE(D∗) = ∅

• k is the index of the current iteration, with an initial value k = 1

• Obj(D∗) is the optimization objective for demands Ds,d ∈ D∗

while D∗ 6= D do
D∗ ∪ Dnew=AddNewDemands(D∗,D,m)
δ(D∗∪Dnew),USE(D∗∪Dnew),Obj(D∗∪Dnew)= MILP(D∗∪Dnew, δ(D∗),USE(D∗))
D∗ ← D∗ ∪ Dnew

δ(D∗)← δ(D∗ ∪ Dnew)
USE(D∗)← USE(D∗ ∪ Dnew)
k = 1
while k ≤ N do

Dout =TakeOutDemands(D∗)
δ(D∗),USE(D∗),Obj(D∗) =Reoptimize(Dout,D∗, δ(D∗),USE(D∗))
k ← k + 1

end while
end while
Output:

• The spectral ordering of all the demands δ(D∗)
• The link usage of all the demands USE(D∗)
• The allocation of regeneration nodes

• The optimization objective Obj(D∗)
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and spectrum assignment information δ(Dout) from the last iteration with demands

D∗. Based on the remaining spectrum and routing information, i.e., δ(D∗ \ Dout)

and USE(D∗ \ Dout), the demands D∗ are reoptimized again. In this reoptimization

process, demands are optimized based on partially optimized information from the

previous iteration.

Algorithm 2 AddnewDemands

Input: D∗, D, M
if D∗ $ D then

m = max{M, |D \ D∗|}
Randomly choose a subset Dnew = D \ D∗ such that |Dnew| = m

else
Dnew = ∅

end if
Output: D∗ ∪ Dnew

Algorithm 3 TakeOutDemands

Input: D∗
Randomly choose Dout ⊂ D∗ such that |Dout| = b|D∗|/2c
Output: Dout

Algorithm 4 MILP

Input: Dx ∪ Dnew, δ(Dx),USE(Dx)
Allocate resources to each demand Ds,d ∈ Dx ∪ Dnew by MILP subject to the
following constraints

• Flow conservation

• Spectrum nonoverlappting

• QoT requirements and allocation of regeneration nodes

• Update δ(Dx ∪ Dnew) based on δ(Dx)

• Update USE(Dx ∪ Dnew) based on USE(Dx)

Output: δ(Dx ∪ Dnew),USE(Dx ∪ Dnew),Obj(Dx ∪ Dnew)
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Algorithm 5 Reoptimize

Input: Dout,Dx, δ(Dx),USE(Dx)
Allocate resources to each demand Ds,d ∈ Dx by MILP subject to the following
constraints

• Flow conservation

• Spectrum nonoverlappting

• QoT requirements and allocation of regeneration nodes

• Update δ(Dx) based on δ(Dx \ Dout)

• Update USE(Dx) based on USE(Dx \ Dout)

Output: δ(Dx),USE(Dx),Obj(Dx)

4.6 Comparison with the Benchmark

In order to measure the performance of the proposed SA algorithm, this thesis

applies the optimal MILP as a benchmark for comparison. Simulations for both the

optimal MILP and the SA algorithm are based on a six node network, shown in Figure

4.1. The network parameters are listed in Table 3.1. We apply the GNTR model and

the CLGN model separately for both the optimal MILP and the SA algorithm. The

optimization objective in this scenario is to minimize the total spectrum usage, C.

No regeneration is assumed. We generate static traffic demands between node pairs,

wherein each pair consists of a source and a destination node. For every pair, each

node is uniformly selected. The bandwidth of these demands is uniformly distributed

in the range from 30 to 100 GHz. Identical demands are deployed for both the SA and

the optimal MILP algorithms. Binary phase shift keying (BPSK) modulation is used

for all demands [2]. All simulation results lie within 90% confidence intervals. Note

that the simulation settings are similar to common assumptions used in literature [2–

4].

In Figure 4.2, after 30 simulation trials, we find that when the number of demands
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Fig. 1. Six-node network. The number on each link corresponds to the number
of spans.

Fig. 2. Fourteen-node DT network. The number on each link corresponds to
the number of spans.

order of the number of links on their shortest paths. For each
of the K paths of every pair of nodes, the modulation format
of the path is assigned as the highest-order modulation format
whose reach limit Rm is longer than or equal to the length of the
path. For each connection, the algorithm calculates the spectrum
availability of all the candidate K paths based on the spectrum
availability of links on the paths. The algorithm selects the path
whose first available and sufficient subcarrier-band (i.e., the
subcarrier-band is wide enough for the bandwidth requirement
Tim of the current connection i) has the lowest first subcar-
rier index. In addition to the two connection sorting policies, a
simulated annealing (SimAn) method was used to improve the
performance of the RMSA heuristic by finding good ordering
of the connections. There is a fixed transmission reach limit for
each modulation format with a particular signal power in [6].
In order to deal with different values of power spectral density
G in this work, we set the reach for modulation format m as
�G/(SNRm G0

ASE)� spans.

IV. NUMERICAL RESULTS

A. Simulation Settings

There are two network topologies for simulations: a small
six-node network (see Fig. 1) and the larger 14-node Deutsche
Telekom (DT) network (see Fig. 2). The number on each
link corresponds to the number of spans. The parameters re-
lated to physical impairments are α = 0.22 dB/km, γ = 1.32
(W·km)−1 , β2 = −21.7 ps2 /km, nsp = 1.8, ν = 193 THz, L =

Fig. 3. Bandwidth (average of maximum allocated subcarrier indexes) versus
PSD (see G in Table I) for the bit rate requirement of each connection is between
312.5 and 625 Gb/s in the six-node network. (a) Main algorithms compared
with benchmarks. (b) Proposed algorithms, including the sorting policies.

100 km, and Cs = 12.5 GHz [22], [23]. The bit error rate (BER)
requirement for all connections is set to 10−3 . There are M = 4
modulation formats: BPSK, QPSK, 8-QAM, and 16-QAM. We
consider two kinds of bit rate requirements: the low bit rate
requirement of each connection is uniformly distributed from
312.5 to 625 Gb/s; the high bit rate requirement of each connec-
tion is uniformly distributed from 1250 to 3750 Gb/s8. K is set
to be 3 for the CL, GILP heuristics and benchmark algorithms,
and K ′ = 5 for the CL heuristic. The guardband used for the
benchmark methods is set to g = 1 and g = 2 subcarriers. For
each simulation, the maximum allocated subcarrier index (on

8The lowest bit requirement ensures that even with the 16QAM modula-
tion format, the number of allocated subcarriers is more than three, which is
larger than the 28 GHz bandwidth limit with the physical layer model (see
Section II-A).

Figure 4.1: Six node test network [4]. The number on each link corresponds to the
number of spans.

ranges from 5 to 20, both the optimal MILP and the SA algorithm provide identical

results (the spectrum assignment is identical, but since the network topology is sym-

metrical the routing can be different). We thus conclude that the solutions obtained

by the SA algorithm can achieve the global optimum for small dimension networks.
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Figure 4.2: Total spectrum usage versus number of demands for optimal MILP and
proposed heuristic algorithm SA in 6-node test network, with BPSK modulation. (a)
GNTR model. (b) CLGN model.



Chapter 5

Numerical Results

In this chapter, through simulation of different scenarios of the RSA problem,

we demonstrate the merits of the CLGN model compared with the GNTR model

for realistic networks.. We also show the advantages of the proposed SA algorithm

compared with existing heuristic algorithms.

5.1 Simulation Settings

We ran our simulations on the Rivanna research computing cluster provided by

the University of Virginia [45]. The MILP engine used for simulation is the Gurobi

Optimization [46]. The fiber parameters for our simulation are based on Table 3.1.

The network topologies we tested are the NSF-24 network with 24 nodes and 86

unidirectional links, shown in Figure 5.1, and the DT-14 network with 14 nodes and

46 unidirectional links, shown in Figure 5.2. These two network topologies are used

for testing algorithms with different scalability (the DT-14 network is used for less

scalable algorithms, and the NSF-24 network is used for more scalable algorithms).

All plots show the mean values of the quantity measured and 90% confidence intervals.

We generate static traffic demands between node pairs, wherein each pair consists of

47
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Fig. 1. Six-node network. The number on each link corresponds to the number
of spans.

Fig. 2. Fourteen-node DT network. The number on each link corresponds to
the number of spans.

order of the number of links on their shortest paths. For each
of the K paths of every pair of nodes, the modulation format
of the path is assigned as the highest-order modulation format
whose reach limit Rm is longer than or equal to the length of the
path. For each connection, the algorithm calculates the spectrum
availability of all the candidate K paths based on the spectrum
availability of links on the paths. The algorithm selects the path
whose first available and sufficient subcarrier-band (i.e., the
subcarrier-band is wide enough for the bandwidth requirement
Tim of the current connection i) has the lowest first subcar-
rier index. In addition to the two connection sorting policies, a
simulated annealing (SimAn) method was used to improve the
performance of the RMSA heuristic by finding good ordering
of the connections. There is a fixed transmission reach limit for
each modulation format with a particular signal power in [6].
In order to deal with different values of power spectral density
G in this work, we set the reach for modulation format m as
�G/(SNRm G0

ASE)� spans.

IV. NUMERICAL RESULTS

A. Simulation Settings

There are two network topologies for simulations: a small
six-node network (see Fig. 1) and the larger 14-node Deutsche
Telekom (DT) network (see Fig. 2). The number on each
link corresponds to the number of spans. The parameters re-
lated to physical impairments are α = 0.22 dB/km, γ = 1.32
(W·km)−1 , β2 = −21.7 ps2 /km, nsp = 1.8, ν = 193 THz, L =

Fig. 3. Bandwidth (average of maximum allocated subcarrier indexes) versus
PSD (see G in Table I) for the bit rate requirement of each connection is between
312.5 and 625 Gb/s in the six-node network. (a) Main algorithms compared
with benchmarks. (b) Proposed algorithms, including the sorting policies.

100 km, and Cs = 12.5 GHz [22], [23]. The bit error rate (BER)
requirement for all connections is set to 10−3 . There are M = 4
modulation formats: BPSK, QPSK, 8-QAM, and 16-QAM. We
consider two kinds of bit rate requirements: the low bit rate
requirement of each connection is uniformly distributed from
312.5 to 625 Gb/s; the high bit rate requirement of each connec-
tion is uniformly distributed from 1250 to 3750 Gb/s8. K is set
to be 3 for the CL, GILP heuristics and benchmark algorithms,
and K ′ = 5 for the CL heuristic. The guardband used for the
benchmark methods is set to g = 1 and g = 2 subcarriers. For
each simulation, the maximum allocated subcarrier index (on

8The lowest bit requirement ensures that even with the 16QAM modula-
tion format, the number of allocated subcarriers is more than three, which is
larger than the 28 GHz bandwidth limit with the physical layer model (see
Section II-A).

Figure 5.1: DT-14 network [4]. The number on each link corresponds to the number
of spans.

a source and a destination node. For every pair, each node is randomly selected.

The bandwidth of these demands is uniformly distributed from 30 to 100 GHz. All

demands use the same modulation format (either BPSK or QPSK). No modulation

conversion or wavelength conversion is considered [2]. Again, the simulation settings

are similar to common assumptions used in literature [2–4].

5.2 Results for DT-14 Network

In this scenario, we call the combination of our proposed CLGN model and SA

heuristic algorithm the proposed system. This system models the PLIs using the

CLGN model and solves the RSA problem by using the SA algorithm. We compare

our proposed system with another published system presented in [3] that models

the RSA problem by a finer linearized GN model and solves the problem by MILP.

We consider the system published in [3] as a benchmark, and compare the proposed
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Fig. 1. NSF-24 network. The number on each link represents the
physical length of the link in km.

that we call the recursive solution. For dynamic networks,
we can use the recursive MILP to allocate resources for one
or a few new connection requests given the current state of
the deployed network, as we proposed for WDM systems in
[9].

The rest of the paper is organized as follows: Section II
introduces the network and node structure of our model and
describes the advanced signal processing functionalities for
EON that we consider; Section III explains how we imple-
ment the new functionalities with our MILP formulation;
Section IV develops our recursive MILP implementation
that balances optimality and complexity; Section V presents
numerical simulation results collected by solving the design
problem using our formulation. Finally, conclusions are given
in Section VI.

II. NETWORK DESCRIPTION

We are interested in long-haul transport optical networks
such as the NSF network shown in Fig. 1 that covers the
whole US mainland area. In order to investigate the effects
of topology on the questions of interest, we also consider a
symmetric network illustrated in Figure 2 with the same
number of nodes and network diameter as the NSF network
(the link length is set to be 1330 km for this purpose)
but with a different number of links and connectivity. The
network must support a given traffic load as identified by a
demand matrix specifying the source node, destination node,
and throughput requested of each traffic demand.

The network we investigate is fully elastic in that the
spectrum assignment is flexible over a very fine grid. The
central frequency and the bandwidth of each channel can
both be flexibility tuned. For mathematical simplicity, we
model each channel as having a continuous-valued spectrum
(i.e., not slotted) as an approximation to a fine grid. In
practice flexibility is achieved by using flexible-bandwidth
transponders, which are the fundamental building blocks of
EON. They transmit the signal on the fiber, performing all
electrical-optical and optical-electrical conversions. Without
loss of generality, we assume a node structure with transpon-
ders based on orthogonal frequency division multiplexing
(OFDM) technology. The configuration of each transponder
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Fig. 2. Symmetric-24 network

can be managed adaptively by the control plane as described
in, for example, [10].

In this paper the resources being allocated to each de-
mand include: connected fiber links forming a route, spec-
trum on each link, signal regeneration circuits on connect-
ing nodes, and wavelength and/or modulation conversion
at those nodes. (The MILP formulation given below could
be easily modified to include other network attributes and
constraints.) The functionality that these resources provide
is described in the following sections.

A. Signal Regeneration

When optical signals traverse the network, they often
suffer from physical impairments such as signal loss, noise,
dispersion and nonlinear effects. For networks with small
physical dimensions (such as a local or metro area networks),
the impairments can be ignored. In long-haul transport-scale
networks, the impairments need to be accounted for in order
to maintain acceptable signal quality (often referred to as
the quality of transmission, QoT) at the receiving end. Due
to the fact that impairments originate from many physical
phenomena that accumulate over distance, and given that
they usually depend on network state, for simplicity a conser-
vative constraint on the length of fiber a signal can traverse
before regeneration, called the transmission reach (TR), is
often used to guarantee the QoT. If the source-destination
distance on a route exceeds the TR, then regeneration is
needed to reduce the physical impairments. The optical
signal undergoes optical-electrical-optical (OEO) conversion
at an intermediate node, and the regeneration (including re-
amplifying, re-timing, re-shaping [3R]) is performed in the
electrical domain. In our work, we assume 3R regenera-
tion only occurs at intermediate nodes, not along the fiber
links. To ensure proper QoT, the length of each transparent
segment (part of the lightpath that has no intermediate
regeneration) must be upper-bounded by the TR. As physical
impairments depend on the bit rate and modulation scheme
(spectral efficiency) used for a demand, so does the TR for
the route used by that demand.

OEO conversion is expensive since it requires high-speed
electronic equipment, and therefore regeneration needs to
be carefully and conservatively planned. In a typical optical
network, not all nodes are equipped with regenerators to
save on maintenance and other operational expenditures.

Figure 5.2: NSF-24 network [2]. The number on each link represents the physical
length of the link in km.

system with it. We apply the same topology, the DT-14 network, and the same

demands for both systems. The DT-14 network is chosen over the NSF-24 network in

this section due to the computational limitations of the benchmark system, which is

not able to find a solution for large network topologies or a large number of demands.

Since the network is relatively small in scale, we do not consider any regeneration

(T = 0). The objective here for both systems is to minimize the total spectrum

usage, C.

In Figure 5.3 (a), the total spectrum usage required by our proposed system is

slightly higher than that of the published system. When the number of demands is

less than or equal to 15, the proposed system and the benchmark system have similar

spectrum usage. When the number of demands is between 15 to 30, the gap in the

required spectrum between the proposed system and the published system is less than

10%. When the number of demands exceeds 30, the published system fails to give
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Figure 5.3: (a) Total spectrum usage versus number of demands for proposed system
and benchmark system in DT-14 network, with BPSK modulation. (b) Elapsed time
versus number of demands for proposed system and benchmark system in DT-14
network.
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any result within a reasonable time (i.e., 36 hours). However, the proposed system

is able to solve the RSA problem. Although the benchmark system provides better

results for up to 30 demands, the proposed system is uniquely able to provide results

for up to 50 demands.

In Figure 5.3 (b), the total elapsed time for both systems is shown to increase

exponentially as a function of the number of demands. However, the computational

efficiency of the proposed system is much greater than the benchmark system, due to

the SA algorithm appropriately breaking down the RSA problem into smaller prob-

lems. These results make the proposed system more applicable to practical scenarios.

We thus conclude that there is a trade-off between the optimality of the spectrum

usage and the efficiency in time consumption. Compared to the benchmark, the

proposed system sacrifices less than 10% of the spectrum used to gain the benefits of

less complexity in solving the RSA problem, less computation time, and the capability

to process the RSA problem deployed with a large number of demands.

5.3 Results for NSF-24 Network

To test our algorithms in a continental-sized network, we simulate the NSF-24

topology. This network has been used extensively in literature to evaluate network

planning algorithms [2, 47].

5.3.1 RSA with Multi-Optimization Objectives

Spectrum and regeneration nodes are valuable resources when considering the

capital expenditures of deploying long-haul optical networks. In different scenarios,

there are different priorities for these resources. We simulate the following represen-

tative scenarios to show the performance of our proposed CLGN model and the SA
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algorithm. We tested two objective functions:

1. RSA with objective: minC + εT

The objective in this scenario is to minimize the total spectrum usage C plus the

total number of regeneration nodes T (i.e. C + εT ), where ε is a small number.

Because C is much bigger than εT , the prime objective here is to optimize the

total spectrum usage, C. We minimize the total spectrum usage while trying

to reduce the number of regeneration nodes. We apply both the GNTR model

and the CLGN model, as described in Section 3.6, and solve the RSA problem

by the SA algorithm in the NSF-24 network.

2. RSA with objective: minT + εC

The objective in this scenario is to minimize the number of total regeneration

nodes, T , plus the total spectrum usage, C. This time the spectrum usage

is weighted by a very small number ε. Hence, the prime objective for this

optimization scenario is to minimize the number of regeneration nodes while

controlling the total spectrum usage with lower priority. We apply the same

simulation settings used as in the prior case for simulations in this scenario.

As shown in Figures 5.4 (a) and (b), both objectives above monotonically increase

as the number of demands increases. For the T + εC case, the CLGN model yields

a 37% savings in optimization objective compared with the GNTR model. However,

surprisingly, for the C + εT case, the curves of the CLGN model and the GNTR

model show little difference; because, as shown below, the spectrum usage for both

models is the same, we can attribute this result to the number of regeneration nodes

needed, T .

In Figures 5.5 (a) and (b), for the C + εT case, for both BPSK and QPSK

modulations, the total spectrum usage of the GNTR and CLGN models is similar,
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Figure 5.4: (a) Optimization objective C + εT versus number of demands in NSF-24
network, with QPSK modulation. (b) Optimization objective T + εC versus number
of demands in NSF-24 network, with QPSK modulation.
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which happens because the total spectrum used is the primary optimization objective.

Both the TR and the CLGN models sacrifice other resources, such as the number of

regeneration nodes, to ensure the optimality of the spectrum usage. In other words,

in this scenario, the difference of the performance caused by the different estimates

of the PLIs is compensated by the allocation of regeneration nodes.

In Figure 5.5 (a), for the T +εC scenario with BPSK, the loose QoT requirements

(the SINR threshold of BPSK is much smaller than the actual SINR) result in similar

spectrum used of both the GNTR model and the CLGN model. Comparing the

different optimization objectives, C + εT and T + εC, using BPSK, the spectrum

usage is similar because the minimum number of regeneration nodes is 0 and the

QoT requirements are loose.

In Figure 5.5 (b), for the T +εC scenario with QPSK, the total spectrum usage of

the GNTR model with less than 20 demands is higher than that of the CLGN model.

When the number of demands increases, the value of the total spectrum usage of

both the GNTR model and the CLGN model closely align. The reason for this is

that the main objective in this scenario is to minimize the number of regeneration

nodes. Therefore, when there are fewer than 20 demands, the CLGN model has the

potential to save more spectrum, because the CLGN model is state-dependent thus

has a more accurate approximation of the noise level. However, the GNTR model is

a worst case approximation and overestimates the PLIs when realistic situations are

far from the worst case (the actual length a signal can propagate while satisfying the

SINR threshold is much longer than the length obtained using the GNTR model).

When there are more than 20 demands, both the GNTR and the CLGN models result

in the same routing solution in order to save on the number of regeneration nodes,

resulting in the curve of the GNTR model closely following the curve of the CLGN

model. Comparing the different optimization objectives, C + εT and T + εC, using
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Figure 5.5: Total spectrum usage versus number of demands with different optimiza-
tion objectives C + εT and T + εC in NSF-24 network. (a) BPSK modulation. (b)
QPSK modulation.
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QPSK, the spectrum usage of T + εC is higher than that of C + εT .

Comparing Figures 5.5 (a) and (b), the BPSK and QPSK curves are similar to

each other for C + εT , because the allocation of regeneration nodes compensates the

difference between SINR thresholds. Additionally, in both modulation formats, the

bandwidth of demands is similarly distributed. Thus, the CLGN model is better in

saving total spectrum usage compared with the GNTR model for both modulation

formats.

In Figure 5.6 (a), for the C + εT case, the regeneration nodes usage of GNTR is

higher than that of CLGN for any number of demands. For the T + εC case, the

primary optimization objective is to minimize the number of regeneration nodes T .

Although the curve of the GNTR model is still higher than for the CLGN model, the

magnitude of separation is less compared with the C+εT case, because the objective

is to minimize the number of regeneration nodes. It can also be observed, for the

case T + εC, when demands are fewer than 25, the magnitude of separation between

the GNTR and CLGN model curves is greatest. This results from the fact that the

GNTR model has more PLIs approximation error when the actual noise level is far

from the worst case. Thus, we can conclude that the CLGN model is able to reduce

the number of regeneration nodes used compared with the GNTR model.

In Figure 5.6 (b), the number of regeneration circuits is not the optimization

objective of either the C+εT case or the T +εC case. However, regeneration circuits

are also an expensive and limited resource in EONs, in addition to regeneration

nodes. The GNTR model requires more regeneration circuits compared with the

CLGN model in both cases. Additionally, the magnitude of separation between the

CLGN and GNTR model curves in the C + εT case is larger than that of the T + εC

case. The reason is that when the number of demands increases, in both the C + εT

case and the T + εC case, the GNTR model results in higher PLIs estimation error,
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Figure 5.6: (a) Number of regeneration nodes versus number of demands with dif-
ferent optimization objectives C + εT and T + εC in NSF-24 network, with QPSK
modulation. (b) Number of regeneration circuits versus number of demands with
different optimization objectives C + εT and T + εC in NSF-24 network, with QPSK
modulation.
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leading to extra expenditure of regeneration circuits. Thus, the benefit of the CLGN

model in saving regeneration circuits, compared with the GNTR model, is substantial.

RSA with Limited Regeneration Nodes

In this scenario, we simulate the RSA problem with a limited number of nodes

that can be assigned as regeneration nodes. As we illustrate above, regeneration

nodes are a limited resource because the allocation of regeneration nodes, as well

as their maintenance, is very expensive. Consequently, regeneration nodes should be

carefully allocated in the RSA problem. From the perspective of industry, the number

of regeneration nodes is limited by the network implementation budget.

Hence, in this simulation scenario, we fix the maximum number of regeneration

nodes. We maintain the optimization objective, C + εT , for both the GNTR model

and the CLGN model, and solve the RSA problem using the SA algorithm. We

simulate this scenario in order to compare the performance of the total spectrum

usage between the GNTR model and the CLGN model with limited regeneration

nodes. In addition, compared with the results on the total spectrum usage from

Section 5.3.1 (minimizing C + εT without constraining the number of regeneration

nodes), we can observe the effects brought by utilizing more regeneration nodes. After

simulating different cases, such T ≤ 2, T ≤ 3, and T ≤ 4, the case of T ≤ 2 is most

representative. In this scenario, because of the QoT requirements, we stop simulation

when the number of demands exceeds 30. We maintain the simulation settings used

in the previous scenarios (Section 5.3.1).

In Figure 5.7 (a), for the T ≤ 2 case, the total spectrum usage required by the

CLGN model is less than that of the GNTR model. In addition, the spectrum usage

with the limited number of regeneration nodes is higher than the spectrum usage

without the limitation on regeneration nodes. We conclude that the CLGN model
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Figure 5.7: (a) Total spectrum usage versus number of demands with limited regener-
ation nodes, i.e., T ≤ 2 and without limitation of regeneration nodes in NSF-24, with
QPSK modulation. (b) Number of regeneration circuits versus number of demands
with limited regeneration nodes, i.e., T ≤ 2 and without limitation of regeneration
nodes in NSF-24, with QPSK modulation.
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requires less spectrum, compared with the GNTR model, when there is a limited

number of regeneration nodes. If we consider the result without the constraint on the

number of regeneration nodes as a reference, we see that utilizing more regeneration

nodes can save total spectrum usage. In Figure 5.7 (b), for T ≤ 2, the number of

regeneration circuits required by the CLGN model is less than that of the GNTR

model. We thus conclude that the CLGN model is better in saving network resources

compared with the GNTR model, when there is a limited number of regeneration

nodes.

5.3.2 Comparison with the Recursive MILP

In this section, we compare the performance of our proposed heuristic algorithm,

the SA, with another published algorithm, the re-MILP [2]. The optimization objec-

tive is to minimize C + εT . We simulate and compare the performance of both the

CLGN and the GNTR models solved by the SA algorithm and the re-MILP algorithm

separately in the NSF-24 topology, with QPSK modulation. We again maintain the

simulation settings used in the previous scenarios (Section 5.3.1).

The spectrum usage of both methods is shown in Figure 5.8. Compared with the

re-MILP algorithm, the SA algorithm achieves a significant spectrum efficiency gain,

which increases as the number of demands grows and reaches 19.0% at 50 demands.

The spectrum usage of the CLGN model and the GNTR model is similar since the

primary optimization objective here is the spectrum usage. The optimization thus

sacrifices other resources such as regeneration nodes to ensure the optimality of the

spectrum.

The usage of regeneration nodes and circuits is illustrated in Figures 5.9 and 5.10,

respectively. For both resources, the optimization solution from the SA algorithm is

better than that of the re-MILP algorithm in all cases. The number of regeneration
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Figure 5.8: Total spectrum usage versus the number of demands for the SA and the
re-MILP in NSF-24, with QPSK modulation.

nodes required by the SA algorithm is up to 28.5% lower than that of re-MILP

when there are 50 demands. In addition, the number of regeneration circuits needed

by the SA algorithm is up to 38.8% lower than that of the re-MILP algorithm at

50 demands. The reason is that the SA algorithm can avoid local optima in the

optimization process and iteratively pursues a better result. The re-MILP algorithm

uses the local optimum from the previous iteration as the starting point for the next

iteration and, thus, yields a larger optimality gap. Moreover, the advantage of the

SA algorithm over the re-MILP algorithm increases when the complexity of the RSA

problem increases. Figures 5.9 and 5.10 also show that using the CLGN, a state-

dependent PLI model, instead of a worst-case constraint such as the GNTR, can

significantly reduce the number of regeneration nodes and circuits required. Notably,

the numbers of regeneration nodes and regeneration circuits of the SA algorithm with

the CLGN model are 37.1% and 56.8%, respectively, less than those of the re-MILP
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Figure 5.9: The number of regeneration nodes versus the number of demands for the
SA and the re-MILP in NSF-24, with QPSK modulation.

with the GNTR model. In general, great savings of network resources are brought by

the utilization of the SA algorithm with the CLGN model.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we describe the RSA problem for EONs with PLIs and introduce

the standard GN model and the TR model. Based on the standard GN model, we

propose a novel estimation of PLIs, the CLGN model. In addition, we implement a

GN-based analytic algorithm, referred to as the GNTR model, in order to make the

comparison with the CLGN model fair.

The RSA problem suffering from PLIs is then modeled in MILP formulations.

We propose a heuristic algorithm, referred to as the SA algorithm, to solve the RSA

problem. We show through simulation that the CLGN model is better than the GNTR

model in estimating PLIs. The better estimation of PLIs brought by the CLGN model

saves resources of EONs, namely, the spectrum, regeneration nodes and regeneration

circuits. Moreover, the proposed heuristic algorithm, the SA algorithm, outperforms

the published re-MILP algorithm [2]. Utilizing our SA algorithm saves up to 38.8%

of network resources compared with the re-MILP. Additionally, the utilization of the

SA algorithm with the CLGN model increases these savings up to 56.8%. We also

64
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compare our proposed system based on the CLGN model solved by the SA algorithm

with the published system in [3]. Our algorithm can be used on larger scale networks

and assign 80% more demands than the algorithm in [3]. We conclude that the

proposed system is better at saving computational resources.

6.2 Future Work

In order to further improve the performance of our proposed work, we can consider

the combination of utilizing the CLGN and the GNTR models. This combination

would enable a further network resources saving. In addition, we plan to study a

more practical scenario that there are more and more demands (such as 23 × 24

demands) deployed in the EON.
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