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Foreword

I like to think of this thesis as actually 3 theses in one. I’ve had a wonderful experience here
at UVa and I wanted to cover the breadth and depth of the research I’ve been fortunate enough to
have participated in. I performed research in 3 areas during my tenure at UVa: preparation for
the upcoming PREXII experiment, source development for the future MOLLER experiment, and
analysis of a recently published 12𝐶 transverse asymmetry measurement at Mainz. The Mainz
measurement is presented in the manner of a traditional experimental nuclear physics thesis:
physics context, experimental setup, data analysis, followed by published results and conclusion.
The source work is for MOLLER is presented in a manner akin to an atomic physics thesis:
the development of a novel precision laser-optics tool, followed by a demonstration of using that
new tool successfully in a precision measurement. In this case the new tool is an RTP crystal
Pockels cell with an innovative design. It was ultimately installed at JLab, a national accel-
erator facility, and was demonstrated to successfully generate polarized electron beam with the
desired precision properties to meet the stringent experimental requirements for MOLLER. In the
source development section of this thesis, the new RTP Pockels cell design and operating princi-
ples are described, its behaviors on the laser table fully predicted analytically and characterized
empirically, and finally it is demonstrated to successfully produce electron beam at JLab with
unprecedented properties: producing smaller position differences than have ever been documented
at JLab previously and achieving precision beam position difference control at the 1nm-level. In
nuclear physics thesis fashion, the physics case for MOLLER is presented, as well as the case for
PREXII, the experimental design for both experiments is described (in greater detail for PREXII
because the experiment is happening imminently), and the results of source work development on
electron beam is shown for MOLLER while the results of PREXI and the impact PREXII results
will have in the greater context of both nuclear and astrophysics are described for PREXII. The
conclusion summarizes the progress made in all three experimental areas in the broader physics
context. There are also number of subsidiary Appendices, primarily just to serve as detailed
technical documentation for future students who will continue this work.

Abstract

Parity violating electron scattering (PVES) is a precision tool used in a broad

program of experiments which include studying the structure of protons and nuclei

and searching for new Beyond the Standard Model (BSM) physics. In parity

violation electron scattering experiments, a longitudinally polarized electron beam

is incident on an unpolarized target. The sign of the longitudinal polarization

is changed (making a parity transformation), and the fractional rate difference

between right and left helicity states, 𝑑𝜎𝑅 and 𝑑𝜎𝐿, is measured. An interference

between the electromagnetic and weak amplitudes, ℳ𝛾 and ℳ𝑍 respectively,

gives rise to a parity violating asymmetry 𝐴𝑃𝑉 = 𝜎𝑅−𝜎𝐿

𝜎𝑅+𝜎𝐿
, defined by the fractional

rate difference between right and left helicity states. 𝐴𝑃𝑉 can be measured to

extraordinarily high precision and is proportional to the ratio of the weak and

electromagnetic amplitudes.



This thesis highlights three such PVES experiments as well as a new polar-

ized beam source which will improve their precision. The PVES experiments are

PREX-II, MOLLER, and a 12𝐶 transverse asymmetry measurement at Mainz.

Chapters 1-3 of this thesis cover introductions to MOLLER and PREX-II, Chap-

ter 4 contains the results of the 12𝐶 transverse asymmetry measurement at Mainz,

and Chapters 5-6 contain the original work performed by this author. PREX-II,

the Lead Radius Experiment, measures the weak skin of the 208𝑃𝑏 nucleus, pro-

vides a clean measurement of 𝑅𝑁 , the RMS radius of neutrons in a heavy nucleus,

and constrains the equation of state (EOS) of highly dense matter which is impor-

tant for describing neutron star structure, heavy ion collisions, and atomic parity

violation experiments. The 12𝐶 transverse asymmetry measurement at Mainz,

and the future Mainz program of measuring the 208𝑃𝑏 transverse asymmetry as

well, addresses an important systematic correction for PREX and other PVES

experiments preformed with heavy-nuclei. MOLLER (Measurement Of Lepton

Lepton Electroweak Reaction) is an extremely precise PVES experiment search-

ing for new neutral currents in electron-electron scattering. It’s called MOLLER

because it will measure 𝐴𝑃𝑉 in the Moller 𝑒𝑒 scattering process, and will infer the

weak charge of the electron 𝑄𝑒
𝑊 to extremely high precision. MOLLER is sensitive

to new Beyond the Standard Model physics at MeV and multi-TeV scales and will

serve as an indirect complementary measurement to direct searches at high energy

colliders. To achieve high precision measurements on 𝐴𝑃𝑉 for MOLLER, we have

developed an innovative Rubidium Titanyl Phosphate (RTP) Pockels cell in the

polarized source to satisfy both statistical and systematic requirements as regards

the electron beam produced. This new ultra-fast RTP cell design uses electric field

gradients to provide unprecedented control over helicity correlated beam asymme-

tries and has been demonstrated to be capable of producing precisely controlled

polarized electron beam at Jefferson Laboratory, controlling beam steering down

to the nm-level. The precision reached with the RTP cell offers sufficient con-

trol over and minimization of helicity correlated beam asymmetries to perform

PREX II. The RTP Pockels cell system will provide fast flipping and suitable con-

trol helicity correlated beam asymmetries and parity quality beam for the future

MOLLER experiment, providing an unprecedented precision on the electron weak



charge and electroweak mixing angle.
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1

Chapter 1

Introduction

1.1 Parity Violation in the Weak Interaction

This history of parity violation in the weak interaction begins with Noether’s

theorem and the postulate of parity conservation. For every symmetry in nature,

there exists a corresponding conserved quantity - so says Noether’s Theorem of

1917 [51]. By Noether’s theorem, symmetry of interactions under spatial inversion

(𝑥→ −𝑥) must lead to conservation of the parity quantum number of elementary

particles [46]. The postulate, generally accepted prior to the mid-1950’s, was that

mirror symmetry in nature was self-evident and parity was therefore conserved.

The sober view at the time was to assume parity was conserved in all physical

processes including the weak interaction, as well as the strong and electromagnetic

interactions, until proven otherwise [32].

In the early fifties, the so-called 𝜏 − 𝜃 puzzle came along to challenge the

postulate of parity conservation. The 𝜏 − 𝜃 puzzle was a disturbing paradox in

which two apparently identical mesons, which we now now as the K, decayed

into pionic states of opposite parity: 𝜃+ → 𝜋+ + 𝜋0(𝑃 = 1) and 𝜏+ → 𝜋+𝜋0 +

𝜋0 𝑜𝑟 𝜋+𝜋+ + 𝜋−(𝑃 = −1). Lee and Yang addressed the 𝜏 − 𝜃 puzzle by

questioning the postulate of parity conservation: they suggested 𝜏 and 𝜃 were
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the same particle with parity just not conserved in one of the decay channels. A

thorough study of previous experiments found no evidence of parity conservation

in the weak interaction [32]. They proposed a test which lead directly to the

experimental demonstration of parity violation later that year[50].

Parity was ‘overthrown’ in 1956 when Madame Wu [53] carried out the fa-

mous, decisive Co-60 experiment which proved that parity was not conserved in

the weak interaction. 60Co nuclei were polarized with the nuclear spins aligned

parallel to the magnetic field of a solenoid[50], underwent beta decay to an ex-

cited state of 60Ni via 60Co→60Ni +𝑒− + 𝜈𝑒, and Wu recorded the direction of the

emitted electron. Because the parity transformation reverses momentum 𝑝 but

not angular momentum �⃗�× 𝑝 or spin, if parity were conserved in this process, the

electron momentum would not depend on the nuclear spin. However, a ‘forward-

backward decay asymmetry’ was observed, and fewer electrons came out in the

forward direction of nuclear spin than in the backward direction. This experiment

established parity violation as a signature of the weak force [32].

(a)
(b)

(c)

Figure 1-1: (a) Cobalt weak beta decay (b) Observation of ‘forward-backward
decay asymmetry’ in Co-60 weak decay (c) Parity transformation reverses mo-
mentum 𝑝 but not angular momentum �⃗� × 𝑝 or spin [69] [70]

The discovery of parity violation was profound in the history of weak interac-

tions because the effect is large. Once you look for it, parity violation is practically

the signature of the weak force [32]. Understanding of weak interactions is impos-

sible if parity violation is neglected [50].
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1.1.1 Birth of Glashow-Weinberg-Salam(GWS) theory

The first theory of the weak interaction, presented by Fermi in 1933, contained

no mediating particle, treating the weak process as simply a contact interaction

occurring at a single point with no mediator exchange. It was widely recognized

that this model was limited to low energy interactions and would fail at higher

energies [32]. Any more general theory of the weak interaction would need to

contain an ‘intermediate vector boson’ , the 𝑊±’s, and the challenge for theorists

was to predict its properties. It was not until the emergence of the electroweak

unification model that a really firm prediction of the weak intermediate vector

mass was possible.

Armed with the new knowledge that parity was not conserved in the weak

interaction, Glashow, Weinberg and Salam, in the 60’s, formulated a theory uni-

fying the weak and EM interaction - defining the electroweak interaction - which

contained three weak intermediate vector bosons: 𝑊± and 𝑍0. Crucially, the

Glashow-Weinberg-Salam (GWS) model was the first theory both containing par-

ity violation in the weak interaction and containing weak neutral current reactions

(the word ‘neutral’ referring to the charge of the exchange particle 𝑍0 in contrast

to weak charged current reactions exchanging charged 𝑊± bosons). The theory

made new predictions concerning the existence of a heavy neutral vector boson 𝑍0

and neutral current, the masses of the 𝑊± and 𝑍0 bosons, as well as the existence

of a new spin-0 boson, the Higgs boson as we now know it [50].

Of the many remarkable successes of the unified theory, one of particular signif-

icance was the firm prediction relating the masses of𝑊± and 𝑍0. The masses of the

W and Z bosons were related through the so called “Weinberg angle”/“Weak-mixing

angle” 𝜃𝑊 via 𝑀𝑍 =𝑀𝑊/ cos 𝜃𝑊 , where couplings in the model are determined by

the single parameter 𝜃𝑊 . The GWS model asserts that the 𝑊±, 𝑍0 and the pho-

ton 𝛾 are produced by spontaneous symmetry breaking. The three weak isospin

𝑇3 currents couple to a weak isotriplet of intermediate vector bosons 𝑊+,𝑊 0,
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and 𝑊−, whereas the hypercharge 𝑌𝑊 current couples to an isospin singlet in-

termediate vector boson 𝐵0 via independent couplings g and g’. The symmetry

breaking means the two neutral states 𝑊 0 and 𝐵0 mix, via the “Weak-mixing

angle” 𝜃𝑊 , to form the photon(massless linear combination) and 𝑍0 (orthogonal

massive combination) [32].

𝐴 = 𝐵0𝑐𝑜𝑠𝜃𝑊 +𝑊 0𝑠𝑖𝑛𝜃𝑊

𝑍 = 𝑊 0𝑐𝑜𝑠𝜃𝑊 −𝐵0𝑠𝑖𝑛𝜃𝑊

In the early days it was hard to estimate the 𝜃𝑊 experimentally, hence the 𝑍0

mass was quite uncertain.

GWS electroweak unification theory became part of the Standard Model. Basic

predictions of the GWS model were experimentally confirmed over the course of the

1970’s. The Gargamelle bubble chamber experiment showed the existence of the

neutral 𝑍0 in 1973. The E122 experiment at SLAC, which was the pioneering par-

ity violating electron scattering experiment, both verified parity non-conservation

in the weak interaction and measured sin2 𝜃𝑊 = 0.2 ± 0.03 in 1978 [29]. Several

other experiments in the late 70’s pointed to 𝜃𝑊 ≈ 29𝑜 and the weak force medi-

ator masses were calculated to be 𝑀𝑊 = 82± 2GeV/𝑐2 and 𝑀𝑍 = 92± 2GeV/𝑐2

[32]. Glashow, Weinberg and Salam were awarded the Nobel prize in 1979. Some-

time later, finally in 1983 , CERN did officially observe the W (at 81GeV) and the

Z (at 95GeV) as a direct confirmation of what was already established through

indirect methods.

1.1.2 Tests of the Standard Model: Three Regimes

There was no direct evidence for weak neutral currents for some time. The

trouble is that everything that the neutral 𝑍0 might couple to, the photon also cou-

ples to, and the weak force gets masked by EM force. Experimental strategies for
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detecting weak neutral currents can be understood by examining the amplitudes

for the competing weak and EM interactions. The general form of the amplitude

is

ℳ(𝑞2) =
𝑔2ℎ̄2

𝑞2 −𝑀2
𝑋𝑐

2
(1.1)

where 𝑀𝑋 is the mass of the mediator and g is the coupling constant. In weak

interactions, 𝑀𝑋 = 𝑀𝑊,𝑍 ≈ 80GeV/𝑐2 and in the electromagnetic interaction,

𝑀𝑋 = 𝑀𝛾 = 0. So, even with comparable coupling 𝑔𝑤𝑒𝑎𝑘 ≈ 𝑔𝑒𝑚, the amplitudes

for the two interactions will only become of comparable size for |𝑞|2 ≈ 𝑀2
𝑋𝑐

2

[50]. Electroweak unification only becomes clearly manifest at high energies. But

experimentally reaching these high energies is usually very difficult and so indirect

low energy methods were usually used first. One such method which can be

employed at low energy is to use parity violation. There is a weak contamination

in every EM process, and even though these effects are minute, they carry a tell-

tale signature parity violation. The observation of these minute effects was further

unambiguous evidence for electroweak unification [32]

Measurements of the neutral weak interaction in tests of the Standard Model

followed a natural progression through what can be classified as 3 experimental

regimes:

1. Neutrino (ℳ𝑤𝑒𝑎𝑘 ̸= 0, ℳ𝛾 = 0) regime : First neutrino experiments were

performed in a regime where there was low signal and no EM background.

2. Indirect (ℳ𝑤𝑒𝑎𝑘 << ℳ𝛾) regime: Then indirect experiments were per-

formed in a low energy regime, where the weak signal was small, EM back-

ground dominated, and parity properties were used to distinguish signal from

background

3. High Energy (ℳ𝑤𝑒𝑎𝑘 ∼ ℳ𝛾) regime : Finally ‘ direct’ high energy experi-

ments confirmed what had already been demonstrated indirectly.
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Neutrinos: Low (Isolated) Signal Regime

Neutral weak interactions were not detected for quite some time due to be-

ing obscured by electromagnetic processes. All observed weak interactions were

limited to those mediated the charged boson 𝑊± only [50]. However, neutrinos,

while difficult to detect, have no EM coupling, so the weak effects are not obscured

[32] . So, neutrino scattering was used to first confirm the existence of neutral

weak interactions in a regime where there was low signal and no EM background.

It was predicted that hadronic neutral current reactions between a neutrino and

a nucleon: 𝜈𝜇 + 𝑁 → 𝜈𝜇 + 𝑋, where X is any set of hadrons, although difficult

to detect, could occur via the mechanism of neutral 𝑍0 exchange [50]. Leptonic

neutral currents, events involving the interaction of a neutrino with an electron,

were also predicted to occur. At last in 1973, the Gargamelle bubble chamber

experiment [31] observed such reactions and showed the existence of the neutral

𝑍0.

Figure 1-2: Gargamelle Bubble chamber Experiment: uncovers 𝜈𝜇+𝑒− → 𝜈𝜇+𝑒
−,

shows neutral current exists. [70]

Fig. 1-2 shows the actual bubble chamber photograph where weak neutral

currents were first observed. The measurement uncovered neutrino electron events

where neutrino (or antineutrino) collides with an electron 𝜈𝜇+ 𝑒− → 𝜈𝜇+ 𝑒
−. The

neutrino has no charge, so the interaction has no EM component and the mediator
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is just the 𝑍0. The scattering of neutrinos off electrons and nuclei was found to

yield amplitudes comparable to those of other weak charged current processes [50].

The 𝜈 − 𝑒 and 𝜈 − 𝑁 experiments demonstrated the existence of the neutral

current and 𝑍0, but not its nature, or its properties, or to what extent, or even

whether, the weak neutral current was parity-violating. [46]

Indirect: Low Energy Regime

As stated previously, the Standard Model provided no way to calculate 𝜃𝑊 , so

the 𝑍0 mass was theoretically uncertain and required experimental inputs. After

the existence of 𝑍0 weak mediator had been established, ‘indirect’ experiments

were performed in the low energy regime. Even though the weak signal was small

and EM background dominated, parity properties were used to distinguish signal

from background. The clean separation can be made by making use of the parity

violation in the weak interaction. Since the parity violating signal was predicted

to be small, high precision was required. A common attribute of precision ex-

periments is the interferometric nature of the measurement. In precision parity

experiments, it is the interference term between the EM and weak interactions

which gets detected and the parity violation property of the weak interaction

which distinguishes it.

In 1978, the E122 experiment at SLAC [29], verified the Standard Model GWS

electroweak theory, verified parity non-conservation in the weak interaction and

determined 𝜃𝑊 by measuring the parity-violating asymmetry 𝐴𝑃𝑉 between the

Deuterium cross-section for incident right and left handed electron scattering.

The asymmetry was predicted to be only a few parts per million. Nevertheless,

a nonzero value was definitively established - verifying a weak neutral current at

play and ruling out various left-right symmetric gauge theories (which predicted

zero parity violation) [46]. 𝐴𝑃𝑉 was measured to be 𝐴𝑃𝑉 = 100± 10ppm (to 10%

precision) and the weak mixing angle 𝜃𝑊 between the mass and flavor eigenstates

of the photon and the 𝑍0 could be extracted from this asymmetry [46]. 𝐴𝑃𝑉
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was also modeled as a function of the fractional energy loss of the initial electron

(Table 1.1). This is a function of the weak mixing angle and a value was found

for 𝑠𝑖𝑛2𝜃𝑊 = 0.2 ± 0.03 (to ∼ 15% precision), consistent with GWS electroweak

unification [46].

Figure 1-3: E122 result: 𝐴𝑃𝑉 = 100 ± 10ppm → 𝑠𝑖𝑛2𝜃𝑊 = 0.2 ± 0.03. 𝐴𝑃𝑉

modeled as a function of the fractional energy loss of the initial electron 𝑦 =
1−𝐸 ′/𝐸. Parity Non-Conservation in Inelastic Electron Scattering, C.Y. Prescott
et. al., 1978 [70]

Left Right

𝛾 Charge 𝑞 = 0,±1,±1
3
,±2

3
𝑞 = 0,±1,±1

3
,±2

3

W Charge 𝑇 = ±1
2

zero

Z Charge 𝑇 − 𝑞 sin2 𝜃𝑊 −𝑞 sin2 𝜃𝑊

Table 1.1: E122 provided a definitive answer on gauge structure of electroweak
interaction [70]

The precision of the E122 experiment which allowed it to distinguish the GWS

model from other gauge theories made it a foundational measurement upon which

the Standard Model was built. The Nobel Prize in Physics was awarded in 1979, a
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year after E122, jointly to Glashow, Salam, and Weinberg “for their contributions

to the theory of the unified weak and electromagnetic interaction between elemen-

tary particles, including, inter alia, the prediction of the weak neutral current”.

By measuring 𝜃𝑊 , E122 and other experiments provided a definitive answer on

gauge structure of electroweak interaction, demonstrated the VA (vector axial) - V

(vector) structure of the weak current interaction, and showed that it is maximally

parity violating [46]. To this day, precise calculation 𝜃𝑊 still currently stands as

a major challenge for any theory going beyond the SM.[32]

High Energy Regime

At last in 1983, after the neutral weak force mediator had already been shown

to exist, after W and Z masses had been determined by indirect measurements,

CERN did officially observe the W (at 81GeV) and the Z (at 95GeV), directly

confirmed what had already been demonstrated indirectly. These high energy

measurements took such a long time to perform because a proton-antiproton col-

lider designed specifically to produce these extremely heavy particles (nearly 100X

the proton mass) had to be constructed first. The energy regime was specifically

in the neighborhood of the 𝑍0 mass, and total energy hits 𝑀𝑍 at the 𝑍0 pole where

the denominator of the 𝑍0 propagator is small in Eq. 1.1 and the cross-section

blows up.

CERN’s measurement of the intermediate vector bosons W(at 81± 5GeV/𝑐2)

and the 𝑍0(at 95 ± 3GeV/𝑐2) [54] was a technical triumph, and the experiment

added precision to the SM with mass and width measurements. The result was

long awaited and served as a confirmation of a crucial aspect of the Standard

Model[32].

Examining our scientific history informs our scientific future. At present, our

community has begun this cycle yet again: there are a variety of new puzzles and

a variety of new Beyond the Standard Model(BSM) theories. There are still these

three experimental regimes at play: neutrino experiments, low energy precision
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experiments, and high energy direct searches. Further studies using parity viola-

tion have continued to test the structure of the Standard Model in the low energy

precision regime. This regime is where the MOLLER (Measurement Of Lepton

Lepton Electroweak Reaction) experiment resides, which of particular interest in

this thesis.

1.2 Motivation: Parity Violating Electron Scatter-

ing

Figure 1-4: Parity violation experiment [70]

In electron scattering parity violation experiments, the longitudinally polarized

electron beam is incident on an unpolarized target. Fig. 1-4 shows the COM

interaction and Fig. 1-5 shows an interaction with a target. We change the sign of

the longitudinal polarization (parity transformation), and measure the fractional

rate difference between right and left helicity states, 𝑑𝜎𝑅 and 𝑑𝜎𝐿.

(a)
(b)

Figure 1-5: Interference between weak and EM amplitudes, the weak interaction
carrying signature of parity violation [70]

An interference between the electromagnetic and weak amplitudes, ℳ𝛾 and
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ℳ𝑍 respectively (Fig. 1-5), gives rise to a parity violating asymmetry

𝐴𝑃𝑉 =
𝜎𝑅 − 𝜎𝐿
𝜎𝑅 + 𝜎𝐿

∝ |ℳ𝑍 |
|ℳ𝛾|

(1.2)

defined by the fractional rate difference between right and left helicity states. 𝐴𝑃𝑉

can be measured to extraordinarily high precision and is approximately propor-

tional to the ratio of the weak and electromagnetic amplitudes.

1.2.1 Parity Experiments as a Precision Tool

The first parity violating electron scattering (PVeS) experiment, E122 in 1978,

served as a blue print for parity electron scattering experiments - even for those

experiments with much higher precision, probing BSM. A general description of a

PVeS experiment is shown in Fig. 1-6. An 𝑒− beam may interact with target by

exchanging a mediator particle such as: the photon (EM force) or the 𝑍0 (weak

force). The electron polarization is flipped, and the mirror image, parity trans-

formed interaction is examined (Fig. 1-6). By looking at the differences between

the two types of interactions one can extract the size of the 𝑍0 contribution. This

can be compared to the SM and any deviations could be a hallmark of BSM.

Figure 1-6: Parity Experiment Blue Print: Mirror Image Parity Transformation
illustrated in electron scattering [73]

In the intervening years, PVeS has become a precision tool. There’s a broad
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program of experiments, studying the structure of protons and nuclei, and search-

ing for new BSM physics. Fig. 1-7 shows the precision of various experiments.

The measured or predicted asymmetry 𝐴𝑃𝑉 is plotted on the x-axis and the un-

certainty on 𝐴𝑃𝑉 is on the y-axis.

Figure 1-7: Precision of various parity experiments: measured or predicted asym-
metry 𝐴𝑃𝑉 on x-axis and the uncertainty on 𝐴𝑃𝑉 on the y-axis [70]

E122 is shown at the top of Fig. 1-7 as one of the less precise experiments,

being the first PVeS experiment after all. PREX-II, an experiment measuring

the weak skin of the 208Pb nucleus, is also shown Fig. 1-7. PVES provides a

clean measurement of 𝑅𝑁 , the RMS radius of neutrons in a heavy nucleus, and

constrains the equation of state (EOS) of highly dense matter which is important

for describing neutron star structure, heavy ion collisions, and atomic parity vi-

olation experiments [164] . The Lead Radius Experiment (PREX) will measure

the parity violating asymmetry 𝐴𝑃𝑉 for 1GeV electrons scattering from 208𝑃𝑏 at

5𝑜, and should be sensitive to the neutron radius of the nucleus to 1% (±0.05𝑓𝑚)

precision [164]. An early iteration of this experiment, PREX-I, reached ∼ 9%

precision on the neutron radius. PREX-II is expected to achieve higher precision

than PREX-I which was statistics limited.

MOLLER(Measurement Of Lepton Lepton Electroweak Reaction), shown in
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Fig. 1-7, is a search for new neutral currents in electron-electron scattering ex-

periments. It’s essentially a more precise version of the SLAC E158 experiment

[16] in Fig. 1-7, completed in 2005. As the name implies, this experiment will

measure 𝐴𝑃𝑉 in the Moller 𝑒𝑒 scattering process, and will infer the weak charge of

the electron 𝑄𝑒
𝑊 to extremely high precision. MOLLER will extract sin2 𝜃𝑊 at low

momentum transfer (𝑄2 ≈ 0.0056GeV2) by scattering a longitudinally polarized

electron beam off electrons in a liquid hydrogen target and examining the resulting

parity-violating asymmetry 𝐴𝑃𝑉 to ∼ 0.8ppb precision. It will thereby measure

the weak charge of the electron 𝑄𝑒
𝑊 to 2.4% precision.

Both PREX-II and MOLLER experiments will be performed at Jefferson Lab

(JLab), a national electron beam accelerator facility in Newport News, Virginia.

The upgraded 12GeV accelerator is depicted in Fig. 1-8. The electron beam is

generated at the injector where it is accelerated from 130keV to 5MeV before en-

tering the first pass and starting its first orbit. Magnets in the arcs steer the

electron beam from the straight section of the tunnel to the next for up to five

orbits (or passes), with each pass accelerating the electrons to successively higher

energies up to 12GeV. Each linear accelerator (LINAC) uses superconductors to

drive acceleration and a refrigeration plant provides liquid helium for supercon-

ducting operation. The electron beam is delivered to the experimental halls where

the experiments take place.
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Figure 1-8: Jefferson Lab 12GeV upgrade [4]

Summary

This thesis highlights the PVES experiments PREX-II, MOLLER, and a 12𝐶

transverse asymmetry measurement at Mainz. Chapters 1-3 of this thesis cover

introductions to MOLLER and PREX-II, Chapter 4 contains the results of the
12𝐶 transverse asymmetry measurement at Mainz, and Chapters 5-6 contain the

original work performed by this author developing important experimental equip-

ment including an innovative Rubidium Titanyl Phosphate (RTP) Pockels cell in

the polarized source



15

Chapter 2

MØLLER Experiment

2.1 Introduction

MOLLER is an extremely precise parity violating electron scattering (PVeS)

experiment searching for new neutral currents in electron-electron scattering. It’s

called MOLLER because it will measure 𝐴𝑃𝑉 in the Møller 𝑒𝑒 scattering process,

and will infer the weak charge of the electron 𝑄𝑒
𝑊 to extremely high precision. It is

a low-energy test of the Standard Model, just as sensitive to new physics as com-

plimentary high-energy colliders experiments [46]. MOLLER will measure sin2 𝜃𝑊

at low momentum transfer by examining the parity-violating asymmetry 𝐴𝑃𝑉 in

the scattering of a longitudinally polarized electron beam off electrons in a liquid

hydrogen target. This measurement will determine the weak charge of the electron

𝑄𝑒
𝑊 to very high precision, will be sensitive to new neutral current amplitudes,

and has the potential to detect disagreement with the Standard Model [46] com-

petitively with any proposed experiment measuring a flavor- and CP-conserving

process over the next decade. MOLLER is sensitive to new physics at MeV and

multi-TeV scales and will serve as an indirect complementary measurement to

direct searches at high energy colliders [1].



2.1. INTRODUCTION 16

2.1.1 Møller scattering

The idea to use Møller scattering as a clean probe of the weak mixing angle

was pioneered at Princeton [3]. Unlike some high energy measurements in hadron

colliders, there’s no corrections due to hadron structure in 𝑒𝑒 scatting, so its less

limited by theoretical interpretation. This makes it appealing to the fundamental

symmetries subset of the physics community dedicated to precision measurements.

The process is described by

𝑒−1 (𝑝1, 𝑠1) + 𝑒−2 (𝑝2, 𝑠2) → 𝑒−1′(𝑝
′
1, 𝑠

′
1) + 𝑒−2′(𝑝

′
2, 𝑠

′
2)

where (p,s) denote 4 momenta and helicity of electrons, 𝑝1, 𝑝2(𝑝′1, 𝑝′2) denote incom-

ing (outgoing) momenta, and 𝑠1, 𝑠2(𝑠
′
1, 𝑠

′
2) denote incoming (outgoing) helicities.

The helicity-independent differential cross-section for Møller scattering (derived

in later sections) is approximately by

𝑑𝜎

𝑑Ω
=

𝛼2

2𝑚𝐸

(3 + cos2 𝜃)2

sin4 𝜃
=

𝛼2

4𝑚𝐸

1 + 𝑦4 + (1− 𝑦)4

𝑦2(1− 𝑦)2
𝑦 = 1− 𝐸 ′/𝐸

The tree level Feynman diagrams for Møller scattering can be seen in Fig. 2-1.

Parity violating terms in Møller scattering arise from the interference between

weak Z and electromagnetic 𝛾 exchange amplitudes. This interference produces

a parity violating asymmetry 𝐴𝑃𝑉 which can be measured and the weak mixing

angle inferred as follows:

𝐴𝑃𝑉 =
𝜎𝑅 − 𝜎𝐿
𝜎𝑅 + 𝜎𝐿

= 𝑚𝐸
𝐺𝐹√
2𝜋𝛼

16 sin2 𝜃

(3 + cos2 𝜃)2
𝑔𝑒𝑒 = 𝑚𝐸

𝐺𝐹√
2𝜋𝛼

4 sin2 𝜃

(3 + cos2 𝜃)2
𝑄𝑒

𝑊

= 𝑚𝐸
𝐺𝐹√
2𝜋𝛼

2𝑦(1− 𝑦)

1 + 𝑦4 + (1− 𝑦)4
𝑄𝑒

𝑊 (2.1)

measured by comparing left and right helicity states of the electron beam. In

Eq.2.1, 𝐺𝐹 is the Fermi coupling constant, 𝑔𝑒𝑒 is the pseudoscaler weak neutral-
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current coupling for Møller scattering, and𝑄𝑒
𝑊 is the electron weak charge. Within

the context of the Standard Model, at tree level 𝑔𝑒𝑒 is the product of a vector

electron-photon vertex and an axial-vector electron photon vertex and takes the

value

𝑔𝑒𝑒 = 𝜌 · 𝑔𝑉𝑒 · 𝑔𝐴𝑒 =
1

4
− sin2 𝜃𝑊 = 𝑄𝑒

𝑊/4

where 𝜌( =1 within the SM) is the relative strength of the weak neutral and charged

current interactions and is defined as 𝑀2
𝑊

𝑀2
𝑍𝑐𝑜𝑠2𝜃𝑊

[46]. The measured asymmetry then

relates directly to the electron weak charge and weak mixing angle 𝐴𝑃𝑉 → 𝑄𝑒
𝑊 →

sin2 𝜃𝑊 via the relationship

𝑄𝑒
𝑊 = 1− 4 sin2 𝜃𝑊

Note that 𝑔𝑒𝑒 is close to zero since sin2 𝜃𝑊 ∼ 0.023. Thus a small (relative) change

in sin2 𝜃𝑊 introduces a much larger relative change in 𝑔𝑒𝑒 and hence 𝐴𝑒𝑒
𝐿𝑅.

(a) Feynman diagrams

(b) COM frame

Figure 2-1: Møller scattering 𝑒−1 (𝑝1, 𝑠1) + 𝑒−2 (𝑝2, 𝑠2) → 𝑒−1′(𝑝
′
1, 𝑠

′
1) + 𝑒−2′(𝑝

′
2, 𝑠

′
2):

(a) Tree level diagrams for direct and crossed photon and Z boson exchange (b)
Kinematic variables in center of momentum frame. Arrows denote incoming and
outgoing electrons [1]
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EM unpolarized cross section

Here we show the derivation of the unpolarized cross section for EM Møller

scattering from [46] [47]. The Møller cross section at low 𝑄2 is dominated by

direct photon exchange between two electrons. The Feynman diagram for direct

photon exchange between the two electrons is shown in Fig. 2-1 as well as the

crossed diagrams and the Z exchange diagrams. The kinematic variables in center-

of-momentum (COM) frame are also defined for the reaction:

𝑒−1 (𝑝1, 𝑠1) + 𝑒−2 (𝑝2, 𝑠2) → 𝑒−1′(𝑝
′
1, 𝑠

′
1) + 𝑒−2′(𝑝

′
2, 𝑠

′
2)

In the COM frame, the differential cross section is given by[47]:

𝑑𝜎

𝑑Ω

⃒⃒⃒⃒
𝐶𝑀

=
1

64𝜋2𝑠

𝑝2
𝑝1
|ℳ|2 (2.2)

where the four-momentum transfer 𝑞2 = (𝑝1 − 𝑝′1)
2, the invariant total energy of

the system is 𝑠 = (𝑝1 + 𝑝2)
2, |ℳ|2 is the invariant amplitude for the process and

𝑝1 = |𝑝1| and 𝑝2 = |𝑝2|. The amplitude for the direct diagram is given by

−𝑖ℳ = [𝑖𝑒�̄�1′𝛾
𝜇𝑢1]

−𝑖𝑔𝜇𝜈
(𝑝1 − 𝑝′1)

2
[𝑖𝑒�̄�2′𝛾

𝜈𝑢2]− [𝑖𝑒�̄�2′𝛾
𝜇𝑢1]

−𝑖𝑔𝜇𝜈
(𝑝1 − 𝑝′2)

2
[𝑖𝑒�̄�1′𝛾

𝜈𝑢2]

The cross diagram amplitude is found by interchange of 𝑝′1 and 𝑝′2. The amplitudes

from the direct diagram and the crossed are combined with a relative minus sign

following the antisymmetrization rule for exchange of identical fermions.

To calculate the unpolarized cross section, we average over the initial spin states

and sum of the final spin states to obtain the spin-averaged amplitude squared.

|ℳ|2 = 1

4

∑︁
𝑠1,𝑠1′

|ℳ|2 = 𝑒4

4

∑︁
𝑠1,𝑠1′

{︃

[(�̄�1′𝛾
𝜇𝑢1)

𝑔𝜇𝜈
(𝑝1 − 𝑝′1)

2
(�̄�2′𝛾

𝜈𝑢2)][(�̄�1′𝛾
𝜇𝑢1)

𝑔𝜇𝜈
(𝑝1 − 𝑝′1)

2
(�̄�2′𝛾

𝜈𝑢2)]
*
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+[(�̄�2′𝛾
𝜇𝑢1)

𝑔𝜇𝜈
(𝑝1 − 𝑝′2)

2
(�̄�1′𝛾

𝜈𝑢2)][(�̄�2′𝛾
𝜇𝑢1)

𝑔𝜇𝜈
(𝑝1 − 𝑝′2)

2
(�̄�1′𝛾

𝜈𝑢2)]
*

−[(�̄�1′𝛾
𝜇𝑢1)

𝑔𝜇𝜈
(𝑝1 − 𝑝′1)

2
(�̄�2′𝛾

𝜈𝑢2)][(�̄�2′𝛾
𝜇𝑢1)

𝑔𝜇𝜈
(𝑝1 − 𝑝′2)

2
(�̄�1′𝛾

𝜈𝑢2)]
*

−[(�̄�2′𝛾
𝜇𝑢1)

𝑔𝜇𝜈
(𝑝1 − 𝑝′2)

2
(�̄�1′𝛾

𝜈𝑢2)][(�̄�1′𝛾
𝜇𝑢1)

𝑔𝜇𝜈
(𝑝1 − 𝑝′1)

2
(�̄�2′𝛾

𝜈𝑢2)]
*

}︃
where 𝑠1 refers to the initial spin states and the superscripts 𝑠𝑖 in 𝑢𝑠𝑖𝑖 indicating

the spin state of each electron are suppressed for clarity.

It is convenient to introduce the Mandelstam variables, which can be approx-

imated in the ultrarelativistic limit as: 𝑠 = (𝑝1 + 𝑝2)
2 ≈ 2𝑝1 · 𝑝2 ≈ 2𝑝′1 · 𝑝′2,

𝑡 = (𝑝1 − 𝑝′1)
2 ≈ −2𝑝1 · 𝑝′1 ≈ 2𝑝2 · 𝑝′2, and 𝑢 = (𝑝1 − 𝑝′2)

2 ≈ −2𝑝1 · 𝑝′2 ≈ 2𝑝2 · 𝑝′1.

Contracting indices,

|ℳ|2 = 𝑒4

4

∑︁
𝑠1,𝑠1′

{︃
1

𝑡2
([�̄�1′𝛾

𝜇𝑢1][�̄�1𝛾
𝜈𝑢1′ ][�̄�2′𝛾𝜇𝑢2][�̄�2𝛾𝜈𝑢2′ ])

+
1

𝑢2
([�̄�2′𝛾

𝜇𝑢1][�̄�1𝛾
𝜈𝑢2′ ][�̄�1′𝛾𝜇𝑢2][�̄�2𝛾𝜈𝑢1′ ])−

1

𝑡𝑢
([�̄�1′𝛾

𝜇𝑢1][�̄�1𝛾
𝜈𝑢2′ ][�̄�2′𝛾𝜇𝑢2][�̄�2𝛾𝜈𝑢2′ ])

+
1

𝑡𝑣
([�̄�2′𝛾

𝜇𝑢1][�̄�1𝛾
𝜈𝑢1′ ][�̄�1′𝛾𝜇𝑢2][�̄�2𝛾𝜈𝑢2′ ])

}︃
Applying the completeness relation

∑︀
𝑠=1,2 𝑢

𝑠(𝑝)�̄�𝑠(𝑝) = �𝑝+𝑚𝑒 and neglecting

the electron mass in the ultrarelativistic limit

|ℳ|2 = 𝑒4

4

{︃
1

𝑡2
𝑇𝑟[�𝑝

′
1𝛾

𝜇
�𝑝1𝛾

𝜈 ]𝑇𝑟[�𝑝
′
2𝛾𝜇�𝑝2𝛾𝜈 ]

+
1

𝑢2
𝑇𝑟[�𝑝

′
2𝛾

𝜇
�𝑝1𝛾

𝜈 ]𝑇𝑟[�𝑝
′
1𝛾𝜇�𝑝2𝛾𝜈 ]−

1

𝑡𝑢
𝑇𝑟[�𝑝

′
1𝛾

𝜇
�𝑝1𝛾𝜈�𝑝

′
2𝛾𝜇�𝑝2𝛾

𝜈 ]

− 1

𝑡𝑢
𝑇𝑟[�𝑝

′
2𝛾

𝜇
�𝑝1𝛾

𝜈
�𝑝
′
1𝛾𝜇�𝑝2𝛾𝜈 ]

}︃
Applying standard trace theorems yields
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|ℳ|2 = 𝑒4

4

{︃
8

𝑡2
[(𝑝′1 ·𝑝′2)(𝑝1 ·𝑝2)+(𝑝′1 ·𝑝2)(𝑝1 ·𝑝′2)]+

8

𝑢2
[(𝑝′1 ·𝑝′2)(𝑝1 ·𝑝2)+(𝑝′2 ·𝑝2)(𝑝1 ·𝑝′1)]

− 8

𝑡𝑢
[(𝑝1 · 𝑝2)(𝑝′1 · 𝑝′2)]−

8

𝑡𝑢
[(𝑝1 · 𝑝2)(𝑝′1 · 𝑝′2)]

}︃
Using the Mandelstam variables, approximated in the ultrarelativistic limit,

we obtain |ℳ|2 in Lorentz invariant form

|ℳ|2 = 2𝑒4
𝑠2 + 𝑢2

𝑡2
+
𝑠2 + 𝑡2

𝑢2
+

2𝑠2

𝑡𝑢

Inserting |ℳ|2 into Equ. 2.2 for 𝑑𝜎
𝑑Ω

⃒⃒⃒⃒
𝐶𝑀

as well as noting that, in the COM

frame, 𝑝1 = 𝑝2 and the Mandelstam variables are 𝑠 = 4(𝑝2 + 𝑚2
𝑒) ≈ 4𝑝2, 𝑡 =

−2𝑝2(1 − cos 𝜃𝐶𝑀), and 𝑢 = −2𝑝2(1 + cos 𝜃𝐶𝑀), we obtain the differential cross

section
𝑑𝜎

𝑑Ω

⃒⃒⃒⃒
𝐶𝑀

=
𝑒4

16𝜋2𝑠

(3 + cos2 𝜃𝐶𝑀)2

sin4 𝜃𝐶𝑀

Expressed in terms lab frame variables, 𝑠 = 2𝑚𝑒𝐸2 and noting 𝛼 = 𝑒2

4𝜋

𝑑𝜎

𝑑Ω

⃒⃒⃒⃒
𝐶𝑀

=
𝛼2

2𝑚𝑒𝐸2

(3 + cos2 𝜃𝐶𝑀)2

sin4 𝜃𝐶𝑀

Parity violation in electron-electron scattering

The differential cross section can be calculated using similar techniques as

above or by the helicity amplitude method shown in this section. Both direct and

crossed Feynman diagrams for identical particles for both the photon and the Z

must be used in this calculation.

Here we show the derivation of 𝐴𝑃𝑉 from Derman [48]. Considering the process

𝑒−1 (𝑝1, 𝑠1) + 𝑒−2 (𝑝2, 𝑠2) → 𝑒−1′(𝑝
′
1, 𝑠

′
1) + 𝑒−2′(𝑝

′
2, 𝑠

′
2)



2.1. INTRODUCTION 21

where (𝑝, 𝑠) denote the 4-momenta and helicity states of the electrons. We

use the approximation that 𝑚𝑒 is small compared with the CM energy
√
𝑠 =√︀

(𝑝1 + 𝑝2)2. We define the variable 𝑦 = − (𝑝1−𝑝′1)
2

𝑠
= sin2(𝜃𝐶𝑀/2), where 0 ≤

𝑦 ≤ 1, representing the fraction of incoming electron energy imparted to the other

electron after collision, and where 𝜃𝐶𝑀 is the CM scattering angle. This allows

the definition of momentum transfer as 𝑄2 = −(𝑝1 − 𝑝′1)
2 = 𝑦𝑠.

In order to have a parity violating asymmetry, we must included both weak

and electromagnetic interactions in our assumed Lagrangian ℒ = |𝑒|𝐴𝜇𝑒𝛾
𝜇𝑒 −

𝑔0𝑍𝜇𝑒𝛾
𝜇(𝑉 +𝐴𝛾5)𝑒. Where the photon field is included by 𝐴𝜇, the neutral heavy

boson field is included by 𝑍𝜇, |𝑒| denotes the electron charge, 𝑒 denotes the electron

field, and 𝑔0 the coupling strength between the electron and the Z-boson of mass

𝑀𝑧. The weak vector and axial vector components V and A must be included in

this calculation since they give rise to the parity violating asymmetry defined by

the helicity dependence in the differential cross-sections 𝐴𝑃𝑉 = 𝜎𝑅−𝜎𝐿

𝜎𝑅+𝜎𝐿
.

The individual amplitudes are denoted ℳ𝑗
𝑖 where 𝑖 = 𝑍, 𝛾 for the weak and

electromagnetic amplitudes and 𝑗 = 𝑑, 𝑐 for the direct and crossed Feynman dia-

grams. The total amplitude is given by

ℳ = 𝑖(ℳ𝑑
𝛾 +ℳ𝑐

𝛾 +ℳ𝑑
𝑍 +ℳ𝑐

𝑍)

where we obtain crossed amplitudes by swapping 𝑝′2 ↔ 𝑝′1, 𝑦 ↔ 1 − 𝑦 and per-

forming Fermi sign change as follows (where the spin state of each electron is

suppressed for clarity).

ℳ𝑑
𝛾 =

−𝑒2

𝑦𝑠
�̄�1′𝛾𝜇𝑢1 · �̄�2′𝛾𝜇𝑢2 ℳ𝑐

𝛾 =
𝑒2

(1− 𝑦)𝑠
�̄�2′𝛾𝜇𝑢1 · �̄�1′𝛾𝜇𝑢2

ℳ𝑑
𝑍 =

−𝑔20
𝑀2

𝑍

�̄�1′ [𝑉 𝛾𝜇 + 𝐴𝛾𝜇𝛾5]𝑢1 · �̄�2′ [𝑉 𝛾𝜇 + 𝐴𝛾𝜇𝛾5]𝑢2

ℳ𝑐
𝑍 =

𝑔20
𝑀2

𝑍

�̄�2′ [𝑉 𝛾𝜇 + 𝐴𝛾𝜇𝛾5]𝑢1 · �̄�1′ [𝑉 𝛾𝜇 + 𝐴𝛾𝜇𝛾5]𝑢2
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We can approximately express the eigenspinors 𝑢𝑠=±1
𝑝 as

𝑢1𝑝 =

√︂
𝐸

2𝑚

⎛⎜⎜⎜⎜⎜⎜⎝
cos(𝜃𝐶𝑀/2)

sin(𝜃𝐶𝑀/2)

cos(𝜃𝐶𝑀/2)

sin(𝜃𝐶𝑀/2)

⎞⎟⎟⎟⎟⎟⎟⎠ 𝑢−1
𝑝 =

√︂
𝐸

2𝑚

⎛⎜⎜⎜⎜⎜⎜⎝
− sin(𝜃𝐶𝑀/2)

cos(𝜃𝐶𝑀/2)

sin(𝜃𝐶𝑀/2)

− cos(𝜃𝐶𝑀/2)

⎞⎟⎟⎟⎟⎟⎟⎠
where 𝜃𝐶𝑀 is the center-of-momentum scattering angle and, neglecting the electron

mass, 𝐸 =
√
𝑠/2.

We organize the various contributions to ℳ in the form of helicity amplitude

matrices, where R(L) denote +(-) electron helicity and matrix row(column) in-

dicate the initial(final) electron helicities. Diagonal components correspond to

interactions where helicity is conserved, the time reversal invariance is manifested

in the matrix symmetry, and rotational invariance due to identical particles is

expressed as ℳ𝑅𝐿,𝑅𝐿 = ℳ𝐿𝑅,𝐿𝑅.

RR RL LR LL

RR 1 0 0 0

ℳ𝛾(𝑑) =
−𝑒2

2𝑦𝑚2 × RL 0 1− 𝑦 0 0

LR 0 0 1− 𝑦 0

LL 0 0 0 1

RR 1 0 0 0

ℳ𝛾(𝑐) =
−𝑒2

2(1−𝑦)𝑚2 × RL 0 0 𝑦 0

LR 0 𝑦 0 0

LL 0 0 0 1

RR (𝑉 +𝐴)2 0 0 0

ℳ𝑍(𝑑) =
−𝑔20𝑠

2𝑀2
𝑍
𝑚2 × RL 0 (1− 𝑦)(𝑉 2 −𝐴2) 0 0

LR 0 0 (1− 𝑦)(𝑉 2 −𝐴2) 0

LL 0 0 0 (𝑉 2 −𝐴2)

RR (𝑉 +𝐴)2 0 0 0

ℳ𝑍(𝑐) =
−𝑔20𝑠

2𝑀2
𝑍
𝑚2 × RL 0 0 𝑦(𝑉 2 −𝐴2) 0

LR 0 𝑦(𝑉 2 −𝐴2) 0 0

LL 0 0 0 (𝑉 2 −𝐴2)

Table 2.1: Helicity amplitude matrices for direct and crossed contributions to 𝑒𝑒
scattering via 𝛾 and Z exchange [48]. Row(column) denote initial (final) electron
helicity states R(L), +1(-1)
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Helicity is conserved in the 𝛾𝜇 and 𝛾𝜇𝛾5 vertices and the vector and axial

currents are given by

�̄�𝑠
′

𝑝′𝛾𝜇𝑢
𝑠
𝑝 =

√
𝑠

2𝑚

(︃
cos

(︂
𝜃 − 𝜃′

2

)︂
, sin

(︂
𝜃 + 𝜃′

2

)︂
,

𝑖(−1)(1+𝑠)/2 sin

(︂
𝜃 − 𝜃′

2

)︂
, cos

(︂
𝜃 + 𝜃′

2

)︂)︃
𝛿𝑠,𝑠′

�̄�𝑠
′

𝑝′𝛾𝜇𝛾5𝑢
𝑠
𝑝 = −(−1)(1+𝑠)/2�̄�𝑠

′

𝑝′𝛾𝜇𝑢
𝑠
𝑝

Using the scattering cross-section for an electron of helicity 𝑖 incident on a

target j, 𝜎𝑖𝑗 =
∑︀

𝑘𝑙 |ℳ𝑖𝑗,𝑘𝑙|2, we can compute the scattering asymmetry for R(L)

polarized electrons incident off of an unpolarized target where we note that by

rotational invariance 𝜎𝑅𝐿 = 𝜎𝐿𝑅:

𝐴𝑃𝑉 =
(𝜎𝑅𝐿 + 𝜎𝑅𝑅)− (𝜎𝐿𝐿 + 𝜎𝐿𝑅)

(𝜎𝑅𝐿 + 𝜎𝑅𝑅) + (𝜎𝐿𝐿 + 𝜎𝐿𝑅)
=

𝜎𝑅𝑅 − 𝜎𝐿𝐿
𝜎𝑅𝑅 + 𝜎𝐿𝐿 + 2𝜎𝐿𝑅

=
|ℳ𝑅𝑅,𝑅𝑅|2 − |ℳ𝐿𝐿,𝐿𝐿|2

|ℳ𝑅𝑅,𝑅𝑅|2 + |ℳ𝐿𝐿,𝐿𝐿|2 + 2|ℳ𝐿𝑅,𝐿𝑅|2 + 2|ℳ𝐿𝑅,𝑅𝐿|2

From summing the elements of our table to leading order in 𝑔20/𝑀2
𝑧 , assuming

the coupling strength to the Z is small compared with 𝑀𝑧, valid for low 𝑄2 where

CM energy
√
𝑠 << 𝑀𝑧, we obtain

𝐴𝑃𝑉 ≈ 2𝑔20𝑉 𝐴𝑄
2

𝜋𝛼𝑀2
𝑧

1− 𝑦

1 + 𝑦4 + (1− 𝑦)4

In the GWS Standard Model, 𝑔0 = 2|𝑒|
sin(2𝜃𝑊 )

, 𝑉 = sin2 𝜃𝑊 − 1/4, 𝐴 = 1/4 and

the Z boson mass is given by 𝐺𝐹√
2
= |𝑒|2

2𝑀2
𝑧 sin2(2𝜃𝑊 )

, giving 2𝑔20𝑉 𝐴

𝜋𝛼𝑀2
𝑧
= 𝐺𝐹√

2𝜋𝛼
(4 sin2 𝜃𝑊−1).
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So the Standard Model prediction for 𝐴𝑃𝑉 is given by

𝐴𝐺𝑊𝑆
𝑃𝑉 ≈ 𝐺𝐹𝑄

2

√
2𝜋𝛼

(4 sin2 𝜃𝑊 − 1)
1− 𝑦

1 + 𝑦4 + (1− 𝑦)4
= 𝑚𝐸

𝐺𝐹√
2𝜋𝛼

4 sin2 𝜃

(3 + cos2 𝜃)2
𝑄𝑒

𝑊

(2.3)

EM and weak charges

𝐴𝑃𝑉 in electron-electron scattering probes the electron’s neutral current. The

charges for the electromagnetic and weak neutral currents are shown in Fig. 2.2.

𝑞𝐸𝑀 is the electromagnetic charge of the particle, while 𝑔𝐴, 𝑔𝑉 , 𝑔𝑅, and 𝑔𝐿, are the

weak axial, vector, right-helicity and left helicity charges (with 𝑔𝑅 = 𝑔𝑉 + 𝑔𝐴 and

𝑔𝐿 = 𝑔𝑉 − 𝑔𝐴) [46]. Different experiments address different charge combinations

and compliment each other. For example MOLLER addresses the weak charge of

the electron, and Qweak addresses the proton weak charge.

Particle 𝑞𝐸𝑀 𝑔𝐴 𝑔𝑉 𝑔𝑅 𝑔𝐿

𝑒− −1 1
4

−1
4
+ sin2 𝜃𝑊 sin2 𝜃𝑊 −1

2
+ sin2 𝜃𝑊

∼ −0.02 ∼ 0.23 ∼ −0.27

𝑢 2
3

−1
4

1
4
− 2

3
sin2 𝜃𝑊 −2

3
sin2 𝜃𝑊

1
2
− 2

3
sin2 𝜃𝑊

∼ 0.09 ∼ −0.16 ∼ 0.34

𝑑, 𝑠 −1
3

1
4

−1
4
+ 1

3
sin2 𝜃𝑊

1
3
sin2 𝜃𝑊 −1

2
+ 1

3
sin2 𝜃𝑊

∼ −0.17 ∼ 0.08 ∼ −0.42

Table 2.2: Electromagnetic and weak neutral charges [46]

Radiative Corrections

As previously stated in Eq. 2.1, the parity-violating asymmetry in Møller

scattering at tree level (Fig. 2-1) is given by:

𝐴𝑃𝑉 = 𝑚𝐸
𝐺𝐹√
2𝜋𝛼

2𝑦(1− 𝑦)

1 + 𝑦4 + (1− 𝑦)4
𝑄𝑒

𝑊
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where 𝑄𝑒
𝑊 = 1− 4 sin2 𝜃𝑊 .

MOLLER experimental precision (<0.8 ppb on 𝐴𝑃𝑉 ) requires that the Stan-

dard Model predictions for 𝐴𝑃𝑉 and sin2 𝜃𝑊 must be carried out not only at

tree level, as shown in previous sections, but with full treatment of one-loop and

leading two-loop radiative corrections [33]. The 1st order contributions in the per-

turbative expansion Feynman treatment, are the tree-level diagrams in Fig. 2-1.

Higher-order one-loop corrections consisting of 𝛾 − 𝑍 mixing diagrams and the

W-loop contribution to the anapole moment are shown in Fig 2-2 [46]. Leading

box diagram contributions involving two heavy bosons, are shown in Fig. 2-3.

The weak mixing angle and the electron weak charge are initially defined by

their relationship at tree-level 𝑄𝑒
𝑊 = 1 − 4 sin2 𝜃𝑊 . But when a measurement is

performed, it probes a sum over all orders of the perturbative expansion. The

relationship between 𝑄𝑒
𝑊 and sin2 𝜃𝑊 is modified at the 1-loop level [5] [6] [7] and

is dependent on the energy scale at which the experiment is carried out. In other

words, sin2 𝜃𝑊 “runs” with different 𝑄2.[1].

The error on the SM prediction due to uncertainty on radiative corrections

is fairly small < 0.4 ppb. This is smaller than the expected MOLLER statistical

error. Even so, to further reduce the error on the prediction to <0.2 ppb [11], there

is an ongoing theoretical effort to investigate several classes of diagrams beyond

one-loop [8] [9] [10] at MOLLER kinematics. [1]. Theoretical uncertainties for the

Møller 𝐴𝑃𝑉 are expected to be extremely well controlled by the time MOLLER

runs.

Figure 2-2: Significant 1-loop radiative corrections: 𝛾 − 𝑍 mixing diagrams and
W-loop contribution to the anapole moment (reproduced from Ref. [5]) [1]
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Figure 2-3: Box diagram contributions to Møller scattering involving two heavy
bosons. Crossed diagrams also contribute [46]

Running of sin2 𝜃𝑊 and Renormalization

When including high-order terms, it is important to avoid divergent behavior.

In most cases, the high order terms aren’t divergent because the coupling constant

at tree level 𝛼/4𝜋 ∼ 0.001 is small and higher-order terms are suppressed. When

there is divergent behavior, a renormalization procedure is employed which rede-

fines the coupling constants, used at tree level, in terms of experimental values

that inherently probe all orders. The weight given to certain higher-order dia-

grams in this scheme vary depending on the energy scale, defined by the 𝑄2 of

the experiment used. This energy dependence can intuitively be understood as

follows. Lower energies probe with poorer resolution than higher energies, they

probe less deeply, and suffer from a “screening” of the electron’s charge by a virtual

particle cloud. Higher energies probe smaller distance scales with deeper penetra-

tion and so see a larger effective value of the electron’s charge. As the energy

scale is varied, contributions from higher-order diagrams evolve via a change in

the effective value of the coupling constants [46].

This evolution of coupling constants in a renormalization scheme is shown in

Fig.2-4b as the running of the weak mixing angle sin2 𝜃𝑊 from its value at the Z-

pole 𝑄2 =𝑀2
𝑍 to lower 𝑄2, referred to as “screening” in Fig. 2-4a. Czarnecki and

Marciano [5] have calculated the 1-loop radiative corrections using the “Modified

Minimal Subtraction” (𝑀𝑆) scheme and defined the renormalized weak mixing



2.1. INTRODUCTION 27

angle at an arbitrary mass scale 𝜇 as [12]

𝑠𝑖𝑛2𝜃𝑊 (𝜇)𝑀𝑆 = 𝑒2(𝜇)𝑀𝑆/𝑔
2(𝜇)𝑀𝑆

analogous to the definition in Sec. 1.1.1. Different sin2 𝜃𝑊 experimental inputs

at various 𝜇 = |𝑄| can be used in the 𝑀𝑆 renormalization scheme. If several

experimental inputs are used with 𝑄2 determined from each experiment’s average

momentum conditions, the discontinuous sin2 𝜃𝑊 curve is obtained as shown in

Fig. 2-4a where discontinuities occur at 𝜇 = |𝑄| =particle masses.

A smooth curve can be obtained by only defining the renormalized weak mixing

angle at one energy scale, 𝑀𝑍 , where Z-pole measurements have been performed

and the weak mixing angle measured to be sin2 𝜃𝑊 (𝑚𝑍)𝑀𝑆 = 0.2314[13] [14] ,

and incorporating perturbative 𝛾 − 𝑍 mixing through vacuum polarization. The

running of sin2 𝜃𝑊 by 3% of its Z-pole value from 𝑄2 = 𝑀2
𝑍 to 𝑄2 << 1 arises

primarily from fermion vacuum polarization effects as shown in Fig.2-4b, whereas

the running beyond the Z-pole is dominated by boson vacuum polarization effects

[12].

(a) (b)

Figure 2-4: Running of sin2 𝜃𝑊 (a) Ref. [33] (b) in 1-loop calculations by Marciano
[12]

Derivation of the 𝑄2 dependence of the weak mixing angle 𝜃𝑊 is a challenge

for any theory going beyond the SM. Measurement of sin2 𝜃𝑊 at various 𝑄2 is
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an opportunity for parity experiments to extend the reach of new physics. The

weak mixing angle played a central role in electroweak theory and testing it at

the quantum loop level has been the central focus of precision electroweak physics

over the past couple of decades[1].

Since sin2 𝜃𝑊 runs as a function of 𝑄2 due to electroweak radiative corrections,

one can use sin2 𝜃𝑊 as a bookkeeping parameter to compare the consistency of the

full 𝑄2 range of weak neutral current measurements, as shown in Fig. 2-5. New

BSM mediators can not only affect the weak mixing angle at 𝑄2 near their mass

scales, but at low 𝑄2 as well. Fig. 2-5b shows the running of sin2 𝜃𝑊 with 𝑄2 as

well as a series of past and future experiments which aim to measure the weak

mixing angle at various 𝑄2 to very high precision.

(a) (b)

Figure 2-5: Running of sin2 𝜃𝑊 (a) Møller precision goal is shown compared with
other past experiments (base figure [12]) (b) Past experiments are shown in black.
The precision goals for future experiments are shown in pink. EIC potential future
measurements are shown in multicolor [70]

The goal of several parity experiments which measure sin2 𝜃𝑊 is to extend the

reach for new physics beyond the Standard Model by performing ultra-precise

measurements sensitive to new parity-violating interactions. The best measure-

ments of the weak mixing angle at lower energies are the SLAC E158 measurement

[16], the measurement of the weak charge of 133Cs [17] [18] via studies of table-top

atomic parity violation, and the JLab Qweak measurement of the proton weak
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charge via electron proton scattering [15]. By comparison, the precision goal for

MOLLER is quite high, matching the precision of the best collider (Z-pole) mea-

surement shown in Fig. 2-5a.

High energy vs. Low energy Measurements

An important advantage of MOLLER is that it will be carried out at a low

4-momentum transfer scale 𝑄2 << 𝑀2
𝑍 , in contrast to the high energy SLC and

CERN measurements, which were carried out at the Z-pole. Near the Z-pole,

new physics can’t interfere with the Z-amplitude, but at low 𝑄2 << 𝑀2
𝑍 , the

interference term dominates such that 𝐴𝑃𝑉 ∼ 1
𝑄2−𝑀2

𝑍
. This difference of energy

scales in the MOLLER experiment and the Z-pole measurements enhances the

sensitivity of the MOLLER measurement dramatically to as yet undiscovered weak

interactions at the TeV scale, as discussed in the next section.

2.1.2 BSM and Sensitivity to New Physics

Historically both direct and indirect searches for new physics have compli-

mented one another in the development of electroweak theory [33]. The extreme

precision of indirect searches at low energies, like MOLLER, makes for probes of

new physics that would become dominantly manifest at super-massive high energy

scales. The MOLLER precision on 𝐴𝑃𝑉 and the electron weak charge 𝑄𝑒
𝑊 is ca-

pable of probing new neutral current amplitudes as weak as 10−3𝐺𝐹 from Beyond

the Standard Model (BSM) undiscovered dynamics. It will be the most sensitive

probe of new flavor and CP conserving neutral current interactions in the leptonic

sector until the advent of a linear collider or a neutrino factory [33].

The MOLLER experimental goal on the weak mixing angle is as precise as the

best collider Z-pole measurements to date. This low 𝑄2 measurement compliments

the Z-pole measurements because the two most precise independent determina-

tions of the weak mixing angle sin2 𝜃𝑊 differ by 3𝜎 from each other. Choosing
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one or the other experimental value leads to inconsistency with other electroweak

measurements and constraints on the Higgs boson mass 𝑚𝐻 , and implies very

different new high-energy dynamics and MOLLER, being at the same level of pre-

cision, could address this issue [33]. It is worth mentioning that this is superseded

a bit by expected LHC results which will be similarly precise at the Z-pole [22].

MOLLER is additionally complimentary to other precision low-energy experi-

ments and the energy frontier efforts at the LHC because it has sensitivities to a

specific linear combination of left- and right-handed four electron operators which

collider measurements are relatively insensitive to [1]. While intuitively, there can

be hidden physics at low E that only becomes manifest at high energies, there also

may be hidden physics at high energies measurements which only become manifest

in low-energy parity violation experiments. If the LHC sees agreement with the

Standard Model at 14 TeV, MOLLER will help in the discovery of hidden weak

scale BSM physics scenarios that could escape LHC detection: compressed super-

symmetry [23] , lepton number violating doubly charged scalar mediators [24], and

light MeV-scale dark matter mediators such as the “dark” Z [20] [21]. If the LHC

sees an anomaly, MOLLER will help provide constraints to choose between var-

ious BSM theories: Minimal Supersymmetric Standard Model observed through

radiative loop effects (R-parity conserving) or tree-level interactions (R-parity vi-

olating) [25] [26] and TeV-scale 𝑍 ′ bosons which arise in many theories [27] [1].

These theories can be distinguished using low-energy precision measurements.

MOLLER has competitive sensitivity to a number of new plausible new-physics

scenarios each of which are discussed below briefly. While standing alone, MOLLER

measures a single number that cannot distinguish between various models, taken

in conjunction with existing measurements, it will constrain the parameter space

possible new physics scenarios[46]. It has a unique window to provide a glimpse

of new physics beyond the SM and will compliment the information acquired in

experiments at the high energy frontier.[46].
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Running of sin2 𝜃𝑊 BSM

As stated previously the weak mixing angle sin2 𝜃𝑊 runs as a function of the

energy scale at which measurements of it are carried out. The tree-level elec-

troweak theory prediction 𝑄𝑒
𝑊 = 1− 4 sin2 𝜃𝑊 is modified as a function of 𝑄2 due

to electroweak radiative corrections within the Standard Model. There are further

corrections from Beyond the Standard Model dynamics which could become man-

ifest in low 𝑄2 measurements of sin2 𝜃𝑊 with enhanced sensitivity to new physics.

“Oblique corrections” [73,74] which come from very massive new particles could

modify low-energy coupling constants, and hence sin2 𝜃𝑊 , through higher-order

loop diagrams [46]. At mass scales 𝑄2 ≤ 𝑀2
𝑍 , these corrections can be described

by a parameter X [77,78],

sin2 𝜃𝑊 (𝑀2
𝑍)− sin2 𝜃𝑊 (0) ∼ 𝛼𝑋

where 𝛼 is the fine structure constant and X can be interpreted as a measure of

the running of sin2 𝜃𝑊 due to BSM physics [46]. MOLLER would be sensitive

to measuring the parameter X at an extremely high level of sensitivity, and if

nonzero, would indicate that the mass scale for new physics is not much higher

than 𝑀𝑍 and that the new physics does not couple strongly to the 𝑍0[46].

The weak mixing angle is a book-keeping parameter across various 𝑄2 which

we can use to keep track of a variety of experiments at different energy scales (as

in Fig. 2-5). But we can also compare the value of sin2 𝜃𝑊 with other fundamen-

tal parameters such as the Higgs mass 𝑚𝐻 or top quark mass 𝑚𝑡 and define how

individual experiments constrain the available parameter space, putting tighter

limits on BSM theories. Fig. 2-6 shows a comparison, both measured and cal-

culated, of sin2 𝜃𝑊 vs. Higgs mass 𝑚𝐻 . The yellow band is the world average of

sin2 𝜃𝑊 measurements. The black points are the two most precise measurements

at 𝑄2 << 𝑀2
𝑍 . The projected MOLLER error is shown in red. In this plot, we

observe how LHC experiments and MOLLER compliment one another in terms
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of confining the available parameter space. We also can clearly observe how the

high precision of MOLLER might resolve the strain between two fairly precise

experiments, E-158 and atomic PV shown here.

Figure 2-6: sin2 𝜃𝑊 vs 𝑚𝐻 . The yellow band is the world average. The black
points are the two most precise measurements at 𝑄2 << 𝑀2

𝑍 . The projected
MOLLER error is shown in red.[1]

Figure 2-7: The four best sin2 𝜃𝑊 measurements and the projected error of the
MOLLER proposal. The black band represents the theoretical prediction for
𝑚𝐻 = 126 𝐺𝑒𝑉 (Measured value 𝑚𝐻 = 124.98± 0.28 𝐺𝑒𝑉 [28]).[1]

Figure 2-7 shows further experiments, the four best measurements of sin2 𝜃𝑊

from studies of 𝑍0 decays [37] , the projected uncertainty for MOLLER, and the

theoretical prediction for 𝑚𝐻 = 126𝐺𝑒𝑉 (measured value 𝑚𝐻 = 124.98±0.28𝐺𝑒𝑉

[28]). The top point is the MOLLER uncertainty, which would achieve a sensitivity
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on sin2 𝜃𝑊 of ±0.00028 1. The bottom two points the Z-pole measurements of

sin2 𝜃𝑊 : 𝐴𝑙(𝑆𝐿𝐷) the left-right asymmetry in Z production at SLC and 𝐴0𝑏
𝑓𝑏 the

forward-backward asymmetry in Z decays to b-quarks. We can see the strain

between the Z-pole measurements, each of which implies different BSM dynamics

[38]. Given the scatter in previous measurements, MOLLER will be a particularly

useful measurement due to its comparable precision. MOLLER will be the first

low 𝑄2 measurement to match the precision of the best high energy measurements

at the Z-pole, extending the discovery reach for new physics to the multi-TeV scale

[1].

Precision of Moller

MOLLER is expected to measure the left-right parity violating asymmetry

𝐴𝑃𝑉 ∼ 35.6 ppb in Møller scattering to sub-ppb precision (<0.8 ppb). Including

both statistical and systematic uncertainties, this is an effective 2.4% measurement

on the electron weak charge 𝑄𝑒
𝑊 , since 𝐴𝑃𝑉 is directly proportional to the electron

weak charge (Equ.2.3) :

𝐴𝑃𝑉 = 𝑚𝑒𝐸
𝐺𝐹√
2𝜋𝛼

4𝑠𝑖𝑛2𝜃𝐶𝑀

(3 + 𝑐𝑜𝑠2𝜃𝐶𝑀)2
𝑄𝑒

𝑊

We infer the precision on the weak mixing angle by examining the tree-level rela-

tionship between 𝑄𝑒
𝑊 and sin2 𝜃𝑊

𝑄𝑒
𝑊 = 4𝑔𝑒𝑒 = 4𝜌 · 𝑔𝑉𝑒 · 𝑔𝐴𝑒 = 1− 4 sin2 𝜃𝑊

where 𝜌 =
𝑀2

𝑊

𝑀2
𝑍𝑐𝑜𝑠2𝜃𝑊

. As the weak mixing angle runs due to radiative corrections,

sin2 𝜃𝑊 increases by 3% from its Z-pole value, but the electron weak charge 𝑄𝑒
𝑊

decreases to 45% of its original Z pole value, due to its being very near zero.

A small fractional change in sin2 𝜃𝑊 introduces a much larger fractional change
1Note that estimates of this sensitivity are subject to change
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in 𝑄𝑒
𝑊 and hence 𝐴𝑃𝑉 . Conversely, MOLLER’s sensitivity to sin2 𝜃𝑊 is greatly

enhanced compared to the fractional sensitivity on 𝑄𝑒
𝑊 . As previously stated in

Sec. 2.1.1, the closer 𝐴𝑃𝑉 and 𝑄𝑒
𝑊 are to zero, the closer sin2 𝜃𝑊 is to 1/4, the

greater the enhancement of the corresponding fractional sensitivity on sin2 𝜃𝑊 : a

2.4% measurement of 𝐴𝑃𝑉 yields a ∼ 0.1% measurement of sin2 𝜃𝑊 [46].

Mass Reach

In quantifying the significance of a precision low 𝑄2 experiment, we speak in

terms of “mass reach”. To compare various experiments, there is a need for a

model independent way to: quantify the effects of new high energy dynamics in

low-energy processes, translate the high precision at low-energy into the high en-

ergy regime, and express the ‘reach’ of a precision experiment in a standard way.

The typical standard way is to treat new low-energy neutral current interactions,

with 𝑄2 << 𝑀2
𝑥 of unknown mediator X, as contact interactions, where the de-

nominator in the 𝐴𝑃𝑉,𝑋 ∼ 1
𝑄2−𝑀2

𝑋
∼ 4𝜋

Λ2 , is ∼ 𝑄2 independent, and is quantified at

a mass scale Λ, where here we have switched to using natural units.

Figure 2-8: Fermion contact interaction with unknown weak mediator X [1] [70]

For each fermion and handedness combination, the interaction is characterized

by a ratio of the strength of the coupling g to the mass scale Λ [36] [33]

ℒ =
∑︁

𝑖,𝑗=𝐿,𝑅

(𝑔12𝑖𝑗 )
2

2Λ2
𝑖𝑗

𝑒1𝑖𝛾𝜇𝑒1𝑖𝑒2𝑗𝛾𝜇𝑒2𝑗

where 𝑒𝐿/𝑅 = 1
2
(1∓ 𝛾5)𝜓𝑒

Taking the Møller experiment as an example, a precision of 2.4% gives a sen-

sitivity of 7.5TeV for the ratio of mass to coupling strength.
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Λ√︀
|𝑔2𝑅𝑅 − 𝑔2𝐿𝐿

=
1√︁√

2𝐺𝐹 |Δ𝑄𝑒
𝑊 |

= 7.5𝑇𝑒𝑉

To define conventional “mass limits” for new contact interactions, to get at a

mass scale for the new mediator, we must assume some nominal coupling constant.

Based on models of lepton compositeness characterized by strong coupling dynam-

ics we let
√︀
|𝑔2𝑅𝑅 − 𝑔2𝐿𝐿 = 2𝜋. We should emphasize this is a standard coupling

constant used for contact interactions which gives the mass reach scale for com-

parison with other measurements [2]. This standard coupling strength gives mass

reach scales of up to 47TeV for the new mediator from the MOLLER precision on

𝐴𝑃𝑉 .

Based on certain assumptions on isospin structure and strong coupling other

comparative estimates [35] for mass reach of various past and future precision

experiments are as follows: E158 ∼17 TeV, PV- ∼8 TeV, Qweak ∼33 TeV, Møller

∼39 TeV, P2 ∼49 TeV, Solid ∼22 TeV . Compared with other experiments, the

mass reach scale of Møller is quite high, matching the precision of the best collider

(Z-pole) measurement shown in Fig. 2-5.

Complimentary Measurements

Certain BSM dynamics can have a high impact on low 𝑄2 observables while

having a suppressed impact collider observables. The low-energy measurements

are sensitive to interference effects which are suppressed at the Z-pole [1], so the

low-energy and high energy measurements can be complimentary. We take as an

example, the dynamics of a potential new Z’ boson at contact interaction scales.

Case: LHC observes an anomaly

If the LHC observes an anomaly, then MOLLER will have the sensitivity to

constrain various possible BSM scenarios to explain the anomaly [1]. MOLLER

will be sensitive to new, super-massive 𝑍 ′ bosons, new particles predicted by the
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Minimal Supersymmetric Standard Model (MSSM), as well as electron compos-

iteness scenarios.

𝑍 ′ bosons

Many BSM theories predict the existence of new, supermassive Z’ bosons with

masses in the TeV range. Many GUTs and certain string theory models, allowing

for one or more large extra dimensions, predict additional Z’ bosons which are

Kaluza-Klein excitations of the SM photon and 𝑍0 with masses at the TeV scale

[46]. The LHC, while able to detect and measure the mass of such particles up

to 5TeV, is unable to subject Z’-bosons to detailed measurements to learn about

their properties. If the LHC were to detect a super-massive Z’, the low-energy

precision electroweak MOLLER measurement would help to decipher what has

actually been discovered [33]. MOLLER would help disentangle all of the chiral

𝑍0 couplings to SM particles [39] and providing important constraints [1].

Collider Z-pole measurements are only sensitive to the chiral couplings 𝑔2𝑅𝐿 and

the combination 𝑔2𝑅𝑅+𝑔
2
𝐿𝐿. At best, LHC measurements would be able to measure

the ratio of the chiral leptonic couplings. Whereas MOLLER 𝐴𝑃𝑉 is sensitive to

the parity violating coupling constant combination 𝑔2𝑅𝑅 − 𝑔2𝐿𝐿. For example, for

the Z’ boson appearing in SO(10) Grand Unified Theories,

√︁
|𝑔2𝑅𝑅 − 𝑔2𝐿𝐿| =

√︂
4𝜋𝛼

3𝑐𝑜𝑠2𝜃𝑊
≈ 0.2

implying MOLLER is sensitive to Z’ bosons with masses up to about 1.5 TeV [33].

In left-right symmetric models, the 𝑍𝐿𝑅 boson couples with strength

√︁
|𝑔2𝑅𝑅 − 𝑔2𝐿𝐿| =

√︂
𝜋𝛼

𝑐𝑜𝑠2𝜃𝑊 (1− 2 sin2 𝜃𝑊 )
≈ 0.24

corresponding to a 1.8 TeV MOLLER mass reach [33].

Fig. 2-9 depicts, in two specific models [40], how the proposed 𝐴𝑃𝑉 mea-
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surement and the SLHC would impact constraints on chiral Z’ couplings. The

difference in the parameter space constrained by MOLLER vs the SLHC data

shows how MOLER would provide an independent determination of the left- and

right-handed leptonic Z’ couplings, helping to distinguish between models [33]. 2

Figure 2-9: Future constraints on chiral Z’ couplings in two representative mod-
els for a 1.5 TeV mass. The hyperbolas are from a potential 𝐴𝑃𝑉 measurement
while the hatched regions are from an SLHC. The latter were obtained assuming
a given model with the parameters as discussed including statistical errors and
uncertainties from parton distribution functions. There is a reflection symmetry
(a doubling of the bands) because of an overall unphysical sign ambiguity. For
technical reasons, masses and couplings have been scaled in the figure by a factor
of 1.25. (Figure courtesy of F. Petriello et al.)[33]

Electron Compositeness

Electron compositeness can be parameterized as a contact interaction, at an

energy scale where the internal dynamics of the electron have become important,

with a Lagrangian of the form [72] [46]

ℒ =
4𝜋

2Λ2
𝑒𝑒

[︃
𝜂𝐿𝐿(𝜓𝐿𝛾𝜇𝜓𝐿)

2 + 𝜂𝑅𝑅(𝜓𝑅𝛾𝜇𝜓𝑅)
2 + 2𝜂𝐿𝑅(𝜓𝑅𝛾𝜇𝜓𝑅)(𝜓𝐿𝛾𝜇𝜓𝐿)

]︃
2We note that the 1.5 TeV mass shown in Fig.2-9 has been excluded. While new “general”

Z’s are no longer in reach for MOLLER, it could be useful for “designer” Z’s which would not be
seen at the LHC but would be light enough/couple strongly enough for MOLLER



2.1. INTRODUCTION 38

where Λ𝑒𝑒 is the energy scale and |𝜂𝑖𝑗| ≤ 1. MOLLER has a large sensitivity to

any parity violating couplings in the contact interaction

𝑔𝑚𝑒𝑎𝑠
𝑒𝑒 − 𝑔𝑆𝑀𝑒𝑒 = ± 𝜋

𝐺𝐹

√
2

𝜂𝑅𝑅 − 𝜂𝐿𝐿
Λ2

𝑒𝑒

For 𝜂𝑅𝑅 or 𝜂𝐿𝐿 equal to ±1, MOLLER sensitivity to electron compositeness reaches

TeV energy scales.

Minimal SUSY

MOLLER could be sensitive to new BSM particles predicted by Minimal Su-

persymmetric Standard Models (MSSM) via radiative loop effects or tree-level

interactions. Radiative loop effects are R-parity conserving (RPC) and tree-level

interactions are R-parity violating (RPV) [25] [26]. If nature is supersymmet-

ric, RPC and RPV interactions would affect the electron weak charge 𝑄𝑒
𝑊 with

opposite sign. So SM deviations, as measured by MOLLER 𝐴𝑃𝑉 would be able

to distinguish RPC and PRV versions of SUSY. Interestingly, while the presence

RPV interactions would suggest that neutrinos are Majorana particles, the pres-

ence of RPC interactions would suggest that the lightest supersymmetric particle

is stable, making it a non-baryonic dark matter candidate [1].

Case: LHC agrees with the Standard Model

There is a variety of BSM physics that could escape LHC detections. If the

LHC continues to agree with the Standard Model up to 14TeV, MOLLER could

help in the discovery of hidden weak scale scenarios such as compressed super-

symmetry, light MeV-scale dark matter mediators, and lepton-number violating

processes, such as doubly-charged scaler exchange [1].



2.1. INTRODUCTION 39

Doubly charged scalars

Figure 2-10: Exchange of a doubly-charges Higgs boson Δ++

MOLLER will be able to probe lepton-number violating amplitudes mediated

by exchange of a doubly-charges Higgs boson Δ++ with a high level of sensitivity.

[46]. Doubly charged scalars can arise in certain extended Higgs sector models.

For example, the left-right symmetric model contains Δ𝐿and Δ𝑅 triplets with

doubly-charged components 𝛿++
𝐿,𝑅 that can couple to two charged leptons via the

Lagrangian:

ℒ𝛿++

𝑚𝑎𝑡𝑡𝑒𝑟 ∼ ℎ𝑖𝑗𝐿𝛿
++
𝐿 ℓ̄𝐶𝑖 𝑃𝐿ℓ𝑗 + ℎ𝑖𝑗𝑅𝛿

++
𝑅 ℓ̄𝐶𝑖 𝑃𝑅ℓ𝑗 + ℎ.𝑐.

The Møller scattering process is unique because it is sensitive to an amplitude

that violates lepton number by 2 units:

ℳ𝑃𝑉 ∼
|ℎ𝑒𝑒𝐿,𝑅|2

2𝑀2
𝛿𝐿

𝑒𝐿𝛾𝜇𝑒𝐿𝑒𝐿𝛾
𝜇𝑒𝐿

which is equivalent to a contact interaction with Λ = 𝑀𝛿𝐿 , |𝑔2𝐿𝐿| = |ℎ𝑒𝑒𝐿 |2/2 and

𝑔𝑅𝑅 = 𝑔𝐿𝑅 = 0. Hence MOLLER would have a mass reach of [1]

𝑀𝛿𝐿

|ℎ𝑒𝑒𝐿 |
∼ 5.3 𝑇𝑒𝑉

in the left-right symmetric model, making MOLLER one of the most stringent

probes of the left-handed charged scalar,above the LEP 2 constraint of ∼ 3TeV,

as well as being a complimentary measurement to other lepton-flavor violation

and neutrinoless double-beta decay searches [24] [1].
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Compressed SUSY

Compressed supersymmetry [23] is a hidden weak scale scenario in which one

of the super-partner masses is relatively light. In that scenario, the LHC signa-

tures would be very challenging to disentangle from QCD backgrounds whereas

MOLLER would be sensitive to such a scenario [1].

Dark 𝑍0
𝑑

It has been postulated [20] [21] that a dark matter mediator, denoted 𝑍𝑑, with

MeV scale mass 𝑚𝑍𝑑
, might exist and could couple to SM particles. In the presence

of a combination of kinetic and mass mixing with the photon and the 𝑍0, with

couplings 𝜖 and 𝜖𝑍 =
𝑚𝑍𝑑

𝑚𝑍
𝛿 , if 𝛿 ̸= 0 ‘dark’ parity violation arises [20] which is

negligible in high energy measurements of shifts in the weak mixing angle, but

apparent at low 𝑄2 [21].

Figure 2-11 shows the range of possible deviations of sin2 𝜃𝑊 (𝑄) for 𝑍𝑑 mass

of 100 and 150 MeV. A precise low 𝑄2 measurement on the weak mixing angle,

like MOLLER, has obvious discovery potential in this light dark matter mediator

scenario [1].

Figure 2-11: Running of sin2 𝜃𝑊 with various dark Z mediator masses [41] [42]
[43] [44]
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2.2 Parity Violation Experiments

2.2.1 Basics of PVeS Experiments

Fig. 2-13 illustrates the layout of the first PVeS experiment E122 that provided

further unambiguous evidence for electroweak unification. It measured the parity

violating asymmetry in deeply inelastic scattering of an 𝑒− from a liquid deuterium

target at 𝑄2 ≈ 1𝐺𝑒𝑉 2/𝑐2, detecting the scattered electron.

Figure 2-12: 𝐴𝑃𝑉 in Deep Inelastic Scattering from liquid Deuterium 𝑄2 ≈
1𝐺𝑒𝑉 2/𝑐2. Inclusive measurement which detected scattered electron only. [70]

Figure 2-13: Experimental Layout of E122 (1978) [70]

To produce polarized electrons is a complicated multistage process. The Right

and Left handed longitudinally polarized electrons for this experiment come from

Right and Left Circularly polarized light. It starts with linearly polarized photons

from a laser source that are then converted to states with circular polarization

with a pockels cell electro-optic device. The light helicity (and the corresponding

electron polarization) is flipped rapidly with the pockels cell. At present, 1kHz
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fast flip rate is possible. This polarized light is used to pump a GaAs photocath-

ode to produce the polarized electrons, which was first developed for E122. The

current state-of-the-art superlattice cathodes produce electron beams of roughly

90% polarization, with high quantum efficiency and long lifetimes. The electrons

are accelerated and then sent into the experimental hall.

Figure 2-14: Band structure of GaAs, showing how circularly polarized laser light
produces polarized electrons.[33]

Figure 2-15: High luminosity polarized electron source - GaAs photocathode [70]

Figure 2-16: Helicity States driven through the Pockels Cell voltage setting [70]

Since a scattering asymmetry is being measured in this experiment, it is im-

portant to keep the electron beam symmetric between the two polarization states,

to minimize the “helicity correlated beam asymmetries”. Nowadays, through both

precision configuration and feedback, charge asymmetry 𝐴𝑞 in the 𝑒− beam can
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be kept down at ppb level and position differences Δ𝑥 between helicity states can

be kept down at the nanometer level on target. E122 employed beam monitors to

measure the helicity dependent changes in current and position. Now they usually

are RF antenna or RF resonant cavities and can measure with precision charge at

30ppm and position at micron level at 250Hz. Even in 1978, a computer was used

for fast feedback to control beam asymmetries, a method which we still employ

now.

A high-power cryogenic target was used: 30cm of liquid deuterium for high

luminosity. Currently the high power target can handle 2300W of deposited beam

power, and noise from density fluctuations from “boiling” of the cryogenic fluid

are <40ppm at 250 Hz helicity flip rate. In the future MOLLER experiment, we

will use a 1.5m LH2 target, exposed to 4kW, with stability better than 25ppm at

1kHz flip rate.

Knowing the degree of 𝑒− beam polarization was an important experimental

parameter. In E122 a Møller polarimeter was used. Now multiple polarimeters are

used to 1% precision: Mott, Møller and Compton (a continuous measurement at

0.7% precision). For MOLLER, we hope to have 0.5% precision on the polarimetry

measurements.

A magnetic spectrometer directs scattered 𝑒− flux to a background-free region

and defines the kinematic acceptance. The electron flux was detected by quartz

bars and photomultiplier tubes. More generally the electron flux can be detected

by Cherenkov light in an optically transparent media like lucite or quartz, often

with a heavy material like lead or copper to create showering of the incident

election as shown in Fig. 2-17 for E158. The signal gets integrated during the

helicity window and is sent to ADCs. In E122, the detectors measured high

100kHz rates. Currently JLab Hall A parity experiments regularly have rates that

can approach 7GHz. For MOLLER, we hope to detect rates of 500GHz.
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Figure 2-17: Concept of E158 Calorimeter - Integrating Detection of light from
quartz-copper sandwich [70]

2.2.2 Experimental Measurements of sin2 𝜃𝑊

E158

E158 (1997-2004) measured the electron weak charge to high precision through

parity violating Møller scattering at low 𝑄2. It was the first measurement of the

electron-electron weak interaction.

E158 bore similarity to E122 in the overall experimental layout (Fig. 2-18).

A highly polarized, high current electron beam was incident on an unpolarized,

high luminosity target of LH2 with ∼ 1𝑘𝑊 of beam power deposited. The target

was an 18% radiator. E158 employed a magnetic spectrometer system so the

detectors could distinguish between signal and background, in this case distinguish

Møller electrons from 𝑒𝑝 backgrounds. The spectrometer system consisted of a

dipole chicane to separate the primary and scattered beam and a quadrupole

spectrometer to separate the Møller signal from the 𝑒𝑝 background. Beam energies

of 45GeV and 48GeV were used. The spectrometer accepted electrons from 4-

7mrad scattering angles corresponding to about 60− 90𝑜 scattering angles in the

center of mass frame.

Figure 2-18: Experimental layout of E158 [70]
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The parity violating asymmetry was measured to be

𝐴𝑃𝑉 = (−131± 14± 10)𝑝𝑝𝑏

which implied a precision on the weak mixing angle of

𝛿(sin2 𝜃𝑊 )

sin2 𝜃𝑊
∼ 0.5%

and mass-reach scales on the order of Λ𝑒𝑒
𝑅𝑅−𝐿𝐿 ∼ 17TeV.

𝑄𝑤𝑒𝑎𝑘 Experiment

𝑄𝑤𝑒𝑎𝑘 was a measurement of the parity-violating asymmetry in elastic 𝑒𝑝 scat-

tering of longitudinally polarized electrons from protons in HallC [56]. It com-

pliments MOLLER because it measures the weak charge of the proton and is

therefore sensitive to hadronic couplings of the 𝑍0 rather than leptonic couplings

and therefore has a different response to new physics scenarios [46]. The experi-

ment measured a parity-violating asymmetry 𝐴𝑒𝑝 = −226.5±7.3(𝑠𝑡𝑎𝑡)±5.8(𝑠𝑦𝑠𝑡)

ppb [57].

The weak charge of the proton 𝑄𝑝
𝑤 was determined from a global fit, shown

in Fig. 2-19a of parity-violating elastic scattering (PVES) results from nuclear

targets, since uncertainties of hadronic structure could be constrained by higher

𝑄2 measurements [56]. The value extracted from the global fit is in agreement with

the standard model prediction 𝑄𝑝
𝑤(𝑆𝑀) = 0.0710±0.0007 [56]. The weak neutral

current quark vector couplings 𝐶1𝑑 and 𝐶1𝑢 as constrained by 𝑄𝑤𝑒𝑎𝑘 and the APV

measurement in 133Cs [18] are shown in Fig.2-19b. The exclusion limits are 𝜆/𝑔 ≈

7.5TeV, 𝜆 ≈ 27 TeV [57] with the usual convention for contact interactions 𝑔 =
√
4𝜋 (see Sec.2.1.2). Finally, the 𝑄𝑤𝑒𝑎𝑘 result for sin2 𝜃𝑊 is shown in Fig. 2-19c.

Qweak result is plotted in red at the energy scale of the Qweak experiment, and

also in green as interpreted using lattice QCD strange quark results for form factors
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of the proton. Error bars (1 s.d.) include statistical and systematic uncertainties.

The modified-minimal subtraction (MS) scheme is shown as the solid curve [27]

together with experimental determinations. The result is consistent with SM

predictions.

(a)
(b)

(c)

Figure 2-19: Qweak experiment results: (a) 𝑄𝑝
𝑤 as determined from a global fit

(b) Weak Neutral Current Quark Vector Couplings constraints (c) Weak mixing
angle result interpreted from the Qweak measurement. Qweak result is plotted
in red at the energy scale of the Qweak experiment, Q = 0.158 GeV. Error bars
(1 s.d.) include statistical and systematic uncertainties. The modified-minimal
subtraction (MS) scheme is shown as the solid curve together with experimental
determinations. [19] [15] [57]

Atomic Parity Violation

Atomic parity violation (APV) experiments, also known as parity non-conservation

(PNC), measure the weak mixing angle using, for example, Cesium atoms [58].

The first APV SM test was performed with on 133Cs in 1983 by Bouchiat &
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Bouchiat [63]. Other atoms besides 133𝐶𝑠 have also been used, such as Ytterbium,

Radium, 208Pb [64] [65] , 209Bi, and molecules [63]. The best APV measurement of

the weak mixing angle at lower energies are those extracted from the measurement

of the weak charge of 133Cs, 𝑄𝐶𝑠
𝑊 , via studies of table-top atomic parity violation

obtained by Wieman in 1999 [17]. In a nucleus, the SM prediction for the weak

charge including EW corrections is given by [58] 3

𝑄𝑆𝑀+𝑟𝑎𝑑.𝑐𝑜𝑟𝑟.
𝑊 ≈ −2[𝑍(𝑔𝑒𝑝𝐴𝑉 ) +𝑁(𝑔𝑒𝑛𝐴𝑉 )](1−

𝛼

2𝜋
) ≈ 𝑍(1− 4 sin2 𝜃𝑆𝑀𝑊 )−𝑁

where 𝑔𝑒𝑝𝐴𝑉 ≈ −1
2
+2 sin2 𝜃𝑆𝑀𝑊 and 𝑔𝑒𝑛𝐴𝑉 ≈ 1

2
. In an APV experiment, the transition

energy 𝐸𝐴𝑃𝑉 , an energy state that is shifted by the weak charge in an EM field, is

measured via an interference term in excited state transitions (“APV lightshift”)

and this energy is related to the nuclear weak charge

𝐸𝐴𝑃𝑉 ≈ 𝑘𝑄𝑊

The transition energy 𝐸𝐴𝑃𝑉 is measured, k is calculated from atomic wavefunc-

tions, and thus 𝑄𝑊 is inferred. Constraining theoretical calculations of k is a

crucial steps towards higher precision in the interpretation of APV experiments.

The weak mixing angle measurement from the atomic parity violation (APV) in
133𝐶𝑠 can be compared with the Standard Model prediction at low 𝑄2. Deviation

from the SM prediction implies new BSM physics:

𝑄𝑊 = 𝑄𝑊 + 𝑟𝑎𝑑.𝑐𝑜𝑟𝑟.+𝐵𝑆𝑀𝑝ℎ𝑦𝑠𝑖𝑐𝑠

For example, an extra Z’ boson in SO(10) GUTs produces a change to the nucleus

𝑄𝑊 of [63]

𝛿𝑄𝑊 ≈ (2𝑁 + 𝑍)𝑎′𝑒(𝜉)𝜈
′
𝑑(𝜉)

𝑀2
𝑍

𝑀2
𝑍′

3𝑄𝑆𝑀+𝑟𝑎𝑑.𝑐𝑜𝑟𝑟.
𝑊 = −2[𝑍(𝑔𝑒𝑝𝐴𝑉 + 0.00005) +𝑁(𝑔𝑒𝑛𝐴𝑉 + 0.00006)](1− 𝛼

2𝜋 )
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While APV measurements are sensitive to additional Z (Z’) bosons predicted in

grand unified theories (GUTs) [58], they are insensitive to SUSY loops (cancel-

lation of neutron and proton effects) [63]. As shown in Fig. 2-19b, the 𝐶1𝑢, 𝐶1𝑑

sensitivity is complimentary to PVES experiments like Qweak or MOLLER, be-

cause due to the dominance of the neutron weak charge, APV probes orthogonally

to PVES [63] using proton targets.

The largest uncertainty in APV measurement is the theoretical interpretation

and the calculation of k from atomic wavefunctions. Calculations of the atomic

wavefunctions evolve every few years, as additional atomic structure effects are

incorporated into the calculations and other measurements, such neutron radius

measurements, are taken into account [58]. So, historically the APV extracted

result on the weak mixing angle has moved significantly over the years, frequently

being updated [66] [18] [1], being mostly lower than the SM prediction [58]. The

level of agreement with the SM prediction has changed with subsequent analyses

[67] [18] [56].

NuTeV

The NuTeV Collaboration extracted the electroweak parameter sin2 𝜃𝑊 from

the measurement of the ratio of weak neutral current to charged current 𝜈 and 𝜈

cross sections in neutrino-nucleus deep inelastic scattering (𝜈𝐷𝐼𝑆) [68] [56]. The

original reported value was sin2 𝜃
(𝑜𝑛−𝑠ℎ𝑒𝑙𝑙)
𝑊 = 0.2277± 0.0013(𝑠𝑡𝑎𝑡)± .0009(𝑠𝑦𝑠𝑡), 3

standard deviations above the SM prediction [68], dubbed “the NuTeV anomaly”

[56]. While such a discrepancy would indicate new BSM physics, there are theo-

retical interpretability issues related to atomic and nuclear structure effects. The

issues highlight the importance of a theoretically clean experimental probe [56]

like MOLLER.
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Z-pole measurements

The two most precise measurements of sin2 𝜃𝑊 at the Z-pole (sin2 𝜃𝑒𝑓𝑓𝑊 (𝑀𝑍))

are the SLC collider measurement of the left-right asymmetry in Z production

𝐴𝐼(𝑆𝐿𝐷) = 0.23070±0.00026 and the LEP1 collider measurement of the forward-

backward asymmetry in Z decays to b-quarks 𝐴0,𝑏
𝑓𝑏 (𝐿𝐸𝑃 ) = 0.23193± 0.00029 [1].

The two measurement aren’t consistent with one another, independently implying

very different BSM dynamics [38] but averaging to the Standard Model value.

The main systematic uncertainty is the interpretability of the measurement with

Parton Distribution Functions (PDFs), although recently Bodek et al. [49] have

found a method to reduce the PDF uncertainties in 𝑝𝑝 collisions, tightening up

the theoretical interpretations and enabling precision results from the LHC. This,

future planned hadron experiments, like LHC 14TeV, 300fb-1 with precision of

𝛿 sin2 𝜃𝑊 ∼ 0.00036, will not be theoretically limited with PDF uncertainties.

One of the past appealing aspects of MOLLER would be to provide the reach of

the Z-pole measurements, with a precision of 𝛿 sin2 𝜃𝑊 ∼ 0.00028, comparable to

the Z-pole measurements uncertainties, but without the systematic uncertainty

from PDFs. Now that the PDF uncertainty has been reduced for 𝑝𝑝 collisions,

the appeal of MOLLER lies largely in that it is a low 𝑄2 measurement, off of the

Z-pole, with improved sensitivity to new BSM physics.

2.3 MOLLER Experimental Design

2.3.1 Basic Conceptual Setup

MOLLER will improve on the precision of E158 by about a factor of 5. There

are a broad range of technical challenges to achieve high precision for MOLLER.

The experiment will be performed at 11GeV at JLab, with high luminosity and

high stability 𝑒− beam, so that this large improvement on E158 is possible. The

design for MOLLER is shown in Fig. 2-20. In the 𝑄2 regime for this design, 𝐴𝑃𝑉
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is expected to be 35.6 ppb. The goal is to reach a statistical precision of 0.73 ppb

on 𝐴𝑃𝑉 , to measure sin2 𝜃𝑊 with uncertainties of ±0.00026(𝑠𝑡𝑎𝑡)± 0.00013(𝑠𝑦𝑠𝑡),

and obtain mass reach scales of up to 47TeV. In short, the goal is to perform

an experiment at low 𝑄2 with a precision on sin2 𝜃𝑊 matching collider Z-pole

measurements.

Figure 2-20: Experimental Design for Moller [70]

The basic conceptual design is shown in Fig. 2-20. There is a LH2 target,

followed by an upstream magnet that pre-focuses the Møller scattered elections

so that they make it through the downstream hybrid toroid which is designed to

focus and maximize the kinematic acceptance.

2.3.2 Figure of Merit and High Acceptance

To obtain high statistical precision, high luminosity, high rates, high accep-

tance, and optimal figure of merit (FOM) are required. The figure-of-merit is

defined as 𝐹𝑂𝑀 = 𝑅 × 𝐴2
𝑃𝑉 , where R is the detected rate 𝑅 ∼ 𝑑𝜎

𝑑Ω
, and where

𝐴𝑃𝑉 ∼ 𝐸𝑙𝑎𝑏𝑄
𝑒
𝑊 rises with 𝐸𝑙𝑎𝑏 and the cross-section 𝜎 ∼ 1

𝐸𝑙𝑎𝑏
decreases with

𝐸𝑙𝑎𝑏. The FOM is proportional the beam power and the experiment need high

energy but also high luminosity. The 11GeV JLab beam can be more precise than

the 45GeV SLAC measurements because of luminosity and systematic precision.
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The goal of the optimization of MOLLER kinematics is to minimize the runtime

required to obtain a high accuracy of 0.72 ppb on 𝐴𝑃𝑉 ≈ 35.6 ppb. The spec-

trometer is designed to separate Møller electrons from 𝑒𝑝 scattered background.

There is a large phase space of relevant properties which go into the FOM such as

Møller and elastic 𝑒𝑝 rate and asymmetry, and 𝑒𝑒 and 𝑒𝑝 focus and separation.

Figure 2-21: Moller 𝐴𝑃𝑉 vs. Center of Mass Scattering Angle 𝜃𝐶𝑀 [71]

In this 𝑒𝑒 scattering experiment, the FOM contribution is highest for 𝐸𝑙𝑎𝑏 =

11𝐺𝑒𝑉 and an 𝑒− scattering angle of 90𝑜 in COM frame with optimum acceptance

from about 90𝑜 − 120𝑜 back scattered electrons as depicted in Fig. 2-21. This

is because, independent of gauge model [48], the maximal asymmetry occurs at

𝑦 = 0.5 due to 𝑦 ↔ 1 − 𝑦 symmetry for identical particles, which corresponds to

a CM scattering angle 𝜃𝐶𝑀 = 90𝑜. In the lab frame the two outgoing electrons

(Fig.2-22) from 𝜃𝐶𝑀 = 90𝑜 scattering emerge at a scattering angle 𝜃𝑙𝑎𝑏 ≈
√︀

2𝑚𝑒/𝐸

where E is the incoming electron energy and each outgoing electron carries energy

E/2. This approximately corresponds to the optimum FOM region (yellow) in

Fig.2-22 which shows that the optimal detector would cover energies from 2.5-

5.5 GeV at 10-17 mrad to detect electrons backscattered in the center-of-mass

frame which are easier to isolate due to higher laboratory angles and lower energy

compared to their forward scattered partners.
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Figure 2-22: The FOM is highest at 𝜃𝐶𝑀 = 90𝑜, with optimum acceptance
[90𝑜, 120𝑜] in highly boosted lab frame. Forward and Backscattered electrons are
identical particles [71]

Ideally, all of the backscattered electrons would be accepted, but complete 360𝑜

azimuthal coverage is not possible. The magnets and collimator in the spectrom-

eter must be placed somewhere and supported so azimuthal acceptance must be

lost. However, because these are identical particles, we can use a clever idea to

get an effective 100% acceptance shown in Fig. 2-22 : Any region where back

scattered electrons (black) are lost, detect forward scattered electrons instead (grey)

at the opposite azimuthal angle. In this way, one of the electrons (either yellow

or gray) is always detected from each event. An odd number of octants are used

with only 50% azimuthal coverage, but 100% acceptance is achieved for seeing at

least one electron from each elastic event in the optimal FOM region.

A conceptual description of the components of the experiment follows.

2.3.3 Magnetic Spectrometer

The spectrometer must separate Møller scattered electrons from backgrounds

while maintaining high acceptance. The dominant backgrounds are elastic and

inelastic 𝑒𝑝 scattering. The toroid spectrometer is designed to use the energy-

angle correlation of 𝑒𝑒 elastic scattering by focusing kinematic acceptance from

𝐸𝑙𝑎𝑏 = 2.5 − 8.5 𝐺𝑒𝑉 and 𝜃𝑙𝑎𝑏 = 0.3𝑜 − 1.1𝑜 onto a small region for detection. It

consists of two resistive (Cu non-superconducting) toroids each with 7 magnets
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Figure 2-23: Toroid Spectrometer: Upstream Magnet and Downstream Toroidal
Magnet [71]

Figure 2-24: Illustration of the radial and azimuthal focusing of the MOLLER
spectrometer. The figure on the right illustrates the colors for the forward and
back scattered events as used on the left [71].

arrayed azimuthally. The upstream magnet starts bending small scatters out to

larger angles. A second toroid continues this out bending, but uses 6 different

segments with progressively more magnet turns to vary the effective
∫︀
𝐵 · 𝑑𝑙 over

the range of acceptance, to bend the highest accepted energies without overbending

the lowest. The hybrid’s 6 segments are shown in Fig.2-23 where regions with

different NI’s corresponds to different magnet segments.

As shown in Fig. 2-24, in addition to radial focusing from azimuthal fields,

radial fields defocus azimuthally the accepted distributions. The accepted events,

which are neat wedges just at the collimator, occupy the entire azimuth at a radius

of about 1± 0.1𝑚, approximately 35m downstream of the target. Critical factors

determining the desired optics are the 𝑒𝑒 focus at detector plane, the 𝑒𝑝 focus at

the detector plane, and the foci separation.

The Møller electron distribution in the detector plane is shown in black, az-
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(a) (b)

Figure 2-25: Møller electron distributions in detector plane: (a) Transverse dis-
tributions showing azimuthal defocusing - bins for different 𝜑, different 𝜃𝐶𝑀 (b)
Radial distributions - main Møller peak is in Region 5 [71]

imuthally in Fig. 2-25a. Elastic 𝑒𝑝 backgrounds are shown in red. The background

for 𝑒𝑝 processes 𝑒 + 𝑝(+𝛾) → 𝑒 + 𝑝(+𝛾) contributes < 0.3% fractional error to

the final result. The spectrometer succeeds in achieving high signal to noise ratio

at the main Møller peak in the radial Møller electron distribution shown in Fig.

2-25b at a 1m.

A prototype of the toroidal magnet has been built and is being tested at

MIT-Bates. The current density in the magnets (up to 20𝐴/𝑚𝑚2 [59]) requires

more careful engineering. While the optics design is complete, the engineering

of the magnets is still in progress. There is a large phase space for the design:

strength of the field integral (from current density, length), coil positions (z, ra-

dius),collimator location/orientation/size, choice of primary collimator, detector

location/orientation. The system must keep the acceptance high, which allows

the un-scattered beam to exit to the beam dump 4, and must keep the current

density as low as possible. In principle, small changes can be made to the current

density or otherwise improve the mechanical integrity at the magnets, perhaps by

exploring the phase space. It is worth noting that if higher current densities were

practically possible, better focus and separation could be achieved [59].
4The constraints on the magnet design are: obeying keep in zones (half azimuth between

tracks, full azimuth under tracks, no closer than 5X the multiple scattering radius)



2.3. MOLLER EXPERIMENTAL DESIGN 55

Figure 2-26: Proposed Detector Segmentation [71]

2.3.4 Detectors

The main Cherenkov detectors consist of quartz bars and photomultiplier-tubes

(PMT’s). Because of the azimuthal defocusing in radial fields, the detectors must

cover the full azimuth and have radial and azimuthal segmentation to detect both

signal and backgrounds. The radial segmentation is indicated in Fig. 2-25b and

the azimuthal segmentation is indicated in Fig. 2-26.

There are planned to be 28 azimuthal channels per radial bin in most regions,

with the except of the Møller peak (region 5) which will have 84 azimuthal channels

per radial bin, giving a grand total of 224 channels. The rate per channel is

expected to vary considerable from a few MHz to several GHz, with a total rate

of 159 GHz. Each detector consists of quartz with air light guides and PMT’s

as shown in Fig. 2-27. One interesting consideration: to avoid introducing a

polarization sensitivity to the detectors, it is prudent to avoid excessive clamping

force on the quartz causing birefringence in the detector and potentially differential

light collection efficiency for polarized Cherenkov light.

In addition to the assembly of integrating quartz Cherenkov detectors, there

are a variety of auxiliary detectors surrounding the setup as shown in Fig. 2-

28. Pions and muons will be detected with a quartz sandwich behind shielding.

Luminosity monitors downstream will detect beam and target density fluctuations.

GEM-tracking chambers will be used upstream of the integrating detectors in a
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Figure 2-27: Quartz assembly of Cherenkov detectors with air light guides and
PMTs. [71]

Figure 2-28: Conceptual illustration of detector arrangements for the MOLLER
experiment including Cherenkov detectors, GEMs, pion detectors, and luminosity
monitors [71]

special low beam-current calibration mode.

2.3.5 Polarimetry

The goal for MOLLER is to obtain robust 0.4% polarimetry using at least 2

different methodologies: Compton polarimetry and Møller polarimetry Transverse

polarization uncertainties must also contribute < 0.2%. More detailed descriptions

of the Møller and Compton polarimeters can be found in Sec. 3.5.10 and Sec. 3.5.9,

respectively. Here we will address the status of the equipment and error budgets

required for MOLLER.

The Compton polarimeter measures the degree of longitudinal electron beam
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polarization via Compton scattering from polarized laser light. The electron beam

crosses a laser beam in a high-gain optical cavity and some fraction of the electrons

Compton scatter with the laser photons. The scattered electrons are separated

from the primary 𝑒− beam and get detected along with the scattered photons.

There are two detectors in the Compton: a tracking electron detector and a pho-

ton calorimeter. For full capabilities at 11 GeV during MOLLER, a radiation hard

electron detector is needed, as well as a large, dense, linear detector without phos-

phorescence, and control of synchrotron light and BremBremsstrahlungstrahlung

background at 11GeV [61]. While Qweak achieved 0.6% precision polarimetry with

the electron detector at 1GeV, and HAPPEX-3 achieved 1.0% precision polarime-

try with the photon detector at 3GeV, for MOLLER, operation at high energy (11

GeV) with 0.4% precision is a very different challenge [61]. The error budget for

various uncertainties in the Compton at 11GeV is shown in Fig. 2-29.

Figure 2-29: Compton uncertainty goals for MOLLER at 11GeV [61]

The Møller polarimeter measures longitudinal electron beam polarization based

on Møller scattering from ferromagnetic foil targets. A double-polarization spin

asymmetry in Møller scattering is measured and employed to infer the electron

beam polarization.

To achieve <0.5% polarimetry, the Møller polarimeter requirements include

knowing the target polarization to 0.25% with small temperature corrections due

to demagnetization from target heating of <0.05%. The upgraded Møller po-

larimeter should achieve high fields, where the electrons in the ferromagnetic target
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foil are polarized by a strong magnetic field. A 4Tesla magnetic field will saturate

the magnetization of the iron foil target, for which the electron polarization is

well determined [55]. The simulation of the Møller optics (the spectrometer tune

and magnet currents) and acceptance must be accurate. The analyzing power

averaged over the acceptance must be known to 0.2% and the Levchuk correction

must contribute <0.2% uncertainty.

2.3.6 Target

MOLLER requires a long, high-luminosity target with minimal noise from

target boiling/density fluctuations (<25ppm). The target will be a 1.5m long,

LH2 target with a beam current up to 85uA and a deposited energy of up to 5kW.

The difficulty with high luminosity/high power is that while you get high rates, you

also get higher noise from target boiling. When it comes to statistics, it’s possible

to be self-defeating with high-luminosity. However, one can get around target

boiling, by taking data quickly with fast helicity flipping, making fast comparisons

in measuring the asymmetry. This is the helicity flipping equivalent to using a high

speed camera. The choice of helicity flip rate can strongly impact the ultimate

precision of a parity experiment. Fig. 2-30, from a measurement by Qweak,shows

the luminosity noise level (in blue) decreasing at high frequencies. The density

fluctuations in the target get cancelled when asymmetries are formed at high flip

rates. For MOLLER, helicity reversal at 1-2kHz is required.

Figure 2-30: Target boiling noise vs. frequency [74] [71]
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2.3.7 Polarized Source

To achieve high precision measurements on 𝐴𝑃𝑉 for MOLLER, the Pockels cell

in the polarized source must satisfy both statistical and systematic requirements

as regards the electron beam produced. The asymmetry measurement is based on

the helicity switching, in which time windows are generated in the electron bunch

train at a selected flip rate, with the sign of the beam’s longitudinal polarization in

each window assigned on a pseudo random basis. Frequency selection for helicity

flipping affects the noise, and statistical errors significantly. Sec. 2.3.6 motivated

the need for a high helicity flip rate during high data rate experiments, like the

future MOLLER experiment, which requires a flip rate of ∼2kHz. However, when

data is taken at a high helicity flip rate for improved statistics, it is also desirable

to have a short settle time for each transition to prevent downtime data losses.

The Pockels cell which controls the electron beam must switch helicity states very

quickly within 10us, with minimal dead-time <2%, to obtain sufficient statistical

precision at high data rates. We have developed a new Pockels cell for the polarized

source using RTP (Rubidium Titanyl Phosphate) crystals, described in Chapter

6.

Regarding systematics, the differential cross-section asymmetries are extremely

small in parity experiments, and so the symmetry between incident right and left

helicity beams is of increased importance. Since this type of measurement com-

pares electrons of opposite helicity and looks for changes in scattering, any change

in the polarized beam correlated with the helicity reversal can be a potential source

for systematic error, or a false asymmetry. This includes energy changes, position

changes, intensity changes, or spot-size changes. To first order, this can be written

as:

𝐴𝑟𝑎𝑤 = 𝐴𝑑𝑒𝑡 − 𝐴𝑄 + 𝛼Δ𝐸 +
∑︁

𝛽𝑖Δ𝑥𝑖 (2.4)

where 𝐴𝑟𝑎𝑤 is the beam current normalized detector asymmetry, 𝐴𝑄 is the beam

charge asymmetry, Δ𝐸 is the helicity correlated energy difference, Δ𝑥𝑖 are the
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helicity correlated position differences, and 𝛼, 𝛽𝑖 are the coupling constants, both

calculated and measured through cross correlations and linear regression in data

analysis. Additionally, helicity correlated changes to the spot size of the beam can

also give rise to systematic errors. For precise comparisons to be made, the two

helicity state beams must be extremely symmetric: their intensity, position, and

spot-size must be very nearly identical.

Beam Assumed Accuracy of Required 2kHz Required cumulative Systematic

Property Sensitivity Correction random fluctuations HCBA Contribution

Intensity 1 ppb/ppb ∼ 1% < 1000 ppm < 10 ppb ∼ 0.1 ppb

Energy −1.4 ppb/ppb ∼ 10% < 108 ppm < 0.7 ppb ∼ 0.05 ppb

Position 0.85 ppb/nm ∼ 10% < 47 𝜇m < 1.2 nm ∼ 0.05 ppb

Angle 8.5 ppb/nrad ∼ 10% < 4.7 𝜇rad < 0.12 nrad ∼ 0.05 ppb

Spot-size 12ppb/ppt - - < 10−6 − 10−5 ∼ 0.012− 0.12 ppb

Table 2.3: MOLLER Beam Goals [71]

For MOLLER, there are more stringent requirements on the systematic er-

ror as shown in Table 2.3 with goals of a few parts-per-billion for the intensity

asymmetry, about 1nm for position differences, and spot-size asymmetries at the

< 10−5 level. For each type of HCBA (helicity correlated beam asymmetry), the

table shows the assumed sensitivity of 𝐴𝑃𝑉 on the beam parameter, the accuracy

of the corresponding beam correction which will be made to 𝐴𝑃𝑉 in data analy-

sis, the required statistical noise given as asymmetry and helicity-pair difference

widths, and the implied correction for the expected helicity asymmetry. The last

column is the expected contribution to the systematic uncertainty on 𝐴𝑃𝑉 given

the anticipated correction precision achieved in the results of Qweak (2011) and

HAPPEX-II (in 2005). Minimizing systematic experimental uncertainty begins at

the Pockels cell source and was the motivation for the design of a new RTP Pockels

cell to ensure both fast transition times and small helicity-correlated asymmetries

.

Table 2.4 shows a comparison of the HCBA goals for MOLLER with those

previously achieved during HAPPEX-II. The intensity asymmetry 𝐼𝐴 must be
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kept 3X smaller. Position differences, angle differences, and energy differences all

need about factor of 2X improvement on HAPPEX-II. The goal for MOLLER is

a 2kHz fast helicity flip rate with 10𝜇𝑠 settle time, whereas previously, Qweak

achieved 1kHz with a 60𝜇𝑠 settle time using a KD*P Pockels cell. This thesis is

focused on the RTP polarized source goals: (1) to develop a source that can flip

helicity states quickly, so we don’t lose statistics through deadtime (waiting for

the polarization to flip); and (2) also to get the beam stable - at the nm level on

target - and to control HCBA’s.

MOLLER previously achieved

Intensity Asymmetry < 10 ppb 30 ppb (Qweak)

Energy Asymmetry < 0.7 ppb 0.2 ppb (H-II)

Position Differences < 1.2 nm 2 nm (H-II)

Angle Differences < 0.12 nrad 0.25 nrad (H-II)

Spot-size Asymmetries < 1× 10−5 < 1× 10−4 (PREX-I,Qweak)

Table 2.4: Comparison of MOLLER PQB requirements to those achieved during
HAPPEX-II, Qweak, and PREX-I [62]

Meeting MOLLER goals for HCBA

Table 2.5 shows the path towards achieving the small HCBA’s required for

MOLLER. As regards the intensity asymmetry requiring a 3X improvement over

the past, this can be improved with better feedback, the longer run period, and

more strict data cuts for good long-term cancellation [62]. Nominally 10ppb in the

Hall is achieved from obtaining <10 ppm in the injector, which is then reduced

by a factor of 10X through slow helicity reversals such as the insertable half-wave

plate (IHWP) and the double Wien (see Sec. 3.5.1), and reduced again by another

factor of 100X by using feedback on the Pockels cell voltages to minimize 𝐴𝑞, finally

giving 10ppm/10/100 ∼ 10ppb. We note the main hurdle for the RTP Pockels

cell was maintaining 𝐴𝑞 stability as there were slow drifts ( 100ppm in 30 min for

𝑒− beam, larger for laser) due to fluctuations in temperature difference between

the two RTP crystals in the cell (∼ 50kppm/𝑜𝐶 for Δ𝑇 and 100% analyzing).
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However, these slow drifts are easily corrected with 𝐴𝑞 PITA-voltage feedback

on the cell. Summer 2018 injector studies showed that feedback could used on

intensity fluctuations to cancel slow drifts.

Source Adiabatic Damping Slow Reversals Feedback

Intensity < 10 ppm (inj) - ∼ 10× 100×

Position/angle ∼ 20 nm (inj) ∼ 100× ∼ 10× ∼ 10×, control jitter

(Past) ( 50− 200 nm) (30×, max 95×) (∼ 10× IHWP, ISM) (∼ 10×, unused)

Spot-size < 10−5 (laser) (synch light ∼ 10× (IHWP, g-2, ISM) -

(Past) (< 10−4) dilution) ( ∼ 10× from ISM) -

Table 2.5: Steps to achieving MOLLER PQB requirements compared with what
has previously been achieved [62]

Regarding position/angle differences, the ultimate goal is to achieve <1.2nm,

<0.12nrad in the Hall and this can be done by a combination of improvements

to position differences in the injector, adiabatic damping, slow helicity reversals,

and position difference feedback. The first goal is for position differences to be

kept < 20 − 30nm in the injector before acceleration. We have made significant

strides towards this goal using the an RTP design which utilizes new degree of

position difference control. We estimated the effect of the electric field gradients

in a polarization dependent steering model, calculated the E-field gradients for

different geometries with the dielectric crystals, and found a way to control the

E-field gradient to steer the beam. We have demonstrated the ability to use the

RTP cell for active, voltage controlled, position feedback. Summer 2018 injector

studies showed that in a particular selected bpm, electron beam position differences

could be controlled to within 1-5nm (Sec. 6.6). Overall in the injector, before the

chopper, the RTP achieved electron beam position differences < 70nm in 2018 and

< 30nm in 2019. Both charge and position asymmetries were well controlled, the

RTP cell shows promise for MOLLER, and it is being considered for installation

during PREXII.

In adiabatic damping, the area of the beam distribution in phase space is

inversely proportional to the momentum. If the electron beam is aligned well,
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acceleration from momentum 𝑝0 to 𝑝 can reduce position differences by a factor

of
√︀
𝑝/𝑝0. In the past adiabatic damping has been shown to reduce position

differences by a factor of 10-30X, at lower (3 GeV) energies. In principle, MOLLER

11GeV beam energy should provided up to 150X. However realizing the full benefit

requires improved injector performance and good optical transport through the

accelerator that has yet to be demonstrated (which is why only 10-30X damping

was observed instead 100X previously). We note that the improvements shown in

Fig. 2.5 in each of these steps are in total, overkill by a factor of 500X: for position

20nm/100/10/10 ∼ 0.002nm> 1.2nm. So, if for example, very small position

differences are achieved in the injector, 100X adiabatic damping is unnecessary,

and vice versa. Furthermore, if the factor of 2X improvement (as compared with

HAPPEX-II) in beam position asymmetry were not achieved, it would be a small

hit on total error bar, or even zero net loss if correction precision can exceed

modest assumptions [62].

Spot size asymmetry contributions to the systematic error are nominally given

by 12 ppm×𝛿𝜎/𝜎 [1]. Based on this assumption, the spot size asymmetry for

MOLLER requires 10X improvement over the past (< 1× 10−5 vs 10−4 quoted in

Qweak and PREX), but incoherent emittance growth provides this factor. The

suppression between spot size asymmetry in the injector and spot-size asymmetry

contribution in the Hall, is due to the assumption of synchrotron light emittance

growth greatly suppressing the spot size asymmetry by a factor of 𝐴𝜎,𝑖𝑛𝑗/𝐴𝜎,𝑠𝑦𝑛𝑐ℎ ∼

25𝑋−100𝑋. We note that coherent beam size changes (damping, raster, focusing)

don’t affect the dilution, only stochastic processes help dilute the asymmetry.

With the RTP cell, 𝐴𝜎 (on laser, estimated for 𝑒− beam) was as good as 10−4 (for

the laser) and 10−5 − 10−4 in the 𝑒− beam off the cathode.

MOLLER also depends on qualities of the beam beyond standard PQB re-

quirements shown in the above tables, most notably beam “halo”. Beam halo was

observed during Qweak in the small angle monitors as a beam asymmetry which

correlated with the BCM asymmetry, but which was not cancelled by normalizing
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to the BCM 𝐴𝑞. It was theorized this was due to a small current density outside

the main beam profile RMS which had a large charge asymmetry, not reflected in

the central portion of the beam current as detected by the BCMs. However, the

asymmetry “halo” is not yet well understood and the collaboration needs to iden-

tify which parameters require development. A program of test plans on beam halo

should be defined before MOLLER and various ideas for “halo” monitors are in

development. Additionally, there are some suggestive beam test results as regards

the longitudinal structure of the 𝑒− beam pulse. During beam studies in summer

2018, longitudinal bunch length asymmetries were observed to develop from in-

duced charge asymmetries via space-charge effects. The longitudinal asymmetries

in the 𝑒− beam may potentially couple into the transverse HCBA’s that MOLLER

depends on minimizing.

To summarize: source considerations for MOLLER include fast flipping, short

transition times, noise assessments, injector position differences, injector spot

size asymmetries, adiabatic damping, couplings in accelerator, coherent emittance

growth, apertures, halo, longitudinal bunch length asymmetries, and longitudinal

position differences. 5

2.3.8 Summary of Goals for MOLLER

MOLLER presents a number of experimental challenges to achieve high preci-

sion including stringent requirements on the properties for the polarized electron

beam, a high luminosity liquid hydrogen target with extremely small pulse-to-pulse

density fluctuations, and control of contributions from background scattering pro-
5We should note that before MOLLER, there will be an injector upgrade. A 200keV gun has

been installed, though it not used at that voltage yet. The new gun should improve cathode
lifetime and should improve transmission without RF pre-bunching.Two new source BPMs 2I01
and 2I02 have been installed just after photocathode. Other upgrades in the near future include
improvements to injector spin manipulation (double Wien) which will be upgraded to work at
200keV with improved optics elements/apertures, new electrodes and coils, and new HV supplies
[62]. The plan is to remove the prebuncher between elements for more reliable operation and
quicker setup. There will be a new 1/4 cryomodule (10 MeV, integrates RF capture) which will
reduce x/y coupling that has in the past been major impediment to optics match to design.
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cesses [46]. Fig. 2-31 shows a summary of the statistical and systematic error

goals for MOLLER : 2.1% statistical and 1.1% systematic.

Figure 2-31: Precision Goals for the MOLLER experiment [71]. All systematics
are required at the sub-1% level.

This work is primarily focused on the beam intensity asymmetry, position

differences, and 2nd order effects like spot size asymmetry. These goals translate

into helicity correlated beam asymmetry minimization down to the ppb-level in

intensity, and 1.2nm level in position difference between left and right helicity

states. If these HCBA goals are achieved, MOLLER is expected to measure 𝐴𝑃𝑉 ∼

35.6ppb with a goal to reach a precision of 0.73ppb on 𝐴𝑃𝑉 , as precise as the best

collider Z-pole measurement and probe new BSM physics.

To summarize, source considerations for MOLLER include ambitious, but

achievable goals. The polarized source achievements using the RTP cell will be

discussed in Chapter 6 and in Chapter 5 beam studies.
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Chapter 3

PREX-II

3.1 Parity Violation

Our picture of the atomic nucleus comes from nuclear charge densities which

have been well measured by electron scattering experiments [76]. However, neutron

densities in the nucleus are not so well known because the neutron is uncharged,

thus it is not probed directly in typical electron scattering measurements, as well

as due to uncertainties in the strongly interacting probes [164]. Donnelly, Dubach,

and Sick [78] suggested that parity violating electron scattering can measure neu-

tron densities [77] in nuclei. As described in Sec. 1.2, in PVES experiments a

longitudinally polarized electron beam is incident on an unpolarized target, the

sign of the longitudinal polarization is changed making a parity transformation.

The fractional rate difference between right and left helicity states is measured,

forming an asymmetry 𝐴𝑃𝑉 = (𝜎𝑅−𝜎𝐿)/(𝜎𝑅+𝜎𝐿) arising from interference term

between the electromagnetic and weak amplitudes, ℳ𝛾 and ℳ𝑍 , which, in the

Born approximation, is proportional to the ratio of the weak and electromagnetic

form factors 𝐹𝑤𝑒𝑎𝑘/𝐹𝐸𝑀 , closely related to the Fourier transform of the neutron

density. The reason PVES can provide information regarding neutron densities in

nuclei is that the Z0 boson, that carries the weak force, couples primarily to the
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neutron, rather than the proton, at low 𝑄2, while ℳ𝛾 is dominated by the electric

charge (proton) distribution, which is already well measured by electron scatter-

ing. Hence, the weak-charge density, and the closely related neutron density, can

be deduced from parity-violating asymmetry measurement in PVES experiments

[77]. PVES provides a clean measurement of 𝑅𝑁 , the RMS radius of neutrons in

a heavy nucleus, and constrains the equation of state (EOS) of highly dense mat-

ter which has impact on neutron star structure, heavy ion collisions, and atomic

parity violation experiments [164] . The Lead Radius Experiment (PREX) will

measure the parity violating asymmetry 𝐴𝑃𝑉 for 1GeV electrons scattering from
208Pb at five degrees, and should be sensitive to the neutron radius of 208Pb to 1%

(±0.05fm) precision [164]

3.2 Principles

3.2.1 Fundamental Considerations

The differential cross section for electron scattering off of a nucleus is dominated

by the electromagnetic interaction of the electron with the with proton distribution

in the nucleus, characterized by the form factor 𝐹𝑝. In the born approximation,

the differential cross section can be written as [77]

𝑑𝜎

𝑑Ω
=
𝑑𝜎

𝑑Ω𝑀𝑜𝑡𝑡
|𝐹𝑝(𝑄

2)|2

where the Mott cross section consists of the electron Rutherford cross section, ap-

propriate for low energies, and additionally takes into account the election mag-

netic moment effect and nuclear recoil effect in the terms (1 + cos 𝜃)/2 in the

numerator and (1− cos 𝜃)𝐾𝐸/𝑀𝑐2 in the denominator, respectively.

𝑑𝜎

𝑑Ω𝑀𝑜𝑡𝑡
=
𝑑𝜎

𝑑Ω𝑅

(1 + cos 𝜃)/2

1 + (1−cos 𝜃)𝐾𝐸
𝑀𝑐2

=
𝜋

2
𝑍2𝛼2(

ℎ̄𝑐

𝐾𝐸
)2

1

(1− cos 𝜃)2
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which can be written as
𝑑𝜎

𝑑Ω𝑀𝑜𝑡𝑡
=

4𝑍2𝛼2𝐸2

𝑄2

Our picture of nuclei comes from the electric charge distribution, which has

been very well measured already. As Q increases, nuclear size becomes an impor-

tant correction to the differential scattering cross section. Neglecting relativistic

recoil, the form-factor F(q) is the Fourier Transform of charge density 𝜌(𝑟). The

proton and neutron form-factors are defined in terms of the density distributions

as [77]

𝐹𝑝(𝑄
2) =

1

4𝜋

∫︁
𝑑3𝑟𝑗0(𝑞𝑟)𝜌𝑝(𝑟)

𝐹𝑛(𝑄
2) =

1

4𝜋

∫︁
𝑑3𝑟𝑗0(𝑞𝑟)𝜌𝑛(𝑟)

where 𝑗0 is the 0𝑡ℎ spherical Bessel function. The form factor is the Fourier

transform of charge density: The edge of the electric charge distribution in nuclei

gives rise to this diffraction as a function of Q (analogous to an airy pattern in

optics) as shown in Fig. 3-1 [76].

Figure 3-1: (a) Cross sections at E=502MeV as a function of effective momentum
transfer. (b) Deviation between fit and data used. [76]

PREX and CREX are parity violating electron scattering experiments which
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aim to map the weak charge distribution in nuclei, which is much harder to mea-

sure than the electric charge distribution. Longitudinally polarized electrons scat-

tering off an unpolarized target produce a scattering cross-section containing an

interaction term between the electromagnetic and weak amplitudes.

Figure 3-2: Electron scattering off 208Pb target nucleus with Z-boson and photon
mediators [73]

𝜎 ∼ |𝑀𝛾 +𝑀𝑤𝑒𝑎𝑘|2 ∼ |𝑀𝛾|2 + 2𝑀𝛾(𝑀𝑤𝑒𝑎𝑘)
* + . . .

The resulting parity-violating asymmetry is measured by comparing left and right

helicity states, and can be shown to be proportional to the ratio of the weak and

electric charge form factors.

𝐴𝑃𝑉 =
𝜎𝑅 − 𝜎𝐿
𝜎𝑅 + 𝜎𝐿

208Pb is the chosen target for the PREX experiment because it is notable

as the heaviest known stable isotope of any element , with Z=82, N=126, and

nuclear spin 0 1. This choice of a spinless target and low 𝑄2 makes for a more

straightforward calculation of 𝐴𝑃𝑉 , as angular momentum can’t be absorbed by

the nucleus.

In the electron scattering process, the predominant couplings between the elec-

tron and the nucleus occur via the photon and z-boson mediators at tree-level with

propagators of the form [77]

1

𝑄2 +𝑀2
𝑍

≈ 1

𝑀2
𝑍

1all nuclei with even Z and even N have nuclear spin I=0
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1

𝑄2 +𝑀2
𝛾

=
1

𝑄2

. The photon couples largely to the protons in the nucleus, and the Z-boson

couples largely to the neutrons in the nucleus.

proton neutron

electric charge 1 0

weak charge ∼ 0.08 1

Table 3.1: Electric and weak charges of spin-0 nucleus [73]

The weak form factor almost entirely couples to the neutron distribution and

the electric charge form factor entirely couples to the proton distribution, due

to the small weak charge of the proton and non-existent electric charge of the

neutron. In a spinless target, the photon, with its pure vector couplings, has

no contribution from magnetic components, and the Z-boson’s net axial vector

coupling is absent [77].The choice a a spinless, closed-shell, isospin 0 target nucleus

simplifies matters, and 𝐴𝑝𝑣 is unaffected by relativistic corrections to the cross

section. In this scenario, the asymmetry is given by [79]

𝐴𝑃𝑉 = 𝐴0
𝑃𝑉 [𝑔

𝑝
𝑉 + 𝑔𝑛𝑉

𝐹𝑛(𝑄
2)

𝐹𝑝(𝑄2)
]

2 . Neglecting radiative corrections, at tree level (in 𝑀𝑆 scheme),

𝑔𝑝𝑉 = 1− 4𝑠𝑖𝑛2𝜃𝑊

𝑔𝑛𝑉 = −1

Hence we can write the asymmetry as [77]

𝐴𝑃𝑉 =
𝐺𝐹𝑄

2

4𝜋𝛼
√
2
(4 sin2 𝜃𝑊 − 1 +

𝐹𝑛(𝑄
2)

𝐹𝑃 (𝑄2)
) ≈ 𝐺𝐹𝑄

2

4𝜋𝛼
√
2

𝐹𝑛(𝑄
2)

𝐹𝑃 (𝑄2)

2where 𝐴0
𝑃𝑉 = − 𝐺𝐹𝑄2

4𝜋𝛼
√
2
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where 𝐺𝐹 is the Fermi coupling, Q is the 4-momentum transfer in the process
3. Though not useful for realistic calculations, it is worth recalling the Born

approximation to Apv, as it nicely illustrates that Apv relates to the neutron and

proton nuclear form factors [117]. Measurement of the parity violating asymmetry

𝐴𝑃𝑉 is a direct measure of the Fourier transform of the neutron density at choice

of 𝑄2.

The Fourier transform of the proton density at a particular choice of 𝑄2 has

been determined by previous electron scattering experiments [76] as shown in Fig.

3-1 .The weak form factor (and corresponding neutron radius) are not as well

understood as the proton nuclear radius (and corresponding electric charge form

factor). However this ratio of weak to electromagnetic form factors is directly

related to the neutron skin thickness on heavy nuclei predicted by nuclear the-

ory as shown in this plot of proton/electric charge density vs radius in red and

neutron/weak charge density in black.

Figure 3-3: Neutron and proton distributions in 208Pb [73]

This neutron skin thickness is highly sensitive to the pressure of pure neutron

matter: the greater the pressure, the thicker the skin as neutrons are pushed

out against surface tension. Apv provides a clean measure of the neutron skin

thickness.
3We note that coulomb distortion effects must be accounted for in the calculation for 208Pb,

since the born approximation isn’t valid for the heavy nucleus [79]. The coulomb distortion
effects have been calculated([80],[81],[82],[83],[84],[79]) and that and other effects discussed [77].
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3.2.2 Neutron Skin, 𝐴𝑝𝑣, Symmetry Energy, and EOS

The basic property of the size of a heavy nucleus, both it’s neutron radius and

proton radius, is an important feature of all heavy nuclei [77]. However, the size

cannot be fully inferred from measured charge radii because of a neutron skin of

uncertain thickness [77] .We have derived above that the measured asymmetry in

polarized electron scattering directly relates to the ratio of neutron and proton

form factor distributions at particular 𝑄2. How does this inform the neutron skin

thickness? At a single 𝑄2, how can this measurement determine the skin thickness

at a particular radius r where the edge of the nucleus in 208Pb is? (𝑟 ∼ 𝑟0𝐴
1/3

where 𝑟0 = 1.2fm) How does one choose the 𝑄2? These questions have been

theoretically explored extensively, and reveal a model independent solution. The

appropriate choice of𝑄2 has been determined and the optimal kinematics of PREX

are an electron beam energy is 1.06 GeV and a scattering angle of 5𝑜 [121]. At

appropriate choice of 𝑄2, the neutron skin thickness is related to 𝐴𝑝𝑣 via a linear

relationship. The neutron skin is furthermore related to the density slope of the

symmetry energy also via a linear relationship, thereby constraining the equation

of state in a model independent manner. The PREX measurement is unique in

that it constrains L more than it constrains S at saturation density, and other

experiments constrain a different portion of the parameter space, that PREX cuts

across.

Qualitatively it makes sense that the neutron skin should relate to 𝐴𝑝𝑣: the

greater the pressure of pure neutron matter, the thicker the skin as neutrons are

pushed out against surface tension. Apv provides a clean measure of the neutron

skin thickness. Furthermore theoretically, quantitatively it does relate by a simple,

direct, linear relationship as shown in Fig. 3-4. Every existing model that predicts

a weak charge density and an electric charge density demonstrate that neutron

skin thickness and the parity-violating asymmetry are by no means independent

parameters. Rather, they are firmly dependent parameters. For sensitive 𝑄2,
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there is robust correlation between 208Pb 𝐴𝑃𝑉 and the neutron skin over existing

nuclear structure models. Asymmetry in PVES provides a clean probe of the

neutron distribution, one is a direct measure of the other, and the precision on

one directly translates to a precision on the other. Note that in principle, the

weak radius is related to the derivative of the form factor evaluated at zero 𝑄2:

𝜕𝐹𝑊 (𝑄2)|𝑄2=0 ∼ 𝑅𝑊 [77], though in practice the measurement is at a non-zero 𝑄2,

so since 𝐴𝑝𝑣 accesses the weak form factor, it makes sense it should relate to the

neutron radius directly. For PREX, an Apv precision of 3% directly translates to

precision on the neutron radius in 208Pb of 0.06fm. For CREX, an 𝐴𝑃𝑉 precision

of 2.5% directly translates to precision on the neutron radius in 48Ca of 0.02fm.

Figure 3-4: Parity-violating asymmetry for 208Pb at the kinematics of PREX
against the neutron skin of 208Pb.The linear fit is 107𝐴𝑝𝑣 = 7.88− 3.75Δ𝑟𝑛𝑝. The
inner/outer colored regions depict the loci of the 95% confidence/prediction bands
of the regression. Also shown are the points calculated with the neutron densities
deduced from experiment. [117]

The manner in which 𝐴𝑝𝑣, the experimental result, is related to the weak form

factor and the neutron skin thickness through calculation is as follows. Since

the charge density is known, a Born approximation equivalent weak form factor

𝐹𝑊 (𝑄2) can be deduced from the measured asymmetry 𝐴𝑝𝑣 at the 𝑄2 of the ex-

periment. One way this can be done is to adjust a range of model weak densities

until full distorted wave calculations reproduce 𝐴𝑝𝑣, then take the Fourier trans-

form of the weak charge density to calculate 𝐹𝑊 (𝑄2). Since full distorted wave



3.2. PRINCIPLES 74

calculations need some information on 𝐹𝑊 (𝑄2) for q different from the single mea-

surement, this procedure is slightly model dependent, but the model dependence

is expected to be very small [77].

Intuitively, the density distribution of protons and neutrons within a nucleus

must be energetically favorable, it must relate to the symmetry energy or energy

penalty for breaking N=Z symmetry. As the radius reaches the edge of the nucleus,

as the density falls off as in Fig. 3-3, the symmetry energy as a function of density

must play an important role in the determining the thickness of the neutron skin.

The slope of the symmetry energy at saturation density (corresponding to nuclear

densities) is defined as L

𝐿 ∼ 𝜕𝑆(𝜌)

𝜕𝜌
|𝜌0

Figure 3-5: A variety of models predicting the symmetry energy E/N vs. the neu-
tron density with the constraint of the well characterized value of the symmetry
energy at saturation density, but allowing for a range of L (slope os symmetry en-
ergy at saturation density) that leads to large divergence of theoretical predictions
at high densities, such as in neutron stars [118]

The value of 𝜌0 is found from the central density of heavy nuclei, such as 208Pb,

corrected for surface tension and Coulomb interactions, inferring the saturation

density for infinite systems [77]. The saturation density is relevant parameter in

nuclear structure models, the nature of the interactions between nucleons, models

of heavy ion collisions, and applications of dense matter in astrophysics [77].

Quantitatively, mean-field predictions show a clear correlation between neutron

skin of a heavy nucleus and L the density slope of the symmetry energy as shown
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in Fig. 3-6. Just as the 𝐴𝑝𝑣 and the neutron skin are deterministically linked,

so the neutron skin and the slope of the symmetry energy are deterministically

linked. So far the probes for stable medium and heavy nuclei have been strongly

interacting, having a somewhat more complicated interpretation. In contrast, the

neutron radius calibrates the EOS of neutron rich matter directly, and constrains

and guides models needed for heavy nuclei via L, the slope of the symmetry energy

at saturation density as shown in Fig. 3-5.

Figure 3-6: Neutron skin of 208Pb against slope of the symmetry energy L. The
linear fit is Δ𝑟𝑛𝑝 = 0.101+0.00147𝐿. A sample test constraint from a 3% accuracy
in 𝐴𝑝𝑣 (as in PREX-I) is drawn[117]

3.3 Seminal Texts and Experiments

3.3.1 Neutron Density Theory and Corrections to 𝐴𝑝𝑣

Nuclear charge densities and charge radii can be calculated using various mean

field theory models. Two typical interactions used in MF models are a non-

relativistic zero-range Skyrme force and a relativistic mean field calculation, the

predictions of which are shown in Fig. 3-7 [126]. Across nuclei of various mass

number A, the relativistic MF calculation predicts a smaller neutron density and

larger neutron radius than the Skyrme interaction calculation. Such MF models

are not currently well constrained by measurements of neutron radii. But if a

neutron radius measurement, of 208Pb for example, were performed precisely, it
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would constrain the MF models and allow for a variety of predications in other

highly dense matter scenarios, such as in unstable, exotic nuclei important for

astrophysics and radioactive isotope beams [77].

Figure 3-7: Neutron skin thickness for various nuclei of mass number A. Black
diamonds are a calculation from the nonrelativistic zero range Skyrme skiii inter-
action and white diamonds are from the relativistic mean field NL1 interaction
[126]

PVES is a very clean measure of the neutron skin thickness, as can be demon-

strated by examining several corrections to 𝐴𝑝𝑣 and demonstrating small uncer-

tainties on these corrections, as is done in the following section. The corrections

to the asymmetry are considered extensively by Horowitz, Pollock, Souder, and

Michaels [77]. Their analysis is summarized here.

Coulomb distortions : The most significant correction to𝐴𝑝𝑣 comes from Coulomb

distortions, which arise from repeated EM interactions of the electron with the

ground-state nucleus. These corrections are on the order of ∼ 𝑍𝛼/𝜋 ∼ 20% for
208Pb [77]. While Coulomb distortion corrections are larger than the expected

experimental error, they have been calculated [132] to an accuracy much smaller

than the experimental error, solving the Dirac equation numerically for an electron

in axial-vector weak and Coulomb potentials, as confirmed by many cross-checks

[137] [138] [139].

Strangeness and neutron electric form factors : The strange quarks contribution

to the neutron electric form factor, while relevant, are not significant for a neutron

radius measurement. The experimental result is the weak form factor 𝐹𝑊 which
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can be used to determine the weak radius 𝑅𝑊 , which, only after appropriate

corrections for strange quark contributions, can be related to the neutron radius

𝑅𝑛. For a spin-0 nucleus, only the electric form factors for Z-coupling to the

neutron and proton need be considered

𝐺𝑍
𝑝 =

1

4
(𝐺𝑝 −𝐺𝑛)− sin2 𝜃𝑊𝐺𝑝 −

1

4
𝐺𝑠

𝐺𝑍
𝑛 = −1

4
(𝐺𝑝 −𝐺𝑛)− sin2 𝜃𝑊𝐺𝑛 −

1

4
𝐺𝑠

The relationship between the weak distribution radius 𝑅𝑊 and neutron distribu-

tion radius 𝑅𝑛 can be derived as [77]

𝑅𝑊 ≈ 𝑅𝑛 +
𝑍(1− 4 sin2 𝜃𝑊 )

𝑁 + (4 sin2 𝜃𝑊 − 1)𝑍
(𝑅𝑛 −𝑅𝑝)

+
1

2𝑅𝑛

(𝑟2𝑝 +
𝑍 + (4 sin2 𝜃𝑊 − 1)𝑁

𝑁 + (4 sin2 𝜃𝑊 − 1)𝑍
𝑟2𝑛 +

𝑁 + 𝑍

𝑁 + (4 sin2 𝜃𝑊 − 1)𝑍
𝑟2𝑠)

where 𝑟2𝑝 is the mean square charge radius of the proton, 𝑟2𝑛 is the mean square

of the neutron charge radius, and 𝑟2𝑠 is the mean square strangeness radius. The

strangeness contribution to 𝑅𝑛 in 208Pb is < 0.4% [140] [141] [142] [77]. It can be

shown [77] the neutron radius can be related to < 1% accuracy to the weak radius

via

𝑅𝑛 ≈ 𝑅𝑊 − 0.06𝑓𝑚

demonstrating the neutron radius 𝑅𝑛 of a heavy nucleus can be accurately deter-

mined from the measured weak radius 𝑅𝑊 .

Parity admixtures : For elastic scattering from a spin zero nucleus, parity ad-

mixtures are a non-issue. A parity admixture refers to the ground state of 208Pb

not being an spin zero parity eigenstate, but rather some admixture of 0−. This

doesn’t affect the parity violating asymmetry as long as the initial and final states

are spin zero, and furthermore as long as the virtual photon exchanged is spin
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zero, there’s no PV interference. [77]

Meson exchange currents (MEC): Parity violating meson exchange currents

aren’t expected to change the measured 𝑅𝑛 significantly. This is because mesons

are expected to carry weak charge over just a short distance 𝑟𝑀𝐸𝐶 << 𝑅𝑛, where

𝑟2𝑀𝐸𝐶 the square of the mean distance the weak charge is moved by MEC. By

the above equation relating 𝑅𝑊 and 𝑅𝑛, the change to the neutron radius should

only be of order 𝑟2𝑀𝐸𝐶/𝑅𝑛 which should be quite small. Additionally, the effect of

MEC just slightly changes the surface thickness, softening the edge on the neutron

distribution, but not extending much further out in radius, so negligibly affecting

𝑅𝑛 [77].

Dispersion corrections : Dispersion corrections are from multiple EM or weak

interactions where the nucleus is excited to intermediate states. At low 𝑄2, the

elastic cross-section should be of order 𝑍2, a coherently sum over Z protons, and

the inelastic transitions in an incoherent sum should be of order Z, so dispersion

corrections are expected to be ∼ 𝛼/𝑍 << 1, insignificant in 208Pb.

Shape dependence and surface thickness : The weak radius as extracted from

the form factor may be sensitive to the surface thickness, or that shape of the

neutron distribution, as the density falls off. The weak density can be modeled in
208Pb as

𝜌𝑊 (𝑟) = 𝜌0/(𝑒𝑥𝑝[(𝑟 − 𝑐)/𝑧] + 1)

where c is the radius and 𝑧 ≈ 0.55fm is related to the surface thickness. To achieve

1% precision on 𝑅𝑊 , at 𝑄2 ∼ 0.008GeV2, the uncertainty on the surface thickness

parameter must be ∼ 0.14fm, 25% of its calculated value, which is entirely feasible.

All mean field models have a spread in 𝑧 of much less than 25%, cause they are

constrained well in this regard by known binding energies in various nuclei and

a too small surface thickness, a fast density change, results in a too high surface

energy. Furthermore, the surface thickness of the charge density is known, and

that further constrains the neutron surface thickness [77].
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Inelastic contributions : The separation of the inelastic and elastic peaks in the

high resolution spectrometer is planned to be very clean in PREX-II, as it was

during PREX-I. However, in principle one could run in such a way as to attempt

to increase rates at the expense of allowing for some inelastic contamination. We

consider the inelastic asymmetry. The first excited state in 208Pb is at 2.6 MeV and

has spin and parity 3−. The first excited state can be modeled as a deformation

of the ground state density. The elastic neutron density radius is 𝑅0
𝑛, and the the

excited state has can be described by a density parameter 𝑅0
𝑛(𝜃). The asymmetry

in this scenario can be derived [77] as

𝐴(3−) ≈ 𝐷
𝐺𝐹𝑄

2

4𝜋𝛼
√
2
(4 sin2 𝜃𝑊 − 1 +

𝑁

𝑍
(
𝑅𝑛

𝑅𝑝

)𝐽=3)

where 𝐷 ≈ 0.74 ± 0.26 is a correction factor for Coulomb distortions at 850MeV

and 6𝑜 . For 𝑅𝑛 ≈ 𝑅𝑝, we obtain

𝐴(3−) ≈ 𝐷
𝐺𝐹𝑄

2

4𝜋𝛼
√
2
(4 sin2 𝜃𝑊 − 1 +

𝑁

𝑍
)

But this is very similar to the equation that the elastic asymmetry also reduces

to, so the asymmetry for excited states is similar to the elastic asymmetry.

𝐴(3−) ≈ 1.25𝐴(𝑒𝑙𝑎𝑠𝑡𝑖𝑐)

The inelastic cross sections at low 𝑄2 are considerably smaller than the elastic

cross sections, so the contamination is already expected to be small. Additionally,

as we just demonstrated, the asymmetry for the first excited state in 208Pb is

similar to the elastic asymmetry, therefore the inelastic correction is reduced even

further.

Isospin violation: In the formalism used to treat a heavy nucleon, isospin sym-

metry in the nucleon is assumed, and isospin symmetry in a heavy nucleus with

𝑁 > 𝑍 is not assumed. Since good isospin in the nucleon is a good assumption,
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with only very small corrections, and since a formalism is used which treats pro-

tons and neutron separately, with independent densities, separately adding their

contributions to the weak charge density, with no isospin violation corrections, the

results aren’t impacted much by isospin violation [77].

Radiative corrections : Radiative corrections could potentially come into play

via axial current, vector weak current, or bremsstrahlung radiation. However,

axial current doesn’t contribute in a spin-0 target, vector weak current radiative

corrections at low 𝑄2 are constrained by current conservation, and the change

in beam polarization from bremsstrahlung is ∼ Δ𝐸/𝐸 (where Δ𝐸 is the energy

resolution) which is only about 0.5%. Hence, radiative corrections are negligible.

To conclude, we show a flow chart of the physics data analysis of PREX,

summarizing the corrections made in Fig. 3-8

Figure 3-8: Flow chart of the physics data analysis of PREX [77]

3.3.2 Other Neutron Radius Measurements

Despite many measurements of neutron densities with strongly interacting

probes, due to theoretical systematic errors, there is no established consensus

in the community that any existing measurements of neutron densities or radii

are accurate to within 1%. Hadronic probes have uncertainty in the reaction

mechanism and therefore interpretation issues when inferring the neutron radius

𝑅𝑛 [77]. Alternative measurements include Coulomb energy differences, pion or
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proton elastic scattering off heavy nuclei, Compton scattering, elastic magnetic

electron scattering, and neutron star observations.

Coulomb energy difference measurements [130] were initially used to infer neu-

tron radii, but isospin violating interactions preclude accurate interpretation. Pion

elastic scattering off heavy nuclei ([127] and pion production at Mainz), compar-

ing positive and negative pions, suffer from analysis uncertainties [129] [128] when

inferring indirectly the neutron density [77]. Elastic magnetic electron scattering

cannot directly determine the neutron radius because, while sensitive to the neu-

tron magnetic moment, most of the neutrons in heavy nuclei don’t contribute to

the magnetization as they are are coupled to spin zero [77]. Proton elastic scat-

tering experiments (such as in FRIB) could feasibly prove useful, but are limited

by theoretical analysis of the impulse approximation where nucleon-nucleon (NN)

interaction is folded with the nucleon density [131], as well as off-shell ambigui-

ties and distortion effects [124]. Enormous ambiguities yield an energy dependent

neutron skin [124]. For extracting neutron distribution from proton scattering,

or Compton scattering, in a variety of nuclei, one needs to accurately calibrate

to the neutron density in a stable nucleus using the electroweak technique, using

PREX-II and CREX as calibrating anchors (or full folding calculations which mit-

igate the necessary corrections from multiple scattering and modifications to the

NN interaction) [77] [124]. Hence, no hadronic measurement of neutron densities

has been generally accepted by the field due to uncertain systematic errors, and

modern mean field interactions are typically fit without using any neutron density

information[77].

There has been progress in experiment, theory, and observation. Fig. 3-9 shows

the constraints on the equation of state of highly dense matter as interpreted from

various types of measurements. Many of these constraints have uncontrolled sys-

tematics. The nuclear symmetry energy 𝑆𝑣 is shown on the horizontal axis, and

𝐿 = 𝜕𝑆/𝜕𝜌|𝜌0 the slope of the symmetry energy with respect to density evaluated

at saturation density is shown on the vertical axis. It should be noted that many
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assumptions go into the making of this plot, as interpreting certain measurements

to define these constraints is not altogether straightforward, so quantitatively,

this plot should be taken with skepticism. However, it is qualitatively and con-

ceptually useful in demonstrating how electroweak neutron skin measurements,

like PREX, cut across the phase space constrained by other measurements, and

PREX is almost orthogonal to these. Lattimer and Lim [149], by studying a wide

range of plausible density functionals, and Roca-Maza et al. [172], by studying

a series of relativistic and nonrelativistic interactions, deduced a relationship and

constraint between dipole polarizability 𝛼𝐷, neutron skin thickness 𝑟𝑛𝑝, bulk sym-

metry parameter 𝑆𝑣, and slope of the symmetry energy 𝐿 [148]. In Fig. 3-9,

the black dashed region corresponds to astrophysical measurements of neutron

star radii. The yellow region, corresponds to the electric dipole polarizability

𝛼𝐷 = 20.1 ± 0.6𝑓𝑚3. of 208Pb by Tamii et al. [173]. The red region corresponds

to measurement of the centroid energy of the giant dipole resonance (GDR) of
208Pb by Trippa et al. [175]. From the measured energy they inferred a symmetry

energy S at a particular density from which can be inferred a correlation between

S and L shown in the figure. The green region corresponds to Heavy-ion colli-

sion isospin diffusion measurements (HIC) [176]. The purple region corresponds

to excitation energies to isobaric analog states (IAS) [174] . The orange region

corresponds to measured nuclear masses is taken from Hartree-Fock calculations

which imply a correlation between L and Sv. The dark blue regions labeled G

and H refer to the neutron matter studies of Gandolfi et al. [150] and Hebeler et

al. [151], respectively [148]. The light blue region corresponds to constraints for

the neutron skin thickness of 208Pb taken from a study by Chen et al. [177], who

converted experimental results for Sn isotopes into an equivalent value for 208Pb

and performed a series of Skyrme Hartree-Fock calculations. The white region

corresponds to overlap, or agreement, six of these experimental constraints giv-

ing a for the slope of the symmetry energy: 44MeV < L < 66MeV. Constraining

the nuclear symmetry energy and the slope of the symmetry energy is crucial for
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understanding the NN interaction near saturation and going beyond saturation

density to impact astrophysical systems [148].

Figure 3-9: Experimental constraints for symmetry energy parameters, adapted
and revised from [149] [148].

3.3.3 Neutron Stars

Neutron stars are an excellent laboratory for nuclear physics. Neutron star

properties such as spin, mass, radius, crust, tidal deformability place constraints

on nuclear physics. Conversely, neutron density measurements have implications

for nuclear structure and neutron-rich matter in astrophysics [77]. There is a

complementarity between neutron radius measurements in a finite nucleus and

measurements of the neutron radius of a neutron star. Neutron stars have a

strong analogy to nuclei: symmetry pressure pushes against gravity in neutron

stars, whereas symmetry pressure pushes against surface tension in nuclei. Both

measurement of the neutron radius in heavy nuclei and of measurement of neutron

star mass-radius curves provide information on the equation of state of dense

matter [77].

Neutron stars have a maximum mass limit before they collapse. Thus far, there

have been just two neutron stars observed to have ∼ 2 solar mass. Neutron stars
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(to better than 10%) all lie on one universal mass-radius curve [186]. There is 1:1

correspondence between the Mass-Radius curves, shown in Fig. 3-10b, and the

EOS as defined by pressure P and energy density 𝜖 curves, shown in Fig. 3-10a,

where 𝜖 refers to energy density of neutron-rich matter in beta equilibrium [125].

All observed neutron star radii lie between 10.4 and 12.9 km on the neutron star

mass - radius curves, as shown in Fig. 3-10c. which suggests suggests a neutron

skin thickness of 𝑅𝑛(
208𝑃𝑏) < 0.2fm. Conversely, PREX informs neutron star size

vs. mass.

(a) (b)

(c)

Figure 3-10: (a) Equation of state pressure vs energy density of neutron-rich
matter in beta equilibrium. The shaded region displays observational constraints.
The solid black line (𝑃 = 𝜖) denotes the stiffest possible equation of state con-
sistent with causality [125] . (b) Mass-vs-Radius relation predicted by the three
relativistic mean-field models. (c) NS Mass-vs-Radius curve and connection to
PREX measurements at nuclear density 𝜌0 [147]
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3.3.4 R-process nucleosynthesis

R-process stands for rapid neutron-capture process, a predominant mecha-

nism for the nucleosynthesis of heavy elements. It is rapid in that the neutron

capture occurs faster than the nuclei have time to decay. when the increasingly

neutron-rich nuclei cannot physically retain another neutron, the sequence of neu-

tron capture ceases. There are two ways of synthesizing heavy elements: s-process

and r-process. The r-process contrasts with the s-process, the slow captures of

neutrons, which primarily occurs within ordinary stars. The r- and s-processes

account for almost the entire abundance of chemical elements heavier than iron.

Figure 3-11: Abundance vs Atomic Mass: Solar system abundances shown in
black, Dynamical ejecta produces heavy elements, Disk outflows produce lighter
elements [194] [195]

Abundances of the chemical elements in the Solar System, as shown in Fig.3-11

is determined by the mechanism of synthesis. Nucleosynthesis can occur either by

nuclear fusion (including both r- and s-process multiple neutron capture) or nuclear

fission followed by beta decay. What is the astrophysical site of the r-process?

Neutron star mergers are believed to be a main source of r-process elements. A

visualizer predictions showing the development of chemical abundances vs mass

number over time is shown in Fig.3-12.
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(a)

(b)

Figure 3-12: Abundance visualizer: Video of nucleosynthesis [188] (a) Beginning
of nucleosynthesis of lighter elements (b) Convergence of nucleosynthesis on heavy
elements

Neutron star properties affect potential nucleosynthesis. Smaller NS radii lead

to higher electron fraction of the ejected material, more universal r-process produc-

tion, and larger amounts of ejected r-process material. Nucleosynthesis is nearly

independent of the electron fraction of the ejected material, however it is depen-

dent on the amount of material ejected, thus it depends on the EOS [197] [198].

PREX-II/CREX could assist in furthering our understanding of stellar processes

as well as helping us understand the formation of heavy elements in neutron stars

and their abundances in the universe.

3.3.5 Gravity Waves and EOS

In general relativity, mass-energy creates spacetime curvature and masses mov-

ing in curved space generate gravity waves. The recent gravitational wave detec-

tions of black hole and neutron star inspirals and have generated a lot of excitement

and have made the ability to interpret and understand the state of dense matter
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in neutron stars increasingly desirable.

Figure 3-13: Quadrupole

The gravitation wave luminosity, to first order, goes by the quadrupole formula

[189]

𝐿𝐺𝑊 ∼
∑︁
𝑖,𝑗

(𝜕3𝑡𝑄𝑖𝑗)
2

For binary NS mergers, there is strong emission for very compact systems

𝐿𝐺𝑊 ∼𝑀2Ω6𝑑4 ∼ (𝑀/𝑑)5

where d is the orbital distance, M is the NS chirp mass, and Ω is the frequency.

(a) (b)

Figure 3-14: Neutron star inspiral [201]

In NS mergers, the tidal field 𝜖𝑖𝑗 created by companion stars induces a quadrupole

moment 𝑄𝑖𝑗. Tides in neutron stars cause large stars to merge faster [189]. An

example of the tidal induced phase shift is shown in Fig. 3-15. Waveform behaves

as if NS are point masses early on, then deformation occurs when inspiral rate

reaches 100Hz-1kHz range. The tidal dephasing (to leading order in Ω), assuming

a perfect waveform model [190] [191], is given by

𝑑Φ ∼ 𝑅5Ω5/3
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Gravitational wave signal from a NS merger measures the tidal deformity 𝜆. The

amount of deformation depends on stiffness of EOS via the tidal deformability

𝜆 and so the waveform is sensitive to the nuclear EOS for neutron stars. Ad-

ditionally, the post merger signal is at high frequency, more difficult to detect,

may provide info about the EOS and NS structure, including radius, etc. [186].

GW measurements are of tidal deformity-mass, as shown in Fig. 3-16 are nearly

equivalent to performing radius-mass measurements.

(a)

(b)

Figure 3-15: Tidal deformation of GW waveform [192]

Figure 3-16: Tidal deformity - Mass NS curve [193]

The PREX and CREX measurements are directly related to the equation of

state of highly dense matter and are important for modeling the collision of neu-

tron stars, which can now be detected by LIGO. It is potentially exciting to make

a comparison of PREX-II with LIGO observations. Measurement of the radius
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of the neutron distributions in nuclei has significance in stellar explosions and in

calibrating the equation of state for highly dense matter, which is an important in-

put parameter for modeling neutron stars and will undoubtedly enter into neutron

star inspiral collisions.

3.3.6 PREX I

PREX-I, which ran in 2010, measured the parity-violating asymmetry in the

elastic scattering of electrons off 208Pb. It was performed at 1.0 GeV and at a 5𝑜

scattering angle. It measured an asymmetry of 0.6ppm and for the very first time

made the electroweak observation the the weak charge density is more extended

than the electric charge density, establishing there is indeed a weak skin around a

heavy nucleus at the 95% confidence level.[164].

PREX-I demonstrated successful control of systematic errors, as well as the

technologies needed for PREX-II. The systematic error goals (2%) were achieved

[164], however PREX-I was statistics limited and only 15% of the planned statistics

were taken because of various experimental difficulties. [164]. The results of

PREX-I are shown in Fig. 3-17

(a)
(b)

Figure 3-17: PREX-I result [119] [120]

PREX-I measured the parity violating asymmetry in 208Pb to be

𝐴𝑃𝑉 = 0.657± 0.060(𝑠𝑡𝑎𝑡)± 0.014(𝑠𝑦𝑠)𝑝𝑝𝑚
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The corresponding neutron skin thickness was found to be 𝑅𝑛−𝑅𝑝 = 0.33+0.16
−0.18fm.

Interestingly the PREX-I central value is not consistent with measured neutron

star properties and existing models (though it is within 𝜎). Measurement of the

PREX quantity inspires significant interest from the community (the 2012 papers

collecting 250+ references on Inspire as of 2018). PREX-II expects to achieve a

factor of 3X improvement on the neutron skin thickness uncertainty.

3.4 Experimental Introduction

PREX-I was a major accomplishment as the first electroweak proof of neutron

skin with many milestones successfully achieved [164]. However, it ended before

reaching the proposed precision. PREX-II is a followup measurement to PREX-I

which will achieve 3X improvement on the Rn-Rp uncertainty. PREX-II is de-

signed with several improvements to achieve the originally proposed experimental

precision in 𝑅𝑁 of ±1% [164].

One issue for PREX-I that reduced the running efficiency, which will be recti-

fied in PREX-II, is the vacuum system. The vacuum system ran into difficulties

with radiation. Radiation caused the failure of a soft O-Ring in the pivot region

that was part of the vacuum coupling of the scattering chamber to the exit beam

pipe. It was a primary source of downtime during PREX-I, compromising the

statistical precision reached. This pivot region is redesigned so that the seals are

all-metal, not only for radiation hardness but also durability in thermal cycling

[164].

To reach the proposed precision, PREX-II will run at 1GeV, using the septum

magnet to attain the desired 5𝑜 scattering angle, for 35 days of running, including

5 days for commissioning and 5 days for polarimetry and auxiliary measurements

[164]
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3.5 Primary Components of the Experiment

3.5.1 Helicity Reversal

There are several methods to reverse the helicity of the electron. There are both

fast helicity reversals, controlled by the Pockels Cell, and slow helicity reversals

(the insertable half wave plate and the double Wien). Fig. 3-18 shows a diagram of

the polarized source. The Right and left handed longitudinally polarized electrons

for this experiment will come from Right and Left Circularly polarized light. A

Pockels cell is fed a randomized helicity control signal which applies either positive

or negative high voltages, producing either R or L circularly polarized light, which

is incident on a photocathode, producing consecutive windows of R-handed and L-

handed electrons.The electrons are accelerated and then sent into the experimental

hall. In helicity switching, time windows are generated in the electron bunch train

at a selected flip rate, with the sign of the beam’s longitudinal polarization in

each window assigned on a pseudo random basis. Frequency selection for helicity

flipping affects the noise, measurement widths, and statistical errors significantly.

The PREX-II flip rate will be 120Hz(or 240Hz) in quartet (octet) randomized

helicity pattern, RLLR or LRRL (RLLRLRRL or LRRLRLLR). These multiplets

are formed at multiples of 60Hz to cancel out 60Hz noise.
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Figure 3-18: The schematic of the injector setup at JLab. The Pockels Cell (PC)
was used to convert linearly polarized light into circularly polarized light. The
insertable mirror was used to guide the beam onto a quad-photodiode (QPD) or a
linear array photodiode (LAPD) detector during laser table studies. The insertable
lens and the insertable linear polarizer were only used during laser table studies.
The insertable mirror and the insertable linear polarizer were retracted during
the electron beam source studies and the experiments. The insertable half-wave
plate (IHWP) was inserted and retracted during laser table studies, electron beam
source studies and the experiments.[200]

Regarding slow helicity reversals, there is the IHWP shown in Fig. 3-18 and

the double Wien in the electron beamline. A slow reversal is where the electron

beam helicity is reversed relative to both the electronic helicity control signals

and the voltage applied to the PC [152] and are used to help cancel systematics.

The IHWP take the incoming horizontally polarized light, which gets converted to

R(L) circular polarization by the Pockels cell when fed a +(-) helicity signal, and

makes the incoming polarization vertical, which gets converted to L(R) circular

polarization by the Pockels cell when fed a +(-) helicity signal, thereby performing

a ’slow’ reversal on the helicity state. It should be noted that in principle, the

IHWP could be placed downstream of the Pockels cell and this method of reversal
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would still work.

The second slow helicity reversal is the double Wien. As shown in Fig. 3-

19 it consists of two solenoids and two Wien filters. The beam polarization is

oriented vertically by the first solenoid and the vertical Wien filter. The beam

polarization is rotated ±90𝑜 by the second solenoid. Finally, to optimize the

degree of longitudinal polarization in the experimental hall, the horizontal Wien

is used [152].

Figure 3-19: Double Wien [152]

There are several requirements on the helicity reversal that must be consider-

ing in parity experiments to maintain systematic errors associated with helicity

reversal at the 10−8 level. For the fast helicity reversals, during an experiment,

many reversals are needed and to avoid any correlation with noise, they should

follow a rapid and random sequence [77]. To minimize systematic errors, false

asymmetries must be minimized. False asymmetries can also arise from electronic

pickup from reporting of the helicity signal to the DAQ, so the helicity signal

has delayed reporting and is randomized. False asymmetries can also arise from

deadtime if the pockels cell transition is mistakenly left within the integration

window. Helicity correlated beam asymmetries can give rise to false asymmetries.

The helicity reversals should be uncorrelated to other parameters affecting the

cross section (i.e. beam intensity asymmetry, position differences, and spot size

asymmetries). Experiments must measure the sensitivity of the cross section to

HCBA as discussed in Sec. 3.5.11 .

On the injector laser table, it is important to characterize the laser parameters
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at the Pockels cell and on the photocathode. Important parameters include the

spot size and divergence at the cell, the effective throw distance to the cathode

(including the effect of the steering lens used), and spot-size on the photocathode

as estimated by the “spiricon-cathode” (a camera at the same effective throw dis-

tance as the cathode). One should measure the analyzing power and the QE of the

photocathode as well. During an experiment, degradation of QE often correlates

with degradation in the degree of polarization of the electron beam, so longevity

of the cathode is important, and spot moves may be necessary during the course of

an experiment. One can obtain smaller HCBA’s (especially position differences),

by reducing the spot size at the pockels cell and the photocathode (as discussed

in the RTP chapter), but it is important to maintain a small beam divergence

within the pockels cell as well as preserve the longevity of the photocathode by

not making the beam too small.

3.5.2 FOM

The appropriate choice of kinematics is a balance between maximizing the

parity violating signal and minimizing the signal to noise ratio. The goal of the

optimization is to minimize the runtime required to obtain a 1% accuracy on

𝑅𝑛. This is not just maximizing the figure-of-merit (FOM), but accounting for

sensitivity to the parameter 𝑅𝑛 as well. The quantity to maximize is

𝐹𝑂𝑀 × 𝜖2 = 𝑅× 𝐴2 × 𝜖2

where the figure-of-merit is defined as 𝐹𝑂𝑀 = 𝑅×𝐴2, the detected rate is 𝑅 ∼ 𝑑𝜎
𝑑Ω

,

sensitivity to neutron radius is 𝜖 = 𝑑𝐴
𝐴

= (𝐴1−𝐴)/𝐴 where A is computed from a

MFT calculation [132] and A1 is the same calculation but with the neutron radius

increased by 1%. 𝐴𝑃𝑉 increases with 𝑄2 and the cross-section decreases with 𝑄2

as shown in the calculation in Fig. 3-20 [77].
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Figure 3-20: Cross section, parity violating asymmetry, and sensitivity to Rn
for 208Pb elastic scattering at 0.85 GeV. The fourth plot shows the variation of
𝐹𝑂𝑀 × 𝜖2 with energy and angle [77]

The fourth plot in Fig. 3-20 shows optimal 𝜖2𝐹𝑂𝑀 at 𝐸 = 0.85GeV for 𝜃 = 6𝑜

and 𝑞 = 0.45𝑓𝑚−1. The runtime to achieve the desired uncertainty of 1% is given

in this case by

𝑇 ≈ 7/(𝑃 2𝐼Ω)

where 𝑃 is the polarization (𝑃 ≈ 0.8 − 0.9 achievable), 𝐼 is the average beam

current (𝐼 ≈ 70𝜇𝐴) and Ω is the solid angle acceptance of the spectrometer.

PREX-I ran at E= 1GeV and 𝜃 = 5𝑜 with a measured 4-momentum transfer of

𝑄2 = 0.00880 ± 0.00011GeV2 [133] where 𝑄2 = 2𝐸𝑏𝑒𝑎𝑚𝐸
′(1 − cos 𝜃). PREX-II

will run at E= 0.95GeV [134] and 𝜃 = 5𝑜 degrees. The optimum kinematics is

insensitive to the value of 𝑅𝑛 and its shape. As illustrated in Fig. 3-21, the

optimum energy for a measurement is about the same for the two models shown,

providing an indication of the insensitivity to the model.



3.5. PRIMARY COMPONENTS OF THE EXPERIMENT 96

Figure 3-21: Error in the neutron radius in Pb versus beam energy[77], for two
models of the neutron radius SKX [135] and MFT [136]

3.5.3 Targets

The design of the lead targets for PREX-II will be the same as for the so-

called “thick diamond” targets of PREX-I. As shown in Fig. 3-22, each lead target

consists of a 0.5 mm thick lead square sandwiched between two foils of diamond

which are each 0.25 mm thick and 1 inch square. The thermal contact between

the diamond and lead is improved with a thin layer of vacuum grease (Apiezon

L, a pure hydrocarbon with high thermal conductivity) and spring-like washers (

Belleville) clamp the assembly together to ensure good thermal contact as changes

in temperature occur when exposed to the electron beam [144].

Figure 3-22: Diamond sandwich [143]: 0.5mm lead, 0.25mm diamond, 1 sqin

There are several considerations which go into determining target thickness.

The obvious advantage of a thicker target is increased rates and reduced runtime.



3.5. PRIMARY COMPONENTS OF THE EXPERIMENT 97

However, there are several issues which must be considered. There is an optimal

thickness at which the rate is maximized, beyond which, given the energy reso-

lution in the detector, the rate actually decreases due to radiative losses. This

correspond to approximately 10% of the radiation length. The rate may also be

increased by including more of the radiative tail, up to 4MeV, into the detector,

including some inelastic contributions. Lead has low melting point, and low ther-

mal conductivity, whereas diamond foils have excellent thermal conductivity. the

high thermal conductivity of the diamond will efficiently transfer the beam power

and keep the target from melting [77]. Diamond may be used to improve the heat

load capacity of the He cooled target, enabling higher current running, but the

amount of diamond which can be used is determined by the systematics on 𝐴𝑝𝑣

from 12C, which must be well understood. 12C is an isoscaler, spin-0 nucleus, with

well-measured 𝐴𝑝𝑣, so the background is benign, as explained in discussion below

[77].

Target impurities : The 12C target impurities are benign. At low 𝑄2, because

Pb is much larger than C, the experiment is much less sensitive to the 12C density.

Additionally, excited states are a non-issue because 12C’s first excited state is high,

above 4 MeV. Furthermore, the parity violating asymmetry for 12C, a light nucleus

with N=Z, is well known. For example, at ∼ 850MeV and 6𝑜,

𝐴(12𝐶) = 0.66𝑝𝑝𝑚

with an uncertainty on the order of 0.4%. The elastic cross section for 12C is 2%

of the Pb cross section at these kinematics and carbon could contribute about

4% to the rate in the composite target. For a 0.4% error in a 4% impurity, the

uncertainty in the asymmetry contribution from 12C is two orders of magnitude

smaller than needed for the 3% asymmetry measurement [77].

PREX-I showed the necessity of dealing with target non-uniformities which

developed after prolonged beam exposure, due to localized beam heating, on the
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“thin diamond” targets. FIg. 3-23a shows the degradation over time of the “thin

diamond” target during PREX-I, where a raster scan was used to measure density

loss. The substantial target non-uniformity resulted in luminosity fluctuations

that increased the asymmetry width by as much as 40%. The failure mode of the

targets was degradation in rate, followed by a hole at the center of the target,

followed by target melting. The solution to deal with the non-uniformity was to

lock the raster pattern frequency to a multiple of the helicity frequency, forcing

the raster to execute the same orbit between adjacent helicity cycles, thereby elim-

inating asymmetry noise arising from target non-uniformity. PREX-II will also

use a synchronized 4x4mm raster to handle potential non-uniform lead thickness.

Fig. 3-23c shows the effect of synched rastering on the correlation plots of the

asymmetries measured between the two HRSs, which characterize the extent of

target degradation. The correlation getting stronger as the target non-uniformity

increases. The left correlation plot was acquired without the raster synch, and

the plot on the right was acquired with the raster synched where the effects of the

target non-uniformity are clearly suppressed [146]. It should be noted the “thick

diamond” targets appeared to maintain their uniformity during PREX-I, as shown

in Fig. 3-23b. Whereas, the “thin diamond” target survived >1week production

running, with a rate drop of 92%, the “thick diamond” target never degraded and

lasted 4 days at 70 𝜇𝐴 [147]. We know how to handle target degradation with a

synched raster, and we have plenty of extra targets (as described below), so we

should be prepared to deal with target non-uniformities during PREX-II.
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(a) thin diamond (b) thick diamond (c) Rastering

Figure 3-23: [146] (a) thin diamond target degradation during PREX-I (b)thick
diamond target lack of degradation during PREX-I (c) Correlation plots of the
asymmetries measured between the two HRSs. On the left is without the raster
synch, on the right is with the raster synched [143] [146]

During PREX-I, the lead-diamond targets were established to have a minimum

survival lifetime of >25C exposure. 82 Coulombs of beam was collected on 3 tar-

gets, a “thin diamond”, a medium diamond, and a “thick diamond”, which suggests

an an average lifetime of 27C, a minimum lifetime of the “thick diamond” lead tar-

gets given that it never degraded. PREX-2 should collect 150 C total charge and

it is expected that 5-6 isotopically-enriched 208Pb targets may be needed, so the

number of production targets available is planned to be 10, double what is needed,

with a 66% safety margin based on PREX performance [147]. Fig. 3-24 shows

the He cooled target ladder where the lead-diamond targets will be housed. Fig.

3-24c is a photograph of the PREX-I target ladder. There will be a cooled target

ladder (coming in horizontally) and a warm target ladder (coming it at the diago-

nal). The spacing between these 1“ targets on the cooled ladder is about 1/4”. A

silver-based paste will be applied between the diamond and the copper housing,

outside of the central area where the beam intercepts the target. Thermal calcu-

lations have been performed which demonstrate target functionality with a 4 x 4

mm rastered beam at 100𝜇𝐴 assuming good thermal contact [144].
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(a) Target chamber (b) Target ladder (c) PREXI ladder

Figure 3-24: (a)Target chamber and (b) ladder [145] (c)Photograph of the PREX-I
target ladder [144] [143]

Table 3-25 shows a comprehensive list of the targets required for PREX and

CREX physics and optics calibrations. Optics targets include a carbon hole target,

thin carbon foil, and a water cell. There is also a thick carbon target. For studies

of the target damage, targets with un-enriched lead have been added. A graphite

backing, with lower thermal conductivity but with more robustness against radia-

tion damage, will be used for one isotopic and one natural lead target. In addition

to the CREX 48Ca target for CREX, obviously, there will be a 40Ca target.

Figure 3-25: Targets required for PREX and CREX physics and optics calibrations
[144]
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3.5.4 Collimator

The collimator is located between the scattering chamber and the septum

magnet as shown in Fig. 3-26. The purpose of the PREX-II collimator is two-fold:

(1) to optimize the HRS acceptance for the figure of merit and (2) to mitigation

radiation. The part of the collimator that defines the spectrometer acceptance

is shown in purple and blue in Fig. 3-26c. It consists of a hole in the center

for the unscattered electron beam, and two carefully designed curved holes on

the left and right which define the acceptance. This portion of the collimator

is similar in design to PREX-II. In addition, there is a new collimator, shown

in orange in Fig. 3-26c, designed to intercept scattered electrons so they do not

intercept the beam pipe downstream, thereby isolating the radiation to one region

in the beamline, and trapping it by shielding that region to mitigate EM and

neutron radiation in the Hall. Sieve slit collimators for optics calibration are

also shown in Fig. 3-26c shown in white. These are alike to those used during

PREX-I. Remote actuation will swing the sieve slit between a “beam out” and

“beam in” position [144]. Housing the collimator is the collimator box shown

in yellow in Fig. 3-26c, and the box includes housing above the collimator for

deinstallation. The collimator box connects the scattering chamber to the center

beam pipe running through the septum and to the left and right spectrometer

vacuum boxes penetrating the septum bore. Critically, only metal seals will be

used in the pivot region, there should be no rubber seals in order to avoid radiation

damage to the seals, causing vacuum leaks [144].
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(a) (b) (c)

Figure 3-26: (a) PREX-II pivot region (b) Top View (c) Top View zoomed in [159]

The new collimator front face is ∼ 85𝑐𝑚 from the target and designed to

intercept electrons with> 0.78𝑜 scattering angles. The power deposited is expected

to be 2.1kW at 70𝜇𝐴 as shown in Table 3-29. In contrast, the PREX-I collimator

had a much larger opening angle of 1.27𝑜 and <1/3 of the power deposition ∼

500𝑊 . The inner cylinder is composed a 70% W / 30% Cu alloy collimator, with

cooling water channel spirals attached to water lines, with a Cu brazed sleeve. To

put the peak beam power deposition inside the tungsten collimator, rather than

close to the front face, there is a cylinder removed from the front of the inner

collimator. This new collimator has been built and Fig. 3-27b shows the brazed,

water tight collimator. However, the collimator was machined upside down, so the

water cooling lines will have to come from underneath instead of from the top.

The inner cylinder is housed within a sintered tungsten jacket. The jacket

traps EM power and self-shields the neutrons produced in the collimator [147].

The tungsten jacket is flush with the front of the inner collimator, not extending

all the way to the front of the inner collimator on the sides [144]. After operation,

to simplify the dis-assembly, the collimator gets lifted into the housing, where

further shielding limits the radiation dose from the activated collimator for faster

deinstallation [144] as shown in Fig 3-28 [179].
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(a) (b)

Figure 3-27: (a) Cu/W collimator conceptual design [147] (b) PREX-II collimator
[157]

Figure 3-28: Collimator deinstallation concept [179]

Figure 3-29: Power deposited in beamline collimator, for PREX and CREX at
5deg scattering angle, 1.05 GeV and 2.0 GeV beam energies, respectively.[144]

Downstream of the Cu/W collimator is the acceptance defining collimator.

Fig. 3-30 shows the PREX-I collimator and the PREX-II preliminary collimator

design. It is the connection between the end of the collimator box and the front

end of both the central beam pipe running through the septum and to the vacuum

boxes to the the right and left HRSs. In contrast to PREX-I, in PREX-II only

metal seals, no rubber seals, will be used in the pivot region to avoid radiation

damage induced vacuum leaks.
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(a)
(b)

Figure 3-30: (a)PREX-I collimator [160] (b) PREX-II collimator design (prelim-
inary) [158]

The difference in the design for the acceptance cuts in PREX-I vs PREX-II

is shown in Fig. 3-31. The problems with the old concept include [153]: (1) the

circle center must shift for a constant 𝜃 cut (2) the constant 𝜑 chamfer cuts out

too much acceptance and (3) merely adjusting 𝑟𝑚𝑖𝑛 is insufficient to resolve the

troublesome inner edge. In contrast, the new concept has a fixed inner and outer

radius with constant 𝜃 cut. It revert to the softer PREX-I chamfer on the corners

with an additional chamfer on the inner edge, the slope and intercept of which

depends on 𝑦𝑖𝑛𝑛𝑒𝑟 to maximize the acceptance [153].

(a)
(b)

Figure 3-31: (a)Old collimator concept (b) New collimator concept [153]
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3.5.5 Septum

(a)
(b)

Figure 3-32: (a) Septum Coils [153] (b) Septum Diagram [147]

The septum is a non-superconducting magnet, the purpose of which is to over-

come the physical constraints of the HRS’s. The HRSs have a finite width and

cannot be set to scattering angles smaller than 12.5𝑜, so the septum magnets bend

electrons elastically scattered at small angles, like 5𝑜, into the HRSs. The 𝑄2 for

PREX-I was approximately 0.009GeV2 and the small scattering angle of 5𝑜 ne-

cessitates the use of a septum magnet to deflect the low angle of incidence into

the the two HRS’s which can only come so close together [147]. The septum is

shown in Fig. 3-32. There are coils on the right and left of the central beam line

which induce magnetic fields up and down, which bend the forward moving scat-

tering electrons left or right into the 12.5𝑜 spectrometers. Unscattered electrons

pass through the central beam line and a set of separate coils generate magnetic

fields to transport the electrons onto each of the HRSs [156]. The septum is lo-

cated between the target scattering chamber, after the collimator, and the first

quadrupole of the HRSs (Q1) [156] as shown in Fig. 3-33. The septum is required

for 5𝑜 scattering angle used in both PREX and CREX (with same target position

for both).
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(a) (b)

Figure 3-33: (a) Detailed Top View of scattering region [153] (b) Top View of
scattering region [147]

The septum magnet worked during PREX-I and we know how to tune it to

optimize the FOM. The configuration parameters are well known for this magnet.

The alignment tolerance is 2 mm in the horizontal, to avoid interfering with ac-

ceptance on the front end and to align the beam pipe with the primary beam on

the back end [144].

PREX-I ran with 2 coils, whereas PREX-II will run in the 3 coil configuration,

reducing the power supply current necessary to reach the desired field strength,

and reducing the flow rate of the cooling water needed by a factor of 2. This

change was important, not necessarily for the running of PREX-II, but rather for

the running of CREX, at a higher energy and current. CREX has 2X the
∫︀
𝐵𝑑𝑙

of PREX, and requires twice the current and cooling flow rate, these requirements

are still less than they were for g2p. The
∫︀
𝐵𝑑𝑙, currents, and flow rates are

summarizing in Fig. 3.2 [154].
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Experiment PREX-I g2p PREX-II CREX CREX

Conditions (2 coils) (3 coils) (3 coils) (3 coils, 1.9GeV)

1GeV ∼1GeV 2.2GeV 1.9GeV

Bdl 0.46 1.3 0.46 0.96 0.83

Current in PS (A) 756 1050 377 805 718

Voltage (V) 176 427 153 327 292

Power (kW) 133 448 58 264 210

Flow Rate (gal/min) 25 85 11 50 40

Table 3.2: Table of Septum running conditions [154]

PREX-II/CREX running will use existing power supplies and water-cooling

systems for the gap-shimmed, 3-coil septum. PREX-II will run at a nominal

septum current, with no change to performance as compared with PREX-I [147]

[153]. For CREX, because it runs at a higher current, and energy (150uA, 2.2GeV,

1x4mm raster, 1.1g/cm2, 0.6cm thick target), the 5 degree configuration for CREX

brings the current density into a same regime as g2p. CREX will use the same

water-cooling system, the same 3-coil configuration, and the same shims as g2p

[147]. The shims will be used reduce the necessary coil current and thermal power

to achieve the required field integral by reducing the vertical bore dimension [144].

The values in Table 3.2 are obtained from the Tosca model, checked against mea-

surements, which characterizes the B-field behavior near saturation, as shown in

Fig. 3-34 [154].

Figure 3-34: Tosca Model compared with measurements [154]
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Both the septum and the quads result in a stray quadrupole field along the

beamline (not a dipole) [154], but this will be mitigated by magnetic shielding by

the septum beam pipe design, a preliminary drawing of which is shown in Fig.

3-35 [155].

Figure 3-35: Septum Beam Pipe (preliminary diagram) [155]

3.5.6 Spectrometers

The nuts and bolts of PREX and CREX at Jlab are shown in FIg. 3-36. The

target and septum magnet, used for the small scattering angle, are followed by

the usual HRS magnets (Q1,Q2,HRS Dipole, and Q3) which focus and guide the

beam into the spectrometer. The electrons which are detected by Vertical Drift

Chambers (VDC) and quartz integrating detectors have been demonstrated to be

largely elastic events due to the very clean separation of elastic events by the HRS

optics.

Figure 3-36: Components of PREX experimental beamline [147]

The HRS acceptance and optics are designed for the separation of elastic and

inelastic peaks. During PREX-I, the background asymmetries 𝐴𝑏𝑘
𝑖 , where i refers

to different sorts of backgrounds, and corresponding systematic uncertainty 𝜎𝐴𝑏𝑘
𝑖

on 𝐴𝑃𝑉 due to inelastically scattered electrons was negligible. The acceptance

of the first-excited states of both 12C and 208Pb in the lead-diamond target was
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very small [161]. Fig. 3-37 shows the fractional contribution 𝑓𝑖 from various

background sources, the associated correction to 𝐴𝑃𝑉 , and the systematic uncer-

tainties on that correction. Inelastic scattering systematics are negligible as well

as are elastically scattered electrons that rescattered inside the HRSs [161]. The

dominant background correction comes from the elastics scattered off 12C in the

lead-diamond target sandwich, as described in Sec. 3.5.3 [161] .

Figure 3-37: The sources of backgrounds during PREX, and the associated cor-
rection and systematic uncertainties in the parity-violating asymmetry, APV. The
dominant source of background was the elastically scattered electrons from the
carbon backing (diamond cooling foils). [161]

For PREX-II, thick diamond targets will be used, to the asymmetry correction

for 12C scattered electrons may be larger than it was for PREX-I. However the

systematic uncertainty is extremely small in either case, because the asymmetry

for elastic scattering off of 12C is extremely well known, as outlined in Sec. 3.5.3.

3.5.7 Integrating Detectors

The PREX and CREX measurements use thin quartz integrating electron de-

tectors, consisting of photomultiplier tubes (PMT) to detect Cherenkov radiation

from particles traversing the quartz [144]. They are shown in Fig.3-38.

Figure 3-38: PREX-II design for Integrating Quartz Detectors consisting of quartz
bars and a photomultiplier tube [147]
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A general description of the flux integration technique is shown if Fig. 3-39.

The detectors perform an analog integration over a helicity window of everything

that comes off the quartz and through the PMT. The thickness of the quartz is

carefully chosen to balance shower fluctuations and photon statistics to optimize

the detected asymmetry widths.

Figure 3-39: General description of the flux integration technique. Analog inte-
gration over a helicity window. PREX-I asymmetry width is shown. [147]

As shown in Fig. 3-39, PREX-I observed an asymmetry width of 170ppm (with

𝐴 0.6ppm) at a rate of 1GHz, which are the conditions that the collaboration

expects to achieve in PREX-II. The asymmetry width is determined by the rates

and associated counting statistics 𝜎𝑠𝑡𝑎𝑡 as well as the detector signal to noise ratio

𝑅𝑀𝑆/𝜇 = 𝑟𝑚𝑠/(𝑚𝑒𝑎𝑛 − 𝑝𝑒𝑑𝑒𝑠𝑡𝑎𝑙) where 𝜇 is proportional to the number of

photoelectrons produced by the detector for every event and the event rate.

The statistical width is given by counting statistics 𝜎𝑠𝑡𝑎𝑡 = 1/
√
𝑁 = 1/

√
2𝑇𝑤𝑖𝑛𝑑𝑜𝑤𝑅,

where N is the number of particles detected over a the duration of a helicity win-

dow 𝑇𝑤𝑖𝑛𝑑𝑜𝑤 at a rate R. The expansion factor (or penalty of how much larger

width gets) is given by 𝜎𝑟 =
√︀

1 + (𝑅𝑀𝑆/𝜇)2, and if there are n photoelectrons

for every event, then 𝜎𝑟 is approximately given by
√
𝑛/𝑛. The total asymmetry
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width is given by

𝜎 = 𝜎𝑠𝑡𝑎𝑡
√︀
1 + 𝜎2

𝑟 =

√︀
1 + (𝑅𝑀𝑆/𝜇)2√
2𝑇𝑤𝑖𝑛𝑑𝑜𝑤𝑅

During PREX-I, the detectors had 𝑅𝑀𝑆/𝜇 ∼ 50%, incurring a ∼ 12% penalty

on the asymmetry width. The detectors worked, achieving suitable energy reso-

lution and the new detectors for PREX-II are expected to do better. For PREX-

II, the finalized design was tested at Idaho, Stony Brook, and Mainz, and both

simulation and data benchmarked the quartz properties. The Mainz beam tests

demonstrated the PREX-II detectors have 𝑅𝑀𝑆/𝜇 ∼ 19%, incurring a mere ∼ 2%

penalty.

Figure 3-40: Mainz beam tests on PREX-II detectors [147]

In an experiment which uses this integration technique, where the detected

particles must be integrated in order to get the desired accuracy in a reasonable

time, the linearity of the linearity of the detectors, avoiding pedestal error, is of

significant importance [77].So, in PREX-II, each detector will also include an LED

system for studying system linearity [144].

In addition to quartz detectors, both PREX and CREX experiments will use

the VDC trackers. To avoid radiation damage the standard Cherenkov detectors,

calorimeters, and S2 scintillator plane should be removed [144] during the course

of the experiment.
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3.5.8 New Radiation Shielding

PREX-II Radiation Strategy: During PREX-I, control systems failures and loss

of running efficiency was caused by the radiation inside the hall [164]. Elastics from

the thick, high-Z target at low energy have a significant rate outside the dump.

For PREX-II, the beamline must be designed to mitigate the large radiation dose

and stop the PREX-I sources of radiation. The goal is to reduce the radiation

deposited in the hall by 5-10X compared to PREX-I. The plan is to use a single

collimator to stop everything that misses the dump and then shield around that

collimator [179]. Compared with PREX-I, the collimator inner diameter will be

decreased.

Figure 3-41: Origin of photons hitting a plane detector downstream of the septum
[179]

Fig. 3-41 shows the origin of photons hitting a plane downstream of the septum

for PREX-I and PREX-II simulations. G4 Monte Carlo simulations have shown

collimation and shielding strategy reduces the expected radiation load in PREX-II

to the level of previous successful experiments. For PREX-II the power distributed

into the hall down by factor of 6 [179], the integrated dose will be down an order

of magnitude from PREX-I and will not exceed optocoupler damage threshold in

sensitive areas in the Hall where electronics are located (such as under the HRS

platform).

Neutrons: While the boundary dose is sensitive to high energy neutrons (>

30 MeV), electronics are more sensitive to low energy neutrons. Fig. 3-42 shows

relative silicon damage, in units of 1 MeV neutron-equivalent (NIEL) metric, with

respect to neutron energy. This is the damage function relative to a 1MeV neutron.
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Commercial off-the-shelf electronics are typically robust up to about 1013 1MeV

neq/cm2 and optocouplers damage threshold is ∼ 1011neq/cm2 [179]. The goal for

PREX-II and CREX is to not exceed the optocoupler NIEL damage thresholds in

regions of the Hall where electronics are stored.

Figure 3-42: Neutron equivalent dose [179]

Since neutrons do a lot of elastic scattering, they behave more like a gas than a

flux of particles, and reducing the neutron radiation is challenging. For 0.1-10MeV

neutrons, Hydrogen is an effective shielding, so polyethylene is used. Shielding

high and low energy neutrons usually takes at least 0.5-1 m of concrete or poly.

There are space and weight problems with the large amount of material required

and so its challenging to design effective shielding [164].

Pivot Region Shielding: The shielding in the pivot region is conceptually shown

in Fig. 3-43b. The new tungsten collimator, described in Sec. 3.5.4, intercepts

electrons with scattering angles greater than 0.78𝑜, so that whatever gets past it,

gets to the dump [179]. It stops everything that misses the dump. The power

deposited on the 30% Cu-70% W inner cylinder is 2.1kW at 70, which will be

water-cooled. We shield around that collimator with an outer tungsten cover

(jacket), which traps EM power. So the collimator as a whole self-shields produced

neutrons. During deinstallation, there is shielded housing to enable the quick

removal of the activated hot bore which gets covered at the run completion.
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(a)
(b)

Figure 3-43: Preliminary designs that have since been modified. Here to show
general concept (a) Side view of pivot region, with vertical midplane cut, showing
location of the sky-shine shield relative to the scattering chamber and collimator
[180] (b) Top view [179] (note: ignore the tungsten block, it is no longer present
in the design))

A high-density polyethylene (HDPE) neutron shield is placed around the col-

limator region [144]. The general rule is that 20-30 cm thick HDPE is needed to

moderate neutrons. The HDPE shield as shown consists of the following compo-

nents: side curtains on either side of the collimator box, a roof above the beamline

and collimator box and below the concrete target skyshine shield, a piece above

back of collimator between housing and septum water connections, a block be-

tween the scattering chamber assembly and the collimator box, and wedges are

also inserted into the septum bore, to attenuate forward going neutrons [144] [179].

Skyshine Shielding: Site-boundary dose mostly is caused by upward going,

high-energy neutrons. For PREX, the largest source of skyshine neutrons is from

the collimator region (∼ 60%) and the target region contribute ∼ 20%. For CREX,

the largest source of skyshine neutrons is the target region (∼ 70%) and collimator

region only contributes ∼ 15% [144]. The skyshine shield is shown in Fig. 3-44.

Two concrete blocks will be used, one of which is over the collimator region to

further attenuate neutrons from the collimator region, and the other is over the

target region to attenuate neutrons from the calcium target. The concrete is 40 cm
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thick covering roughly 1.2 m x 3.3 m, weighing several tons, with a wedge cutout

to allow space for the target chamber mover. Together, the two blocks attenuate

about 55% of high energy neutron power through the hall roof for CREX, and

about 40% for PREX-II [144].

(a) (b)

Figure 3-44: (a) Perspective view of pivot region with sky-shine shielding blocks
[178] (b) Zoom in [179]

The goal for PREX and CREX is to stay under the JLab boundary dose limit:

the DOE limit is 100 mrem/yr at boundary and the JLab limit is 10 mrem/yr, to

provide a 10X safety margin. To estimate the effect of configuration changes on the

site-boundary dose, we use our G4 simulation and consider power of neutrons with

E>30 MeV. Results of simulation usually overestimate of measured site-boundary

dose rates (the RSAD calculation estimated 13mrem for combined PREX-II and

CREX with shielding, although PREX is happening in 2019 and CREX in 2020

so they count for separate years). Overestimates of site-boundary by factors of

2-3 are common. Scaling directly to measurements of site boundary dose during

PREX-I , in which 82 C on Pb target measured 1.34 mrem, the unshielded total for

PREX-II and CREX would be a manageable 5.8 mrem, and this can be shielded

to 2.7 mrem (13mrem), well within limits [179].

Dump Shielding: For the 12 GeV upgrade, to allow for a diffuser, the dump

beam line was reconfigured. The beam pipe diameter has been reduced and a 4cm

radius Al aperture (donut) was added ∼ 2𝑚 inside the dump along with with ion
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chambers to protect against beam excursions [178]. Fig. 3-45 and Fig. 3-45b show

the new dump with its reduced pipe size, a neck-down, and the donut. Fig. 3-45c

shows the radiation coming from the dump and contributing to radiation in the

hall, in particular the region where electronics are stored underneath the HRS.

While most of the problem for CREX is the donut, for PREX the neck down, the

pipe and donut all contribute to radiation underneath the HRS .

The solution is to modify the beam pipe and shield the dump. The beam

pipe will be modified so (1) the aperture(donut) can be removed and (2) increase

the hole to at least 12” diameter. For PREX-II/CREX we will most likely run

the donut completely removed. Additionally the HRS platforms must be shielded

from particles streaming from the beam interception at the neck down at the exit

of the hall. Fig. 3-45d shows the concrete dump shield. A 45 cm thick concrete

U shield is placed between the HRS arms where the middle section is stationary

while the sides are to be attached to the HRS and poured in place [178].

(a)
(b)

(c)

(d)

Figure 3-45: Beam Dump and Shielding [178]
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Summary: A summary of the NEIL dose estimates in various critical hall

locations is shown in Table 3.3 for PREX-II and CREX. The goal for PREX-II

and CREX is a level of boundary dose radiation that is only 2X times larger

than PREX-I for both experiment (∼ 2.7𝑚𝑟𝑒𝑚), an HRS NEIL dose of 25% (9%

PREX2, 16% CREX) of the PREX-I dose, and a factor of 5X-10X reduction in

radiation deposited in the hall.

PREX-II NEIL/cm2 CREX NEIL/cm2

Left HRS 1.07e-5 8.42e-7

Right HRS 1.13e-5 9.29e-7

Under Left HRS 1.02e-6 9.45e-8

Left Side HRS 7.48e-7 8.21e-8

US green wall 3.44e-7 5.46e-8

10m W 1.43e-6 8.88e-7

10m NW 1.46e-6 2.05e-7

Hall Lid (>10MeV 𝑒−’s) 6.61e-6 1.48e-7

Table 3.3: Radiation summary tables [178] at various critical locations in the Hall

3.5.9 Compton Polarimeter

Both the Møller and the Compton polarimeters demonstrated 1.3% and 1.2%

precision at low energy and we expect to do even better for upcoming PREX-II

and CREX, which require ∼ 1% polarimetry.

The Compton polarimeter acts on principles based on Compton scattering

from polarized laser light. It measures the degree of longitudinal electron beam

polarization, which is largely limited by the photocathode (but can be reduced

when there are polarization components in the transverse direction), and provides

a continuous, non-invasive beam polarization measurement concurrently with data

acquisition [85].

A diagram of the Hall A Compton is shown in Fig. 3-46. When in use, the

electron beam passes through a chicane into the interaction region, where a green

(532nm) laser has been amplified in a Fabry-Perot cavity so it reaches ∼ 2kW

power as the photon target. The electron beam crosses the photon beam at a
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small angle and some fraction of the electrons Compton scatter with the photons

in the cavity [86] 4. The scattered electrons are separated from the primary beam

and get detected along with the scattered photons. Downstream of the electron-

photon interaction region, the electron beam is bent by the last chicane, restoring

the beamline [33].

Figure 3-46: Drawing of the Compton Polarimeter. We see the four dipole chicane
diverting the beam towards the laser table. The third dipole selects the Compton
scattered electrons and allows the photons to pass through to the photon detector.
The fourth dipole then diverts the remainder of the beam towards the target. [88]

There is an asymmetry in scattering rate in the Compton interaction between

right and left helicity states scattering of right and left circularly polarized light.

This asymmetry, with well known dependent on the scattered photon energy, is

measured by the polarimeter. The electron beam polarization 𝑃𝑏 is then deter-

mined from [86]

𝐴𝑒𝑥𝑝 = 𝑃𝑏𝑃𝛾𝐴𝑡ℎ =
𝑆+ − 𝑆−

𝑆+ + 𝑆−

where 𝑃𝑏 is the polarization of the electron beam, 𝑃𝛾 is the polarization of the

photon, 𝐴𝑡ℎ is the theoretical asymmetry is Compton scattering rate for perfectly

polarized electrons and photons, 𝐴𝑒𝑥𝑝 is the measured Compton asymmetry [86],

and where 𝑆+(−) is the scattering rate flux for the right and left helicity states of

electron beam. The circular polarization state of the laser , 𝑃𝛾, is determined by

a quarter-wave plate upstream of the cavity [86] 5.
4at the nominal dipole settings and photon-electron beam crossing angle of 23.5 mrad, and

the left-right Compton asymmetry was about 1.7% [89].
5The polarization of the light is flipped between left and right circularly polarized light using

an insertable quarter wave plate. There are plans to use a Pockels cell to switch the laser
polarization so that this process can be done quickly, on a similar time scale to that of the
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The theoretical asymmetry 𝐴𝑡ℎ as a function of scattered photon energy is

well known. The asymmetry is below zero at low photon energies, there’s a zero

crossing at a nominal photon energy, and the asymmetry becomes positive for

higher photon energies [87] and increases up to the “Compton edge”, the maximum

allowable photon energy given the kinematic constraints. Higher photon energy

corresponds to greater scattering angle of the electron, so polarimetry can be

performed by measuring the scattering rate asymmetry and either measuring the

photon energy or measuring the electron scattering angle or both. So the Compton

polarimeter has detectors for both electrons and photons.

The electrons are detected by a silicon microstrip detector which measures

asymmetry as a function of position. The calculated analyzing power as a function

of energy is well known. The position of the electron in the detector is converted to

energy [33]. The low beam energy PREX experiment will be unable to detect the

asymmetry zero-crossing in the electron detector and so will rely the integrating

photon method for polarimetry [33].

Most photons in the cavity backscatter with very small angles, and the highly

collimated photons are detected by a calorimeter. Photon detector is positioned

downstream of interaction point. The response function is calibrated using the

electron detector in conjunction to infer the energy of the coincidence photons

[33]. A diagram of the photon detector concept is show in Fig 3-47.

Figure 3-47: Drawing of the Compton Photon Detector [88]

The material used for the calorimeter is a single GSO crystal (manufactured

by Hitachi Chemical, 0.5% Ce-doped Gd2SiO5, 6 cm diameter x 15 cm length

electron beam polarization flip rate, so that polarization measurements can be done separately
on the DoLP of the right-handed electron beam and the DoLP of the left-handed electron beam.
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[87]), which is acceptable when used at lower energies and has high light yield

detected by the PMT. Several LED’s are positioned at the front of the GSO are

used to monitor detector linearity. Two “finger” scintillators positioned in front of

main detector and behind tungsten “fingers” are used to center scattered photons

on detector (shown in Fig. 3-47 in red). A lead collimator serves as synchrotron

shielding with apertures of 0.5 cm - 2 cm permanently mounted in front of detector

and additional pieces of thin lead plates (of a few mm’s each) are placed in front of

detector (shown in Fig. 3-47 in blue). An additional remote-controllable Tungsten

collimator is used with aperture controllable from 1 mm to 5 cm (brown), can

also be used to center scattered photons on the detector. All these components

are mounted on detector stand and sits on a remote-controllable table with x,y

motion control.

During PREX-I, the average beam polarization measured by the Compton

polarimeter was

𝑃𝑏 = 88.20± 0.12(𝑠𝑡𝑎𝑡)± 1.04(𝑠𝑦𝑠𝑡)%

The PREX Compton polarimeter measurements were very clean for PREX-I, and

measured the beam polarization with a total systematic error of 1.1% at 1 GeV

was achieved [89] and further improvements are expected for PREX-II and CREX.

3.5.10 Møller Polarimeter

The Møller polarimeter measures longitudinal electron beam polarization based

on Møller scattering from ferromagnetic foil targets. A ferromagnetic polarized

target is used, incident polarized electrons are Møller scattered off the target,

and the double-polarization spin asymmetry measured by left-right counting rate

asymmetry is employed to infer the electron beam polarization. In contrast to

the Compton polarimeter, the Møller polarimeter is invasive and so cannot be

run continuously. Several measurements are taken over the course of the running

experiment and compared to the Compton measurements. The measured left-
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right counting rate Møller asymmetry measured by the Møller polarimeter 𝐴𝑀𝑜𝑙𝑙𝑒𝑟

is given by

𝐴𝑀𝑜𝑙𝑙𝑒𝑟 = 𝑃𝑏𝑃𝑡𝑔𝑡 cos 𝜃𝐴𝑧𝑧

where 𝑃𝑏 is the polarization of the electron beam, 𝑃𝑡𝑔𝑡 is the polarization of the

target foil, 𝐴𝑧𝑧 is the analyzing power, 𝜃 is the angle subtended by the beam on

target. The rate detected is given by [93]

𝑅± =

∫︁
𝑑𝜎0

𝑑Ω
𝑑Ω + 𝑃±

𝑏 𝑃𝑡𝑔𝑡

∫︁
𝑑𝜎±

𝑑Ω
𝑑Ω

where it is assumed 𝑃±
𝑏 = ±𝑃𝑏. The measured asymmetry is then given by

𝐴𝑀𝑜𝑙𝑙𝑒𝑟 =
𝑅+ −𝑅−

𝑅+ +𝑅− = 𝑃𝑏𝑃𝑡𝑔𝑡
⟨𝜎+⟩ − ⟨𝜎−⟩

2 ⟨𝜎0⟩
= ⟨𝐴𝑧𝑧⟩𝑃𝑏𝑃𝑡𝑔𝑡

In the standard treatment, 𝐴𝑀𝑜𝑙𝑙𝑒𝑟 is measured by comparing rates, 𝑃𝑡𝑔𝑡 is believed

to be accurately known, and 𝐴𝑧𝑧 is calculated where many corrections pile into

the calculation of this parameter [93].

A diagram of the Møller polarimeter is shown in Fig. 3-48. The Hall A

Møller polarimeter scatters longitudinally in ferromagnetic iron target foils, and

uses the left-right counting rate asymmetry to extract the beam polarization. The

quads adjust the beam focus, and the dipole bends the beam vertically out of the

scattering plane onto the detectors [92].

Figure 3-48: The Hall A Møller polarimeter scatters longitudinally polarized
electrons polarized along the beam propagation direction in ferromagnetic target
foils, and exploits the left-right counting rate asymmetry to extract the beam
polarization. The quads adjust the beam focus, and the dipole bends the beam
vertically out of the scattering plane onto the detectors [92]. Reproduced from
talk given by Don Jones.
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As shown in Fig. 3-48 b , this magnetic spectrometer focuses the scattered

electron-pair onto two separate lead-glass calorimeter detectors that detects the

electrons in coincidence [92]. A vertical steel plate at the dipole midplane, with a

hole at the center to allows the non-scattered electrons through, acts as a collima-

tor for the scattered electrons and acts as a magnetic shield for the non-scattered

electrons in the beam [92].

A new target system has been designed for PREX-II which includes a new

magnet, new target frame, 4 iron foils of various thicknesses, a rigid target rotator

assembly, as well as a frame design incorporating the potential for Kerr monitor-

ing (an in situ measure of the iron magnetization 𝑀𝐹𝑒) which is important for

preliminary R&D for the MOLLER experiment. Components of this new system

are shown in Fig. 3-49b.

(a) Moller
Foils (b) Moller magnet

Figure 3-49: New Møller Target : Four targets, in frame designed for rotation
and Kerr monitoring

During PREX-I target foil thicknesses were from 7-30 𝜇m to 1-10 𝜇m for beam

polarization measurements at currents of up to 50uA. The new target foils have

thicknesses of 1𝜇m, 4𝜇m, 12.5𝜇m, and 25𝜇m. Other improvements to the system

during PREX included introduction of a beam duty cycle in order to reduce target

heating at high beam currents, new data acquisition system (DAQ) based on

Flash ADCs (FADCs) to handle higher scattering rates and the introduction of
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segmented detectors to handle higher scattering rates [90] [91]. During PREX-I,

the Møller polarimeter used a high-field magnet that provided a magnetic field

of up to 4 T, although only 3 T was used during PREX-I.[90]. The upgraded

Møller polarimeter should also achieve high fields during PREX-II, where the

electrons in the ferromagnetic target foil are nearly 100% polarized, and the foil

magnetization is near saturated. As shown in Fig. 3-50, when the iron is in

saturation, uncertainty in the applied magnetic field has a less significant effect

in the uncertainty on the degree of magnetization of the iron. So, the target

polarization should be determined with much greater precision near saturation at

3-4T than for lower field targets. During PREX-I, the target foil polarization was

inferred with an uncertainty of 0.25% [90] and this should be further reduced in

PREX-II.

Figure 3-50: Magnetization of pure iron as a function of applied magnetic field.
Reproduced from [93]

Several systematic uncertainties that contribute to this measurement include:

the magnetization of iron at near saturation, spin vs. orbital component of the

magnetization, target foil angle with respect to the holding field, the spectrometer

tune and magnet currents, the analyzing power averaged over the acceptance, the

Levchuk effect, demagnetization from target heating, background contributions to

rate, electronic deadtime corrections, radiative corrections, deviation from perfect

polarization reversal, and effects from transverse polarization. In PREX-I , the
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dominant error in the polarization measurement was a systematic of 1.7%, with

this uncertainty dominated by the target foil polarization uncertainty of 1.5% [92].

The new Møller polarimeter will eventually allow in situ Kerr measurements to

nail down more precisely this foil polarization uncertainty, as well a the study of

possible systematic effects, in data and simulation (such as the Levchuck effect

etc.) [93].

Figure 3-51: Hall A beam polarization 2015-2016 as measured by Møller po-
larimeter before upgrade [95]

New data collected in 2015-2016 run period shows 0.4% statistical uncertainty

in measurements taken in reasonable amount of time (a few hours). During PREX-

I, the Møller polarimeter made nine measurements of the beam polarization the

average of which was

𝑃𝑏 = 90.32± 0.07(𝑠𝑡𝑎𝑡)± 1.12(𝑠𝑦𝑠𝑡)%

The precision of the polarization measurement for PREX-II is expected to be <1%

level (both systematic and statistical) given the many improvements to the new

Møller target system.
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3.5.11 HCBA

As previously stated in Sec. 2.3.7, since this measurement compares electrons

of opposite helicity and looks for changes in scattering rates, any change in the

polarized beam correlated with the helicity reversal, including energy changes,

position changes, or position changes, can be a potential source for systematic

error, or a false asymmetry. These false asymmetries are described by Eq. 2.4,

reiterated here for convenience:

𝐴𝑟𝑎𝑤 = 𝐴𝑑𝑒𝑡 − 𝐴𝑄 + 𝛼Δ𝐸 +
∑︁

𝛽𝑖Δ𝑥𝑖

where 𝐴𝑟𝑎𝑤 is the beam current normalized detector asymmetry, 𝐴𝑄 is the beam

charge asymmetry, Δ𝐸 is the helicity correlated energy difference, Δ𝑥𝑖 are the

helicity correlated position differences, and 𝛼, 𝛽𝑖 are the coupling constants, both

calculated and measured through cross correlations and linear regression in data

analysis.

In PREX-I, beam asymmetries contributed 1.1% to the measured asymme-

try 𝐴𝑃𝑉 (
208𝑃𝑏) ∼ 0.6ppm, or less than 7ppb. Experience suggests that lead-

ing systematic errors can be improved beyond that in PREX-II. For CREX,

beam asymmetries must contribute less then 0.3% to the measured asymmetry

𝐴𝑃𝑉 (
48𝐶𝑎) ∼ 2.3ppm, or less than 70ppb. PREX-II expects helicity correlated

changes in the beam of less than 7ppb. To achieve such a small systematic er-

ror goal, the beam trajectory must remain unchanged with respect to to the sign

of the electron beam polarization at the nm and nrad level. The beam posi-

tion differences in the injector before acceleration must also be small, ∼ 300nm.

The helicity correlated laser spot size asymmetries must be small too on the order

∼ 10−4. Achieving these goals all depends on the laser and on the Pockels cell. An

intensity asymmetry in the electron beam can arise from a polarization asymmetry

in the laser beam when incident on a polarizing element such as the photocathode.

A position difference in the electron beam can arise from a polarization gradient
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in the pockels cell, a 1st moment effect producing a shift in central laser beam

position. A spot size asymmetry can arise from a 2nd moment in polarization

gradient, which can broaden or narrow the beam distribution.

The position differences in the injector during PREX-I are shown in Fig. 3-52.

Position differences in the injector were ∼ 200−300nm. In the experimental Hall,

position differences were observed to be ∼ 30− 100nm, approximately 60nm over-

all, implying adiabatic damping of 3X-10X, compared with the predicted damping

factor given by
√︀
𝑝/𝑝0 =

√︀
1𝐺𝑒𝑉/130𝑘𝑒𝑉 = 87𝑋 as defined from the 130keV re-

gion and
√︀

1𝐺𝑒𝑉/5𝑀𝑒𝑉 = 14𝑋 as defined from the 5MeV region. The cumulative

average position differences in the Hall during PREX-I was <5nm, much smaller

due to cancellations as a consequence of the slow helicity reversal [163].

PREX-II expects to achieve even smaller position differences in the injector,

possibly at the sub-100nm Qweak level (Fig. 3-53), which given similar adia-

batic damping, will produces smaller position differences in the Hall and therefore

smaller beam systematics after slow reversal cancellations.

Figure 3-52: Injector position differences during PREX-I [162]
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Figure 3-53: Qweak: Horizontal position differences on successive injector BPMs.
The purple band corresponds to ±50nm of position differences [56] by the Qweak
definition Δ𝑥𝑞𝑤𝑒𝑎𝑘 = (𝑥0−𝑥1)/2 which corresponds to ±100nm by the PREX and
HAPPEX definition which we use in this thesis Δ𝑥 = 𝑥0 − 𝑥1

3.6 PREX-II Summary of Goals

The systematic and statistical error goals for PREX-II and CREX are shown

in Fig. 3-54 as well as those achieved in PREX-I.

Figure 3-54: PREX error tables: PREX-I was a statistics limited result, with
most systematics well under control. *Experience suggests that leading systematic
errors such as beam asymmetries can be improved further [147]

PREX-I did not achieve its statistical precision goal of 3% due to equipment

failure as a result of high radiation [171], but the systematics were well under

control. Though experience suggests, beam systematics could be controlled even

better than they were during PREX-I. And PREX-II expects to achieve a factor

of 3 improvement on the neutron skin thickness uncertainty. [147]

Despite the statistical uncertainty, PREX-I made the first measurement of the

parity-violating asymmetry, APV, in the elastic scattering of polarized electrons
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from 208Pb and provided the first electroweak evidence the the weak charge density

is more extended than the electric charge density. It showed there is indeed a weak

skin around a heavy nucleus. PREX-I measured an asymmetry of 0.6ppm, and

inferred a neutron skin thickness, a difference between the neutron and proton

distribution radii in the 208Pb nucleus, of 𝑅𝑛 − 𝑅𝑝 = 0.33+0.16
−0.18fm. Interestingly,

current PREX central value not consistent with measured neutron star properties

and existing models (though it is within sigma). Measurement of this quantity

has inspired significant interest from the community. PREX informs neutron star

size vs. mass curves and the gravitational waveform is sensitive to the nuclear

EOS for neutron stars. PREX-II and CREX will have impact on nuclear physics

and astrophysics, including LIGO.
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Chapter 4

Mainz 12C Transverse Asymmetry

Analysis

This chapter presents the results of the Mainz measurement of the beam-normal

single spin asymmetry for elastic scattering off 12C at various 𝑄2 as presented in

[208]. The data analysis was performed by the A1 collaboration at Mainz and we

present here a cross-check of that analysis.

4.1 Motivation

Measurements of the transverse asymmetry 𝐴𝑛 = (𝜎↑−𝜎↓)/(𝜎↑+𝜎↓) presents a

useful theoretical challenge for the description of elastic 𝑒𝑝 scattering. The trans-

verse asymmetry in 208Pb is important for PREX because the parity-violating

asymmetry 𝐴𝑃𝑉 = (𝜎+−𝜎−)/(𝜎++𝜎−) in elastic electron scattering has a system-

atic uncertainty which comes from a non-zero transverse component of the beam

polarization. The transverse asymmetry is defined by 𝐴𝑛 = (𝜎↑ − 𝜎↓)/(𝜎↑ + 𝜎↓),

where 𝜎↑(↓) is the elastic scattering cross-section for electrons with spin 𝑃𝑒 par-

allel (or antiparallel) to the normal vector defined by the scattering plane �̂� =

(�⃗� × 𝑘′)/|⃗𝑘 × 𝑘′|, where �⃗� and 𝑘′ correspond to the the incident and scattered

electron momenta [208].
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𝐴𝑛 can contribute to the extracted 𝐴𝑃𝑉 if the electron beam polarization has

a transverse component. In precision scattering experiments like PREX, the con-

tributed false measured asymmetry 𝐴𝑚
𝑛 relates to the transverse asymmetry via

𝐴𝑚
𝑛 = 𝐴𝑛𝑃𝑒 · 𝑘 [209].

For light nuclei, like 1𝐻,4𝐻𝑒 and 12C, this false asymmetry can be accounted

for by contributions from two-photon exchange processes in e- scattering. The

interference of the one-photon and two-photon exchange amplitudes gives rise to

the transverse asymmetry 𝐴𝑛. Calculations [211] [210] of 𝐴𝑛 in a two-photon

exchange approximation, but including a full range of intermediate excited states,

predict that 𝐴𝑛 scales roughly as the ratio A/Z, and is not strongly Z-dependent.

These theoretical calculations for light nuclei at low 𝑄2 are found to be in good

agreement with data (Fig. 4-1 ).

Figure 4-1: Extracted physics asymmetries 𝐴𝑛 vs. Q [209]. Each curve, specific
to a particular nucleus as indicated, is a theoretical calculation from Ref. [210].

However, for heavy nuclei, like 208Pb,48𝐶𝑎 the accounting for the transverse

asymmetry remains a challenge. The two-photon exchange calculations, which

account for dispersion corrections but neglect Coulomb distortions, fail for the

heavier 208Pb nucleus, as measured during the PREX-I experiment [209]. Ad-
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ditional calculations [212] for Coulomb distortion effects that work to all orders

in photon exchanges by numerically solving the Dirac equation, albeit for only

the elastic intermediate state, predict small contributions to 𝐴𝑛 which increase

strongly with Z. Understanding the 𝑄2 dependence and the energy dependence is

also important since the weight of dispersion corrections varies with the incident

beam energy. Hence, the measurement of 𝐴𝑛 in scattering off heavy nuclei, for a

range of Z at various beam energies, might lead to new insights into the structure

of heavy nuclei and might also help with systematic errors on measurements of

the 𝐴𝑃𝑉 in precision experiments such as PREXII [209].

To inform theoretical calculations, an experiment has been performed at MAMI

on 12C at various 𝑄2 at constant 570MeV beam energy. Similar experiments for

heavier nuclei, such as Calcium, Lead or Tin have also been considered, but have

not been attempted with this apparatus.

4.2 Experimental Setup

Figure 4-2: Mainz A1 Collaboration Hall Spectrometer [213], SpekA is beam left
and SpekB is beam right
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The experiment for the measurement of the beam-normal single spin asym-

metry 𝐴𝑛 in elastic 𝑒− 12C scattering was performed at the the Mainz Microtron

MAMI with the spectrometer setup of the A1 Collaboration.

A 20𝜇𝐴 vertically polarized continuous-wave (CW) e-beam was scattered off a

2.27𝑔/𝑐𝑚2 carbon target and elastics were focused onto two fused-silica detectors,

one on beam left(SpekA) and one on beam right(SpekB), in the focal planes of

the high-resolution spectrometers (HRS) [222].

Several 𝑄2 measurements were performed at the same beam energy of 570MeV

by changing the spectrometer angles: spectrometer A(left) was placed an angle

of 23.5𝑜 (𝑄2 = 0.04𝐺𝑒𝑉 2/𝑐2) and also at 25.90𝑜 (𝑄2 = 0.05𝐺𝑒𝑉 2/𝑐2); spectrom-

eter B (right) was placed at angles 20.61𝑜(𝑄2 = 0.04𝐺𝑒𝑉 2/𝑐2), 17.65𝑜 (𝑄2 =

0.03𝐺𝑒𝑉 2/𝑐2), and 15.11𝑜 (𝑄2 = 0.02𝐺𝑒𝑉 2/𝑐2), where the calculated momentum

transfer takes into account the differing sizes of focal plane acceptance for the

detectors in spekA and spekB.

4.3 Inversions

MAMI, a normal-conducting CW (continuous-wave) electron accelerator, con-

sists of a three race-track microtrons and a harmonic double-sided microtron. A

source of longitudinally polarized electrons is produced with circularly polarized

light incident on a GaAs/GaAsP photocathode [216] [217]. MAMI did not nor-

mally provide vertical e-beam polarization in its conventional operation, which

ordinarily produces longitudinal e-beam polarization, so modifications to the ex-

isting accelerator were made in order to perform these transverse asymmetry ex-

periments with vertically polarized beam for the first time. [215]. To obtain

vertical polarization, the electrons emitted off the cathode with longitudinal po-

larization first pass through a Wien filter in the 100keV region of the injector linac,

which rotates the polarization vector by 90𝑜 horizontally. Then a double solenoid,

located shortly after the Wien, rotates the polarization vector into the vertical
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orientation (Fig.4-3).

Figure 4-3: Obtaining vertical polarization: Electrons emitted off cathode with
longitudinal polarization. Wien filter rotates the polarization vector by 90𝑜 hor-
izontally. Double solenoid field rotates the polarization vector into the vertical
orientation. [215]

Both fast polarization flips and slow polarization reversal are employed in the

process of measuring the helicity correlated asymmetry in the electron scattering

off the Carbon target. A slow reversal is performed by inserting a 𝜆/2 plate (know

as GVZ) in the laser path before the photocathode, reversing the polarization

relative to the helicity signal. This allows for cancellation of possible false asym-

metries and suppression of systematic effects, such as position differences. One

fast polarization reversal is induced by alternating the polarity of the high voltage

of a Pockels cell in the circularly polarized laser source which in turn alternates

the orientation of the electron beam polarization vector up and down at 25Hz, cre-

ating windows of fixed polarization, 20ms in duration to cancel 50Hz line pickup.

Another fast reversal is the choice of helicity pattern. A gate generator reversed

helicity in pseudo-random quartet patterns ↑↓↓↑ and ↓↑↑↓ .

A final “reversal” was performed in the detection of the scattered electrons

for one of the 𝑄2 configurations. This “reversal” was a flipping of the �̂� direc-

tion, the normal vector defined by the scattering plane. The left(SpekA) and

right(SpekB) spectrometers were respectively set to angles corresponding to the

same 𝑄2 = 0.04𝐺𝑒𝑉 2/𝑐2 at 570MeV, but due to their scattering directions 𝑘′

being of opposite sign, the normal vector defined by the scattering plane �̂� is

reversed and the transverse asymmetries 𝐴𝑛 obtained with the left and right de-

tector systems were of opposite sign. In this configuration, SpekA was placed at
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23.5𝑜 and SpekB was placed at 20.61𝑜. Due to the smaller acceptance of SpekB,

the two spectrometers covered same range of momenta and accepted the same

average 𝑄2. This symmetric measurement allowed for detection of potential false

asymmetries due to polarization correlated beam asymmetries. The 𝐴𝑛 results for

𝑄2 = 0.04𝐺𝑒𝑉 2/𝑐2 for SpekA and SpekB and were found to be consistent with

one another.

4.3.1 Absolute Sign

Figure 4-4: Necessary vectors to define the absolute sign [203]. Note 𝑝 and �⃗� are
depicted in the same direction for simplicity, but this is not the general case.

To define the beam-normal asymmetry, the vectors as shown in Fig.4-4 must

be defined. �⃗� is the vector of the incident electron, 𝑘′ is the scattered electron,

�̂� = |⃗𝑘×𝑘′| is the normal to the scattering plane and 𝑝 the polarization direction of

the incident electron. The transverse spin dependent cross section can be written

𝜎 = 𝜎0(1 + 𝐴𝑛𝑝× �̂�)

with 𝐴𝑛 being the transverse analyzing power. SpekA and SpekB have acceptance

in the horizontal plane with SpekA on beam left and SpekB on beam right. The

detector asymmetries are defined as:

𝐴𝑆𝑝𝑒𝑘𝐴
𝑛 =

𝜎+ − 𝜎−

𝜎+ + 𝜎− = 𝐴𝑛 (4.1)
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𝐴𝑆𝑝𝑒𝑘𝐵
𝑛 =

𝜎− − 𝜎+

𝜎− + 𝜎+
= 𝐴𝑛 (4.2)

where 𝜎+(−) refers to the vertical polarization of the beam being vertical up (down),

𝜎+ = 𝑝 ↑↑ �⃗� , 𝜎− = 𝑝 ↑↓ �⃗�

4.4 Detectors

Figure 4-5: Detectors SpekA (left) and SpekB (right) [203]

Figure 4-6: Spectrometer B [222]
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The detectors consisted of fused-silica bars which produced Cherenkov light

detected by fused silica window photomultipliers attached to the bars. The size of

the fused-silica bars was 30x7x1 cm3 for SpekA and 10x7x1 cm3 for SpekB (Fig.

4-5), due to the differing focal plane geometries of the left and right spectrometers

[203]. Five 25mm fused silica-window photomultipliers were directly attached to

the fused-silica bars in SpekA and three in SpekB. The detectors were oriented at

45𝑜 with respect to the scattered electrons in the spectrometers.

The Cherenkov detector position was aligned to the elastic line by tuning

the magnetic field. For calibration, the detectors were readout in coincidence

with vertical drift-chambers (VDCs) (Fig. 4-5). The excitation energy spectrum

(Fig.4-7) measured in this calibration mode shows separation between elastics and

inelastics from the first 4.4MeV excited state.

Figure 4-7: The excitation energy spectrum: the acceptance of the spectrometer
(black line) and of the Cherenkov detector only (blue area)

After the detector position was aligned, the high voltages were adjusted in

order to obtain useful signals during experimental readout. The triggered readout

(counting-mode) differed from the experimental readout (integrating mode) in sev-

eral ways (1) in counting-mode the PMT signals are only readout when triggered,

while in integrating-mode the current from PMT was integrated during the entire

20ms helicity window (2) the current was low (50nA) in counting mode (3) the
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amplification of the PMTs was reduced in integrating-mode to avoid non-linear

response to rate or pulse height.

4.5 DAQ and Gate Length

A gate generator provided 20ms measurement periods where the polarization

was reversed in pseudo-random quartet patterns ↑↓↓↑ and ↓↑↑↓ . The detector

channels and beam monitoring channels were read out with parts of the former

A4 experiment data acquisition system [218]. The signals were integrated during

the 20ms integration windows by gated integrators and digitized by 16-bit ADCs.

The precise window length was synched to the power grid frequency of 50 Hz

at Mainz by a phase locked loop (PLL). As the power grid frequency can vary

by ±0.150𝐻𝑧(±0.3%) [219] , so can the integration window and signal acquired

vary. Both the grid frequency and the gate length were continuously measured

by the frequency being counted by a micro-controller and by a constant current

signal input to an integrating DAQ channel, respectively [218]. Initially, in data

acquisition, the gate length was calibrated by changing the scale value to set the

mean of the gate length histogram to approximately 20ms. The gate length was

measured for each helicity for normalization.

In addition to gate length, there is also a gate generator delay, a time period

in-between each measurement window where the high voltage of the Pockels cell

is changed and an transition between polarization states is allowed to occur while

data is not being recorded. For this short transition period (80 𝜇𝑠 during the

A4 experiment [218]), the polarization of the beam is changing and the the beam

intensity increases or decreases drastically. In the data from 2015 and 2016, there

was a fault in the control software, the order in which the VME-commands were

issued, which did not set the delay of the gate generator correctly. The issue was

resolved by the beginning of 2017. Asymmetries on the order of several tens of

ppm were observed between identical helicity states which differed only in that
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one went through a transition and the other did not. This was a symptom the

intensity variation in the transition was not entirely cut out by the gate delay [220]

(it is also a symptom of the well known 4 peak effect Sec.6.4.4). However, even

though every polarity flip suffered false beam asymmetry, it should be cancelled by

the pseudo random helicity pattern (to the extent that the effect matched between

helicity states).

The beam monitor signals corresponding to the current, energy, and beam

position are also recorded by the A4 data acquisition system

4.6 Monitors

4.6.1 Current Monitor: PIMO

The current is measured by a beam phase and intensity monitor (PIMO).

A PIMO consists of an RF resonator which the beam excites, producing RF-

monitor signals which demodulated by a mixer with a reference RF-signal. The

demodulated single input signal has two outputs, one related to beam current and

the other related to phase as follows [221]:

𝑈𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑈0,𝑖𝑛𝑡. sin (𝜑+ 𝜑𝑟𝑒𝑓,𝑖𝑛𝑡.)

𝑈𝑝ℎ𝑎𝑠𝑒 = 𝑈0,𝑝ℎ. sin (𝜑+ 𝜑𝑟𝑒𝑓,𝑝ℎ.)

where 𝑈0,𝑝ℎ. and 𝑈0,𝑖𝑛𝑡. depend linearly on the beam current [203] and 𝜑 is the

phase relative to the reference phase 𝜑𝑟𝑒𝑓 . The phase difference 𝜑𝑟𝑒𝑓,𝑖𝑛𝑡. − 𝜑𝑟𝑒𝑓,𝑝ℎ.

is chosen to be ±90𝑜 to make the signals independent. The beam phase and

intensity can then be extracted from 𝑈𝑝ℎ𝑎𝑠𝑒 and 𝑈𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 . Since the PIMO is

sensitive to the phase as well as the intensity or a superposition of both, MAMI

adjusts the PIMO-phase 𝜑𝑟𝑒𝑓,𝑖𝑛𝑡 is adjusted in an initial calibration step, so the

PIMO measures primarily the intensity [203].
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For the 12C transverse asymmetry measurement, two PIMOs were used:: PIMO13

and PIMO21 between the Møller polarimeter and target [203]. PIMO21 was used

as the main beam current monitor in the experiment since it was considered to

give the correct value for the current on the target, whereas PIMO13 might not

give as accurate a value on target due to losses in the accelerator.

The intensity monitors are used for the beam stabilization (see Sec.4.6.4).

PIMO 21 is used to normalize the monitors and detectors and to correct the

asymmetry of the beam current in data analysis.

4.6.2 ENMO

Deviation in the electron beam energy is measured with an energy monitor

called ENMO. The energy change is determined through a time-of-flight measure-

ment. It is measured with two high-frequency cavities and phase monitors placed

before and after a dipole magnet. The time of travel (or phase deviation) be-

tween both cavities is related to the electron energy. A master oscillator provides

the reference frequency which then is mixed with each PIMO signal, outputting

a phase deviation signal which is linear with the beam current. If both PIMOs

which make up the ENMO are used in their linear range, the ENMO-signal should

scale with the square of the current.

In theory, each of the two PIMO signals should be linear with beam current

and the ENMO signal should be quadratic with the beam current [223]. However,

during the experimental running, the ENMO signal was not quadratic with beam

current, it was observed to be linear with beam current. Probably, the high-

frequency electronics of one of the PIMOs used in the ENMO was operated in

saturation mode, such that it provided a reference high-frequency signal phase

without current dependence.Then it was mixed with the other current dependent

signal and so only linear behavior was observed [220].
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4.6.3 XYMO

The beam position monitors, known as XYMOs, operate by mixing a master

oscillator reference frequency with the beam-induced RF XYMO signal which is

proportional both to the beam current and the beam position. In the A4 ex-

perimental halls, there are two beam position monitors used for this experiment:

XYMO21 and XYMO26, placed at 8.28 m and 0.78 m before the target respec-

tively. The XYMO signals are integrated in the A4 DAQ. These two XYMO

measurements are normalized to PIMO21, then converted into position and angle

measurements for each integration window.

4.6.4 Stabilization

Four stabilization systems at MAMI were dedicated to minimizing both beam

fluctuations and, by extension, helicity-correlated beam-fluctuations: beam cur-

rent stabilization, beam energy stabilization, slow position (DC), and fast position

(AC) stabilization. Fig. 4-8 illustrates an example of the effect that beam current

stabilization had on the charge asymmetry [208]

The beam parameters were measured by several monitors in the A1 beamline.

PIMOs, intensity and phase monitors, were used for the beam current stabilization.

Deviations were corrected at the source with the master oscillator of the laser diode

[207]. The ENMO measurement was employed for beam energy stabilization. The

energy correction resulted in polarization correlated differences of <10 eV, keeping

energy induced false asymmetries under control [207] [203]. XYMOs were used for

beam position stabilization. All position jitter was suppressed via feedback. This

feedback also reduces any polarization correlated beam position differences [207].



4.7. CALIBRATIONS AND OPTIMIZATIONS 141

Figure 4-8: Top: Charge asymmetry observed with beam stabilization off(red)
and with beam stabilization on (black). Bottom: A run without beam stabilization
off showing raw asymmetry as measured by one PMT of the Cherenkov detector
in spectrometer B vs. the charge asymmetry as measurement by the beam current
monitor PIMO

4.7 Calibrations and Optimizations

4.7.1 Rotating 𝜆/2 plate

In the optical system of the MAMI source, in the region of the Pockels cell,

there are two 𝜆/2 wave-plates: an insertable waveplate (GVZ/general sign changer
1) and a rotatable waveplate.

The second 𝜆/2-plate is mounted such that it can be rotated around the laser

beam axis by a motor. This rotating half-wave-plate is used to rotate residual

linear polarization components and control the helicity correlated charge asym-

metry in the electron beam current [203]. The procedure for setting the angle

of this rotating 𝜆/2-plate is referred to as the “Lambda Rotation”. The Lambda

Rotation procedure is as follows:

1. Insert or remove the GVZ (as required)

2. Set the Pimo-Phase
1Possible German translation is allGemeines Zeichen Verandern
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3. Reduce the PIMO beam current asymmetry by rotating the lambda half

plate by several degrees. Let the operator set an angle, then measure for

3 minutes, check the current asymmetry and iterate different angles until

the asymmetry is smaller in magnitude than ∼2 ppm (this measurement is

always performed with the current stabilization activated) [220].

After this rotating waveplate angle is set, a current calibration is performed.

4.7.2 Current calibration

Several devices along the beam line measure the beam current: PIMO intensity

monitors and the Foerster probe. The intensity monitors do not measure absolute

values and must be calibrated with the additional Foerster probe 2, a monitor

which is “claimed” to readback 1% absolute precision on beam current at 0.1Hz

bandwidth [207]. During the experiment, PIMO21 was calibrated with the Foer-

ster probe in current calibration runs which varied the beam current at several

fixed levels near 20𝜇𝐴, the running current. The Foerster probe is readout using

an analog-to-frequency-converter such that it emits 10 counts/s per 𝜇𝐴. With the

accelerator using 4 recirculations in the RTM3, for example, the Foerster measures

4 times the actual current [220]. To convert the Foerster data(given in units of

counts/sec) to current, the following conversion is performed:

Current[nA] = counts[Foerster] * 100/MamiTurns

where the MamiTurns for the different energies are: 210MeV:4turns, 315MeV:18turns,

420MeV:32 turns, 570MeV:52 turns.

Current calibration runs are also used in the calibration of the PMTs, the

ENMO, and the XYMOs. The assumption of linearity with beam current is used

to obtain pedestals for the PMTs, ENMO and XYMOs. During experimental
2This probe is named after someone called Foerster
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running, current calibration runs over the full beam current range as well as in a

narrow region around 20𝜇𝐴 were performed regularly to monitor the functioning

of the PMTs.

4.7.3 Energy calibration

The energy in each run is calculated using ENMO and current monitor data,

information from current calibration runs, ENMO runs, and the assumption of a

particular model relating ENMO response to energy and current. To understand

the energy calibration, it is important to note a couple of observations regarding

the ENMOs. The ENMOs do not measure absolute energy. It is a TOF type

of measurement where the energy is determined using two high frequency cavities

placed before and after a dipole magnet and the time necessary for the electrons to

pass through the dipole is assessed [207]. At a given current and at a given beam

energy, the ENMO phase is set, so that the ENMO reading is near 0. Deviations

from this nominal TOF are what gets measured. So, the ENMO is only sensitive

to energy fluctuations. Furthermore, while the magnitude of the ENMO is fixed,

the sign of the ENMO in not fixed, since the MAMI operator rotates the phase of

the ENMO in an arbitrary direction after the calibration [203].

Furthermore, the linearity of the raw ENMO signal with respect to current

observed in the 2017 data set is not normal, in principle it should be quadratic

with beam current. The linearity of the raw ENMO signal may potentially the

result of one PIMO being saturated, though this explanation is questionable. How-

ever, the calibrations performed for the ENMO during this experiment stipulate

the observed linearity with beam current and the data analysis was performed

accounting for that functional form.

By modulating the energy by a known value, at a known current, the ENMO

calibration can be performed for that particular current. The ENMO calibration

is performed at a particular current, in this case 20𝜇𝐴. The helicity signal is sent
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to MAMI causing a polarization correlated modulation of the signal by ± 11.3

keV. The difference of the raw ENMO readout in two helicity states at 20𝜇𝐴 is

shown in 4-9 for such a calibration.

The current calibration runs were used to find the PIMO pedestal and the

energy calibration runs were used to find the scale factor in the equation

𝐸𝑟 = 𝐼1(𝐸 − 𝐸0)/scale𝐸 + ped𝐸

𝐸 = (𝐸𝑟 − ped𝐸) * scale𝐸/𝐼1 + 𝐸0

where Er is the raw output from the ENMO and 𝐼1 is the current obtained from

PIMO21. The parameter ped𝐸 can be understood as the value the ENMO would

read when the current is 0 if the signal was linear with current. The parameters of

this equation are found from the current calibration runs and ENMO runs, with

the exception of 𝐸0. ENMO is differential phase monitor, nominally set to 0 at

some running energy 𝐸0. 𝐸0 is nominal energy which gives no signal in the ENMO.

As such, 𝐸0 is not accessible via ENMO calibration runs or current calibration

runs. For simplicity, we set 𝐸0 = 0 in analysis, though in principle it should be

somewhere near 570MeV.

The ENMO calibration runs are used to find scale𝐸 in the equation 𝐸 =

(𝐸𝑟 − ped𝐸) * scale𝐸/𝐼1 by inducing small helicity correlated energy changes of

11.3keV around a central energy at a particular current 𝑑𝐸 = 𝑑𝐸𝑟 * scale𝐸/𝐼1. To

analyze the ENMO runs, we first apply the offset found in the current calibration

run without normalizing to I1, treat scale𝐸 as 1, examine dE (which is effectively

dEr), then set scale𝐸 such that dE will equal 2 * 11.3keV for a given mean value

of I1.

As an example, here we show the 20uA ENMO run at 210MeV where have not

normalized E to current in analysis 𝐸 = (𝐸𝑟 − ped𝐸).
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Figure 4-9: ENMO run 04-10-17-44-42 at 210MeV where E has been current nor-
malized 𝐸 = (𝐸𝑟 − ped𝐸)/𝐼1

Here we show the 20uA ENMO run at 210MeV where we’ve normalized E to

current in analysis 𝐸 = (𝐸𝑟 − ped𝐸)/𝐼1.
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Figure 4-10: ENMO run 04-10-17-44-42 at 210MeV where E has been current
normalized 𝐸 = (𝐸𝑟 − ped𝐸)/𝐼1

A difference in energy is used to calibrate how Δ𝐸𝑟 , normalized to current,

is proportional Δ𝐸, and the ENMO calibration runs are performed with this

assumption. In general 𝐸𝑟 = 𝑓(𝐸, 𝐼), 𝑑𝐸𝑟
𝑑𝐸

= 𝜕𝐸𝑟
𝜕𝐼

𝑑𝐼
𝑑𝐸

+ 𝜕𝐸𝑟
𝜕𝐸

, for small changes

Δ𝐸𝑟 = 𝑑𝐸𝑟
𝑑𝐸

Δ𝐸, we define 𝛽 as Δ𝐸𝑟 = 𝛽Δ𝐸. And all you obtain from and

ENMO calibration run is the scale factor. With the available information you

can’t turn an ENMO signal into an actual energy, only assess deviations from

some nominal energy value. Furthermore, you can’t correct for helicity correlated
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energy deviations because the sign of the energy signal is not known, since the

MAMI operator rotates the phase of the ENMO in an arbitrary direction after the

calibration [203].

4.7.4 XYMO calibration

The A1 Collaboration performed an XYMO calibration procedure. We men-

tion it here because the result is used analysis to bound the systematic uncertainty

arising from beam position differences.

In the XYMO, a master oscillator provides the reference frequency which then

is mixed with the XYMO signal, which is proportional to the beam current. So the

XYMO calibration is performed in conjunction with a current calibration. First

proper pedestals are obtain for the raw XYMO signals with a current calibration

run. Then for the XYMO calibration, a wire target is used (or a carbon strip

target as of 2016). The carbon strip target consists of 3 strips of thickness 𝑑 =

0.5125±0.0015𝑚𝑚 spaced equidistantly [203]. The target is used in either vertical

and horizontal orientation. The beam position is rastered slowly over the target

while data is acquired. The signal in the PMT detectors is plotted with respect to

the measured beam offset and a triple gaussian fit is performed for the calibration

as shown in Fig. 4-11 .

Figure 4-11: Raw detector B1 value vs. raw XYMO value. The three minima
correspond to the beam positions in the XYMO where the carbon plates are hit
[203]



4.7. CALIBRATIONS AND OPTIMIZATIONS 147

For the XYMO calibration, the geometry of the beamline components [220]

(and the setting of some quadrupoles can also be important)

Figure 4-12: Distances between the beam line components necessary to to perform
XYMO calibrations [203]

The target positions and angles are then calculated from the beam position in

the XYMOs as follows [203]:

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑋26−𝑋21)×𝑋𝑦𝑚𝑜𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑌 26− 𝑌 21)×𝑋𝑦𝑚𝑜𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑋 = 𝑋26 + tan(𝜃)×𝑋𝑦𝑚𝑜𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑌 = 𝑋26 + tan(𝜑)×𝑋𝑦𝑚𝑜𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

where the distances are obtained from Fig. 4-12.

Coordinate System

The coordinate system of the Hall as follows for XYMOs 21, 25 and 26[203]:

∙ The XYMOs are positive in X, if the beam is shifted to the left when looking

along the beam direction.

∙ The XYMOs are positive in Y, if the beam is shifted downwards.

∙ The 𝜃 angle is defined on the horizontal plane between the nominal and
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the actual beam direction with positive values, when the horizontal beam

inclination points towards SpekA (to the left)

∙ The 𝜑 angle is defined on the vertical plane on which the nominal beam line

lies, with positive values, when the beam inclination points downwards.

4.7.5 Polarization

The electron beam polarization measurement [215] is very important for this

experiment. Uncertainty in the determination of polarization is the one largest

contributors to the systematic error. The degree of polarization and it’s orien-

tation were measured using a combination of Mott and Compton polarimeters

downstream of the injector and a Møller polarimeter in the hall [207]. This mea-

surement differs from the typical polarimetry measurements in that the beam is

vertically polarized instead of longitudinally polarized, so several measurements

must be performed. Firstly, the total beam polarization was measured with the

beam polarization oriented longitudinally in the experimental hall using the Møller

polarimeter [215]. Then the polarization vector was rotated in the vertical direc-

tion and the Møller polarimeter measured the residual component of longitudinal

polarization. Møller measurements were performed fairly regularly throughout the

run period.

The degree of the vertical polarization was deduced by subtracting the residual

longitudinal and horizontal polarization components from the total polarization

[207] and was on average 𝑃𝑒 = 82.7± 0.3%(𝑠𝑡𝑎𝑡.)± 1.1%(𝑠𝑦𝑠𝑡.) [208].

A few aspects distinguish this experiment from one with longitudinal polariza-

tion. For one, the the Møller split-coil magnet focuses the beam as well as rotating

the transverse polarization by ∼ 20𝑜. So, the magnet must be ramped down after

each Møller measurement and the downstream quadrupoles are readjusted. An-

other differing aspect is that the effective polarization depends on Φ0, the angle

of the scattered electron rotation around the beam axis. If the beam is scattered
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horizontally, the vertical polarization is perpendicular to the scattering plane, but

when the plane is tilted by an angle Φ0, the projection of the polarization on the

normal of the scattering plane is reduced. The effective polarization must be re-

duced by this factor, which is on the order of < 1%. The distribution of the factor

is shown in Fig. 4-13 [203]

Figure 4-13: Projection of the vertical polarization on the normal of the scattering
plane for one spectrometer setup [203]

Polarization measurements were also performed intermittently with the Mott

and Compton, allowing for a comparison with the Møller measurements, to under-

stand systematic errors in measurements. While the Møller polarimeter was not

sensitive to vertical polarization components, the Mott polarimeter was not sen-

sitive to longitudinal polarization components. So, it provided a complimentary

polarimetry measurement. These measurements were performed intermittently

during the running and the polarization were interpolated linearly between the

few consecutive Mott measurements. Additionally the absolute value of the Mott

measurements were corrected to the Møller measurements and the result is shown

in Fig. 4-14
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Figure 4-14: The polarization is interpolated linearly between consecutive Mott
measurements [203]

4.8 Data Analysis

4.8.1 Beam Parameterization

The following table shows all the beam parameters acquired in addition to the

integrated detector signals [203]:

Figure 4-15: Parameters used in describing measurement conditions. (* the
beam current at the target is assumed to be the same as in PIMO21; ** initially,
XYMO26 was connected to the DAQ electronics) [203]
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The order of calculations are as follows (used by Mainz collaborators [203]):

1. Scaling the gate length to its physical value by a simple multiplication.

𝐺𝐿𝑝ℎ𝑦𝑠 = 𝐺𝐿𝑟𝑎𝑤 × scale

2. The signal raw values are corrected for the gate-length:

𝑣𝑎𝑙𝑐𝑜𝑟𝑟 = 𝑣𝑎𝑙𝑟𝑎𝑤 × 20𝑚𝑠/𝐺𝐿

3. Scaling the beam current to the physical value.

𝐼𝑝ℎ𝑦𝑠 = 𝐼𝑐𝑜𝑟𝑟 × scale − offset

4. Some signals(monitors) are later normalized to beam current after pedestal

subtraction

𝑣𝑎𝑙𝑝ℎ𝑦𝑠 = (𝑣𝑎𝑙𝑐𝑜𝑟𝑟 × scale − offset)/𝐼𝑝ℎ𝑦𝑠

we note the energy monitor is treated linearly also

𝐸 = (𝐸𝑟 − ped𝐸) * scale𝐸/𝐼1 + 𝐸0

5. Some signals(detectors) may remain unnormalized to beam current. Scaling

the detector signals to an approximate value of 1000. The scale cancels out

in the asymmetry calculation. For the detector signals only the offset is of

importance, therefore the value is calculated as:

𝑣𝑎𝑙𝑝ℎ𝑦𝑠 = (𝑣𝑎𝑙𝑐𝑜𝑟𝑟 − offset)/scale

6. The target positions and angles are then calculated from the beam position

in the XYMOs as shown in Sec.4.7.4 [203]:
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7. The raw asymmetries for each PMT are calculated, for the mean asymmetry

of a spectrometer the sums of all the tubes (A0,A1,A2,A3,A4) for spA and

(B0,B1,B2) for spB are used as values. The asymmetry for the current, gate

length, and position differences and energy differences are also calculated:

𝐴𝑟𝑎𝑤 =
𝑣𝑎𝑙+𝑝ℎ𝑦𝑠 − 𝑣𝑎𝑙−𝑝ℎ𝑦𝑠
𝑣𝑎𝑙+𝑝ℎ𝑦𝑠 + 𝑣𝑎𝑙−𝑝ℎ𝑦𝑠

(4.3)

𝐴𝑟𝑎𝑤,𝑠𝑝𝐴 =

∑︀
𝑖 𝑠𝑝𝐴

+
𝑖,𝑝ℎ𝑦𝑠 −

∑︀
𝑖 𝑠𝑝𝐴

−
𝑖,𝑝ℎ𝑦𝑠∑︀

𝑖 𝑠𝑝𝐴
+
𝑖,𝑝ℎ𝑦𝑠 +

∑︀
𝑖 𝑠𝑝𝐴

−
𝑖,𝑝ℎ𝑦𝑠

(4.4)

𝐴𝑟𝑎𝑤,𝑠𝑝𝐵 =

∑︀
𝑖 𝑠𝑝𝐵

+
𝑖,𝑝ℎ𝑦𝑠 −

∑︀
𝑖 𝑠𝑝𝐵

−
𝑖,𝑝ℎ𝑦𝑠∑︀

𝑖 𝑠𝑝𝐵
+
𝑖,𝑝ℎ𝑦𝑠 +

∑︀
𝑖 𝑠𝑝𝐵

−
𝑖,𝑝ℎ𝑦𝑠

(4.5)

Δ𝑣𝑎𝑙 = 𝑣𝑎𝑙+𝑝ℎ𝑦𝑠 − 𝑣𝑎𝑙−𝑝ℎ𝑦𝑠

where 𝐴𝑖,𝑝ℎ𝑦𝑠 refers to the physics asymmetry as measured in PMT 𝑖 and +/-

corresponding to the polarization state. The sign for the SpekB asymmetry

is corrected later to be consistent with Equ. 4.1

8. After asymmetries are formed, the beam current asymmetry can be sub-

tracted out to obtain an asymmetry that is normalized to current in first

order:

𝐴𝑛𝑜𝑟𝑚 = 𝐴𝑟𝑎𝑤 − 𝐴𝐼

9. These raw asymmetries are then corrected for beam polarization and polarity-

correlated fluctuations:

𝐴𝑛 =
𝐴𝑟𝑎𝑤 − 𝐴𝐼 − 𝐴𝐺𝐿 − 𝜕𝜎

𝜕𝑋
Δ𝑋 − 𝜕𝜎

𝜕𝑌
Δ𝑌 − 𝜕𝜎

𝜕Θ
ΔΘ . . .

𝑃⊥

Here we describe an alternative method of parameterization (used by myself):

∙ No gate length correction is made, its asymmetry is simply calculated later

and subtracted out
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∙ The beam current is pedestal subtracted and scaled to physical values

𝐼𝑝ℎ𝑦𝑠 = (𝐼𝑟𝑎𝑤 − 𝑝𝑒𝑑)× scale

∙ The monitors are normalized to beam current after pedestal subtraction

𝑣𝑎𝑙𝑝ℎ𝑦𝑠 = (𝑣𝑎𝑙𝑟𝑎𝑤 − 𝑝𝑒𝑑) * scale/(𝐼𝑝ℎ𝑦𝑠)

we note, as previously stated, that the energy monitor is also treated lin-

early and is reiterated here for convenient reference 𝐸𝑝ℎ𝑦𝑠 = (𝐸𝑟 − ped𝐸) *

scale𝐸/𝐼1 + 𝐸0

∙ The detectors are just pedestal subtracted and not normalized to beam cur-

rent

𝑣𝑎𝑙𝑑𝑒𝑡 = 𝑣𝑎𝑙𝑟𝑎𝑤 − 𝑝𝑒𝑑

∙ The raw asymmetries for each PMT and for the summed PMT signals for

spA and spB are calculated. The raw asymmetries for each PMT in a given

spectrometer are also averaged with equal weights 3 to form total raw asym-

metries. Further, the asymmetry for the current, gate length, and position

differences and energy differences:

𝐴𝑟𝑎𝑤 =
𝑣𝑎𝑙+𝑑𝑒𝑡 − 𝑣𝑎𝑙−𝑑𝑒𝑡
𝑣𝑎𝑙+𝑑𝑒𝑡 + 𝑣𝑎𝑙−𝑑𝑒𝑡

𝐴𝐼 =
𝐼+𝑝ℎ𝑦𝑠 − 𝐼−𝑝ℎ𝑦𝑠
𝐼+𝑝ℎ𝑦𝑠 + 𝐼−𝑝ℎ𝑦𝑠

𝐴𝐺𝐿 =
𝐺𝐿+

𝑟𝑎𝑤 −𝐺𝐿−
𝑟𝑎𝑤

𝐺𝐿+
𝑟𝑎𝑤 +𝐺𝐿−

𝑟𝑎𝑤

𝐴𝑟𝑎𝑤,𝑠𝑝𝐴 =

∑︀
𝑖 𝑠𝑝𝐴

+
𝑖,𝑝ℎ𝑦𝑠 −

∑︀
𝑖 𝑠𝑝𝐴

−
𝑖,𝑝ℎ𝑦𝑠∑︀

𝑖 𝑠𝑝𝐴
+
𝑖,𝑝ℎ𝑦𝑠 +

∑︀
𝑖 𝑠𝑝𝐴

−
𝑖,𝑝ℎ𝑦𝑠

𝐴𝑟𝑎𝑤,𝑠𝑝𝐵 =

∑︀
𝑖 𝑠𝑝𝐵

+
𝑖,𝑝ℎ𝑦𝑠 −

∑︀
𝑖 𝑠𝑝𝐵

−
𝑖,𝑝ℎ𝑦𝑠∑︀

𝑖 𝑠𝑝𝐵
+
𝑖,𝑝ℎ𝑦𝑠 +

∑︀
𝑖 𝑠𝑝𝐵

−
𝑖,𝑝ℎ𝑦𝑠

3this choice was made by the A1 Collaboration despite each PMT having very different widths,
and here we conform to their convention.
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𝐴𝑟𝑎𝑤,𝑡𝑜𝑡𝐴 =
1

5

4∑︁
𝑖=0

𝐴𝑟𝑎𝑤,𝑠𝑝𝑒𝑘𝐴𝑖 𝐴𝑟𝑎𝑤,𝑡𝑜𝑡𝐵 =
1

3

2∑︁
𝑖=0

𝐴𝑟𝑎𝑤,𝑠𝑝𝑒𝑘𝐵𝑖

Δ𝐸 = 𝐸+
𝑝ℎ𝑦𝑠 − 𝐸−

𝑝ℎ𝑦𝑠 Δ𝑋 = 𝑋+
𝑝ℎ𝑦𝑠 −𝑋−

𝑝ℎ𝑦𝑠 . . .

∙ These raw asymmetries for each PMT in a given spectrometer are aver-

aged with equal weights and are then corrected for beam polarization and

polarization-correlated fluctuations:

𝐴𝑛 =
𝐴𝑟𝑎𝑤,𝑡𝑜𝑡 − 𝐴𝐼 − 𝐴𝐺𝐿 − 𝜕𝜎

𝜕𝑋
Δ𝑋 − 𝜕𝜎

𝜕𝑌
Δ𝑌 − 𝜕𝜎

𝜕Θ
ΔΘ . . .

𝑃⊥

We note that in summing the PMT’s with equal weights, the varying rates and

gains are not accounted for.

4.8.2 False Asymmetries

There is an influence of residual polarity correlated asymmetries in the mea-

sured beam parameters on the measured asymmetry, giving rise to false asymme-

tries. To verify these false asymmetries are negligible, calculation of false asym-

metries needed be be performed for the following parameters: Beam Current (I),

beam position (X and Y), beam angles (Θ and Φ), integration gate (GL), beam

polarization, and PMT nonlinearities. From the measured raw asymmetry 𝐴𝑟𝑎𝑤,

the physical asymmetry is calculated [203] by subtracting out polarity correlated

beam asymmetries:

𝐴𝑒𝑥𝑝 = 𝐴𝑟𝑎𝑤 − 𝑐1𝐴𝐼 − 𝑐2Δ𝑋 − 𝑐3Δ𝑌 − 𝑐4Δ𝑋 ′ − 𝑐5Δ𝑌 − 𝑐6Δ𝐸

𝐴𝑛 =
𝐴𝑟𝑎𝑤 − 𝐴𝐼 − 𝐴𝐺𝐿 − 𝜕𝜎

𝜕𝑥
Δ𝑋 − 𝜕𝜎

𝜕𝑦
Δ𝑌 − 𝜕𝜎

𝜕𝑋′Δ𝑋
′ − 𝜕𝑌 ′

𝜕𝑌 ′Δ𝑋
′ − 𝜕𝜎

𝜕𝐸
Δ𝐸

𝑃⊥
(4.6)
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where the correction factors 𝑐𝑖 and the raw asymmetry were calculated, taken from

a simulation or measured.

Current Correction

An important false asymmetry to correct is the current asymmetry 𝐴𝐼 . It is

subtracted from the measured asymmetry in the last step of the calculation with

the correction factor set to 𝑐1 = 1 since luminosity and count rate change linearly

with the beam current.

PMT non-linearity correction

While the detector response can be modeled as linear around the run current,

there is a clear non-linearity between 0 and 20𝜇𝐴 as shown in Fig.4-16. The scaled

detector value is calculated as

𝑣𝑎𝑙𝑝ℎ𝑦𝑠 = (𝑣𝑎𝑙𝑐𝑜𝑟𝑟 − offset)/scale

where the scaling factor does not affect the asymmetry, however the offset does.

Non-linearities can be corrected by appropriate choice of offset or “pedestal”. An

incorrect choice of pedestal,offset = 𝑝𝑒𝑑𝑡𝑟𝑢𝑒 − Δ , leads to a so called “pedestal

error” which manifests itself in the calculated detector asymmetry:

𝐴 =
𝑣𝑎𝑙+𝑝ℎ𝑦𝑠 − 𝑣𝑎𝑙−𝑝ℎ𝑦𝑠
𝑣𝑎𝑙+𝑝ℎ𝑦𝑠 + 𝑣𝑎𝑙−𝑝ℎ𝑦𝑠

=
(𝑣𝑎𝑙+𝑟𝑎𝑤 − offset)− (𝑣𝑎𝑙−𝑟𝑎𝑤 − offset)
𝑣𝑎𝑙+𝑟𝑎𝑤 − offset)− (𝑣𝑎𝑙−𝑟𝑎𝑤 − offset)

=
𝑣𝑎𝑙+𝑟𝑎𝑤 − 𝑣𝑎𝑙−𝑟𝑎𝑤

𝑣𝑎𝑙+𝑟𝑎𝑤 + 𝑣𝑎𝑙−𝑟𝑎𝑤 − 2offset
=

𝑣𝑎𝑙+𝑟𝑎𝑤 − 𝑣𝑎𝑙−𝑟𝑎𝑤
𝑣𝑎𝑙+𝑟𝑎𝑤 + 𝑣𝑎𝑙−𝑟𝑎𝑤 − 2(𝑝𝑒𝑑𝑡𝑟𝑢𝑒 −Δ)

= 𝐴𝑡𝑟𝑢𝑒(1− 𝛼)

A pedestal error would overall scale down (or scale up) the measured asymmetry

seen by the detector.
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Figure 4-16: Non linearity of the current Calibration of spB0 from 0 to 20𝜇𝐴
[203]

During the run period, the raw values of the PMTs decreased in magnitude

over time (especially during the initial set-up for the detectors in SpekB ) as shown

in Fig.4-16. The decrease was due to PMT aging (50% gain loss due to aging after

250C has been drawn from its anode). A change in amplification can also change

the pedestal offset. This results in a “pedestal error” as described in as shown in

Fig.4-17.

Figure 4-17: Defining Pedestal Error from PMT aging

If there is a pedestal error in the spekA and spekB signals and the PMTs had
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became more non-linear, it would affect all asymmetries coming into the detectors,

whether from the current asymmetry, from physics asymmetry, etc. A pedestal

error would overall scale down (or scale up) the measured asymmetry seen by the

detector. The correction would be as follows:

𝐴𝑟𝑎𝑤 =
𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝑟𝑎𝑤,𝑝𝑒𝑑𝑂𝐾

𝐴𝑟𝑎𝑤,𝑝𝑒𝑑𝑂𝐾

=
𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝑡𝑟𝑢𝑒

(𝐴𝑒𝑥𝑝 + 𝐴𝐼 + 𝑐2Δ𝑋 + 𝑐3Δ𝑌 + 𝑐4Δ𝑋 ′ + 𝑐5Δ𝑌 + 𝑐6Δ𝐸)

𝐴𝑒𝑥𝑝 =
𝐴𝑟𝑎𝑤

𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝑡𝑟𝑢𝑒

− 𝐴𝐼 − 𝑐2Δ𝑋 − 𝑐3Δ𝑌 − 𝑐4Δ𝑋 ′ − 𝑐5Δ𝑌 − 𝑐6Δ𝐸

We can obtain ( 𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝑡𝑟𝑢𝑒
)−1 from correlations between the detector and a monitor.

In a run with plenty of charge noise, and very little energy and position noise, we

can correlate the detector asymmetry with the current asymmetry as measured fro

each quartet. If the detector is close to being properly calibrated, then 𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼
≈ 1.

We estimate the factor for 𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼
≈ 1, as

(
𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝑡𝑟𝑢𝑒

)−1 ≈ (
𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼

)−1 ≈ 1− (
𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼

− 1)

Once ( 𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝑡𝑟𝑢𝑒
)−1 is obtained, most reliably from runs with sufficient charge

noise, it can be applied to other runs to obtain the systematic error contribution

as follows:

𝐴𝑒𝑥𝑝 ≈ 𝐴𝑟𝑎𝑤 − (
𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼

− 1)𝐴𝑟𝑎𝑤 −𝐴𝐼 − 𝑐2Δ𝑋 − 𝑐3Δ𝑌 − 𝑐4Δ𝑋 ′ − 𝑐5Δ𝑌 − 𝑐6Δ𝐸

We incorporate the partial polarization of the beam via:

𝐴𝑛 =
𝐴𝑒𝑥𝑝 − 𝐴𝐺𝐿

𝑃⊥

=
𝐴𝑟𝑎𝑤 − (𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼
− 1)𝐴𝑟𝑎𝑤 − 𝐴𝐼 − 𝐴𝐺𝐿 − 𝑐2Δ𝑋 − 𝑐3Δ𝑌 − 𝑐4Δ𝑋 ′ − 𝑐5Δ𝑌 − 𝑐6Δ𝐸

𝑃⊥
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Energy,Angle and Position Correction

The Rutherford cross-section for a spin-0 nucleus is given by

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑅𝑢𝑡ℎ𝑒𝑟𝑓𝑜𝑟𝑑

=
𝑍2𝛼2(ℎ̄𝑐)2

4𝐸2 sin4 (𝜃/2)

The Mott scattering cross section is given by

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

=
𝑍2𝛼2(ℎ̄𝑐)2

4𝐸2 sin4 (𝜃/2)
(1− 𝑣2/𝑐2 sin2 (𝜃/2)) ≈ 𝑍2𝛼2(ℎ̄𝑐)2 cos2 (𝜃/2)

4𝐸2 sin4 (𝜃/2)

The scattering cross section of a nucleus of mass M can be approximated by

the Mott cross-section with recoil factor E’/E

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑒𝑥𝑝

≈ 𝑍2𝛼2(ℎ̄𝑐)2 cos2 (𝜃/2)

4𝐸2 sin4 (𝜃/2)

𝐸 ′

𝐸
=
𝑍2𝛼2(ℎ̄𝑐)2 cos2 (𝜃/2)

4𝐸2 sin4 (𝜃/2)

1

1 + 𝐸
𝑀
(1− cos 𝜃)

The experimental scattering cross section is more accurately described by

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑒𝑥𝑝

=
(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

|𝐹 (𝑞2)|2

𝑞2 = −4𝐸2 sin2(𝜃/2)

The polarization dependent asymmetry detected at a particular angle is given

by

𝐴 =
𝑑𝜎+

𝑑Ω
− 𝑑𝜎−

𝑑Ω
𝑑𝜎+

𝑑Ω
+ 𝑑𝜎−

𝑑Ω

≈
𝑑𝜎+

𝑑Ω
− 𝑑𝜎−

𝑑Ω

2 𝑑𝜎
𝑑Ω

≈
Δ
(︁

𝑑𝜎
𝑑Ω

)︁
2 𝑑𝜎
𝑑Ω

The systematic error contribution to the measured asymmetry from energy is

given by

Δ𝐴 =
Δ 𝑑𝜎

𝑑Ω

2 𝑑𝜎
𝑑Ω

=
𝑑
𝑑𝐸

𝑑𝜎
𝑑Ω
Δ𝐸

2 𝑑𝜎
𝑑Ω
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𝑑𝐴

𝑑𝐸
=

𝑑
𝑑𝐸

𝑑𝜎
𝑑Ω

2 𝑑𝜎
𝑑Ω

The systematic error contribution to the measured asymmetry from angle is

likewise given by
𝑑𝐴

𝑑𝜃
=

𝑑
𝑑𝜃

𝑑𝜎
𝑑Ω

2 𝑑𝜎
𝑑Ω

The asymmetry dependence on energy and angle can be split up into a portion

from the Mott cross section and a correction from the FF dependence on energy

and angle

𝑑𝐴

𝑑𝐸
≈ 1

2

𝑑
𝑑𝐸

𝑑𝜎
𝑑Ω

𝑑𝜎
𝑑Ω

≈
(︁𝑑𝐴
𝑑𝐸

)︁
𝑀𝑜𝑡𝑡

+
(︁𝑑𝐴
𝑑𝐸

)︁
𝐹𝐹

𝑑𝐴

𝑑𝜃
≈ 1

2

𝑑
𝑑𝜃

𝑑𝜎
𝑑Ω

𝑑𝜎
𝑑Ω

≈
(︁𝑑𝐴
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

+
(︁𝑑𝐴
𝑑Ω

)︁
𝐹𝐹

The energy dependence is given by

𝑑

𝑑𝐸

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑒𝑥𝑝

=
𝑑

𝑑𝐸

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

|𝐹 (𝑞2)|2

= |𝐹 (𝑞2)|2 𝑑

𝑑𝐸

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

+
(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

𝑑

𝑑𝐸
|𝐹 (𝑞2)|2

=
−2

𝐸
|𝐹 (𝑞2)|2

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

+
(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

𝑑|𝐹 (𝑞2)|2

𝑑𝑞

𝑑𝑞

𝑑𝑞2
𝑑𝑞2

𝑑𝐸

= −
(︁ 2

𝐸
|𝐹 (𝑞2)|2 − 𝑑|𝐹 (𝑞2)|2

𝑑𝑞
2 sin (𝜃/2)

)︁(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

=
𝑑

𝑑𝐸

(︁ 𝑑𝜎
𝑑Ω

)︁
0
+

𝑑

𝑑𝐸

(︁ 𝑑𝜎
𝑑Ω

)︁
𝐹𝐹

The angle dependence is given by

𝑑

𝑑𝜃

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑒𝑥𝑝

=
𝑑

𝑑𝜃

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

|𝐹 (𝑞2)|2

= |𝐹 (𝑞2)|2 𝑑
𝑑𝜃

(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

+
(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

𝑑

𝑑Θ
|𝐹 (𝑞2)|2
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= −|𝐹 (𝑞2)|2𝑍
2𝛼2(ℎ̄𝑐)2(7 cos(𝜃/2) + cos(3𝜃/2))

16𝐸2 sin5 (𝜃/2)
+
(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

𝑑|𝐹 (𝑞2)|2

𝑑𝑞

𝑑𝑞

𝑑𝜃

= −|𝐹 (𝑞2)|2𝑍
2𝛼2(ℎ̄𝑐)2(7 cos(𝜃/2) + cos(3𝜃/2))

16𝐸2 sin5 (𝜃/2)
+
(︁ 𝑑𝜎
𝑑Ω

)︁
𝑀𝑜𝑡𝑡

𝑑|𝐹 (𝑞2)|2

𝑑𝑞
𝐸 cos (𝜃/2)

=
𝑑

𝑑𝜃

(︁ 𝑑𝜎
𝑑Ω

)︁
0
+

𝑑

𝑑𝜃

(︁ 𝑑𝜎
𝑑Ω

)︁
𝐹𝐹

The form factor for Carbon can be inferred from the following xsec measure-

ment [204]

(a) Carbon cross section (b) Carbon Form Factor

Figure 4-18: 𝑞𝑒𝑓𝑓 = 𝑞(1 + 4/3 𝑍𝛼
𝐸⟨𝑟𝑟𝑚𝑠⟩), ⟨𝑟𝑟𝑚𝑠⟩ = 2.45𝑓𝑚(a) The curve corresponds

to the Offerman parametrization model [204],[205](b) Comparison between the ex-
perimental values of reduced cross section and the results obtained via the Fourier-
Bessel analysis [204].

We extracted the form factor data from these plots and parameterized it with

an exponential fit in the region q=0.6-1.2 fm-1. We obtained the fit |𝐹 (𝑞)|2 ≈

90.43𝑒−2.489𝑓𝑚𝑞 − 3.36 also shown.
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Figure 4-19: Fit to Carbon form factor |𝐹 (𝑞)|2 ≈ 90.43𝑒−2.489𝑓𝑚𝑞 − 3.36

From this parameterization, we obtain the differential

𝑑𝐹 (𝑞)2

𝑑𝑞
≈ −225.15𝑓𝑚 𝑒−2.489𝑓𝑚 𝑞 × 1

197𝑀𝑒𝑉 𝑓𝑚
≈ −1.1423𝑀𝑒𝑉 −1𝑒−0.0126𝑀𝑒𝑉 −1𝑞

in the range 𝑞 = 0.6− 1.2𝑓𝑚−1.

The 𝑄2 and 𝜃 setting for each configuration of the 570MeV data set shown in

the following table along with the energy dependence of the asymmetry after the

FF correction. For comparison
(︁

𝑑𝐴
𝑑𝐸

)︁
𝑀𝑜𝑡𝑡

= −1
2
3.509ppm/keV = −1.755ppm/keV,

which differs from Mainz collaborator’s value by a factor of 2.

To obtain position dependences from angle dependencies, knowledge of the

monitor, target, detector geometry is required. We took the ratio’s of 𝑑𝐴
𝑑𝜃

to 𝑑𝐴
𝑑𝑥

obtained by Mainz collaborators and applied that ratio to our calculated angle

sensitivity to obtain our calculated position sensitivity.
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config spB spB spB spA spA

data3 data2 data1 data1 data2 & 3

𝑄2(GeV2/𝑐2) 0.023 0.03 0.041 0.039 0.049

𝑞(fm−1) 0.770 0.879 1.028 1.002 1.124

𝜃 15.11𝑜 17.65𝑜 20.61𝑜 23.5𝑜 25.9𝑜

|𝐹 (𝑞2)|2 9.95 6.77 3.64 4.10 2.15
𝑑𝐹 (𝑞)2

𝑑𝑞
/|𝐹 (𝑞2)|2(MeV−1) -0.0169 -0.0189 -0.0243 -0.0230 -0.0323

( 𝑑𝐴
𝑑𝐸

)𝑀𝑎𝑖𝑛𝑧 (ppm/keV) ±3.5 ±3.5 ±3.5 ±3.5 ±3.5

( 𝑑𝐴
𝑑𝐸

)𝑀𝑜𝑡𝑡 (ppm/keV) -3.51/2 -3.51/2 -3.51/2 -3.51/2 -3.51/2
𝑑𝐴
𝑑𝐸

(ppm/keV) -3.98 -4.65 -6.10 -6.44 -4.13

(𝑑𝐴
𝑑𝜃
)𝑀𝑎𝑖𝑛𝑧 (ppm/𝜇rad) -15.226 -13.53 -11.2 9.84 8.95

(𝑑𝐴
𝑑𝜃
)𝑀𝑜𝑡𝑡 (ppm/𝜇rad) -15.34/2 -13.19/2 -11.36/2 10.03/2 9.16/2
𝑑𝐴
𝑑𝜃

(ppm/𝜇rad) -12.45 -11.92 -12.49 11.4 7.52

(𝑑𝐴
𝑑𝑥
)𝑀𝑎𝑖𝑛𝑧 (ppm/𝜇m) -3.86 -3.841 -3.787 19.472 19.942

𝑑𝐴
𝑑𝑥
/𝑑𝐴

𝑑𝜃
(𝜇rad/𝜇m) 0.253 0.284 0.338 1.979 2.228

𝑑𝐴
𝑑𝑥

(ppm/𝜇m) -3.150 -3.016 -4.222 22.561 16.755

Absolute Sign of Energy Correction

Since the operator rotates the phase of the ENMO in an arbitrary direction

after the calibration, the sign of the ENMO in not fixed. Therefore it is not

possible to correct for energy deviations, only to estimate the potential systematic

error. Due to the energy stabilization, the effect of the energy on the asymmetry

was limited to a value of ≈ 0.01− 0.03ppm.

Gate Length Correction

A false asymmetry could be created by a variation in the gate length which is

helicity correlated. The gate length is coupled to the line frequency so changes in

the power grid frequency result in changes in all the detector and monitor signals.

There are two ways to correct the detector signals and monitor signals (with
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linear dependence on the beam current): (1) normalize all signals, including the

beam current, with the gate-length and then normalize with the gate-length cor-

rected beam current (2) Normalize all signals to the beam current raw value

Here we describe the 1st method. The gate length is scaled to its physical

value by a simple multiplication.The gate length is initially tweaked it by hand to

approximately 20 ms to set a scale factor and it is locked to the line frequency. It

is not necessary to set this scale factor with highest precision, since the absolute

value cancels out in the asymmetry calculation: 𝐺𝐿𝑝ℎ𝑦𝑠 = 𝐺𝐿𝑟𝑎𝑤 × scale. The

signal raw values, including the beam current, are corrected for the gate-length:

𝑣𝑎𝑙𝑐𝑜𝑟𝑟 = 𝑣𝑎𝑙𝑟𝑎𝑤 × 20𝑚𝑠/𝐺𝐿. The gate-length corrected beam current is used to

normalize the monitors and the gate length correction beam current asymmetry

is subtracted out from the detector asymmetry.

Here we describe the 2nd method. No gate-length normalization is performed.

The measured beam current (which depends on the gate length) is pedestal sub-

tracted and scaled to physical values 𝐼𝑝ℎ𝑦𝑠 = (𝐼𝑟𝑎𝑤 − 𝑝𝑒𝑑) × scale . The moni-

tor signals are normalized to beam current after pedestal subtraction 𝑣𝑎𝑙𝑛𝑜𝑟𝑚 =

(𝑣𝑎𝑙𝑟𝑎𝑤 − 𝑝𝑒𝑑)/(𝐼𝑝ℎ𝑦𝑠). The detector signals are corrected for (gate-dependent)

beam current asymmetry as well as the gate-length asymmetry by subtracting

them out from the detector asymmetry: 𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐴𝑢𝑛𝑛𝑜𝑟𝑚 − 𝐴𝑞 − 𝐴𝐺𝐿

4.8.3 𝑄2 Estimation

For calibration, the detectors were readout in coincidence with vertical drift-

chambers (VDCs) (Fig. 4-5) in counting-mode, where the detector PMT sig-

nals are only readout when triggered. The current was low (50nA) in counting

mode and the PMT’s were used with higher amplification than for data running

integrating-mode. Each set-up was analyzed separately to obtain 𝑄2 from the

spectrometer counting-mode data.

The following figures are the 𝑄2 distributions found from the counting-mode
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data for all of the setups in the experiment:

(a) 𝑄2 2015-1, SpekB (b) 𝑄2 2015-2, SpekB (c) 𝑄2 2015-3, SpekB

(d) 𝑄2 2016, SpekB (e) 𝑄2 2015-1, SpekA (f) 𝑄2 2015-1, SpekA

Figure 4-20: 𝑄2 distributions found from the counting-mode data for all of the
setups in the experiment

The 𝑄2 range is given in terms of arithmetic mean of the histogram, together

with the lower and upper point of the FWHM. It should be noted that the asym-

metry analysis does not account for different rates for different individual PMTs,

but averages all PMTs in each spectrometer together. The correct 𝑄2 averages

are taken from plots such as Fig. 4-20, which treats the counts from each tube

equally in forming the total acceptance spectrum.

Spectrometer B

Setup Angle 𝑄2 Range(min) 𝑄2 Range(avg) 𝑄2 Range(max) 𝑄2 uncertainty

2015-1 20.61𝑜 0.03709 𝐺𝑒𝑉 2/𝑐2 0.04127 𝐺𝑒𝑉 2/𝑐2 0.04503 𝐺𝑒𝑉 2/𝑐2 ±0.00002 𝐺𝑒𝑉 2/𝑐2

2015-2 17.65𝑜 0.02674 𝐺𝑒𝑉 2/𝑐2 0.03044 𝐺𝑒𝑉 2/𝑐2 0.03380 𝐺𝑒𝑉 2/𝑐2 ±0.0005 𝐺𝑒𝑉 2/𝑐2

2015-3 15.11𝑜 0.01919 𝐺𝑒𝑉 2/𝑐2 0.02250 𝐺𝑒𝑉 2/𝑐2 0.02545 𝐺𝑒𝑉 2/𝑐2 ±0.0003 𝐺𝑒𝑉 2/𝑐2

2016 20.62𝑜 0.03599 𝐺𝑒𝑉 2/𝑐2 0.04354 𝐺𝑒𝑉 2/𝑐2 0.04712 𝐺𝑒𝑉 2/𝑐2 ±0.002 𝐺𝑒𝑉 2/𝑐2

Spectrometer A

Setup Angle 𝑄2 Range(min) 𝑄2 Range(avg) 𝑄2 Range(max) 𝑄2 uncertainty

2015-1 23.51𝑜 0.03141 𝐺𝑒𝑉 2/𝑐2 0.03909 𝐺𝑒𝑉 2/𝑐2 0.04106 𝐺𝑒𝑉 2/𝑐2 ±0.002 𝐺𝑒𝑉 2/𝑐2

2015-2 & 3 25.9𝑜 0.04066 𝐺𝑒𝑉 2/𝑐2 0.04873 𝐺𝑒𝑉 2/𝑐2 0.05090 𝐺𝑒𝑉 2/𝑐2 ±0.003 𝐺𝑒𝑉 2/𝑐2
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4.9 Non-linearities

4.9.1 Symptoms

There was significant evidence that the detectors were ’dying’ during running.

There are several symptoms which were indicative of a non-linearity in the detec-

tors. The first symptom which was noticed during running (in configuration1) was

the RMS widths of the detector asymmetry distributions, in spekB PMTs, were

narrower than widths predicted by counting statistics with the observed rates (ob-

tained in counting-mode data). The second symptom was a gradual decrease in

the PMT signal, and therefore the PMT gain, over the run period shown in Fig.

4-21a for the spekB0 tube. A third symptom was that this decrease in gain co-

incided with a narrowing of RMS widths in asymmetry distributions, indicating

a pedestal error that was gradually becoming worse. When there is a pedestal

error, it shows up in the RMS widths. During config-1 running, there was an

overall gradual decrease in gains by ∼9-16% and spB (sum of B0,B1, and B2)

RMS gradually decreases by 15% going from ∼3300ppm to ∼2800ppm as shown

in Fig. 4-21b.
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(a)

(b)

Figure 4-21: 2015-1 data showing PMT dying: (a) PMT spB0 current normalized
signal vs Run# (b) PMT spB0 Asymmetry RMS width vs Run#

A fourth symptom was from beam-current unstabilized runs which showed

a significant deviation in detector response to charge variation, indicative of a

pedestal error. For example, Fig. 4-22 shows a 4% deviation from 1 in the slope

of the asymmetry in a spekB detector with respect to the measured charge asym-

metry.
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Figure 4-22: Top: Comparison between the charge asymmetry observed an un-
stabilized run with beam stabilization off (red) and with beam stabilization on
(black). Bottom: Raw asymmetry determined for one PMT of the Cherenkov de-
tector in spectrometer B as a function of the charge asymmetry for a run without
beam stabilization off. [208]

A fifth symptom was that during unstabilized runs, the detector asymmetry

was not equal to the sum of the expected physics asymmetry plus the measured

charge asymmetry, which was quite large (hundreds of ppm), further indicative

of a pedestal error. Stabilization was off for runs 9-11 for data configuration1

taken on 10/30/2015. As shown in FIg. 4-23 there is an observed shift in spB

detector asymmetries when stabilization was turned off as compared to the other

runs when stabilization was on. Spectrometer B detectors 0,1,2 are shown in blue

and spectrometer A detectors 0,1,2,3,4 are shown. The spB normalized detector

asymmetries for the current unstabilized runs show a significant deviation in the

inferred physics asymmetry of several tens of ppm, indicating a failure to normalize

to charge and hence a non-linearity.
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Figure 4-23: Normalized detector asymmetries for each PMT (normalized to
charge asymmetry 𝐴𝑝ℎ𝑦𝑠 ≈ 𝐴𝑑𝑒𝑡 − 𝐴𝐼 ) for spA0,1,2,3,4 (red) and spB0,1,2(blue)
for a sample of 20 runs of spectrometer configuration1. Runs 9,10,11 in the figure
are current unstabilized runs with charge asymmetry in the hundreds of ppm.
The spB normalized detector asymmetries for the current unstabilized runs show
a significant deviation in the inferred physics asymmetry of several tens of ppm,
changing sign from negative to positive.

Additionally, we note a couple of other anomalous behaviors: (1) The PMTs in

spekB appeared to have an auto correlations coefficient which was not consistent

with zero, indicating a possible ’smoothing out’ of detected asymmetries. This

phenomenon would look exactly like a pedestal error, except it would not be

correctable by performing a current calibration. (2) The raw signal for the different

PMTs suffered from fluctuations 4 and this was observed by the A4-Collaboration

previously 5. It is possible this fluctuation was an indication of something amiss

with these PMTs [220].

4.9.2 Recalibration Study

During 2016 running, a study was performed in which current calibration runs

were performed very frequently to help characterize the manner in which the

PMT’s were dying and how to account for it in the pedestals. The goal was to

find a model for the relationship between the PMT raw signal magnitude (the

PMT gain) and the pedestals for each PMT. It was confirmed that the PMTs
4alternating between a higher and a lower value, with rise and fall times of ∼ 200 ms
5but was dismissed for unknown reasons as being caused by a “beam halo scraping somewhere”
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were dying and a relationship between the PMT gain and PMT pedestal was

established for a particular PMT voltage setting. Our Mainz collaborators used

an ad hoc model for the relationship between the PMT pedestal and the PMT

gain: data could be pedestal corrected by fixing a point on the linear calibration

function, and rotating the function around it with the second point coming from

the detector response at the nominal beam current [226] [227] as shown in Fig.

4-24.

Figure 4-24: Recalibration illustration. When the raw value at 20𝜇A decreases in
magnitude, the calibration function rotates around a fixed point, and the pedestal
is changed as well [227].

With this model, the data from 2015 was retroactively corrected with the

data from 2016 by fixing a point on the linear calibration function as described

above. However since the PMT voltages were changed throughout running for

different configurations, applying this relationship retroactively to configurations

with different PMT voltage settings was not sufficient to fully correct the earlier

pedestal errors, as evidenced in Sec.4.9.3.

There were uncertainties in the recalibration method described in [226]. These

uncertainties give rise to potential systematic PMT gain errors in each data con-

figuration which are summarized in the following table:
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configuration 3 - B 2- B 1- B 1-A 2,3 -A

PMT gain error(ppm) 0.380 0.130 1.100 0.170 0.030

Table 4.1: PMT gain systematic errors from uncertainty in the recalibration
method for each data configuration

4.9.3 Unstabilized runs

While production runs had several forms of stabilization on, there were some

runs with select stabilizations off. These runs could be used to test the calibrations,

look for non-linearities or pedestal errors, and asses the coupling between various

monitors and the detectors. Unstabilized runs reveal relationships by examin-

ing correlations between detectors and monitors. For example, runs with current

stabilization off had significant enough fluctuations in Aq to determine the slope
𝑑𝐴𝑠𝑝𝐵

𝑑𝐴𝑞
, relating detector asymmetry to charge asymmetry. This slope should nom-

inally be equal to 1, if the pedestals are correct. However, even after attempting

to apply pedestal corrections as prescribed in Sec.4.9.2, some beam-current unsta-

bilized runs showed significant deviation in detector response to charge variation.

This implied a potential systematic error in the measurement - a false asymmetry.

There were a variety of unstabilized runs with different sets of stabilizations

turned off. There are a variety of runs in which stabilizations were shut off. Some

runs were taken without current stabilization, without position stabilized, without

energy stabilization, or some combination of the three. Here is a compiled list of

unstabilized runs taken in the 570MeV 2015 data in kinematics configurations 1,2,

and 3.
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Figure 4-25: List of unstabilized runs

For runs with only current stabilization off, the relationship between current

and the detector signals could be accessed directly through correlation as in Fig.

4-26a. However, in runs with multiple stabilizations turned off, both direct and

indirect relationships are at play. There are three ways to make 𝑑𝐴𝑠𝑝/𝑑𝐴𝑞 ̸= 1 :

(1) poor Aq resolution (2) detector or current monitor pedestal error (3) indirect

coupling through another parameter (i.e 𝐴𝑞 → 𝐷𝑥 → 𝐴𝑑𝑒𝑡) as shown in Fig. 4-

26b. For runs with multiple stabilizations turned off, because of cross correlations,

simultaneous multiple linear regression (Sec.4.9.3) was required for interpretation.
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(a) 𝑑𝐴𝑠𝑝𝐵/𝑑𝐴𝑞

(b) 𝑑𝐴𝑠𝑝𝐵/𝑑𝐷𝑥

Figure 4-26: Example of correlations in an unstabilized run

Correlations and Linear Regression

Linear regression is used to find the relationship between the detector signal

𝑌 [𝑖] and monitor signals𝑋0[𝑖], 𝑋1[𝑖], 𝑋2[𝑖] . . . 𝑋𝑁 [𝑖], where i corresponds to discrete

data points in time. We wish to focus on correlating the the noise in the signals,

so let us define mean subtracted signals 𝑦[𝑖] = 𝑌 [𝑖]−⟨𝑌 ⟩ and 𝑥𝑛[𝑖] = 𝑋𝑛[𝑖]−⟨𝑋𝑛⟩

which are have mean zero by definition. The noise in detector signal 𝑦[𝑖] can be

filtered by the monitor signals 𝑥0[𝑖], 𝑥1[𝑖], 𝑥2[𝑖] . . . 𝑥𝑁 [𝑖] with regression coefficients

𝑤0, 𝑤1, 𝑤2 . . . 𝑤𝑁 . The residual 𝑦𝑟𝑒𝑠[𝑖], which is the portion of 𝑦[𝑖] uncorrelated

with any of the monitors, will have a narrower width than 𝑦[𝑖].
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The detector signal is composed of some portion which is correlated with mon-

itor signals and a residual portion uncorrelated with any monitor

𝑦[𝑖] =
𝑁∑︁

𝑛=0

𝑤𝑛𝑥𝑛[𝑖] + 𝑦𝑟𝑒𝑠[𝑖] (4.7)

The regressed signal is given by

𝑦𝑟𝑒𝑠 = 𝑦[𝑖]−
𝑁∑︁

𝑛=0

𝑤𝑛𝑥𝑛[𝑖]

The above equations contain mean subtracted signals centered on zero. Rewrit-

ing the equations for the true non-zero mean detector and monitor signals, we

obtain

𝑌𝑟𝑒𝑠 = 𝑦𝑟𝑒𝑠 + ⟨𝑌𝑟𝑒𝑠⟩ = 𝑦[𝑖] + ⟨𝑌 ⟩ −
𝑁∑︁

𝑛=0

𝑤𝑛(𝑥𝑛[𝑖]− ⟨𝑋𝑛⟩)

Hence, the detector signal systematic errors can be subtracted out using the

obtained regression coefficients.

⟨𝑌𝑟𝑒𝑠⟩ = ⟨𝑌 ⟩ −
𝑁∑︁

𝑛=0

𝑤𝑛 ⟨𝑋𝑛⟩

To obtain the regression coefficients, we use correlation coefficients defined as

𝑅𝑥𝑛,𝑥𝑚 = 𝐸[𝑥𝑛, 𝑥𝑚] =
1

𝑁𝑡𝑜𝑡

𝑁𝑡𝑜𝑡∑︁
𝑖=0

𝑥𝑛[𝑖]𝑥𝑚[𝑖]

𝑝𝑥𝑛,𝑦 = 𝐸[𝑥𝑛𝑦] =
1

𝑁𝑡𝑜𝑡

𝑁𝑡𝑜𝑡∑︁
𝑖=0

𝑥𝑛[𝑖]𝑦[𝑖]

The correlation matrix of independent monitor variables R and the cross cor-

relation vector 𝑝 of dependent detector signal y and monitor signals relate to the
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vector of regression coefficients �⃗� via the equation:

R�⃗� = 𝑝 (4.8)

⎡⎢⎢⎢⎢⎢⎢⎣
𝑅𝑥0,𝑥0 𝑅𝑥0,𝑥1 . . . 𝑅𝑥0,𝑥𝑁

𝑅𝑥1,𝑥0 𝑅𝑥1,𝑥1 . . . 𝑅𝑥1,𝑥𝑁

...
... . . . ...

𝑅𝑥𝑁 ,𝑥0 𝑅𝑥𝑁 ,𝑥0 . . . 𝑅𝑥𝑁 ,𝑥𝑁

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑤0

𝑤1

...

𝑤𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝𝑥0,𝑦

𝑝𝑥1,𝑦

...

𝑝𝑥𝑁 ,𝑦

⎤⎥⎥⎥⎥⎥⎥⎦
The matrix elements along the diagonal are autocorrelation coefficients. When

we are just assessing the relationship between the detector y and a single monitor

x (i.e. N=0) equation for the regression coefficient simplifies to the ratio of the

crosscorrelation coefficient between the detector and monitor to the autocorrela-

tion coefficient of the monitor.

𝑅𝑥𝑥𝑤 = 𝑝𝑥𝑦 (4.9)

𝑤 = 𝑝𝑥𝑦/𝑅𝑥𝑥 =
𝐸[𝑥𝑦]

𝐸[𝑥2]
=

∑︀∞
𝑖=0 𝑥[𝑖]𝑦[𝑖]∑︀∞
𝑛=0 𝑥[𝑖]

2

A simple way to understand this equation is that this regression coefficient 𝑤

is equivalent to the slope m obtained when fitting y vs x with a linear function

y=mx+b, if the uncorrelated noise in both signals were very small and the offset b

were 0. Recall x[n] and y[n] must be centered on 0 for this method to work, so that

is why the generic signals X[n] and Y[n] must have their mean values subtracted

out. The equation can be generalized to the non-zero mean detector and monitor

signals as follows.

𝑤 =
𝐸[(𝑋 − ⟨𝑋⟩)(𝑌 − ⟨𝑌 ⟩)]

𝐸[(𝑋 − ⟨𝑋⟩)2]
=
𝐸[𝑋𝑌 ]− 𝐸[𝑋]𝐸[𝑌 ]

𝐸[𝑋2]− 𝐸[𝑋]2
=
𝐸[𝑋𝑌 ]− 𝐸[𝑋]𝐸[𝑌 ]

𝜎2
𝑥

(4.10)
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The above equation is related to the correlation coefficient

𝜌𝑋,𝑌 =
cov(𝑋, 𝑌 )

𝜎𝑥𝜎𝑦
=

𝐸[𝑋𝑌 ]− 𝐸[𝑋]𝐸[𝑌 ]√︀
𝐸[𝑋2]− 𝐸[𝑋]2

√︀
𝐸[𝑌 2]− 𝐸[𝑌 ]2

=
𝐸[𝑋𝑌 ]− 𝐸[𝑋]𝐸[𝑌 ]

𝜎𝑥𝜎𝑦
(4.11)

with standard deviation on the correlation coefficient [202] given by

𝜎𝜌𝑋,𝑌
=

√︃
1− 𝜌2𝑋,𝑌

𝑛
(4.12)

So we conclude the appropriate slope relating the two signals Y and X is given

by the w-coefficient

𝑤 =
𝐸[𝑋𝑌 ]− 𝐸[𝑋]𝐸[𝑌 ]

𝜎2
𝑋

=
𝜎𝑌
𝜎𝑋

𝐸[𝑋𝑌 ]− 𝐸[𝑋]𝐸[𝑌 ]

𝜎𝑋𝜎𝑌
=
𝜎𝑌
𝜎𝑋

𝜌𝑋,𝑌 (4.13)

with standard deviation on the w-coefficient given by

𝜎𝑤 =

√︂
1− 𝑤2

𝑛
(4.14)

To understand tis equation, we note if the RMS of y is very large and the

RMS of x is small, either the slope relating x to y is very large, or y is quite noisy

and the correlation coefficient will be low, making for a reasonable slope. The

w-coefficient effectively describes 𝑑𝑦
𝑑𝑥

.

We note the slope of x vs y should be 1/𝑤. In that case our equation would

become

𝑤𝑖𝑛𝑣𝑒𝑟𝑠𝑒 =
𝐸[𝑋𝑌 ]− 𝐸[𝑋]𝐸[𝑌 ]

𝜎2
𝑦

=
𝜎𝑋
𝜎𝑌

𝐸[𝑋𝑌 ]− 𝐸[𝑋]𝐸[𝑌 ]

𝜎𝑋𝜎𝑌
=
𝜎𝑋
𝜎𝑌

𝜌𝑋,𝑌 (4.15)

If X and Y were 100% correlated, 𝜌𝑋,𝑌 = 1 and 𝑤𝑖𝑛𝑣𝑒𝑟𝑠𝑒 =
𝜎𝑥

𝜎𝑦
= 1/𝑤. Hence a

simple way to obtain the correlation coefficient is to plot y vs x and plot x vs y,

fit a linear function to each, and multiply the slopes together. The result is the

correlation coefficient.
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Wiener Filters

As a aside, we note a useful form of feedback commonly employed is a Wiener

filter, which relates a detector signal at time interval 𝑡𝑛 to a monitor signal at 𝑡𝑛

and also at times in the past 𝑡𝑛−1, 𝑡𝑛−2 . . . . A Wiener filter is used to find the

relationship between the correlated portion of signal y[n] and monitor x[n] where

n corresponds to discretized data points in time and y[n],x[n] are both centered

on 0. The signal y[n] is filtered by the monitor signals x[n],x[n-1],.... with filter

coefficients 𝑤0, 𝑤1, . . . 𝑤𝑁 and the residual e[n] is that in y[n] which uncorrelated

with x[n].

𝑦𝑛 =
𝑁∑︁
𝑖=0

𝑤𝑖𝑥𝑛+𝑖 (4.16)

𝑅𝑗
𝑥 = 𝐸[𝑥𝑛𝑥𝑛+𝑗]

𝑝𝑗𝑥𝑦 = 𝐸[𝑥𝑛𝑦𝑛+𝑗]

Autocorrelation matrix R and cross correlation vector 𝑝 are related to the

vector of coupling filter coefficients �⃗� .

R�⃗� = 𝑝 (4.17)

⎡⎢⎢⎢⎢⎢⎢⎣
𝑅0

𝑥 𝑅1
𝑥 . . . 𝑅𝑁

𝑥

𝑅1
𝑥 𝑅2

𝑥 . . . 𝑅𝑁−1
𝑥

...
... . . . ...

𝑅𝑁
𝑥 𝑅𝑁−1

𝑥 . . . 𝑅0
𝑥

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑤0

𝑤1

...

𝑤𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝0

𝑝1
...

𝑝𝑁

⎤⎥⎥⎥⎥⎥⎥⎦
If a filter like this is employed as a feedback mechanism, it could give rise to

autocorrelations in the monitors between the signal at time 𝑡𝑛 and the signal at

time 𝑡𝑛−1 for example.
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Testing Non-linearity Model

We used 10 current unstabilized runs to test the whether the detector signal

systematic errors can be accounted for through regression/correlation coefficients.

We calculated the systematic uncertainty contribution in two ways to obtain: (1)

a derived systematic and (2) an empirically observed systematic.

For the derived systematic, we used correlations to get a slope and predict false

asymmetries the unstabilized data. In unstabilized runs, there is more noise in 𝐴𝐼

so the RMS is larger, allowing us to obtain slopes 𝑑𝐴𝑠𝑝/𝑑𝐴𝐼 with more accuracy

allowing for a systematic uncertainty estimate. We have calculated a systematic

uncertainty contribution from taking the correlation coefficient 𝛼 = (𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼
−1) and

the measured asymmetry 𝐴𝑟𝑎𝑤, and multiplying them to obtain our derived error

𝐴𝑐𝑎𝑙𝑐
𝑠𝑦𝑠. = 𝛼𝐴𝑟𝑎𝑤. We note that the coefficient 𝑤 = 𝑑𝐴𝑠𝑝𝑒𝑘/𝑑𝐴𝐼 obtained from noise

in beam-current unstabilized runs was observed have as large as a 20% deviation

from 1. This slope deviation from 1 combined with the the physics asymmetry

𝐴𝑝𝑒𝑟𝑝 is ∼20ppm, implies the systematic correction for stabilized production runs

could be as large as ∼20ppm×20% = 5ppm. We can check that we observe this

systematic error in the noisy data.

For the empirically observed systematic, we look for significant deviation from

the average 𝐴𝑝ℎ𝑦𝑠 from stabilized production runs. In unstabilized runs, there is

also a non-zero and sizable ⟨𝐴𝐼⟩ , so that in principle ⟨𝐴𝑟𝑎𝑤⟩ = 𝐴𝑝ℎ𝑦𝑠 + ⟨𝐴𝐼⟩ if

𝑑𝐴𝑠𝑝/𝑑𝐴𝐼 = 1, but this is not quite the case and we observe a systematic error

𝐴𝑠𝑦𝑠 = 𝐴𝑟𝑎𝑤 − 𝐴𝑝ℎ𝑦𝑠 − 𝐴𝐼 . We examine the mean value seen by the detector

𝐴𝑟𝑎𝑤 and the charge monitor 𝐴𝐼 , attempt to normalize to charge using the usual

method to obtain the inferred physics asymmetry 𝐴*
𝑝ℎ𝑦𝑠 = 𝐴𝑟𝑎𝑤 − 𝐴𝐼 , and then

look for a systematic error by comparing the inferred asymmetry to the actual

physics asymmetry 𝐴𝑜𝑏𝑠
𝑠𝑦𝑠 = 𝐴*

𝑝ℎ𝑦𝑠 − 𝐴𝑝ℎ𝑦𝑠 = 𝐴𝑟𝑎𝑤 − 𝐴𝐼 − 𝐴𝑝ℎ𝑦𝑠 .

We tabulated the false asymmetries implied by the anomalous detector vs.

charge slopes for the beam-current unstabilized runs, and compared to the ap-
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parent false asymmetries measured during those unstabilized runs. We compare

these observed systematic errors 𝐴𝑜𝑏𝑠
𝑠𝑦𝑠 = 𝐴𝑟𝑎𝑤 − 𝐴𝐼 − 𝐴𝑝ℎ𝑦𝑠 to our calculated sys-

tematics found from noise correlations 𝐴𝑐𝑎𝑙𝑐
𝑠𝑦𝑠. = 𝛼𝐴𝑟𝑎𝑤. In the unstabilized runs,

the raw asymmetry and charge asymmetries can be very large, ∼ 300ppm and

the systematic corrections can be as large as ∼ 60ppm. We observe consistency

between the observed and predicted systematic error contributions to within 2𝜎.

These estimates are well correlated as shown in Fig. 4-27b.

(a)

(b)

Figure 4-27: Comparison of observed systematic error contribution 𝐴𝑜𝑏𝑠
𝑠𝑦𝑠 =

𝐴𝑒𝑥𝑝 −𝐴𝐼 −𝐴𝑝ℎ𝑦𝑠 to calculated systematics found from noise correlations 𝐴𝑐𝑎𝑙𝑐
𝑠𝑦𝑠. =

(𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼
− 1)𝐴𝑟𝑎𝑤 = (𝑤 − 1)𝐴𝑟𝑎𝑤 shown for each current unstabilized run. Slope

of 𝑑𝐴𝑟𝑎𝑤/𝑑𝐴𝐼 predicts the false asymmetry for unstabilized runs, the systematic
error is (𝑑𝐴𝑟𝑎𝑤/𝑑𝐴𝐼 − 1)𝐴𝑟𝑎𝑤. 𝐴𝑟𝑎𝑤 ∼ 𝐴𝑝ℎ𝑦𝑠 + 𝐴𝐼 , if 𝐴𝐼 is large, it dominates, if
𝐴𝐼 is small we still have 𝐴𝑝ℎ𝑦𝑠.

𝐴𝑓𝑎𝑙𝑠𝑒 in Production Runs: from Nonlinearity in Unstabilized Runs

The false asymmetry contribution to the transverse asymmetry 𝐴𝑛 from de-

tector nonlinearities can be estimated by 𝐴𝑓𝑎𝑙𝑠𝑒 = (1− 𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼
)𝐴𝑛 (note: systematic

on 𝐴𝑒𝑥𝑝 ∼ 𝐴𝑛 × 𝑃 is given by (𝑑𝐴𝑟𝑎𝑤/𝑑𝐴𝐼 − 1)𝐴𝑛 × 𝑃 , so the systematic on 𝐴𝑛

is given by (𝑑𝐴𝑟𝑎𝑤/𝑑𝐴𝐼 − 1)𝐴𝑛). The slope scale factor (1 − 𝑑𝐴𝑟𝑎𝑤

𝑑𝐴𝐼
) is obtained

from only the unstabilized runs with energy and position stabilization on and cur-

rent stabilization off. The current unstabilized runs to allow us to obtain decent
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precision on the slopes. The slope percent deviations from unity are in Tab. 4.2

data time calib. 𝑑𝐴𝑠𝑝𝐴

𝑑𝐴𝐼

𝑑𝐴𝑠𝑝𝐵

𝑑𝐴𝐼

𝑑𝐴𝑠𝑝𝐴

𝑑𝐴𝐼

𝑑𝐴𝑠𝑝𝐵

𝑑𝐴𝐼

set run # date original original recalib. recalib.

peds peds peds peds

config 1 run1 10-30-14:05 10-30 −1.9% −6.4% 0.45% −11.3%

run2 10-30-23:37 −0.9% −3.8% 1.6% −9.1%

run3 10-31-00:39 −1.4% −3.6% 1.1% −9.2%

run4 10-31-01:52 −2.2% −7.3% 0.3% −12.8%

run5 11-03-06:43 −1.5% −13.1% 1.2% −22.3%

config 2 run1 11-06-07:17 11-06 1.9% 0.9% 2.0% 0.7%

run2 11-06-09:05 2.7% 4.1% 2.9% 4.0%

config 3 run1 11-10-15:44 11-09 −4.4% 1.5% −4.8% −0.1%

run2 11-10-16:21 −2.8% 3.7% −3.2% 2.0%

run6* 11-12-08:07 −7.68%* 3.74%* −8.0%* 0.2%*

Table 4.2: Nonlinearity in unstabilized runs for spA and spB, for original pedestals
taken from current calibration runs and for pedestals after the recalibration pro-
cedure was performed. The recalibration procedure mitigated some of the larger
nonlinearities some, but not fully. (*)this run had position also unstabilized as
well as current and slopes were obtained from 6D regression

We tabulate the implied false-asymmetries in the stabilized production runs.

Below is a table (Tab. 4.3) showing that the results are significant, but also roughly

consistent with the PMT gain error estimates from the recalibration procedure.
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config 3 - B 2- B 1- B 1-A 2-A 3-A 2,3 -A

𝐴𝑛 -15.98 -20.67 -21.94 -23.87 -27.35* -30.43* -28.3

Non- −3% 2.5% −5.3±1.9% 0.9% 2.3% −5% −0.24%

linearity [1−4%] [𝑢𝑝 𝑡𝑜 −13%] [2−3%] [−3.6 𝑡𝑜−7.7%]

𝐴𝑓𝑎𝑙𝑠𝑒 0.5 -0.5 1.1[𝑢𝑝 𝑡𝑜 1.7] -0.22 -0.65 1.4 0.06

Table 4.3: Summary of 𝐴𝑓𝑎𝑙𝑠𝑒(𝑝𝑝𝑚) for different configurations using unstabilized
run slopes. 𝐴𝑛 are taken from final analysis shown in [208] (*)𝐴𝑛 taken from raw
analysis

4.9.4 𝐴𝑓𝑎𝑙𝑠𝑒 in Production Runs: from RMS method

One of the symptoms of non-linearity in the detectors was that the decrease

in gain coincided with a narrowing of RMS widths in asymmetry distributions.

When there is a pedestal error, it shows up in the RMS widths. Just as 𝐴𝑒𝑥𝑝 =

𝐴𝑟𝑎𝑤/(𝑑𝐴𝑟𝑎𝑤/𝑑𝐴𝑡𝑟𝑢𝑒), also 𝐴𝑟𝑚𝑠,𝑡𝑟𝑢𝑒 = 𝐴𝑟𝑚𝑠,𝑟𝑎𝑤/(𝑑𝐴𝑟𝑎𝑤/𝑑𝐴𝑡𝑟𝑢𝑒). So we can esti-

mate the non-linearity as 𝑑𝐴𝑟𝑎𝑤/𝑑𝐴𝑡𝑟𝑢𝑒 − 1 ≈ 𝐴𝑟𝑚𝑠,𝑟𝑎𝑤/𝐴𝑟𝑚𝑠,𝑡𝑟𝑢𝑒 − 1 and we can

estimate the false asymmetry contribution to the transverse asymmetry as:

𝐴𝑓𝑎𝑙𝑠𝑒 ≈ 𝐴𝑟𝑎𝑤(𝐴𝑟𝑚𝑠,𝑟𝑎𝑤/𝐴𝑟𝑚𝑠,𝑡𝑟𝑢𝑒 − 1)

So, instead of using correlations from infrequent, intermittent unstabilized runs

to estimate the nonlinearities through 𝑑𝐴𝑑𝑒𝑡/𝑑𝐴𝐼 , we can continuously use the

RMS detector asymmetries in all the stabilized production runs. For 𝐴𝑟𝑚𝑠,𝑡𝑟𝑢𝑒, we

assume that immediately after a current calibration run, our pedestal are correct

and the RMS 𝐴𝑟𝑚𝑠,0 is the ’true’ RMS appropriate for the rates. This assumption

puts a lower bound on the magnitude of false asymmetries calculated. The false

asymmetry could be larger than this method estimates.

The following figures show the RMS ratios 𝐴𝑟𝑚𝑠/𝐴𝑟𝑚𝑠,0 and the false asym-

metry 𝐴𝑓𝑎𝑙𝑠𝑒 ≈ 𝐴𝑟𝑎𝑤(𝐴𝑟𝑚𝑠/𝐴𝑟𝑚𝑠,0 − 1) over time for every production run in each

configuration. On the left, spekA RMS ratio is shown in pink and the spekB
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RMS ratio is shown in green. On the right, the spekA systematic false asymmetry

estimate for each run is shown in red, and the spekB systematic false asymmetry

is shown in blue.

(a) configuration 1: spA 23.5𝑜 (𝑄2 = 0.039𝐺𝑒𝑉 2/𝑐2) & spB 20.61𝑜 (𝑄2 = 0.041𝐺𝑒𝑉 2/𝑐2)

(b) configuration 2: spA 25.9𝑜 (𝑄2 = 0.049𝐺𝑒𝑉 2/𝑐2) & spB 17.65𝑜 (𝑄2 = 0.03𝐺𝑒𝑉 2/𝑐2)

(c) configuration 3: spA 25.9𝑜 (𝑄2 = 0.049𝐺𝑒𝑉 2/𝑐2) & spB 15.11𝑜 (𝑄2 = 0.023𝐺𝑒𝑉 2/𝑐2)

Figure 4-28: RMS method : spA systematic in red, spB systematic in blue, spA
rms ratio in pink, spB rms ratio in green.

For each configuration the overall false asymmetry is estimated by combining

all the runs together, weighted by their uncertainties, and the results are shown

in Table 4.4. For the combined 2,3 -A configuration, we weight configuration 2-A

and 3-A by the number of runs in each, there being approximately twice as many

runs in configuration 2-A as there are in 3-A resulting in a near cancellation in the

false asymmetry estimate. Because of the assumption that the RMS immediately

after a current calibration run is the ’true’ RMS, these estimates should be treated

as a lower bound on the false asymmetry due to non-linearity.
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config 3 - B 2- B 1- B 1-A 2-A 3-A 2,3 -A

𝐴𝑓𝑎𝑙𝑠𝑒 0.144 -0.0532 1.25 0.102 0.154 -0.274 0.005

Table 4.4: Systematic error on 𝐴𝑛 (ppm) from non-linearity as estimated by change
in RMS asymmetry distributions

Autocorrelations

An auto correlation coefficient R is defined as

𝑅(𝑘) =
1

(𝑛− 𝑘)𝜎2
𝑦

𝑛−𝑘∑︁
𝑡=1

(𝑦[𝑡]− 𝑦)(𝑦[𝑡+ 𝑘]− 𝑦)

where the first order auto correlation coefficient is given by R(1)

𝑅(1) =
1

(𝑛− 1)𝜎2
𝑦

𝑛−1∑︁
𝑡=1

(𝑦[𝑡]− 𝑦)(𝑦[𝑡+ 𝑘]− 𝑦)

A non-zero autocorrelation coefficient R(1), which correlates a data point with

the one before it, is symptomatic of a ’smoothing’ of our detector signal between

successive helicity states. Autocorrelation decreases the magnitude of the mea-

sured asymmetry. It could occur in the detector signals, if for example the integra-

tion window was set incorrectly, so each window would not correspond to a single

helicity state. Or it could occur if the PMT response had a very long time compo-

nents, possibly due to the PMT ’dying’. This is a potentially important quantity

to consider. It manifests itself as a suppression of the measured asymmetry, in a

manner nearly identical to a non-linearity and the methods we used to account

for non-linearity should cover any effects associated with auto-correlations.

The effect of the auto-correlation coefficient R(1) on data can be described as

follows:

𝑌 [𝑡] = (1− 𝑤)𝑋[𝑡] + 𝑤[𝑋[𝑡− 1]

where Y is the smoothed detector signal and X is what the detector signal would be



4.9. NON-LINEARITIES 183

if autocorrelation were properly 0.This results in the measured asymmetry being

suppressed by a factor of:

𝐴𝑌 = 𝐴𝑋(1−𝑅)

for helicity sequences . . . 0)(01) or . . . 1)(10).

𝐴𝑌 = 𝐴𝑋(1− 2𝑅)

for helicity sequences . . . 1)(01) or . . . 0)(10).

The prevalence of these sequences is determined by the helicity pattern: pairs,

quartets, octets, etc. So, there is a range of correction factors 1R-2R. 𝐴𝑚𝑒𝑎𝑠 is

80-90% of what it should be for autocorrelation coefficient for 0.1 for example. In

this case, the helicity pattern is formed in quartets.

Hence, 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = (1−𝑅)𝐴𝑡𝑟𝑢𝑒 𝑡𝑜 (1− 2𝑅)𝐴𝑡𝑟𝑢𝑒. Autocorrelation coefficients

were observed to be greater for spectrometer B. First order autocorrelation coef-

ficients of 0.1 were observed in spectrometer B data in configuration 1 [224] [225],

where coefficients for k=1 (i.e 1 window behind) for 17 runs using N=10,000 data

points were determined. For these 17 runs, the spBs were 7% ± (2%/
√
17) cor-

related with previous window and spA’s were 2% ± (1%/
√
17). This implies the

spekB PMT detectors could suffer a 10 − 20% systematic error in the measured

asymmetry. For 𝐴𝑠𝑝𝐵 = −20ppm, 𝑠𝑝𝐵𝑅 = 0.08, the systematic error for spB is

1.6-3.2ppm.

The autocorrelation manifests in a manner identical to the way a pedestal error

manifests itself. So the diagnostics we used and corrections we made for pedestal

error also would fix this potential autocorrelation issue.
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4.9.5 𝐴𝑓𝑎𝑙𝑠𝑒 in Production Runs: Summary of Error Esti-

mates

We accounted for systematic errors in the transverse asymmetry measurement

due to detector non-linearities using several different methods: (1) through re-

calibration uncertainties, (2) using unstabilized run correlations and (3) with an

RMS tracking method described in previous sections. Table 4.5 summaries all

the results from these 3 methods. We make a conservative decision to use results

of the unstabilized run method, because it gives the largest overall estimate for

non-linearity error and also because it is the most direct method which makes the

fewest assumptions. The systematic error due to PMT nonlinearity is shown in

the bottom line of Table 4.5.

Spectrometer B B B A A A A

Setup 3 2 1 1 2 3 2,3

𝑄2(𝐺𝑒𝑉 2/𝑐2) 0.023 0.03 0.041 0.039 0.049 0.049 0.049

𝐴𝑛 -15.98 -20.67 -21.93 -23.88 -28.30 -28.30 -28.30

Nonlinearity −3% 2.5% −5.3 0.9% 2.3% −5% −0.24%

𝐴𝑓𝑎𝑙𝑠𝑒(𝑈𝑛𝑠𝑡𝑎𝑏. 𝑟𝑢𝑛𝑠) 0.5 -0.5 1.1 -0.22 -0.65 1.4 0.06

𝐴𝑓𝑎𝑙𝑠𝑒(𝑅𝑀𝑆 𝑚𝑒𝑡ℎ𝑜𝑑) 0.144 -0.0532 1.25 0.102 0.154 -0.274 0.005

PMT gain error 0.380 0.130 1.100 0.170 - - 0.030

(𝑅𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛)

Nonlinearity Error 0.50 0.50 1.10 0.20 - - 0.20*

Table 4.5: Summary of systematic errors (in ppm) due to non-linearity from
various methods of estimation. The values ultimately used were those obtained
from the unstabilized runs (*) For 2,3-A, 0.20ppm is used instead of 0.06ppm
because this small systematic comes from an approximate cancellation of larger
systematics in configurations 2-A and 3-A and is therefore not entirely reliably
small. The argument here is that the systematic for combined 2,3-A isn’t likely
to be smaller than the systematic for 1-A, so the systematic for 1-A is used for
configuration 2,3-A
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4.9.6 Raw Data

The raw experimental asymmetry Araw was extracted for both spectrometers

A and B in each 𝑄2 setup.

(a) configuration 1: spA 23.5𝑜 (𝑄2 = 0.039𝐺𝑒𝑉 2/𝑐2) & spB 20.61𝑜 (𝑄2 =
0.041𝐺𝑒𝑉 2/𝑐2)

(b) configuration 2: spA 25.9𝑜 (𝑄2 = 0.049𝐺𝑒𝑉 2/𝑐2) & spB 17.65𝑜 (𝑄2 =
0.03𝐺𝑒𝑉 2/𝑐2)

(c) configuration 3: spA 25.9𝑜 (𝑄2 = 0.049𝐺𝑒𝑉 2/𝑐2) & spB 15.11𝑜 (𝑄2 =
0.023𝐺𝑒𝑉 2/𝑐2)

Figure 4-29: Raw summed detector asymmetries (GVZ sign accounted for) for
spA (red) and spB (blue) for each spectrometer configuration.

The sign change from periodic insertion of additional 𝜆/2-wave plate has been

accounted for. Fig. 4-29 shows the sign-corrected Araw in each spectrometer
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for the combined PMT signal in spectrometer A (red points) and spectrometer

B (blue points) at various 𝑄2, where the momentum range for each setup is also

indicated.

Certain runs or events within runs were excluded based on irregularities or

sudden large changes in at least one of the following parameters: X21, Y21, X26,

Y26, E0, I21, I13, A1 and B1. Most frequently, the irregularity was a sudden

shut-off of beam current, a ’beam trip’. Runs with beam trips were not excluded

entirely, only the portion of the run without current was discarded.

4.10 Results 570MeV Data

Systematic corrections were made to𝐴𝑟𝑎𝑤 for beam polarization and polarization-

correlated fluctuations to obtain the final results on the transverse asymmetry:

𝐴𝑛 =
𝐴𝑟𝑎𝑤 − 𝐴𝐼 − 𝐴𝐺𝐿 − 𝜕𝜎

𝜕𝑋
Δ𝑋 − 𝜕𝜎

𝜕𝑌
Δ𝑌 − 𝜕𝜎

𝜕Θ
ΔΘ . . .

𝑃⊥

There is an implementation for the correction of false asymmetries created by:

Beam Current (I), beam position (X and Y), beam angles (Φ and Θ), integration

gate (GL), and beam polarization.The sensitivities for beam position and angle

were calculated and taken from a simulation, while the sensitivities for beam cur-

rent were measured. Finally, the experimental asymmetry 𝐴𝑒𝑥𝑝 was normalized to

the electron beam polarization to extract the physics asymmetry 𝐴𝑛
6. The uncer-

tainty in the polarization measurement contributes significantly to the systematic

error, and in some configurations is the largest contributor. The experimentally

determined values for all four 𝑄2 kinematics and the corresponding statistical and

systematic uncertainties are summarized in Table 4.6.
6The measurement of polarization 𝑃𝑒 results in a correction to the physics asymmetry on the

order of 𝐴𝑛 ≈ 𝐴𝑟𝑎𝑤/𝑃 = 𝐴𝑟𝑎𝑤/(1 + (𝑃 − 1)) ≈ 𝐴𝑟𝑎𝑤(1 + (1− 𝑃 )) → 𝐴𝑓𝑎𝑙𝑠𝑒 = (1− 𝑃 )𝐴𝑟𝑎𝑤 ≈
(1− 𝑃 ) * 𝑃𝐴𝑛
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Spec. B B B A A

Setup 3 2 1 1 2,3

𝑄2(𝐺𝑒𝑉 2/𝑐2) 0.023 0.03 0.041 0.039 0.049

𝐴𝑛 -15.98 -20.67 -21.93 -23.88 -28.30

𝛿𝐸 0.00(0.01) 0.00(0.01) 0.00(0.00) 0.00(0.01) 0.00(0.00)

𝐴𝐼 -0.68(0.01) 0.86(0.02) -0.31(0.01) -0.31(0.01) 0.28(0.01)

Beam -0.02(0.00) -0.01(0.00) 0.02(0.01) -0.07(0.02) -0.001(0.01)

Gate Length -0.01(0.01) 0.00(0.01) 0.01(0.01) 0.01(0.01) 0.00(0.01)

𝑃𝑒 meas. -3.42(0.24) 3.18(0.38) 3.67(0.47) 3.99(0.52) -4.95(0.48)

PMT gain -(0.50) -(0.50) -(1.10) -(0.20) -(0.20)

Syst. error 0.55 0.63 1.20 0.55 0.52

Stat. error 1.06 0.96 1.52 0.97 1.37

Table 4.6: Systematic errors are added in quadrature to obtain total systematic
error [203]. Values in parenthesis are uncertainties, values not in parenthesis are
systematic corrections to measured asymmetries.

The final results on the transverse asymmetry measurement are shown in Fig.

4-30. The black theoretical curve is the model of [210], based on low 𝑄 << 𝐸/𝑐

approximations in forward scattering. The transverse asymmetry from the inter-

ference of the one-photon and two-photon exchange amplitudes can reasonably be

described at slightly larger scatting angles by

𝐴𝑛 ∼ 𝐶0 · 𝑙𝑜𝑔(
𝑄2

𝑚2
𝑒𝑐

2
) · 𝐹𝐶𝑜𝑚𝑝𝑡𝑜𝑛(𝑄

2)

𝐹𝑐ℎ(𝑄2)

representing leading 𝑄2 behavior and neglecting ∼ 𝑄2/𝐸2 corrections [208]. 𝐶0 is

calculated from the photoabsorption cross-section for a given target. The ratio of

the Compton to charge form factors estimated based on Compton slope parameter
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data in protons and 4He, which indicate

𝐹𝐶𝑜𝑚𝑝𝑡𝑜𝑛(𝑄
2)

𝐹𝑐ℎ(𝑄2)
≈ exp(−4𝑄2/𝐺𝑒𝑉 2)

a target independent description. The unknown Compton form factor for 12C was

modeled in Fig. 4-30 as [208]

𝐹𝐶𝑜𝑚𝑝𝑡𝑜𝑛(𝑄
2) = 𝑒𝑥𝑝(−𝑅2

𝐶ℎ𝑄
2/6)× 𝑒𝑥𝑝(−4𝑄2/𝐺𝑒𝑉 )

Figure 4-30: Extracted transverse asymmetries 𝐴𝑛 for the detectors placed in
spectrometer A (red points) and spectrometer B (blue points) versus Q2. The
width of the given boxes indicates the covered Q2 range. The statistical and
systematic uncertainties are given by the error bars and the height of the boxes,
respectively. The theoretical calculation of Ref. [210] (black line) is shown for
comparison. The given bands belong to the uncertainty of the Compton slope
parameter of 10% (dark grey) and 20% (light grey) [208]

The grey curves are 10% and 20% error bands on the calculation from uncer-

tainty in the Compton slope parameter. The data barely fits in the 20% uncer-

tainty of the Compton slope parameter, indicating the that ratio of the Compton

to charge form factor is not target independent even for a light nucleus like 12C

and and heavier nuclei may have an even larger deviations. Notably, similar mod-

els failed for 208Pb in PREXI [209]. In PVES experiments, like PREX, these
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two-photon exchange processes provide an important contribution to the system-

atic uncertainties. Future measurements at MAMI will investigate the transverse

asymmetry for heavier nuclei, like Pb, at the same 𝑄2 values using similar exper-

imental methodology.
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Chapter 5

Beam Studies for PREXII and

MOLLER

Monitoring of beam energy, current, position, and angle is critical for both

PREXII and MOLLER. Both experiments compare opposite helicity electrons

and measure changes in scattering rates. Thus, any change in the polarized beam,

including energy/position/intensity changes, correlated with the helicity reversal,

is a source of systematic error giving rise to a false asymmetry. Furthermore,

beam monitor resolution and noise in the measurement of beam current, energy,

and position impacts the statistical uncertainty of the experimental result through

the relation 𝐴𝑟𝑎𝑤 = 𝐴𝑑𝑒𝑡 − 𝐴𝑄 + 𝛼Δ𝐸 +
∑︀

𝑖 𝛽𝑖Δ𝑥𝑖, where 𝐴𝑟𝑎𝑤 is the beam cur-

rent normalized detector asymmetry, 𝐴𝑄 is the beam charge asymmetry, Δ𝐸 is

the helicity correlated energy difference, Δ𝑥𝑖 are the helicity correlated position

differences, and 𝛼, 𝛽𝑖 are the coupling constants. In this chapter we detail the

various types of beam monitors to be used for PREXII and MOLLER and show

beam study results which demonstrate achievement of the desired resolution for

these experiments.
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5.1 Parity Quality Beam

Parity Quality Beam (PQB) goals include small helicity correlated beam asym-

metry mean values (means), as well as reasonably small amounts of helicity cor-

related beam noise (widths). In terms of beam monitoring, sufficient resolution

in BCM monitors and BPM monitors is desirable. 2015-2016 beam studies eval-

uated 𝐴𝑞 intensity asymmetry widths, BCM resolution, BPM widths, and their

dependence on current, energy, and frequency.

Helicity correlated beam asymmetries, such as intensity asymmetry 𝐴𝑞 and

position differences 𝐷𝑥 and 𝐷𝑦, are evaluated from taking the means of distribu-

tions measured by the beam monitor as shown in Fig. 5-1. For PQB, in terms

of means, we want to minimize helicity correlated changes: Aq and position dif-

ferences (<100ppb , <1nm, spot size asymmetry Δ𝜎/𝜎 < 10−4). Widths of the

distributions are the RMS fluctuations after parity filtering, which involves inte-

gration and taking pair differences, suppressing much of the frequency content of

the noise. For PQB, there is a balance to be struck: we want small widths to

reduce statistical error on measurements of mean values, but we also want suf-

ficient widths to establish correlations with monitors (i.e. slopes) and perform

regression to get corrections (i.e. shifts) to reduce systematic error contributions

to asymmetry from helicity correlated beam differences (i.e. means) as shown in

Fig. 5-1. This is critical to estimating and subtracting out false asymmetries.

Figure 5-1: Linear regression method for evaluating and correcting false asym-
metries from HCBA [183]
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5.2 Beam Current Monitor

BCMs are critical to parity experiments not only for systematic beam intensity

asymmetry corrections, but also for reaching the desired statistics. Beam current

fluctuations contribute significantly to the detector noise in the asymmetry mea-

surement. The current must be normalized out on a helicity-pair to helicity-pair

basis to achieve the desired statistical precision during experimental running. The

schematic diagram of the HallA BCM system is presented in Fig. 5-2.

Figure 5-2: The schematic diagram of the BCM system [96]

The parts of the BCM system used in parity experiments are the User and the

1MHz system. The 1MHz system consists of two stainless steel pill-box cavities,

tuned and critically coupled (Q∼1500) to the 1497 MHz component of the beam.

The RF signal is frequency down-converted and sent to an RMS-DC converter

which provides a DC output proportional to the beam current to be sent to the
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DAQ’s.

The 1MHz BCMs require periodic calibrations against a very linear device.

The BCM calibration pedestals are determined using the Unser current monitor,

which is designed to be very linear at short time scales (but drifts over several

minutes). The Unser is a parametric current transformer (PCT), sensitive to

the DC component of the magnetic field generated by the beam current around

the beam pipe, whose nominal response to beam current is determined by its

transformer [181].

5.2.1 BCM resolution

Resolution can be approximately assessed via taking “double differences” be-

tween alike beam monitors. BCM resolution 𝜎𝑟𝑒𝑠 can be assessed from double

difference widths 𝜎𝐷𝐷 of upstream and downstream BCMs as follows. The dou-

ble difference asymmetry is given by taking the difference between the charge

asymmetry as measured by the upstream BCM and the downstream BCM

𝐴𝐷𝐷 = 𝐴𝑈𝐵𝐶𝑀 − 𝐴𝐷𝐵𝐶𝑀

This cancels out the real beam noise from intensity fluctuations and leaves the

beam monitor electronics noise. Then, the RMS width of the double difference is

related to the BCM resolution (assuming no common-mode noise between the two

separate monitors)

𝜎𝐷𝐷 =
√︁
𝜎2
𝑟𝑒𝑠,𝑈𝐵𝐶𝑀 + 𝜎2

𝑟𝑒𝑠,𝐷𝐵𝐶𝑀

Assuming, since the two monitors are alike, that they have the same resolution,

we obtain

𝜎𝑟𝑒𝑠 = 𝜎𝐷𝐷/
√
2



5.2. BEAM CURRENT MONITOR 194

Figure 5-3: Correlations between beam asymmetry as measured by upstream
and downstream BCMs for the analog 1MHz receivers and the digital receivers.
Run2333,4.4GeV,12uA [183]

Examining correlations and common mode noise, as in Fig: 5-3 , helps estab-

lish relationships between monitors and correct measured asymmetries. However,

uncorrelated noise (i.e. electronics noise) hurts statistical error via reducing the

monitor resolution. For PQB, we want good resolution to minimize our statistical

error. We need to know our resolution to determine whether our widths make

sense and which monitors are most useful to us during experimental running.

5.2.2 Current Dependence

Beam Asymmetry widths as measured in the Hall and in the injector at various

currents are shown in Table 5.4 for a 30Hz helicity flip rate. Higher currents

generally tend to be associated with smaller asymmetry RMS widths. PREXII

will run at 70𝜇𝐴 and the 30Hz widths appear to be reasonable as compared with

previous parity experiments.

Run Beam Energy Current Aq RMS BCM

2358 8.8GeV 13.7𝜇A 310ppm 1MHz HallA

2488 8.8GeV 60𝜇A 122ppm 1MHz HallA

2494 8.8GeV 45𝜇A 118ppm 1MHz HallA

1905 injector 8.8GeV 60𝜇A 224ppm Injector 0L02

Table 5.1: These are small beam charge asymmetry widths (30Hz) [183]
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The current dependence of the BCM resolution (as assessed from double dif-

ference widths of upstream and downstream analog 1MIHz BCMs) is shown in

Fig. 5-4. The resolution of the 1MHz BCM system improves with higher current.

For 30Hz, at 60uA, we have a resolution of 11ppm, which is encouraging for

MOLLER. During beam studies, the analog BCMs behaved well most of the time

and the resolution looks sufficient for PREXII (>70uA, 120Hz)

Figure 5-4: BCM resolution vs. current [183]

5.2.3 Small Angle Monitors

Small Angle Monitors (SAMs) are 8 quartz detectors with light guides and

photo-multiplier tubes placed around the beamline downstream of the pivot/target

region as shown in Fig. 5-5. The SAM symmetric design helps disentangle helicity

correlated beam position and angle differences. For PREXII, they serve as an

important secondary beam monitor for cross-checks of beam charge and position,

and potentially beam halo as well. Additionally, the SAMs bear similarity to

the detectors which will be used for MOLLER. Their operation during PREXII

will serve as an important stepping stone towards towards obtaining a better

understanding of beam and detector behavior in preparation for MOLLER.



5.2. BEAM CURRENT MONITOR 196

Figure 5-5: SAMs: 8 quartz detectors with light guides placed around beam line.
During testing in 2015-2016, only two of the SAMs (2,6) had unity gain bases for
the PMT’s, while the other 6 had higher gain bases for a large dynamic range
during testing. During PREXII, the rates are expected to be very high, so all of
the SAMs will have unity gain PMT bases.

SAM’s were used in 2015-2016 beam studies to verify the resolution of the

1MHz BCM system. SAMs are sensitive to beam current fluctuations as shown

in Fig. 5-6 and beam position fluctuations as shown in Fig. 5-7. SAM pairs on

opposite sides of the beamline tend to have near equal and opposite dependence

on beam position motion.

Figure 5-6: SAM Asymmetry vs. BCM Aq. SAMs are normalized to a BCM to
eliminate BCM correlated noise. 𝐴𝑛𝑜𝑟𝑚 = 𝐴𝑆𝐴𝑀 − 𝐴𝑞.
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Figure 5-7: SAM Asymmetry vs BPM position difference 4bx. Regress with
respect to BPM position differences Dx, Dy to eliminate BPM correlated noise.
Combinations of SAM pairs such as SAM1+SAM5 or SAM3+SAM7 also tend to
cancel BPM correlated noise.

By examining SAM pairs (SAM1,5 in Fig. 5-5) which are normalized to mea-

sured beam current, and regressed with respect to several BPMs to reduce beam

position noise, we assess the BCM resolution in the following way 1:

𝑆+ = 𝐴𝑛𝑜𝑟𝑚,𝑆𝐴𝑀1 + 𝐴𝑛𝑜𝑟𝑚,𝑆𝐴𝑀5 = 𝐴𝑆𝐴𝑀1 + 𝐴𝑆𝐴𝑀5 − 2𝐴𝐵𝐶𝑀

𝑆− = 𝐴𝑛𝑜𝑟𝑚,𝑆𝐴𝑀1 − 𝐴𝑛𝑜𝑟𝑚,𝑆𝐴𝑀5 = 𝐴𝑆𝐴𝑀1 − 𝐴𝑆𝐴𝑀5

𝜎2
+ = 𝜎2

1 + 𝜎2
5 + 4𝜎2

𝐵𝐶𝑀 𝜎2
− = 𝜎2

1 + 𝜎2
5

𝜎𝑟𝑒𝑠,𝐵𝐶𝑀 =
1

2

√︁
𝜎2
+ − 𝜎2

− ≈ 1√
2
(𝜎𝑈𝐵𝐶𝑀 − 𝜎𝐷𝐵𝐶𝑀)

Performing these computations with the SAMs provided independent confirma-

tion of the BCM resolution obtained by taking double-differences. For a particular

solid target run, we compare the double-difference implied BCM resolution with
1Note: while regressing does take out some beam position noise, it introduces some beam

position monitor noise. So strictly speaking, for SAMs with greater amounts of beam motion,
this method may result erroneously in the sum having a narrower width than the subtraction.
Without regression (assuming SAM1,5 have opposite dependence on position): 𝑆− = 𝐴𝑆𝐴𝑀1 −
𝐴𝑆𝐴𝑀5 + 2

∑︀
𝑖 𝛽𝑖Δ𝑋𝑖 , 𝜎− =

√︁
𝜎2
1 + 𝜎2

5 + 4
∑︀

𝑖 𝛽
2
𝑖 𝜎

2
Δ𝑋𝑖

. With regression: 𝑆− = 𝐴𝑆𝐴𝑀1 −
𝐴𝑆𝐴𝑀5 + 2

∑︀
𝑖(𝛽𝑖Δ𝑋𝑖 − 𝛽𝑟𝑒𝑔

𝑖 Δ𝑋𝐵𝑃𝑀
𝑖 ) . If regression obtains the correct slopes 𝛽𝑟𝑒𝑔

𝑖 = 𝛽𝑖 and
Δ𝑋𝑖 and Δ𝑋𝐵𝑃𝑀 are correlated except for BPM electronics noise Δ𝑋𝐵𝑃𝑀

𝑖 = Δ𝑋𝑖 + 𝜎𝐵𝑃𝑀 ,
then 𝜎− =

√︀
𝜎2
1 + 𝜎2

5 + 4
∑︀

𝑖 𝛽
2
𝑖 𝜎

2
𝐵𝑃𝑀 which may be greater than 𝜎+ =

√︀
𝜎2
1 + 𝜎2

5 + 4𝜎2
𝐵𝐶𝑀



5.2. BEAM CURRENT MONITOR 198

that obtained using SAM pairs. Fig. 5-8 shows the distributions containing the

RMS values used in the computations of BCM resolution in Table. 5.2. 2

(a) (b) (c)

Figure 5-8: Run 2347: DVCS carbon target, 30Hz, 2.2GeV, 18.6𝜇𝐴. (a) Asymme-
try double difference between upstream and downstream 1MHz BCMs 𝐴𝑈𝐵𝐶𝑀 −
𝐴𝐷𝐵𝐶𝑀 (b) Sum of normalized SAM1,5 asymmetries 𝐴𝑛𝑜𝑟𝑚,𝑆𝐴𝑀1 +𝐴𝑛𝑜𝑟𝑚,𝑆𝐴𝑀5 =
𝐴𝑆𝐴𝑀1+𝐴𝑆𝐴𝑀5−2𝐴𝐵𝐶𝑀 (c) Difference between normalized SAM1,5 asymmetries
𝐴𝑛𝑜𝑟𝑚,𝑆𝐴𝑀1 − 𝐴𝑛𝑜𝑟𝑚,𝑆𝐴𝑀5 = 𝐴𝑆𝐴𝑀1 + 𝐴𝑆𝐴𝑀5

computation RMS

𝜎𝐷𝐷
𝐵𝐶𝑀 : (𝐴𝑈𝐵𝐶𝑀 − 𝐴𝑈𝐵𝐶𝑀)/

√
2 RMS 25.3ppm

𝜎+: 𝐴𝑟𝑒𝑔𝑟𝑒𝑠𝑠
𝑛𝑜𝑟𝑚,𝑆𝐴𝑀1 + 𝐴𝑟𝑒𝑔𝑟𝑒𝑠𝑠

𝑛𝑜𝑟𝑚,𝑆𝐴𝑀5 RMS 211.5ppm

𝜎−: 𝐴𝑟𝑒𝑔𝑟𝑒𝑠𝑠
𝑛𝑜𝑟𝑚,𝑆𝐴𝑀1 − 𝐴𝑟𝑒𝑔𝑟𝑒𝑠𝑠

𝑛𝑜𝑟𝑚,𝑆𝐴𝑀5 RMS 203.1ppm

𝜎𝐵𝐶𝑀 = 1
2

√︀
𝜎2
+ − 𝜎2

− 29.5ppm

Table 5.2: Verification of BCM resolution obtained by taking double-differences
𝜎𝐷𝐷
𝐵𝐶𝑀 using SAM computations.

The results of Table 5.2 show consistency between the double-difference res-

olution 𝜎𝐷𝐷
𝐵𝐶𝑀 and the BCM resolution obtained via SAM computations 𝜎𝐵𝐶𝑀 .

The 25-30ppm BCM resolution observed is sufficient for PREXII when performed

at 120Hz. In short, SAM’s were successfully used in 2015-2016 beam studies to

verify the resolution of the 1MHz BCM system.
2 Run 2347, carbon 2.2GeV, 18.6uA, 30Hz, regressed with bpms 4a,4b,12 x and y , maxevent

5000
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5.2.4 Energy Dependence

MOLLER will run at 11GeV and the energy dependence of the beam asym-

metry RMS width is important to assess for statistical reasons. Regarding energy

dependence, we map out a variety of measurements of the beam asymmetry RMS

width 𝜎𝐴𝑞 at different energies, currents, and effective frequencies, shown in Fig.

5-9. Higher energies don’t appear to bear much relationship to the asymmetry

widths observed, while higher currents may generally tend to be associated with

smaller widths. PREXII will run at 1GeV, so the energy dependence doesn’t mat-

ter much for that experiment. However, MOLLER will run at 11GeV and so the

effect of multiple passes in the accelerator on the intensity asymmetry noise was an

important parameter to assess. There is no evidence that increasing the number

of passes increases the beam asymmetry noise.

(a) (b)

Figure 5-9: [183]

5.2.5 Frequency Analysis

Choice of helicity flip rate can strongly impact the ultimate precision of a par-

ity experiment. MOLLER will run at a 2kHz flip rate, while PREXII will run at

a 120Hz or 240Hz flip rate. Both the electron beam noise and the monitor resolu-

tion depends on the chosen helicity flip rate. Higher frequencies tend to result in

smaller widths (scaled to
√
𝑁 counting statistics). Ordinarily, we would perform

studies by actually physically changing the helicity flip rate in the machine, but
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this procedure interferes with current running experiments, which had to operate

at 30Hz during 2015-2016 beam studies. So, we found a way to ’mimic’ higher

helicity flip rates by oversampling the data collection rate. The vqwk-ADCs (used

during Qweak), by default, oversample by 4. Over the course of a helicity window,

instead of integrating the entire window and creating 1 data point, these ADCs

integrate over 4 successive separate blocks, 𝑏1, 𝑏2, 𝑏3, 𝑏4, creates 4 data points as

well as evaluating the total 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 to obtain the integrated value for the

entire helicity window. In data analysis, we can examine higher sample rates by

accessing these sub-blocks behind the primary data stream as shown in Fig. 5-10.

By taking block-differences between adjacent blocks, we can simulate taking he-

licity differences at a higher helicity flip rate which would have shorter integration

periods. At a 30Hz helicity flip rate, with the integration window set to ∼ 33𝑚𝑠,

by examining sub-blocks, we can assess 60Hz and 120Hz frequencies by examining

combinations of sub-blocks corresponding to ∼ 16𝑚𝑠 and ∼ 8𝑚𝑠. By examining

helicity window sub-blocks, can mimic 60Hz and 120Hz Pockels Cell flip rates.

Generally, if we set the integration time on the ADC to 𝑇𝑖𝑛𝑡, this corresponds to

a base helicity flip rate frequency of 1/𝑇𝑖𝑛𝑡, the vqwk ADC sub-blocks can access

𝑓 = 1/𝑇𝑖𝑛𝑡, 2/𝑇𝑖𝑛𝑡, 4/𝑇𝑖𝑛𝑡. By decreasing integration time on the ADC and exam-

ining sub-blocks, we can even access ∼ 1𝑘𝐻𝑧 frequencies. We note that during

2015-2016 running, the helicity board was set to free clock instead of line synch

mode 3 , so frequencies were not exact multiples of or in phase with the 60Hz line.

The 60Hz noise was not filtered out of the data as it normally would be and it

manifested as a beat frequency in the 120Hz sub-block analysis. By doing a quad-

like combination of sub-blocks, we could manually filter out the 60Hz beating and

mimic a true line-synced 120Hz flip rate as shown in Fig. 5-10
3though in 2019 we discovered linesynch wasn’t working and wasn’t staying locked all the

time
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Figure 5-10: Sub-block analysis [183]

5.2.6 Frequency Dependence

We studied both the electron beam noise and the monitor resolution depen-

dence on the effective helicity flip rate. The frequency dependence of the beam

asymmetry 𝐴𝑞 RMS width is shown in Table 5.4. When the width is scaled by
√
𝑁 counting statistics, we clearly observe that higher frequencies tend to result

in smaller widths. This is also the case for the double-differences widths which as-

sess the BCM resolution as shown in Table 5.4. Double difference widths in 1MHz

BCM system beats
√
𝑁 statistics from the number of samples in the integration

time and as we increase the repetition rate, we are ’winning’ in that the level of

noise at 30Hz is more than at 60Hz, is more than at 120Hz.

These results are encouraging for PREXII and for MOLLER. For PREXII,

based on these results, we will consider running at 120Hz or even at 240Hz, since

both the resolution of analog BCM system and the beam asymmetry width im-

proves with higher frequency.

Run 1/𝑇𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 𝑓 𝑅𝑀𝑆𝐴𝑞 sub-block 𝑅𝑀𝑆𝐴𝑞/
√
𝑓

# Hz 𝐻𝑧 ppm analysis ppm/
√
𝐻𝑧

1905 30 30 208.1 Pairsynch=0 38.0
1905 30 60 273.1 (𝑏1+𝑏2)−(𝑏3+𝑏4)

𝑏1+𝑏2+𝑏3+𝑏4
35.3

1905 30 120 212.7 1
2
( 𝑏1−𝑏2
𝑏1+𝑏2

− 𝑏3−𝑏4
𝑏3+𝑏4

) 19.42
1902 284 568 643.5 (𝑏1+𝑏2)−(𝑏3+𝑏4)

𝑏1+𝑏2+𝑏3+𝑏4
27.45

1902 284 1136 531.3 𝑏1−𝑏2
𝑏1+𝑏2

15.81

Table 5.3: The frequency dependence of the beam asymmetry 𝐴𝑞 RMS width.
8.8GeV, 60𝜇𝐴 [183]. 1

2
( 𝑏1−𝑏2
𝑏1+𝑏2

− 𝑏3−𝑏4
𝑏3+𝑏4

) corresponds to 60Hz filtered sub-block anal-
ysis.
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frequency Double Difference sub-block 𝑅𝑀𝑆𝐷𝐷/
√
𝑓

Hz 𝑅𝑀𝑆𝐴𝑈𝐵𝐶𝑀−𝐴𝐷𝐵𝐶𝑀
ppm analysis ppm/

√
𝐻𝑧

30 75.0 Nominal 6.85
60 93.5 (𝑏1+𝑏2)−(𝑏3+𝑏4)

𝑏1+𝑏2+𝑏3+𝑏4
6.04

120 85.6 1
2
( 𝑏1−𝑏2
𝑏1+𝑏2

− 𝑏3−𝑏4
𝑏3+𝑏4

) 3.91

Table 5.4: Double difference widths in 1MHz BCM system, assessing resolu-
tion dependence on frequency. 2-pass, multiple frequencies, 4.4GeV, 12𝜇𝐴, ADC
1/𝑇𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 = 30𝐻𝑧, Run 2333 [183]

5.3 Digital Receivers

5.3.1 Operating Principles

The following is a summary of John Musson’s description of algorithms used

in the digital receivers [196].

Figure 5-11: Functional block diagram of a basic superhet receiver, describing
major subsystems. [196]

In analog superheterodyne (superhet) RF receivers, conventional mixing, phas-

ing, and filtering are used as shown in Fig. 5-11. Critical to the RF receiver is the

down-conversion to an intermediate frequency (IF) via a mixer. A mixer combines

the desired signal from the antenna with a sinusoid, and subjects the pair to a

nonlinear element, producing an upper side band and a lower side band (at the

IF)

sin(𝜑𝑠𝑖𝑔) sin(𝜑𝐿𝑂) =
1

2
(sin(𝜑𝑠𝑖𝑔 − 𝜑𝐿𝑂)− sin(𝜑𝑠𝑖𝑔 + 𝜑𝐿𝑂))

where 𝜑𝐿𝑂 = 2𝜋(𝜔𝐿𝑂𝑡+𝜑0,𝐿𝑂) is the local oscillator RF signal and 𝜑𝑠𝑖𝑔 = 2𝜋(𝜔𝑠𝑖𝑔𝑡+

𝜑0,𝑠𝑖𝑔) is the incoming signal. As shown in Fig. 5-11, an RF signal is obtained,
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is translated to an intermediate frequency (IF) via a mixer filtered, translated a

second time, detected, and demodulated. There are a variety of ways to convert

IF AM signals into a DC output (1) use a diode which performs an absolute-

value operation, followed by a lowpass-filter. (b) multiply by a sinusoid of the

same frequency and phase (3) if two quadrature sinusoids (i.e. cosine and sine)

are used, the requirement of the LO having phase coherence with the transmitted

carrier is removed. The LO (local oscillator) need to have minimal amplitude and

phase fluctuations (and minimal frequency fluctuations/spectrally narrow).

In digital RF receivers, there is also downconversion to IF via a mixer as

shown in the block diagrams in Fig. 5-15. This is followed by ADC conversion.

We consider the sampling frequency 𝑓𝑠. One option, the most obvious choice, is

to simply sample at a 4X the carrier frequency 𝑓𝑠 = 4𝑓𝑐. During a cycle, this will

sample points I, Q, -I, -Q, every 90 degrees, where I and Q represent the In-phase

(real) and Quadrature (imaginary) components of the IF signal as shown in Fig.

5-12a. The amplitude and phase can be computed from these data points via

𝐴 =
√︀
𝐼2 +𝑄2

𝜑 = tan−1(
𝐼

𝑄
)

Another option (which the JLab system employs) is an under-sampling scheme,

known as harmonic sampling at a sampling frequency 𝑓𝑠 = 0.8𝑓𝑐, where the sam-

pling is over-rotated by 90 degrees. We still obtain I,Q,-I,-Q data stream at a

lower rate of 𝑓𝑐 − 𝑓𝑠 = 0.2𝑓𝑐 as shown in Fig. 5-12b. Theoretically, any (0.8𝑓𝑐)/𝑛

is permitted.After the ADC, within the digital processor, the next steps are shown

in Fig. 5-13a for the 4𝑓𝑐 system and in Fig. 5-13b for the 0.8𝑓𝑐 system. First

the IF carrier 𝑓𝑐 is sampled, at the sample frequency 𝑓𝑠. Then the I,Q,-I,-Q data

stream is demultiplexed into I-only, and Q-only components which each have half

the original sample rate 𝑓𝑠/2 (i.e. decimation of 2). Next the I,-I stream and the

Q,-Q stream are multiplied by alternating +/- 1 to make positive stream of I and
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Q. Finally a lowpass filter is applied to obtain the base I and Q signals.

(a)

(b)

Figure 5-12: (a) Time-domain description of 4x I/Q sampling process. The output
stream contains the rectangular representation of the input signal. (b)Time do-
main description of harmonic sampling, whereby the input signal is sub-sampled
at a rate of 0.8 fc , resulting in an aliased signal of fc - fs retaining the phase and
amplitude features of the original carrier. [196]

(a) 4x sampling
(b) harmonic sampling

Figure 5-13: (4x sampling) Frequency-domain description of the 4x I/Q sampling
process. The original carrier (a) ,with information BW = B, is translated to base-
band (b) by the sampling frequency. Decimation stretches the spectra (c), while re-
ducing the data rate. Finally, multiplying by +/-1 sequence and filtering produces
a faithful baseband signal.(d) low pass filtering (harmonic sampling)Frequency do-
main description of harmonic sampling, whereby the input signal is sub-sampled
at a rate of 0.8 fc , resulting in an aliased signal of fc - fs retaining the phase and
amplitude features of the original carrier. [196]

5.3.2 Cavity BPMs

For low-current running during PREXII/CREX for the Vertical Drift Chamber

(VDC) optics tracking calibration process, the cavity BPMs, which can operate
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(a)
(b)

Figure 5-14: (a) Cavity BPM [199] (b)Cavity Modes [106]

at very low-currents, are required. They are known to achieve 100𝜇m resolution

with 120Hz bandwidth at 1nA of beam current [199]. A cavity BPM is shown in

Fig. 5-14a. The receiver for the cavity BPM is shown in Fig. 5-15c in Sec. 5.3.

5.3.3 Digital Electronics

The block diagram for this procedure using digital signal processors (DSP)

and field-programmable gate array (FPGA) designs is shown in Fig. 5-15. In the

JLab system, we also have the digital systems pass through a D/A converter so

that analog DC voltages can be passed to our DAQ system. It is important in

parity experiments to have this option of an analog BCM signal coming out of the

digital systems, so that we can apply certain filters to better match the detector

response and the BCM response. Since the detectors are being normalized with

these BCMs, it is important to match them.
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(a)

(b)

(c)

Figure 5-15: (a)Functional block diagram of a digital receiver system, demon-
strating similarity to analog system architecture, but with DSP-specific blocks.
All blocks after the ADC are numerically implemented, achieving near-perfect
performance [196] (b)Stripline BPM electronics (c)Cavity BPM electronics
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5.3.4 Digital BCM receiver measurements

A design challenge in digital systems minimizing the system latency, or pro-

cessing delay. It takes time to perform operations digitally and apply various

digital filters. We observed evidence in 2016 beam study data that the digital

BCM receivers were delayed in time relative to the analog 1MHz BCM receivers.

The symptoms of this delay are shown in Fig. 5-16a as noise in cross correlations

between the BCMs. The proof of the delay came from tune-mode data, where

the electron beam was in tune-mode, and a square waveform was detected by the

analog BCM, but it was both significantly smoothed and delayed by the digital

receivers as shown on a scope in Fig. 5-16b.

The Jlab new digital receiver system has 3 outputs: “fast”/OPS, “adjustable”,

and “slow”/EPICS. The Digital receiver ’slow’/EPICS output setting has a 5.1 ms

delay(measured with tune beam) due to several low pass filters and additional

latency. By changing the output mode to ’fast’, removing many of the applied

low-pass filters, we can reduce the delay to 16-18us(relative to the 1MHz system)

and 26-28us total delay relative to actual electron beam. We can further re-

duce the delay by by-passing several filters in ’straight through’ mode, obtaining

11𝜇𝑠(𝑡𝑜𝑡𝑎𝑙𝑑𝑒𝑙𝑎𝑦) = 4.5𝜇𝑠(𝑙𝑎𝑡𝑒𝑛𝑐𝑦) + 6.5(𝑟𝑖𝑠𝑒𝑡𝑖𝑚𝑒). By comparison, the analog

1MHz system has a small ∼ 10𝜇𝑠(𝑑𝑒𝑙𝑎𝑦) = 2.5𝜇𝑠(𝑙𝑎𝑡𝑒𝑛𝑐𝑦) + 7 − 8𝜇𝑠(𝑟𝑖𝑠𝑒𝑡𝑖𝑚𝑒).

This low-latency setting in the digital BCM (and the analog BCM) will work for

us in PREXII. We note that in ’straight-through’ mode, there was some high fre-

quency noise observable on a scope, which appeared to come from a power supply

running near ribbon cables, so this power supply was unplugged from the back

panel unused channels to reduce the noise.
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(a)
(b)

Figure 5-16: (a)Delay evidence (comparing BCMs with SAM(small angle monitor)
quartz/PMT monitors) (b)Digital Latency [183]: Analog dbcm tune beam is the
square wave on the left and Digital dbcm tune beam signal is the curved peak on
the right

Linearity

By definition, dynamic range is the ratio of the desired USB or LSB signal and

the worst-offending harmonic from the mixing process. Fig. 5-17 is a third-order

intercept diagram, since the third-order cross term is usually the most prevalent

offending signal. There are many attenuators and gain settings both within the

digital receiver system and outside of it. Fig. 5-18 shows an external attenuator

as well as an internal attenuator, which can be changed. On the bench, using a ’2

tone’ measurement, we found attenuators which we thought would achieve <0.3%

non-linearity at 150uA (the CREX running current) for the ’straight through’

mode desirable for PREXII/CREX. It is also desirable to have a large enough

DC analog output signal at the running currents, analogous to the 1MHz BCMs,

which produce 2V around 70uA.

We performed a linearity measurement after installing the digital receivers in

the Hall A counting house [182]. To study the receiver linearity, we hooked up

an RF generator (SRS SG384) down in the hall at 1497MHz and tried putting

in -80dBm to 8dBm (where -40dBm corresponds to 1uA in the BCM cavity) for

two different internal gain settings in the digital BCM receivers (gain “2” and gain
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Figure 5-17: Third-order intercept diagram, often used to determine system lin-
earity. The desired system gain is depicted by the blue line, while the red line
demonstrates the appearance of undesired third-order signals from the mixing
process, and/or other nonlinearities.[196]

(a) (b)

Figure 5-18: (a)Digital Receiver - External Attenuation (b)Digital Receiver - In-
ternal Attenuation
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(a) Linearity Test (b) Digital gain 2

(c) Analog (d) Digital gain 5

Figure 5-19: BCM linearity test (a) Digital BCM signal (channels) vs ’current’
(uA) (b) Digital DBCM residual (%) vs ’current’ (uA) for hex gain “2” (c) Analog
1MHz 1X DBCM residual (%) vs ’current’ (uA) (d) Digital DBCM residual (%)
vs current (uA) for hex gain 5

“5” set with a hex switch). The receivers were located in the counting house and

we estimated -21.7dB from the cable transporting the RF signal upstairs. The

measurements are shown in Fig. 5-19 for both the digital receiver and the 1MHz

system. We fit to the linear portion of the data (low current), then assessed the

deviation from linearity in the residuals.

For the digital receivers, the linearity is comparable to to the analog BCMs. If

we properly make use of the digital system settings, it looks quite linear at PREXII

current 70𝜇𝐴. CREX, however, must run at 150𝜇𝐴 and we need an attenuator on

the digital BCMs to use them in CREX. We could get better linearity at 150uA by

adding a 3dB attenuator outside the receiver after PREXII is over, when we start

doing CREX, and that will make the 150uA look like 75uA (near PREX current)

to the receiver. We need an attenuator on the digital BCMs to use them during
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Figure 5-20: Chain from BCM signal to receiver to ADC. Configurations for
linearity study, for PREXII, CREX, whether receiver is ultimately located upstairs
or downstairs.

CREX. These configurations should be sufficient for PREXII and CREX.

Configuration for PREXII/CREX :The chain from generator to receiver to

ADC for the study is shown in Fig. 5-20. Also shown are the chains for PREXII

running and CREX running if the receivers are installing in the counting house.

However, there is some debate as to whether the receivers should be located up-

stairs or down in the Hall. Putting the receivers upstairs, protects them from

potential radiation damage in the Hall, but there is the potential for slow tem-

perature fluctuations in the cabling. The slow fluctuations are not likely to cause

issues for parity experiments. Nevertheless, we show a chain configuration in the

case that the receivers are installed in the Hall downstairs, which must account

for the fact that the cable length going upstairs acts as an attenuator, so moving

the receiver downstairs means adding attenuators to avoid saturation.

This is the cavity BPM digital receiver configuration as of summer 2016 for

posterity.
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Figure 5-21: BPM cavity receiver configuration in 2016. BPM cavity receivers
1OC1PM1H04B,C,D ==bpm4b,4c,4d in CH upstairs. Outputs set to DAC1,2,3
= X, Y, and I.

5.4 Beam Position Monitor

5.4.1 Introduction

There are several types of standard beam position monitors (BPMs) used

throughout the accelerator. The BPM types include: antenna/wireline BPMs(types

M15 and M20), Stripline BPMs, and Cavity BPMs. The majority of BPMs used

in parity experiments are antenna BPMs of type M15 as shown in Fig. 5-22 4.

Figure 5-22: Schematic Drawing of an M20 bpm (top) and M15 bpm(bottom)
[104] [101] [103]

The stripline beam position monitors (BPMs) consist of four wire antenna

which each pickup an RF signal from the pulsed electron beam as it passes near

the wires. The four wire channels are denoted X+ (xm), X- (xm), Y+ (yp), and
4 The larger M20 is used in Arc 1, Arc 2, and the Extraction region of the accelerator and

the smaller M15 can is used elsewhere [104]
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Y- (ym). The signal each wire picks up is proportional to both e-beam intensity

and the proximity of the e-beam to the wire in question. The raw signal from

these wires is typically autogained, so that the magnitude of the DC converted

channel signal is 3V and only small, fast deviations can be picked up by the DAQ.

(a)

(b)

Figure 5-23: (a) Schematic of the BPM readout electronics [96] (b)Stripline BPMs
[106]

In the standard analysis, three combinations of the four wire channels are cal-

culated: bpm x position, bpm y position, and bpm wire sum. The e-beam position

is monitored directly by the calculated bpm x,y positions. Due to autogaining, the

e-beam current is not directly monitored by the bpm wire sum, which only is used

to assess fast, small changes such as charge asymmetry Aq. The mathematical

manipulations in the analysis are as follows:

𝑏𝑝𝑚𝑥 = 𝜅(𝑥𝑝− 𝑥𝑚)/(𝑥𝑝+ 𝑥𝑚) (5.1)

𝑏𝑝𝑚𝑦 = 𝜅(𝑦𝑝− 𝑦𝑚)/(𝑦𝑝+ 𝑦𝑚)

𝑏𝑝𝑚𝑤𝑠 = 𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚

Where 𝜅 is a wireline bpm calibration constant set to 18.76mm for M15 antenna

BPMs [94] [97]. This equation, used by PREX analysis, an approximation, as
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there can be differences in the individual wires gains and offsets. A more accurate

equation used by OPS and Qweak analysis is given by

𝑏𝑝𝑚𝑥 = 𝜅𝑥
(𝑥𝑝− 𝑥𝑝𝑜𝑓𝑓 )− 𝛼𝑥(𝑥𝑚− 𝑥𝑚𝑜𝑓𝑓 )

(𝑥𝑝− 𝑥𝑝𝑜𝑓𝑓 ) + 𝛼𝑥(𝑥𝑚− 𝑥𝑚𝑜𝑓𝑓 )

𝑏𝑝𝑚𝑦 = 𝜅𝑦
(𝑦𝑝− 𝑦𝑝𝑜𝑓𝑓 )− 𝛼𝑦(𝑦𝑚− 𝑦𝑚𝑜𝑓𝑓 )

(𝑦𝑝− 𝑦𝑝𝑜𝑓𝑓 ) + 𝛼𝑦(𝑦𝑚− 𝑦𝑚𝑜𝑓𝑓 )

𝑏𝑝𝑚𝑤𝑠 = 𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚

where the pedestal offsets are found in calibration runs in Qweak analysis, but

OPS uses different values for the offsets.

The antennas are either oriented along the horizontal/vertical axes or they are

oriented at ±45𝑜. Those that are oriented along ±45𝑜 are rotated in analysis so

that bpmx corresponds to horizontal and bpmy corresponds to vertical. Antenna

and Stripline BPMs are rotated to avoid the synchrotron light produced in the

magnetic bends [102]. Below is a table 5.5 indicating which bpm types are used

where and whether a bpm is rotated or unrotated (note the “M15m” means M15-

mini, a smaller version of M15 with a difference in sensitivity):
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Region BPMs rotated type sensitivity

Injector 130keV 1I02,4,6 & 0I01,1A,2,2A,5,7 no M15m 13.7mm

Injector 130keV 2I01,2I02 no M20-mod 25.67mm

Injector 6.28MeV 0L01-0L04 yes M15 18.81mm

Injector 28.8MeV 0L05 yes M15 18.81mm

Injector 123MeV 0L06-0L10, 0R01-0R06 yes M15 18.81mm

Hall A Compton 1P01A,1P02A,1P02B yes M15 18.81mm

1P03A M20 25.67mm

HallA Arc 1C01,08,10,12,14 yes M15 18.81mm

HallA 1H01, 1H04A, 1H04E yes M15 18.81mm

1H04 yes M15m 13.7mm

1H04B,C,D cavity

Table 5.5: BPM types in injector and HallA [108]

It should be noted that previous experiments PREXI, and potentially HAPPEX

used calibration constants of 18.76mm for all bpms. In particular, injector mea-

surements in the 130keV region had their calibration constants set for M15 bpms,

when they are in fact M15-mini bpms. So one should be aware, in examining

old plots of injector data, that the position differences in the 130keV region are

actually 13.7mm/18.8mm 73% of their reported values. The 0L region data was

correctly treated as M15 cans. Qweak apparently read the bpm calibration val-

ues from OPS, and so was properly using the nominal calibration factors show

in the above table for the M15’s and M15mini’s, so those historical plots can be

interpreted normally.

However, the calibration constant used for M15-mini’s in the accelerator as of

Feb, 2018 is 13.7mm, but this value is questionable. Measurements performed with

a Goubau line scanner [114] indicate the calibration constants are 15.46mm±0.08m

and 15.52mm ±0.08mm for kx and ky respectively, almost 2mm different from

the value used by the accelerator. Similar measurements performed for M15 bpm
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cans showed calibration constants of 18.4mm±0.12mm, within 0.4mm of the value

used in the accelerator. The two new injector bpms 2I01 and 2I02 have calibra-

tion constants of, respectively, 26.84±0.02mm and 25.83mmm±0.05mm (average

26.33±0.53mm) [115] [116]

5.4.2 Calibration Derivation

The signal from each wire antenna excited by the beam can be calculated [98]

[99] as

𝑆(𝜑) = 𝛽
𝐼𝑏𝑒𝑎𝑚
2𝜋

𝑎2 − 𝑟2

|⃗𝑎− �⃗�|2
(5.2)

= 𝛽
𝐼𝑏𝑒𝑎𝑚
2𝜋

𝑎2 − 𝑟2

𝑎2 + 𝑟2 − 2𝑎𝑟 cos(𝜑− 𝜃)

where a is the radius of BPM vacuum chamber, �̂� is the direction of the wire

antenna, 𝜑 specifies the location of the bpm wire at 0, 𝜋/4, 𝜋/2, 3𝜋/4, r and 𝜃

specify the position of the electron beam, 𝐼𝑏𝑒𝑎𝑚 is the current of the electron beam,

and 𝛽 is a geometrical parameter which takes into account the finite thickness of

the wire.

To get a sense for the behavior of a the wire response, we evaluate the antenna

signal response to the presence of current 𝛿𝑆(𝑟, 𝜑, 𝜃) = 𝛽 𝛿𝐼𝑏𝑒𝑎𝑚
2𝜋

𝑎2−𝑟2

𝑎2+𝑟2−2𝑎𝑟 cos(𝜑−𝜃)

with respect to x. Evaluating the 1st and 2nd derivatives 𝑑𝛿𝑆(𝑟,𝜑,𝜃)
𝑑𝑟

and 𝑑2𝛿𝑆(𝑟,𝜑,𝜃)
𝑑𝑟2

for 𝛽𝛿𝐼𝑏𝑒𝑎𝑚 = 1, 𝜑 = 0(examining the X+ wire), 𝜃 = 0(moving along x direction),

we obtain the sensitivity of the wire signal to the 0th, 1st and 2nd moments, seeing

that each moment decreases by an order of magnitude (Fig. 5-24 ).
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Figure 5-24: Spot Size BPM current Derivatives

The X+ wire response with respect to beam position in the x-y plane is illus-

trated here:

Figure 5-25: X+ wire response vs. beam position in x-y plane

From equation 5.2 ,using the difference/sum method, we can calculate the

position of the beam as

𝑏𝑝𝑚𝑥 = 𝜅
𝑆(𝑋+)− 𝑆(𝑋−)

𝑆(𝑋+) + 𝑆(𝑋−)
= 𝜅

𝑆(𝜑 = 0)− 𝑆(𝜑 = 𝜋)

𝑆(𝜑 = 0) + 𝑆(𝜑 = 𝜋)
(5.3)

= 𝜅
2𝑟 cos(𝜃)

𝑎(1 + 𝑟2

𝑎2
)
= 𝜅

2𝑥

𝑎(1 + 𝑥2+𝑦2

𝑎2
)
≈ 𝜅

2𝑥

𝑎

𝑏𝑝𝑚𝑥 ≈ 𝑎

2

𝑆(𝑋+)− 𝑆(𝑋−)

𝑆(𝑋+) + 𝑆(𝑋−)

Hence for small r, the calibration constant 𝜅 = 𝑎/2. It should be noted that the

difference-over-sum method is an approximation, and assumes that the signal on
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the far side eventually goes to zero (in addition to antennae being represented by

very narrow strips) [105]. It is only a decent approximation over a few millimeters.

The e-beam has a finite size which could affect the signals observed. For a

gaussian current distribution of the electron beam, the signal for each antenna

can be described as

𝑆(𝜑) =

∫︁ 2𝜋

0

∫︁ 𝑎

0

𝑟′𝑑𝑟′𝛽
𝑗𝑏𝑒𝑎𝑚(|�⃗� − 𝑟′|)

2𝜋

𝑎2 − 𝑟′2

|⃗𝑎− 𝑟′|2
𝑑𝜃′ (5.4)

=

∫︁ 2𝜋

0

∫︁ 𝑎

0

𝑟′𝑑𝑟′
𝛽𝐼𝑏𝑒𝑎𝑚
2𝜋

𝑒
−|�⃗�−𝑟′|2

2𝜎2

2𝜋𝜎2

𝑎2 − 𝑟′2

|⃗𝑎− 𝑟′|2
𝑑𝜃′

This integral can be evaluated numerically for 𝛽 = 1 and 𝐼𝑏𝑒𝑎𝑚 = 1 over

the beam pipe area up to radius a, and a linear relationship is confirmed with

calibration constant 𝜅 ≈ 𝑎/2(Fig. 5-26 ).

Figure 5-26: Wire Channel Calculation X

Phenomenologically, we observe in the Hall (for type M15 BPMs) that 𝜅 ≈

18.76mm-18.87mm [100] which means 𝑎 ≈37.52mm-37.74mm. This is approxi-

mately consistent with the design drawing (Fig. 5-22 ) which shows an inner

radius of 33.3mm. So, the calibration constants used are within 10% of their the-

oretical value. A similar calculation can be done for stripline BPMs, where the

only difference is that striplines don’t have a thin wire, but rather subtend a large

angle 𝛼 over 𝜑( 68 degrees, Fig. 5-27 ), so their 𝜅 factor is different. In fact, their
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𝜅 factor is obtained using the so-called Goubau Line scanner, and is about 9.9mm

for most sensors [105].

Figure 5-27: Stripline BPMs [106]

5.4.3 Pedestal Error

The charge asymmetry 𝐴𝑄 can couple to the measured position difference Δ𝑋𝑀

through a pedestal error. We define the pedestal error on each wire a Δ𝑃𝑝 and

Δ𝑃𝑚, the symmetric and asymmetric pedestals errors as Δ𝑃𝐴 = (Δ𝑃𝑝 −Δ𝑃𝑚)/2

and Δ𝑃𝑆 = (Δ𝑃𝑝 + Δ𝑃𝑚)/2, the radial distance to the wire as 𝜅, and the wire

sum as 𝑊𝑆 = 𝑋𝐴
𝑝 +𝑋𝐴

𝑚 = 𝐼𝛼𝜅 proportional to the beam current.

𝑋𝑀 = 𝜅
𝑋𝑀

𝑝 −𝑋𝑀
𝑚

𝑋𝑀
𝑝 +𝑋𝑀

𝑚

(5.5)

= 𝜅
𝑋𝐴

𝑝 −𝑋𝐴
𝑚 +Δ𝑃𝑝 −Δ𝑃𝑚

𝑋𝐴
𝑝 +𝑋𝐴

𝑚 +Δ𝑃𝑝 +Δ𝑃𝑚

= 𝜅
𝑋𝐴

𝑝 −𝑋𝐴
𝑚 + 2Δ𝑃𝐴

𝑋𝐴
𝑝 +𝑋𝐴

𝑚 + 2Δ𝑃𝑆

≈ 𝑋𝐴 + 2𝜅
Δ𝑃𝐴

𝑊𝑆

− 2𝑋𝐴Δ𝑃𝑆

𝑊𝑆
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Figure 5-28: Pedestal Error Calculation

The measured position difference can be calculated as

Δ𝑋 = 𝑋0 −𝑋1 = 𝑋𝐴
0 + 2𝜅

Δ𝑃𝐴

𝑊𝑆0

− 2𝑋𝐴
0

Δ𝑃𝑆

𝑊𝑆0

−𝑋𝐴
1 − 2𝜅

Δ𝑃𝐴

𝑊𝑆1

+ 2𝑋𝐴
1

Δ𝑃𝑆

𝑊𝑆1

(5.6)

We note that

1

𝑊𝑆0

− 1

𝑊𝑆1

=
1

𝛼
(

1

𝐼 +Δ𝐼
− 1

𝐼 −Δ𝐼
) =

1

𝛼𝐼
(1−Δ𝐼/𝐼−1−Δ𝐼/𝐼) ≈ −2𝐴𝑄

𝑊𝑆

(5.7)

Hence,

Δ𝑋𝑀 = Δ𝑋𝐴(1 +
2Δ𝑃𝑆

𝑊𝑆

) + 4𝑋𝐴𝐴𝑄
Δ𝑃𝑆

𝑊𝑆

− 4𝜅𝐴𝑄
Δ𝑃𝐴

𝑊𝑆

(5.8)

A 5% asymmetric pedestal error could result in a coupling of 4nm/ppm. For

nostalgic purposes we also include a transparency astutely created by a certain

postdoc [107] in the early 2000’s Fig. 5-28 )
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5.4.4 BPM widths

Generally speaking, from 30Hz to 1kHz, from 20𝜇𝐴 to 100𝜇𝐴, BPM position

difference widths tend to be 1𝜇𝑚− 20𝜇m, depending on the BPM. It is a combi-

nation or monitor noise as well as noise in the beam position motion. It is more

challenging to assess the BPM resolution from a double-difference type of analysis

because no two BPMs measure exactly the same quantity, so they must be cross-

correlated and a more complex analysis must be done. Here we simply show that

during 2015-2016 studies, the overall position difference widths in the Hall, shown

in Fig. 5-30 and in the injector, shown in Fig. 5-29, were reasonable for PREXII.
5 The BPM widths observed are acceptable for PREXII running.

Figure 5-29: Injector BPM position difference widths at 30Hz [183]

5We note however, that bpm4a in the hall had ’tails’ in the distribution tails due to sudden
jumps up and down in signal, at the few mV-level, which appeared to be constantly happening in
a pattern-like fashion. To filter the tails out in the analysis, we made the cuts : 𝑒𝑣𝑡𝑏𝑝𝑚4𝑎𝑥[0] < 𝑎
and 𝑒𝑣𝑡𝑏𝑝𝑚4𝑎𝑥[1] < 𝑎. We note that bpm4b also showed these tails at higher currents.
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Figure 5-30: HallA BPM position differences and position difference widths at
30Hz [183]

5.4.5 Helicity Patern

Figure 5-31: 960Hz: large bpm widths observed in the injector due to a beat
frequency with the 60Hz line

During Qweak, at 960Hz helicity flip rate, large bpm widths were observed.

During 2017-2018 beam studies, at 960Hz, large bpm widths were also observed

in the injector. These large widths are due to a beat frequency with the 60Hz line

as shown in Fig.5-31 6. For MOLLER, it will be important to use an extended

multiplet to cancel out the 60Hz beat frequency, analogous to using quartets (+–

+) for 120Hz and octets (+–+-++-) for 240Hz flip rates. Octets are insufficient

multiplets for 960Hz, let alone the 2kHz flip rate required for MOLLER. During
6Run3330 , 960Hz Mtree, Free clock, 40us Tsettle, 1001.65usec Tstable, Octet, No

Delay, 960.02Hz. Periodicity >150e3 events, T >156s, <0.0064Hz beat and (960-
960.02Hz)/8=0.0025Hz, vqwk SamplesPerBlock=120, GateDelay=10, NumberofBlocks=4
(2us/sample)
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MOLLER, we will need the helicity control board to be able to generate mega-

multiplets sufficient to fill a 60Hz period with 2kHz windows (and line-synch at

2kHz), in order to cancel out the 60Hz beating and getting rid of this extraneous

noise.

5.5 Measuring Spot Size Asymmetries with BPMs

There are 4 wire channels in a bpm. At present only 3 linear combinations of

those channels are assessed to examine beam I,X,Y. There is a 4th linear com-

bination which produces an independent variable which can be examined. This

combination is proportional to the elliptical component of the spot size (aka the

breathing mode).

5.5.1 Context

The electron beam spot-size asymmetry is not directly measured at present,

and so our knowledge relies on an implied bound from laser measurements. Slow

reversals are necessary, in part because we don’t get to measure the spot-size

asymmetry on the electron beam directly.

Spot size asymmetries can contribute significant systematic errors to Parity

experiments such as PREX/CREX, HAPPEX, Qweak and Moller. In the past,

the spot size asymmetry was bounded to be Δ𝜎/(2𝜎) < 10−4 on the laser table.

Analytic calculations of how the spot size asymmetry affects the measured physics

asymmetry were performed and a bound was placed on the systematic error con-

tribution. For example, in PREXI, it was estimated that a spot size asymmetry

of 0.5× 10−4 contributes 2ppb false asymmetry systematic [110]. For Moller, ne-

glecting effects from synchrotron radiation, the systematic error contribution is

estimated to be < 12ppmΔ𝜎/𝜎 [111], which for Δ𝜎/𝜎 < 10−4 gives 1ppb. As-

suming a factor of 10 suppression from cancellation due to periodic slow helicity

reversals, the net contribution will be limited to 0.1 ppb.
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Because spot size asymmetry is significant to parity experiments, it is desirable

to monitor the spot size asymmetry on the electron beam itself. Ideally, it would be

advantageous to measure spot size asymmetry in the Hall, obtain correlations with

the detectors, and regress out or estimate systematic errors empirically from real

time measurements. At the very least, however, it is desirable to confirm with e-

beam the laser limits on the spot-size asymmetry. Here, we present one method of

measuring one component of electron beam spot-size asymmetries on the beamline

using BPMs (Beam Position Monitors) : the elliptical spot-size asymmetry.

5.5.2 Measurement with BPM

The BPMs used throughout the accelerator are described in Sec. 5.4. There are

four wire channels in a BPM, denoted X+ (xm), X- (xm), Y+ (yp), and Y- (ym).

Yet, at present only three linear combinations of the four wire channels are calcu-

lated to examine beam x-position, y-position, and current via wire-combinations
7:

𝑏𝑝𝑚𝑥 = 𝜅
(𝑥𝑝− 𝑥𝑚)

(𝑥𝑝+ 𝑥𝑚)
𝑏𝑝𝑚𝑦 = 𝜅

(𝑦𝑝− 𝑦𝑚)

(𝑦𝑝+ 𝑦𝑚)
𝑏𝑝𝑚𝑤𝑠 = 𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚

There is a 4th linear combination which produces another independent variable:

the elliptical component of the spot size. There are several ways to describe spot-

size, but we could model it as having a circular 𝜎𝑐𝑖𝑟𝑐 component and and an

elliptical component 𝜖 ≈ (𝜎𝑥 − 𝜎𝑦)/(𝜎𝑥 + 𝜎𝑦). The spot size can be described

as 𝜎(𝜃) = 𝜎𝑐𝑖𝑟𝑐(1 + 𝜖 cos(2(𝜃 − 𝜃𝑖))), where 𝜃 is the angle in the plane transverse

to the direction of beam propagation. Depending on the orientation of the wire

channels and the orientation of the electron beam, a given bpm may be sensitive

to 𝜖 or insensitive to it. Likewise the spot size asymmetry is modeled as 𝐴𝜎(𝜃) =

𝐴𝑐𝑖𝑟𝑐 + 𝐴𝑒𝑙𝑙𝑖 cos(2(𝜃 − 𝜃0)), where Aelli is the asymmetry due to the elliptical
7𝜅 is a wireline bpm calibration constant set in accordance with the type of BPM described

in Table. 5.5
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component of the spot size asymmetry, what we refer to as the “breathing mode”

of the spot size asymmetry.

𝐴𝑒𝑙𝑙𝑖 can be related to a difference in 𝜖 via 𝐴𝑒𝑙𝑙𝑖 ≈ (𝜖0 − 𝜖1)/(𝜎0 + 𝜎1) ≈

Δ𝜖/2 ≈ (𝜖0/𝜎0− 𝜖1/𝜎1)/2, where the subscripts 0 and 1 are for two helicity states.

𝐴𝑐𝑖𝑟𝑐 is also an important parameter which we are also sensitive to in a bpm, but it

manifests itself similarly to 𝐴𝑄 and we cannot distinguish a separate entity (unless

perhaps a bpm and bcm are in very close proximity in the beamline). So, in this

analysis, we focus on the elliptical term of the spot size asymmetry. Using the

bpm wire channels we can obtain information about the elliptical component of

the spot size asymmetry 𝐴𝑒𝑙𝑙𝑖 .

𝑏𝑝𝑚𝑒𝑙𝑙𝑖 =
𝑎2(𝑥𝑝+ 𝑥𝑚− 𝑦𝑝− 𝑦𝑚)

8𝜎2(𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚)
(5.9)

𝜖 = 𝑏𝑝𝑚𝑒𝑙𝑙𝑖− 𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 =
𝑎2(𝑥𝑝+ 𝑥𝑚− 𝑦𝑝− 𝑦𝑚)

8𝜎2(𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚)
− 𝑓 ≈ 𝜎𝑥 − 𝜎𝑦

𝜎𝑥 + 𝜎𝑦

where 𝑎 ≈ 2𝜅 = 37.52mm the radius of M15 BPM vacuum chamber, 𝜎 is

the 𝑒−beam spot size, and 𝑓 is a correction term which will be discussed in later

sections (Eq. 5.18).

5.5.3 Analytic Derivation of bpmelli

The signal induced by the e-beam on the wire with finite thickness can be

approximated as [112]

𝑆(𝜑) ≈ 𝛾(2𝛼 + 4
sin(𝛼)

𝑎
(𝑥 cos(𝜑) + 𝑦 sin(𝜑)) (5.10)

+2
sin(2𝛼)

𝑎2
((𝜎2

𝑥 − 𝜎2
𝑦 + 𝑥2 − 𝑦2) cos(2𝜑) + 2𝑥𝑦 sin(2𝜑))

The radius of the BPM aperture is a, the angle subtended by the BPM wire

is 𝛼, x and y give the centroid position of the beam, 𝛾 is just a scale factor, and

𝜎 denotes the rms beam width.
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The four bpm wires are located at 𝜑 = 0, 𝜋/2, 𝜋, 3𝜋/2. Evaluating the linear

combination of wire channels 𝑥𝑝 + 𝑥𝑚− 𝑦𝑝− 𝑦𝑚 , treating 𝛼 as very small, and

defining 𝜎𝑥 = 𝜎 + 𝛿𝜎, 𝜎𝑦 = 𝜎 − 𝛿𝜎, we obtain to first order is 𝛿𝜎

𝑥𝑝+ 𝑥𝑚− 𝑦𝑝− 𝑦𝑚

𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚
≈ 2

(𝑥2 − 𝑦2)

𝑎2
+ 8

𝜎𝛿𝜎

𝑎2
(5.11)

Rearranging terms, and noting that 𝛿𝜎/𝜎 = (𝜎𝑥 − 𝜎𝑦)/(𝜎𝑥 + 𝜎𝑦)

𝜖 =
𝜎𝑥 − 𝜎𝑦
𝜎𝑥 + 𝜎𝑦

=
𝑎2

8𝜎2

𝑥𝑝+ 𝑥𝑚− 𝑦𝑝− 𝑦𝑚

𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚
− 𝑥2 − 𝑦2

4𝜎2
= 𝑏𝑝𝑚𝑒𝑙𝑙𝑖− 𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 (5.12)

where we define 𝑏𝑝𝑚𝑒𝑙𝑙𝑖 = 𝑎2

8𝜎2
𝑥𝑝+𝑥𝑚−𝑦𝑝−𝑦𝑚
𝑥𝑝+𝑥𝑚+𝑦𝑝+𝑦𝑚

and 𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 = 𝑥2−𝑦2

4𝜎2

5.5.4 Numeric Derivation of bpmelli

The equation for the elliptical component of the spot size 5.9 can also be

derived from numerical integration. For a gaussian current distribution of the

electron beam centered at (𝑥0,𝑦0) relative to the center of the beamline at 𝑟 = 0,

the signal for each antenna can be described as

𝑆(𝜑) =

∫︁ 𝑎

0

𝑑𝑟𝛽

∫︁ 2𝜋

0

𝑑𝜃′𝑟𝐼𝑏𝑒𝑎𝑚𝑒
− (𝑟 cos(𝜃′)−𝑥0)

2

2𝜎2
𝑥

− (𝑟 sin(𝜃′)−𝑦0)
2

2𝜎2
𝑦 (5.13)

× 𝑎2 − 𝑟2

4𝜋2𝜎𝑥𝜎𝑦(𝑎2 + 𝑟2 − 2𝑎𝑟 cos(𝜃′ − 𝜑))

𝑆(𝑋±) ≈
∫︁ ∫︁

𝑑𝑥𝑑𝑦𝛽𝐼𝑏𝑒𝑎𝑚𝑒
− (𝑥−𝑥0)

2

2𝜎2
𝑥

− (𝑦−𝑦0)
2

2𝜎2
𝑦

𝑎2 − 𝑥2 − 𝑦2

4𝜋2𝜎𝑥𝜎𝑦((𝑎∓ 𝑥)2 + 𝑦2)

𝑆(𝑌±) ≈
∫︁ ∫︁

𝑑𝑥𝑑𝑦𝛽𝐼𝑏𝑒𝑎𝑚𝑒
− (𝑥−𝑥0)

2

2𝜎2
𝑥

− (𝑦−𝑦0)
2

2𝜎2
𝑦

𝑎2 − 𝑥2 − 𝑦2

4𝜋2𝜎𝑥𝜎𝑦(𝑥2 + (𝑎∓ 𝑦)2)

For a centered electron beam at (𝑥0,𝑦0)=(0,0), for each wire location, this

integral is evaluated numerically over the circular area centered on the beamline

up to radius a, the bpm chamber radius. Forming the linear combination of wire
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channel signals and scaling the result by 𝑎2/𝜎2/8, we obtain the elliptical spot size

term 𝜖 = 𝜎𝑥−𝜎𝑦

𝜎𝑥+𝜎𝑦
(Fig. 5-32 ). We note that this normalization is largely to correct

𝜎 dependence in the numerator xp+xm-yp-yp as opposed to the denominator

xp+xp+yp+ym which is not very sensitive to 𝜎 (the wire sum only changes <0.1%

over the range 200um< 𝜎 <2mm, whereas the numerator changed by over an

OOM).

Figure 5-32: Wire Channel Calculation - Spot Size Asymmetry

5.5.5 Position Dependence of bpmelli

Regarding the dependence of bpmelli on beam position, this integral is highly

dependent on the position of the electron beam (𝑥0,𝑦0). We set 𝜖 = 10−4 and

evaluate bpmelli for several beam positions (Fig. 5-33 ). We observe that there is

a large correction term to bpmelli, proportional to the square of the distance from

the beamline, approximately 𝑓(𝑥0, 𝑦0) = 𝑔1
𝑥2
0−𝑦20
𝜎2 − 𝑔2

𝑥4
0−𝑦40
𝜎2 , where 𝑔1 = 0.250014

and 𝑔2 = 2.84739𝑚−2 when evaluated for 𝑎 = 2𝜅, 𝜅 = 18.76mm, 𝜎 = 1mm.
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Figure 5-33: Wire Channel Calculation for bpmelli

However, when we evaluate small differences in 𝜖, letting Δ𝜖 = 10−4, even far

from the beamline center, diff_bpmelli is still accurate, whether the beam is a

𝑥0 = 0 or at 𝑥0 = 8mm (Fig. 5-34 ). So, we should expect that the calculated

raw ellipticity will vary with beam position, but the pair-wise asymmetry in that

ellipticity will still be approximately correct.

Figure 5-34: Wire Channel Calculation for Aelli
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5.5.6 Pedestal Error in bpmelli

The charge asymmetry 𝐴𝑄 and the radial spot size asymmetry 𝐴𝑐𝑖𝑟𝑐 (which is

indistinguishable from 𝐴𝑄 in a bpm) can couple to the measured elliptical spot size

asymmetry 𝐴𝑒𝑙𝑙𝑖 = Δ𝜖/2 through a pedestal error. We define the pedestal error

on the x-wires and y-wires as Δ𝑃𝑆𝑥 = (Δ𝑃𝑥𝑝 + Δ𝑃𝑥𝑚)/2 and Δ𝑃𝑆𝑦 = (Δ𝑃𝑦𝑝 +

Δ𝑃𝑦𝑚)/2, the symmetric and asymmetric pedestals errors as Δ𝑃𝐴 = Δ𝑃𝑆𝑥−Δ𝑃𝑆𝑦

and Δ𝑃𝑆 = Δ𝑃𝑆𝑥+Δ𝑃𝑆𝑦, the radial distance to the wire as 𝑎, and the wire sum as

𝑊𝑆 = 𝑋𝐴
𝑝 +𝑋𝐴

𝑚+𝑌 𝐴
𝑝 +𝑌 𝐴

𝑚 = 𝐼𝛼𝜎 proportional to the beam current and spot-size.

𝜖𝑀 =
𝑎2

8𝜎2

𝑋𝑀
𝑝 +𝑋𝑀

𝑚 − 𝑌 𝑀
𝑝 − 𝑌 𝑀

𝑚

𝑋𝑀
𝑝 +𝑋𝑀

𝑚 + 𝑌 𝑀
𝑝 + 𝑌 𝑀

𝑚

(5.14)

=
𝑎2

8𝜎2

𝑋𝐴
𝑝 +𝑋𝐴

𝑚 − 𝑌 𝐴
𝑝 − 𝑌 𝐴

𝑚 +Δ𝑃𝑥𝑝 +Δ𝑃𝑥𝑚 −Δ𝑃𝑦𝑝 −Δ𝑃𝑦𝑚

𝑋𝐴
𝑝 +𝑋𝐴

𝑚 + 𝑌 𝐴
𝑝 + 𝑌 𝐴

𝑚 +Δ𝑃𝑥𝑝 +Δ𝑃𝑥𝑚 +Δ𝑃𝑦𝑝 +Δ𝑃𝑦𝑚

=
𝑎2

8𝜎2

𝑋𝐴
𝑝 +𝑋𝐴

𝑚 − 𝑌 𝐴
𝑝 − 𝑌 𝐴

𝑚 + 2Δ𝑃𝐴

𝑋𝐴
𝑝 +𝑋𝐴

𝑚 + 𝑌 𝐴
𝑝 + 𝑌 𝐴

𝑚 + 2Δ𝑃𝑆

≈ 𝜖𝐴 + 2
𝑎2

8𝜎2

Δ𝑃𝐴

𝑊𝑆

− 2𝜖𝐴
Δ𝑃𝑆

𝑊𝑆

The measured elliptical spot-size asymmetry can be calculated as

𝐴𝑀
𝑒𝑙𝑙𝑖 =

1

2
Δ𝜖𝑀 =

1

2
(𝜖0−𝜖1) = 𝜖𝐴0 /2+

𝑎2

8𝜎2

Δ𝑃𝐴

𝑊𝑆0

−𝜖𝐴0
Δ𝑃𝑆

𝑊𝑆0

−𝜖𝐴1 /2−
𝑎2

8𝜎2

Δ𝑃𝐴

𝑊𝑆1

+𝜖𝐴1
Δ𝑃𝑆

𝑊𝑆1

(5.15)

We note that

1

𝑊𝑆0

− 1

𝑊𝑆1

=
1

𝛼
(
1

𝐼0
− 1

𝐼1
) =

1

𝛼
(

1

𝐼 +Δ𝐼
− 1

𝐼 −Δ𝐼
) ≈ −2𝐴𝑄

𝑊𝑆

(5.16)

Hence,

𝐴𝑀
𝑒𝑙𝑙𝑖 =

1

2
Δ𝜖𝑀 = 𝐴𝐴

𝑒𝑙𝑙𝑖(1 +
2Δ𝑃𝑆

𝑊𝑆

) + 2𝜖𝐴𝐴𝑄
Δ𝑃𝑆

𝑊𝑆

− 2
𝑎2

8𝜎2
𝐴𝑄

Δ𝑃𝐴

𝑊𝑆

(5.17)

For 𝑎 = 2𝜅,𝜅 = 13.7mm and 𝜎 = 1.5mm, for a 5% asymmetric pedestal error



5.5. MEASURING SPOT SIZE ASYMMETRIES WITH BPMS 230

the false elliptical spot size asymmetry is 4.2 × 10−6/ppm for 𝐴𝑄. To test this

equation, we can induce a 5% asymmetric pedestal error in our analysis. The wire

sum signal is 3e4 channels on the vqwk ADCs. Applying 3000ch to the pedestals

of xp and xm, and -3000ch to yp and ym, we obtain a 5% asymmetric pedestal

error. The slope observed in the first 8 bpms in a PITA scan (Run3338), shows

a coupling between 𝐴𝑒𝑙𝑙𝑖 and 𝐴𝑄 of 4.05 − 4.18 × 10−6/ppm, consistent with our

calculated pedestal error value.

5.5.7 Position Difference Error in bpmelli

The position sensitivity correction term in bpmelli, which we now define as

bpmecorr, was found to be approximately

𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 = 𝑓(𝑥, 𝑦) = 𝑔1
𝑥2 − 𝑦2

𝜎2
− 𝑔2

𝑥4 − 𝑦4

𝜎2
(5.18)

where 𝑔1 = 0.250014 and 𝑔2 = 2.84739𝑚−2. We evaluate how this position

dependence leads to coupling between position differences and measured 𝐴𝑒𝑙𝑙𝑖.

Δ𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 = Δ𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0)− 𝑓(𝑥1, 𝑦1) (5.19)

= 𝑔1
𝑥20 − 𝑦20
𝜎2

− 𝑔1
𝑥21 − 𝑦21
𝜎2

− 𝑔2
𝑥40 − 𝑦40
𝜎2

+ 𝑔2
𝑥41 − 𝑦41
𝜎2

≈ 0.25
4𝑥Δ𝑥− 4𝑦Δ𝑦

𝜎2
− 2.84𝑚−28𝑥

3Δ𝑥+ 8Δ𝑥3𝑥

𝜎2
≈ 𝑥Δ𝑥− 𝑦Δ𝑦

𝜎2

We note the 𝑥4 term is negligible in the mm regime. The coupling between

position difference Δ𝑥 and Δ𝑏𝑝𝑚𝑒𝑙𝑙𝑖 , for 𝜎 = 𝑥 = 1mm, is 10−6/nm, which

may or may not be significant depending on the size of the position differences

and the size of the spot size asymmetry your trying to measure. However, for

a more extreme case, 𝜎 = 0.5mm and 𝑥 = 10mm, the coupling is 4𝑒 − 5/nm,

which for 50nm position differences gives false Δ𝑏𝑝𝑚𝑒𝑙𝑙𝑖 of up to 2×10−3. We can

eliminate this dependence approximately in analysis by subtracting the correction
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term bpmecorr from bpmelli : 𝐴𝑒𝑙𝑙𝑖 ≈ Δ𝜖/2 ≈ diff_bpmelli/2-diff_bpmecorr/2.

5.5.8 Spot-Size Scale Factor Error

It is possible that our estimates of spot-size are different from the actual

beam spot size at a given bpm. This can affect both our measured diff_bpmelli,

diff_bpmecorr and Aelli. The error is a scale factor given by the square of the

ratio of actual beam size to applied beam size.

Δ𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟𝐴 ≈ 𝑥Δ𝑥− 𝑦Δ𝑦

(𝜎𝐴)2
= (

𝜎𝑀

𝜎𝐴
)2Δ𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟𝑀 (5.20)

Δ𝑏𝑝𝑚𝑒𝑙𝑙𝑖𝐴 = (
𝜎𝑀

𝜎𝐴
)2Δ𝑏𝑝𝑚𝑒𝑙𝑙𝑖𝑀 (5.21)

𝐴𝐴
𝑒𝑙𝑙𝑖 =

1

2
(Δ𝑏𝑝𝑚𝑒𝑙𝑙𝑖𝐴 −Δ𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟𝐴) = (

𝜎𝑀

𝜎𝐴
)2𝐴𝑀

𝑒𝑙𝑙𝑖 (5.22)

𝑠𝑐𝑎𝑙𝑒𝑓 = (
𝜎𝑀

𝜎𝐴
)2 (5.23)

5.5.9 Applying bpmelli in Data Analysis

We analyze our best run of 2017 with the RTP cell, which had 100nm position

differences in the injector. We also analyze a subsequent run with an aligned

KD*P cell immediately following, which had the same injector setup. These runs

are in the 130keV portion of the injector and cover bpms: 1I02, 1I04, 1I06, 0I01,

0I01A, 0I02, 0I02A, and 0I05.

Determining 𝜎

We introduced bpmelli into our standard analysis, pan, treating 𝑎 = 2𝜅, 𝜅 =

13.7mm for M15-mini bpms, and 𝜎 = 1.5mm. The reasoning behind this choice of

𝜎 includes laser measurements and e-beam optics simulation. The laser spot size
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on the cathode during August 2017 was measured to be 𝜎 = 0.75mm. Examining

Elegant (Fig. 5-35 ), the beamline simulation software used by the accelerator, if

the initial 𝜎 is 0.25mm, then for the first 8 bpms in the injector the spot size 𝜎

is between 0.4mm and 0.6mm, assuming the model in Elegant is correct. If we

scale our measured cathode spot size using Elegant, it is reasonable to assume

1.2𝑚𝑚 < 𝜎 < 1.8mm in the 130keV injector region. Applying a fixed 𝜎 is not

strictly correct for all bpms since the beam size changes throughout the accelerator,

and we expect a ±25% scale error in the 130keV region.

Figure 5-35: ELEGANT spot-size in gun region

Further downstream in the injector, ELEGANT predicts the spot-size changing

more significantly.
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Figure 5-36: ELEGANT spot-sizes

Checking Pedestal Error

To check the pedestals, we examine a PITA scan in the RTP (Run3338). The

couplings between diff_bpmelli and Aq as measured by the PITA scan are small

and vary in sign,𝑑Δ𝑏𝑝𝑚𝑒𝑙𝑙𝑖
𝑑𝐴𝑞

between −2.5×10−7/ppm and 1.4×10−7/ppm, indicating

small pedestal errors. For comparison, when pedestal errors of 5% are intentionally

induced, the slopes are much larger, 8.1×10−6/ppm-8.25×10−6/ppm, and all have

the same sign for all 8 bpms. This indicates that our pedestal errors are extremely

small.

The same analysis was performed for the PITA scan in the KD*P data (Run3444).

The couplings between diff_bpmelli and Aq as measured by this PITA scan are

also small and vary in sign,𝑑Δ𝑏𝑝𝑚𝑒𝑙𝑙𝑖
𝑑𝐴𝑞

between −4× 10−7/ppm and 1.5× 10−8/ppm,

indicating small pedestal errors for the KD*P data as well.

Checking Couplings to PITAposU/V - RTP

With the RTP cell, we have the advantage of being able to perform Alpha-

posU/V scans which allow us to control the position differences and examine the

couplings between diff_bpmelli and diff_bpmecorr and these position differences,
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as well as examine any sensitivity of Aelli to PITA posU/V. The position differ-

ence sensitivity of diff_bpmelli and diff_bpmecorr should be very similar, since

the purpose of diff_bpmecorr to correct position difference sensitivity when we

subtract it out Aelli=(diff_bpmelli-diff_bpmecorr)/2. Any residual correlation of

Aelli to AlphaposU/V must be due Aelli actually changing as we vary the voltage.

The position difference sensitivity of diff_bpmecorr is expected to be 𝑥/𝜎2

where x is the deviation of the beam from center, which for these runs was ±2mm

or so, and 𝜎 is the spot size used, which for this analysis was 1.5mm. So we expect

a position difference sensitivity in the range of 𝑑Δ𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟
𝑑Δ𝑥

≈ ±0.9 × 10−7/nm.

Examining the tables of the slopes from AlphaposU/V scans below (Fig. 5-37 ,

Fig. 5-38 ) , that is exactly what we observe in diff_ecorr vs Dx,Dy. To get a sense

for the error bars on these slopes, and the range of induced spot-size asymmetries,

examine Fig.5-39 and Fig. 5-40 .

Figure 5-37: Run3339 AlphaposU table

Figure 5-38: Run3339 AlphaposV table

It is also important to know how Aelli is affected by AlphaposU/V. Since we

use these voltages to minimize position differences, it is important that in doing

so, we are not increasing spot-size asymmetry significantly. The largest slope ob-

served in the 130keV region is 2×10−6/V in 0I05 and 0I02A. That means changing
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AlphaposU/V by 50V may change Aelli by 10−4 in 0I05. The position difference

control in 0I05 was 13nm/V. So, put another way, using AlphaposU/V to correct

a position difference of 0.6𝜇m in 0I05 may change Aelli by 10−4. These sensitivi-

ties can be compared with actual laser table measurements with the linear array,

which showed < 4× 10−7/V, smaller than observed here. We note that the large

sensitivity to AlphaposV in 0I05 is opposite in sign to the sensitivity in 0I02A,

even though the beam orientation (see next section) is approximately the same

for both bpms. It is possible this sensitivity is an artifact of systematic error

in subtracting diff_bpmecorr. It should also be noted that our choice of Alpha-

posU/V voltages to zero position differences may also come close to the zero of

spot-size asymmetries, since even though we applied AlphaposU=12.69V, Alpha-

posV=70.98V to get <80nm position differences, as shown in the next section,

Aelli was still bounded as <10−4.

Figure 5-39: Run3339 AlphaposU scan



5.5. MEASURING SPOT SIZE ASYMMETRIES WITH BPMS 236

Figure 5-40: Run3339 AlphaposVscan

e-beam rotation and scale-factor error

Alphapos U and V scans with the RTP allow us to assess what is happening

rotationally to the electron beam, as well as identify any nodes in the propagation.

In performing a AlphaposU scan, we make the position differences of a known size

along -45𝑜 on the laser table. By examining the position difference observed in

each bpm, we can see if the position difference remains along −45𝑜 or if it is rotated

(i.e. the observed position difference is along only the horizontal, for example).

Additionally, if we know we’ve induced a 1um position difference at the cathode

and yet we only observe 100nm at a given bpm, we know that the e-beam is going

through a node in the optics of the injector. We can observe that the first bpm

in the beamline 1I02 sees position differences from AlphaposU along −48𝑜, so the

e-beam at 1I02 is not rotated relative to the laser table orientation. However, for

these injector settings, the subsequent bpms 1I04-0I05 see position differences from

AlphaposU mainly along ≈ 0𝑜, the horizontal, indicating the e-beam is rotated

by 45𝑜 relative to the laser orientation. That means if we have an elliptical spot
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size asymmetry along the x/y on the laser table, we’ll see it in bpm1I02 which

has it’s wire channels along x/y and where the e-beam has the same orientation

as the laser, but not see it in bpms1I04-0I05. And if we have an elliptical spot

size asymmetry along u/v on the laser table (i.e. the diagonal), we’ll see it in

bpms 1I04-0I05 which have their wire channels along x/y and where the e-beam

is rotated 45𝑜 relative to the laser, but not in 1I02 (for this particular injector

setup).

Figure 5-41: Couplings Angles 3339

Examining the radial position differences per PITA pos V (𝑑𝐷𝑟
𝑑𝑉

) in 0I01 and

0I01A, we see only 1-2nm/V at those bpms, when the laser at the cathode was

estimated to have 6nm/V. This suppression of position differences sensitivity indi-

cated a node in the e-beam optics. Examining 0I02 and 0I05, we see sensitivities

like 17nm/V indicating an expansion in the e-beam optics. If the injector were

viewed as simply a series of lenses where the beam was centered, from an entirely

ray optics perspective, these sensitivities to motion would scale with beam size. In

an overly simplified model, the 𝑑𝐷𝑟𝑏𝑝𝑚
𝑑𝐷𝑟𝑙𝑎𝑠𝑒𝑟

≈ 𝜎𝑏𝑝𝑚/𝜎𝑙𝑎𝑠𝑒𝑟. We can use AlphaposU/V

scans to check for errors in the Elegant simulation and errors in our assump-

tion of 𝜎 = 1.5mm at the bpms. We know the laser spot size at the cathode is
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0.75mm. Estimating the e-beam spot size from Dr sensitivity, we see spot-sizes in

the range 0.2mm-2mm. Of course, at nodes, the ray-optics model breaks down,

so we shouldn’t use this model for bpms 0I01 and 0I01A. For the other bpms, we

estimate a scale-factor error, discussed in a previous section, which could poten-

tially be applied to Aelli via 𝐴𝐴
𝑒𝑙𝑙𝑖 = 𝑠𝑐𝑎𝑙𝑒𝑓𝐴𝑀

𝑒𝑙𝑙𝑖 = (𝜎
𝑀

𝜎𝐴 )2𝐴𝑀
𝑒𝑙𝑙𝑖. These scale-factor

corrections are estimated in this ray-optics model to be anywhere from 0.5X-5X.

It should be noted that these numbers should be taken lightly, only used for

qualitative explanations and not quantitative interpretations. (We note the laser

position difference control at the cathode is estimated from the quadphotodiode

measurement using throw distance to the cathode 2.014m and the throw to the

qpd 1.04m).

RTP and KD*P best-case runs

The analysis of the best case RTP run indicates position differences <80nm

and elliptical spot size asymmetries Aelli=(diff_bpmelli-diff_bpmecorr)/2 on the

order of 5×10−5 (Fig. 5-42 , in black). diff_bpmelli is also shown in green and the

systematic error contribution diff_bpmecorr from the beam not being centered on

a given bpm is also shown in red, and they are on a similar order to the spot

size asymmetry. The systematic error contribution from Aq (<5ppm) through

pedestal error coupling, found to be < 2 × 10−7/ppm from the PITA scan, must

be < 10−6 and is therefore negligible. This measurement appears to bound the

elliptical spot size asymmetry as being <5× 10−5 both along x/y (bpm 1I02) and

along u/v (bpms 1I04-0I05), as discussed in the e-beam rotation section above.
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Figure 5-42: RTP cell Run3331 with bpmelli

The KD*P cell shows position differences <150nm and elliptical spot size asym-

metries slightly larger than for the RTP, on the order of 10−4 (Fig. 5-43 ). The

systematic error from diff_bpmecorr is comparable to what it was for the RTP

< 5× 10−5 (shown in red). The systematic error contribution from Aq (<5ppm)

through pedestal error coupling is negligible as it was for RTP.
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Figure 5-43: KDP Run3445 best-case with bpmelli

This systematic error Δ𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 is from the fact that the e-beam isn’t cen-

tered on some of the bpms; it is up to 2mm off center. The larger the deviation

from the beam being centered, the greater the systematic error contribution to

𝐴𝑒𝑙𝑙𝑖 =
1
2
(Δ𝑏𝑝𝑚𝑒𝑙𝑙𝑖−Δ𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟). We determined from AlphaposU/V scans that

the contribution for the RTP expected to be 𝑥/𝜎2 was < 10−6/nm. The beam

positions x,y for each bpm are shown below (Fig. 5-44 a ) and are on the order

of ±2mm for both the RTP run and KD*P run (Fig. 5-44 b ) and look almost

identical.

RTP and KD*P runs with scale-factor applied

We can redo the best-case run plots assuming our 1.5mm for spot size in not

correct and using the potential scale-factor errors we derived from the PITA pos

U/V scans above. Scaling Aelli by these potential scale factor errors produces the

following plot for scaled-Aelli in RTP (Fig. 5-45 a ) and KD*P (Fig. 5-45 b ).

The scale-factors for 0I01 and 0I01A are very large and we discount them

because those bpms are at a node where the simplistic ray-optics model these
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(a) Run3331 RTP XY (b) KD*P Run3445 XY

Figure 5-44: beam XY positions along beamline

(a) Run3331 RTP Aelli Scaled (b) Run3445 KD*P Aelli Scaled

Figure 5-45: Aelli scaled by scale factor error (𝜎𝐴/𝜎𝑒𝑠𝑡)2 estimated from position
difference sensitivity to AlphaposU/V scans
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factors were derived from breaks down. Examining bpm1I02, which is sensitive

to elliptical asymmetries along x/y laser table coordinates, Aelli is bounded as

< 2 × 10−4. Examining bpm0I02A and 0I05, which are sensitive to elliptical

asymmetries along u/v(±45𝑜) laser table coordinates, Aelli is bounded to be <

5× 10−5 in RTP and 1.5× 10−4 in KD*P.

Noise

The best case runs for RTP and KD*P show the RMS of Aelli is 0.8−2.6×10−3

(Fig. 5-42). These runs were performed at 240Hz flip rate, in linesync octet

random mode, and analyzed in the multiplet-tree. The integration widow was

3.96ms to be precise. So an entire octet consists of the integration of 31.68ms of

data and so the RMS shown in the multiplet tree is 30Hz-like.
√
𝑁 scaling indicates

𝑚 = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑡𝑠

𝑅𝑀𝑆 = 𝑅𝑀𝑆30𝐻𝑧

√︀
(𝑓/𝑚)/30𝐻𝑧

The time it takes to reach a particular precision p on Aelli can be calculated

as

𝑁 = (𝑓/𝑚)𝜏

𝑝 = 𝑅𝑀𝑆/
√
𝑁 = 𝑅𝑀𝑆/

√︀
𝑓𝜏/𝑚

𝜏(𝑝) = (𝑚/𝑓)(𝑅𝑀𝑆/𝑝)2

So for 240Hz, octet, we are 30Hz-like and it takes 4-40minutes to reach a

precision of ±1× 10−5 on Aelli depending on the bpm.

Future Studies

It would be useful to deliberately create a large Aelli on the laser table, vary

it in a predictable way, and observe this large spot size asymmetry in the electron
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beam. This would help test the model, the instrumentation, and the analysis

[109]. This could be done by either putting in a 100% analyzer on the laser

table and tilting the RTP cell angle or my installing helicity quad magnets which

could induce spot-size asymmetries (along the elliptical mode) which could then be

measured with the bpms. It might also be desirable to use the first two solenoids

coming off the gun to rotate the e-beam and then just examine the 1st bpm 1I02,

analogous to rotating the linear array to examine different spot size asymmetries

along different axes.

Two pairs of modified wire BPMs are being installed in 2018, located in the

early part of the injector, just after the cathode. They are approximately modified

M20 cans. They will be more sensitive to spot-size asymmetry through sensitivity

to second moments. The BPMs are coated with a Non-Evaporable Getter (NEG).

Second moments from beam models were assessed with Goubau Line (G-Line)

scans of the BPMs and they were taken before and after NEG coating by Musson

[113]. Results showed that measurements of second moments were possible. Once

the BPMs are installed, they will enable monitoring of shape and direction of the

beam as it exits the electron gun. Future studies will include these new bpms.

Aelli Conclusions

We have set bounds on Aelli in the injector with e-beam measurements of

< 10−4. This is consistent with laser table measurements. This is a useful bound

for PREX and even for Moller. The other component of spot-size asymmetry,

𝐴𝑐𝑖𝑟𝑐, is only accessible in the e-beam measurements by comparison with a bcm,

where Aq is very well known, since 𝐴𝑐𝑖𝑟𝑐 manifests itself in a bpm just like a charge

asymmetry. For 𝐴𝑐𝑖𝑟𝑐, laser measurements are probably necessary, but for Aelli

e-beam measurements are feasible.
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5.6 Summary

We have described the types of beam monitors to be used for PREXII and

MOLLER and shown beam study results which demonstrate achievement of the

desired resolution for these experiments.

2015-2016 beam studies evaluated 𝐴𝑞 intensity asymmetry widths, BCM res-

olution, BPM widths, and their dependence on current, energy, and frequency.

SAM’s were successfully used in 2015-2016 beam studies to verify that the reso-

lution of the 1MHz BCM system was 25-30ppm (at 30Hz, 20uA) . The resolution

of the 1MHz BCM system was observed to improve with higher current and ap-

pears sufficient for PREXII (>70uA, 120Hz). Furthermore for 30Hz, at 60uA,

a resolution of ∼ 11ppm was observed, which is encouraging for MOLLER. We

also studied both the electron beam noise and the monitor resolution dependence

on the effective helicity flip rate since MOLLER will run at a 2kHz flip rate,

while PREXII will run at a 120Hz or 240Hz flip rate. Higher frequencies were

found to result in smaller widths. The resolution of analog BCM system and the

beam asymmetry width improves with higher frequency which is encouraging for

PREXII and for MOLLER. Regarding energy dependences, MOLLER will run at

11GeV and it was important to assess the effect of multiple passes in the acceler-

ator on the intensity asymmetry noise. No evidence was observed that increasing

the number of passes increases the beam asymmetry noise.

As regards the digital monitors, we observed evidence in 2016 beam studies

data that the digital BCM receivers were delayed in time relative to the analog

1MHz BCM receivers. However a low-latency setting was developed in the digital

BCM which will work sufficiently well for PREXII. Attenuation configurations

were described for PREXII/CREX which will achieve linearity comparable to to

the analog BCMs at 70uA and <0.3% non-linearity at 150uA .

The BPM widths observed from 30Hz to 1kHz, from 20𝜇𝐴 to 100𝜇𝐴, were

1𝜇m−20𝜇 m, depending on the BPM and are acceptable for PREXII running.
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However, we note that for MOLLER, at 2kHz flip rates, large widths are observed

due to a beat frequency with the 60Hz line. In preparation for MOLLER, the

helicity control board must be able to generate mega-multiplets sufficient to fill a

60Hz period with 2kHz windows, in order to cancel out the 60Hz beating and get

rid of this extraneous noise in BPM signals.

Lastly, we have presented an entirely novel technique of measuring a com-

ponent of spot-size asymmetry of the electron beam (𝐴𝑒𝑙𝑙𝑖) using a BPM wire

combination as yet unexamined in a parity experiment. We have set bounds on

Aelli in the injector with e-beam measurements of < 10−4, consistent with laser

table measurements, and a useful bound for PREXII and MOLLER. Aelli’s corre-

lation with detectors and SAMs will be examined during PREXII. If correlations

are significant, measurement of this parameter could be important for MOLLER

which must account for all types of helicity correlated systematic uncertainties

more stringently.
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Chapter 6

RTP Pockels Cell: Parity Quality

Beam for MOLLER

The content of this chapter mirrors an article written by this author which will

shortly be submitted for publication [276]. Rubidium Titanyl Phosphate (RTP)

has been used in recent years for ultra-fast Pockels cell switches due to its lack

of piezo-electric resonances at frequencies up to several hundred MHz. However,

crystal non-uniformity in this material leads to poorer extinction ratios than in

commonly used KD*P Pockels cells when used in 𝜆/2-wave configuration. It leads

to voltage dependent beam steering when used in 𝜆/4-wave configuration. Here we

present an innovative design which uses electric field gradients to counteract crystal

non-uniformities and control beam steering down to the nm-level. We demonstrate

this RTP Pockels cell design is capable of producing precisely controlled polarized

electron beam at Jefferson Laboratory, a national accelerator facility.

6.1 Introduction

Pockels cells can be used in a variety of applications including cavity locking in

regenerative amplification as well as in electron beam particle accelerators. In elec-

tron accelerators, Pockels cells are used to control the spin of the electron beam by
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switching the polarization state of the source laser. In regenerative amplifier laser

systems, Pockels cell are often used in a 𝜆/2-configuration, switching between hor-

izontal and vertical polarization states, for Q-switching. Non-uniformities in the

crystal or electric field lead to poor extinction ratios, cavity leaking and poor am-

plification. In polarized electron-beam accelerators, Pockels cells are often used in

a 𝜆/4-wave configuration, switching between right and left circular polarizations,

to control the polarization state of light used to produce polarized electron beam

from a GaAs photocathode. Pockels cell non-uniformities, when used in in the

𝜆/4-wave mode, lead to asymmetries between the right and left circular polarized

light states generated and consequently asymmetries in the positive and nega-

tive helicity states of the electron beam. In particular, non-uniformities produce

helicity-dependent laser beam motion and thus electron-beam position differences.

These helicity-correlated position differences can be detrimental to electron beam

accelerator parity experiments which make precise comparisons between positive

and negative helicity states. Thus, Pockels cell uniformity is of critical importance

for both laser amplification and electron beam accelerator applications.

Fast switching capabilities for high repetition rates is also desirable in these

Pockels cell applications. Commonly used commercial KD*P Pockels Cells suffer

from piezo-electric ringing from acoustic modes when high voltage is suddenly

applied to switch polarization states, resulting in a prolonged transition and settle

time on the order of 10’s of 𝜇𝑠 before the polarization state is fully switched. In

regenerative amplifiers for high rep. rate laser systems, a fast-switching Pockels

cell with short settle time is desirable. In electron-beam accelerators, when data

is taken at a high helicity flip rate, it is also desirable to have a short settle time,

to prevent downtime data losses. In KD*P cells previously used at the JLab

e-beam accelerator (20mm diameter, and the usual 2:1 length:width ratio), this

piezo-electric ringing can result in 70-100𝜇s of settle time during which period

the beam quality is poor and data cannot be taken. The statistical losses due to

down time goes as ∼ 𝑇𝑠𝑒𝑡𝑡𝑙𝑒𝑓 , where f is the helicity flip rate. Very high precision
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parity experiments, like the future MOLLER experiment, requiring high ∼ 2kHz

flip rates, depend on the ability to switch helicity state faster and take data at a

higher rate than has previously been feasible. 1 The obvious solution to reducing

the settle time of the JLab Pockels cell is to choose a material which suffers less

from piezo-electric ringing, even for fast transitions.

RTP(rubidium titanyl phosphate) is a promising material for Pockels cells due

to its fast-switching, high repetition rate capabilities. There is no Pockels cell ma-

terial which can operate as well at high repetition rates as RTP. Unlike commonly

used KD*P cells, RTP suffers minimally from piezo-electric ringing artifacts, the

resonances being at much higher frequencies, which in high repetition rate pulsed

systems can reduce contrast in half-wave mode laser amplification systems and can

cost precious transition time in 𝜆/4-wave mode electron beam applications. RTP

is extremely advantageous in this regard. However, compared with KD*P, RTP’s

uniformity is not as good, making for poorer extinction ratios, and in the case of

operation in 𝜆/4 configuration, producing helicity-dependent laser beam motion.

In addition RTP is highly birefringent which makes its uniformity in Pockels cells

extremely dependent on the precision of face-cut angles; face cut angles as small as

0.1 mrad can have significant impact on extinction ratios and helicity-correlated

position differences.

Here we present a solution which gives us the best of both worlds: fast tran-

sition and improved effective uniformity. We have demonstrated 8𝜇s transitions

in 𝜆/4-wave configuration with a large aperture(12mmx12mm), transverse, RTP

cell (a factor of 10X improvement over the 20mm aperture longitudinal KD*P

previously used at JLab). Furthermore, we present a new RTP Pockels cell design

in which crystal intrinsic non-uniformity effects are counteracted with controlled

electric-field gradients so that in 𝜆/4-wave mode, laser beam helicity correlated
1Because parity experiments run by flipping helicity states frequently, for the high data rates

in the ∼2kHz frequency range required high precision experiments, such as the future MOLLER
experiment, this ∼ 100𝜇𝑠 settle time results data losses on the 10-20% level, compromising the
statistical precision of experiments.
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position motion is controllable and kept at the ∼10nrad, 10nm level, while the

transition time is kept <10𝜇𝑠.

6.2 Parity Violation Experiments

In electron beam accelerator facilities like Jefferson Lab, parity-violation ex-

periments are performed which measure asymmetries between reactions with posi-

tive(right) and negative(left) helicity states. These experiments measure a parity-

violating asymmetry in the differential electron scattering cross section off a target

at an angle corresponding to a known energy transfer, and the experimental asym-

metry is defined as

𝐴𝑒𝑥𝑝 =
𝑑𝜎+ − 𝑑𝜎−

𝑑𝜎+ + 𝑑𝜎−

where 𝑑𝜎+(−) refers to the differential cross-section, proportional to the de-

tected rates, for positive and negative electron beam helicity states respectively.

The right and left handed longitudinally polarized electrons for such experiments

come from right and left circularly polarized light. The Pockels cell controls the

spin of the electron beam by switching the polarization state of the laser beam gen-

erating it. The Pockels cell is fed a randomized helicity signal which applies either

positive or negative high voltages, producing either right or left circularly polar-

ized light, which is incident on a photocathode, producing consecutive windows

of right-handed and left-handed electrons. The electrons are accelerated and then

sent into the experimental hall where the differential cross-section asymmetries

are measured.

To achieve high precision measurements on 𝐴𝑒𝑥𝑝, the Pockels cell must sat-

isfy both statistical and systematic requirements as regards the electron beam

produced. Regarding statistical experimental requirements, in helicity switching,

time windows are generated in the electron bunch train at a selected flip rate,
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with the sign of the beam’s longitudinal polarization in each window assigned on

a pseudo random basis. Frequency selection for helicity flipping affects the noise,

measurement widths, and statistical errors significantly. The future MOLLER

experiment is a high data rate experiment. So, the RTP Pockels cell which con-

trols the electron beam must switch helicity states very quickly, with minimal

dead-time, to obtain sufficient statistical precision at high data rates.

In parity experiments the differential cross-section asymmetries are extremely

small. So the symmetry between incident right and left helicity beams is of im-

portance in achieving systematic experimental requirements. As previously stated

in Sec. 2.3.7, because this measurement compares right and left handed, oppo-

site helicity, electrons and looks for changes in scattering rates, any change in the

polarized beam, correlated with the helicity reversal, can be a potential source

for systematic error, or a false asymmetry on 𝐴𝑒𝑥𝑝: this includes energy changes,

position changes, intensity changes, or spot-size changes. For precise comparisons

to be made, the two helicity state beams must be extremely symmetric: their

intensity, position, and spot-size must be very nearly identical. As illustrated in

Fig. 6-1 , an intensity asymmetry in the electron beam can arise from a polar-

ization asymmetry in the laser beam when incident on a polarizing element such

as the photocathode. A position difference in the electron beam can arise from a

polarization gradient in the Pockels cell, a 1st moment effect producing a shift in

central laser beam position. A spot size asymmetry can arise from a 2nd moment

in polarization gradient, which can broaden or narrow the beam distribution.
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Figure 6-1: Origin of analyzing power dependent beam asymmetries: Here the
red and blue ellipses represent polarization ellipses for the opposing right and left
circularly polarized states, with residual linear polarization in opposite directions.
(a) Coupled to an analyzing power, this can produce an intensity asymmetry (b)
If there is a polarization gradient across the beam spot this can produce a position
difference (c) If there is a 2nd moment in the polarization gradient across the beam
spot this can produce a spot-size asymmetry

Next generation experiment such as MOLLER require electron beam off the

cathode with position differences of <20nm and transverse rms spot-size asym-

metries of ∼ 10−5. These requirements motivated the design a new RTP Pockels

cell, with many degrees of freedom, to ensure both fast transition times and small

helicity-correlated asymmetries.

6.3 Helicity Correlated Beam Asymmetries

6.3.1 Intensity Asymmetry

A Pockels cell control the polarization state of light passing through it with a

voltage induced birefringence via the electro-optic effect. When operated in 𝜆/2

configuration, the Pockels cell alternates between acting as a 𝜆/2-wave plate, i.e.

rotating incident horizontal polarization into vertical polarization, and having no-

birefringence, leaving the incident polarization state unchanged. When operated

in 𝜆/4 wave configuration, the Pockels cell alternates between acting as a quarter-
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wave plate with its fast axis along +45𝑜 and a quarter wave plate with its fast axis

along −45𝑜, i.e. switching incident linearly polarized light into alternating right

and left circular polarization states. Incident horizontally(or vertically) polarized

light is exposed to the crystal’s fast and slow axes along ±45𝑜 and splits into

two beams which propagate with different phases. The phase shifts for the ±45𝑜

components of the incident polarization states along primary fast/slow axes of the

crystal are

𝜑
𝑅(𝐿)
𝑖 = 2𝜋𝑛

𝑅(𝐿)
𝑖 𝐿𝑅(𝐿)/𝜆

where R(L) signify right and left circular polarization states of the outgoing light,

i refers to the primary fast and slow axes (=y,z for RTP crystals), n is the voltage

controlled refractive index, and 𝐿𝑅(𝐿) = 𝐿0 is the crystal length which remains

fixed (when there is no voltage applied and no piezoelectric effect at play).

In RTP crystals, the voltage dependent refractive indices (along the primary

y and z axes) are given by [312]

𝑛𝑅(𝐿)
𝑦 = 𝑛0,𝑦 −

1

2
𝑛3
0,𝑦𝑟23𝐸

𝑅(𝐿)
𝑧 𝑛𝑅(𝐿)

𝑧 = 𝑛0,𝑧 −
1

2
𝑛3
0,𝑧𝑟33𝐸

𝑅(𝐿)
𝑧

where typically the electrical field 𝐸𝑧 = −𝑉/𝑑 is switched to have opposite sign for

right and left polarization and is approximately symmetrically flipped such that

𝐸𝑅
𝑧 ≈ −𝐸𝐿

𝑧 and 𝑉 𝑅 ≈ −𝑉 𝐿 the voltages are nearly equal and opposite.

RTP crystals have a high intrinsic birefringence Δ𝑛0 = 𝑛0,𝑧 − 𝑛0,𝑦 ∼ 0.1 and

a single 1cm long RTP crystal, standing alone, functions as a ∼1000th order

waveplate at 780nm. To avoid severe wavelength dependent and temperature

dependent effects of a using such a high order waveplate, two crystals are used in

RTP Pockels cells with their fast and slow axes in opposite orientations in a so-

called ’thermal compensating’ design as shown in Fig. 6-2. Such a design causes

temperature and wavelength shifts of the first RTP crystal to be canceled by the

second RTP crystal 2. The crystals are cut very precisely to be of equal length such
2analogous to 0th order waveplate designs
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that 𝐿1 ≈ 𝐿2 ≡ 𝐿0 (within 2𝜇m) so that the net birefringence is near zero when

no voltage is applied. Each of the RTP crystals induces equal and opposite phase

shifts such that the Pockels cell acts as a zero-order waveplate when inactive:

𝛿
𝑅(𝐿)
1 = 2𝜋Δ𝑛

𝑅(𝐿)
1 𝐿0/𝜆 = 2𝜋(𝑛𝑅(𝐿)

𝑧 − 𝑛𝑅(𝐿)
𝑦 )𝐿1/𝜆

𝛿
𝑅(𝐿)
2 = 2𝜋Δ𝑛

𝑅(𝐿)
2 𝐿0/𝜆 = 2𝜋(𝑛𝑅(𝐿)

𝑦 − 𝑛𝑅(𝐿)
𝑧 )𝐿2/𝜆

𝛿
𝑅(𝐿)
𝑡𝑜𝑡 = 𝛿

𝑅(𝐿)
1 + 𝛿

𝑅(𝐿)
2 = 2𝜋(𝑛𝑅(𝐿)

𝑧 − 𝑛𝑅(𝐿)
𝑦 )(𝐿1 − 𝐿2)/𝜆 ≈ 0

For two crystals of equal length in succession, the phase shift is 𝛿 = 2𝜋(Δ𝑛1 +

Δ𝑛2)𝐿0/𝜆, where Δ𝑛1 = 𝑛𝑧 −𝑛𝑦 is the birefringence of the 1st crystal and Δ𝑛2 =

𝑛𝑦 − 𝑛𝑧 is the birefringence of the 2nd, and so 𝛿 ≈ 0.

Figure 6-2: RTP thermal compensation design [228]. Beam direction 𝑘 is along
the �̂� axis in each crystal.

When active in 𝜆/4-mode, the two crystals (1,2) are subjected to opposite sign

electric fields 𝐸𝑧1 ≈ −𝐸𝑧2 ≡ 𝐸𝑧 so that the voltage induced birefringence in both

crystals combine additively as follows:

𝑛
𝑅(𝐿)
𝑦1 = 𝑛0,𝑦 −

1

2
𝑛3
0,𝑦𝑟23𝐸

𝑅(𝐿)
𝑧1 𝑛

𝑅(𝐿)
𝑧1 = 𝑛0,𝑧 −

1

2
𝑛3
0,𝑧𝑟33𝐸

𝑅(𝐿)
𝑧1

𝑛
𝑅(𝐿)
𝑦2 = 𝑛0,𝑦 −

1

2
𝑛3
0,𝑦𝑟23𝐸

𝑅(𝐿)
𝑧2 𝑛

𝑅(𝐿)
𝑧2 = 𝑛0,𝑧 −

1

2
𝑛3
0,𝑧𝑟33𝐸

𝑅(𝐿)
𝑧2

𝛿
𝑅(𝐿)
𝑡𝑜𝑡 = 2𝜋/𝜆(

1

2
(𝑛3

0,𝑦𝑟23 − 𝑛3
0,𝑧𝑟33)(𝐸

𝑅(𝐿)
𝑧1 𝐿1 − 𝐸

𝑅(𝐿)
𝑧2 𝐿2) + (𝑛0,𝑧 − 𝑛0,𝑦)(𝐿1 − 𝐿2))

≈ 2𝜋𝐿0/𝜆(𝑛
3
0,𝑦𝑟23 − 𝑛3

0,𝑧𝑟33)𝐸
𝑅(𝐿)
𝑧
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where 𝐸𝑧 is at the quarter-wave field strength in a two-crystal RTP cell system,

approximately given by

|𝐸𝜆/4| =
𝜆

4𝐿0(𝑛3
𝑧0𝑟33 − 𝑛3

𝑦0𝑟23)

and where the corresponding quarter wave voltage is given by 𝑉 = −𝐸𝑧𝑑

|𝑉𝜆/4| =
𝑑𝜆

4𝐿0(𝑛3
𝑧0𝑟33 − 𝑛3

𝑦0𝑟23)

where d is the width of the crystal. For 780 nm, L=10 mm, d=12 mm, we have

𝑉𝜆/4 = 1491 V and 𝐸𝜆/4 = 124.3 V/mm 3

When operating in 𝜆/4-mode, the resultant right and left circular polariza-

tion states may not be perfectly circular, having a slight ellipticity, and may not

be perfectly symmetric, having different ellipticity for right and left polarization

states. This deviation from perfect circular polarization is characterized by the

birefringence induced phase shift 𝛿, which each helicity state undergoes.

Each helicity state is nearly circular (𝛿 ≈ ±𝜋/2) with small deviations from

an 𝛼-phase and a Δ-phase, giving rise to residual linear polarization components

as shown in Fig. 6-3. The 𝛼-phase signifies a component of linear polarization

which is symmetric in both polarization states, whereas the Δ-phase signifies an

asymmetric component between the polarization states.

𝛿𝑅(𝐿) = ∓(𝜋/2 + 𝛼)−Δ

3Empirically observed 𝑉𝜆/4 ∼ 1600𝑉 implies 𝐸𝜆/4 = 133.3V/mm
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Figure 6-3: Δ-phase is anti-symmetric, resulting in residual linear polarization
along complementary axis between the two helicity states light.[229]

In 𝜆/4-configuration, it is critical to minimize the asymmetric component of

linear polarization. The Pockels cell voltages can control the asymmetric compo-

nent of linear polarization along the horizontal/vertical axes, defined by “S1” in

Stokes parameter terminology (for further discussion see Appendix D.2.1). The

Stokes parameters 𝑆0, 𝑆1, 𝑆2, and 𝑆3, respectively define the degree of polarization

(DoP), the degree of linear polarization (DoLP) along horizontal/vertical axes,

the DoLP along the diagonal ±45𝑜 axes, and the degree of circular polarization

(DoCP). We define a Δ-voltage, also called a PITA (Phase Induced Transmission

Asymmetry)-voltage [46]), which controls the Δ-phase and an 𝛼-voltage which

controls the 𝛼-phase as:

𝑉 𝑅(𝐿) = ±(|𝑉𝜆/4|+ 𝑉𝛼) + 𝑉Δ = ±𝑉0 + 𝑉Δ

where we have defined 𝑉0 = |𝑉𝜆/4|+ 𝑉𝛼 . The corresponding electric field in each

crystal is 𝐸𝑧 = −𝑉/𝑑

𝐸𝑅(𝐿)
𝑧 = ∓(|𝐸𝜆/4|+ 𝐸𝛼)− 𝐸Δ = ∓𝐸0 − 𝐸Δ

Such polarization asymmetries lead to intensity asymmetries when exposed to

a polarizing element in the beamline. Conversely, intensity asymmetries can be

controlled with voltage induced polarization changes when there is a polarizing

element. When performing diagnostic tests on the laser table, we use a polarizer
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with 100% analyzing power as the polarizing element, and measure transmission

and intensity asymmetry 𝐴𝐼 with a photodiode, as shown in Fig 6-4 4.

Figure 6-4: This is the cartoon of the typical laser table Pockels cell testing
configuration. Horizontally polarized light passes through the Pockels cell which
produces L or R circ. Pol light. A second polarizing element is inserted which
detects any polarization asymmetry on a photodiode detector angle, translation
and voltage adjustments to the Pockels Cell minimize any asymmetry in the degree
of linear polarization along S1.

An analyzer is inserted after the Pockels cell with transmission coefficients

𝑇𝑥, 𝑇𝑦 along an axis x,y where 𝜓 is the angle subtended between the analyzing di-

rection x and the initial polarization axis (along S1, here we assume the horizontal

axis). The transmission through a polarizing element for each polarization state

is described by:

𝑇𝑅(𝐿) = 𝑇
1

2
(1 + 𝜖/𝑇 sin(2(𝜂 − 𝜓)) cos 𝛿𝑅(𝐿))

where 𝜖 = 𝑇𝑥−𝑇𝑦, 𝑇 = (𝑇𝑥−𝑇𝑦)/2 defines the analyzing power of the polarizer(or

polarizing element) and 𝜂 is the effective fast-axis of the Pockels cell crystal relative

to the horizontal axis.

In the polarized electron source, the left and right circularly polarized light is

incident on a photocathode, which acts as a partial polarizer with slight (<6%)
4Additionally there is an insertable half-wave-plate IWHP upstream of the PC to convert

the H-polarizaton to V-polarization to perform a sign flip to control systematics. There is also
a rotating half-wave-plate RHWP downstream of the PC so that the beam polarization can be
rotated in accordance with the direction of the analyzing power of the cathode that generates
the electron beam
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analyzing power. What starts as an asymmetry in laser polarization and would

become an asymmetry in light transmission (if the polarizer were optical), instead

becomes an asymmetry in the charge of the electron beam. The charge asymmetry

𝐴𝑞 (also referred to as intensity asymmetry 𝐴𝐼 for a laser beam), is controlled with

the Pockels Cell PITA voltage by inducing Δ-phase polarization changes along S1

(as shown in Fig. 6-3) and the analyzing photocathode.

The intensity asymmetry 𝐴𝐼 is given by

𝐴𝐼 =
𝑇𝑅 − 𝑇𝐿

𝑇𝑅 + 𝑇𝐿
≈ 𝜖

𝑇
sin(2(𝜂 − 𝜓))

1

2
(cos 𝛿𝑅 − cos 𝛿𝐿) ≈ − 𝜖

𝑇
sin(2(𝜂 − 𝜓))Δ

where we have used the approximation cos 𝛿𝑅 − cos 𝛿𝐿 ≈ 𝛿𝑅 + 𝛿𝐿 = −2Δ. The

Δ-phase can be derived by considering the total phase shifts from the two crystals

Δ =
−1

2
(𝛿𝑅 + 𝛿𝐿) =

−1

2
(𝛿𝑅𝑡𝑜𝑡 + 𝛿𝐿𝑡𝑜𝑡) =

𝜋/𝜆((𝑛3
0,𝑦𝑟23 − 𝑛3

0,𝑧𝑟33)(𝐸Δ1𝐿1 + 𝐸Δ2𝐿2) + (𝑛0,𝑦 − 𝑛0,𝑧)(𝐿1 − 𝐿2))

where for each crystal

𝐸
𝑅(𝐿)
𝑧1 = ∓(|𝐸𝜆/4|+ 𝐸𝛼1)− 𝐸Δ1 = ∓𝐸𝑧1,0 − 𝐸Δ1

𝐸
𝑅(𝐿)
𝑧2 = ±(|𝐸𝜆/4|+ 𝐸𝛼2) + 𝐸Δ2 = ±𝐸𝑧2,0 + 𝐸Δ2

𝑉
𝑅(𝐿)
𝑧1 = ±(|𝑉𝜆/4|+ 𝑉𝛼1) + 𝑉Δ1 = ±𝑉𝑧1,0 + 𝑉Δ1

𝑉
𝑅(𝐿)
𝑧2 = ∓(|𝑉𝜆/4|+ 𝑉𝛼2)− 𝑉Δ2 = ∓𝑉𝑧2,0 − 𝑉Δ2

and where 𝐸𝑧1 ≈ −𝐸𝑧2 ≈ 𝐸𝑧 and these are defined in relation to the overall cell

quarter-wave fields as

Δ ≈ 2𝜋𝐿0

𝜆
(𝑛3

0,𝑦𝑟23 − 𝑛3
0,𝑧𝑟33)𝐸Δ ≈ − 𝜋

2|𝑉𝜆/4|
𝑉Δ



6.3. HELICITY CORRELATED BEAM ASYMMETRIES 258

𝐸𝑅(𝐿)
𝑧 =

𝐸
𝑅(𝐿)
𝑧1 − 𝐸

𝑅(𝐿)
𝑧2

2
= ∓𝐸0 − 𝐸Δ

𝐸0 =
𝐸𝑧1,0 − 𝐸𝑧2,0

2

𝐸Δ =
𝐸Δ1 + 𝐸Δ2

2

𝑉0 =
𝑉𝑧1,0 − 𝑉𝑧2,0

2

𝑉Δ =
𝑉Δ1 + 𝑉Δ2

2

The Δ-phase can have multiple contributions besides electric fields from various

sources, including vacuum windows, angular misalignment of the cell, a rotating

HWP downstream of the cell, giving rise to Δ0. Hence, the electron beam charge

asymmetry 𝐴𝑞 is given by,

𝐴𝑞 ≈
𝜖

𝑇
(sin(2(𝜂 − 𝜓))

𝜋

2|𝑉𝜆/4|
𝑉Δ −Δ0)

which when the slow axis of the crystal is along 𝜂 = 45𝑜, reduces to

𝐴𝑞 ≈
𝜖

𝑇
(cos(2𝜓)

𝜋

2|𝑉𝜆/4|
𝑉Δ −Δ0)

For 100% analyzer on the laser table (along S1 where 𝜓 = 0𝑜, 90𝑜 = 𝜂 ± 45𝑜) this

reduces to

𝐴𝐼 ≈ −Δ ≈ 𝜋

2|𝑉𝜆/4|
𝑉Δ −Δ0

The sensitivity of 𝐴𝑞 to 𝑉Δ is called the PITA-slope 𝑑𝐴𝐼

𝑑𝑉Δ
, and for our RTP system

at 780nm is approximately 1053𝑝pm/V 5 for a 𝜖/𝑇 = 100% polarizer along S1

.While the Δ-phase has multiple contributions from various sources giving rise

to Δ0, it can be controlled and zeroed out with voltage. Hence, the Pockels cell
5this depends on the definition of PITA running with the 8HV system, but we’ve empirically

observed the PITA-individual slope to be ∼ 850𝑝𝑝𝑚/𝑉Δ,𝑖𝑛𝑑𝑣 where each individual plate is at
+-800V, which is equivalent to a PITA slope of ∼ 1700𝑝𝑝𝑚/𝑉Δ,𝑡𝑜𝑡 for QWV ∼ 1600𝑉
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PITA voltage can control polarization asymmetries along the S1 direction, and

can control intensity asymmetries when the polarizing element has a component

of analyzing power along the S1 direction (i.e 𝜖/𝑇 sin(2(𝜂 − 𝜓)) ̸= 0) .

Angle dependence Intensity asymmetry-S1

When aligning the Pockels cell in 𝜆/4 -configuration, angular adjustments are

critical for minimizing HCBA (and for maximizing the extinction ratio in 𝜆/2

systems). The angle-dependence of the Pockels Cell polarization asymmetry can

be derived from the extra birefringence induced when the beam path through the

crystal in changed. In general, any passive birefringent element inserted after the

Pockels cell, when operated in 𝜆/4 -configuration, adds a phase shift Δ to the

circular polarization states, producing polarization asymmetry Δ between right

and left states along the direction of birefringence. When analyzed along the

asymmetry direction, this gives rise to an intensity asymmetry of magnitude 𝐴𝐼 =

−Δ.

In the case of an X-cut RTP Pockels cell, the beam propagates mainly along

the crystal x-axis and the fundamental refractive indices 𝑛𝑦 and 𝑛𝑧 which the

transverse polarization are exposed to are quite different. At 780nm, the refractive

indices of RTP are shown in Table 6.1.

𝑛𝑥 1.7739

𝑛𝑦 1.7832

𝑛𝑧 1.8673

Table 6.1: RTP refractive indices at 780nm from Sellmeier’ s equation [328]

When laser beam propagation is at an slight angle, while this will mix 𝑛𝑥

into 𝑛𝑧 or 𝑛𝑦 slightly, as well as lengthen the beam propagation distance through

the crystal. The angle-dependence of the Pockels Cell intensity asymmetry can

be derived from the extra birefringence induced phase shift in the beam path
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through the crystal by (1) the extra crystal length when it’s tilted at an angle

and (2) the effective refractive index mixing with the longitudinal x-axis, which

alters the effective birefringence. Both of these mechanisms work together and

can be modeled as effectively adding an angle-dependent extra birefringent passive

element, which produces an intensity asymmetry

𝐴𝐼(𝜉𝑥0, 𝜉𝑦0) =
𝜖

𝑇
sin(2(𝜂 − 𝜓))

𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛2
𝑥

− 1

𝑛𝑧𝑛𝑦

)(2𝜉𝑥0𝜉𝑦0) (6.1)

where 𝜉𝑥0 is the yaw tilt of the Pockels cell relative to the crystal’s primary x-axis

and 𝜉𝑦0 is the pitch tilt relative to the crystal’s primary x-axis. In S1 (𝜂−𝜓 = 45𝑜),

the sensitivity to angle is maximal (sin(2(𝜂− 𝜓)) = 1 ). For a 100% analyzer and

1cm long crystals, the angle sensitivity is predicted to be

𝑑2𝐴𝐼

𝑑𝜉𝑥0𝑑𝜉𝑦0
= −2

𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛𝑧𝑛𝑦

− 1

𝑛2
𝑥

) = 5137𝑝𝑝𝑚/𝑚𝑟𝑎𝑑2

For a derivation of the intensity asymmetry angle dependence in RTP see Ap-

pendix A.

6.3.2 Intensity Asymmetry -S2

In addition to there being an asymmetric degree of linear polarization along the

vertical/horizontal axes for the two left and right helicity states, there can also be

an asymmetric degree of linear polarization along the diagonal axes. In addition to

a polarization asymmetry oriented along the Stokes parameter S1, there can also

be an asymmetry along the Stokes parameter S2, signifying the degree of linear

polarization along diagonal axes +45𝑜 and −45𝑜, as shown in Fig. 6-5.

This S2 polarization asymmetry can arise in KD*P cells from an angular mis-

alignment of the cell, but in RTP cells, due to the large intrinsic birefringence

of the crystal, this angular dependence is suppressed in S2 (as can be seen by
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Eq. 6.1). However another kind of misalignment in RTP cells can give rise to

this S2 polarization asymmetry: the relative roll angle between the two crystals.

In commercial RTP cells, the two crystals are mounted such that they are fixed

permanently relative to one another. To obtain the high degree of symmetry re-

quired by a parity experiment application, it was necessary to design a cell system

with the two crystals mounted independently, allowing for precise control over the

relative roll angle between the crystals.

An advantage to this adjustable cell design is that this Pockels cell has control

over both S1 polarization and S2 polarization states, which make it a device capa-

ble of completely controlling the polarization state of the outgoing light, whereas

ordinary Pockels cell designs only have control over S1 polarization. In other ac-

celerator systems, complete control over both S1 and S2 was obtained by the use

of two Pockels cells in succession [230]. Whereas, this system uses the two crystals

in an RTP cell to obtain the same degree of control with a single system, using

relative roll degree of freedom.

Figure 6-5: Polarization ellipses for asymmetric S2 components on mostly circular
polarization states.

Angle dependence Intensity asymmetry-S2

The S2 polarization asymmetry in RTP does not arise from pitch or yaw angu-

lar misalignment. Examining the equation for angle dependence Eq. 6.1, we note

that that 𝐴𝐼 ≈ 0 in S2 when 𝜂 = 𝜓 = 45𝑜; meaning the dependence on angular

adjustments is negligible when analyzing along ±45𝑜. The reason for this lack of
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S2 angle dependence in RTP, as opposed to in KD*P which does have S2 angle

dependence is that RTP is a biaxial crystal and the cell is transverse while KD*P

is uniaxial and the cell is longitudinal.

Unlike the uniaxial KD*P, which has nearly equal transverse refractive indices,

in RTP the fundamental refractive indices 𝑛𝑦 and 𝑛𝑧 which the transverse polar-

ization are exposed to are quite different. The refractive indices of RTP at 780nm

are 𝑛𝑥 = 1.77 (the beam propagation axis),𝑛𝑦 = 1.78, 𝑛𝑧 = 1.87 (the transverse

axes) [328]. By comparison, in KD*P the refractive indices are 𝑛𝑧 ≈ 1.5 (the beam

propagation axis), 𝑛𝑥 = 𝑛𝑦 = 1.47 (the transverse axes). In KD*P, propagation at

a slight tilt angle mixes the longitudinal index 𝑛𝑧 into the nearly equal transverse

indices 𝑛𝑥 ≈ 𝑛𝑦, altering the direction of the effective transverse fast and slow

axes. By contrast, in RTP when the laser beam propagation is at an slight tilt

angle, while this will mix 𝑛𝑥 into 𝑛𝑧 or 𝑛𝑦 slightly, it is insufficient to alter the

direction of the effective fast and slow axes. The effective fast and slow axis very

nearly remain along the original 𝑦, 𝑧 directions of ±45𝑜 regardless of a small tilt

angle (because 𝑛𝑧 and 𝑛𝑦 are very different to start with). For an RTP crystal,

the slow axis 𝜂 = 𝑦 = 45𝑜 regardless of small (𝜉𝑥0,𝜉𝑦0) tilt angles.

In the RTP cell, two crystal design, since the primary indices are along ±45𝑜,

the effective indices along 0, 90𝑜 are identical and hence there can be virtually

no birefringence along S2 orientation, and no angle dependent asymmetry. Fur-

thermore, since there is virtually no asymmetry in S2, there are no higher order

asymmetry gradients in S2, and hence RTP suffers less less from position differ-

ences and spot-size asymmetries than KD*P when the analyzer is oriented along

S2.

Roll dependence Intensity asymmetry-S2

The S2 polarization asymmetry in RTP, while insensitive to angular misalign-

ment, is sensitive to another kind of misalignment specific to transverse, two crystal

cell systems: the relative roll angle between the two crystals. The effect of a rel-
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ative roll misalignment on S2 asymmetry can be understood as follows. An extra

birefringent element gives rise to a polarization asymmetry, the direction which

depends on the orientation of the effective fast and slow axes of the birefringent

element. An extraneous birefringence with fast/slow axes along +45𝑜/−45𝑜 and

along the RTP crystals y/z axes gives rise to an asymmetry along S1 which can be

corrected with Pockels cell PITA voltage. But if there is an extraneous birefrin-

gence with a fast/slow axes along x/y, this gives rise to an asymmetry along S2

which cannot be corrected with Pockels cell voltage. Since there are two crystals,

if one crystal has its y/z axes slightly rotated relative to the other crystal, it is

effectively acting as an extraneous birefringent element which (a) no longer per-

fectly cancels out the birefringence of the other crystal and (b) has a component

of birefringence along x/y which can’t be corrected with PC voltage.

The cell system presented here is designed with the two crystals mounted in-

dependently, allowing for precise control over the relative roll angle between the

crystals. In aligning our RTP cell, we use relative roll between the crystals to

minimize the polarization asymmetry along the S2. We predicted by Jones cal-

culus, with two birefringent elements with approximately quarter wave operation,

that the S2 polarization dependence on relative roll would result in an intensity

asymmetry of 16, 200 ± 580𝑝𝑝𝑚/𝑑𝑒𝑔 [241] when analyzed with a 100% polarizer

along S2 (the error bar is for ±1𝑜 overall cell roll angle). This prediction was

confirmed by measurement where the roll angle of one crystal was varied while

the roll angle of the other crystal was fixed and obtained 16665±2𝑝𝑝𝑚/𝑑𝑒𝑔 within

the predicted range in Fig. 6-6 [242].
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Figure 6-6: Relative Roll and Aq in S2. These measurements were performed by
setting rotating the two RTPs relative to eachother, and examining the helicity
correlated beam asymmetry when analyzing along S2 (along the crystal’s primary
axis direction). Red dots are data points, red line is the fit to the data points,
black line is the prediction [242]

6.3.3 Position differences: Analyzing-like

A gaussian beam with power distribution 𝑃 (𝑥) = 𝑃0𝑒
−2𝑥2/𝑤2 which encounters

a gradient in transmission 𝑇 = (𝑇0 +
𝑑𝑇
𝑑𝑥
𝑥) undergoes a shift in the beam central

position characterized by ⟨𝑥⟩ =
∫︀
𝑥𝑃𝑑𝑥∫︀
𝑃𝑑𝑥

=
𝑑𝑇
𝑑𝑥

𝑤2

4
where the change in first moment

is proportional to the transmission gradient. This effect is a shift in central laser

beam position. Analogously, as illustrated in Fig. 6-1 , a polarization asymmetry

gradient in the Pockels cell, when analyzed, gives rise to an intensity asymme-

try gradient which in turn produces position differences between right and left

polarization states,

A gaussian beam exposed to a helicity dependent gradient 𝑇𝑅(𝐿) = 𝑇0(1± 𝑑𝐴
𝑑𝑥
𝑥)

will have helicity dependent power distribution

𝑃 ′𝑅(𝐿) = 𝑃0𝑒
−2𝑥2/𝑤2

(1± 𝑑𝐴

𝑑𝑥
𝑥)
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which gives rise to a position difference

𝐷𝑥 = 𝑥𝑅 − 𝑥𝐿 =
𝑑𝐴
𝑑𝑥
𝑤2

2
= − 𝜖

𝑇

𝑑Δ
𝑑𝑥
𝑤2

2
cos(2𝜓)

where w is the beam waist (2𝜎) at the Pockels cell and where ± correspond to

right- and left-handed helicity states, 𝜖/𝑇 is the analyzing power, and 𝑑Δ/𝑑𝑥 is

the Δ-phase polarization gradient 6. We refer to this type of position difference

as ‘analyzing-like’ since the position differences only appear in proportion to the

analyzing power. For the electron beam, the spot size of the laser once it reaches

the photocathode is important. The position differences scale with spot-size, so

at the cathode we take:

𝐷𝑐𝑎𝑡ℎ𝑜𝑑𝑒
𝑥 =

𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑤
𝐷𝑥 = − 𝜖

𝑇

𝑑Δ
𝑑𝑥
𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒𝑤

2
cos(2𝜓)

Polarization gradients and the consequential ‘analyzing-like’ position differ-

ences are seen to arise from birefringence gradients in the Pockels cell (other opti-

cal elements can also contribute). These birefringence gradients in the Pockels cell

have 3 potential sources (1) electric field non-uniformity (2) crystal length varia-

tion due to imperfect crystal face cuts (3) intrinsic birefringence gradients in the

crystals due crystal imperfections in the growth process or stress in the crystals.

These sources of birefringence gradients (that ultimately contribute to asymme-

try gradients) can be derived by taking derivatives of the equation describing the

birefringence Δ. The asymmetric birefringence component Δ can be written as:

Δ = 𝜋/𝜆((𝑛3
0,𝑦𝑟23 − 𝑛3

0,𝑧𝑟33)(𝐸Δ1𝐿1 + 𝐸Δ2𝐿2) + (𝑛0,𝑦 − 𝑛0,𝑧)(𝐿1 − 𝐿2))

6This gradient also gives rise to a helicity correlated asymmetric beam shape as well as a
shift in the central position(position difference). Theoretically this beam shape difference could
couple in to other HCBAs in beam transport.
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where each crystal contributes

Δ1 = 𝜋/𝜆((𝑛3
0,𝑦𝑟23 − 𝑛3

0,𝑧𝑟33)(𝐸Δ1𝐿1) + (𝑛0,𝑦 − 𝑛0,𝑧)𝐿1)

Δ2 = 𝜋/𝜆((𝑛3
0,𝑦𝑟23 − 𝑛3

0,𝑧𝑟33)(𝐸Δ2𝐿2)− (𝑛0,𝑦 − 𝑛0,𝑧)𝐿2)

The position difference is a vector which can be described by components

𝐷𝑥,𝐷𝑦 (or by 45𝑜 rotated coordinate system components 𝐷𝑢,𝐷𝑣 which is more

natural, being along the crystals primary axes, where 𝑢 = 𝑥−𝑦√
2

and 𝑣 = 𝑥+𝑦√
2
):

�⃗�𝑟 = 𝐷𝑥�̂�+𝐷𝑦𝑦 = 𝐷𝑢�̂�+𝐷𝑣𝑣

where 𝑦1, 𝑧1 are the y,z-axes for crystal 1 and 𝑦2, 𝑧2 are the y,z-axes for crystal 2

as shown in Fig. 6-2. Each crystal contributes to the position difference through

its own gradients along primary axes 𝐷𝑧1 ∝ 𝑑Δ1

𝑑𝑧1
, 𝐷𝑦1 ∝ 𝑑Δ1

𝑑𝑦1
, where the position

differences proportional to the phase-gradient that gives rise to the asymmetry

gradient. Each of crystal contributions combine to form the net position difference

induced by the Pockels cell:

−𝐷𝑢 = 𝐷𝑧1 +𝐷𝑦2

𝐷𝑣 = 𝐷𝑦1 +𝐷𝑧2

Here, for simplicity, we consider just the position difference caused by crystal

1, and isolate the component only along the crystal’s primary axes 𝑧1(oriented

at −45𝑜). There exist corresponding expressions for crystal 2 and for the other

transverse direction along −45𝑜. The position difference has three main contribu-

tions: field gradients, length gradients, and refractive index gradients which can
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be independently described as 𝐷𝜕𝐸
7, 𝐷𝜕𝐿, and 𝐷𝜕𝑛

8 :

𝐷𝑧1 ≈ 𝐷𝜕𝐸,𝑧1 +𝐷𝜕𝐿,𝑧1 +𝐷𝜕𝑛,𝑧1

𝐷𝜕𝐸,𝑧1 = −𝑤
2𝜋

2𝜆
(𝑛3

0,𝑦𝑟23 − 𝑛3
0,𝑧𝑟33)(

𝑑𝐸Δ1

𝑑𝑧1
𝐿1) ≈ 6− 13𝑛𝑚𝑉 −1𝑉𝛿𝑝𝑜𝑠

𝐷𝜕𝐿,𝑧1 = −𝑤
2𝜋

2𝜆
(𝑛0,𝑦 − 𝑛0,𝑧)𝜃𝑓𝑐,𝑧1 ≈ 1.7− 17𝑢𝑚

𝐷𝜕𝑛,𝑧1 = −𝑤
2𝜋

2𝜆

𝑑(𝑛0,𝑦 − 𝑛0,𝑧)

𝑑𝑧1
𝐿1 ≈ 20− 40𝑢𝑚

where for our RTP cell and laser system, 𝐿1 = 10mm , 𝑑 = 12mm, 𝑤 ≈ 1mm,

𝜆 = 780nm; we have measured face cut parallelism of 𝜃𝑓𝑐,𝑧1 = 𝑑𝐿1

𝑑𝑧1
= 0.01−0.1mrad;

we have estimated by simulation the helicity correlated electric field gradient 𝑑𝐸Δ1

𝑑𝑧1

induced by a voltage shift 𝑉𝛿𝑝𝑜𝑠 in our cell design to be 𝑑𝐸Δ1

𝑑𝑧1
≈ 3100±1100𝑚−2𝑉𝛿𝑝𝑜𝑠;

and where the intrinsic refractive index gradient in RTP has been measured to be

on the order of 𝑑𝑛𝑧

𝑑𝑧
= 1− 2× 10−5/𝑐𝑚 >> 𝑑𝑛𝑦

𝑑𝑧
[239] [238].

Reducing analyzing-like Position differences

We note that the largest birefringence gradients come from the intrinsic re-

fractive index non-uniformity in RTP. While no crystal is perfectly uniform, RTP

crystals suffer from greater non-uniformity than KD*P crystals which can be more

easily grown to extremely large sizes. Unlike in KD*P cells, where position dif-

ferences can be reduced by finding the electric-center in the crystal, in RTP cells,
7we note that 𝐷𝜕𝐸 is difficult to measure in S1 [248] due to quad-photodiode detector Aq-

Dx-Dy coupling
8we note there are also additional terms but they are negligible (<1nm) for PITA voltages

<QWV 1600V, specifically gradients due to applied PITA voltage 𝑉Δ coupled to the length or
birefringence gradient of the Pockels cell.

𝐷Δ,𝜕𝐿,𝑧1 = −𝑤2𝜋

2𝜆
(𝑛3

0,𝑦𝑟23 − 𝑛3
0,𝑧𝑟33)𝐸Δ1𝜃𝑓𝑐,𝑧1

𝑑𝐷Δ,𝜕𝐿

𝑑𝑉Δ1
= 0.00026− 0.0026𝑛𝑚/𝑉

𝐷Δ,𝜕𝑛,𝑧1 = −𝑤2𝜋

2𝜆
(3𝑛2

0,𝑦𝑟23
𝑑𝑛0,𝑦

𝑑𝑧1
− 3𝑛2

0,𝑧𝑟33
𝑑𝑛0,𝑧

𝑑𝑧1
)(𝐸Δ1𝐿1)



6.3. HELICITY CORRELATED BEAM ASYMMETRIES 268

the crystal imperfection is inherent to the system, and tend to compromise ex-

tinction ratios in HWV systems and create position differences in QWV systems.

Innovation in the Pockels cell design was necessary to overcome these position

differences due to non-uniformity. There are several potential solutions to coun-

teract this non-uniformity: (1) reduce the laser spot-size (2) increase the laser

divergence and make cell angular alignment adjustments (3) cut the crystal faces

with small wedges (4) use a 4 crystal RTP cell system (5) use cell design with

ability to control E-field gradients.

Laser spot-size

We note that having a modest laser beam spot-size in the crystal can help to

minimize the gradient experienced by the beam distribution and reduce the result-

ing position differences. However, when using RTP crystals, we cannot reduce the

beam size significantly (< 1mm for ∼1 Watt) or else thermal gradients induced by

the laser absorption (0.75%/𝑐𝑚− 4%/𝑐𝑚)[236] [246] over a small space with high

intensity could create additional birefringence non-uniformity leading to position

difference drift (∼ 0.1𝜇𝑚 − 0.6𝜇m) and interfere with Pockels cell performance

[245].

Having a modest laser beam spot-size on the photcathode (when used to make

electron-beam), can help minimize the analyzing-like position differences in the

generated electron beam 9 . Generally, the position differences are linearly pro-

portional to the spot-size on the photocathode.

Angular Dependence of Position Differences

When a laser beam with slight divergence (∼ 1mrad) at the Pockels Cell is used,

the asymmetry gradients can be canceled out with Pockels cell angular alignment.
9During Qweak, the laser spot size on cathode was 0.5mm for run1 and 1mm for run2 (which

implies 4𝜎 = 1.7mm for run2). Run1 suffered from cathode degradation and polarimetry prob-
lems. Run2 was fine in this regard. The 4𝜎 spot size for Qweak run2 is a good spot size to aim
for 4𝜎 = 1.7mm



6.3. HELICITY CORRELATED BEAM ASYMMETRIES 269

This is due to the fact that in addition to Aq gradients with respect to position on

the crystal 𝑑𝐴𝑞

𝑑𝑋
, there are also Aq gradients with respect to angle 𝑑𝐴𝑞

𝑑𝜃
. An angle

dependent gradient in Aq, when combined with a beam divergence, can produce

position differences which in principle can cancel the position differences caused

by 𝑑𝐴𝑞

𝑑𝑋
.

The angle dependence of Aq with respect to Pockels cell pitch and yaw is a

saddle function. If the angle of the Pockels cell is not aligned so it is centered

on the saddle-point, there is a 1st order gradient 𝑑𝐴𝑞

𝑑𝜃
which couples via beam

divergence 𝜃𝑑𝑖𝑣 = 𝑑𝑤
𝑑𝑧

, through radius and angle coupling, into an effective position

difference:

𝐷𝑥 =
𝑑𝐴
𝑑𝜃𝑥
𝑤𝜃𝑑𝑖𝑣

2
= − 𝜖

𝑇

𝑑Δ
𝑑𝜃𝑥
𝜃𝑑𝑖𝑣𝑤

2
𝑐𝑜𝑠(2𝜓)

These position differences due to Aq angle dependence are only minimized at the

extremum saddle-point, so we refer to centering on the pitch/yaw saddle-point

as “angular centering”. It is important to align the Pockels cell’s angle such that

its primary longitudinal axis is parallel to the beam propagation direction, this is

where the 𝑑𝐴/𝑑𝜃𝑥 = 𝑑𝐴/𝑑𝜃𝑦 = 0 and where the position differences are minimized.

It is also important that the divergence of the laser beam passing through the

crystals be small, otherwise the position differences will be very sensitive to slight

angular misalignment and could be quite large.

For a 1mm spot size, 1 mrad divergence and 𝜖/𝑇 = 100%, with𝐴𝑞 ≈ (5137ppm/mrad2)𝜃𝑥𝜃𝑦,

we obtain

𝐷𝑥 ≈ (2.57𝜇𝑚/𝑚𝑟𝑎𝑑)𝜃𝑦 𝐷𝑦 ≈ (2.57𝜇𝑚/𝑚𝑟𝑎𝑑)𝜃𝑥

In order to minimize analyzing-like position differences, we can set the Pock-

els cell angle such that the position differences caused by the angle dependent

gradient in Aq 𝑑𝐴𝑞

𝑑𝜃
cancel the position differences caused by 𝑑𝐴𝑞

𝑑𝑋
. We refer this

optimization, canceling one type of gradient in Aq with another, as “angular align-

ment”. This slight angular adjustment, away from the central saddle-point, on the
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mrad-level, can cancel position differences in a 𝜆/4-wave system, and obviously

improve extinction ratios in 𝜆/2-wave systems.

Crystal wedge cuts

In principle, one could improve the extinction ratio in 𝜆/2-wave configuration

and the analyzing like position differences in 𝜆/4-wave configuration if the RTP

crystals were cut with a 0.1-0.2 mrad wedge deliberately to cancel out the refractive

index gradient along the crystal z-axis. However, such small angle cuts are outside

the realm of typical precision.

4 crystal system & crystal orientations

The intrinsic refractive index non-uniformity in RTP, predominantly along z,

could be counteracted in a 4 crystal system, where each crystal (1 and 2) is cut in

half to form 4 crystals (1a,1b,2a,2b) and (a,b) haves are flipped over so the z and y

axis are in opposite directions (i.e. 𝑧1𝑎 = −𝑧1𝑏, 𝑦1𝑎 = −𝑦1𝑏 ), so that the gradients

cancel ( 𝑑𝑛𝑧

𝑑𝑧1𝑎
+ 𝑑𝑛𝑧

𝑑𝑧1𝑏
≈ 0), while the opposite voltages are applied to achieve additive

active induced birefringence. This arrangement can reduce the net gradient under

the assumption that the gradients in each crystal are similar, so they can cancel

well when combined 10. Such a system design is shown in Fig. 6-7.

Figure 6-7: 4 crystal RTP cell: 𝑧1𝑎 = −𝑧1𝑏, 𝑦1𝑎 = −𝑦1𝑏) so that the gradients
cancel 𝑑𝑛𝑧

𝑑𝑧1𝑎
+ 𝑑𝑛𝑧

𝑑𝑧1𝑏
≈ 0 , while retaining the thermal compensation design

To reduce the combined gradients in our 2 crystal system, we flipped the
10This seems to be the case for the crystal pair we purchased that were grown from the same

batch and cut from the same block. Of course there are other gradients present which may not
cancel perfectly, but the bulk could be reduced in this scheme.
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orientations of the two crystals relative to one another, in several orientations,

to try to cancel out the gradients on one crystal with the gradients of the other

crystal as much a possible. While this helped to some extent, empirically we

observed an asymmetry gradient along 𝑣 ≡ 𝑥+𝑦√
2

due to both crystals combined of
𝑑𝐴𝑞

𝑑𝑣
∼ 20, 000− 50, 000ppm/mm which would imply, for 𝑤 = 1mm, gives position

differences of magnitude:

𝐷𝑣 = 𝐷𝑦1 +𝐷𝑧2 =
𝑑𝐴𝑞

𝑑𝑣
𝑤2

2
= 10− 25𝜇𝑚

𝐷𝑥 ∼ 𝐷𝑦 ∼ 𝐷𝑣/
√
2 = 7.1− 17.7𝜇𝑚

E-field gradient control

Ultimately we chose to use a cell design with the ability to control the electric-

field gradients in the crystals. In order to counteract the crystal intrinsic non-

uniformity and make the two helicity states of light passing through the crystals

symmetric, we used grounded side panels to induce fringe-electric fields. A cartoon

of the basic cell design is shown in Fig. 6-8. 3D electric field modeling informed

the finalized design presented in Sec. 6.4.1. Shifting the voltage of the top and

bottom plates, while keeping the voltage difference between them at QWV, allows

us to induce an electric field gradient 𝑑𝐸𝑧

𝑑𝑧
, while approximately maintaining the

appropriate value of the electric field 𝐸𝑄𝑊𝑉 near the center of the crystal.

(a) + shift (b) no shift (c) - shift

Figure 6-8: Conceptual Diagram of E-field gradient control in Grounded Side-
Panel Design: The electric potential is illustrated in grey-scale and electric field
lines are drawn conceptually. +z is up in this diagram.

By controlling the electric field gradients for each helicity state, in both of
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the crystals, the asymmetric position motion of the light can be suppressed. For

each helicity state, we can choose to have equal and opposite voltage shifts or

have the same voltage shift. Correspondingly, we have the freedom to induce

the same electric field gradient for both helicity states 𝑑𝐸𝑅

𝑑𝑧
= 𝑑𝐸𝐿

𝑑𝑧
, producing a

gradient in Δ𝐸, 𝑑𝐸Δ

𝑑𝑧
, or we can also induce equal and opposite gradients in each

helicity state 𝑑𝐸𝑅

𝑑𝑧
= −𝑑𝐸𝐿

𝑑𝑧
, producing a gradient in 𝐸0, 𝑑𝐸0

𝑑𝑧
, as defined in Sec.

6.3.1. The gradient in Δ𝐸 ,𝑑𝐸Δ

𝑑𝑧
, has a small effect on the analyzing-like position

differences, expressed in Sec 6.3.3. The gradient in 𝐸0, 𝑑𝐸0

𝑑𝑧
, controls another type

of position difference, what we refer to as “steering” position differences, through

a much stronger, dominant position difference effect, expounded on in Sec. 6.3.4.

In operation, rather than adjusting the gradient in Δ𝐸, 𝑑𝐸Δ

𝑑𝑧
, we tend to control

the gradient in 𝐸0,𝑑𝐸0

𝑑𝑧
, using these “steering” position differences to cancel out the

analyzing-like position differences.

6.3.4 Position differences: Steering

Describing Steering

Position differences also arise simply through an angular deviation via GRIN

(gradient-index) effects and Snell’s Law. This type of position difference is referred

to as helicity correlated beam ‘steering’ an is entirely independent of analyzing

power. Steering is a helicity correlated change in angle of the outgoing laser beam

after having passed through the Pockels Cell. It produces a position difference

between right and left helicity states which increases with throw distance, hence

steering is referred to as an ‘angle-like’ position difference which does not depend

on analyzing power.
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(a) (b)

Figure 6-9: (a)Ray Separation. Horizontally polarized beam splits in the crystal
along the primary axes, angles not to scale. [279] (b) Coordinates. Primary crystal
axes are along the diagonal with respect to horizontal and vertical polarizations.

Since the crystal in the Pockels cell is birefringent, the beam should be viewed

as 2 separate rays: one with a polarization along the diagonal 𝑈(45𝑜) and the

other along 𝑉 (−45𝑜), the primary axes of the RTP as shown in Fig. 6-9. These

rays can separate via a difference in the refractive index combined with an angled

face cut or a difference in the refractive index gradient 𝑑𝑛𝑧

𝑑𝑥𝑖
and 𝑑𝑛𝑦

𝑑𝑥𝑖
. In RTP, the

optoelectric effect 𝑛𝑧 = 𝑛𝑧0 − 1
2
𝑟33𝐸𝑧𝑛

3
𝑧0 and 𝑛𝑦 = 𝑛𝑦0 +

1
2
𝑟23𝐸𝑧𝑛

3
𝑦0 causes the 2

rays (one for each helicity state) to separate into 4 rays for different primary axes

as shown in Fig.6-10 . The difference 𝜃𝑅 − 𝜃𝐿 is the helicity correlated angular

steering.

Figure 6-10: 4 Ray Separation: the steering behavior of RTP. Horizontally po-
larized beam splits in the crystal along the primary axes, and voltage application
split the beam further. Angles not to scale, but the relative ordering with grater
deviation from 𝑧 than from 𝑦 for a given crystal is correct.

Steering can only arise through either a gradient in the average refractive index
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or a length gradient. If the RTP crystal is cut with a slight wedge 𝜃𝑓𝑐 = 𝜃𝑐𝑢𝑡1−𝜃𝑐𝑢𝑡2,

with component 𝜃𝑓𝑐,𝑥𝑖
along 𝑥𝑖, the beam will experience an angular deviation

upon exiting the crystal 𝜃 ∼ (𝑛𝑒𝑓𝑓 −1)𝜃𝑓𝑐,𝑥𝑖
= 𝑛𝑒𝑓𝑓

𝑑𝐿
𝑑𝑥𝑖

proportional to the face cut

wedge angle or length gradient through Snell’s Law. Equivalently, a gradient in the

effective refractive index will cause the beam will experience an angular deviation

𝜃𝑥𝑖
=

𝑑𝑛𝑒𝑓𝑓

𝑑𝑥𝑖
𝐿 upon exiting the crystal through GRIN effects. We can generally

describe the angle induced from any phase gradient with 𝜃𝑥𝑖
= 𝑑

𝑑𝑥𝑖
(𝑛𝑒𝑓𝑓𝐿) =

𝜆
2𝜋

𝑑𝜑
𝑑𝑥

. In the case of steering, the laser beam is bent by the crystal in a helicity correlated

manner, induced by the voltage applied:

Δ𝜃𝑥𝑖
= 𝜃𝑅 − 𝜃𝐿 = 𝜃𝑓𝑐,𝑥𝑖

Δ𝑛+ 𝐿
𝑑Δ𝑛

𝑑𝑥𝑖

where Δ𝑛 = 𝑛𝑅 − 𝑛𝐿 ∼ Δ𝐸𝑅
𝑧 − 𝐸𝐿

𝑧

Steering can be modeled as arising from electric field gradients, length gra-

dients/face cuts angles/curvature, and intrinsic refractive index gradients from

crystal growth. RTP crystals actually have E-O prism applications where they

are intentionally cut with a large wedge and used to control beam position by

application of voltage [249] [250]. We have effectively taken this application and

incorporated it into our Pockels cell system. As discussed below, we use the electric

field gradient to induce steering, providing precise control of the helicity correlated

position differences.

Steering is a strongly input polarization dependent effect. Formerly, steering

in KD*P Pockels cells was thought to be a polarization-independent effect since

both horizontal and vertical input polarizations appeared to exhibit the same

steering behavior (the “Skew” effect [251]). However, we have since shown that

steering is, in fact, quite dependent on input polarization in both KD*P and in

RTP Pockels cells (for data, see Fig. 6-40 and Appendix D). When the incident

beam polarization is along the RTP crystal’s primary axes at ±45𝑜 (Fig.6-2), the

steering induced for z-axis +45𝑜 input polarization differs significantly from the
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steering induced for y-axis −45𝑜 input polarization. Placing an analyzer along S2,

along the diagonal 𝑈(45𝑜) or along 𝑉 (−45𝑜), probes the steering for the primary

axis polarization states. For a single RTP crystal, analyzing along the diagonal

𝑈(45𝑜) isolates 𝑛𝑧 (or 𝑛𝑦) rays so that 𝑑𝑛𝑧

𝑑𝑥𝑖
will change for +𝐸𝑧 and -𝐸𝑧 producing

position differences which are angle-like and grow as throw distance increases. S2

steering depends on 𝜃𝑧 as illustrated in Fig. 6-10.

When the input polarization is horizontal or vertical, upon entering the X-

cut RTP crystal, the light is split into 2 rays, one with polarization along the

z axis, and the other with polarization along the y axis. For RTP, the incident

H/V polarized light propagates along the crystal x-axis direction with nearly equal

components along the 𝑛𝑧, 𝑛𝑦 directions which are the crystals primary axes. In

general, for a birefringent material, the refractive indexes mix to form an effec-

tive index and n is more generally described as n(𝜃,𝜑), where (𝜃, 𝜑) describe the

polarization direction, and can be computed through the index ellipsoid of the

crystal, which is defined by the surface 𝑥2
1

𝑛2
1
+

𝑥2
2

𝑛2
2
+

𝑥2
3

𝑛2
3
= 1. We calculate n(𝜃,𝜑)

by noting 𝑥1 = 𝑛(𝜃, 𝜑) sin(𝜃) cos(𝜑), 𝑥2 = 𝑛(𝜃, 𝜑) sin(𝜃) sin(𝜑),𝑥3 = 𝑛(𝜃, 𝜑) cos(𝜃).

Hence, 1
𝑛2(𝜃,𝜑)

= sin2(𝜃) cos2(𝜑)

𝑛2
1

+ sin2(𝜃) sin2(𝜑)

𝑛2
2

+ cos2(𝜃)

𝑛2
3

. This effective refractive in-

dex in the RTP crystal is approximately given by the average of 𝑛𝑧 and 𝑛𝑦 when

the incident polarization state is horizontal or vertical. Consequently, the steer-

ing for H and V input polarizations is simply the average of the steering along

the ±45𝑜, y and z primary crystal axes. With no analyzer present (or with the

analyzer along the horizontal), there is steering given by the average gradients
𝑑
𝑑𝑥𝑖

𝑛𝑧+𝑛𝑦

2
= 𝑑

𝑑𝑥𝑖

𝑛𝑧0− 1
2
𝑟33𝐸𝑧𝑛3

𝑧0+𝑛𝑦0+
1
2
𝑟23𝐸𝑧𝑛3

𝑦0

2
which does not cancel and has a depen-

dence on the sign of the E-field. There is helicity-correlated beam steering steering

for H and V polarization in S1 as well as for no analyzer. Fig. 6-10 reflects the

conclusion that no-analyzer steering in RTP does not cancel and depends on the

difference between 𝜃𝑧,0+𝜃𝑦,0
2

− 𝜃𝑧,1+𝜃𝑦,1
2

.
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Derivation

We examine the helicity correlated phase gradients for each input polarization

state component. These polarization components undergo phase shifts

𝜑
𝑅(𝐿)
𝑖 = 2𝜋𝑛

𝑅(𝐿)
𝑖 𝐿𝑅(𝐿)/𝜆

where R(L) indicates right and left circular polarization states determined by the

sign of the voltage applied to the Pockels Cell as controlled by the helicity signal.

The phase shift in each of the two crystals, for each ±45𝑜 polarization compo-

nent, is given by (see Fig.6-2)

𝜑
𝑅(𝐿)
45𝑜,1 = 2𝜋𝑛

𝑅(𝐿)
𝑧1 𝐿1/𝜆 𝜑

𝑅(𝐿)
−45𝑜,1 = 2𝜋𝑛

𝑅(𝐿)
𝑦1 𝐿1/𝜆

𝜑
𝑅(𝐿)
45𝑜,2 = 2𝜋𝑛

𝑅(𝐿)
𝑦2 𝐿2/𝜆 𝜑

𝑅(𝐿)
−45𝑜,2 = 2𝜋𝑛

𝑅(𝐿)
𝑧2 𝐿2/𝜆

The total phase shift for the two crystals combined, for each ±45𝑜 polarization

component, is given by:

𝜑
𝑅(𝐿)
45𝑜,𝑡𝑜𝑡 = 2𝜋(𝑛

𝑅(𝐿)
𝑧1 𝐿1 + 𝑛

𝑅(𝐿)
𝑦2 𝐿2)/𝜆 = 2𝜋/𝜆(𝑛0,𝑧𝐿1 + 𝑛0,𝑦𝐿2 −

1

2
𝑛3
0,𝑧𝑟33𝐸

𝑅(𝐿)
𝑧1 𝐿1

−1

2
𝑛3
0,𝑦𝑟23𝐸

𝑅(𝐿)
𝑧2 𝐿2)

𝜑
𝑅(𝐿)
−45𝑜,𝑡𝑜𝑡 = 2𝜋(𝑛

𝑅(𝐿)
𝑦1 𝐿1 + 𝑛

𝑅(𝐿)
𝑧2 𝐿2)/𝜆 = 2𝜋/𝜆(𝑛0,𝑦𝐿1 + 𝑛0,𝑧𝐿2 −

1

2
𝑛3
0,𝑦𝑟23𝐸

𝑅(𝐿)
𝑧1 𝐿1

−1

2
𝑛3
0,𝑧𝑟33𝐸

𝑅(𝐿)
𝑧2 𝐿2)

Averaging the phase shifts for polarization components along ±45𝑜, we obtain a

general equation for the overall phase shift:

𝜑𝑅(𝐿)
𝑎𝑣𝑔 = (𝜑

𝑅(𝐿)
45𝑜,𝑡𝑜𝑡 + 𝜑

𝑅(𝐿)
−45𝑜,𝑡𝑜𝑡)/2 = 𝜋/𝜆((𝑛0,𝑧 + 𝑛0,𝑦)(𝐿1 + 𝐿2)



6.3. HELICITY CORRELATED BEAM ASYMMETRIES 277

−1

2
(𝑛3

0,𝑧𝑟33 + 𝑛3
0,𝑦𝑟23)(𝐸

𝑅(𝐿)
𝑧1 𝐿1 + 𝐸

𝑅(𝐿)
𝑧2 𝐿2))

As stated above, since in one crystal the electric field 𝐸𝑧 is along the primary

crystal axis +𝑧 , and in the other crystal the electrics field 𝐸𝑧 is opposite the

primary crystal axis −𝑧, the effect of the electric field will increase the refractive

indices 𝑛𝑦, 𝑛𝑧 in one crystal and decrease the refractive indices 𝑛𝑦, 𝑛𝑧 in the other

crystal. So the total average phase shift is, largely, the same for both helicity

states. However the gradient of the average phase shift is not the same for both

helicity states as we will show.

The opto-electric effect in RTP results in a change in refractive index to the

two primary axes y and z of

Δ𝑛𝑧 = −𝑛3
𝑧0𝑟33(𝐸

𝑅
𝑧 − 𝐸𝐿

𝑧 ); Δ𝑛𝑦 = −𝑛3
𝑦0𝑟23(𝐸

𝑅
𝑧 − 𝐸𝐿

𝑧 )

with (𝐸𝑅
𝑧 − 𝐸𝐿

𝑧 ) = 2𝐸𝑧0. The helicity correlated refractive index gradient is then

given by
𝑑Δ𝑛𝑗

𝑑𝑥𝑖
= −3𝑛2

𝑗0𝑟𝑗3
𝑑𝑛𝑗0

𝑑𝑥𝑖
𝐸𝑧0 − 𝑛3

𝑗0𝑟𝑗3
𝑑𝐸𝑧0

𝑑𝑥𝑖

where 𝑗 = 2, 3 (y,z) 11 refers to the input polarization state of the beam along

±45𝑜, the primary fast and slow axes of the RTP crystal. A gradient in the

electric field or intrinsic refractive indices in each crystal gives rise to a voltage

dependent phase gradient which steers the beam as a wedge does, producing an

angle-difference (and hence position difference for throw distance D) [240]

𝜃𝑎𝑖𝑟,𝑑𝑒𝑓𝑙 = 𝜃𝑓𝑐,𝑥𝑖
(𝑛− 1) + 𝐿

𝑑𝑛

𝑑𝑥𝑖

The steering due to these gradients in a single RTP crystal is given by

Δ𝜃𝑥𝑖

⃒⃒
𝑗
= −𝑛3

𝑗0𝑟𝑗3((𝜃𝑓𝑐,𝑥𝑖
+ 3

𝐿

𝑛𝑗0

𝑑𝑛𝑗0

𝑑𝑥
𝑟𝑗3)𝐸𝑧0 +

𝑑𝐸𝑧0

𝑑𝑥𝑖
𝐿)

11𝑟23 is the electro-optic coupling coefficient between 𝑛𝑦 and 𝐸𝑧 and 𝑟33 is the electro-optic
coupling coefficient between 𝑛𝑧 and 𝐸𝑧
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𝐷𝑥

⃒⃒
𝑖
= Δ𝑥𝜃

⃒⃒
𝑖
𝐷 = −𝑛3

𝑗0𝑟𝑗3𝐷((𝜃𝑓𝑐,𝑥𝑖
+ 3

𝐿

𝑛𝑗0

𝑑𝑛𝑗0

𝑑𝑥
𝑟𝑗3)𝐸𝑧0 +

𝑑𝐸𝑧0

𝑑𝑥𝑖
𝐿)

We simply take the average of the steering along ±45𝑜, the y and z primary

crystal axes, to obtain the steering for H and V input polarizations:

𝐷𝑥𝑖

⃒⃒
𝐻,𝑉

=
1

2
(𝐷𝑥𝑖

⃒⃒
𝑦
+𝐷𝑥𝑖

⃒⃒
𝑧
) = 𝐷𝑥𝑖,𝑓𝑖𝑥𝑒𝑑 −

1

2
(𝑛3

𝑦0𝑟23 + 𝑛3
𝑧0𝑟33)𝐷

𝑑𝐸𝑧0

𝑑𝑥𝑖
𝐿

where 𝐷𝑥𝑖,𝑓𝑖𝑥𝑒𝑑 is the unchangeable intrinsic steering position difference from 1

crystal given by

𝐷𝑥,𝑓𝑖𝑥𝑒𝑑 = −𝑛3
𝑦0𝑟23𝐷((𝜃𝑓𝑐 + 3

𝐿

𝑛𝑦0

𝑑𝑛𝑦0

𝑑𝑥
𝑟23)𝐸𝑧0 − 𝑛3

𝑧0𝑟33𝐷((𝜃𝑓𝑐 + 3
𝐿

𝑛𝑧0

𝑑𝑛𝑧0

𝑑𝑥
𝑟33)𝐸𝑧0

The steering due to each of the two RTP crystals combines additively, resulting

in a total angle difference averaged over y and z polarizations and summed over

each crystal.

Simulation

We simulated the induced electric field gradients along the z-axis of each crys-

tal in our RTP cell design. Fig. 6-11 shows the electric field 𝐸𝑧 for three different

voltage configurations with the same voltage difference between the top and bot-

tom plate but differing in the voltage offset, 𝑉𝛼𝑝𝑜𝑠 of the plates relative to the

grounded side panels. We refer to these states as ‘grounded’ configuration with a

positive voltage shift, ‘balanced’ configuration with no voltage shift, and ‘reverse

grounded’ configuration with a negative voltage shift. Fig. 6-11a shows the electric

field of the ‘grounded’ configuration with a positive voltage shift 𝑉𝛼𝑝𝑜𝑠 = +𝑉𝜆/4/2,

when the bottom plate is grounded at the same voltage as the side panels, induc-

ing a maximal gradient in the +z direction. Fig. 6-11b shows the electric field of

the ‘balanced’ configuration, with no voltage shift 𝑉𝛼𝑝𝑜𝑠 = 0, when the top and

bottom plates have equal and opposite voltages relative to the grounded the side

panels, inducing a symmetric field with zero first order term at the crystal center.
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Fig. 6-11c shows the electric field of the ‘reverse grounded’ configuration, with a

negative voltage shift 𝑉𝛼𝑝𝑜𝑠 = −𝑉𝜆/4/2, when the top plate is set the same voltage

as the side panels, inducing a maximal gradient in the -z direction. By keeping

the voltage difference between the plates constant, and changing the voltage shift

relative to the grounded side panels, we control the electric field gradient without

changing the electric field 𝐸𝑧 magnitude, and hence control the position differences

without changing the 𝛿-phase much. The voltages are set independently for each

helicity state such that when the polarity of the electric field is switched, the sign

of the induced electric field gradient reverses as well.

Fig. 6-12a shows the electric field gradient 𝑑𝐸𝑧

𝑑𝑧
for each helicity state as a

function of voltage shift 𝑉𝛼𝑝𝑜𝑠, corresponding to scanning from the grounded con-

figuration, across the balanced configuration (𝑉𝛼𝑝𝑜𝑠 = 0), to the reverse grounded

configuration. The red line with pink uncertainties corresponds to positive helic-

ity state, and the blue line with green uncertainties corresponds to the negative

helicity state. The uncertainty in 𝑑𝐸𝑧

𝑑𝑧
is determined by the resolution of the

mesh in the 3D simulation; also included in the 𝑑𝐸𝑧

𝑑𝑧
error bar is the uncertainty

from centering the laser position on the crystal within ±1𝑚𝑚 of center. Fig.

6-12b corresponds to the helicity correlated change in the electric field gradient

Δ𝑑𝐸𝑧

𝑑𝑧
= 𝑑𝐸𝑅

𝑧

𝑑𝑧
− 𝑑𝐸𝐿

𝑧

𝑑𝑧
= 2𝐸𝑧,0. We find 𝑑𝐸𝑧,0

𝑑𝑧
= (3100± 1100𝑉/𝑚2/𝑉𝛼𝑝𝑜𝑠)𝑉𝛼𝑝𝑜𝑠.

Examining the steering due to the first RTP crystal along the primary axis

𝑧1, for 𝜆 = 780nm,𝐿 = 10mm,𝑟33 = 35pm/V, 𝑟23 = 12.5pm/V,𝑛𝑦 = 1.7832,

𝑛𝑧 = 1.8673, for horizontal input polarization

Δ𝜃𝑧1 = 𝐷𝑧1/𝐷 = −1

2
(𝑛3

𝑦0𝑟23 + 𝑛3
𝑧0𝑟33)𝐿

𝑑𝐸𝑧1,0

𝑑𝑧1

for 𝑑𝐸𝑧1,0

𝑑𝑧1
= (3100 ± 1100𝑉/𝑚2/𝑉𝛼𝑝𝑜𝑠)𝑉𝛼𝑝𝑜𝑠, we obtain the steering sensitivity to

voltage

𝑑Δ𝜃𝑧1
𝑑𝑉𝛼𝑝𝑜𝑠

= −1

2
(𝑛3

𝑦0𝑟23 + 𝑛3
𝑧0𝑟33)𝐿

𝑑𝐸𝑧1,0

𝑑𝑧1
= −4.6± 1.7𝑛𝑟𝑎𝑑/𝑉
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(a) Grounded (b) Balanced (c) Reverse Grounded

Figure 6-11: Electric field calculation for RTP cell design (a) Grounded config-
uration: in which one plate is grounded for both helicity states. (b) Balanced
configuration: in which voltage is applied symmetrically to the top and bottom
plates (c) Reverse grounded configuration: in which the opposite plate is grounded.
For each configuration, the electric fields are shown for each helicity state as red
and blue curves.
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(a) (b)

Figure 6-12: Simulations of Steering gradient 𝑑(𝑑𝐸𝑧/𝑑𝑧)/𝑑𝑉𝛼𝑝𝑜𝑠 = −3100 ±
1100𝑉/𝑚2/𝑉𝛼𝑝𝑜𝑠

where each polarization component along 𝑧1 and 𝑦1 was steered by:

𝑑Δ𝜃𝑧1
𝑑𝑉𝛼𝑝𝑜𝑠

⃒⃒
𝑧1

= −𝑛3
𝑧0𝑟33𝐿

𝑑𝐸𝑧1,0

𝑑𝑧1
= −7.1± 2.5𝑛𝑟𝑎𝑑/𝑉

𝑑Δ𝜃𝑧1
𝑑𝑉𝛼𝑝𝑜𝑠

⃒⃒
𝑦1

= −𝑛3
𝑧0𝑟33𝐿

𝑑𝐸𝑧1,0

𝑑𝑧1
= −2.2± 0.8𝑛𝑟𝑎𝑑/𝑉

6.3.5 RHWP scans

To assess the Pockels Cell alignment, we examine the asymmetry between

polarization states using a rotating-HWP (RHWP). Analyzing power dependent

HCBA’s are caused by asymmetric linear polarizations. A RHWP changes the

orientation of this asymmetric linear polarization. The transmission through an

analyzer, measured with respect to RHWP angle determines the degree and ori-

entation of asymmetric linear polarization. The RHWP is inserted downstream

of the Pockels cell, before subsequent elements in the beamline. For laser beam

studies, subsequent elements include a 100% analyzer (Glan-Taylor polarizer), fol-

lowed by mirrors and a photodiode detector. For the electron beam, subsequent

elements include the vacuum windows (with some birefringence of their own) and

photocathode with slight analyzing power. The electron beam is then character-
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ized by beam current and position monitors. RHWP scans assess the level of

alignment of the Pockels cell. If the RHWP and an additional retardation plate

downstream of the RHWP (such as the vacuum windows) is inserted between the

PC and the analyzer (in this case the photocathode), the HCBA becomes [163]

𝐴𝑞 = − 𝜖

𝑇

[︂
𝛽 sin(2𝜌− 2𝜓) + 𝛾 sin(2𝜃− 2𝜓) +Δ𝑆1 cos(4𝜃− 2𝜓) +Δ𝑆2 sin(4𝜃− 2𝜓)

]︂

where 𝜃 is the RHWP angle, 𝜖/𝑇 is the analyzing power, 𝜓 is the analyzing

direction, 𝛽 is the phase shift from and 𝜌 is the orientation of the additional

retardation plate (vacuum windows), 𝛾 is due to the RHWP’s deviation from

being a perfect 𝜆/2-plate, and Δ is anti-symmetric phase shift described previously

which can arise either in S1 or S2. In aligning the Pockels Cell, minimizing the

4𝜃 terms is desirable. We can also minimize the impact of the vacuum windows

on the offset term by rotating the photocathode direction such that its analyzing

power matches the vacuum window birefringence such that 𝜓 = 𝜌. The 2𝜃 term

corresponds to an imperfect RHWP and can be reduced by using a RHWP very

well matched to the laser wavelength.

RHWP scans are also used to assess the position differences and steering. The

position differences 𝐷𝑥, 𝐷𝑦 with respect to RHWP angle can be described by

𝐷𝑥𝑖 = − 𝜖

𝑇

[︂
𝜕𝛽𝑖 sin(2𝜌− 2𝜓) + 𝜕𝛾𝑖 sin(2𝜃 − 2𝜓)

+𝐷𝑆1
𝑥𝑖 cos(4𝜃 − 2𝜓) +𝐷𝑆2

𝑥𝑖 sin(4𝜃 − 2𝜓)

]︂
+𝐷𝑠𝑡𝑒𝑒𝑟

𝑥𝑖

where 𝜕𝛽𝑖 corresponds to the birefringence gradient in the vacuum windows, 𝜕𝛽𝑖 is

the birefringence gradient in the RHWP which is typically negligible, 𝐷𝑆1
𝑥𝑖 is the

4𝜃 term from S1 analyzing-like position differences 12. A comprehensive 4𝜃 term

amplitude is given by𝐷4𝜃
𝑥𝑖 =

√︀
(𝐷𝑆1

𝑥𝑖 )
2 + (𝐷𝑆2

𝑥𝑖 )
2. The 4𝜃 terms can be inferred from

12We note that in RTP RHWP we have observed the 4𝜃 position difference term to be in phase
with the Aq 4𝜃 term, indicating 𝐷𝑆2

𝑥𝑖 )
2 is small compared with 𝐷𝑆1

𝑥𝑖 as in Fig. 6-14b
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the individual measured position differences 𝐷𝜃
𝑥𝑖 where the analyzer is probing the

polarization along 𝜃 and corresponding position difference:

𝐷𝑆1
𝑥𝑖 =

𝐷0𝑜

𝑥𝑖 −𝐷90𝑜

𝑥𝑖

2
𝐷𝑆2

𝑥𝑖 =
𝐷45𝑜

𝑥𝑖 −𝐷−45𝑜

𝑥𝑖

2
𝐷𝑠𝑡𝑒𝑒𝑟

𝑥𝑖 =
𝐷45𝑜

𝑥𝑖 +𝐷−45𝑜

𝑥𝑖

2

Each crystal 1,2 contributes individually to position differences 𝐷𝑝𝑜𝑙,1
𝑥𝑖 and 𝐷𝑝𝑜𝑙,2

𝑥𝑖 .

We note that in RTP, due to the values of the opto-electric coefficients, typically

𝐷45𝑜,1
𝑥𝑖 ≈ 3𝐷−45𝑜,1

𝑥𝑖 and 𝐷−45𝑜,2
𝑥𝑖 ≈ 3𝐷45𝑜,2

𝑥𝑖 . An illustration of an RHWP scan and

how to interpret it is shown in Fig. 6-13.

Figure 6-13: RHWP scan example isolating how S1 and S2 contribute to RHWP
scans. Contributions from crystals: 𝑧1 refers to the z-axis of crystal 1, 𝑧2 refers to
the z-axis of crystal 2, 𝑦1 refers to the y-axis of crystal 1, 𝑦2 refers to the y-axis of
crystal 2.

Fig. 6-14 shows RHWP scans taken on the laser table with the RTP cell for

different steering conditions. One crystal has had its electric field gradient altered

in order to shift the steering-like position difference along the “V”(−45𝑜) direction.

The steering term was changed by about 1.2 𝜇m for a ∼ 1m throw distance by

using voltages 13.
13The Aq 4𝜃 term changed a bit for two reasons: (1) it takes time to perform a RHWP scan

and due to temperature fluctuations, the ideal PITA voltage can change (2) Depending on the
location of the laser on the crystal, there can be some coupling between the Aq and the electric
field gradient inducing voltage.
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(a) (b)

Figure 6-14: RHWP scans RTP: (a) RHWP scan performed with larger Dv
steering offset (b) RHWP scan performed with smaller Dv steering offset, where
PITAposV has been used to alter the electric field gradient in one of the RTP
crystals. S1 is near 𝜃 = 0𝑜 [280].

We note that the above equations predict that when the steering term is

changed, the 4𝜃 term can also change (for the 100% analyzer scan). If one of the

crystals, say crystal 1, has its steering term changed as𝐷𝑛𝑒𝑤
𝑠𝑡𝑒𝑒𝑟 = 𝐷𝑠𝑡𝑒𝑒𝑟+Δ𝑠𝑡𝑒𝑒𝑟, then

the position difference for polarization state U(45𝑜) is given by𝐷45𝑜,1+Δ𝑠𝑡𝑒𝑒𝑟/2, the

position difference for polarization state V(−45𝑜) is given by 𝐷−45𝑜,1 + 3Δ𝑠𝑡𝑒𝑒𝑟/2,

and the 4𝜃 term will be given by 𝐷4𝜃 =
√︀

(𝐷𝑆1)2 + (𝐷𝑆2 −Δ𝑠𝑡𝑒𝑒𝑟)2. This is dis-

cussed further in the subsequent section (Sec. 6.3.6).

6.3.6 Analyzing/Angle-like Position Differences

There are essentially two separate beams within the birefringent crystal, one

linearly polarized along +45𝑜 and one along −45𝑜. Considering this model, steering/angle-

like position differences, when analyzed by the cathode, actually create analyzing-

like position differences. These analyzing-like position differences arise from the

same mechanism as steering, are also angle-like, and increase proportionally with

throw distance from the Pockels cell. We refer to them as steering induced
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analyzing/angle-like position differences.

Since steering is polarization dependent, if there is steering, then there are

analyzing/angle-like position differences. This will show up in an RHWP scan

as a 4𝜃 term in S2. There is a throw-distance dependent 4𝜃 term in S2. At a

longer throw distance, the steering is larger and the S2 position differences are

also larger. In terms of minimizing position differences, we have two knobs: the

voltage induced electric-field gradient to control the steering offset and S2 4𝜃 term,

and PC angle to control S1 4𝜃 term. As stated previously, The S1 4𝜃 terms can

be zeroed out with PC angle, if there is a small divergence of the laser in the

Pockels cell as explained in Sec. 6.3.3. Assuming that the S2 4𝜃 term and the

steering offset have the same origin these degrees of freedom should be sufficient.

It seems not unlikely that zeroing out steering for no-analyzer could have the effect

of zeroing 4𝜃 terms in S2.

How do we choose the RHWP angle? Inducing steering, to say, cancel out S1

position differences, can, in principle, also create larger S2 4𝜃 position differences.

Is there an RHWP angle where it is more difficult to zero out the position difference

with steering because, while canceling the S1 position difference, we actually create

an S2 position difference? In RTP, the electro-optic coefficient 𝑟33 is 3 times larger

than 𝑟23. This means that for a single RTP, if the 45𝑜 S2 position difference

were to shift by X the −45𝑜 S2 position difference will shift by 3X, and the no-

analyzer/steering position difference, given by the average of the two, is 2X 14

.

𝐷−45𝑜

𝑥𝑖 = 1𝑋 𝐷𝑠𝑡𝑒𝑒𝑟
𝑥𝑖 = 2𝑋 𝐷45𝑜

𝑥𝑖 = 3𝑋 𝐷𝑆2
𝑥𝑖 =

𝐷45𝑜

𝑥𝑖 −𝐷−45𝑜

𝑥𝑖

2
= 1𝑋

Assuming no other terms 15, the constraint for steering cancellation of 4𝜃 compo-
14 In KD*P, the 45𝑜 pos difference will shift by 𝛼 + 𝛽 and the −45𝑜 position difference will

shift by 𝛼− 𝛽, while the steering is 𝛼.
15which is a textitmajor assumption
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nents is given by

0 = (𝐷𝑆1
𝑥𝑖 cos(4𝜃) +𝐷𝑆2

𝑥𝑖 sin(4𝜃))𝜖/𝑇 +𝐷𝑠𝑡𝑒𝑒𝑟
𝑥𝑖

𝐷𝑠𝑡𝑒𝑒𝑟
𝑥𝑖 = −𝐷𝑆1

𝑥𝑖 cos(4𝜃)/(sin(4𝜃)/2 + 𝑇/𝜖) (6.2)

A plot of the optimal 𝐷𝑠𝑡𝑒𝑒𝑟
𝑥 /𝐷𝑆1

𝑥𝑖 vs 𝜃 is illustrated in Fig. 6-15 based on Eq.

6.2 for various analyzing powers, from 100% to 10% (typical for a photocathode is

3-6%). There are RHWP angles for which it would a greater amount of steering

to zero out the position differences. For 100% analyzer, this solution has maxima

and minima at 𝜃 ≈ 55𝑜, 145𝑜 and 𝜃 ≈ 84𝑜, 174, these are between S1 (0𝑜,45𝑜) and

S2(22.5𝑜,67.5𝑜), like placing an analyzer between 45𝑜 and 90𝑜. For smaller analyz-

ing powers, the 𝜃 requiring the largest steering to cancel the position differences

gradually gets closer to an S1 angle, until for very small analyzing powers, setting

the RHWP angle near S1 results in the largest required steering to cancel out,

however as the analyzing power is small, not much is required.

Figure 6-15: RHWP angle and analyzing/angle-like position differences

Fig. 6-16 shows an example of two RHWP scans with electron beam in the

injector. In these scans, voltage offsets were used to induce a steering offset 16. The
16Effective throw to the cathode was ∼ 2𝑚 with a 2m steering lens. Cathode spot

size was 4𝜎 = 2.9𝑚𝑚(𝐻𝑜𝑟𝑖𝑧), 3.1𝑚𝑚(𝑉 𝑒𝑟𝑡) . Spot size at the Pockels cell was 2𝜎 =
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photocathode was measured to have an analyzing power of 6% and we observe that

in this case, because of the small analyzing power, inducing steering with voltage

has a major effect on the offset terms and very little effect on the 4𝜃 terms. The

𝐷𝑥 offset changed by 230nm and the 𝐷𝑦 offset changed by 930nm, but nothing

else significantly changed.

(a) (b)

Figure 6-16: RTP RHWP scans e-beam: (a) RHWP scan performed with PITA-
posU=13V, PITAposV=69V with large steering offsets (b) RHWP scan performed
with PITAposU=-24V, PITAposV=-125V where the steering offsets have been re-
duced. S1 is near 𝜃 = 0𝑜. [281]

6.3.7 Spot size asymmetries

Just as there are two kinds of position differences, there are also two kinds

of spot-size asymmetries. The analyzing-like spot-size asymmetries arise from

the 2nd moment of the intensity asymmetry as shown in Fig. 6-1. If a helicity

correlated intensity asymmetry contains a 2nd order term with respect to position

on the crystal face or angle, a spot-size asymmetry is induced. This type of spot-

size asymmetry is proportional to the power of the analyzing element and depends

on its orientation.

𝑤 = 0.825𝑚𝑚(𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙), 0.94𝑚𝑚(𝑉 𝑒𝑟𝑡𝑖𝑐𝑎𝑙). Divergence at PC center was 𝑑𝑤/𝑑𝑧 =
0.51𝑚𝑟𝑎𝑑(ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙), 0.66𝑚𝑟𝑎𝑑(𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙).
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The second type of spot size asymmetry is related to and originates from the

same effects as steering, only it’s a 2nd order effect instead of first order. The

crystal acts like a GRIN (gradient-index) lens, in a helicity correlated manner.

Spot-size asymmetries must be described in 2D. We refer the spot size asymme-

try in general as 𝐴𝜎 and along a particular axis as 𝐴𝜎,𝑥𝑖
. There are several ways to

describe spot-size, but we could model it as having a circular 𝜎𝑐𝑖𝑟𝑐 component and

and an elliptical component 𝜖𝜎 ≈ (𝜎𝑥−𝜎𝑦)/(𝜎𝑥+𝜎𝑦) along some particular axis x.

The spot size can be described as 𝜎(𝜃) = 𝜎𝑐𝑖𝑟𝑐(1+ 𝜖𝜎 cos(2(𝜃− 𝜃𝑖))), where 𝜃 is the

angle in the plane transverse to the direction of beam propagation. Likewise we can

describe the spot size asymmetry as 𝐴𝜎(𝜃) = 𝐴𝑐𝑖𝑟𝑐+𝐴𝑒𝑙𝑙𝑖 cos(2(𝜃−𝜃0)), where Aelli

is the asymmetry due to the elliptical component of the spot size asymmetry, what

we refer to as the “breathing mode” of the spot size asymmetry. 𝐴𝑒𝑙𝑙𝑖 can be related

to a difference in 𝜖𝜎 via 𝐴𝑒𝑙𝑙𝑖 ≈ (𝜖𝜎0− 𝜖𝜎1)/(𝜎0+𝜎1) ≈ Δ𝜖/2 ≈ (𝜖𝜎0/𝜎0− 𝜖𝜎1/𝜎1)/2,

where the subscripts 0 and 1 are for two helicity states.

In the following sections we analytically describe the dependence of the spot-

size asymmetry on various 2nd order terms in the RTP Pockels Cell.

Spot size asymmetries: analyzing-like

Analyzing-like spot-size asymmetries arise only if the beam encounters a po-

larizing element and are proportional to the analyzing power 𝜖/𝑇 . There are two

kinds of mechanisms through which analyzing-like spot size asymmetries can oc-

cur: (1) asymmetry moments with respect to translation 𝑑2𝐴
𝑑2𝑥𝑖

in the Pockels cell (2)

asymmetry gradients with respect to angle 𝑑2𝐴
𝑑2𝜉𝑖

in the Pockels cell. The spot-size

asymmetries arising from these mechanisms can be reduced with beam parame-

ters: either reducing the laser spot-size or the laser divergence in the cell. In the

case of translational moments, 𝑑2𝐴
𝑑2𝑥𝑖

, the spot-size asymmetries can be reduced by

using a smaller beam waist. In the case of angular moments, 𝑑2𝐴
𝑑2𝜉𝑖

, the spot-size

asymmetries can be reduced by using a smaller beam divergence.
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Translational Dependence

A gaussian beam has power distribution 𝑃 (𝑥) = 𝑃0𝑒
−2𝑥2/𝑤2 . If it’s exposed

to a helicity dependent asymmetry gradient in the crystal, the power distribution

becomes 𝑃 ′ = 𝑃0𝑒
−2𝑥2/𝑤2

(1 ± 𝑑𝐴
𝑑𝑥
𝑥 ± 1

2
𝑑2𝐴
𝑑𝑥2 𝑥

2). Considering the expectation value

of the position and its square to calculate the RMS,

⟨𝑥⟩ =
∫︀
𝑥𝑃 ′𝑑𝑥∫︀
𝑃 ′𝑑𝑥

= ±
𝑑𝐴
𝑑𝑥
𝑤2

(4± 1
2
𝑑2𝐴
𝑑𝑥2𝑤2)

⟨𝑥2⟩ =
∫︀
𝑥2𝑃 ′𝑑𝑥∫︀
𝑃 ′𝑑𝑥

=
𝑤2(4± 3

2
𝑑2𝐴
𝑑𝑥2𝑤

2)

4(4± 1
2
𝑑2𝐴
𝑑𝑥2𝑤2)

we obtains

𝜎 =
√︀

⟨𝑥2⟩ − ⟨𝑥⟩2 ≈ 𝑤

2
±
𝑤3 𝑑2𝐴

𝑑𝑥2

16
−
𝑤3 𝑑𝐴

𝑑𝑥

2

16
± 3

128

𝑑2𝐴

𝑑𝑥2
𝑑𝐴

𝑑𝑥

2

𝑤5

𝐴𝜎 =
𝜎𝑅 − 𝜎𝐿
𝜎𝑅 + 𝜎𝐿

≈
𝑑2𝐴
𝑑𝑥2𝑤

2

8
+

𝑑2𝐴
𝑑𝑥2 (

𝑑𝐴
𝑑𝑥
)2𝑤4

16

Factoring in the condition that we may not have 100% analyzing power and noting

the difference between spot-sizes at the cathode and Pockels cell 17 , we obtain for

the spot-size difference

Δ𝜎 = 𝜎+ − 𝜎− ≈ 𝜖

𝑇
𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

(︂ 𝑑2𝐴
𝑑𝑥2𝑤

2
𝑃𝐶

4
+

𝑑2𝐴
𝑑𝑥2 (

𝑑𝐴
𝑑𝑥
)2𝑤4

𝑃𝐶

8

)︂

Angular Dependence

Spot size asymmetry is a 2nd order effect and can be related to the 2nd deriva-

tive of charge asymmetry Aq with respect to position or angle. Angular depen-

dence in the transmission can couple into an effective position dependence because

of the laser beam divergence. A significant portion of the spot-size asymme-

try comes from a crystal angle-dependence in conjunction with beam divergence

which couples angle to position 𝑟 ≈ 𝑅𝜃 ≈ (𝑤/𝜃𝑤)𝜃 (as derived in Sec. in the

Appendices). A gaussian beam divergence couples angle to position and so an
17𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒 = (1−𝐷2/𝑓 +𝐷𝑒𝑓𝑓𝜃/𝑤)𝑤 , see Sec. D.2.3 in Appendices
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angle-dependent gradient couples into a position-dependent gradient giving rise

to spot-size asymmetries.

In terms of angle, a gaussian beam has power distribution 𝑃 (𝑥) = 𝑃0𝑒
−2𝜃2/𝜃2𝑤

and if it’s exposed to a helicity dependent asymmetry gradient, then 𝑃 ′ = 𝑃0𝑒
−2𝜃2/𝜃2𝑤(1±

𝑑𝐴
𝑑𝜃
𝜃 ± 1

2
𝑑2𝐴
𝑑𝜃2
𝜃2). Considering the expectation value of the angle and its square to

calculate the RMS,

⟨𝜃⟩ =
∫︀
𝜃𝑃 ′𝑑𝜃∫︀
𝑃 ′𝑑𝜃

=
±𝑑𝐴

𝑑𝜃
𝜃2𝑤

(4± 1
2
𝑑2𝐴
𝑑𝜃2
𝜃2𝑤)

⟨𝜃2⟩ =
∫︀
𝜃2𝑃 ′𝑑𝑥∫︀
𝑃 ′𝑑𝜃

=
𝜃2𝑤(4± 3

2
𝑑2𝐴
𝑑𝜃2
𝜃2)

4(4± 1
2
𝑑2𝐴
𝑑𝜃2
𝜃2𝑤)

𝜃𝜎 =
√︀

⟨𝜃2⟩ − ⟨𝜃⟩2 ≈ 𝜃𝑤
2

±
𝜃3𝑤

𝑑2𝐴
𝑑𝜃2

16
−
𝜃3𝑤

𝑑𝐴
𝑑𝜃

2

16
± 3

128

𝑑2𝐴

𝑑𝜃2
𝑑𝐴

𝑑𝜃

2

𝜃5𝑤

where 𝜃𝜎 is the 1/2 angle divergence after the Pockels cell, and 𝜃𝑤 is the full angle

divergence. Taking into account coupling between position and angle 𝑥(𝜃) ≈

𝜃(𝑤/𝜃𝑤), implies 𝜎 ≈ 𝜃𝜎(𝑤/(𝜃𝑤)) ,

𝜎 ≈ 𝑤

𝜃𝑤
(
𝜃𝑤
2

±
𝜃3𝑤

𝑑2𝐴
𝑑𝜃2

16
−
𝜃3𝑤

𝑑𝐴
𝑑𝜃

2

16
± 3

128

𝑑2𝐴

𝑑𝜃2
𝑑𝐴

𝑑𝜃

2

𝜃5𝑤)

𝐴𝜎 = (𝜎+ − 𝜎−)/(𝜎+ + 𝜎−) ≈
𝑑2𝐴
𝑑𝜃2
𝜃2𝑤
8

+
𝑑2𝐴
𝑑𝜃2

(𝑑𝐴
𝑑𝜃
)2𝜃4𝑤

16

Factoring in the condition that we may not have 100% analyzing power and noting

the difference between spot-sizes at the cathode and Pockels cell, we obtain for

the spot size difference

Δ𝜎 = 𝜎+ − 𝜎− ≈ 𝜖

𝑇
𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

(︂ 𝑑2𝐴
𝑑𝜃2
𝜃2𝑃𝐶

4
+

𝑑2𝐴
𝑑𝜃2

(𝑑𝐴
𝑑𝜃
)2𝜃4𝑃𝐶

8

)︂

The asymmetry angle dependence in RTP was derived as (Equation 6.1)

𝐴𝐼(𝜉𝑥0, 𝜉𝑦0) =
𝜖

𝑇
sin(2(𝜂 − 𝜓))

𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛2
𝑥

− 1

𝑛𝑧𝑛𝑦

)(2𝜉𝑥0𝜉𝑦0)
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=
𝜖

𝑇
sin(2(𝜂 − 𝜓))

𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛2
𝑥

− 1

𝑛𝑧𝑛𝑦

(𝜉2𝑢0 − 𝜉2𝑣0))

denoting 𝑢 = 𝑥+𝑦√
2

and 𝑣 = 𝑥−𝑦√
2
. In the thermal compensation design of the RTP

cell, the birefringence cancellation along S2 (𝜂 = 𝜓) implies no angle dependent

birefringence gradient, so RTP should suffer from less spot size asymmetry than

KD*P when analyzing along S2. The analyzing-like spot size asymmetry in S2 for

RTP is 𝐴𝑆2
𝜎 = 0.

The angle dependence of Aq combined with beam divergence position-angle

coupling gives rise to angle dependent spot size asymmetries in S1. We obtain an

elliptical analyzing-like spot size asymmetry for RTP:

𝑑𝐴2(𝜃)

𝑑𝜉2𝑥
= 0 𝐴𝜎𝑥 = 0

𝑑𝐴2(𝜃)

𝑑𝜉2𝑦
= 0 𝐴𝜎𝑦 = 0

𝑑𝐴2(𝜃)

𝑑𝜉2𝑢
= +2𝑘 𝐴𝜎𝑢 =

𝜖

𝑇
𝜃2𝑃𝐶

𝑘

4
(1 + 2(𝑘𝜉𝑢0)

2𝜃2𝑃𝐶)

𝑑𝐴2(𝜃)

𝑑𝜉2𝑣
= −2𝑘 𝐴𝜎𝑣 = − 𝜖

𝑇
𝜃2𝑃𝐶

𝑘

4
(1 + 2(𝑘𝜉𝑣0)

2𝜃2𝑃𝐶)

where

2𝑘 =
𝜖

𝑇
sin(2(𝜂 − 𝜓))

2𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛2
𝑥

− 1

𝑛𝑧𝑛𝑦

) ≈ 5137𝑝𝑝𝑚/𝑚𝑟𝑎𝑑2

Near alignment where 𝑑𝐴
𝑑𝜉

≈ 0 with the beam is sitting on the Aq saddle

point in angle dependence, for a 0.5mrad beam divergence at the Pockels cell

and a 6% analyzing power oriented directly along S1, the spot size asymmetry

along the diagonal 𝑢 = +45𝑜, 𝑣 = −45𝑜 axes will be 𝐴𝜎𝑢,45𝑜 = 1 × 10−5 and

𝐴𝜎𝑣,−45𝑜 = −1× 10−5.

Spot size asymmetries: angle-like

The same mechanism which gives rise to steering and angle-like position dif-

ferences can also give rise to angle-like spot size asymmetries. The Pockels cell
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can induce a helicity-correlated divergence difference 𝐷𝜃 . For a throw distance

𝐷, the corresponding spot size asymmetry is given by 𝐴𝜎 = 𝐷
2𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝐷𝜃.

These angle-like spot size asymmetries can be either be (1) independent of

analyzing power, just like the steering described in Sec. 6.3.4 (2) or they can be

dependent on the analyzing power, analogous to the analyzing/angle-like position

differences described in Sec.6.3.6.

The divergence of the beam coming out of the Pockels cell depends on the

divergence of the beam coming in, the curvature of the crystal face cuts 18, the

curvature of the field19, and any 2nd moments in the refractive index gradients

(acting as a GRIN lens):

𝜃𝑑𝑖𝑣 ∼
𝜃𝑎𝑖𝑟,𝑑𝑒𝑓𝑙
𝑑𝑥𝑖

=
𝑑𝐿

𝑑𝑥2𝑖
(𝑛− 1) + 2

𝑑𝑛

𝑑𝑥𝑖

𝑑𝐿

𝑑𝑥𝑖
+
𝑑2𝑛

𝑑𝑥2𝑖
𝐿

The helicity correlated refractive index 2nd moment is given by

𝑑2Δ𝑛𝑗

𝑑𝑥2𝑖
= −6𝑛𝑗0𝑟𝑗3(

𝑑𝑛𝑗0

𝑑𝑥𝑖
)2𝐸𝑧0−3𝑛2

𝑗0𝑟𝑗3
𝑑2𝑛𝑗0

𝑑𝑥2𝑖
𝐸𝑧0−3𝑛2

𝑗0𝑟𝑗3
𝑑𝑛𝑗0

𝑑𝑥𝑖

𝑑𝐸𝑧0

𝑑𝑥𝑖
−𝑛3

𝑗0𝑟𝑗3
𝑑2𝐸𝑧0

𝑑𝑥2𝑖

The helicity-correlated divergence differences along 𝑥𝑖 for polarization j due to

these 2nd moments in one crystal is given by

𝐷𝜃𝑖

⃒⃒
𝑗
∼ 𝑑𝐿

𝑑𝑥2𝑖
(Δ𝑛) + 2

𝑑Δ𝑛

𝑑𝑥𝑖

𝑑𝐿

𝑑𝑥𝑖
+
𝑑2Δ𝑛

𝑑𝑥2𝑖
𝐿

∼ −𝑟𝑗3𝑛3
𝑗0((2

𝑑𝐿

𝑑𝑥2𝑖
+ 6

1

𝑛𝑗0

𝑑𝑛𝑗0

𝑑𝑥𝑖

𝑑𝐿

𝑑𝑥𝑖
+ 6

1

𝑛2
𝑗0

(
𝑑𝑛𝑗0

𝑑𝑥𝑖
)2𝐿+ 3

1

𝑛𝑗0

𝑑2𝑛𝑗0

𝑑𝑥2𝑖
𝐿)𝐸𝑧0

+(2
𝑑𝐿

𝑑𝑥𝑖
+ 3

1

𝑛𝑗0

𝑑𝑛𝑗0

𝑑𝑥𝑖
𝐿)
𝑑𝐸𝑧0

𝑑𝑥𝑖
+ 𝐿

𝑑2𝐸𝑧0

𝑑𝑥2𝑖
)

Most of this helicity-correlated divergence is intrinsic to the cell, the rest is due
18The curvature of the face cuts and the 2nd moments in the refractive indices were measured

[282] and found to be < 2𝜇𝑟𝑎𝑑/𝑚𝑚 angle change in curvature vs transverse distance
19In fact, we have an idea to split the side panels in half and add 4 more HV’s connected to the

side panels to induce a helicity correlated E-field 2nd moment to induce spot-size asymmetries
in the beam so that spot-size sensitivities can be measured in experiments
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to electric field gradients which can be adjusted.

𝐷𝜃𝑖

⃒⃒
𝑗
≡ −𝑟𝑗3𝑛3

𝑗0(𝜕𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝜕𝐸𝑧0)

For no analyzer, the helicity-correlated divergence from a single RTP (one of two),

will be an average of the components along the polarization primary axes y and z

𝐷𝜃𝑖

⃒⃒
𝑛𝑜 𝑎𝑛𝑎𝑙

≡ −(𝑟33𝑛
3
𝑧0 + 𝑟23𝑛

3
𝑦0)/2(𝜕𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝜕𝐸𝑧0)

For a throw distance 𝐷, the corresponding spot size asymmetry is given by

𝐴𝜎𝑖

⃒⃒
𝑛𝑜 𝑎𝑛𝑎𝑙

=
𝐷

2𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝐷𝜃𝑖 = −
𝐷(𝑟33𝑛

3
𝑧0 + 𝑟23𝑛

3
𝑦0)

4𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

(𝜕𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝜕𝐸𝑧0)

For the analyzer along S2 in the ±45𝑜 directions,

𝐷𝜃𝑖

⃒⃒
−45𝑜

≡ −(𝑟23𝑛
3
𝑦0)(𝜕𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝜕𝐸𝑧0)

𝐷𝜃𝑖

⃒⃒
+45𝑜

≡ −(𝑟33𝑛
3
𝑧0)(𝜕𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝜕𝐸𝑧0)

with corresponding spot size asymmetries of

𝐴𝜎𝑖

⃒⃒
−45𝑜

= − 𝜖

𝑇

𝐷𝑟23𝑛
3
𝑦0

2𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

(𝜕𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝜕𝐸𝑧0)

𝐴𝜎𝑖

⃒⃒
+45𝑜

= − 𝜖

𝑇

𝐷𝑟33𝑛
3
𝑧0

2𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

(𝜕𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝜕𝐸𝑧0)

We make the observation that since 𝑟33𝑛3
𝑧0 ≈ 3𝑟23𝑛

3
𝑦0, if the spot size asymmetry

that is steering-like and independent of analyzer is 𝐴𝜎𝑖

⃒⃒
𝑛𝑜 𝑎𝑛𝑎𝑙

= 2𝑋, then the

analyzing/angle -like spot size asymmetries are 𝐴𝜎𝑖

⃒⃒
−45𝑜

= 1𝑋, 𝐴𝜎𝑖

⃒⃒
+45𝑜

= 3𝑋.
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6.3.8 Interferometric-Etalon Effect

Using a narrow-band CW laser (10MHz, LD785-SEV300 , 785WOPK04.C05),

we observed an etalon problem in RTP crystals. The RTP crystals are polished so

well, with parallelism <10arcsec, that the reflections of the front and back faces

of the crystal interfere with one another. The crystal acts as an interferometer.

The etalon effect is an interference between the back reflections of the front face

and the back face of a crystal. The reflectivity and thus the transmission depends

on the phase shift between the two back-reflections. In a running Pockels cell,

the phase shift is being altered by application of voltage. Hence when we apply a

voltage to the Pockels Cell, the transmission changes. This etalon effect in RTP

produces a helicity correlated charge asymmetry. The magnitude of the produced

charge asymmetry is determined by the reflection coefficient of the crystal faces

𝐴𝑞 = 2𝑅 cos𝜑 20. It is a problem because it leads to a helicity dependent re-

flection coefficient, hence transmission coefficient, hence charge asymmetry. The

etalon effect can interfere with transmission and produce helicity correlated asym-

metries and gradients. The charge asymmetry produced will be the same order

as the reflection coefficient of a single face 0.2%. Here we derive the effect on the

transmitted asymmetry for each polarization state along primary y,z axis for one

crystal.

The reflection and transmission is given by:

𝑅(𝜑) = 2𝑅(1 + cos𝜑)

𝑇 = 1−𝑅 = 1− 2𝑅(1 + cos𝜑)

20𝜑 is the phase difference between the two arms of the interferometer, in this case, the
difference in phase between the reflected beam off the front face of the crystal and the reflected
beam off the back face of the crystal, which experiences a phase shift from passing through
crystal twice, once going forwards and once upon reflecting back
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Figure 6-17: Reflection interference in a quarter-wave anti-reflection coating [252]

For the z axis on one crystal:

𝜑𝑧 = 2𝜋𝑛𝑧𝐿0/𝜆

𝑛𝑅(𝐿)
𝑧 = 𝑛0,𝑧 −

1

2
𝑛3
0,𝑧𝑟33𝐸

𝑅(𝐿)
𝑧

𝐸𝑧 = 𝑉/𝑑

The transmitted asymmetry due to this interference effect is

𝐴𝑇 =
𝑇𝑅 − 𝑇𝐿

𝑇𝑅 + 𝑇𝐿
= 𝑅

− cos𝜑𝑅 + cos𝜑𝐿

1−𝑅(1 + cos𝜑𝑅 + 1 + cos𝜑𝐿)

≈ 𝑅(− cos𝜑𝑅 + cos𝜑𝐿)

≈ 𝑅(− cos(2𝜋𝑛𝑅
𝑧 𝐿0/𝜆) + cos(2𝜋𝑛𝐿

𝑧𝐿0/𝜆))

≈ 𝑅(− cos(2𝜋(𝑛0,𝑧 −
1

2
𝑛3
0,𝑧𝑟33𝐸

𝑅
𝑧 )𝐿0/𝜆) + cos(2𝜋(𝑛0,𝑧 −

1

2
𝑛3
0,𝑧𝑟33𝐸

𝐿
𝑧 )𝐿0/𝜆))

≈ 𝑅(− cos(2𝜋(𝑛0,𝑧 −
1

2
𝑛3
0,𝑧𝑟33𝑉

𝑅/𝑑)𝐿0/𝜆) + cos(2𝜋(𝑛0,𝑧 −
1

2
𝑛3
0,𝑧𝑟33𝑉

𝐿/𝑑)𝐿0/𝜆)

Similarly for the y axis on one crystal:

𝜑𝑦 = 2𝜋𝑛𝑦𝐿0/𝜆

𝑛𝑅(𝐿)
𝑦 = 𝑛0,𝑦 −

1

2
𝑛3
0,𝑦𝑟23𝐸

𝑅(𝐿)
𝑧
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𝐴𝑇 = 𝑅(− cos(2𝜋(𝑛0,𝑦 −
1

2
𝑛3
0,𝑦𝑟23𝑉

𝑅/𝑑)𝐿0/𝜆) + cos(2𝜋(𝑛0,𝑦 −
1

2
𝑛3
0,𝑦𝑟23𝑉

𝐿/𝑑)𝐿0/𝜆

We have observed that our crystal faces have reflection coefficients of 0.2−0.5%

and can produce charge asymmetries 3000-10,000ppm as shown in the Fig. 6-38.

There only real solution to fix the etalon effect is to make the RTP not an

etalon. The requirements for an etalon are (1) non-negligible reflection coeffi-

cients (2) parallel faces (3) narrow-bandwidth (4) temporal overlap of reflected

pulses (5) spatial overlap and coherence of reflected pulses. At least one of these

5 requirements must be violated to eliminate the etalon effect in the RTP. Sup-

pressing this interferometric-etalon effect is discussed in further detail in C

6.4 Design

6.4.1 8-HV Design

All crystals suffer from some degree of non-uniformity. In order to counteract

this non-uniformity and minimize helicity correlated beam asymmetries, an inno-

vation in the design of the RTP Pockels Cell was required. We used grounded

plates to induce fringe-electric fields. By controlling the electric field gradients,

the helicity correlated position differences could be suppressed.

In commercial designs, the 2 crystals have a common grounded plate and two

HV plates on the top of each crystal as shown in Fig. 6-18a and a common HV

voltage is applied to the top plates of both crystals. We gain the ability to con-

trol the electric field gradients by a simple design change. We separated the two

crystals’ ground plates, so each crystal electric field is independently controlled,

added grounded side-panels near the sides of each crystal, and added more several

HV power supplies so that the voltage on each of the 4 HV plates can be indepen-

dently set to different values as illustrated in Fig.6-18b and Fig.6-19. There are 8

independent voltages in total, for each of the 4 HV plates on the two crystals for

both helicity states. We also designed the cell mount with additional degrees of
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freedom to have control over the relative pitch, yaw, roll, horizontal and vertical

translation between the two crystals as well as the overall pitch, yaw, roll, hor-

izontal and vertical translation degrees of freedom. The Pockels cell is designed

with two RTP crystals (Raicol 12x12x10mm, AR coated), with full angular and

translational control of each crystal, and grounded side-panels in addition to 4 HV

plates. 8 high voltages are applied to the cell, driven with a opto-diode switch.

The laser polarization states are switched within 12𝜇s, while controlling the direc-

tion and intensity of the laser beam to keep it extremely symmetric (at nm-level

and ppm-level).

(a) Raicol Design [253]
(b) Side Panel Design

This design allows for a straightforward control over the electric field gradient

along the z-axis of each crystal without changing the magnitude of the E-field very

much. Since the voltage setting controls the electric field gradient along the z-axis

of each crystal, it controls the steering along the z-axis for each crystal. The first

RTP crystal’s electric field gradient controls and the steering along −45𝑜 and the

second crystal’s electric field gradient controls the steering along +45𝑜 as shown

by the orientations in Fig. 6-19.

We have the ability, with our 8 independent voltages, to control the delta-phase,

the alpha-phase, and to create a delta-phase gradient or alpha-phase gradient.

While position differences in S1 are caused by a delta-phase gradient, steering is

controlled by an alpha-phase gradient. The voltage shift in each crystal which

induces steering we refer to as 𝛼-position voltage, because it controls the alpha-
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phase gradient. 21 The first crystal with its z-axis along U controls the steering

along the U-direction with -position-U voltage, and the second crystal with z-axis

along V controls the steering along the V-direction with PITA-position-V voltage.

corresponding to the ±45𝑜 directions denoted ‘U’ and ‘V’ 𝑉𝛼𝑝𝑜𝑠,𝑈 and 𝑉𝛼𝑝𝑜𝑠,𝑉

Figure 6-19: Defining axes of RTP cell and configuration of 8HV”s. Figure illus-
trates case of 𝑉𝛼𝑝𝑜𝑠,𝑈 = 𝑉𝛼𝑝𝑜𝑠,𝑉 = 𝑉𝜆/4 > 0 with grounded side panels.

The equations describing how the voltage settings are used to induce steering-

like position differences via 𝑉𝛼𝑝𝑜𝑠,𝑈/𝑉 are shown in Table 6.2 .

𝐻𝑉 ℎ𝑒𝑙. 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝑝𝑜𝑙. 𝑜𝑟𝑖𝑒𝑛.,𝑑𝑖𝑟. 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

1 + 1 + +𝑧1,+𝑈 𝑉1 = 𝑉𝜆/4 + 𝑉𝛼,1 + 𝑉Δ,1 + 𝑉𝛼𝑝𝑜𝑠,𝑈 + 𝑉𝛿𝑝𝑜𝑠,𝑈

2 + 1 - −𝑧1,−𝑈 𝑉2 = −𝑉𝜆/4 − 𝑉𝛼,1 − 𝑉Δ,1 + 𝑉𝛼𝑝𝑜𝑠,𝑈 + 𝑉𝛿𝑝𝑜𝑠,𝑈

3 + 2 + −𝑧2,−𝑉 𝑉3 = 𝑉𝜆/4 + 𝑉𝛼,2 + 𝑉Δ,2 + 𝑉𝛼𝑝𝑜𝑠,𝑉 + 𝑉𝛿𝑝𝑜𝑠,𝑉

4 + 2 - +𝑧2,+𝑉 𝑉4 = −𝑉𝜆/4 − 𝑉𝛼,2 − 𝑉Δ,2 + 𝑉𝛼𝑝𝑜𝑠,𝑉 + 𝑉𝛿𝑝𝑜𝑠,𝑉

5 - 1 - +𝑧1,+𝑈 𝑉5 = −𝑉𝜆/4 − 𝑉𝛼,1 + 𝑉Δ,1 − 𝑉𝛼𝑝𝑜𝑠,𝑈 + 𝑉𝛿𝑝𝑜𝑠,𝑈

6 - 1 + −𝑧1,−𝑈 𝑉6 = 𝑉𝜆/4 + 𝑉𝛼,1 − 𝑉Δ,1 − 𝑉𝛼𝑝𝑜𝑠,𝑈 + 𝑉𝛿𝑝𝑜𝑠,𝑈

7 - 2 - −𝑧2,−𝑉 𝑉7 = −𝑉𝜆/4 − 𝑉𝛼,2 + 𝑉Δ,2 − 𝑉𝛼𝑝𝑜𝑠,𝑉 + 𝑉𝛿𝑝𝑜𝑠,𝑉

8 - 2 + +𝑧2,+𝑉 𝑉8 = 𝑉𝜆/4 + 𝑉𝛼,2 − 𝑉Δ,2 − 𝑉𝛼𝑝𝑜𝑠,𝑉 + 𝑉𝛿𝑝𝑜𝑠,𝑉

Table 6.2: HV#, helicity, crystal, HV polarity, orientation, steering direction,
equation

21referred to as ‘PITA’-position voltage in elogs. The name “PITA-position-voltage” is a
misnomer and we should actually call it “alpha-position-voltage” because it induces an alpha-
phase gradient and it is that which causes steering.
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The voltages relate to the quarter-wave voltage via

𝑉𝜆/4 = (𝑉1 − 𝑉2 + 𝑉3 − 𝑉4 − 𝑉5 + 𝑉6 − 𝑉7 + 𝑉8)/8− (𝑉𝛼,1 + 𝑉𝛼,2)/2

Our 8 degrees of freedom translate into (1) an alpha-phase for crystal 1 and (2) an

alpha-phase for crystal 2 (where we tend to keep these equal, and combine them

into to one parameter 𝑉𝛼 = 𝑉𝛼,1 = 𝑉𝛼,2)

𝑉𝛼,1 = (𝑉1 − 𝑉2 − 𝑉5 + 𝑉6)/4− 𝑉𝜆/4 𝑉𝛼,2 = (𝑉3 − 𝑉4 − 𝑉7 + 𝑉8)/4− 𝑉𝜆/4

(3) a delta-phase for crystal 1 and (4) a delta-phase for crystal 2 (where we tend

to keep these equal, and combine them into to one parameter 𝑉Δ = 𝑉Δ,1 = 𝑉Δ,2)

𝑉Δ,1 = (𝑉1 − 𝑉2 + 𝑉5 − 𝑉6)/4 𝑉Δ,2 = (𝑉3 − 𝑉4 + 𝑉7 − 𝑉8)/4

(5) an alpha-phase-gradient for crystal 1, along its z axis, used for steering along

+45𝑜 and (6) an alpha-phase-gradient for crystal 2 along its z axis, used for steering

along −45𝑜

𝑉𝛼𝑝𝑜𝑠,𝑈 = (𝑉1 + 𝑉2 − 𝑉5 − 𝑉6)/4 𝑉𝛼𝑝𝑜𝑠,𝑉 = (𝑉3 + 𝑉4 − 𝑉7 − 𝑉8)/4

(7) a delta-phase-gradient for crystal 1, along its z axis +45𝑜 and finally (8) a

delta-phase-gradient for crystal 2, along its z axis −45𝑜, though we tend to not

use the delta phase gradient and keep 𝑉𝛿𝑝𝑜𝑠,𝑉 = 𝑉𝛿𝑝𝑜𝑠,𝑈 = 0. 22

𝑉𝛿𝑝𝑜𝑠,𝑈 = (𝑉1 + 𝑉2 + 𝑉5 + 𝑉6)/4 𝑉𝛿𝑝𝑜𝑠,𝑉 = (𝑉3 + 𝑉4 + 𝑉7 + 𝑉8)/4

In table 6.2, helicity “+” corresponds to the Pockels cell acting as a QWP
22In principle we could also induce a delta-phase gradient, but we do not currently do this. It

would alter the Aq gradient in S1, and for no analyzer ,it would have the effect of shifting the
average position of the beam, but not induce position differences.
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with fast axis along +45𝑜 relative to the horizontal 23, such that horizontal input

polarization �⃗� =
[︁
1

0

]︁
(IHWP out) becomes right-circularly polarized �⃗� = 1√

2

[︁
1

−𝑖

]︁
,

carrying spin-angular momentum −ℎ̄. Helicity “-” corresponds to the Pockels

cell acting as a QWP with fast axis along −45𝑜 relative to the horizontal, such

that horizontal input polarization �⃗� =
[︁
1

0

]︁
(IHWP out) becomes left-circularly

polarized �⃗� = 1√
2

[︁
1

𝑖

]︁
, carrying spin-angular momentum +ℎ̄. In the photocathode,

upon core-level excitation by circularly polarized light, the angular momentum

of the light, or helicity, is transferred to the emitted photoelectron. The angular

momentum of the emitted photoelectron is the sum of the helicity and the orbital

magnetic quantum number of the initial state [271]. 24

The HV driver is composed of an optocoupler system. Each of the 8 HV’s are

driven by two optodiodes in parallel 25. Each of the two optodiodes is opened by

one of two 1W LED’s in series, pulsed at the beginning of each helicity cycle for

∼ 20𝜇𝑠− 40𝜇𝑠, powered by 8𝑉 − 9𝑉 of DC voltage (4− 4.5𝑉 on each LED). The

circuit diagram is shown in Fig. 6-20.
23X in a right-handed XYZ coordinate system where Z is the beam propagation axis
24A Mott measurement (on the HallB laser) determined the sign of the beam polarization to

be -86.6% for IHWPout and for 87.2% for IHWPin [272]
25An optodiode is a high-voltage diode which switches states upon exposure to IR light and

can be controlled using LEDs. The optodiodes are made by a Voltage Multipliers Inc. (VMI)
part number OZ100SG. Our design has two optodiodes in parallel to allow for more current to
flow to the Pockels cell for a faster transition
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Figure 6-20: Diagram of the 8HV driver configuration with optodriver

Fig. 6-21 and Fig.6-22b show all the components of the cell system and the

physically assembled cell. The two crystals have individual Al plates, Al side pan-

els, and are held together by a delrin sandwich design, each mounted individually

to a rotation stage and a 6axis optics mount. The whole assembly is mounted on

a 4axis angle mount which adjusts pitch and yaw, a rotation stage which adjusts

roll, and two translation stages for X and Y control. A full list of components

required is found in [273], the CAD file can be found in [274] and Raicol crystals

detail are located in [275] 26 . Several spares may need to be made when the
26 The crystals are Raicol RTP Matched Pair 2x(12x12x10 mm) at 780 nm, 12x12mm aper-

ture, 10mm length crystals, with length mismatch between crystal pair <2 𝜇m, with extinction
ratio >23 dB in clear aperture 10 mm , face cut parallelism <10arcsec, AR coated at 780 nm,
R<0.2%, and capacitance 4-6 pF. The power supplies are IGES 4W 2kV BPS series. The LED’s
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system is installed at JLab, especially since Moller will runs for such a long time.

Figure 6-21: RTP cell design

(a)

(b)

Figure 6-22: Assembled RTP mount

6.4.2 Opto-Driver

Fig. 6-24 shows the LED driver circuit 27. It produces a 3-step square waveform

of current through the LEDs as shown in Fig.6-23a.

are OSRAM-Opto-Semiconductors Platinum Dragon. The optocouplers are VMI OZ100HG.
The mount includes thorlabs PT1-Z8 translation stages, Newport 9071 4-axis mount, thorlabs
PRM1Z7 motorized rotation mount, thorlabs K6XS 6axis mirror mount, and an Edmund optics
3x3 right angle bracket.

27John Hansknecht (hansknec@jlab.org) also built a spare driver (with very similar design,
though only 2 steps, powered by 8V, and 60-70𝜇s long LED pulse) that is fed a helicity signal
from fiber optic light source and converts it to a TTL signal [290].
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The 1st step of the 3-step waveform begins at the start of the helicity window,

the 2nd step begins at a time which is adjustable, both the 1st and 2nd steps

end together at a time which is adjustable, and the 3rd step is a constant low

current which is permitted to flow throughout the entire helicity window [283].

Upon switching to the opposite helicity state, the current flow through one set of

LEDs ceases and the current flow through another set begins. The resistors in the

circuit are potentiometers that allow for adjustment of the LED current waveform

shown in Fig.6-23a 28. The adjustable parameters are the start time of the 2nd

step in current, the stop time of the 1st and 2nd steps, and the magnitude of the

currents for both the 1st and 2nd steps. To drive the RTP, the magnitudes of the

1st and 2nd steps are set to maximal current, they remain on for 20-40𝜇s, and

the start time of the 2nd step is set as early as possible at the beginning of the

window, in effect driving the RTP as fast as possible.

(a) (b)

Figure 6-23: (a)LED pulse - 3 steps, I1+I3,I1+I2+I3,I3. Blue trace is LED pulse
as detected by a photodiode. Pink trace is the TTL helicity trigger signal. [283]
(b)PCB driver [283]

28Note that resistor values and capacitor values are variable. The shown 225nF capacitor has
been replaced with 2.2nF capacitor, the shown 2.2nF capacitor has been replaced with a 2.5nF
capacitor, and an old version of the circuit had just 100nF capacitors [307]. The potentiometers
are 50kOhm and 50Ohm range.
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Figure 6-24: Annotated Pockels Cell Opto-driver Circuit Diagram [284]

The 8-output HV driver consists of 4 of the circuits shown in Fig. 6-24, allowing

for individual adjustment of the driver settings for each of the 8 HV’s. The reason

for this control of individual voltages is that the voltage settings of the 8HV system

can affect the transition time ithrough weighting different optocouplers and LED’s.

As different voltages are increased, their optodriver/LED’s become the greater

determiner of the transition times and they can be weighted more heavily. The

placement of the LED’s near the optodiodes as well as the age of the optodiode

can vary the transition times, so we made a flexible 8 output driver to compensate

for any differences in the various LED’s/optodiodes. The potentiometer settings

are adjusted for each of the 8 switches to match to the same transition time for

each of the 8HV’s individually, compensating for differences in optocoupler/LEDs.
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6.4.3 Considerations for Fast Switching

The predominant reason behind trying to use an RTP Pockels Cell is for the

sake of fast switching. The RTP Pockels cell scheme will allow for faster helicity

switching during MOLLER. Due to slow switching and piezo-electric ringing in

KD*P, using the JLab KD*P cell for MOLLER could result in 20% loss of data.

At 2kHz helicity switching, there is 100𝜇𝑠 of deadtime in KD*P some of which

is due to ringing at 4% amplitude as shown in Fig 6-25. However in RTP, which

has low piezo-electric coefficients, there is virtually no ringing (<0.2% amplitude)

when the transition time is reduced to 12𝜇𝑠 in a commercial 4x4mm RTP cell

as shown in Fig. 6-25 on the right. Switching from KD*P to RTP reduces the

deadtime by 10X.

Figure 6-25: Transition Time: These measurements were performed by driving
the Pockels Cells near QWV and examining the transmission through an analyzer
oriented along S1, the birefringence axis. KD*P ringing has 10𝜇s period. Left:
blue trace is transmission through KD*P cell, pink trace is helicity trigger, green
trace is the LED pulse detected by a photodiode. Right: blue trace is transmission
through RTP cell, pink trace is helicity trigger, yellow trace is the LED pulse
detected by a photodiode.

The transition time is determined by many factors including the capacitance

of the system, the QWV of the cell, the current limit through the optocoupler,

and the piezoelectric resonances. The current limit dictates that the transition

time is proportional to 𝑡 = 𝛽𝐶𝑉 where 𝛽 is determined by 𝐼𝑙𝑖𝑚. Systems with

larger a QWV, a higher capacitive load, or a lower current limit take longer to
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transition, placing an upper bound on the transition time. Piezo-electric ringing

can be driven by very fast transitions, so this places a lower bound on how fast we

can drive the Pockels cell. Fig. 6-26 shows our 12x12x10mm RTP crystals being

driven at QWV within 12𝜇𝑠 (with <1% ringing).

Figure 6-26: 13𝜇s transition time with <1% ringing [290]

If a larger RTP crystal is used, or larger plate electrodes are used, the capac-

itance of the RTP cells ( 2-3pF) does not change when the crystal aperture is

increased so long as the plate geometry remains constant. Making the plates over-

sized increases the capacitance only slightly since the dielectric constant of RTP is

quite large ( 13𝜖0). The main change in transition time comes from an increase in

the necessary QWV for larger crystals. The QWV scales with the aperture size, so

doubling the aperture width doubles the QWV which doubles the transition time.

This scaling of transition time with aperture size should be considered when using

a larger RTP cell. Lengthening the RTP crystals reduces the QWV, but increases

the cell capacitance.

The fact that our Pockels cell design has grounded side panels, and isn’t just 2

plates on either side of a crystal, but rather 4 plates, changes the capacitance of the

system. The side-panels used in our RTP design for steering change the effective

capacitance of the system for different voltage settings. Adding side panels to the
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RTP mount (for steering control with voltage) changes transition time a little due

to need to accumulate a different amount of charge on the plates to achieve the

same voltage. Changing the voltage applied to the plates relative to the grounded

side-panels (shifting ground) also changes the transition time a little for the same

reason.The expected transition time can change by 10-30% [302] , across the full

range of possible HV settings. For MOLLER, it is important to be aware that the

side panels do affect the transition times for different 𝑉𝛼𝑝𝑜𝑠,𝑈/𝑉 settings, and that

changing 𝑉𝛼𝑝𝑜𝑠,𝑈/𝑉 significantly can affect the transition times a little bit. When

using the opto-driver, the transition time is limited in RTP by the current limit

through the optocoupler driving the transition and the capacitance of the Pockels

cell. This current limit can always be improved by using more optocouplers,

turning up the voltage on the LED’s, aligning the optocouplers with the LED’s

better, or replacing old optocouplers with fresh ones. Longer transition times can

always be reduced increasing the number of optocouplers used in parallel or by

using a different driver. Longevity for the opto-driver remains an issue and it is

probably desirable to design a solid-state switch instead.

John Hansknecht 29 built a solid-state driver for the RTP cell based on the

driver circuit for the RTP tune-mode generators on the JLab injector table [291].

The limitation in the solid state driver the piezo-electric ringing in RTP. RTP has

a reputation for having little to no ringing, but KTP is a similar crystal to RTP,

and its piezo-electric resonance is simply at a higher frequency for a given geom-

etry than for most other Pockels cell materials [288]. Ringing has been observed

in these 12x12x10mm RTP crystals when driven in under 7-8𝜇s, and significant

ringing has been observed when using the solid-state driver at maximal current

as shown in Fig. 6-27. Fig. 6-27a shows an impulse response measurement in the

frequency domain revealing piezo-electric resonances of the X-cut RTP Pockels

cell with 12x12x10mm crystals. The lowest frequency resonance is at 200-250kHz,

corresponding to a period of ∼ 4− 5𝜇𝑠. The next high amplitude resonance is at
29hansknec@jlab.org
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350kHz, corresponding to a period of 3𝜇𝑠. [286]. The resonances depends on the

crystal geometry, but generally larger crystals leads to lower excitation frequencies

which can be more easily excited by short transition times.

(a) (b)

Figure 6-27: (a) Impulse response measurement in frequency domain showing
piezo-electric resonances of the X-cut RTP Pockels cell with 12x12x10mm crystals.
The lowest frequency resonance is at 200-250kHz, corresponding to a period of ∼
4−5𝜇𝑠. The next high amplitude resonance is at 350kHz, corresponding to a period
of 3𝜇𝑠. [286] (b) Acoustic Resonances in KD*P [289]. Shown for visualization
purposes.

The generic rule of thumb relating the bandwidth of signal to its 90% rise time

is given as 𝐵𝑊×𝑡90% = 0.35 [292]. In a similar fashion, we derived a rule of thumb

for transition time to maintain small ringing amplitude for a given resonance

frequency. Modeling the impulse to the crystal as gaussian, which integrates to

a soft square wave with a well defined rise-time t(10-90%), the gaussian impulse

was Fourier transformed, which produces a gaussian in frequency domain which

falls off from its DC 0Hz value. We define suppression to mean a factor of 1/100X

in amplitude at the resonance frequency f compared with the DC 0Hz amplitude

in the F.T. curve. This should correspond to 1% ringing. We found that the rule

of thumb to maintain <1% ringing was [293]

𝑓1%𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 × 𝑡10−90% = 2

𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < 2𝑇/0.8
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where f=1/T is the resonance frequency, T is the resonance period, 𝑡10−90% is the

10-90% transition time. Empirically, we measure the full transition time in the

lab so 𝑡10−90% ∼ 0.8𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑. For the RTP resonance observed 𝑇 = 4 − 5𝜇𝑠,

the transition time 𝑡𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 > 10 − 12.5𝜇𝑠 to maintain <1% ringing. For faster

transition times such a 4𝜇𝑠, we observed greater ringing of 5-10% as shown in Fig.

6-28. Ringing even up to 10-15% was observed when using the solid state driver

without resistors to soften the transition as shown in Fig. 6-29.

(a) (b)

Figure 6-28: Solid state switch with 50kOhm resistors on the HV lines to soften
the transition down to 4𝜇s. Shows 8.6% ringing. [286]

(a) (b)

Figure 6-29: Solid state switch with no resistors. Shows 10% ringing for this <2𝜇s
transition time . [287]
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6.4.4 PC-history effect/4-peak effect

A Pockels cell crystal functions mostly as a capacitor, but it has a slight con-

ductivity, and therefore also functions slightly as a resistor. A capacitor doesn’t

have a uniform electric field, it suffers from edge effects, but the electric field in-

side a resistor is uniform. [295] It obeys Laplace’s equation. For steady currents

and uniform conductivity ∇ · 𝐸 = 1
𝜎
∇ · 𝐽 = 0, the charge density is zero and

any unbalanced charge resides on the surface. Laplace’s equation holds within a

homogeneous ohmic material carrying a steady current. The boundary conditions

are the potentials at the HV plates is constant on the surface 𝐽 · �̂� = 0, else the

charge would leak into the surrounding space, therefore 𝐸 · �̂� = 0 and 𝜕𝑉/𝜕𝑛 = 0.

The solution to Laplace’s equation is 𝑉 (𝑧) = 𝑉0𝑧/𝑑 with uniform electric field

𝐸 = −∇𝑉 = −𝑉0/𝑑𝑧.

A Pockels cell crystal, upon switching states, starts off functioning as a capac-

itor before current starts to flow, but over time (𝜇s-ms scale) it starts to function

more like a resistor. Initially, the electric field takes the form it would take if the

crystal were only a capacitor, with no leakage current flowing. But as current flow

sets in, the crystal becomes more resistor-like, and the electric field changes, be-

coming more uniform over time. The fringe fields straighten and the electric field

becomes increasingly uniform over the helicity window. It is intuitive to think of

the Pockels cell as an RC circuit with its own intrinsic characteristic time constant
30, determined by is very small pF-level capacitance, and very large 𝑇Ω-level resis-

tance. The resistance of each of our crystals was estimated by rough measurement

to be 730𝐺Ω [296] and capacitance 3.3𝑝𝐹 [297], so the RC leakage current time

constant is interpreted as 𝜏 = 𝑅𝐶 = 2.4𝑠𝑒𝑐. The multi-peak structure character-

istic of the Pockels Cell history effect (observed at JLab in previous years) is due

to this intrinsic settling time from the conductivity of the crystal..
30Lisa Kaufmann noted in her thesis [298] “Early in our studies we understood that there was a

time constant associated with the PC ”remembering“ the helicity from the window immediately
preceding a pair, but further investigation revealed that the PC retardation remembers the
helicity over a long time period.”
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The PC-history effect strongly depends on how non-uniform the electric field

is initially. In order for conductivity to matter, there has to be a transverse

component to the field lines near the edge of the crystal initially. The greater

the edge effects, the more impact conductivity has. The conductivity will tend to

cause accumulation of surface charge to straighten the field lines. If the field is

initially quite uniform and if the field lines are already straight, the conductivity

doesn’t affect it significantly. The greater the field distortion initially, the larger

impact the resistivity will have because ultimately that means more surface charge

accumulated to straighten out the field.

Fig. 6-30a shows the asymmetry 𝐴𝑞 for each helicity pattern, where the pre-

ceding helicity pair is annotated. We observe the cell has a ’memory’ of previous

helicity windows, the Aq depends on the history of the helicity pattern preceding.

The multi-peak structure is dependent on the helicity sequence pattern, and the

separation between peaks is dependent on the crystal resistivity, the initial fringe

fields determined by the cell geometry, and the helicity flip rates. Figure 6-30a

shows the multipeak structure for three possible helicity sequence patterns [298]:

(1) pair-toggle(RLRLRL) which produces only one peak all asymmetry pairs have

the same history, (2) quad-random helicity pattern (random sequences of RLLR

or LRRL) which provides four distinct history possibilities (R-RL, L-LR, L-RL,

or R-LR) with the R-RL and L-LR switches having no voltage change before the

first window of the pair and occurring with greater frequency and (3) pair-random

(blue, RL or LR) which has the same four history possibilities as quad-random,

but with none having greater frequency than others.

We have modeled the PC-history effect in 2D (using Quickfield). As input

parameters, we measured the resistance of the KD*P and RTP Pockels cells [299]

and inferred a bulk conductivity for the crystals: 𝜎𝐾𝐷*𝑃 = 2.6259*10−9𝑆/𝑚±3.2%

and 𝜎𝑅𝑇𝑃 <= 6.06 * 10−11𝑆/𝑚 (with the assumption that the majority of the

conductance was in the crystal volume, not on the surface). The 2D model for

KD*P does surprisingly well at predicting the behavior of the PC-history effect as
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shown in Fig. 6-31.

(a) (b)

(c)
(d) (e)

Figure 6-30: KD*P PC-history effect: (a) The multi-peak structure of AQ is
shown for the quad-random (red), pair random (blue), and pair-toggle (black)
helicity patterns. The asymmetry is plotted in units of ppm. [298] (b) 2D model
of transmission in S1 vs. time for quad-random pattern at 30Hz [300] (c) measured
Aq for pair-random helicity pattern at 30Hz [300] (d) 2D model of Aq over sub-
blocks of a helicity window at 30Hz [300] (e) geometry used in 2D model [300]

We have also measured and modeled the PC-history effect in RTP. While

the 2D model (with the assumption of no surface currents) doesn’t predict the

amplitude of the decay during a window very well, (Fig. 6-31 0.03%predicted

instead of 0.3%), it does predict the asymmetry distribution quite well as shown

in Fig. 6-32.
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(a) (b)
(c)

Figure 6-31: RTP PC-history effect: (a) Measurement of transmission in S1
vs. time for pair-random pattern observed 0.3% over 30Hz window [285] (b) 2D
model of transmission in S1 vs. time for quad-random pattern calculated 0.03%
over 30Hz windows for conductivity 𝑅𝑇𝑃 = 6.06*10−11𝑆/𝑚 [300] (b) RTP model
geometry [300]

We observe that for higher helicity flip rates, the PC-history effect affects the

asymmetry profile less significantly. The PC-history effect is more extreme for

longer helicity windows and lower flip rates; at higher flip rates, matters equili-

brate. This is predicted in our model as shown for RTP comparing 30Hz with

120Hz in Fig. 6-32 as well as by observation in KD*P [300]. For 2kHz flip rates in

MOLLER, the four-peak effect in RTP will be greatly diminished, and certainly

less significant that it would be for KD*P.

(a) (b) (c)

Figure 6-32: RTP 4-peak effect: (a) measured Aq for pair-random helicity pattern
at 30Hz [301] (b) 2D model of Aq over sub-blocks of a helicity window at 30Hz
[300] (c) 2D model of Aq over sub-blocks of a helicity window at 120Hz [300]

6.4.5 Lifetime - Mode of Failure

JLab observed crystal degradation in commercial cell (with metal cement)

which had the symptom of decreased responsiveness to voltage, ultimately failure
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to hold voltage, and crystal graying and transmission reduction as shown in Fig.

6-33. This occurred when DC voltage was (on average, periodically) applied for

a long time. A possible explanation is ion migration from silver oxide across

the crystal face [294] from the silver cement. Our cell has no cement, and an

improvement to the cell design could be using gold sputter coating for the electric

plates on the crystal.

Figure 6-33: Tune Mode Generators Degradation: Fast RTP electro-optics crys-
tals used to shutter beam (Pulsed Mode). A simpler design was implemented in
Su 2016 where DC voltage was applied all the time. Contrary to vendor claim,
the RTP cell suffer from ion migration from electrode to RTP. (from talk by Joe
Grames, photo from John Hansknecht)

Mostly of the degradation we observe is due to the driver - not the crystals.

Over several months time using the optodriver, the transitions aren’t as sharp, de-

spite driving as hard as possible with this setup. This is likely due to dragon LED’s

dying and emitting less light and/or the optocouplers degrading and responding

less well to light (they become brownish in appearance after some time), so the

transition slows down. Driver degradation mechanisms observed include: LED

reduction in brightness, optodiode reduced responsiveness to light (and brown-

ish discoloration), mosfet breaking, resistor burn-out in RC buffer for HV power

supplies [286].
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6.5 Characterization

The RTP cell was fully characterized as regards the intensity asymmetry, posi-

tion differences, and spot-size asymmetry dependence on position, angle, roll and

voltage.

Polarized light was incident on the RTP Pockels cell, which was set to flip be-

tween ±QWV, alternating helicity states, and the transmitted light was detected

downstream of the Pockels cell (as in Fig. 6-4). A quad-photodiode (Fig. 6-34)

detected the transmission and beam position for each helicity state, our data acqui-

sition system (DAQ) integrated over each helicity window, and our data analysis

code formed an asymmetry (or pair difference) between the signals for right and

left helicity states. Measured parameters were formed by taking difference be-

tween successive states of opposite helicity. The intensity asymmetry 𝐴𝐼 , position

difference in x 𝐷𝑥, and position difference in y 𝐷𝑦, were defined as:

𝐴𝐼 =
𝐼𝑅 − 𝐼𝐿

𝐼𝑅 + 𝐼𝐿
𝐷𝑥 = 𝑥𝑅 − 𝑥𝐿 𝐷𝑦 = 𝑦𝑅 − 𝑦𝐿

Figure 6-34: Quad-photodiode layout [259]

The intensity of the transmitted beam is proportional to the sum of the pho-

todiode pad signals and the horizontal and vertical positions of the beam are

computed through taking differences between the pad signals as follows:

𝐼𝑠𝑢𝑚 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4

𝑥 = (𝑥− 𝑐𝑜𝑛𝑠𝑡)
(𝐼2 + 𝐼3)− (𝐼1 + 𝐼4)

𝐼1 + 𝐼2 + 𝐼3 + 𝐼4
; 𝑦 = (𝑦 − 𝑐𝑜𝑛𝑠𝑡)

(𝐼1 + 𝐼2)− (𝐼3 + 𝐼4)

𝐼1 + 𝐼2 + 𝐼3 + 𝐼4
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where 𝐼1, 𝐼2, 𝐼3 and 𝐼4 are the responses of the pads 1,2,3 and 4 respec-

tively to the incident light and x-const, y-const are the calibrated proportion-

ality factors. The calibration procedure [259] determined the relative gain and

pedestal(accounting for non-linearity in response) for each pad: 𝐼𝑖 = 𝑔𝑎𝑖𝑛𝑖 * (𝑆𝑖 −

𝑝𝑒𝑑𝑖).

Multiple lasers were used in the Pockels cell characterization, as described

in subsequent sections. These laser table studies were done at several helicity

flip rates including 30Hz, with ∼ 33𝑚𝑠 integration windows, and at 240Hz, with

∼ 4𝑚𝑠 integration windows. To minimize 60Hz noise, the helicity flip rate was line

synced to 60Hz and quartet patterns +−−+ (or octet patterns +−−+−++−)

were used to cancel out 60Hz noise [263].

6.5.1 Alignment Procedure

When aligning the cell, we first check that the laser beam at the cell is has

waist 2𝜎 ∼ 1mm, and the divergence is < 1mrad, and we check that the effective

throw distance to the cathode (accounting for the steering lens) is > 50𝑐𝑚 and

the spot size on the spiricon-cathode is 4𝜎 < 3mm (preferably 1.7mm, but not

smaller because cathode degrades more quickly). We roughly center the Pockels

cell aperture on the laser beam using a lens cleaning tissue in front of the cell

to disperse the light and examine transmitted beam on an IR viewer. We align

the back-reflections 50cm to 1m upstream of the cell so they overlap the incoming

beam as closely as possible. We use a spinning linear polarizer to approximately

minimize the degree of linear polarization for both helicity states (to within 5%),

using PITA voltage, overall roll, and relative roll. More precisely, with a Glan-

Taylor polarizer, we minimize Aq in S1 with PITA voltage then minimize Aq in

S2 with relative roll 31. We zero out the steering effects (measured with qpd) with
31We can more precisely set the relative roll using the RHWP (or an analyzer with fine angle

control) by finding the RHWP angle at which the PITA slope for RTP#1 ( 𝑃𝐼𝑇𝐴1 or 𝑉Δ,1)
is minimum, then finding the RHWP angle at the PITA slope for RTP#2 (𝑃𝐼𝑇𝐴2 or 𝑉Δ,2) is
minimum, then rotating the relative roll to make the minima occur at the same RHWP angle
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no analyzer using alpha-phase gradients. Finally, we attempt to reduce the bire-

fringence gradient effects in S1, the analyzing-like position differences (measured

with qpd), using the Pockels cell pitch and yaw angle32. With electron beam, at

RHWP angle set to S1, we minimize Aq in S1 with PITA voltage. Then, choosing

an RHWP angle near S2 (i.e. where PITA slope is small), we examine Aq 33 and

perform Aq PITA-voltage feedback if possible, otherwise setting the PITA voltages

to approximately minimize Aq. We set alpha-position-U and alpha-position-V to

reduce/minimize position differences in the injector either manually or using a

position difference feedback mechanism. Examine the position differences further

down in the injector beam-line, past the chopper, into the 5MeV region, making

sure the position differences remain small and there is no significant clipping on

apertures.

6.5.2 Translation scan

The Pockels cell was mounted on motorized stages which allowed for horizontal

and vertical position control. The cell sensitivity to position was measured by

translation the cell with the Thorlabs stages. A LD785-SED30 diode CW laser

was used (18.10𝑜C,180mA,75mW) and sent through a single mode fiber and Glan-

Taylor polarizer, producing 4.3 mW of horizontally polarized 785nm light. The

785nm horizontally polarized light was incident on the RTP Pockels cell, which

was set to flip between ±QWV, and the transmitted light analyzed with a vertical

polarizer downstream of the Pockels cell (as in Fig. 6-4), and detected on a quad-

photodiode. The cell transverse position was scanned over an X/Y grid pattern

and the intensity asymmetry dependence on cell position was measured.

The translation scan, Fig. 6-35a, shows the intensity asymmetry 𝐴𝐼 (in S1)
32This is because in S1, we are measuring position differences both from Aq gradients and

steering, so we’d need the steering to be near zeroed out first, to know we are actually zeroing
out Aq gradients.

33If the Aq is very large in S2, even when it is minimized in S1, such that very large PITA-V’s
would have to be used to correct it, instead use relative roll (remotely) to minimize Aq in S2 on
e-beam
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as a function of Pockels cell transverse position in the X/Y place perpendicular

to the beam propagation axis. This measurement of 𝐴𝐼 with respect to position

shows the birefringence gradient inherent in the system. Empirically we observed

an asymmetry gradient along 𝑣 ≡ 𝑥+𝑦√
2

due to both crystals combined of 𝑑𝐴𝑞

𝑑𝑣
∼

20, 000−50, 000𝑝𝑝𝑚/mm, which in theory, for 𝑤 = 1mm, gives position differences

of magnitude:

𝐷𝑣 = 𝐷𝑦1 +𝐷𝑧2 =
𝑑𝐴𝑞

𝑑𝑣
𝑤2

2
= 10− 25𝜇𝑚

𝐷𝑥 ∼ 𝐷𝑦 ∼ 𝐷𝑣/
√
2 = 7.1− 17.7𝜇𝑚

The parallelism of the crystals’ face cuts, the electric field non-uniformity,

the variation in intrinsic refractive index along the crystals growth axis, stress

gradients in the crystal, all affect the birefringence gradient. This translation

scan motivated the new cell design: because these gradients are intrinsic to the

RTP system, and give rise to analyzing-like position differences which cannot be

minimized by translational alignment, it became necessary redesign the cell to

zero out position differences using voltage induced steering.

(a) Run 4340 [232]
(b) Run 4340 (approximate reproduc-
tion in 3D) [232]

Figure 6-35: Translation scan

We note that in an RTP cell system, it is very challenging to obtain a flat

asymmetry across the cell face, especially since the crystal is so highly bire-
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fringent (𝛿𝑛 ∼ 0.1), and there is an intrinsic refractive index gradient along

the z-axis growth direction. Even a slight non-parallelism in face cuts (a slight

length gradient) can lead to a significant gradient in the asymmetry. We have

also measured face cut parallelism of each crystal by examining the back re-

flections of the front and back crystal faces, and obtained for the 1st crystal

𝜃𝑓𝑐,𝑧1 = 𝑑𝐿
𝑑𝑧1

= −0.079 ± 0.01mrad, 𝜃𝑓𝑐,𝑦1 = 𝑑𝐿
𝑑𝑦1

= 0.024 ± 0.01mrad, and for the

2nd crystal 𝜃𝑓𝑐,𝑧2 = 𝑑𝐿
𝑑𝑧2

= −0.055 ± 0.01mrad, 𝜃𝑓𝑐,𝑦2 = 𝑑𝐿
𝑑𝑦2

= 0.015 ± 0.01mrad

[264]. The bound on the parallelism 𝜃𝑓𝑐 = 𝑑𝐿
𝑑𝑥𝑖

≈ 0.01 − 0.1mrad in these RTP

crystals indicates for a 1mm beam, the induces position differences would be

𝐷𝜕𝐿,𝑥𝑖
= −𝑤

2𝜋

2𝜆
(𝑛0,𝑦 − 𝑛0,𝑧)𝜃𝑓𝑐 ≈ 1.7− 17𝑢𝑚

The results indicate the major contribution to the birefringence gradient comes

more from the intrinsic refractive index gradient, than from face cut non-parallelism.

6.5.3 Angle scans

The cell sensitivity to angle was measured by using a Newport 9071 Four-Axis

Tilt Aligner, to control the pitch and yaw of the Pockels cell at the mrad-level 34.

For this measurement, performed at UVa, a picosecond pulsed laser (Edinburgh

Instruments EPL-785) was used, with central wavelength 783.0nm, 66.5ps pulse

width, 3.4nm bandwidth, and 20MHz pulse repetition rate. The laser was coupled

through a single mode fiber the output of which was ∼ 10.3𝜇𝑊 , refocused to have

∼ 1mrad divergence, and cleanup with a Glan-Tayler polarized which transmit-

ted ∼ 6𝜇𝑊 of horizontally polarized light to the cell. The helicity flip rate for

this measurement was 240Hz, with randomized helicity pair pattern. The light

transmitted through the Pockels cell was analyzed with a vertical polarizer (S1),
34In the past, in our group’s work, it was assumed this mount has the same pitch and yaw

sensitivity in terms of mrads/turn. This is not the case. Additionally there was a set screw
left in which was supposed to be removed, but which remained in previously. For these reasons,
previous year’s measurements of angle sensitivity should be called into question.
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and detected on a fast photodiode. The cell angle scanned over several pitch/yaw

positions in a ∼ 8𝑥8mrad2 grid. The yaw control on this mount is 8 mrad/turn

and pitch control is 4.6 mrad/turn. The intensity asymmetry 𝐴𝐼 dependence on

cell angle was measured and is shown is Fig. 6-36. A saddle function was fit to

the data of functional form 𝐴𝐼 = 𝑘(𝑝𝑖𝑡𝑐ℎ− 𝑝0)(𝑦𝑎𝑤 − 𝑦0) +𝐴0 and the measured

angle sensitivity was obtained: 𝑘𝑚𝑒𝑎𝑠 = 4527 ± 942ppm/mrad2 with 20.8% error.

The dominant errors are from angle measurement calibration and Aq measurement

calibration. The predicted angle sensitivity is 𝑘 = 5137ppm/mrad2 (Sec. 6.3.1)

which is consistent with the measured sensitivity.

Figure 6-36: Run5202 RTP analyzer S1 pitch-yaw scan [244]

An additional study on the angle dependence of analyzing-like position dif-

ferences was performed with the qpd detector. This measurement is, in the-

ory (Sec. 6.3.3), very dependent on the laser beam size and divergence at the

cell. The beam conditions were measured to be [248] 𝜃𝑤𝑥 = 1.40 + −0.05mrad,

𝜃𝑤𝑦 = 1.30 + −0.05mrad, 𝑤𝑃𝐶𝑥 = 1.29 + −0.03mm, 𝑤𝑃𝐶𝑦 = 1.45 + −0.11mm,

where 𝑤 = 2𝜎 and 𝜃𝑤 = 𝑑𝑤
𝑑𝑧

. These measured beam parameters imply a pre-

diction on the angle dependence of |𝐷𝑥| = (4.6 + −0.2𝑢𝑚/𝑚𝑟𝑎𝑑)𝑝𝑖𝑡𝑐ℎ,|𝐷𝑦| =

(4.8+−0.4𝑢𝑚/𝑚𝑟𝑎𝑑)𝑦𝑎𝑤 (see Sec. 6.3.3). The results of scanning pitch and yaw
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are show in Fig. 6-37. As predicted based on the saddle function in 𝐴𝐼 , yaw

couples predominantly to the position difference in x and pitch couples predom-

inantly to the position difference in y. The angle dependence was measured to

be 𝐷𝑥 = (−5.36 ± 0.91𝜇𝑚/𝑚𝑟𝑎𝑑)𝑝𝑖𝑡𝑐ℎ , 𝐷𝑦 = (−7.37 ± 1.25𝜇𝑚/𝑚𝑟𝑎𝑑)𝑦𝑎𝑤, are

from angle measurement calibration (8% on the scale factor of mrad/turn [244])

and qpd measurement calibration (15% 35). The measurement is consistent with

the calculated value within 1𝜎 for pitch sensitivity and within 2𝜎 for yaw sensitiv-

ity. This measurement demonstrates that indeed angle adjustments to the Pockels

cell can counteract the analyzing-like position differences caused by birefringence

gradients with a modest beam divergence of ∼ 1mrad for a 1mm beam spot size.

(a) Run5226 RTP S1 Dy vs yaw (b) Run5227 RTP S1 𝐷𝑥 vs pitch

Figure 6-37: 𝐷𝑥,𝐷𝑦 angle dependence in S1 [248]

6.5.4 Etalon scans

As discussed in Sec. 6.3.8, the etalon effect is due to an interference of the back

and front face reflections off the crystal and is caused by the extreme precision

with which the RTP crystals are cut. The etalon effect manifests itself as a charge

asymmetry dependence the back reflection coefficient R, crystal length, and delta

phase. Both transmission and reflection can undergo oscillations ∼ 𝑅 cos𝜑 due

to this interference. In operation, we successfully suppressed the etalon effect by
3540mV signal on each pad with 20mV pedestal, so an error of TR 20𝑚𝑉/(40𝑚𝑉 + 20𝑚𝑉 ) ∼

30% is hypothetically possible on each pad which translated into a calibration error on x-const
of ∼ 15%
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using a broadband, pulsed laser. However, we took advantage of the etalon effect

and used a narrow-band CW laser to perform studies which helped characterize

the electro-optic coefficients 𝑟33 and 𝑟23, .

For these etalon scans an LD785-SEV300 Thorlabs diode laser (785nm central

wavelength, 10MHz linewidth [265]) was used. The etalon measurements were

performed by setting input polarization along the fast axis or the slow axis (±45𝑜)

with a HWP, scanning the applied voltage for one helicity state 𝑉 𝐿(𝑉 𝑅) = 0 −

5000𝑉 while keeping the voltage for the opposite helicity 𝑉 𝑅(𝑉 𝐿) = 𝑐𝑜𝑛𝑠𝑡. fixed ,

and examining the transmission without an analyzer. As calculated in Sec. 6.3.8,

the predicted functional form of the transmitted asymmetry 𝐴𝑇 is proportional

to the back reflection coefficient R and the cosine of the scanned voltage, the

frequency of which scales with the electro-optics coefficients as follows:

for 𝑉 𝑅 = 𝑉 + = 4500𝑉 , the etalon asymmetry in transmission for polarization

states along the z and y primary axes are given by

𝐴𝑧
𝑇 (𝑉

𝑅 = 4500𝑉 ) = 𝑅(− cos(𝐶𝑧
4500𝑉 ) + cos(2𝜋(𝑛0,𝑧 −

1

2
𝑛3
0,𝑧𝑟33𝑉

𝐿)𝐿0/(𝜆𝑑))

𝐴𝑦
𝑇 (𝑉

𝑅 = 4500𝑉 ) = 𝑅(− cos(𝐶𝑦
4500𝑉 ) + cos(2𝜋(𝑛0,𝑦 −

1

2
𝑛3
0,𝑦𝑟23𝑉

𝐿)𝐿0/(𝜆𝑑))

and for 𝑉 𝐿 = 𝑉 − = −100𝑉 , the etalon asymmetry in transmission for polarization

states along the z and y primary axes are given by

𝐴𝑧
𝑇 (𝑉

𝐿 = −100𝑉 ) = 𝑅(− cos(𝐶𝑧
−100𝑉 ) + cos(2𝜋(𝑛0,𝑧 −

1

2
𝑛3
0,𝑧𝑟33𝑉

𝑅)𝐿0/(𝜆𝑑))

𝐴𝑦
𝑇 (𝑉

𝐿 = −100𝑉 ) = 𝑅(− cos(𝐶𝑧
−100𝑉 ) + cos(2𝜋(𝑛0,𝑧 −

1

2
𝑛3
0,𝑧𝑟33𝑉

𝑅)𝐿0/(𝜆𝑑))

We performed such measurements multiple times, scanning 𝑉 𝐿(𝑅) with 𝑉 𝑅(𝐿)

fixed, and fit the results with a cosine function to obtain a value for the cycle fre-

quency 𝑓𝑧 = 2𝜋 1
2
𝑛3
0,𝑧𝑟33)𝐿0/(𝜆𝑑)) for polarization along the crystal z-axis and

𝑓𝑦 = 2𝜋 1
2
𝑛3
0,𝑦𝑟23)𝐿0/(𝜆𝑑)) for polarization along the crystal y-axis. This was done
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for polarization states along the crystal’s z-axis and y-axis separately. We per-

formed these measurements on each of the two crystals. The laser suffered from

mode-hopping so this accounted for some deviations from the fits. It was easier to

get a more accurate value for measurements along the z-axis since 𝑟33 is larger than

𝑟23 which allowed for more cycles within our limited voltage range of 0-5000V. An

example of one of our measurements for the z-axis and y-axis is shown in Fig.

6-38.

Figure 6-38: Etalon scans [247]. Etalon effect in RTPs. These measurements
were performed by setting input polarization along the fast axis (bottom) or the
slow axis(top) at ±45𝑜 with a HWP, scanning the applied voltage, and examining
the transmission without an analyzer

We used 10 such measurements of the z-axis and 7 such measurements of the y-

axis to obtain our resulting average cycle frequency of 𝑓𝑧 = 1.46±0.21(𝑅𝑀𝑆0.65)𝑚𝑉 −1

and 𝑓𝑦 = 0.86 ± 0.09(𝑅𝑀𝑆0.25)𝑚𝑉 −1. Using the values for 𝑛𝑦 = 1.7832, 𝑛𝑧 =

1.8673 (from Sellmeier’ s equation [328]), 𝐿0 = 10mm, 𝜆 = 785nm ([235]), and 𝑑 =

12mm, we obtain the measured electro-optic coefficients 𝑟𝑀33 = 67±10(𝑅𝑀𝑆30)pm/V

, 𝑟𝑀23 = 45 ± 5(𝑅𝑀𝑆13)pm/V, 𝑟𝑀33 − 𝑟𝑀23 = 22 ± 11(𝑅𝑀𝑆33)pm/V whereas re-

ported values at 1064nm are 𝑟33 = 35pm/V, 𝑟23 = 12.5pm/V, and 𝑟33 − 𝑟23 =

22.5pm/V [236] and at 633nm 𝑟33 = 35.1pm/V, 𝑟23 = 12.6pm/V, and 𝑟33 − 𝑟23 =



6.5. CHARACTERIZATION 324

22.5pm/V[237]. While this particular measurement isn’t very precise, this method

is an interesting one, and if a more narrowband CW laser were used on an un-

coated RTP crystal with higher reflection coefficients, a more accurate interfer-

ometric measurement of the electro-optic coefficients could be made at various

wavelengths.

6.5.5 Steering control

Steering is an angle difference between right and left helicity states, a helicity

correlated change in angle of the outgoing laser beam after having passed through

the Pockels Cell. The RTP cell design was intended to allow for straightforward

control over helicity correlated beam steering via the the electric field gradient

along the z-axis of each crystal. The first crystal has its z-axis along U (−45𝑜

direction) and it controls the steering along the U-direction with alpha-position-U

voltage 𝑉𝛼𝑝𝑜𝑠,𝑈 . The second crystal has its z-axis along V(+45𝑜 direction) and it

controls the steering along the V-direction with alpha-position-V voltage 𝑉𝛼𝑝𝑜𝑠,𝑉 .

For the characterization of the RTP cell’s steering control, we used JLab’s

HallA pulsed diode laser which is a frequency doubled with a PPLN crystal (fo-

cused before the crystal with an lens f=40mm, and refocused after the PPLN with

an f=35mm lens), has a 30-50ps pulse duration, 500MHz repetition rate, central

wavelength of 776.5nm, and 0.2nm bandwidth [231]. The study was performed

with horizontal input polarization before the cell, no analyzer downstream of the

cell, and qpd detector to measure the beam position differences. Because steering

produces a position difference which increases with throw distance, and steering

is referred to as an ‘angle-like’ position difference which does not depend on ana-

lyzing power, no analyzer was used in the study and the throw distance from the

Pockels Cell center the the qpd was measured to be 140cm.

As predicted in Sec. 6.3.4, for horizontal input polarization, there is a linear

dependence between 𝑉𝛼𝑝𝑜𝑠,𝑈 applied to the first crystal, inducing a field gradient
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𝑑𝐸𝑧1,0

𝑑𝑧1
, and the steering angle Δ𝜃𝑈 along 𝑈 = −45𝑜 = 𝑥−𝑦√

2
. The steering control of

position differences with voltage was simulated to be approximately:

|Δ𝜃𝑈 | = |1
2
(𝑛3

𝑦0𝑟23 + 𝑛3
𝑧0𝑟33)𝐿

𝑑𝐸𝑧1,0

𝑑𝑧1
𝑉𝛼𝑝𝑜𝑠𝑈 | = 4.6± 1.7𝑛𝑟𝑎𝑑/𝑉 𝑉𝛼𝑝𝑜𝑠𝑈

Fig. 6-39 shows the results of a scan of alpha-position-U voltage 𝑉𝛼𝑝𝑜𝑠𝑈 at

JLab. The results show a position difference sensitivity to voltage of 𝐷𝑢

𝑑𝑉𝛼𝑝𝑜𝑠𝑈
=

3.68 ± 0.118𝑛𝑚/𝑉 at a throw distance of 140cm, corresponding to a measured

steering control of 𝑑Δ𝜃𝑈
𝑑𝑉𝛼𝑝𝑜𝑠𝑈

= 2.63 ± 0.084𝑛𝑟𝑎𝑑/𝑉 . The laser steering dependence

on applied voltage was found to be linear as predicted, and while on the low end

of simulated 4.6 ± 1.7𝑛𝑟𝑎𝑑/𝑉 , more than sufficient to control and zero out any

position differences intrinsic to the crystal system. 36

Figure 6-39: Alpha-phase-U Voltage Scan: Run3218, IHWPout, no analyzer, qpd
at 140cm [256]

An additional study was performed in which the steering sensitivity to voltage

was amplified by placing small copper strips on the side of the crystals, thereby

maximizing the steering control. By placing a grounded conductor (copper strips)

directly on the side of the crystals, we could induce larger field gradients. Then a
36The range of control is −800𝑉 < 𝑉𝛼𝑝𝑜𝑠𝑈 < 800𝑉 , −800𝑉 < 𝑉𝛼𝑝𝑜𝑠𝑉 < 800𝑉 which corre-

sponds to 𝐷𝑢 = ±2.1𝜇m, 𝐷𝑣 = ±2.1𝜇m, 𝐷𝑟 =
√︀
𝐷2

𝑢 +𝐷2
𝑣 = 3.0𝜇m at a 1m throw distance.

When used in conjunction with a < 7% analyzing element, such as a photocathode, the S1
analyzing-like position differences for a 1mm beam are at most 7% on 10 − 25𝜇m which is
0.7− 1.75𝜇m, well within the range of the steering control.
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more accurate comparison of the steering effect for 𝑛𝑦 and in 𝑛𝑧 could be made,

and further information concerning the electro-optic coefficients 𝑟33 and 𝑟23 could

be obtained. In these alpha-position-voltage scans, the crystal was oriented with

its primary axes z & y along the horizontal & vertical, respectively, so that input

polarization (H/V) was along the primary crystal axes and alpha-position-voltage

induced steering along 𝐷𝑥 and 𝐷𝑦.

Figure 6-40: Alpha-Position Voltage Scans, Copper strips. Left: Run3143, input
polarization H, nz, qpd 70cm. Right: Run3148, input polarization V, ny, qpd
70cm

Fig.6-40 shows the results of these alpha-position-voltage scans. We note

that the steering for input polarization along nz and is approximately 3X larger

than the steering for input polarization along ny. Taking the ratio of the slopes

gives a measure of 𝑛3
𝑧𝑟33

𝑛3
𝑦𝑟23

= (0.3328 ± 0.008)/(0.1265 ± 0.0049) = 2.63 ± 0.17,

3𝜎 from the predicted value of 3.21. Assuming 𝑛𝑧 and 𝑛𝑦 are known from

Sellmeir’s equation, we obtain a measured value for the ratio of the electro-

optic coupling coefficients of 𝑟𝑀33/𝑟𝑀23 = 2.20 ± 0.1, whereas the predicted value

is 𝑟33/𝑟23 = (35𝑝𝑚/𝑉 )/(12.5𝑝𝑚/𝑉 ) = 2.8. We can combine our etalon effect mea-

surement of 𝑟𝑀33 − 𝑟𝑀23 = 22± 11(RMS 33)pm/V and our steering measurement of

𝑟𝑀33/𝑟
𝑀
23 = 2.2± 0.1 to obtain measurements of the electro-optic coefficients:

𝑟33 = (𝑟33 − 𝑟23)/(1− 𝑟23/𝑟33) = 40.3± 20.2𝑝𝑚/𝑉
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𝑟23 = (𝑟23 − 𝑟33)/(1− 𝑟33/𝑟23) = 18.3± 9.3𝑝𝑚/𝑉

6.5.6 RHWP scans

The results of RHWP scans performed with the quad-photodiode are shown

in Fig. 6-41 37. To minimize the steering offset terms in these RHWP scans, the

steering voltages alpha-pos-U and alpha-pos-V were optimized with independent

values for IHWPout and IHWPin states. To minimize the position difference 4𝜃

terms, position differences in S1 were reduced with Pockels cell pitch and yaw.

The RHWP scans show steering terms of <70nm at a 1.5m throw distance and 4𝜃

terms of < 1𝜇m for a 4𝜎 = 2.6mm spot size 38.

(a) IHWP out (b) IHWP in

Figure 6-41: RHWP scans: (a) IWHP out, PITA voltage set to minimize Aq in
S1, Run5066 (b) IHWP in, PITA voltage set to minimize Aq in S1, Run5077 [255]

37For a detailed description of RHWP scans, see [163]
38Conditions: Captain Expando lens (𝑓 ∼ 1𝑚, named by John Hansknecht) inserted 46inches

upstream of cell. Spot size at PC center 2𝜎 = 𝑤 = 0.60𝑚𝑚(𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙), 0.65𝑚𝑚(𝑉 𝑒𝑟𝑡𝑖𝑐𝑎𝑙),
divergences at PC center 𝑑𝑤/𝑑𝑧 = −0.39mrad. Effective throw from PC to qpd 1.5m. At
qpd, spot size 4𝜎𝑋/𝑌 = 1.32/1.29mm with calibration constants 𝑥 − 𝑐𝑜𝑛𝑠𝑡 = 0.442mm,
𝑦 − 𝑐𝑜𝑛𝑠𝑡 = 0.445mm. Path to cathode: 2m steering lens, cathode spot size 2𝜎 =
1.2𝑚𝑚(𝐻𝑜𝑟𝑖𝑧), 1.3𝑚𝑚(𝑉 𝑒𝑟𝑡), distance to cathode ∼ 3.1𝑚, distance to steering lens ∼ 1.067𝑚,
effective throw from PC to cathode ∼ 2.015𝑚, cathode analyzing power ∼ 5% [261]
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6.5.7 Spot size asymmetries - linear array measurements

The linear-array photodiode (LAPD) detector 39 is an array of 16 photodiode

pads, each with an active area of 1.22 × 1.84mm, separated 0.25 mm apart [260]

as shown in Fig. 6-42. Typically 6-8 pads are used to perform measurements of

the spot-size asymmetry of the laser after passing through the Pockels cell.

Figure 6-42: Linear-array photodiode (LAPD) detector [260]

The linear array measures the spot-size of the laser via either arithmetic and

gaussian methods (as described in [260]). In the arithmetic method, the mean

beam position �̄� and the beam spot size 𝜎 are computed from weighted sums of

the intensities of the individual pads as:

�̄� =

∑︀
𝑖 𝐼(𝑥𝑖)𝑥𝑖∑︀
𝑖 𝐼(𝑥𝑖)

𝜎 =

∑︀
𝑖 𝐼(𝑥𝑖)(𝑥𝑖 − �̄�)2∑︀

𝑖 𝐼(𝑥𝑖)

where where 𝑥𝑖 and 𝐼(𝑥𝑖) are the beam position and intensity on the 𝑖𝑡ℎ element

of the array. The gaussian method takes the beam intensity across all the pads

and a gaussian fit is performed to extract the beam position and spot-size.

To estimate the electron beam spot-size asymmetry 𝐴𝜎 off the photocathode,

we must use laser table measurements of 𝐴𝜎 and infer the electron beam asymme-

try from that of the laser beam. The laser is focused with a fish-eye lens system

onto the narrow axis of the linear array, while also being spread out across 6-pads
39Advanced Photonic Inc’s (API) Blue Enhanced Linear Array Silicon Photodiode (PDB-

C216).
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of the linear array. We collected a series of measurements with the array oriented

along X,Y,+45𝑜,−45𝑜 for no analyzer, analyzer 90deg, analyzer 0deg 40. This full

set of 12 measurements (for S1,S2, no-analyzer along X,Y,+45𝑜,−45𝑜) must be

performed as tabulated in Fig. 6-43 to fully characterize the spot size asymmetry.

Figure 6-43: Spot-size asymmetry laser measurements [319]: Shows RTP 2017
linear array measurements for S1,S2, no-analyzer along X,Y,+45𝑜,−45𝑜 using both
arithmetic and gaussian methods as well as inferred spot-size asymmetries off the
photocathode.

Ideally, the measurements would be performed at a throw distance comparable

to the effective throw distance to the cathode or performed a second time for

a second throw distance. This is because some spot-size asymmetries could be

analyzing-like, angle-like, or analyzing/angle-like as described in Sec. 6.3.7. In this

analysis, we assume 𝐴𝑛𝑜−𝑎𝑛𝑎𝑙
𝜎 is angle-like and that 𝐴𝑆1

𝜎 and 𝐴𝑆2
𝜎 are analyzing-like.

To obtain 𝐴𝑆1/𝑆2
𝜎 we first subtract out 𝐴𝑛𝑜−𝑎𝑛𝑎𝑙

𝜎 from the raw S1/S2 measurements.

To infer the spot-size asymmetry at the cathode, we scale 𝐴𝑆1/𝑆2
𝜎 down by the

analyzing power of the cathode 𝜖/𝑇 ≈ 6% and scale 𝐴𝑛𝑜−𝑎𝑛𝑎𝑙
𝜎 by the ratio of the

throw distances 𝐷𝑐𝑎𝑡ℎ𝑜𝑑𝑒/𝐷𝑞𝑝𝑑.
40Conditions- spot size at PC center 2𝜎 = 𝑤 = 0.825𝑚𝑚(𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙), 0.94𝑚𝑚(𝑉 𝑒𝑟𝑡𝑖𝑐𝑎𝑙),

divergences at PC center 𝑑𝑤/𝑑𝑧 = 0.51𝑚𝑟𝑎𝑑(ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙), 0.66𝑚𝑟𝑎𝑑(𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙),2m steering lens,
cathode spot size 4𝜎 = 2.9𝑚𝑚(𝐻𝑜𝑟𝑖𝑧), 3.1𝑚𝑚(𝑉 𝑒𝑟𝑡), distance to cathode ∼ 3.1𝑚, distance to
steering lens ∼ 1.067𝑚, effective throw from PC to cathode ∼ 2.015𝑚, cathode analyzing power
∼ 6%
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(a)

(b)

(c)

(d)

Figure 6-44: [319] e-beam spot-size asymmetry estimates : Shows inferred e-beam
spot-size asymmetries for cathode analyzing power along S1. Based off of RTP
2017 linear array measurements [319] for S1 and no-analyzer along X,Y,+45𝑜,−45𝑜

using arithmetic methods)

The inferred the electron beam spot-size asymmetries off the cathode are shown

in Fig. 6-44 41. In the calculation to make this plot, we assumed an RHWP angle

such that the cathode had its 6% analyzing power oriented along predominantly

along S1, and summed the no-analyzer and S1 contributions as befitting the cath-

ode analyzing direction. The fit results indicate an elliptical spot-size asymmetry

component of ∼ 10−4 along 30𝑜 and a radial spot-size asymmetry component of

∼ 5×10−5. In Sec. 6.3.7, we predicted that with a beam divergence of 0.5mrad for

6% analyzer along S1, at a minimum the RTP spot-size asymmetries from angle-

dependence in Aq would be 1× 10−5 along 45𝑜. This predicted minimum value is

an order of magnitude smaller than with what is observed here, so it is likely that

either (1) spot-size asymmetry could be much improved by angular alignment or

(2) intrinsic curvature in the crystals face cuts, 2nd moments in the refractive in-

dices, or electric field gradients contribute more strongly to the ultimate spot-size
41using the algebraic method measurement results
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asymmetries than angle dependences. It is possible that the spot-size asymmetries

could be improved, in particular by changing the cathode effective throw distance

(determined by the steering lens) or by choice of RHWP angle.

For another beam setup in Jan 2019, with a smaller spot size through the

crystal, RHWP scans were performed using the linear array to characterize the

spot size asymmetry. The results are shown in Fig. 6-45 and Fig. 6-46 with the

linear array oriented vertically and horizontally for an effective throw distance of

∼ 6𝑚. The scans indicate, for electron off a cathode with 5% analyzer power, an

estimated max contribution of 5× 10−6 to 𝐴𝑟𝑚𝑠 from 4𝜃 terms and a max contri-

bution of 2×10−5 from non-analyzing terms 42. Putting this result in perspective,

this spot-size asymmetry is likely good enough for MOLLER.

(a) Vertical, IHWPout (b) Vertical, IHWPin

Figure 6-45: Linear Array RHWP scans: (a) Vertical orientation, IHWPout (b)
Vertical orientation, IHWPin [262]

42Conditions- Captain Expando lens (𝑓 ∼ 1𝑚) inserted 46in upstream of cell. Spot size at PC
center 2𝜎 = 𝑤 = 0.60𝑚𝑚(𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙), 0.65𝑚𝑚(𝑉 𝑒𝑟𝑡𝑖𝑐𝑎𝑙), divergences at PC center 𝑑𝑤/𝑑𝑧 =
−0.39mrad. Effective throw from PC to linear array 5.93m. Pre-linear array focusing optics
are: a diverging lens (-75mm, 0.28m upstream of linear array) and a fish eye lens 5cm upstream
of the linear array. Spot size RMS on linear array was 1.6mm and 6-pads were used. Path
to cathode: 2m steering lens, cathode spot size 2𝜎 = 1.2𝑚𝑚(𝐻𝑜𝑟𝑖𝑧), 1.3𝑚𝑚(𝑉 𝑒𝑟𝑡), distance
to cathode ∼ 3.1𝑚, distance to steering lens ∼ 1.067𝑚, effective throw from PC to cathode
∼ 2.015𝑚, cathode analyzing power ∼ 5% [261]
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(a) Horizontal, IHWPout
(b) Horizontal, IHWPin

Figure 6-46: Linear Array RHWP scans: (a) Horizontal orientation, IHWP out
(b) Horizontal orientation, IHWPin [262]

6.5.8 Temperature Sensitivity

In the thermal compensation design, any change in the refractive indices due

to temperature affects both crystals equally. Because the crystals are aligned with

opposing y,z axis, the net birefringence remains near zero, even when the overall

temperature of both crystals changes. While the thermal compensation design

does a great deal to mitigate temperature effects on the Pockels Cell performance,

some small thermal fluctuations are still empirically observed as shown in Fig.

6-47.

Figure 6-47: Aq fluctuation (Run4883 3hours)
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Fluctuates in the intensity asymmetry 𝐴𝐼 through a 100% analyzer are approx-

imately ±20, 000ppm over the course of several hours. The wavelength stability

of the laser precluded the possibility that this fluctuation was due to wavelength

changes, leaving temperature fluctuations as the main potential contributor to in-

stability. Theoretically, we expect the overall temperature to have very little affect

because of the thermal compensation design 43, especially since the two crystals

are very nearly equal in length to within 2𝜇m according to specifications. However,

the effect of a temperature difference, in particular, between the two RTP crystals

is not cancelled out by the thermal compensation design. The dominant effect

is the temperature difference between the crystals. When crystal 1 has a higher

temperature than crystal 2, the temperature difference 𝑇1 − 𝑇2 gives rise to a net

temperature induced birefringence Δ𝜑𝑇12 ∼ 𝑇1 − 𝑇2, which in QWV operation

gives (and 100% analyzing power) rise to an intensity asymmetry 𝐴𝐼,𝑇12 ≈ Δ𝜑𝑇12

We calculated the sensitivity to a temperature differences [267] based on the

refractive index temperature dependence [268]. At 25𝑜C, 𝑑𝑛𝑧/𝑑𝑇 ∼ 1.22𝑥10−5/𝑜C

and 𝑑𝑛𝑦/𝑑𝑇 ∼ 3.88𝑥10−6/𝑜C (at 25𝑜C) implies a birefringence temperature sensi-

tivity 𝑑Δ𝑛/𝑑𝑇 ∼ 0.831𝑥10−5/𝑜C, which gives rise to an asymmetry 𝐴𝑞 = Δ𝜑 =

2𝜋Δ𝑛𝐿/𝜆 such that 𝑑𝐴𝑞/𝑑𝑇 ∼ 0.67/𝑜𝐶 ∼ 6.65𝑒5ppm/𝑜C.

The temperature dependence the the RTP cell was measured between 70-80𝑜𝐹 .

Resistive heaters (∼ 2.7Watts) were attached to the delrin housing on the outside

of each of the two crystal mounts along with two thermocouples to monitor the

temperature of each mount. The heater on the first crystal’s mount was switched

on, allowing one crystal to heat up more than the other, and then switched off,

allowing the crystals to cool down together at different rates. The thermocou-

ple readings for the two mounts were periodically recorded while the intensity

asymmetry was continuously measured. A few measurements of temperature de-
43If the crystals are mismatched in length, by dL, we have 6.65e4ppm/𝑜C/mm. So a mismatch

of dL=10mm, returns us back 6.65×105ppm/𝑜C for one crystal above. A mismatch of 2um
gives us 133ppm/𝑜C where the temperature is the absolute temperature of both crystals. 20um
mismatch gives 1330ppm/𝑜C.
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pendence were taken as shown in Fig. 6-48. Taken together, the measurement

results give 𝑑𝐴𝑞

𝑑𝑇

𝑀
= 6.75𝑥105 ± 2.18𝑥105ppm/𝑜C for the RTP cell sensitivity to

temperature difference between the crystals, consistent with the calculated value

of ∼ 6.65𝑒5ppm/𝑜C.

(a) Calculated [267] (b) Measured [266] (c) Measured [266]

Figure 6-48: Aq vs T1-T2 (temperature difference between crystals). Measured:
Run 5081 & Run5082, RTP1 heated and RTP2 heat off.

This confirmed temperature sensitivity indicates the observed ±20, 000ppm

fluctuations correspond to a fluctuation of ∼ ±30mK temperature difference be-

tween the crystal pair. It is hard to control the temperature difference between

the crystals at the milli-Kelvin level, but the intensity asymmetry can easily be

corrected with voltage, since 20kppm can be zeroed out with a small ∼ 20𝑉

PITA-voltage adjustment. The temperature induced birefringence is well within

PITA-voltage induced birefringence adjustment range.So, during operation, we

simply correct temperature fluctuation with a PITA-voltage feedback loop, rather

than trying to force two crystals to maintain milli-Kelvin temperature differences.

This temperature difference sensitivity is one reason why it is important to not

focus the laser down tightly for high powers in RTP cells. If one crystal absorbs

slightly more power than the other, this leads to a temperature difference in the

shape of the beam. The smaller the beam, the greater the gradients induced.

This can lead to degradation of performance. At JLab, with 4 laser beams on one

crystal, it could lead to thermal effects from one Hall’s laser interfering with the

performance of the Pockels cell on another Hall’s beam, as well as a sensitivity of

HCBA to whether or not some Hall’s beam have tripped, are in use, and changes to



6.6. RESULTS: ELECTRON BEAM MEASUREMENTS 335

other Hall’s currents. When using RTP crystals, we cannot reduce the beam size

significantly (< 1mm for ∼1Watt) or else thermal gradients induced by the laser

absorption (0.75%/𝑐𝑚− 4%/𝑐𝑚)[236] [246] over a small space with high intensity

could create additional position differences (∼ 0.1𝜇𝑚− 0.6𝜇m) and interfere with

Pockels cell performance [245].

For further discussion on temperature sensitivity fluctuations and feedback see

Appendix B.

6.6 Results: Electron beam measurements

6.6.1 Charge Asymmetries and Position Differences

Figure 6-49: JLab table layout [270]

The RTP cell was installed in the polarized injector source at Jefferson Labora-

tory. Polarized electron beam was produced with the JLab HallA laser described

in Sec. 6.5.5 44. The reduce the laser spot size, a 50cm lens was inserted 1m
44paragraph 2
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upstream of the cell. The divergence at the Pockels cell center was measured to

be 𝜃𝑤,𝑥 = 𝑑𝑤/𝑑𝑧 = 0.51mrad, 𝜃𝑤,𝑦 = 0.66mrad and the laser spot size (2𝜎) at

the cell was measured to be 𝑤𝑃𝐶𝑥 = 0.825mm, 𝑤𝑃𝐶𝑦 = 0.94mm. Downstream

of the cell, in-between the cell and the photocathode, there is a rotatable half-

wave-plate (RHWP) for rotating the polarization state relative to the analyzing

direction of the photocathode, a ’steering’ lens (1.067m downstream of the cell)

to refocus the laser beam onto the cathode (3.1m downstream of the cell), and

vacuum windows which have slight birefringence gradients. The cathode steering

lens is typically an f=2m lens, and the effective throw distance from the cell to the

cathode is ∼ 2.015𝑚 (given by 𝐷𝑒𝑓𝑓 = 𝐷𝑡𝑜𝑡 − (𝐷𝑡𝑜𝑡 −𝐷𝑙𝑒𝑛𝑠) *𝐷𝑙𝑒𝑛𝑠/𝑓). However,

under these conditions the spot-size on the cathode was quite large, 𝑤𝑥 = 1.45mm,

𝑤𝑦 = 1.505mm, compared with spot-size at the cathode during previous parity ex-

periments at JLab. For example, during Qweak, the spot-size at the cathode was

𝑤 ∼ 0.85mm (and 𝑤 ∼ 0.425mm during qweak Run1 45). So, for this study, to

mimic experimental conditions, the steering lens was changed to a f=75cm lens

which reduced the spot-size at the cathode to 𝑤𝑥 = 1.135mm, 𝑤𝑦 = 1.055, and

changed the effective throw distance from the cell to the cathode to 𝐷𝑒𝑓𝑓 ∼ 20𝑐𝑚.

The cathode used during this study was measured to have quantum efficiency

𝑄𝐸 ∼ 0.69% [269], as shown in Fig. 6-50, and an analyzing power of 7%, producing

∼ 90% polarized electron beam.
45this spot size was too small at the high > 100𝜇𝐴 currents and lead to issues with the QE

degradation on the cathode which correlated to degradation in the degree of polarization and
the need for multiple polarimetry measurements
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Figure 6-50: QE scan showing ∼ 0.69% [269]

Just after the cathode, the beam position of the 130keV electron beam was

detected by multiple beam position monitors (BPMs) in its transport along the

beamline. Each BPM consists of four RF antenna, detecting 500MHz repetition

rate e-beam pulses, and the beam position is computed by comparing the magni-

tude of the four wire-channel responses (denoted 𝑋+, 𝑋−, 𝑌 +, 𝑌 −). Analogous to

the quad-photodiode measurement, the BPM measurement of beam position in x

and y consists of wire-channel signal differences and sums:

𝑏𝑝𝑚𝑥 = 𝜅(𝑋+ −𝑋−)/(𝑋+ +𝑋−) 𝑏𝑝𝑚𝑦 = 𝜅(𝑌 + − 𝑌 −)/(𝑌 + + 𝑌 −)

where 𝜅 is a proportionality factor (13.7mm in this region of the accelerator) based

on the geometry of the BPM.

Measurements were taken at a helicity flip rate of 204Hz (∼ 4𝑚𝑠 helicity

windows) to more quickly converge to nm-level statistical precision on electron

beam position monitors. To suppress 60Hz noise, the helicity flip rate was line

synced and pseudo-random octet helicity patterns (+−−+−++− or −++−

+−−+) were used to cancel 60Hz noise. The helicity signal reporting to the DAQ

was delayed by 16 helicity windows to prevent pickup [263].

Position difference feedback was performed, using the RTP steering control

voltages 𝑉𝛼𝑝𝑜𝑠,𝑈 and 𝑉𝛼𝑝𝑜𝑠,𝑉 , to minimize the measured position differences on a
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BPM (1I04) in the 130keV region of the injector, shortly after the cathode, before

acceleration. Feedback was performed every 2 minutes, after sufficient precision

was obtained on the position difference measurement to make the correction mean-

ingful at the level of 20nm during each interval. The feedback coefficients used

were on the order of ∼ 2𝑛𝑚/𝑉 . The x and y position differences, 𝐷𝑥 and 𝐷𝑦,

accumulated over time are shown for each feedback interval in Fig. 6-51. After ap-

proximately 30 minutes, the accumulated average horizontal position difference𝐷𝑥

converged to < 5nm and the accumulated average horizontal position difference𝐷𝑦

converged to < 1nm. This RTP Pockels cell successfully controlled position differ-

ences in the electron beam with nm-level precision. The steering control voltages

𝑉𝛼𝑝𝑜𝑠,𝑈 and 𝑉𝛼𝑝𝑜𝑠,𝑉 ultimately used for position difference corrections were small

<50-170V out of the ±800𝑉 range.

Figure 6-51: Using PC voltages, obtained 1-5nm convergence within 30min [257]

After feedback was performed on one BPM in the injector (BPM 1I04), the

position differences at other BPMs 46 throughout the beamline were measured as

shown in Fig.6-52. We use multiple BPMs in the beamline because the e-beam

varies in size and has nodes as well as undergoing rotation, and the BPMs have

different sensitivities to beam position/angle. The RTP Pockels Cell successfully
46These BPMs include 2 newly installed bpms just after the cathode: 2I01, 2I02. These are

modified M-20 cans which have calibration coefficients 𝜅 = 25.67mm. The other BPMs in this
plot are M15-mini cans with 𝜅 = 13.7mm, or according to the Goubau line scanner 𝜅 = 15.59mm.
Further down in the injector beamline, the bpms are M15 cans with 𝜅 = 18.76 − 18.81mm or
according to the Goubau line scanner 𝜅 = 18.4mm
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produced e- beam which achieved <30nm position differences in the 1𝑠𝑡 10 beam

position monitors in the 130keV region of the injector at JLab. This measurement

shows the smallest position differences that have historically ever been observed

in this region of the JLab accelerator. The RTP Pockels cell demonstrated the

best ever control of position differences in this region.

(a) 𝐷𝑥,𝐷𝑦<70nm (b) 𝐷𝑥,𝐷𝑦<30nm

Figure 6-52: (a) Position differences <70nm in 130keV region, Run4017 [257] (b)
Position differences <30nm in 130keV region, Run 1141 [258]

We compare this measurement with that of the position differences measured

during Qweak [56]. Despite the spot-size on the cathode being a factor of 2X larger

in our recent measurement, the position differences during Qweak were <200nm

in the 130keV region, whereas the RTP achieved <70nm in the same region.

Figure 6-53: Qweak horizontal position differences. These are defined as 1
2
(𝑥𝑅 −

𝑥𝐿) and so to compare to our measurements, they must be multiplied by 2X. [56]

In addition to demonstration control over position differences, we also per-
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formed feedback on charge asymmetry 𝐴𝑞 with Pockels cell PITA voltage. As

previously stated in Sec. 6.5.8, the RTP suffers from some slow drifts due to fluc-

tuation in the temperature difference between the two RTP crystals of ∼ 30𝑚𝐾.

This is correctable with PITA voltage feedback, we can adjust PITA voltage to

keep intensity asymmetry minimized

(a) Aq feedback S1 (b) Aq feedback ∼S2

Figure 6-54: Aq feedback: (a) S1, Run4109, 1I04, RHWP 67.5𝑜 (b) near S2,
Run3972, 0I05, RHWP 45𝑜

𝐴𝑞 feedback was performed, using the RTP PITA voltages to minimize the

measured charge asymmetry on a BPM in the 130keV region of the injector. Feed-

back was performed in 7.5second intervals at two different RHWP settings. One

RHWP angle (67.5𝑜) was set to align the Pockels cell S1 polarization direction

along the analyzing axis of the photocathode, maximizing the sensitivity of 𝐴𝑞 to

PITA voltage and temperature fluctuation. The other RHWP angle (45𝑜) reduced

the sensitivity to PITA voltage and temperature fluctuations by a factor of 10X.

The charge asymmetries, accumulated over time in both case are shown for each

feedback interval in Fig. 6-54. After approximately 10 minutes (Fig. 6-54b), the

accumulated 𝐴𝑞 in bpm 1I04 converged to < 1ppm (for RHWP angle set to S1 at

67.5𝑜). After approximately 2hours (Fig. 6-54b), the accumulated 𝐴𝑞 in bpm 0I05

converged to < 0.1ppm (for RHWP angle set to near S2 at 45𝑜). Statistically, the
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theoretical limit for the rate of convergence 𝐴𝑞 is between 𝑅𝑀𝑆/
√
𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 and

𝑅𝑀𝑆/𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 depending on the type of noise being measured. In both measure-

ments, the charge asymmetry converged faster than 𝑅𝑀𝑆/
√
𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (shown as

the black dotted line), and nearly as fast as 𝑅𝑀𝑆/𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. Despite slow drifts

from temperature fluctuation, the RTP Pockels cell successfully controlled charge

asymmetry in the electron beam as well as the previously used KD*P cell.

4 hall running & Polarimetry

When using the RTP cell in HallA parity experiments, it’s absolutely necessary

to run PITA-voltage feedback on charge asymmetry drifts in Aq. The polarization

asymmetry will drift in RTP if not corrected by PITA-voltage. During 4 Hall

running, during a parity experiment, one of the Halls must chosen to monitor

the asymmetry Aq which will be minimized with PITA-voltage. This Hall’s Aq is

treated as the definitive measure of polarization asymmetry 47. When running all

4 halls, it will be necessary to run PITA-voltage feedback using just one hall (i.e.

HallA), and use the IA cells for charge asymmetry feedback on the other halls.

For non-parity experiments, 4 hall operation is simple. We will set the RHWP

such that the cathode analyzing power is mostly along S2, so the fluctuations of

Aq, which are 20-30k ppm for 100% analyzer in S1, are first suppressed by the

cathode being a 6-7% analyzer down to Aq fluctuations of 1500-2000ppm in S1,

then rotating the RHWP close to S2 (within ∼ 10% of S2), there will only be

150-200ppm Aq fluctuations, which is fine for non-parity experiments.

The electron beam degree of longitudinal polarization is not a concern in terms

of variations from the Pockels Cell 48. If there is an increase in the degree of linear

polarization (DoLP) of Δ ≈ 2− 3%, then there is only a tiny reduction in degree

of circular polarization(DoCP) on the order of ∼ Δ2/2 ≈ 0.02−0.05%. The small
47Subsequently, clipping and non-polarization like charge asymmetries may incidentally get

corrected with polarization asymmetries
48The longitudinal polarization of the electron beam is largely determined from the cathode

and the Wien angle
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fluctuations in the DoLP do not translate into any significant changes to the DoCP

and DoP of the laser or to the e-beam degree of longitudinal polarization.

For invasive polarimetry measurements (the Moller polarimeter), it may be

necessary to perform PITA-voltage feedback on charge asymmetry drifts in Aq.

Since the measurements are invasive, the nominal Hall BCM will likely be un-

available as a charge asymmetry monitor for feedback during Moller polarimetry

measurements. So, an alternative monitor must be used for feedback instead. An

upstream beam position monitor in the Hall could be used, and must be calibrated

and cabled to the parity DAQ. An injector BCM could also be used, as long as

the feedback mechanism allows for a non-zero Aq set-point, so long as the beam

current of the other Halls remains the same, and there is a mechanism for dealing

with beam trips in other halls.

6.6.2 Position Differences Transport: Adiabatic Damping

& Apertures

The new RTP Pockels cell system can provide fast flipping and suitable control

of position differences in the early, 130keV region of the injector. However, besides

minimizing the position differences coming off the cathode, the accelerator beam

transport is also important in maintaining the small HCBA’s we achieve with

RTP as the beam propagates through the accelerator. If beam optics deviate from

design, significant correlations can develop which are detrimental to maintaining

small position differences.

Parity quality beam for MOLLER must be both achieved with RTP and main-

tained throughout the accelerator. Two important considerations for optimal elec-

tron beam transport are: clean apertures and adiabatic damping.

An example of beam transport issues is shown in Fig. 6-55a. For unknown

reasons, large position differences (𝐷𝑥 ∼ 0.6𝜇m, 𝐷𝑦 ∼ 0.4𝜇m) were observed to

appear further downstream in the injector, after apertures and RF elements (past



6.6. RESULTS: ELECTRON BEAM MEASUREMENTS 343

the prebuncher, wien, and chopper), and were very large as compared with the

tiny< 60nm position differences upstream region in the injector. One possible

explanation is that if the beam spot-size deviated from design and became very

large, due to focusing magnets not working optimally for instance, position differ-

ences would become correspondingly large. An alternative explanation is another

degree of freedom, not seen by BPMs early in the injector, such a longitudinal

asymmetries as described in Sec. 6.6.4.

(a) (b)

Figure 6-55: (a) Extreme Case of appearance of large position differences in
transport: RTP cell, Run4017 to FC2 [257] (b) Mild case of position difference
growth in beam transport, Run1146 [258]

Apertures

Beam losses due to clipping on apertures in the injector is an important factor

to consider in achieving parity quality beam. Apertures tend to couple position

differences into charge asymmetries and couple spot-size asymmetries into position

differences. This can be understood by simply considering what would happen to

the beam current when it is both clipped on one side and suffering from position

differences between helicity states: the beam motion causes changes to current and

the position differences causes charge asymmetries. So, if there are large position

differences 𝐷𝑥,𝐷𝑦 and significant losses on apertures, there will be significant Aq

variations along the beamline. If there are large spot-size asymmetries and signif-
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icant losses on apertures, there will be significant enlarging of position difference

along the beamline.

Table 6.3 shows an estimate of how apertures losses couple position differences

to Aq and couple spot-size asymmetries to position differences. The calculation is

performed assuming a gaussian beam with spot-size 𝜎 ∼ 1mm and a sharp edge

aperture [304] (as shown in Fig. 6-56). The table shows that charge asymmetry

variations of >50ppm can be created by a 5% aperture loss and 1𝜇m position

differences. Aperture losses of 2-5% are typical [305] and such variations in Aq

have been observed in the past along the beamline in the injector (particularly

after the chopper). Furthermore, position differences of > 70nm can be created by

∼ 5% aperture losses in a beam with moderate 2×10−4 spot-size asymmetries and

a 𝜎1mm spot-size . Even for a quite small aperture loss of 1%, > 30nm position

differences get created for such a beam (assuming a pure gaussian). Of course,

the values in Table 6.3 depend on spot-size: a smaller spot-size will lead to larger

charge asymmetries for given position differences, and a larger spot-size will lead

to larger position differences for given spot-size asymmetries49.

Figure 6-56: Aperture loss calculation

49The electron beam spot size is typically smaller in the early injector 𝜎 ≈ 0.3 − 0.5mm and
considerably smaller in the late injector and after acceleration 𝜎 ≈ 0.1− 0.2mm
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aperture loss initial HCBA spot-size HCBA created by aperture

5% 𝐷𝑥 = 1𝑢𝑚 𝜎 = 1mm 𝐴𝑞 = 54ppm

10% 𝐷𝑥 = 1𝑢𝑚 𝜎 = 1mm 𝐴𝑞 = 94ppm

20% 𝐷𝑥 = 1𝑢𝑚 𝜎 = 1mm 𝐴𝑞 = 174ppm

1% 𝐴𝜎 = 2× 10−4 𝜎 = 1mm 𝐷𝑥 = 34nm

5% 𝐴𝜎 = 2× 10−4 𝜎 = 1mm 𝐷𝑥 = 76nm

10% 𝐴𝜎 = 2× 10−4 𝜎 = 1mm 𝐷𝑥 = 92nm

20% 𝐴𝜎 = 2× 10−4 𝜎 = 1mm 𝐷𝑥 = 95.8nm

Table 6.3: Aperture losses of varying degrees coupling HCBAs for 𝜎 = 1mm spot
size e-beam [304].

Adiabatic Damping

Couplings are important in beam transport of position differences. Good op-

tical transport throughout the injector and accelerator is crucial. Laser beam

position differences on the photocathode produce electron beam position differ-

ences in the injector before acceleration. If the electron beam is aligned well,

acceleration can reduce position differences from 500nm in the injector to 50nm

in the Hall, as shown in Fig. 6-57, for example 50.

Figure 6-57: Adiabatic Damping during Happex II Experiment - 100X

50It is important to note that empirically observed adiabatic damping of 100X (from HAPPEX)
is not strictly correct due to a calibration detail (since “M15-mini” instead of M15 BPMs are
actually used in first part of the injector) so this 100X should be scaled down to ∼ 70𝑋 (see
Sec. 5.4)
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This position difference suppression is achieved through adiabatic damping,

essentially from a relativistic boost where the transverse degrees of freedom matter

less. The occupied phase space is limited and the position difference suppression

scales as 1/p (Fig. 6-58).

Figure 6-58: Adiabatic Damping - Good optical transport VS poor optical trans-
port [303]

The area of the beam distribution in phase space (emittance) is inversely pro-

portional to the momentum. Adiabatic damping is how we will get from 20nm-

100nm position difference in the injector to 1nm in the hall on target. This esti-

mated via:

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 ≈
√︂

𝑝𝐻𝑎𝑙𝑙

𝑝𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟
≈
√︂

11𝐺𝑒𝑉

130𝑘𝑒𝑉
≈ 290

If beam optics deviate from design, significant correlations can develop. Cou-

pling in transverse phase space spreads the emittance out. For example, During

Qweak, the position differences in the hall were actually larger than they were in

the injector 51. For Moller, Good optical transport throughout the injector and

accelerator is critical.Theoretically for Moller, the adiabatic damping could be as

high as >200X, though in practice the adiabatic damping observed during former

experiments did not reach theoretical limits and a conservative estimate of the

achievable suppression for Moller is 30X.
51and some helicity magnets were used to suppress hall position differences, instead of just

improving the beam optics to reduce the correlations
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6.6.3 Spot Size asymmetries

Spot size asymmetries contribute systematic errors to Parity experiments such

as PREX/CREX, HAPPEX, Qweak and Moller. A desirable goal for MOLLER

would be to suppress the systematic error contribution from spot-size asymmetries

to <0.1ppb (as described in Sec. 2.3.7). The effect of a helicity-correlated differ-

ence in the beam spot-size for the proposed spectrometer/collimator geometry,

has been simulated to give rise to systematics on the level of 12𝑝𝑝𝑚 × 𝛿𝜎/𝜎 [1]
52. With RTP, we have observed laser spot size asymmetries and inferred electron

beam spot-size asymmetries off the cathode of 𝐴𝜎 = 𝛿𝜎/(2𝜎) ∼ 0.5− 2× 10−4 in

the injector (Sec. 6.5.7), which would contribute ∼ 1.2 − 4.8𝑝𝑝𝑏 to systematics

given no other mechanisms of suppression. To reach MOLLER goals, a factor of

10X-40X suppression of spot-size asymmetries is required from a combination of

three sources: (1) reduction in the laser beam spot size asymmetry 𝐴𝜎 (2) can-

cellation due to periodic slow helicity reversals (3) synchrotron light emittance

growth suppressing the spot size asymmetry. Previously, slow helicity reversals

have been observed in the past to lend a factor of 10X suppression. Furthermore,

suppression between spot size asymmetry in the injector and spot-size asymmetry

contribution in the Hall, due to synchrotron light emittance growth, should greatly

suppress the spot size asymmetry by a factor of ∼ 25𝑋−100𝑋 as described in the

following section . Even if the RTP spot-size asymmetries are not reduced at all,

the total suppression from slow reversals and emittance growth should be more

than enough to achieve the desired <1ppb systematic error contributions.

Emittance Growth and Spot Size

Emittance growth is a stochastic process in accelerator which increases the

electron beam spot size [62]. Emittance growth at 11 GeV is shown for both ver-

tical and horizontal dimensions in Fig. 6-59. For both vertical and horizontal, the
52Since 𝐴𝜎 = 𝛿𝜎/(2𝜎), this equation translates into a systematic contribution of 24𝑝𝑝𝑚×𝐴𝜎
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spot size experiences growth by 5-10X. The spot-size helicity dependence in the

hall is diluted by this synchrotron emittance growth contribution. Synchrotron

light emittance dilution should greatly suppress the spot size asymmetry [62]. This

suppression only works for stochastic noise - truly incoherent emittance growth;

coherent beam size changes (damping, raster, focusing) don’t matter. Quantita-

tively, if 𝜎(𝑖𝑛𝑗)𝑅,𝐿 is the helicity dependent spot size in the injector and if 𝜎𝑠𝑦𝑛𝑐ℎ

is the spot size “noise” from synchrotron incoherent growth, then the total width

is given by the quadrature sum 𝜎2
𝑅,𝐿 = 𝜎2

𝑠𝑦𝑛𝑐ℎ + 𝜎2
(𝑖𝑛𝑗)𝑅,𝐿, which was observed to

grow by 5-10X.

Figure 6-59: Emittance growth at 11GeV: factor of 5-10X [62]

The suppression of intrinsic spot-size asymmetry 𝛿𝜎𝑖/𝜎𝑖, where 𝜎𝑖 is the intrin-
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sic spot size, with emittance growth can be derived as [306]:

𝛿𝜎

𝜎
=

𝜎2
𝑖

𝜎2
𝑠𝑦𝑛𝑐ℎ + 𝜎2

𝑖

𝛿𝜎𝑖
𝜎𝑖

with the spot-size asymmetry decreasing as 𝜎2
𝑠𝑦𝑛𝑐ℎ in the approximation 𝜎𝑠𝑦𝑛𝑐ℎ >>

𝜎𝑖. Hence for the observed emittance growth 𝜎/𝜎𝑖 ∼ 5−10𝑋 the intrinsic spot size

asymmetry is suppressed by a factor of 𝐴𝜎/𝐴𝜎,𝑖 ∼ 25− 100𝑋, much smaller than

the original asymmetry value . This suppression from emittance growth should

be more than enough to achieve the desired <1ppb systematic error contributions

from spot-size asymmetries for MOLLER.

A new consideration for MOLLER spot-size asymmetries is the effect of a

longitudinal spot size asymmetry (described in Sec. 6.6.4). How a longitudinal

spot-size asymmetry/bunch-length asymmetry is affected by the stochastic process

of emittance growth and how it might couple to transverse spot-size asymmetries

after acceleration are important considerations to be explored further.

Measuring Elliptical Spot-size Asymmetry on Electron Beam

As stated in Sec. 5.5, the BPM wire channels can be used in a new way to

obtain information about the elliptical component of the spot size asymmetry 𝐴𝑒𝑙𝑙𝑖.

Reiterating significant equations from Sec. 5.5 to explain the results in Fig. 6-60,

we have:

𝑏𝑝𝑚𝑒𝑙𝑙𝑖 =
𝑎2(𝑥𝑝+ 𝑥𝑚− 𝑦𝑝− 𝑦𝑚)

8𝜎2(𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚)

𝜖 = 𝑏𝑝𝑚𝑒𝑙𝑙𝑖− 𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 =
𝑎2(𝑥𝑝+ 𝑥𝑚− 𝑦𝑝− 𝑦𝑚)

8𝜎2(𝑥𝑝+ 𝑥𝑚+ 𝑦𝑝+ 𝑦𝑚)
− 𝑓(𝑥, 𝑦) ≈ 𝜎𝑥 − 𝜎𝑦

𝜎𝑥 + 𝜎𝑦

𝐴𝑒𝑙𝑙𝑖 = (𝑑𝑖𝑓𝑓_𝑏𝑝𝑚𝑒𝑙𝑙𝑖− 𝑑𝑖𝑓𝑓_𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟)/2

where 𝑎 ≈ 2𝜅 is approximately the radius of the BPM vacuum chamber, 𝜅 is a

wireline bpm calibration constant set in accordance with the type of BPM de-
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scribed in Table. 5.5 53, 𝜎 is the 𝑒−beam spot size, and 𝑓(𝑥, 𝑦) is a correction

term. The position sensitivity correction term in bpmelli, which we now define as

bpmecorr, is approximately

𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 = 𝑓(𝑥, 𝑦) = 𝑔1
𝑥2 − 𝑦2

𝜎2
− 𝑔2

𝑥4 − 𝑦4

𝜎2

Δ𝑏𝑝𝑚𝑒𝑐𝑜𝑟𝑟 =≈ 0.25
4𝑥Δ𝑥− 4𝑦Δ𝑦

𝜎2
− 2.84𝑚−28𝑥

3Δ𝑥+ 8Δ𝑥3𝑥

𝜎2
≈ 𝑥Δ𝑥− 𝑦Δ𝑦

𝜎2

where 𝑔1 = 0.250014, 𝑔2 = 2.84739𝑚−2.

We show the Aelli results of of our best run of 2017 with the RTP cell, which

had 100nm position differences in the injector 54 (for further analysis details, see

Sec. 5.5).

Figure 6-60: RTP cell: elliptical spot-size asymmetries in the injector (Run3331)

Using e-beam measurements in the injector, we have set bounds of < 2× 10−4

on 𝐴𝑒𝑙𝑙𝑖, which are consistent with laser table measurements. We note that while

R&D methods 55 for measuring 𝐴𝜎 in the e-beam line are helpful, the MOLLER
53 𝜅 = 18.76mm and 𝑎 ≈ 2𝜅 = 37.52mm for M15 antenna BPMs [94] [97]
54130keV region, bpms: 1I02,1I04,1I06,0I01,0I01A,0I02,0I02A, and 0I05
55Possibly new RF monitors, BPM 𝐴𝑒𝑙𝑙𝑖 measurements (Sec. 6.6.3), modified harp scans, halo

monitors, or Compton apertures might be used to infer spot-size asymmetries on the beamline
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experiment should not rely on the ability to make such measurements in the

beamline.

6.6.4 Longitudinal Asymmetries

Besides clean apertures and adiabatic damping, there may be other degrees of

freedom, such as longitudinal asymmetries (discussed in Sec. 6.6.4) which may

be coupled into transverse asymmetries through beam transport. The example of

beam transport issues shown in Fig. 6-55a, in which position differences became

suddenly larger downstream in the injector, suggests some degree of freedom, not

seen by BPMs early in the injector, where beam asymmetries can “hide” and

emerge later in the machine [62]. Such a longitudinal asymmetries could couple to

transverse asymmetries that are important for parity experiments. It is apparent

that attention must be paid to these longitudinal couplings.

Temporal RF bunch studies - KD*P Empirical Observations

Interesting recent studies of temporal bunch properties show the importance

of accelerator beam transport in maintaining small HCBA’s. The temporal RF

bunch study of the e-beam produced with the KD*P Pockels cell was done with

a “chopper scan”, as shown in Fig. 6-61. The chopper stretches the longitudinal

pulse into an arc on a circle. A slit aperture can be narrowed down cutting out

a small time slice of the RF bunch. In a chopper scan, the RF phase is scanned

and the current I, charge asymmetry Aq, and beam position X,Y, is measured as

a function of time in an approximately 50ps electron bunch. This type of scan

provides information regarding the pulse intensity distribution, charge asymmetry

distribution, and bunch position over the RF pulse (the pulse shape).
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(a) (b)

Figure 6-61: Chopper

In an attempt to study “beam halo”, during Qweak, chopper scans were per-

formed. The purpose was to examine the longitudinal beam tails and the front

and back ends of the beam and look for large asymmetries. A typical chopper

scan is shown in Fig. 6-62.

Figure 6-62: Qweak chopper scan

More recently, chopper scans were performed with KD*P with the new gun as
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shown in Fig. 6-63. Fig. 6-63 a pulse length/pulse duration of 5.4𝑜 at 500MHz (or

30𝑓𝑠𝑒𝑐, ∼ 9mm). We observe slightly larger asymmetries in the tails of the beam

pulse in the plot of Aq (“asymbpm0I05ws”) vs chopper phase. Longitudinal charge

asymmetry in the beam tails can be characteristic of a longitudinal bunch length

asymmetry/spot size asymmetry. A bunch length asymmetry could develop via

space charge effects. For example, a beam with more charge density will have

a tendency to blow-up faster with greater expansion rate in both transverse and

longitudinal dimensions as is travels through the beamline early in the injector.

Longtudinal bunch length asymmetries could develop further downstream in the

injector, during or after acceleration, and is challenging to measure.

We also observe the edges of the beam are spatial separated from the core of

the beam in plots of bpmx, bpmy vs chopper phase. There is a transverse coupling

of 𝑑𝑋
𝑑𝜑

= −0.09𝑚𝑚/𝑑𝑒𝑔, 𝑑𝑌
𝑑𝜑

= −0.13𝑚𝑚/𝑑𝑒𝑔. The transverse temporal structure

in X indicates a “C” shape and the structure in Y indicates an “S” shape. The 1𝑠𝑡

moment coupling term 𝑑𝑋
𝑑𝜑

could be from a relative tilt in the beam propagation

axis with respect to the bpm’s measurement axis (either a crooked beam or a

crooked bpm). 2𝑛𝑑 moment curvature in 𝑋(𝜑) , 𝑑𝑋
𝑑𝜑2 indicates a “C ”shape. 3rd

moment curvature in 𝑋(𝜑), 𝑑3𝑋
𝑑𝜑3 indicates an “S” shape. Similarly, 1𝑠𝑡 moment 𝑑𝐷𝑥

𝑑𝜑

could be from a helicity correlated relative tilt in the beam propagation axis, like

an angle-difference. A 2𝑛𝑑 moment curvature 𝑑2𝐷𝑥

𝑑𝜑2 indicates a helicity correlated

“C” shape deviation. A 3rd moment curvature 𝑑3𝐷𝑥

𝑑𝜑3 indicates a helicity correlated

“S” shape deviation.
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Figure 6-63: KD*P Chopper Scan 2018, S2 Run4202 bpm0I05 [257]

Formulation

Figure 6-64: Computations for KD*P Chopper Scan 2018, S2 Run4202 bpm0I05
[257]

The 4-D electron beam pulse can be parametrized in z as:

𝐼(𝑥, 𝑦, 𝑧, 𝑡) : 𝑡 =
𝜑

2𝜋𝑓
𝑧 = 𝑣𝑧𝑡 𝐼(𝑧) =

∫︁ ∫︁
𝐼(𝑥, 𝑦, 𝑧)𝑑𝑥 𝑑𝑦
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Aq various points along the chopper phase 𝜑𝑖, we measure the beam current 𝐼𝑖

that passes through the chopper slit, charge asymmetry 𝐴𝑞, transverse beam posi-

tion bpmx,y and position differences 𝐷𝑥, 𝐷𝑦. Using 𝐼𝑖 and 𝐴𝑞 in particular, we can

determine the longitudinal beam properties including the pulse duration/length

𝜎𝜑, the bunch-length asymmetry 𝐴𝜎𝜑
, mean longitudinal phase ⟨𝜑⟩, and the lon-

gitudinal phase difference/longitudinal position difference ⟨𝐷𝜑⟩.

⟨𝐴𝑞⟩ =
∑︀

𝑖 𝛿𝜑𝑖 𝐴𝑞𝑖𝐼𝑖∑︀
𝑖 𝛿𝜑𝑖 𝐼𝑖

⟨𝜑⟩ =
∑︀

𝑖 𝛿𝜑𝑖 𝜑𝑖𝐼𝑖∑︀
𝑖 𝛿𝜑𝑖 𝐼𝑖

𝜎𝜑 =

√︃∑︀
𝑖 𝛿𝜑𝑖 (𝜑𝑖 − ⟨𝜑⟩)2𝐼𝑖∑︀

𝑖 𝛿𝜑𝑖 𝐼𝑖

⟨𝐷𝜑⟩ =
∑︀

𝑖 𝛿𝜑𝑖 2𝐼𝑖𝐴𝑞𝑖(𝜑𝑖 − ⟨𝜑⟩)∑︀
𝑖 𝛿𝜑𝑖 𝐼𝑖

⟨𝐴𝐷𝜑⟩ =
⟨𝐷𝜑⟩
2𝜎𝜑

⟨𝐷𝜎𝜑
⟩ =

√︃∑︀
𝑖 𝛿𝜑𝑖 2𝐼𝑖𝐴𝑞𝑖(𝜑𝑖 − ⟨𝜑⟩)2∑︀

𝑖 𝛿𝜑𝑖 𝐼𝑖
⟨𝐴𝜎𝜑

⟩ =
⟨𝐷𝜎𝜑

⟩
2𝜎𝜑

A longitudinal phase difference could arise from a variety of sources (includ-

ing possibly a large frequency chirp on laser pulse). These longitudinal phase

differences/position differences can couple transversely through 𝑑𝑋
𝑑𝜑

as

𝐷𝑥 =
𝑑𝑋

𝑑𝜑
𝐴𝐷𝜑2𝜎𝑥 = ⟨𝐷𝜑⟩

𝑑𝑋

𝑑𝜑

𝜎𝑥
𝜎𝜑

where we define spot size 𝜎𝑥 = 𝑋𝑟𝑚𝑠.

The longitudinal bunch length asymmetry, if it arises from space charge effects,

could feasibly indicate comparable transverse spot-size asymmetries from the same

mechanism

𝐴𝜎 ≈ 𝐴𝜎𝜑

The computations shown in Fig. 6-64 indicate a bunch-length asymmetry of

𝐴𝜎𝜑
= −5×10−6, a longitudinal position asymmetry of 𝐴𝐷𝜑 = 30ppm at 500MHz,

a longitudinal position difference of 𝐷𝜑 = 2.4 × 10−4𝑑𝑒𝑔 at 500MHz (or 1.3𝑓𝑠𝑒𝑐,

∼ 400nm), and a transverse coupling of 𝑑𝑋
𝑑𝜑

= −0.09𝑚𝑚/𝑑𝑒𝑔, 𝑑𝑌
𝑑𝜑

= −0.13𝑚𝑚/𝑑𝑒𝑔
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which indicates potential induced transverse position differences of 𝐷𝑥 = −22nm,

𝐷𝑦 = −31nm on a 𝜎 = 0.5mm beam. We examine a more extreme case in the

following sections.

Longitudinal Position Differences

When minimizing e-beam position differences with the RTP cell, we noticed

that further downstream, after the chopper, there was a change in the magnitude of

the position differences: they became larger (see Fig. 6-55a). This sudden change

suggests beam transport issues and could have been due to beam spot-size blow-

up or it could suggest a “hidden” beam parameter that only becomes manifest in

bpms further downstream in the injector. Longitudinal position differences could

potentially be this “hidden” beam parameter.

In the chopper scan of Fig. 6-64, with ordinary running conditions, the poten-

tial induced transverse position differences were small (< 30nm). Here we examine

another chopper scan in a more extreme case. We set the charge asymmetry to

𝐴𝑞 = 1500ppm on a bpm before the chopper (bpm1I04) and then performed the

chopper scan shown in Fig.6-65.

Figure 6-65: Chopper Scan: S2, bpm0I05, KD*P, Run4202, [257]
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Figure 6-66: Chopper Scan Computations: S2, bpm0I05, KD*P, Run4202, [257]

The computations shown in Fig. 6-66 indicate a longitudinal position asym-

metry of 𝐴𝐷𝜑 = −288ppm at 500MHz, a longitudinal position difference of 𝐷𝜑 =

−2.3× 10−3𝑑𝑒𝑔 at 500MHz (or 12.8𝑓𝑠𝑒𝑐, ∼ 3.8𝜇m), and a transverse coupling of
𝑑𝑋
𝑑𝜑

= −0.08𝑚𝑚/𝑑𝑒𝑔, 𝑑𝑌
𝑑𝜑

= −0.12𝑚𝑚/𝑑𝑒𝑔 from which we infer potential induced

transverse position differences of 𝐷𝑥 = 184nm, 𝐷𝑦 = 276nm on a 𝜎 = 0.5mm

beam. The transverse coupling structure in X shows a “C” shape and Y shows an

“S” shape. The position difference structure of 𝐷𝑥 shows a “C” shape while Dy

shows an “S” shape.

It is possible that some of the longitudinal-transverse coupling 𝑑𝑋
𝑑𝜑

could be

simply an artifact of performing the chopper scan, moving the overall beam po-

sition with a changing chopper phase. To make sure the transverse coupling was

indeed due to the front and back ends of the electron beam pulse actually being

at different transverse positions in space, we performed a chopper scan with the

slit fully open. With the slit fully open, the overall beam position only changed

with a slope of 𝑑𝑋
𝑑𝜑

< 0.03 with respect to chopper phase. In contrast, with the

slit closed, the longitudinal-transverse coupling was 𝑑𝑋
𝑑𝜑

= −0.2. So < 10% of the

observed coupling was due to an overall beam motion artifact of performing the
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chopper scan.

Figure 6-67: KD*P Chopper scan with slit closed [62]

Figure 6-68: KD*P Chopper scan with slit open [62]

Longitudinal Bunch Length Asymmetries

Observe that the bottom left panel of Fig. 6-65 shows that when there is an

overall charge asymmetry 𝐴𝑞 = 1500ppm coming off the cathode, by the time

the e-beam reaches the chopper, the tails of the beam pulse have developed very

large charge asymmetries, more so than in the main part of the beam pulse. With

non-zero average charge asymmetry, the beam “blows up” with large asymmetries

in tail, which are not as obvious when the average Aq is small. This suggests a

bunch-length asymmetry, where the right-handed e-beam with more charge has

spread out more than the the left-handed e-beam with less charge. Space charge

effects could be a mechanism that would cause this bunch-length asymmetry.

The computations shown in Fig. 6-66 indicate a bunch-length asymmetry of

𝐴𝜎𝜑
= 4.4 × 10−5 on a pulse length of 3.98𝑜 at 500MHz (or 22.1𝑓𝑠𝑒𝑐, 6.63mm)

from which we infer a potential induced transverse spot-size asymmetry of 𝐴𝜎 ∼

𝐴𝜎𝜑
= 4.4×10−5 assuming it arises from the same space charge effect mechanism.
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For Moller, it is important to consider these longitudinal bunch length asym-

metries and they mean in terms of spot-size asymmetries in the experimental

Hall. This longitudinal bunch-length asymmetry, unlike transverse spot size asym-

metries, are not necessarily suppressed in acceleration by synchrotron stochastic

processes. If this longitudinal asymmetry winds up coupled to the transverse

dimension, it translates into a transverse spot-size asymmetry in the Hall.

Longitudinal Structure Origins - Calculations

The aforementioned chopper studies were performed with KD*P. Further chop-

per studies should be performed with RTP in the future in case there is any intrin-

sic difference in how the two types of cell affect the longitudinal beam structure.

Here we analytically verify that the longitudinal structure does not intrinsically

arise from simply using an RTP Pockels cell instead of a KD*P cell. We note that

empirical measurements should also be performed with RTP.

Aside: Helicity correlated phase shift

We note the helicity correlated average phase shift difference is fairly small.

This can be reasoned out from the thermal compensation design. Considering

the birefringence corresponding to a difference in refractive indices 𝑛𝑧 − 𝑛𝑦), the

helicity-dependent part adds between the two crystals, while the helicity-independent

part cancels. Conversely, it must be that the the phase shift corresponding to the

average of the refractive indices 𝑛𝑦 + 𝑛𝑧, the helicity-dependent part cancels be-

tween the crystals, while the helicity-independent part adds. We can see this by

plugging in equations for the two crystals’ fields 𝐸𝑅(𝐿)
𝑧1 = 𝐸𝑅

𝑧 (𝐿) = ∓𝐸𝑧1,0−𝐸Δ1 =

∓(|𝐸𝜆/4|+𝐸𝛼1)−𝐸Δ and 𝐸𝑅(𝐿)
𝑧2 = ±𝐸0+𝐸Δ2 = ±(|𝐸𝜆/4|+𝐸𝛼2)+𝐸Δ. We define

the difference in crystal length via 𝐿1 = 𝐿0 + 𝛿𝐿12/2 and 𝐿2 = 𝐿0 − 𝛿𝐿12/2. We

obtain for the average phase shifts

𝜑𝑅(𝐿)
𝑎𝑣𝑔 = 𝜋/𝜆((𝑛0,𝑧 + 𝑛0,𝑦)(𝐿1 + 𝐿2)
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−1

2
(𝑛3

0,𝑧𝑟33 + 𝑛3
0,𝑦𝑟23)((∓(|𝐸𝜆/4|+ 𝐸𝛼1)− 𝐸Δ)𝐿1 + (±(|𝐸𝜆/4|+ 𝐸𝛼2) + 𝐸Δ)𝐿2))

We obtain for the helicity correlated average phase shift difference

𝜑𝑅
𝑎𝑣𝑔 − 𝜑𝐿

𝑎𝑣𝑔 = 𝜋/𝜆(𝑛3
0,𝑧𝑟33 + 𝑛3

0,𝑦𝑟23)(|𝐸𝜆/4|+
𝐸𝛼1 + 𝐸𝛼2

2
)𝛿𝐿12 + 𝐿0(𝐸𝛼1 − 𝐸𝛼2)

For 𝜆 = 780nm,𝑛0,𝑧 = 1.867, 𝑛0,𝑦 = 1.783,𝑟23 = 12.5pm/V, 𝑟33 = 35pm/V,

𝐿0 = 10mm, we note (𝑛3
0,𝑧𝑟33 + 𝑛3

0,𝑦𝑟23 = 156.9pm/V. For a quarter-wave-field of

|𝐸𝜆/4| = 𝜆
4𝐿0(𝑛3

𝑧0𝑟33−𝑛3
𝑦0𝑟23)

= 124.3V/mm and a length difference of 𝛿𝐿1,2 = 2𝜇m,

and for 𝐸𝛼1 = 𝐸𝛼2 = 0 we obtain

𝜑𝑅
𝑎𝑣𝑔 − 𝜑𝐿

𝑎𝑣𝑔 = 𝜋/𝜆(156.9𝑝𝑚/𝑉 )(124.3𝑉/𝑚𝑚)2𝜇𝑚 = 122𝑝𝑚/𝜆

This helicity correlated phase shift difference would, in a pulsed laser, correspond

to a longitudinal position difference along the propagation axis 𝐷𝑧 (as opposed

to 𝐷𝑥 and 𝐷𝑦), but it would be a very tiny effect. We note that whatever helicity

correlated phase shift difference is caused by the difference in crystal length can be

corrected by weighting one of the crystals with higher voltages, such that

𝐸𝛼1 − 𝐸𝛼2

|𝐸𝜆/4|+
𝐸𝛼1+𝐸𝛼2

2

=
𝛿𝐿12

𝐿0

having the shorter crystal proportionately do more work essentially, via applying

a difference in the crystals 𝛼-phase voltages. We typically keep these 𝛼-voltages

the same for both crystals, but in principle, we could change them slightly without

affecting cell operation significantly. If 𝐸𝛼1 and 𝐸𝛼2 differed by 10% of 𝐸𝜆/4|, this

could make a helicity correlated phase shift difference

𝜑𝑅
𝑎𝑣𝑔 − 𝜑𝐿

𝑎𝑣𝑔 ≈ 𝜋/𝜆(156.9𝑝𝑚/𝑉 )(10𝑚𝑚)(0.1× 124.3𝑉/𝑚𝑚) = 61𝑛𝑚/𝜆
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corresponding to a longitudinal position difference along the propagation axis

𝐷𝑧 = 61nm (aka helicity correlated time difference 𝐷𝑡 = 0.2𝑓𝑠 at 𝑣 = 𝑐). So we

have more then enough range in the voltages to correct a helicity correlated phase

longitudinal position difference on the order of 𝐷𝑧 ∼ 100nm, only changing the

𝛼-voltages by 10% of the QWV.

6.7 Conclusion

We have presented an innovative ultra-fast switch RTP cell design which uses

electric field gradients to counteract crystal non-uniformities, leading to improved

extinction ratios (in 𝜆/2-wave configuration) and minimization of voltage depen-

dent beam steering (in 𝜆/4-wave configuration). This RTP Pockels cell design has

been demonstrated to be capable of producing precisely controlled polarized elec-

tron beam at Jefferson Laboratory and control beam steering down to the nm-level

with voltage feedback. Additionally, the cell has an increased number of degrees of

freedom and can control both S1 and S2 polarizations. The precision reached with

the RTP cell offers sufficient control over and minimization of intensity asymmetry,

position differences, and spot-size asymmetry to perform PREX II, an upcoming

parity violation electron scattering experiment at JLab. The position differences

achieved with electron beam were <30nm. The RTP Pockels cell system will pro-

vide fast flipping and suitable control of position differences and parity quality

beam for the future MOLLER experiment, providing an unprecedented precision

on the electron weak charge and electroweak mixing angle. Future studies will ex-

plore the importance of accelerator beam transport in maintaining small helicity

correlated beam asymmetries achieved by the Pockels Cell.
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Chapter 7

Conclusion and Summary

MOLLER will measure sin2 𝜃𝑊 at low momentum transfer (𝑄2 ≈ 0.0056GeV2)

by examining the parity-violating asymmetry 𝐴𝑃𝑉 to 0.8ppb precision in the scat-

tering of a longitudinally polarized electron beam off electrons in a liquid hydrogen

target; thereby measuring the weak charge of the electron 𝑄𝑒
𝑊 , proportional to the

product of the electron’s vector and axial-vector couplings to the 𝑍0 boson, to 2.4%

precision. We have presented a number of the experimental techniques which will

be employed to to reach the experimental precision goals: 2.1% statistical and

1.1% systematic. These include achieving the requirements on the properties fo

the polarized electron beam, a high luminosity liquid hydrogen target with ex-

tremely small pulse-to-pulse density fluctuations, and the requirement of a high

signal-to-background ratio [46]. In particular, we have new Pockels cell for the

polarized source, using RTP (Rubidium Titanyl Phosphate) crystals, designed to

meet MOLLER’s statistical and systematic experimental precision goals.

We have presented an RTP Pockels cell design that provides the best of both

worlds for MOLLER: fast transition and improved effective uniformity. Using

RTP was incredibly successful in terms of reducing transition time, and allowing

for higher flip rate and data taking. We have demonstrated 8𝜇s transitions with a

large aperture(12mmx12mm), transverse, 2 crystal RTP cell (a factor of 10X im-

provement over the longitudinal KD*P previously used at JLab). Furthermore, we
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have shown the new RTP Pockels cell is capable of self-correcting intrinsic crystal

non-uniformity effects. These effects are counteracted with controlled electric-field

gradients so that laser beam helicity correlated position motion is controllable and

kept on the order of the ∼10nrad, 10nm level, while the transition time is kept be-

low 10𝜇s. The electron beam position differences in the 130keV region of the JLab

injector were kept at the sub-30nm level.The RTP Pockels cell system has been

demonstrated to be capable of producing precisely controlled polarized electron

beam at Jefferson Laboratory and control beam steering down to the 1nm-level

with voltage feedback. The system will provide fast flipping and suitable control of

position differences and parity quality beam for the future MOLLER experiment,

providing an unprecedented precision on the electron weak charge and electroweak

mixing angle.

The precision reached with the RTP cell offers sufficient control over and mini-

mization of intensity asymmetry, position differences, and spot-size asymmetry to

be used in the upcoming PREX II (Lead Radius Experiment) which will measure

the weak skin thickness of the 208Pb nucleus in 2019. PREX-I measured an asym-

metry of 0.6ppm, and inferred a neutron skin thickness of 𝑅𝑛 − 𝑅𝑝 = 0.33+0.16
−0.18

fm, interestingly inconsistent with measured neutron star properties and existing

models (though it is within sigma). PREX-II is expected to achieve a factor of

3 improvement on the precision of the neutron skin thickness than for PREX-I,

which was statistics limited.

We have described the experimental design of PREX-II, which will measure the

parity violating asymmetry 𝐴𝑃𝑉 for 1GeV electrons scattering from 208Pb at five

degrees, and should be sensitive to the neutron radius of 208Pb to 1% (±0.05fm)

precision [164]. We have described several ways in which PREX-II precision will

be improved over PREX-I including greater statistics, reduced beam asymme-

tries, and multiple transverse asymmetry measurements for 12C and 208Pb both

from Mainz and PREX-II. PREX-I did not achieve its 𝐴𝑃𝑉 statistical precision

goal of 3% due to equipment failure as a result of high radiation [171]. We have
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presented extensive work on PREX-II radiation shielding, ensuring the upcom-

ing experiment will be radiation-hard and the desired statistics will be obtained.

While the systematics were well under control in PREX-I, experience suggests

that by using the new RTP cell, the beam systematics could be controlled even

better than they were during PREX-I.

Lastly, we have presented the results of the 12C transverse asymmetry mea-

surement performed at MAMI at various 𝑄2 at constant 570MeV beam energy.

The PREX-II targets are composed of both 208Pb and 12C in the form of dia-

mond used for its thermal conductivity. Measuring the transverse asymmetry 𝐴𝑛

in 208Pb is important for precision scattering experiments like PREX because the

parity-violating asymmetry 𝐴𝑃𝑉 has a systematic uncertainty corresponding to a

false measured asymmetry 𝐴𝑚
𝑛 which comes from a non-zero transverse compo-

nent of the beam polarization 𝐴𝑚
𝑛 = 𝐴𝑛𝑃𝑒 · 𝑘. For heavy nuclei, like 208Pb,48Ca

accounting for the transverse asymmetry remains a theoretical challenge and two-

photon exchange calculations, which account for dispersion corrections but neglect

Coulomb distortions, fail for the heavier 208𝑃𝑏 nucleus [209]. So, it is important

that measurements of 𝐴𝑛 in scattering off heavy nuclei are performed for a range

of Z at various beam energies. The MAMI data indicates the that ratio of the

Compton to charge form factor is not target independent even for a light nucleus

like 12𝐶 and that and heavier nuclei may have an even larger deviations. No-

tably, similar models failed for 208Pb in PREX-I [209]. In PVES experiments, like

PREX, these two-photon exchange processes provide an important contribution

to the systematic uncertainties. Future measurements at MAMI will investigate

the transverse asymmetry for heavier nuclei, like 208Pb, at the same 𝑄2 values

using similar experimental methodology.

We have shown the methods by which PREX-II will provide a clean and pre-

cise measurement of 𝑅𝑁 , the RMS radius of neutrons in a heavy nucleus, and

further constrain the equation of state (EOS) of highly dense matter. The re-

sults of the upcoming experiment will will have impact on both nuclear physics
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and astrophysics including atomic parity violation experiments, heavy ion colli-

sions, neutron star structure, and the nuclear EOS for neutron stars which impacts

gravitational waveforms of neutron star collisions as measured by LIGO.
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Appendix A

Derivation: Angle Dependence in

RTP and KD*P

A.1 Angle Deflection Within Crystal: Inside vs

Outside

Typically in an angle scan measurement, the crystal is rotated in pitch and yaw

by a known angle and the laser remains fixed. In calculation, however, the laser

angle within the crystal as compared to it’s primary axes is used instead. Con-

verting between these two scenarios is not as straightforward as a simple change

of reference frame because of Snell’s law.

(a)

(b)

Figure A-1: (a) Angular deviations (b) index ellipsoid
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Making small angle approximations and treating the refractive index outside

the crystal as 1,

𝜉𝑥0,𝑜𝑢𝑡 = 𝜉𝑥0,𝑖𝑛 + (𝜃𝑐𝑢𝑡,𝑜𝑢𝑡 − 𝜃𝑐𝑢𝑡,𝑖𝑛)𝑛 , 𝜉𝑥 = 𝜉𝑥0,𝑖𝑛/𝑛+ 𝜃𝑐𝑢𝑡,𝑖𝑛

𝜉𝑥0,𝑜𝑢𝑡 = (𝜉𝑥 − 𝜃𝑐𝑢𝑡,𝑜𝑢𝑡)𝑛

We have taken into account the imperfect angle cuts on the crystal faces in

these equations.

In general, for a birefringent material, the index of refraction is also angle

dependent due to the components of the light polarization having components

along different primary crystal axes, mixing the refractive indexes. n is more

generally described as n(𝜃,𝜑) as can be computed through the index ellipsoid of

the crystal, which is defined by the surface 𝑥2
1

𝑛2
1
+

𝑥2
2

𝑛2
2
+

𝑥2
3

𝑛2
3
= 1.

We calculate n(𝜃,𝜑) by noting 𝑥1 = 𝑛(𝜃, 𝜑) sin(𝜃) cos(𝜑), 𝑥2 = 𝑛(𝜃, 𝜑) sin(𝜃) sin(𝜑),𝑥3 =

𝑛(𝜃, 𝜑) cos(𝜃). Hence,

1

𝑛2(𝜃, 𝜑)
=

sin2(𝜃) cos2(𝜑)

𝑛2
1

+
sin2(𝜃) sin2(𝜑)

𝑛2
2

+
cos2(𝜃)

𝑛2
3

For polarization mainly along a primary axis 𝑛𝑖 with small angles deviations

𝜉, the perturbation on the refractive index will take the quadratic form

𝑛(𝜉) ≈ 𝑛𝑖(1 + 𝑏𝜉2)

where b is small. Snell’s Law in a birefringent material is rewritten as a phase-

matching condition

𝑛(𝜉) sin(𝜉) = 𝑛0 sin(𝜉0)

𝑛(𝜉)𝜉 ≈ 𝑛0𝜉0

where 𝜉 is the propagation angle inside the crystal, and 𝜉0 is the propagation
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angle outside the crystal. Putting these equations together, we obtain

𝑛𝑖𝜉 + 𝑛𝑖𝑏𝜉
3 − 𝑛0𝜉0 = 0

Since b«1, the solution is close to 𝑛𝑖𝜉 ≈ 𝑛0𝜉0. Plugging this in, we obtain

𝜉 ≈ 𝑛0

𝑛𝑖

𝜉0 +
𝑛3
0

𝑛3
𝑖

𝑏𝜉30 , 𝑛(𝜉) ≈ 𝑛𝑖(1 + 𝑏
𝑛2
0

𝑛2
𝑖

𝜉20)

Taking into account the face cuts on the crystal, and treating the refractive

index outside the crystal as 1, we obtain equation of the form

𝜉0,𝑜𝑢𝑡 = 𝜉0,𝑖𝑛 + (𝜃𝑐𝑢𝑡,𝑜𝑢𝑡 − 𝜃𝑐𝑢𝑡,𝑖𝑛)𝑛(𝜉) ≈ 𝜉0,𝑖𝑛 + (𝜃𝑐𝑢𝑡,𝑜𝑢𝑡 − 𝜃𝑐𝑢𝑡,𝑖𝑛)(𝑛𝑖(1 + 𝑏
1

𝑛2
𝑖

𝜉20,𝑖𝑛))

𝜉 = 𝜉0,𝑖𝑛/𝑛(𝜉) + 𝜃𝑐𝑢𝑡,𝑖𝑛 ≈ 1

𝑛𝑖

𝜉0,𝑖𝑛 +
1

𝑛3
𝑖

𝑏𝜉30 + 𝜃𝑐𝑢𝑡,𝑖𝑛

𝜉0,𝑜𝑢𝑡 = (𝜉 − 𝜃𝑐𝑢𝑡,𝑜𝑢𝑡)𝑛(𝜉) ≈ (𝜉 − 𝜃𝑐𝑢𝑡,𝑜𝑢𝑡)(𝑛𝑖(1 + 𝑏
1

𝑛2
𝑖

𝜉20,𝑖𝑛))

A.2 Fast-axis direction angle dependence in KD*P

The orientation of the effective fast axis of the crystal is different when the

crystal is tilted. For KD*P, the fundamental refractive indices for the x’ and y’

(along ±45𝑜) axes are approximately the same 𝑛𝑥′ ≈ 𝑛𝑦′ ≈ 𝑛𝑜, so the effective

fast and slow axes are determined by the direction beam propagation within the

crystal (𝜉𝑥′ , 𝜉𝑦′) ≈ 1
𝑛𝑜
(𝜉𝑥′0, 𝜉𝑦′0) due to the crystal tilt, which mixes the ordinary

index 𝑛𝑜 with the extraordinary index 𝑛𝑒. We note that the effective fast axis

direction relative to the horizontal (x-axis) is simply given by

sin(𝜂) = 𝜉𝑥/
√︁
𝜉2𝑥 + 𝜉2𝑦
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where 𝜉𝑥 =
𝜉𝑥′−𝜉𝑦′√

2
is along the horizontal axis and 𝜉𝑦 =

𝜉𝑥′+𝜉𝑦′√
2

is along the vertical

axis. We can define the effective slow axis as 𝜏 = 𝜂 + 𝜋/2 = and

sin(𝜏) = sin(𝜂 + 𝜋/2) = cos(𝜂) = 𝜉𝑦/
√︁
𝜉2𝑥 + 𝜉2𝑦

we refer to the fast axis as a (along angle 𝜂) and refer to the slow axis as b (along

angle 𝜏). We note that in KD*P, the effective slow axis b is determined by the

incoming beam’s transverse component direction 𝜉𝑏 = (𝜉𝑥, 𝜉𝑦) upon entering the

crystal. The fast-axis a (along 𝜂) is simply transverse to that.

A.3 Asymmetry from extraneous birefringent ele-

ment

When the Pockels cell flips between right and left circular polarization states,

it can be described as inducing a phase shift 𝛿

𝛿𝑅(𝐿) = ∓(𝜋/2 + 𝛼)−Δ

where 𝛼 and Δ refer to symmetric and antisymmetric deviation from quarter wave

circular polarization.

If an analyzer is inserted after the Pockels cell with transmission coefficients

𝑇𝑥, 𝑇𝑦 along an axis x,y where 𝜓 is the angle subtended between the analyzing

direction x and the horizontal axis. The transmission through a polarizing element

for each polarization state is described by:

𝑇𝑅(𝐿) = 𝑇
1

2
(1 + 𝜖/𝑇 cos(2(𝜓 − 𝜂)) cos 𝛿𝑅(𝐿))

𝑇𝑅(𝐿) = 𝑇
1

2
(1 + 𝜖/𝑇 sin(2(𝜂 − 𝜓)) cos 𝛿𝑅(𝐿))

where 𝜖 = 𝑇𝑥−𝑇𝑦, 𝑇 = (𝑇𝑥−𝑇𝑦)/2 defines the analyzing power of the polarizer(or



A.4. REFRACTIVE INDEX ANGLE DEPENDENCE IN KD*P 370

polarizing element) and 𝜂 is the effective fast-axis of the Pockels cell crystal relative

to the horizontal axis. The intensity asymmetry 𝐼𝐴 is given by

𝐴𝑞 =
𝑇𝑅 − 𝑇𝐿

𝑇𝑅 + 𝑇𝐿
≈ 𝜖

𝑇
cos(2(𝜓 − 𝜂))

1

2
(cos 𝛿𝑅 − cos 𝛿𝐿) ≈ − 𝜖

𝑇
cos(2(𝜓 − 𝜂))Δ

𝐴𝑞 =
𝑇𝑅 − 𝑇𝐿

𝑇𝑅 + 𝑇𝐿
≈ 𝜖

𝑇
sin(2(𝜂 − 𝜓))

1

2
(cos 𝛿𝑅 − cos 𝛿𝐿) ≈ − 𝜖

𝑇
sin(2(𝜂 − 𝜓))Δ

where we have used the approximation cos 𝛿𝑅 − cos 𝛿𝐿 ≈ 𝛿𝑅 + 𝛿𝐿 = −2Δ.

The asymmetry arising from an extraneous birefringent element contributing

a delta-phase shift Δ = 𝜁 = 2𝜋𝛿𝑛/𝐿 is given by

𝐴𝑞 = − 𝜖

𝑇
𝜁 sin(2(𝜂 − 𝜓))

A.4 Refractive Index angle dependence in KD*P

Specifically, for KD*P, the light propagates along the crystal z-axis direction,

with incident polarization horizontal, with nearly equal components along the 𝑛′
𝑥,

𝑛′
𝑦 directions (±45𝑜) which are the crystals new primary axes when under the

influence of an electric field. 𝑟 ≈ (0, 0, 1) and 𝑝 ≈ ( 1√
2
, 1√

2
, 0).

Upon entering the crystal, the light will split into 2 rays, ray1 with polarization

along the effective fast axis 𝑎− 𝑧 plane, and ray2 with polarization along the slow

axis 𝑏− 𝑧 plane where a and b axis are perpendicular to one another.

Figure A-2: Light refracting upon entering a birefringent material such as calcite
[310]
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Figure A-3: The ray of light incident on an optical material at an angle 𝜉 . 𝜂 is
the orientation of the material’s fast-axis from y-axis. [163]

The input ray propagating in the direction 𝑟 ≈ (𝜉𝑥0, 𝜉𝑦0, 1 − 𝜉2𝑥0/2 − 𝜉2𝑦0/2)

in the lab x-y-z coordinate system is expressed as 𝑟 ≈ (𝜉𝑎0, 𝜉𝑏0, 1 − 𝜉2𝑎0/2 −

𝜉2𝑏0/2) in the a-b-z coordinate system. The ray can be divided into two polar-

ization components 𝑝01 = (cos(𝜉𝑎0), 0,− sin(𝜉𝑎0)) ≈ (1 − 𝜉2𝑎0, 0,−𝜉𝑎0) and 𝑝02 =

(0, cos(𝜉𝑏0),− sin(𝜉𝑏0)) ≈ (0, 1− 𝜉2𝑏0,−𝜉𝑏0).

For the component of input polarization along the 𝑎z plane, an angle 𝜉𝑎1 within

the crystal both lengthens the propagation distance of ray1 by 𝐿0𝜉2𝑎1
2

in the crystal

and mixes refractive indices 𝑛𝑎, 𝑛𝑧: 𝑟1 = (sin(𝜉𝑎1), 0, cos(𝜉𝑎1)) ≈ (𝜉𝑎1, 0, 1− 𝜉2𝑎1/2)

and 𝑝1 = (cos(𝜉𝑎1), 0,− sin(𝜉𝑎1) ≈ (1 − 𝜉2𝑎1, 0,−𝜉𝑎1). An angle 𝜉𝑏1 has no effect

on the refractive index along a, only the distance of propagation is lengthened by
𝐿0𝜉2𝑏1

2
. Putting 𝜉𝑎1 and 𝜉𝑏1 together, we obtain

𝑟1 ≈ (𝜉𝑎1, 𝜉𝑏1, 1− 𝜉2𝑎1/2− 𝜉2𝑏1/2), 𝑝1 ≈ (1− 𝜉2𝑎1/2, 0,−𝜉𝑎1), 𝐿1 = 𝐿0(1 + 𝜉2𝑎1/2 +

𝜉2𝑏1/2)

For this polarization direction, the index ellipsoid equation yields

1

𝑛2
1(𝜉𝑎1)

≈ (1− 𝜉2𝑎1)
2

𝑛2
𝑎1

+
𝜉2𝑎1
𝑛2
𝑧

𝑛1(𝜉𝑎1) ≈ (
(1− 𝜉2𝑎1)

2

𝑛2
𝑎1

+
𝜉2𝑎1
𝑛2
𝑧

)−(1/2) ≈ 𝑛𝑎(1 +
𝑛2
𝑧 − 𝑛2

𝑎

2𝑛2
𝑧

𝜉2𝑎1)

Snell’s law can be approximated as 𝑛0𝜉𝑎0 = 𝑛1(𝜉𝑎1)𝜉𝑎1 ≈ 𝑛𝑎(1+
𝑛2
𝑧−𝑛2

𝑎

2𝑛2
𝑧
𝜉2𝑎1)𝜉𝑎1 ≈

𝑛𝑎𝜉𝑎1.
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Putting these equations together, we obtain

𝑛𝑎𝜉𝑎1 + 𝑛𝑎
𝑛2
𝑧 − 𝑛2

𝑎

2𝑛2
𝑧

𝜉3𝑎1 − 𝑛0𝜉𝑎0 = 0

Since 𝑛2
𝑧−𝑛2

𝑎

2𝑛2
𝑧

«1, the solution is close to 𝑛𝑎𝜉𝑎1 ≈ 𝑛0𝜉𝑎0. Plugging this in, we

obtain

𝜉𝑎1 ≈
𝑛0

𝑛𝑎

𝜉𝑎0 −
𝑛3
0

𝑛3
𝑎

𝑛2
𝑧 − 𝑛2

𝑎

2𝑛2
𝑧

𝜉3𝑎0 ≈
𝑛0

𝑛𝑎

𝜉𝑎0 , 𝑛1(𝜉𝑎1) ≈ 𝑛𝑎(1 +
𝑛2
𝑧 − 𝑛2

𝑎

2𝑛2
𝑧

𝑛2
0

𝑛2
𝑎

𝜉2𝑎0) ≈ 𝑛𝑎

Similarly for 𝜉𝑏1, Snell’s law becomes 𝑛1(𝜉𝑎1)𝜉𝑏1 ≈ 𝑛0𝜉𝑏0, yielding

𝜉𝑏1 ≈
𝜉𝑏0𝑛0

𝑛𝑎

(1− 𝑛2
𝑧 − 𝑛2

𝑎

2𝑛2
𝑧

𝑛2
0

𝑛2
𝑎

𝜉2𝑎0) ≈
𝑛0

𝑛𝑎

𝜉𝑏0

Generalizing to include effects of face cuts on the crystal and calculating the

direction of the outgoing beam upon exiting the crystal

𝜉𝑥1,𝑜𝑢𝑡 = 𝜉𝑥0,𝑖𝑛+(𝜃𝑥𝑐𝑢𝑡,𝑜𝑢𝑡−𝜃𝑥𝑐𝑢𝑡,𝑖𝑛)𝑛1(𝜉𝑎1) , 𝜉𝑦1,𝑜𝑢𝑡 = 𝜉𝑦0,𝑖𝑛+(𝜃𝑦𝑐𝑢𝑡,𝑜𝑢𝑡−𝜃𝑦𝑐𝑢𝑡,𝑖𝑛)𝑛1(𝜉𝑎1)

We perform this analysis again for the 2nd ray. For the component of in-

put polarization along the yz plane, an angle 𝜉𝑏2 within the crystal both length-

ens the propagation distance of ray2 by 𝜉2𝑏2
2

in the crystal and mixes refrac-

tive indices 𝑛𝑏, 𝑛𝑧: 𝑟2 = (0, sin(𝜉𝑏2), cos(𝜉𝑏2))𝑎𝑝𝑝𝑟𝑜𝑥(0, 𝜉𝑏2, 1 − 𝜉2𝑏2/2) and 𝑝2 =

(0, cos(𝜉𝑏2),− sin(𝜉𝑏2) ≈ (0, 1− 𝜉2𝑏2,−𝜉𝑏2). An angle 𝜉𝑎2 has no effect on the refrac-

tive index, only the distance of propagation is lengthened by 𝐿0𝜉2𝑎2
2

. Putting 𝜉𝑎2

and 𝜉𝑏2 together, we obtain

𝑟2 ≈ (𝜉𝑎2, 𝜉𝑏2, 1− 𝜉2𝑎2/2− 𝜉2𝑏2/2), 𝑝2 ≈ (0, 1− 𝜉2𝑏2/2,−𝜉𝑏2), 𝐿2 = 𝐿0(1 + 𝜉2𝑎2/2 +

𝜉2𝑏2/2)

For this polarization direction, the index ellipsoid equation and Snell’s law
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yield

𝑛2(𝜉𝑏2) ≈ 𝑛𝑏(1 +
𝑛2
𝑧 − 𝑛2

𝑏

2𝑛2
𝑧

𝑛2
0

𝑛2
𝑏

𝜉2𝑏0) ≈ 𝑛𝑏

𝜉𝑏2 ≈
𝑛0

𝑛𝑏

𝜉𝑏0 −
𝑛3
0

𝑛3
𝑏

𝑛2
𝑧 − 𝑛2

𝑏

2𝑛2
𝑧

𝜉3𝑏0 ≈
𝑛0

𝑛𝑏

𝜉𝑏0 , 𝜉𝑎2 ≈
𝜉𝑎0𝑛0

𝑛𝑏

(1− 𝑛2
𝑧 − 𝑛2

𝑏

2𝑛2
𝑧

𝑛2
0

𝑛2
𝑏

𝜉2𝑏0) ≈
𝑛0

𝑛𝑏

𝜉𝑎0

Generalizing to include effects of face cuts on the crystal and calculating the

direction of the outgoing beam upon exiting the crystal

𝜉𝑥2,𝑜𝑢𝑡 = 𝜉𝑥0,𝑖𝑛+(𝜃𝑥𝑐𝑢𝑡,𝑜𝑢𝑡−𝜃𝑥𝑐𝑢𝑡,𝑖𝑛)𝑛2(𝜉𝑏2) , 𝜉𝑦2,𝑜𝑢𝑡 = 𝜉𝑦0,𝑖𝑛+(𝜃𝑦𝑐𝑢𝑡,𝑜𝑢𝑡−𝜃𝑦𝑐𝑢𝑡,𝑖𝑛)𝑛2(𝜉𝑏2)

For KD*P , 𝑛0 = 𝑛𝑎𝑖𝑟 ≈ 1, 𝑛𝑎 ≈ 𝑛𝑏 ≈ 𝑛𝑜, 𝑛𝑧 = 𝑛𝑒 and the electro-optic

coupling yields refractive indices along the ±45𝑜 directions

𝑛𝑥′ = 𝑛𝑜 −
1

2
𝑛3
𝑜𝑟63𝐸𝑧 , 𝑛𝑦′ = 𝑛𝑜 +

1

2
𝑛3
𝑜𝑟63𝐸𝑧

where the helicity correlated index differences Δ𝑛𝑥′ = −1
2
𝑛3
𝑜𝑟63Δ𝐸𝑧 and Δ𝑛𝑦′ =

+1
2
𝑛3
𝑜𝑟63Δ𝐸𝑧 and r63=23.6pm/V [308]

We consider the terms in birefringence 𝛿𝑛(𝜉𝑎0, 𝜉𝑏0) = 𝑛1 − 𝑛2 which will con-

tribute to a Δ-phase through a phase shift Δ𝜁(𝜉𝑎0, 𝜉𝑏0). We consider helicity av-

eraged terms which contribute to both helicity states phases 𝜁𝑅(𝐿) with the same

sign, as the Δ-phase is defined to do. The helicity averaged terms are simply:

𝜁 = 2𝜋𝛿(𝑛𝐿)/𝜆 =
2𝜋

𝜆
(𝑛1𝐿1 − 𝑛2𝐿2)

𝜉𝑎 = 𝜉𝑎1 ≈ 𝜉𝑎2 ≈
1

𝑛𝑜

𝜉𝑎0 , 𝜉𝑏 = 𝜉𝑏1 ≈ 𝜉𝑏1 ≈
1

𝑛𝑜

𝜉𝑏0

𝑛1 ≈ 𝑛𝑜 +
𝑛2
𝑒 − 𝑛2

𝑜

2𝑛2
𝑒𝑛𝑜

𝜉2𝑎0 , 𝑛2 ≈ 𝑛𝑜 +
𝑛2
𝑒 − 𝑛2

𝑜

2𝑛2
𝑒𝑛𝑜

𝜉2𝑏0

𝛿𝑛 = 𝑛1 − 𝑛2 =
𝑛2
𝑒 − 𝑛2

𝑜

2𝑛2
𝑒𝑛𝑜

(𝜉2𝑎0 − 𝜉2𝑏0) , 𝐿 = 𝐿1 ≈ 𝐿2 ≈ 𝐿0(1 + (
1

𝑛2
𝑜

)(𝜉2𝑎0 + 𝜉2𝑏0))
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The overall phase shift 𝜁 is given by

𝜁 =
2𝜋

𝜆

𝑛2
𝑒 − 𝑛2

𝑜

2𝑛2
𝑒𝑛𝑜

(𝜉2𝑎0 − 𝜉2𝑏0)(1 +
1

𝑛2
𝑜

(𝜉2𝑎0 + 𝜉2𝑏0))𝐿0

We note that in KD*P, the slow axis b is determined by the incoming beam

transverse component direction 𝜉𝑏 = (𝜉𝑥, 𝜉𝑦). The fast-axis a (along 𝜂 is simply

the direction for which the beam has no component. Hence, the magnitude of 𝜉𝑏

is given by|𝜉𝑏| =
√︀
𝜉2𝑥 + 𝜉2𝑦 and the magnitude of 𝜉𝑎 = 0. The phase shift can then

be rewritten in terms of (𝜉𝑥0, 𝜉𝑦0) as

𝜁(𝜉𝑥0 , 𝜉𝑦0) = −2𝜋

𝜆

𝑛2
𝑒 − 𝑛2

𝑜

2𝑛2
𝑒𝑛𝑜

(𝜉2𝑥0 + 𝜉2𝑦0)(1 +
1

𝑛2
𝑜

(𝜉2𝑥0 + 𝜉2𝑦0))𝐿0

≈ 𝜋

𝜆

𝑛2
𝑜 − 𝑛2

𝑒

𝑛2
𝑒𝑛𝑜

(𝜉2𝑥0 + 𝜉2𝑦0)𝐿0

A.5 Asymmetry angle dependence in KD*P

Given the above information regarding the angle dependence of 𝜁(𝜉𝑎0, 𝜉𝑏0) and

𝜂(𝜉𝑥0, 𝜉𝑦0), we can derive the angle dependence of the asymmetry 𝐴𝑞(𝜉𝑥0, 𝜉𝑦0) =

− 𝜖
𝑇
𝜁 sin(2(𝜂(𝜉𝑥0, 𝜉𝑦0)− 𝜓)). Note that

sin(2(𝜂 − 𝜓)) = sin(2𝜂) cos(2𝜓)− sin(2𝜓)𝑐𝑜𝑠(2𝜂)

= 2 sin 𝜂 cos 𝜂 cos(2𝜓)− (1− 2 sin2 𝜂) sin(2𝜓)

= 2 sin 𝜂

√︁
1− sin2 𝜂 cos(2𝜓)− (1− 2𝜉2𝑥

𝜉2𝑥 + 𝜉2𝑦
) sin(2𝜓)

=
2𝜉𝑥𝜉𝑦
𝜉2𝑥 + 𝜉2𝑦

cos(2𝜓) +
𝜉2𝑥 − 𝜉2𝑦
𝜉2𝑥 + 𝜉2𝑦

sin(2𝜓)

Hence the angle dependence of Aq can be rewritten in terms of the beam
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incident angle in air (𝜉𝑥0, 𝜉𝑦0) =
1
𝑛𝑜
(𝜉𝑥, 𝜉𝑦) as

𝐴𝑞(𝜉𝑥0 , 𝜉𝑦0) = − 𝜖

𝑇
𝜁(𝜉𝑥0 , 𝜉𝑦0)

(︂
2𝜉𝑥0𝜉𝑦0
𝜉2𝑥0 + 𝜉2𝑦0

cos(2𝜓) +
𝜉2𝑥0 − 𝜉2𝑦0
𝜉𝑥02 + 𝜉2𝑦0

sin(2𝜓)

)︂

= − 𝜖

𝑇

𝜋𝐿0

𝜆

𝑛2
𝑜 − 𝑛2

𝑒

𝑛2
𝑒𝑛𝑜

(2𝜉𝑥0𝜉𝑦0 cos 2𝜓 + (𝜉2𝑥0 − 𝜉2𝑦0) sin 2𝜓)

In KD*P, at 780nm 𝑛𝑜 1.4988,𝑛𝑒 1.4617 [308]. The Pockels cell is 40mm in

length so theoretically, the angle dependence of the KD*P for a 100% analyzer

should be
𝑑2𝐴𝑞

𝑑𝜉20
= 2

𝜋𝐿0

𝜆

𝑛2
𝑜 − 𝑛2

𝑒

𝑛2
𝑒𝑛𝑜

= 11, 052𝑝𝑝𝑚/𝑚𝑟𝑎𝑑2

Empirically, we observe a smaller angle dependence than predicted.

A.6 Fast-axis direction angle dependence in RTP

In the case of an X-cut RTP pockels cell, the beam propagates mainly along

the crystal x-axis and the fundamental refractive indices 𝑛𝑦 and 𝑛𝑧 which the

transverse polarization are exposed to are quite different. At 780nm, the refractive

indices of RTP are 𝑛𝑥 = 1.7739 ,𝑛𝑦 = 1.7832, 𝑛𝑧 = 1.8673 (from Sellmeier’ s

equation [328]). When laser beam propagation is at an slight angle, while this will

mix 𝑛𝑥 into 𝑛𝑧 or 𝑛𝑦 slightly, it is insufficient to alter the direction of the effective

fast and slow axes. The effective fast and slow axis very nearly remain along the

original 𝑦, 𝑧 directions regardless of a small tilt angle. For a single RTP crystal ,

𝜂 = 𝑦 = 45𝑜.
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A.7 Asymmetry angle dependence model in RTP

The asymmetry arising from an extraneous birefringent element contributing

a delta-phase shift Δ = 𝜁 = 2𝜋𝛿𝑛/𝐿 is given by

𝐴𝑞 = − 𝜖

𝑇
𝜁 sin(2(𝜂 − 𝜓))

Because the RTP Pockels has so many internal crystal axes to keep track of,

we define the lab coordinate system in the transverse plane as 0𝑜 (horizontal ) ,

90𝑜(vertical), +45𝑜, and −45𝑜 (diagonal).

We can model the RTP asymmetry angle dependence on the KD*P asymmetry

angle dependence as having an S1 term and an S2 term

𝐴𝑞(𝜉𝑥, 𝜉𝑦) = − 𝜖

𝑇
(𝜁𝑆1 cos 2𝜓 + 𝜁𝑆2 sin 2𝜓)

We can can derive individually (1) the birefringence induced phase-shift 𝜁𝑆1 for

an analyzer along S1 (x-axis 0𝑜) which is sensitive to birefringence 𝛿𝑛 = 𝑛45𝑜 −

𝑛135𝑜 along the diagonals and (2) the birefringence induced phase-shift 𝜁𝑆2 for an

analyzer along S2 (45𝑜) which is sensitive to birefringence 𝛿𝑛 = 𝑛0𝑜 − 𝑛90𝑜 along

the vertical and horizontal.

A.8 Refractive Index angle dependence in RTP

For the first crystal, the fast axis a (in this case corresponding to crystal’s

y-axis) is along 45𝑜 and slow axis b (in this case corresponding to crystal’s z-axis)

is along 135𝑜. For ray 1 (the fast ray) in RTP1,

𝜉45𝑜,1 ≈
1

𝑛𝑦

𝜉45𝑜,0 , 𝜉135𝑜,1 ≈
1

𝑛𝑦

𝜉135𝑜,0

𝑛
(1)
1 (𝜉45𝑜,1) ≈ 𝑛𝑦(1 +

𝑛2
𝑥 − 𝑛2

𝑦

2𝑛2
𝑥

1

𝑛2
𝑦

𝜉245𝑜,0) , 𝐿
(1)
1 = 𝐿0(1 +

1

2𝑛2
𝑦

(𝜉245𝑜,0 + 𝜉2135𝑜,1))
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For ray 2 (the slow ray) in RTP1,

𝜉135𝑜,2 ≈
1

𝑛𝑧

𝜉135𝑜,0 , 𝜉45𝑜,2 ≈
1

𝑛𝑧

𝜉45𝑜,0

𝑛
(1)
2 (𝜉135𝑜,2) ≈ 𝑛𝑧(1 +

𝑛2
𝑥 − 𝑛2

𝑧

2𝑛2
𝑥

1

𝑛2
𝑧

𝜉2135𝑜,0) , 𝐿
(1)
2 = 𝐿0(1 +

1

2𝑛2
𝑧

(𝜉245𝑜,0 + 𝜉2135𝑜,1))

For the 2nd crystal, the fast axis a (in this case corresponding to crystal’s y-

axis) is along 135𝑜 and slow axis b (in this case corresponding to crystal’s z-axis)

is along 45𝑜. For ray 1 along 45𝑜 (the slow ray) in RTP2,

𝜉45𝑜,1 ≈
1

𝑛𝑧

𝜉45𝑜,0 , 𝜉135𝑜,1 ≈
1

𝑛𝑧

𝜉135𝑜,0

𝑛
(2)
1 (𝜉45𝑜,1) ≈ 𝑛𝑧(1 +

𝑛2
𝑥 − 𝑛2

𝑧

2𝑛2
𝑥

1

𝑛2
𝑧

𝜉245𝑜,0) , 𝐿
(2)
1 = 𝐿0(1 +

1

2𝑛2
𝑧

(𝜉245𝑜,0 + 𝜉2135𝑜,1))

For ray 2 along 135𝑜 (the fast ray) in RTP2,

𝜉135𝑜,2 ≈
1

𝑛𝑦

𝜉135𝑜,0 , 𝜉45𝑜,2 ≈
1

𝑛𝑦

𝜉45𝑜,0

𝑛
(2)
2 (𝜉135𝑜,2) ≈ 𝑛𝑦(1 +

𝑛2
𝑥 − 𝑛2

𝑦

2𝑛2
𝑥

1

𝑛2
𝑦

𝜉2135𝑜,0) , 𝐿
(2)
2 = 𝐿0(1 +

1

2𝑛2
𝑦

(𝜉245𝑜,0 + 𝜉2135𝑜,1))

where we have assumed that the crystal face cuts are small enough that the

angle at which the beam enters the first crystal is the same upon exiting and

entering the second crystal.

We obtain a phase shift in S1 due to birefringence along ±45𝑜 for the first

crystal 𝜁(1) and the 2nd crystal 𝜁(2) and combine them to obtain the total phase

shift 𝜁𝑆1 = 𝜁(1) + 𝜁(2)

𝜁(1) =
2𝜋

𝜆
(𝑛

(1)
1 𝐿

(1)
1 − 𝑛

(1)
2 𝐿

(1)
2 ) , 𝜁(2) =

2𝜋

𝜆
(𝑛

(2)
1 𝐿

(2)
1 − 𝑛

(2)
2 𝐿

(2)
2 )

𝜁𝑆1 =
𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛𝑧𝑛𝑦

− 1

𝑛2
𝑥

)(𝜉245𝑜,0 − 𝜉2135𝑜,0)
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We note that since the fast/slow axes for RTP is along ±45𝑜 regardless of the

the small angle deviation of the incoming beam from longitudinal propagation. So

the birefringence can only contribute to an S1 phase shift. The birefringence along

0𝑜 and 90𝑜 will always be 0 for an individual crystal and is also 0 for two crystals

combined (so long as their axes are aligned properly). This is obvious from the

fast that 𝑛0𝑜 = 𝑛90𝑜 =
𝑛1𝑛2√

(𝑛2
1+𝑛2

2)/2
so 𝛿𝑛 = 𝑛0𝑜 − 𝑛90𝑜 = 0. Hence

𝜁𝑆2 = 0

A.9 Asymmetry angle dependence in RTP

Putting the S1 and S2 behavior together, we obtain the asymmetry angle

dependence for two RTP crystals in succession

𝐴𝑞(𝜉45𝑜,0, 𝜉135𝑜,0) =
𝜖

𝑇
cos 2𝜓

𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛𝑧𝑛𝑦

− 1

𝑛2
𝑥

)(𝜉2135𝑜,0 − 𝜉245𝑜,0)

This equation can be rewritten in terms of the lab coordinates x (horizontal) and

y (vertical), where 𝜉45𝑜,0 = (𝜉𝑥0 + 𝜉𝑦0)/
√
2 and 𝜉135𝑜,0 = (−𝜉𝑥0 + 𝜉𝑦0)/

√
2

𝐴𝑞(𝜉𝑥0, 𝜉𝑦0) =
𝜖

𝑇
cos 2𝜓

𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛2
𝑥

− 1

𝑛𝑧𝑛𝑦

)(2𝜉𝑥0𝜉𝑦0)

Note that 𝐴𝑞 is zero in S2 (𝜓 = 𝜋/4), meaning its dependence on pitch/yaw

angular adjustments is negligible when analyzing along ±45𝑜.

At 780nm, the refractive indices of RTP are 𝑛𝑥 = 1.7739 ,𝑛𝑦 = 1.7832, 𝑛𝑧 =

1.8673 (from Sellmeier’ s equation [328]). The length of each crystal is 10mm, so

for a 100% analyzer in S1 the angle sensitivity is predicted to be

𝑑𝐴𝑞

𝑑𝜉0
= −2

𝜋𝐿0

𝜆
(𝑛𝑧 + 𝑛𝑦)(

1

𝑛𝑧𝑛𝑦

− 1

𝑛2
𝑥

) = 5, 137𝑝𝑝𝑚/𝑚𝑟𝑎𝑑2
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Appendix B

Tech Note: RTP Temperature

Dependence and Aq Feedback

B.1 Thermal Compensation

Unlike KD*P crystals, which are uniaxial and allow for a longitudinal cell de-

sign, RTP crystals are biaxial crystals. This means they have unique refractive

indices along each of the 3 primary crystal axes. RTP crystals are highly bire-

fringent (Δ𝑛 ≈ 0.1) to such an extent that a 1cm crystal functions like a 1000

order waveplate and is therefore extremely temperature dependent and wavelength

dependent. This large intrinsic birefringence is what necessitates the use of the so-

called “thermal compensation design” in which two RTP crystals are used together

with the fast axis of one crystal perpendicular to the fast axis of the other, so as

to cancel the birefringence. This thermal compensation design used by all RTP

cell manufacturers is exactly the same as the design of a zero-order waveplate

and it is done for precisely the same reason: multi-order waveplates are sensi-

tive to temperature and wavelength. They are sensitive to temperature because

refractive indices 𝑛𝑒 and 𝑛𝑜, and birefringence Δ𝑛 = 𝑛𝑒−𝑛𝑜, change with temper-

ature 𝑑Δ𝑛
𝑑𝑇

. They are sensitive to wavelength directly via the induced phase shift
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𝑑Δ𝜑
𝑑𝜆

= 𝑑
𝑑𝜆
2𝜋Δ𝑛𝐿/𝜆 = −2𝜋Δ𝑛𝐿Δ𝜆/𝜆2. Most commercial multi-order waveplates

are order 10. RTPs of the nominal 1cm length are order 1000 at 780nm. Zero-

order waveplates consist of 2 multi-order waveplates with fast axes perpendicular

to each other. RTP cells consist of 2 RTP crystals with fast axes perpendicular to

each other. The design between zero-order waveplates and RTP cells is completely

analogous.

Figure B-1: Thermal Compensation Design. RTP crystals in typical mount. Pho-
tograph by Raicol.

B.2 Temperature Differences

The thermal compensation design only works if both birefringent elements are

at the same temperature and of equal length. The change in phase shift of the

first element 𝛿Δ𝜑1 must be canceled by the change in phase shift of the second

element 𝛿Δ𝜑2.

0 = 𝛿Δ𝜑1+𝛿Δ𝜑2 =
𝑑Δ𝜑1

𝑑𝑇
𝛿𝑇1+

𝑑Δ𝜑2

𝑑𝑇
𝛿𝑇2 =

𝑑(2𝜋Δ𝑛1𝐿/𝜆)

𝑑𝑇
𝛿𝑇1+

𝑑(2𝜋Δ𝑛2𝐿/𝜆)

𝑑𝑇
𝛿𝑇2

(B.1)
𝑑2𝜋(𝑛𝑜 − 𝑛𝑒)𝐿/𝜆

𝑑𝑇
𝛿𝑇1 +

𝑑2𝜋(𝑛𝑒 − 𝑛𝑜)𝐿/𝜆

𝑑𝑇
𝛿𝑇2 = 2𝜋𝐿/𝜆

𝑑(𝑛𝑜 − 𝑛𝑒)

𝑑𝑇
(𝛿𝑇1 − 𝛿𝑇2)

= 2𝜋𝐿/𝜆
𝑑(𝑛𝑜 − 𝑛𝑒)

𝑑𝑇
𝛿𝑇12

When there is a temperature difference between the two crystals, it leads to

a net phase shift, and when running the Pockels cell at QWV and analyzing, it

leads to a charge asymmetry Aq. The Aq arising from a retardation plate that
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induces a phase shift Δ𝜑, and has its fast-axis at an angle 𝜂 from the horizontal

can be expressed as [316]

𝐴𝑞 = − 𝜖

𝑇
Δ𝜑 sin(2𝜂 − 2𝜓) (B.2)

where 𝜖/𝑇 is the analyzing power, 𝜓 is the angle subtended by one of the

analyzing axes relative to the horizontal. For a 100% analyzer oriented along

S1(vertical), where the crystal primary axes y-z are along S2(45𝑜), and there is a

temperature difference Δ𝑇12 between the crystals, we can expect a charge asym-

metry of

𝐴𝑞 = 𝜂 = 2𝜋𝐿/𝜆
𝑑(𝑛𝑧 − 𝑛𝑦)

𝑑𝑇
Δ𝑇12 (B.3)

Sellmeier’s equation [328] gives 𝑛𝑥0 = 1.774,𝑛𝑦0 = 1.783,𝑛𝑧0 = 1.867 at 780nm.

The length of each crystal is L=10mm, with a negligible length difference tolerance

of 2um [317] . The temperature dependence of the RTP refractive indices is

𝑑𝑛𝑧/𝑑𝑇 = 1.22× 10−5𝐾−1 , 𝑑𝑛𝑦/𝑑𝑇 = 3.88× 10−5𝐾−1 at 25𝑜𝐶 [268], and hence

the birefringence temperature dependence is 8.31×10−6𝐾−1. There is some slight

non-linearity with respect to temperature in the 20 − 30𝑜𝐶 temperature range,

but it is quite small. For our RTP crystals at 780nm, we estimate the charge

asymmetry from a temperature difference between the crystals to be 𝑑𝐴𝑞/𝑑𝑇12 =

6.7× 105𝑝𝑝𝑚/𝑜𝐶 = 670𝑝𝑝𝑚/𝑚𝐾.

Figure B-2: Run4883, RTP cell, analyzed in S1 [321]
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Both in the lab at UVa and at JLab, we observe slow fluctuation in Aq by

30,000ppm over time (Fig. B-2 ) and we believe this to be related to a fluctuation

in the temperature difference between the crystals. We don’t believe this is due

to wavelength fluctuations because the wavelength stability of the JLab 1064nm

pump laser for the PPLN, prior to wavelength doubling to 780nm, was measured

to be 1553.625nm over 10minutes with no change in peak wavelength to 0.001nm

precision[318]. For a crystal length difference of 𝛿𝐿12 = 2𝜇𝑚 we’d expect 𝐴𝑞 =

−2𝜋Δ𝑛𝛿𝐿12/𝜆Δ𝜆/𝜆 = 1735𝑝𝑝𝑚/𝑛𝑚 and for 0.001nm, that would only be <2ppm

for the observe wavelength stability. The temperature difference between the

crystals only need by 45mKelvin to induce a 30,000ppm charge asymmetry, so it is

the more likely culprit of the observe fluctuations. We note that the fluctuations

were observed for both a commercial RTP cell and our UVa cell. The commercial

RTP cell has 6x6mm crystals silver cemented to the same base electrode, separated

by a few millimeters, and enclosed in a window sealed mount. Our UVa RTP cell

with larger 12x12mm crystals in an open mount design separated by 1-2” with

independent electrodes. At Jlab, the commercial cell Aq drifted by 10k ppm in

30min, while the UVa mount drifted by 14,000ppm over 20min in S1 [319]. This

implies that a mount redesign in favor of a more traditional design will not do

much to alleviate the temperature difference fluctuations.

We induced a temperature difference between the crystal mounts by slowly

heating one of the mounts with resistive heaters and measuring the temperature

of both mounts with thermocouples while observing Aq in S1 [266]. Both crystals

increased in temperature, one crystal by ∼ 4𝑜𝐹 and the other by ∼ 1𝑜𝐹 , with

the temperature difference range ∼ 0 − 3𝑜𝐹 , 0 ∼ −1.5𝑜𝐶. We observed in Fig.

B-3a that 𝑑𝐴𝑞/𝑑𝑇12 ∼ 8.9 × 105𝑝𝑝𝑚/𝑜𝐶 ∼ 890𝑝𝑝𝑚/𝑚𝐾 which is within 30%

of our theoretically predicted value. It should be noted that the temperature of

the mounts does not necessarily correspond to the temperature of the crystals and

other studies involving heating/cooling the mounts and measuring the temperature

of the mount did not all show such consistent results, so this measurement is very
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approximate and should only be notes on the OOM level.

(a) Measurement
(b) Calculation

Figure B-3: dAq/dT calculation compared to measurement. (a) Run 5081 UVa
Aq vs temperature difference between crystal mounts T1-T2 with resistive heaters
on one crystal mount[266] (b) Calculation of Aq vs T [268] where one crystal is
25𝑜𝐶 and T is the temperature of the 2nd crystal

B.3 Temperature Gradient

Just as a net temperature difference between the two crystals can result in a

charge asymmetry, a temperature gradient can result in a position difference or a

spot-size asymmetry. Position differences and spot-size asymmetries could arise in

more than one way. A position difference could arise from a birefringence gradient

when analyzing in S1, proportional to ∼ 𝑑𝐴𝑞/𝑑𝑋. A position difference could

also arise for no analyzer or in S1 from a gradient in the refractive index along a

primary axis. Similarly thermal gradients could give rise to spot size asymmetries

in S1 ∼ 𝑑2𝐴𝑞/𝑑𝑋2, or spot size asymmetries without analyzing through another

mechanism. It has been found through calculation [322] that the predominant

contribution to position differences and spot-size asymmetries is likely to come

through birefringence gradients in S1. Even for very small analyzing powers, this

is the dominant effect for the RTP.

It is important to note that it is not an overall temperature gradient that

matters, rather a difference in thermal gradient between the two crystals. The
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thermal compensation design will cancel any birefringence, birefringence gradient,

or birefringence 2nd moment that is seen by both crystals equally. It is only when

one crystal has a thermal gradient not seen by the other crystal that gives rise to

position differences and spot-size asymmetries.

B.3.1 Gradient Calculation

The position difference and spot size asymmetry arising from 1st and 2nd

moments of Aq in S1 are given by

𝐷𝑥 =
𝑤𝑃𝐶𝑤𝑞𝑝𝑑

2

𝑑𝐴𝑞

𝑑𝑥
=
𝑤𝑃𝐶𝑤𝑞𝑝𝑑𝜋𝐿

𝜆

𝑑(𝑛𝑧 − 𝑛𝑦)

𝑑𝑇

𝑑Δ𝑇12
𝑑𝑥

(B.4)

𝐴𝜎 =
𝑤2

𝑃𝐶

4

𝑑2𝐴𝑞

𝑑𝑥2
=
𝑤2

𝑃𝐶𝜋𝐿

2𝜆

𝑑(𝑛𝑧 − 𝑛𝑦)

𝑑𝑇

𝑑2Δ𝑇12
𝑑𝑥2

where 𝑤𝑃𝐶 refers to the beam 2𝜎 waist at the Pockels Cell, 𝑤𝑞𝑝𝑑 is the beam

waist at the location of measurement, in this case at the quad-photodiode, and

Δ𝑇12 is a temperature difference between the crystals.

Numerical Estimate of Gradient Effect

We can make an educated guess on the temperature gradient within one of the

crystals, and using equations B.3 and B.4, estimate the effect we might observe

after analyzing with a polarizer or the cathode. Importantly this calculation is for

a gradient seen by only one of the crystals and not the other. If the gradient is

experienced by both crystals, there is no net effect.

We assume that the temperature difference across two sides of a single crystal

cannot exceed the temperature difference observed between the two separate crys-

tals, as the crystals are separated by inches and one crystal is only 12mm across.

We observed that the two crystals temperature difference could fluctuate by possi-

bly ±45mK (Sec. B.2), so we set the temperature gradient to be ∼ 100𝑚𝐾/crystal

width ≈ 100𝑚𝐾/12𝑚𝑚 ≈ 8.3𝑚𝐾/𝑚𝑚. For the second moment, we made a sim-
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ilar assumption that 𝑑2𝑇/𝑑𝑥2 ∼ 100𝑚𝐾/(12𝑚𝑚)2 so that the temperature varies

no more than 50mK over 6mm across the crystal.

The temperature gradient gives rise to a refractive index gradient and birefrin-

gence gradient as seen in B-4.

(a) (b) (c)

Figure B-4: Thermal Gradient Calculation (a) Educated guess for the type of
temperature gradient (with 2nd moment) one of the crystals might experience (b)
temperature change experienced by the refractive indices 𝑛𝑧 and 𝑛𝑦 relative to 𝑛𝑧

and 𝑛𝑦 at the crystal center (c) temperature induced birefringence

At QWV, any extra birefringence experienced by the nearly circularly polarized

light will induce a charge asymmetry Aq. So the birefringence gradient, by Eq.

B.3, gives rise to a charge asymmetry gradient when the beam is analyzed. Fig.

B-5 shows the induced Aq gradient for a 100% analyzer along S1.

Figure B-5: Thermal induced Aq gradient for a 100% analyzer along S1

1st and 2nd moments in Aq give rise to position differences and spot size asym-

metries in S1. Fig. B-6 shows the position differences and spot-size asymmetries

for a 100% analyzer and a 0.88mm beam. The position difference observed at the
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crystal center is 2um and the maximum spot size asymmetry is 10−4. So if our

educated guess for the magnitude of thermal gradient is correct, we should expect

thermal fluctuations in Dx on the order of 2um and fluctuations in 𝐴𝜎 on the

order of 10−4 when analyzing on the laser table in S1.

Figure B-6: Thermal induced Aq 1st and 2nd moments and the corresponding
Dx and spot-size asymmetry for a 0.88mm beam and 100% analyzer along S1

The laser spot size at the Pockels Cell was measured to be 0.825mm horizon-

tally and 0.94mm vertically [329], so for this calculation we assumed the average

𝑤𝑃𝐶 = 0.8825𝑚𝑚. For simplicity, assumed that the spot size at the position

difference measurement location is the same as the spot size at the Pockels cell

𝑤𝑞𝑝𝑑 = 𝑤𝑃𝐶 . Regarding Dx it’s important to note that the value of Dx will be

proportional to the beam size at the location of the measurement device, so if the

quad-photodiode sees a larger beam spot or if a bpm see a larger beam spot, these

calculated values for Dx should be scaled up accordingly. The analyzing power is

also important. The cathode has an analyzing power of <6% [330], so the position

differences and spot size asymmetries seen in the injector for a 0.88mm beam due

to thermal gradients might be ∼ 120𝑛𝑚 and ∼ 6× 10−6. If we were to rotate the

RHWP so that the cathode was analyzing along 50𝑜, near S2, instead of along 90𝑜
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along S1, the analyzing power along S1 would only be 0.525% and there would

be further suppression of the thermally induced position differences drifts down

to 11nm and spot size asymmetries down to 5.3× 10−7, at a manageable level for

Moller.

B.3.2 Observed Temperature Gradient Fluctuations

We attempted to examine the position difference stability over time on the

laser table, using the quad-photodiode and analyzing in S1 (Fig. B-7 ). We ob-

served fluctuations on the order of 2um, although most of the fluctuations were

suspiciously correlated with fluctuations in Aq, shown in Fig. B-2. Small pedestal

errors can cause instrumental coupling between measured 𝐷𝑥, 𝐷𝑦 and Aq, which

we estimated with a PITA scan, which nominally doesn’t change position dif-

ferences much, mostly just Aq. The PITA scan showed potential instrumental

coupling between Aq and Dx,Dy in the qpd ∼ 1 − 5 × 10−5𝜇𝑚/𝑝𝑝𝑚. The po-

tential instrumental coupling could account for most of the observed fluctuations

of Dx,Dy as shown by the green curves in Fig. B-7 . However separate from the

possible Aq coupling contribution, Dx appears to drift over 3.5 hours by 2um. So

it is possible that the temperature gradient might be as large as 10mK/mm as

was postulated in Sec. B.3.1.
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Figure B-7: Run4883 [321] where Dx,Dy are measured with the qpd in S1 are
shown in black and an OOM estimate of potential contribution from Aq instru-
mental coupling to measured 𝐷𝑥, 𝑦 = 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔×𝐴𝑞 is shown in green, where the
coupling constant ∓2.1 × 10−5𝜇𝑚/𝑝𝑝𝑚 (obtained from a PITA scan [323] ) and
Aq from Fig. B-2 was used.

Observed Fluctuations for no analyzer and S2

B.4 Laser Heating

The power of the laser beam incident on the Pockels Cell can be up to ∼ 300mW

depending on what e-beam current the Hall is running at. There are 4 lasers, one

for each Hall, which might be turned on and off, might be aligned on top of one

another or not. It is conceivable that with a 1mm spot-size area, 1W of light

could be hitting the RTP cell. So, it is a relevant question: what kind of thermal

gradients might be caused by a small laser beam(1mm) of high-ish (1W) power.

As stated perviously, any thermal gradient seen by both crystals equally will

give rise to equal and opposite birefringence phase shifts because of the thermal

compensating design, and thus cancel each other out. A laser beam will pass

through both crystals, get absorbed slightly, and give rise to nearly the same

gradients in both crystals since both crystals see nearly the same size of beam

with nearly the same wattage. Most of the temperature gradient effects in the

first crystal will be canceled by the second. The residual left over comes from the
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slight difference in power seen by the second crystal due to some power having

been absorbed by and reflected by the first crystal.

The greater the power absorbed in the crystal, the greater the thermal gradient

and the difference in thermal gradient between the crystals. The values for the re-

ported absorption for RTP vary considerably. The crystal growth company Cristal

Laser reports that absorption depends on the crystal batch, but typical values at

1064nm are 𝛼 =0.01-0.02%/cm [328]. Raicol, the company which manufactured

the UVa RTP crystals, reports a Transmission of >98.5% for a 2cm 2 crystal cell.

Neglecting contributions of reflection coefficients, that’s an upper limit on absorp-

tion of <0.75%/cm. Raicol reported to LIGO [326] that absorption at 1064nm

for their crystals was <0.01%/cm and at 532nm the absorption increases to 0.2-

0.4%/cm. Redoptrinics.com [327] reports an absorption coefficient of 4%/cm at

532nm and 0.05%/cm at 1064nm. Measurements at UVa with 780nm showed the

transmission of the 1cm long RTP crystal “Galadriel” was 98.75% [324] and the

reflection coefficient was ∼0.2-0.7% depending on crystal and polarization axis

[325], indicating the upper limit on absorption at 780nm was 𝛼<0.55%-1%/cm.

The greater the thermal conductivity of the crystal, the more difficult it is to

create a thermal gradient. The thermal conductivity of KTA, KTP, and RTA are

k=18mW/cm/K , k=30mW/cm/K, and k=16mW/cm/K, respectively [268]. The

thermal conductivity of RTP is unknown to this author. As KTP is the crystal

most closely related to RTP, we use k=30mW/cm/K

This calculation uses the measured value for the RTP absorption coefficient

at UVa which is 0.75%/cm, the measured laser spot-size at the Pockels Cell at

JLab w=0.88mm [329], thermal conductivity for KTP k=30mW/cm/K, and 1W

of power.

The thermal gradient in each crystal from a gaussian beam of power 𝑃𝑡𝑜𝑡 and

2𝜎 width 𝑤 = 𝐹𝑊𝐻𝑀/
√
2 ln 2 can be found using the heat equation:

∇2𝑇 (𝑟) + 𝑞(𝑟)/𝑘𝑡ℎ = 0 (B.5)
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𝑞(𝑟) = 𝛼𝐼 = 𝛼𝐼0𝑒
−2𝑟2/𝑤2

𝑃𝑡𝑜𝑡 =
1

2
𝜋𝐼0𝑤

2

1

𝑠

𝜕𝑇

𝜕𝑠
+
𝜕2𝑇

𝜕𝑥2
+

2𝛼𝑃𝑡𝑜𝑡

𝜋𝑘𝑡ℎ𝑤2
= 0

where T(r) is the temperature, q(r) is the heat source, 𝑘𝑡ℎ is the thermal conduc-

tivity of the RTP material, and 𝛼 is the absorption coefficient per unit length. We

neglect crystal edge effects in this calculation and assume the steady state heat

flow is radial. For a gaussian laser beam, giving rise to a gaussian heat source q(r),

the following solution can be obtained for the radial temperature profile [331]

𝑇 = 𝑇0 +
𝛼𝑃𝑡𝑜𝑡

4𝑘𝑡ℎ𝜋

∞∑︁
0

(−1)𝑛(2𝑟
2

𝑤2 )
𝑛

(𝑛)(𝑛!)
(B.6)

where 𝛼 is the absorption coefficient per unit length, P is the incident laser power,

r is the radial coordinate and w is the beam radius.

We both numerically solved the heat equation and performed the above sum

up to the first 100 terms and obtained consistency to the level of 10−8𝑜𝐶. The

result for the temperature gradient in one of the two crystals is shown in Fig. B-8

.

(a) (b) (c)

Figure B-8: Laser induced thermal gradient for RTP with absorption coeffi-
cient 0.75%/cm, laser spot-size w=0.88mm, thermal conductivity k=30mW/cm/K
(from KTP crystal), and 1W of laser power. (a) Power absorbed by the first (of
2) 10mm length RTP crystal (b) calculated temperature gradient within crystal
in 𝑜𝐶(c) temperature induced birefringence in the first RTP crystal

However, the relevant quantity here is the difference in temperature between
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the two crystals (Fig. B-9 ) after a 0.75% absorption of power in the first crystal.

This temperature gradient difference between the crystals gives rise to a net phase

gradient, a charge asymmetry Aq (Fig. B-10 ) with 1st and 2nd moments (Fig.

B-11 ), and position differences and spot-size asymmetries when analyzing in S1

(Fig. B-11 ).

(a) (b)

Figure B-9: Laser induced difference in thermal gradient between the 2 RTP
crystals with absorption coefficient 0.75%/cm, laser spot-size w=0.88mm, thermal
conductivity k=30mW/cm/K (from KTP crystal), and 1W of laser power. (a)
Difference in power absorbed by the first and second 10mm length RTP crystals
(b) Difference in calculated temperature gradient within the 2 crystals in mKelvin

Figure B-10: Laser heating induced Aq for a 100% analyzer along S1
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Figure B-11: Laser heating induced Aq 1st and 2nd moments and the corre-
sponding Dx and spot-size asymmetry for a 0.88mm beam and 100% analyzer
along S1

The maximal laser induced position difference is 0.8um when analyzing at

100% in S1. The cathode only has an analyzing power of <6%. Furthermore,

the RHWP may be rotated so the cathode’s analyzing axis is not along S1(near

90𝑜), but rather closer to S2 at 50𝑜 for example, producing only a 0.525% residual

analyzing component along S1. This reduced analyzing power serves to suppress

the potential laser heating induced position differences in the e-beam, reducing

them to 48nm in the case of the cathode analyzing along 90𝑜(S1) and further

reducing them to 4.2nm in the case of using a RHWP rotation so the cathode

analyzes along 50𝑜 (near S2) for a 0.88mm e-beam spot size. The same argument

applies for spot-size asymmetry 𝐴𝜎 which we observe to have a maximal laser

induced value of 10−4 when analyzing at 100% in S1. 𝐴𝜎 is reduced by the cathode

down to 6 × 10−6 in the case of the cathode analyzing along 90𝑜(S1) and further

reduced down to 5.25×10−7 in the case of using a RHWP rotation so the cathode

analyzes along 50𝑜 (near S2).
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B.5 Suppressing Effect of Temperature Drifts on

e-beam

There are many ways in which the laser could experience a deviation in phase

shift from quarter-wave when passing through the Pockels Cell. The laser inter-

acts strictly with the optical coefficients of the crystal and those have a variety

of couplings: electro-optic coefficients, thermo-optic coefficients, and stress-optic

coefficients. A phase shift could come from wavelength drift, temperature drift

via temperature induced birefringence, voltage change via voltage induced bire-

fringence, or stress change via stress induced birefringence . We can control the

phase shift experienced by the laser in many ways: we could measure temperature

and control temperature with heating/cooling; we could measure birefringence and

control it with heating/cooling; we could measure Aq and control it by putting

stress on the crystal; we could measure wavelength and control voltage to compen-

sate for it. But in a Pockels Cell the most straightforward method is to measure

the polarization asymmetry and use voltage to control the birefringence. After

all, controlling birefringence with voltage precisely what a pockels cell is designed

to do in the first place. With a Pockels Cell, we can use voltage to change the

birefringence and compensate for all other physics effects which couple to optical

coefficients.

B.5.1 Feedback

To 0th order, the Pockels cell is aligned and the PITA voltages set on the

laser table to zero out the polarization asymmetry. However, in the case of RTP,

due to thermal drifts in Δ-phase, it is necessary to feedback on the Pockels Cell

PITA voltage to correct the polarization asymmetry. On the laser table, we di-

rectly measure the polarization asymmetry by inserting a 100% polarizer which

analyzes along 90𝑜 (S1), thereby converting a polarization asymmetry into an in-
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tensity asymmetry measurable by a photodiode. When electron beam is being

generated, however, another method of monitoring the polarization asymmetry is

employed. The photo-cathode serves as a partial polarizer with a small analyzing

power (4-6%) which analyzes along an axis determined by the RHWP, thereby par-

tially converting a polarization asymmetry into a charge asymmetry measurable

by BCMs and BPMs. During an experiment, the charge asymmetry is measured

by the BCMs in the Hall. During testing of the RTP cell and initial alignment,

the charge asymmetry is monitored by either a BPM or a BPM wire sum in the

injector. The measured charge asymmetry can be corrected by feedback on the

PITA voltage of the Pockels Cell, feedback on the IA cell, or a combination of

the two. For the RTP cell, as it is known that thermal drifts incur polarization

asymmetries, it is desirable to correct the birefringence drift with feedback on the

PITA voltage.

In order for feedback to work well, three settings must be appropriately selected

(1) RHWP angle (2) feedback interval (3) monitor. With the KD*P cell, RHWP

angle was selected based on constraints in minimizing position differences. With

the RTP cell, we have the freedom to choose any RHWP angle we wish since

position differences can always be zeroed out with PITAposU/V voltages and any

charge asymmetry offset term or 2𝜃 term in RHWP scans can be nearly zeroed

out by RTP relative roll. We are free to choose any RHWP angle. There are

two combating considerations in selecting RHWP angle. On the one hand, setting

the RHWP angle so the cathode analyzes along S2 would give essentially zero

analyzing power along S1, zero coupling between polarization asymmetry drifts

and charge asymmetry drifts Aq. The measured charge asymmetry Aq would

remain more stable, near zero, and only vary due to downstream helicity-correlated

clipping on apertures which could be corrected with the IA cell. On the other hand,

we don’t want to use the IA cell, we’d rather use PC voltages, and we want to

be able to measure and control the polarization asymmetry. In order to use PC

voltages to correct Aq, we have to have some degrees of analyzing power along S1
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to get a significant enough PITA slope. Further, in order to measure and control

the drifting polarization asymmetry, we have to turn it into a charge asymmetry

and measure it with a BCM downstream. These considerations dictate that we

ought to select a RHWP angle far enough from S1 so that Aq doesn’t drift too

much due to thermal effects, but far enough from S2 that we are still able to

measure the polarization asymmetry drift and still able to correct other sources

of Aq, such as helicity correlated clipping, with reasonably low PITA voltages.

The feedback interval is simply the length of time over which the charge asym-

metry is measured before applying a correction with PITA voltage. In selecting

the feedback interval and the monitor, we must take into account the electronic

noise of the monitor in the selection of the interval. The feedback interval must

be long enough to obtain decent statistical accuracy on Aq, otherwise we’d just

be falsely correcting electronics noise as if it were polarization asymmetry and

introducing noise into the beam, which is undesirable. One the other hand, the

feedback interval must be short enough that the central value of Aq doesn’t change

too much over the course of the interval, otherwise you allow Aq to drift faster

than you correct it and feedback will fail to converge.

If feedback settings have been chosen properly, the charge asymmetry Aq

should converge fairly quickly as RMS/N where N is the number of feedback

intervals. During feedback, whatever is measured in one interval is cancelled by

the correction-induced asymmetry in the next interval. After many intervals, you

find noise has gone down by 1/N, rather 1/𝑠𝑞𝑟𝑡𝑁 . If drift is slow relative to feed-

back cycle speed, it acts like a constant, and is taken out. If drift is fast relative

to feedback speed, it acts like the random noise that gives you the RMS, so is just

just part of the RMS that falls as 1/N. As the feedback cycle is made faster, the

drift is effectively smaller, as drift approaches random noise, then you get closer

to the case where the drift is tracked well by feedback and removed.

During HAPPEX-III, typical feedback the helicity reversal rate was 29.6 Hz

(each helicity window was 33.83 ms long), the intervals were 3550 events (1775
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pairs) collected during a two minute interval cycle, for which the typical statistical

uncertainty was 18 ppm for the HallA BCM while the Aq drifted between 0-50

ppm [333]. The KD*P PITA slope was for 100% analyzing 634ppm/V [334] and

the analyzing power of the cathode was 4% [335] with the RHWP set to 50𝑜 [336].

S1 was near 62𝑜 so the cathode was analyzing along an axis 21𝑜 away from S1 and

an effective analyzing power of 1.62% along S1. Hence, the effective PITA slope

used in feedback was ∼ 15𝑝𝑝𝑚/𝑉 out of typical QWV of 2.4kV.

During Qweak, the helicity flip rate was ∼ 1kHz, the feedback intervals was

40ms in Run2 and 80ms in Run1 [338]. The charge feedback is generally lim-

ited to 1% by the accuracy of the AQ measurement due to BCM resolution or

a non-linearity in the experimental apparatus. The cathode analyzing power

was 3-4% [338] and the RHWP was set such that the effective PITA slope was

0.808ppm/count (216counts/4000V)=16.3ppm/V [339] , implying an effective an-

alyzing power of ∼ 2.5% along S1. A plot [337] of the RMS/N convergence of Aq

during Qweak is shown in Fig. B-12 .

Figure B-12: Active charge feedback. Each Aq data point is a running average of
data up to that point. The horizontal axis is the number of 80s intervals. RMS/N
statistical convergence are the dotted curves. RMS/

√
𝑁 statistical convergence

are the red curves.

Using laser table measurements of the RTP polarization asymmetry drift and

e-beam measurements with 240Hz octets, we calculated what the Aq drift and

noise might look like in the injector for various RHWP settings. We took the laser
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table run shown in Fig. B-2 and scaled it down by the effective analyzing power

of the cathode. The Aq RMS observed in the injector for 20uA beam was 90ppm

(for 30Hz-like 240Hz-octets), so artificial noise was introduced in our calculation

to keep the RMS near 90ppm. Then we modeled what feedback would do to the

Aq signal for different feedback intervals. Aq appeared to be well controlled for

3 second interval cycles and for an effective cathode analyzing power of 0.525%,

achieved by rotating the RHWP so the photocathode(6% analyzer) is ∼ 5𝑜 from

S2. The results are shown in Fig. B-13 .
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Figure B-13: Modeling charge feedback on RTP cell. (top-left) The expected noise
and drift in Aq without feedback, black dots are individual events, red points are
mean Aq for each interval with bars showing the RMS (bottom-left) PITA voltages
which would be used for correcting Aq drift for feedback on (top-center) Feedback
convergence. Each Aq data point is a running average of data up to that point. The
horizontal axis is the number of 3s intervals. RMS/N statistical convergence are
the dotted curves. RMS/

√
𝑁 statistical convergence are the red curves. (bottom-

center) same as top-center only without RMS error bars (top-right). The expected
drift in Aq with feedback on where bars signify the RMS (bottom-right) same as
top-right without RMS bars.

The expected noise and drift without feedback is shown on the top left of

Fig. B-13 . On the laser table, Aq drift is ±30,000ppm over several hours. Here,

with the small 0.525% analyzing power, the drift in Aq is 150ppm over several

hours, as shown by the central values of the red data points on the top-left plot

of Fig. B-13 , where the error bars just correspond to the 90ppm RMS. The

PITA voltages used for correcting 150ppm are constrained to be <15V (out of

800V QWV in 8HV configuration) where the effective PITA slope is ∼10ppm/V
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(PITA slope =1698ppm/V for 100% analyzer). Feedback serves to suppress Aq

fluctuations down to 50ppm, a factor of 2X reduction from 90ppm raw 30Hz RMS,

and suppress slow fluctuations well below the noise, considerably smaller than for

the unstabilized drift, as shown in the top-right and bottom-right plots of Fig.

B-13 . This 3sec interval setting also leads to a nice convergence rate between

RMS/N and RMS/
√
𝑁 of the accumulated average Aq (accumulated up to that

point in time) shown by the bottom-center plot of Fig. B-13.

Other settings were tested with 0.25%,0.5%,1%, 2% analyzing powers with

0.5sec-2sec feedback intervals. They converged at a rate in-between RMS/N and

RMS/
√
𝑁 convergence. The PITA voltages used to correct the Aq temperature

induced slow drifts from are the same regardless of analyzing power and were

below 20V.
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(a) 2% analyzer, 0.5s intervals (b) 1% analyzer, 1s intervals

(c) 0.5% analyzer, 2s intervals (d) 0.25% analyzer, 2s intervals

Figure B-14: Modeling different settings for charge feedback on RTP cell. Each
Aq data point is a running average of data up to that point. The horizontal axis is
the number of feedback intervals. RMS/N statistical convergence are the dotted
curves. RMS/

√
𝑁 statistical convergence are the red curves.

We also tried 0.5sec intervals for the small 0.525% analyzing power and it

appeared to work quite well, converging near RMS/N, keeping Aq small. However,

reducing the interval time might come at a slight cost. If the interval is too short,

much of noise being corrected in real beam may be simply electronics noise as

explained in Sec. B.5.2.
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Figure B-15: Modeling charge feedback on RTP cell for 0.525% analyzer, 0.5s
intervals. (left) Each Aq data point is a running average of data up to that point.
The horizontal axis is the number of intervals. RMS/N statistical convergence are
the dotted curves. RMS/

√
𝑁 statistical convergence are the red curves. (right)

Aq for each individual interval with feedback running.

B.5.2 Depolarization

Depending on how feedback on PITA voltage is done, one could effectively

depolarize the e-beam to some extent. There are 3 obvious sources of fluctuations

in measured Aq in the hall: (1) polarization asymmetry (2) non-polarization-like

intensity asymmetry (3) electronics noise. Polarization asymmetry is controlled

by PITA voltage, which changes the polarization state of the beam, the beam is

then analyzed partially by the cathode, which translates polarization asymmetry

into a charge asymmetry Aq you can measure with a bcm. Non-polarization-

like intensity asymmetry, or pure intensity asymmetry, could be thought of as

encompassing the portion of the charge asymmetry which has nothing to do with

the polarization state and is just an intensity asymmetry. For example, intensity

noise in the Hall could come from the beam clipping on apertures in transport

and that would have nothing to do with polarization. A pure intensity asymmetry
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should, in principle, be corrected with something like the IA cell, not the Pockels

Cell PITA voltage. Electronics noise in the BCM in the Hall obviously contributes

to fluctuations in the measured Aq.

It’s important to choose feedback integration intervals wisely based on actual

beam polarization drift/noise and other noise sources. If the interval is too short,

much of noise being corrected may be simply electronics noise. If feedback cor-

rects electronics noise instead of actual polarization changes, then it’s creating

polarization noise, aka depolarizing the beam. It’s also important that transport

into the hall is good and transmission is high, because otherwise a significant

part of the Aq noise may be due to clipping on apertures. Clipping on apertures

would have nothing to do with polarization, and yet you’d be “correcting” it with

PITA voltage, introducing quasi-depolarization by changing the polarization to fix

an intensity fluctuation. The potential for creating quasi-depolarization becomes

more significant when Aq is less sensitive to PITA voltage, i.e. the PITA slope is

smaller, the cathode analyzing power is very small or the RHWP is rotated for

for small PITA slope. This is because a correction to Aq requires a larger PITA

voltage, a larger polarization change, in order to couple into a BCM measurable

charge asymmetry. So, when selecting a RHWP angle, it’s important to consider

how much of what is measured by the BCM used for feedback is a pure polariza-

tion asymmetry and how much is from pure intensity noise and electronics noise.

The PITA slope should not be made too small.

The degree of polarization of a beam can be defined as

𝐷𝑜𝑃 =
√︁
𝑆2
1 + 𝑆2

2 + 𝑆2
3/𝑆0 (B.7)

where 𝑆0 signifies a normalization to total power, 𝑆1 relates to the degree of

linear polarization along the H/V axes, 𝑆2 relates to the degree of linear polar-

ization along the ±45𝑜 axes, and 𝑆3 relates to the degree of circular polarization.

These quantities may be measured for a laser with a polarizer and a QWP. The
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are defined as follows:

𝑆0 = 𝐼𝑜0 + 𝐼90𝑜 = 𝐼45𝑜 + 𝐼−45𝑜 (B.8)

𝑆1 = 𝐼0𝑜 − 𝐼90𝑜

𝑆2 = 2𝐼45𝑜 − 𝑆0 = 𝐼45𝑜 − 𝐼−45𝑜

𝑆3 = 𝑆0 − 2𝐼45𝑜,𝑄𝑊𝑃

where 𝐼𝜃 refers to the power transmitted through a polarizer oriented at angle

𝜃 and S3 is measured by first inserting a quarter-wave-plate before the polarizer.

A nearly circularly polarized beam with slight linear polarization along H/V

can be described as 𝑆1/𝑆0 = 𝐴𝑝, 𝑆2/𝑆0 = 0, 𝑆3/𝑆0 =
√︀

1− 𝐴2
𝑝 ≈ 1 − 𝐴2

𝑝/2.

Let’s say that Ap, the polarization asymmetry, fluctuates over time with RMS

𝐴𝑝,𝑟𝑚𝑠. The degree of linear polarization is given by the expectation value𝐷𝑜𝐿𝑃 =√︀
< 𝑆2

1 >𝑡/𝑆0 = 𝐴𝑝,𝑟𝑚𝑠. The degree of circular polarization is given by the expec-

tation value

𝐷𝑜𝐶𝑃 =
√︁
< 𝑆2

3 >𝑡/𝑆0 ≈<
√︁

(1− 𝐴2
𝑝/2)

2 >𝑡≈
√︁
1− < 𝐴2

𝑝 > + < 𝐴4
𝑝 > /4

≈
√︁

1− 𝐴2
𝑝,𝑟𝑚𝑠 + 𝐴4

𝑝,𝑟𝑚𝑠/4 ≈ 1− 𝐴2
𝑝,𝑟𝑚𝑠/2

The degree of polarization is then 𝐷𝑜𝑃 =
√︀
< 𝑆2

1 >𝑡 + < 𝑆2
3 >𝑡/𝑆0 ≈ 1.

When applying PITA voltages in feedback we are attempting to reduce the

fluctuations in polarization asymmetry. However the physical measurable is the

charge asymmetry Aq, not Ap, and Aq can be plagued by noise which does not

relate to polarization asymmetry drifts. When the noise in measured Aq, call

it 𝐴𝑛𝑜𝑖𝑠𝑒, is falsely corrected with PITA voltage, we introduce a quasi-“depolar-

ization” of the beam from 𝐴𝑛𝑜𝑖𝑠𝑒. To state it more accurately, we don’t strictly

depolarize the beam, i.e. reduce the beam DoP, but we do reduce the degree of

circular polarization DoCP and we increase the DoLP.
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A small PITA slope for a small cathode analyzing power 𝜖 exacerbates the

effect. If 𝐴𝑞 = 𝜖𝐴𝑝, then when Aq is corrected by PITA, 𝐴𝑝 = 𝐴𝑞/𝜖 and 𝐷𝑜𝐿𝑃 =

𝐴𝑝,𝑟𝑚𝑠 = 𝐴𝑞,𝑟𝑚𝑠/𝜖 = 𝐴𝑛𝑜𝑖𝑠𝑒/𝜖. The reduction in DoCP is given by (𝐴𝑛𝑜𝑖𝑠𝑒/𝜖)
2/2

The feedback interval must be selected to ensure that the beam doesn’t suffer

too great a reduction in degree of circular polarization(DoCP). Critically in feed-

back the electronics noise in the monitor is reduced by extending the length of the

feedback cycle. 𝐴𝑛𝑜𝑖𝑠𝑒 ∼ 𝑅𝑀𝑆/
√
𝑛, where n is the number of helicity pairs in a

feedback interval. For an analyzing power 𝜖, 𝐷𝑜𝐿𝑃 = 𝑅𝑀𝑆
𝜖
√
𝑛

and 1−𝐷𝑜𝐶𝑃 = 𝑅𝑀𝑆2

2𝜖2𝑛
.

For example, if a BCM has electronics noise of RMS=100ppm, the cathode an-

alyzing power along S1 is 0.5%, and the feedback interval is 30sec long at 30Hz,

n=450 pairs, then the potential reduction in DoCP is 0.004% and the potential

increase in DoLP is 0.094% . For Moller, it is stated that the polarization of the

beam must be known to within 0.4% [111] . So, it is important to avoid altering

the polarization too much, ensure the feedback interval is long enough and ensure

the analyzing power of the cathode is large enough.

B.5.3 Pickoff Design

Sometimes feedback is done with both PITA voltage and IA cells. It would be

nice to distinguish polarization noise from intensity noise; to be able to tell what

was a polarization fluctuation and fix it with the PITA voltage, and tell what was

an intensity fluctuation and fix it with the IA cell. Otherwise you could either (a)

fail to fix a polarization fluctuation (allow depolarization to remain in the case of

just IA) or (b) introduce a depolarization which wasn’t necessarily there in the

case of just using PITA voltage for feedback. Currently, this distinction is not a

possibility. However there is a possible configuration which could allow for such a

distinction.

A separate polarization-asymmetry feedback loop might involve the following

design. A small high-transmission pickoff could be inserted after the Pockels cell
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and remain in place during e-beam running. The pickoff’s reflected beam would

be passed through a vertical polarizer and monitored by a photodiode constantly.

We note the reflected and transmitted beams would experience slightly differing

amounts of birefringence, which means zeroing out the electron beam Aq would

result in a non-zero laser beam Aq as measured by this pickoff-photodiode. The

goal would be to stabilize the measured laser Aq on the pickoff-photodiode and

keep it at the same value. The pickoff-photodiode would be used as a independent

monitor of polarization asymmetry. PITA feedback would only be used to stabilize

the actual laser polarization asymmetry.

In the case of multiple Hall running, if multiple Hall lasers were on, the pickoff

beam could be passed through a small commercial Pockels Cell, with ultra fast

flipping ability, hooked up to the HallA 499MHz control signal and passed through

a vertical polarizer. So, the pickoff-photodiode would only examine the HallA laser

beam and the 499MHz flipping would block out the other three Hall lasers.

Separately, another feedback loop, perhaps with an improved IA cell, would

control charge asymmetry Aq in the Hall as measured by the BCMs. This feedback

loop would only control the residual, leftover asymmetries not corrected by the

polarization-asymmetry feedback loop. It would only be focused on correcting non-

polarization effects like transmission issues and aperture clipping with intensity.

Thus, two independent effects would be properly controlled by two indepen-

dent feedback loops monitoring two separate quantities: Aq in the Hall and

Aq(polarization asymmetry) on the laser table.

B.5.4 Temperature Feedback

Instead of using PITA voltages, one could employ temperature control on a

temperature sensitive birefringent element. The crystals are too temperature sen-

sitive to easily feedback on, but a multi-order waveplate is temperature sensitive to

a much lesser extent. For example the Thorlabs WPMH05M-780 - 1/2” Mounted
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Multi-Order Half-Wave Plate, 1” Mount, 780 nm made from 1.00 mm thick high-

quality crystalline quartz could be inserted after the Pockels cell with its fast

axes along S2 so that changes in its birefringence contribute to S1 asymmetries.

The temperature dependence of the refractive indices of crystal quartz/fused silica

as for the ordinary axis 𝑑𝑛𝑜/𝑑𝑇 ≈ −7.5𝑝𝑝𝑚𝐾−1 and for the extraordinary axis

𝑑𝑛𝑒/𝑑𝑇 ≈ −9𝑝𝑝𝑚𝐾−1 at 780nm [332]. The temperature dependence of such a

waveplate is:

𝐴𝑞 = 2𝜋𝐿/𝜆
𝑑(𝑛𝑜 − 𝑛𝑒)

𝑑𝑇
Δ𝑇 ≈ 12, 083𝑝𝑝𝑚/𝐾Δ𝑇 (B.9)

If we really wanted to do temperature feedback on Aq instead of PITA voltage

feedback, heating and cooling a multi-order waveplate by 3𝑜𝐶 would be sufficient

to control the RTP temperature induced fluctuations of 30,000ppm.
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Appendix C

Tech Note: Interferometric/Etalon

Effect

Here we discuss ways to suppress the etalon effect including: (1) non-negligible

reflection coefficients (2) parallel faces (3) narrow-bandwidth (4) temporal overlap

of reflected pulses (5) spatial overlap and coherence of reflected pulses.

C.1 Temporal overlap

This is not only potentially detrimental to precision 𝜆/4-wave applications,

but in cavity locking applications it’s possible the etalon effect could compromise

extinction ratios. However, this etalon effect can be mitigated by using a pulsed

laser, with short enough pulse duration, or by using longer RTP crystals (10mm

length typical). Then the etalon effect can be mitigated by the fact that there is

a temporal delay between the reflection off the front face of the crystal and the

reflection off the back face of the crystal. Since, a shorter pulse duration or a longer

crystal can help reduce the etalon effect, both the laser pulse duration and the

crystal length must be considered in Pockels cell design. The temporal structure

of the laser is important when using RTP Pockels cell, and it’s important not

to use very long pulse durations. At JLab, the pulse duration is 30-50ps and the
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crystal length of our RTP’s are 10mm. These conditions were sufficient to mitigate

the etalon effect for the HallA laser in 2016 (etalon measurement constrained to

<1ppm). In 2019, we observed an etalon effect of 300ppm for a 0.6mm FWHM

spot size and an etalon of 80ppm for a 2mm FWHM spot size for the HallA laser

at 500MHz. The HallB laser (at 250MHz) showed a larger etalon of ∼1000ppm

for a 0.6mm FWHM spot size and an etalon of 200ppm for a 2mm FWHM spot

size. So, shorter pulse tails or longer crystals may be desirable in the future.

Etalon Suppression

A gaussian beam 𝐼(𝑡) =
√︁

2
𝜋𝜏2
𝑒−2𝑡2/𝜏2 with pulse width 𝜏 = 𝑡𝐹𝑊𝐻𝑀/

√
2 ln 2

incident on a crystal with reflection coefficient 𝑅 = 𝑟2, will undergo an interference

between the two reflected pulses off the front and back face of the crystal, and the

transmitted light is given by

𝑇 = 1−𝑅 = 1− 2𝑟2(1 + 𝑒−
Δ𝑡2

2𝜏2 cos𝜔Δ𝑡)

where Δ𝑡 = 2𝐿𝑛/𝑐 is the delay between the two back reflections, the time it takes

for light to traverse the crystal twice. We refer to the term 1
𝛾
= 𝑒−

Δ𝑡2

2𝜏2 as the

etalon suppression factor because 𝛾 = 1 for a CW beam and as the pulse duration

becomes shorter and the beam overlap less, they interfere less, and the etalon

interference amplitude is suppressed by a larger factor 𝛾 >> 1. For reference, in

a 10mm crystal, the delay between the two pulses is 115− 130𝑝𝑠 and for a typical

pulse, the FWHM is around 55𝑝𝑠, so the overlap is in the beam tails.

Figure C-1a shows the etalon suppression factor with respect to FWHM pulse

duration for various crystal lengths and for both 𝑛𝑦 and 𝑛𝑧 primary crystal axes.

Because the JLab beam in reality is not a pure gaussian, we also show the same

plot of suppression factor with respect to the 4𝜏 pulse duration (similar to the

4𝜎 spot size) in Fig. C-1b which encompasses the entire pulse to it’s full-width-

1/𝑒8 1/3000-max. Since it is the beam tails that matter in this case, this 4𝜏 plot
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should be helpful in chopper scans when examining the tails of the e-beam and

predicting how it might affect the etalon amplitude: find where the intensity drops

off to 1/3000 the max, use that full width value in Fig. C-1b to predict how bad

the etalon will be. A zoomed in plot just for L=10mm is shown in Fig. C-1c for

reference. We note that the suppression factor falls off extremely quickly, even on

a log scale, and it is the beam tails overlapping that is important, so after-pulses

in the laser could be quite detrimental. Adjusting the pulse shape with the seed

laser at JLab and iterating etalon scans and chopper scans may be an important

procedure to go through.
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Figure C-1: Etalon suppression factor: For a pure gaussian temporal distribution,
for 𝐿 = 10, 12, 14𝑚𝑚 crystals, for both RTP primary axes 𝑛𝑧 = 1.867, 𝑛𝑦 = 1.783

To suppress a 5000ppm etalon from a reflection coefficient of 0.5%, a suppression-

factor of 𝛾 ∼ 1000 is desirable for the Hall A laser to maintain an etalon induced

𝐴𝑞 < 5𝑝𝑝𝑚. For the other Halls, the requirements may be less stringent, for

example Hall B maintaining an etalon induced 𝐴𝑞 < 100𝑝𝑝𝑚 would only require

𝛾 ∼ 50. Of course, buying longer crystals helps significantly, by orders of magni-

tude, and as long as the piezo-electric resonance isn’t too low-frequency, you could
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still flip helicity states quickly with short transition times and minimal ringing.

There are additional ways to reduce etalon besides crystal length, however, as

described below.

C.2 Reflection Coefficients

Regarding reducing reflection coefficients, we cannot afford to have even a

very small charge asymmetry, so attempting to reduce reflectivity down to the

ppm level is unfeasible. Even the best AR coatings would be unlikely to eliminate

charge asymmetry sufficiently, though improving the AR coating would certainly

help improve the current performance. It is worth noting that Reflection curves

sent by manufacturers are not accurate as most testing of AR coatings in done on

glass substrates instead on on the crystal material, and since the refractive index

of RTP can be very high (𝑛𝑥 = 1.78, 𝑛𝑦 = 1.789,𝑛𝑧 = 1.877 at 780nm, calculated

from Sellmeier equation, Optical Materials 22 (2003) 155-162 ) compared to glass

(n 1.5), the AR coating performance can be compromised. For example, our RTPs

reflection curves from Raicol indicate 0.05% reflection, but we observe effects that

indicate 0.2-0.5% reflection.

C.3 Non-Parallel Face Cuts

Regarding non-parallel faces, how parallel is too parallel? This possible solu-

tion requires further research into the fundamentals of etalons. However, in the

best case scenario, using the least stringent argument, we could say the required

face cut angle(scaled by refractive index due to Snell’s Law) must be larger than

the beam divergence in order for the back reflecting beams not to overlap at some

finite distance upstream 𝜃 > 𝜃𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒/𝑛 = 𝜆/𝑛𝜋𝜔0. For a 1mm beam, this face

cut angle is at least 0.3mrad 1, whereas currently the face cut angles are 0.05mrad.
1typical divergence of JLab beam at cell is ∼< 0.5𝑚𝑟𝑎𝑑
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At the very least, this solution requires either (a) new crystals or (b) recutting of

crystals to spec by manufacturer. It is very much worth pointing there are other

more stringent arguments (i.e. the back-face reflected beam must be displaced by

its FWHM of 1mm relative to the the front-face reflection) which would require

face cuts 100mrad to avoid etalon effects.

Are non-parallel face cuts a problem? Not for delta phase or analyzing, but it

can be a problem for alpha-phase. As long as the face cuts of the two crystals are

matched to each other, non-parallel face cuts are not a problem for delta-phase.

As long as the path length of a given part of the beam through each crystal is

the same, the delta phase is approximately constant as long as no PITA voltage

is applied. We can see this by taking the face cuts of the two crystals at angle 𝜃

such that they compliment each other, neglecting all other small order terms,

𝐴𝑞(𝑋) ≈ 2𝜋𝜃𝑋𝐸𝑃𝐼𝑇𝐴

𝐿𝐸𝑄𝑊𝑉

For L=10mm, X=1mm, PITA/QWV 0.2, 𝜃 = 100mrad, we get that Aq changes

by 12,000ppm/mm which is about 50% of the gradient we currently observe, so

even a 100mrad cut does not raise asymmetry gradients to unacceptable levels.

As for analyzing power, the RTP crystals are inherently birefringent and al-

ready have their own natural analyzing power proportional to the reflection coef-

ficient. Fortunately, since the two crystals fast axes are oriented perpendicular to

each other, the analyzing power in the interface between the two crystals cancels

and the only analyzing left over is the analyzing power of the exit face. Any ana-

lyzing power will be along the crystal’s primary axes, along S2, and most of it will

not be helicity correlated and only produce a small alpha-phase along S2, making

the beam slightly linearly polarized along S2. The magnitude of this alpha-phase

linear polarization is proportional to the reflection coefficient which is <0.5%, and

since the analyzing power by definition 𝑝𝑜𝑤𝑒𝑟 = 𝜖/𝑇 = 𝑇1−𝑇2
1
2
(𝑇1+𝑇2)

= 𝑅2−𝑅1

1−(𝑅1+𝑅2)/2
≈

𝑅2 − 𝑅1 < 𝑅 must be less than the reflectivity, the induced linear polarization is
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<0.5% along S2. As a comparison, typical degree of linear polarization we were

able to achieve with KD*P on the lab bench was 5%, so this effect is relatively

small.

The alpha-phase term could potentially be a problem for non-parallel face cuts.

If the face cut is large enough, it can cause the beam to go through a significant

transition from circular to linear polarization across the cell face, in other words

the out going beam would not have HCBA but it would be comprised of portions

of circular and some linear polarization, which could be a highly unusual running

condition to say the least. It is important to ensure the face cuts are not so large

that they create any significant alpha-phase across the diameter of the beam.

Using the equation for alpha phase in RTPs, taking the face cuts of the two

crystals at angle 𝜃 such that they compliment each other and neglecting all other

small order terms, we arrive at

𝛼 ≈ 𝜋𝜃𝑋

2𝐿

For L=10mm, X=1mm, PITA/QWV 0.2, 𝜃 = 100mrad, we get that 𝛼 changes

by 0.015 rad/mm. Further using 𝐷𝑂𝐿𝑃 ≈ 𝛼
1+(𝛼/2)2

, we see that across the face

the crystal, the DOLP would increase by 1.5%/mm. The typical DOLP we are

able to achieve with KD*P is 5%, so this cut does not raise DOLP gradients to

unacceptable levels by comparison. A smaller face cut angle of 0.5𝑚𝑟𝑎𝑑 would only

increase the DOLP by 0.08% at the edges of a 1mm spot size, which a negligible

amount.

Regarding analyzing-like position differences, as described in Sec. 6.5.2, a face

cut non-parallelism of 𝜃𝑓𝑐 = 𝑑𝐿
𝑑𝑥𝑖

≈ 0.01 − 0.05𝑚𝑟𝑎𝑑 (the Raicol crystal specs)

induces position differences 𝐷𝐿𝑔𝑟𝑎𝑑,𝑥𝑖
= −𝑤2𝜋

2𝜆
(𝑛0,𝑦 − 𝑛0,𝑧)𝜃𝑓𝑐 ≈ 1.7 − 8.5𝑢𝑚 for

a 1mm spot size. If an intentional face cut of 0.5𝑚𝑟𝑎𝑑 is made to reduce the

etalon effect, the induced position differences would be 85𝜇𝑚 for a 1mm spot size

and 21𝜇𝑚 for a 0.5mm spot size. To avoid creating large position difference from

large birefringence gradients, the face cuts could be done on each RTP crystal in
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opposing directions: for example a 0.5mrad face cut on X-Z place on RTP #1

and -0.5mrad on X-Y plane of RTP#2 which is rotated by 90𝑜 as illustrated in

Fig. C-2. By making equal and opposing face cuts on both crystals, these induced

position differences can be entirely avoided.

Figure C-2: Opposing face cuts: Face cuts 𝜃𝑓𝑐1 = 𝜃𝑓𝑐2 ≈ 0.5𝑚𝑟𝑎𝑑 within a
desired tolerance of |𝜃𝑓𝑐1 − 𝜃𝑓𝑐2| < 0.05𝑚𝑟𝑎𝑑 and tolerance of length difference
|𝐿1 − 𝐿2| < 2𝜇𝑚 (typical)

Regarding steering position differences, as described in Sec. 6.3.4, a face cut

non-parallelism of 𝜃𝑓𝑐 ≈ 0.01 − 0.05𝑚𝑟𝑎𝑑, induces fixed (unchangeable/intrinsic)

steering position differences 𝐷𝑥𝑖,𝑓𝑖𝑥𝑒𝑑 (the steering position difference of a single

crystal) is given by |(𝑛3
𝑦0𝑟23 + 𝑛3

𝑧0𝑟33)𝐸𝑧0𝜃𝑓𝑐𝐷| ≈ 1 − 4𝑛𝑚 at a throw distance

𝐷 = 2𝑚 2. This quantity is negligible. Even if an intentional face cut of 0.5𝑚𝑟𝑎𝑑

were made to reduce the etalon effect, the induced position differences would only

be 40𝑛𝑚.

If etalon effect elimination required face cuts of 0.5mrads, the typical 0.5-1mm

beam would likely function properly. In order to accommodate large face cuts,

designing focusing optics to reduce the spot size at the Pockels cell is a possibility,

but it is important that small beam divergence be maintained, since it could not

only greatly alter the HCBA behavior the crystal but could also make the etalon

effect worse. Face cuts are only a feasible solution if they are on the order of

<0.5mrad or opposing (equal and opposite) face cuts are made on both crystals,

do not cause unmanageably large position differences, and do not cause the alpha-

phase to change so much that the edges of a 1mm beam are significantly linearly
2At JLab, the typical effective cathode throw distance with a 2m lens is D=2m
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polarized.

C.4 Laser Bandwidth

Regarding the laser bandwidth, it is entirely possible to use a laser on the

lab-bench with the right properties which eliminate the etalon effect in the RTP

crystals. However, what actually matters is the properties of the laser at JLab

which will be used in conjunction with these RTP cells. What are the requirements

on bandwidth? There are two bandwidth requirements (1) the bandwidth of the

laser must be at least as large as the etalon free-spectral-range (i.e. wavelength

changes are causing phase shifts large enough to go through at least one inter-

ference fringe) 𝐹𝑆𝑅 = 𝑐
2𝑛𝐿

[𝐻𝑧] = 𝜆2

2𝑛𝐿
[𝑛𝑚] (2) the wavelength must be changing

on a time scale faster than the helicity switching (otherwise the helicity window

will not be averaging over the interference fringes and a helicity correlated charge

asymmetry will appear and at the very least cause non-Poisson-like Aq distribu-

tions). The FSR of our RTP crystal 1cm in length with refractive index 1.8 near

780nm, is 0.02nm. We intend to use RTPs when switching helicity states at a rate

of 2kHz. To be one the safe side, say we need 10 fringes averaged over 10 cycles

in a window, then we require 0.2nm bandwidth oscillating at at least 10kHz. In

other words, the noisier the laser, the better for eliminating the etalon effect.

Self Analyzing

It is worth noting that due to the biaxial nature of RTP and its large intrinsic

birefringence, the surface of the RTP will have a natural analyzing power simply

by Fresnel’s equations. The power will scale down with reflectivity, so if the AR

coating are very good, it will bring down the analyzing power of the crystal faces.

However, no AR coating can match both transverse refractive indices, so there

will always be some small analyzing power along the direction of the crystal axis

(S2). It will give rise to a small alpha phase. The etalon effect also can lead to
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self analyzing along the crystal axes, along S2. This is also largely an alpha-phase

effect.
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Appendix D

Tech Note: KD*P Steering and

General Pockels Cell Matters

D.1 KD*P

D.1.1 Steering in KD*P

Steering is a helicity correlated change in angle of the outgoing laser beam after

having passed through the Pockels Cell. It produces a position difference between

right and left helicity states which increases with throw distance, hence steering

is referred to as an ‘angle-like’ position difference. Previously, steering (aka the

‘Skew/Paschke’ effect) in KD*P was thought to be a non-polarization-dependent

effect since both H and V input polarizations appeared to exhibit the same steering

behavior. However, we have since shown that steering is, in fact, quite polarization

dependent. When the input polarizations are along the crystal’s primary axes at

±45𝑜, steering for +45𝑜 input polarization was observed to differ significantly

from the steering for −45𝑜 input polarization, indicating polarization dependance.

Furthermore, it was found that the steering for H and V input polarizations was

approximately the average of the steering along the ±45𝑜 primary crystal axes. So,

our model for steering in KD*P has to include in polarization dependent effects.
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Figure D-1: Steering observed with different input polarization states, no ana-
lyzer, in translation scan for ‘Princeton’ Cell (commercial Fastpulse 10mm 1040
KD*P [313]) [314]. Note that the sign of Dx,y on the qpd is arbitrary compared
with the sign of the translation stage Xpc, Ypc.

The model we use is phenomenological and it is postulated based on several

robust empirical observations of KD*P cells. The model must satisfy the following

4 requirements :

∙ steering for H/V input polarization of the form

𝜃𝑠𝑡𝑥
⃒⃒
𝐻
= 𝜃𝑠𝑡𝑥

⃒⃒
𝑉
= 𝛽𝑦 𝜃𝑠𝑡𝑦

⃒⃒
𝐻
= 𝜃𝑠𝑡𝑦

⃒⃒
𝑉
= 𝛽𝑥

∙ steering for ±45𝑜 input polarizations along primary axes x’,y’ of the form

𝜃𝑠𝑡𝑥
⃒⃒
𝑥′ = 2𝛼𝑥+ 𝛽𝑦 𝜃𝑠𝑡𝑦

⃒⃒
𝑥′ = 2𝛼𝑦 + 𝛽𝑥

𝜃𝑠𝑡𝑥
⃒⃒
𝑦′
= −2𝛼𝑥+ 𝛽𝑦 𝜃𝑠𝑡𝑦

⃒⃒
𝑦′
= −2𝛼𝑦 + 𝛽𝑥
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where 𝛼 ≈ 𝛽.

∙ Aq in S1 exhibiting a ‘saddle’ in the x/y plane: translational dependence

observed

𝐴𝑞 = 𝛾𝑥𝑦

Figure D-2: Intensity asymmetry in Translation scan [315], analyzing in S1, for
‘Princeton’ Cell (commercial Fastpulse 10mm 1040 KD*P [313])

∙ A transmission ‘hole’ when analyzing in S1: the average transmission has a

radial dependence as the cell is translated in the x/y plane

𝑇 = 𝑇0(1− 𝜂(𝑥2 + 𝑦2))

Figure D-3: Transmission in Translation scan [315], analyzing in S1, for ‘Prince-
ton’ Cell (commercial Fastpulse 10mm 1040 KD*P [313])
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Model

Our model reproduces all 4 of these observations. We can take our phenomeno-

logical model as having two main components:

1. A radial electric field gradient that changes sign with helicity. Within the

parametrization 𝐸𝑅(𝐿)
𝑧 = ∓(𝐸𝑧,0 + 𝐸𝛼)− 𝐸Δ), we let

𝐸𝛼 = 𝛽𝑒(𝑥
2 + 𝑦2)

2. A piezo-electric helicity correlated length change (or an effect which mimics

this). Within the parametrization 𝐿𝑅(𝐿) = 𝐿0 ± 𝐿𝑎 + 𝐿𝑑, we let

𝐿𝑎 = 𝛽𝑙𝑥𝑦

With just these two assumptions, by tracking wave-phase-fronts for the two

primary polarization axes, we can reproduce all four KD*P observed behaviors.

A H/V input polarization is split upon entering the KD*P crystal into two com-

ponents along the i=x’,y’ (±45𝑜) primary axes. These polarization components

undergo phase shifts

𝜑
𝑅(𝐿)
𝑖 = 2𝜋𝑛

𝑅(𝐿)
𝑖 𝐿𝑅(𝐿)/𝜆

where R(L) indicates right and left circular polarization states determined by the

sign of the voltage applied to the Pockels Cell as controlled by the helicity signal.

The opto-electric effect in KD*P results in a equal and opposite change in

refractive index to the two primary axes

𝑛
𝑅(𝐿)
𝑥′ = 𝑛𝑜 −

1

2
𝑛3
𝑜𝑟63𝐸

𝑅(𝐿)
𝑧 𝑛

𝑅(𝐿)
𝑦′ = 𝑛𝑜 +

1

2
𝑛3
𝑜𝑟63𝐸

𝑅(𝐿)
𝑧

The assumptions of our model postulate

𝐸𝑅(𝐿)
𝑧 = ∓(𝐸𝑧,0 + 𝐸𝛼)− 𝐸Δ) = ∓(𝐸𝑧,0 + 𝛽𝑒(𝑥

2 + 𝑦2)− 𝐸Δ)
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𝐿𝑅(𝐿) = 𝐿0 ± 𝐿𝑎 + 𝐿𝑑 = 𝐿0 ± 𝛽𝑙𝑥𝑦 + 𝐿𝑑

From the above information regarding the phase shifts, we deduce all the ob-

served effects in KD*P. The electric field variation produces polarization depen-

dent steering, i.e. steering which is of opposite sign for input polarizations along

the diagonal ±45𝑜 primary axes. The length variation produces polarization in-

dependent steering, i.e. steering which has the same sign for both ±45𝑜 primary

axes and H and V polarizations.

We should note that an alternative model to the length gradient would involve

the average refractive index gradient taking the following form:

𝑛
𝑅(𝐿)
𝑥′ = 𝑛𝑜 −

1

2
𝑛3
𝑜𝑟63𝐸

𝑅(𝐿)
𝑧 + 𝑛𝑅(𝐿)

𝑎 𝑛
𝑅(𝐿)
𝑦′ = 𝑛𝑜 +

1

2
𝑛3
𝑜𝑟63𝐸

𝑅(𝐿)
𝑧 + 𝑛𝑅(𝐿)

𝑎

𝑛𝑅(𝐿)
𝑎 = ±𝑛𝑎 = ±𝛽′𝑥𝑦

𝑛
𝑅(𝐿)
𝐻/𝑉 ≈ 𝑛𝑎𝑣𝑔 =

1

2
(𝑛𝑥′ + 𝑛𝑦′) =

1

2
(𝑛𝑜 + 𝑛𝑅(𝐿)

𝑎 − 1

2
𝑛3
𝑜𝑟63𝐸𝑧 + 𝑛𝑜 + 𝑛𝑅(𝐿)

𝑎 +
1

2
𝑛3
𝑜𝑟63𝐸𝑧)

≈ 𝑛𝑜 + 𝑛𝑅(𝐿)
𝑎 ≈ 𝑛𝑜 ± 𝑛𝑎 ≈ 𝑛𝑜 ± 𝛽′𝑥𝑦

Which would have the same effect as a length gradient of the form 𝐿𝑎 = 𝛽𝑥𝑦

A more precise calculation for the effective refractive index for the horizontal

and vertical polarization states is given by

1

𝑛2
𝐻/𝑉

=
1

2𝑛2
𝑦′
+

1

2𝑛2
𝑥′

=
1

2(𝑛𝑎𝑣𝑔 + 𝜖)2
+

1

2(𝑛𝑎𝑣𝑔 − 𝜖)2

=
1

2(𝑛2
𝑎𝑣𝑔 + 2𝜖𝑛𝑎𝑣𝑔 + 𝜖2)

+
1

2(𝑛2
𝑎𝑣𝑔 − 2𝜖𝑛𝑎𝑣𝑔 + 𝜖2)

≈ 1

(𝑛2
𝑎𝑣𝑔

− 𝜖2

𝑛
𝑅(𝐿)
𝐻/𝑉 ≈ |𝑛𝑎𝑣𝑔|(1 + 𝑛2

𝑎𝑣𝑔𝜖
2)−1/2 ≈ |𝑛𝑎𝑣𝑔|(1−

1

2
𝑛2
𝑎𝑣𝑔𝜖

2)

where 𝜖 = 1
2
(𝑛′

𝑦 − 𝑛𝑥′) = 1
2
𝑛3
𝑜𝑟63𝐸

𝑅(𝐿)
𝑧 , 𝑛𝑅(𝐿)

𝑦′ = 𝑛𝑎𝑣𝑔 + 𝜖, and 𝑛
𝑅(𝐿)
𝑥′ = 𝑛𝑎𝑣𝑔 − 𝜖.

Hence,

𝑛
𝑅(𝐿)
𝐻/𝑉 ≈ |𝑛𝑜 ± 𝑛𝑎|(1−

1

2
((𝑛𝑜 ± 𝑛𝑎)

1

2
𝑛3
𝑜𝑟63𝐸

𝑅(𝐿)
𝑧 )2)
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It is possible that this higher order term contributes some to steering, but it is

likely to be much smaller than the 1st order effects.

Aq Saddle

To deduce the charge asymmetry, we examine the delta-phase

𝛿𝑅(𝐿) = ∓(𝜋/2 + 𝛼)−Δ = 𝜑
𝑅(𝐿)
𝑥′ − 𝜑

𝑅(𝐿)
𝑦′ = −2𝜋𝑛3

𝑜𝑟63
𝜆

𝐸𝑅(𝐿)
𝑧 𝐿𝑅(𝐿)

𝐴𝑞 =
1

2
(cos 𝛿𝑅−cos 𝛿𝐿) ≈ −Δ =

1

2
(𝛿𝑅+𝛿𝐿) =

2𝜋𝑛3
𝑜𝑟63
𝜆

(𝐸Δ𝐿0+(𝐸0+𝐸𝛼)𝐿𝑎+𝐸𝛿𝐿𝑑)

=
2𝜋𝑛3

𝑜𝑟63
𝜆

(𝐸Δ𝐿0+(𝐸0+𝐸𝛼)𝐿𝑎+𝐸𝛿𝐿𝑑) ≈
2𝜋𝑛3

𝑜𝑟63
𝜆

(𝐸Δ𝐿0+𝐸0𝛽𝑙𝑥𝑦) = 𝑘𝑉𝑃𝐼𝑇𝐴+𝛾𝑥𝑦

Hence, there is a ‘saddle’ in Aq through the function xy.

Transmission Hole

To deduce the Transmission through a vertical polarizer, we examine the alpha-

phase

𝑇 = 1 +
1

2
(𝑐𝑜𝑠𝛿𝑅 + 𝑐𝑜𝑠𝛿𝐿) ≈ 1 +

1

2
(𝛿𝑅 − 𝛿𝐿 + 𝜋) = 1− 𝛼

= 𝜋/2 +
2𝜋𝑛3

𝑜𝑟63
𝜆

((𝐸0 + 𝐸𝛼)𝐿0 + 𝐿𝑎𝐸Δ + (𝐸0 + 𝐸𝛼)𝐿𝑑)

≈ 𝜋/2 +
2𝜋𝑛3

𝑜𝑟63
𝜆

(𝐸0𝐿0 + 𝐿0𝛽𝑒(𝑥
2 + 𝑦2)) ∼ (1− 𝜂(𝑥2 + 𝑦2)

Hence there is a ‘hole’ in the transmission through a vertical polarizer with radial

dependence 𝑥2 + 𝑦2.

Polarization Dependent Steering

To deduce steering, we first define the helicity correlated phase shift for each

polarization state

Δ𝜑𝑥′ = 𝜑𝑅
𝑥′ − 𝜑𝐿

𝑥′ = (2𝜋/𝜆)Δ(𝑛𝑥′𝐿) = (2𝜋/𝜆)(𝑛𝑥′Δ𝐿+Δ𝑛𝑥′𝐿)
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Δ𝜑𝑦′ = 𝜑𝑅
𝑦′ − 𝜑𝐿

𝑦′ = (2𝜋/𝜆)Δ(𝑛𝑦′𝐿) = (2𝜋/𝜆)(𝑛𝑥′Δ𝐿+Δ𝑛𝑦′𝐿)

In accordance with our model the phase shifts for the two polarization state com-

ponents will be

Δ𝜑𝑥′ =
4𝜋

𝜆
(𝑛𝑜𝐿𝑎 + 𝑛3

𝑜𝑟63((𝐸0 + 𝐸𝛼)(𝐿0 + 𝐿𝑑) + 𝐿𝑎𝐸Δ))

· · · ≈ 4𝜋

𝜆
(𝑛𝑜𝐿𝑎 + 𝑛3

𝑜𝑟63(𝐸0 + 𝐸𝛼)𝐿0) ≈
4𝜋

𝜆
(𝑛𝑜𝛽𝑙𝑥𝑦 + 𝑛3

𝑜𝑟63(𝐸0 + 𝛽𝑒(𝑥
2 + 𝑦2))𝐿0)

Likewise,

Δ𝜑𝑦′ =
4𝜋

𝜆
(𝑛𝑜𝐿𝑎 − 𝑛3

𝑜𝑟63((𝐸0 + 𝐸𝛼)(𝐿0 + 𝐿𝑑) + 𝐿𝑎𝐸Δ))

≈ 4𝜋

𝜆
(𝑛𝑜𝛽𝑙𝑥𝑦 − 𝑛3

𝑜𝑟63(𝐸0 + 𝛽𝑒(𝑥
2 + 𝑦2))𝐿0)

where 𝛽𝑒 is the coupling to a helicity correlated change that is similar to an E-field

change, 𝛽𝑙 is the coupling to a helicity correlated change that is similar to a length

change.

The phase shift experienced by H and V input polarizations is computed by

averaging the phase shifts for x’,y’ polarizations

Δ𝜑𝐻,𝑉 =
1

2
(Δ𝜑𝑥′ +Δ𝜑𝑦′) ≈

4𝜋𝑛𝑜𝐿𝑎

𝜆
≈ 4𝜋𝑛𝑜

𝜆
𝛽𝑙𝑥𝑦

We deduce the steering using Snell’s law. A face cut angle in the crystal is a

length gradient 𝜃𝑓𝑐 = 𝑑
𝑑𝑥
𝐿 which causes the light to bend upon exiting the crystal

by an angle 𝑛𝑎𝑖𝑟𝜃 = 𝑛𝜃𝑓𝑐 = 𝑛 𝑑
𝑑𝑥
𝐿. Equivalently, a refractive index gradient would

do the same thing. We can generally describe the angle induced from any phase

gradient with 𝜃 = 𝑑
𝑑𝑥
(𝑛𝐿) = 𝜆

2𝜋
𝑑𝜑
𝑑𝑥

. In the case of steering, we examine the helicity

correlated gradients in the phase difference for each polarization state i

𝜃𝑠𝑡𝑥
⃒⃒
𝑖
=

𝜆

2𝜋

𝑑

𝑑𝑥
Δ𝜑𝑖
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𝜃𝑠𝑡𝑦
⃒⃒
𝑖
=

𝜆

2𝜋

𝑑

𝑑𝑦
Δ𝜑𝑖

Plugging in our phase shifts for input polarizations x’,y’ and H,V we obtain

𝜃𝑠𝑡𝑥
⃒⃒
𝑥′ = 2𝑛𝑜𝛽𝑙𝑦 + 4𝑛3

𝑜𝑟63𝛽𝑒𝐿0𝑥 = 2𝛼𝑥+ 𝛽𝑦

𝜃𝑠𝑡𝑦
⃒⃒
𝑥′ = 2𝑛𝑜𝛽𝑙𝑥+ 4𝑛3

𝑜𝑟63𝛽𝑒𝐿0𝑦 = 2𝛼𝑦 + 𝛽𝑥

𝜃𝑠𝑡𝑥
⃒⃒
𝑦′
= 2𝑛𝑜𝛽𝑙𝑦 − 4𝑛3

𝑜𝑟63𝛽𝑒𝐿0𝑥 = −2𝛼𝑥+ 𝛽𝑦

𝜃𝑠𝑡𝑦
⃒⃒
𝑦′
= 2𝑛𝑜𝛽𝑙𝑥− 4𝑛3

𝑜𝑟63𝛽𝑒𝐿0𝑦 = −2𝛼𝑦 + 𝛽𝑥

𝜃𝑠𝑡𝑥
⃒⃒
𝐻,𝑉

= 2𝑛𝑜𝛽𝑙𝑦 = 𝛽𝑦 𝜃𝑠𝑡𝑦
⃒⃒
𝐻,𝑉

= 2𝑛𝑜𝛽𝑙𝑥 = 𝛽𝑥

Hence our model reproduces the steering behavior observed for all possible input

polarization states.

It is important to observe that the steering observed for H/V input polar-

izations does not arise from the electric field gradient in this model. Electric

field variations produce steering which is of EQUAL and opposite sign for in-

put polarizations along the diagonal ±45𝑜 primary axes. This comes from the

assumption that the refractive indices couple to the electric fields in an equal

and opposite way: 𝑛𝑥′/𝑦′ = 𝑛𝑜 ∓ 1
2
𝑛3
𝑜𝑟63𝐸𝑧. When the steering for ±45𝑜 polariza-

tions is averaged to obtain horizontal and vertical polarizations, the behavior is

cancelled. This cancellation can be understood easily when the average refrac-

tive index seen by horizontal polarization is computed: 𝑛𝐻/𝑉 ≈ 1
2
(𝑛𝑥′ + 𝑛𝑦′) =

1
2
(𝑛𝑜 − 1

2
𝑛3
𝑜𝑟63𝐸𝑧 + 𝑛𝑜 +

1
2
𝑛3
𝑜𝑟63𝐸𝑧) ≈ 𝑛𝑜 (although there is a higher order term

𝑛𝐻/𝑉 ≈ 𝑛𝑜(1+
1
2
𝑛2
𝑜(

1
2
𝑛3
𝑜𝑟63𝐸𝑧)

2). Steering can only arise through Snell’s law either

from a gradient in the average refractive index or through a length gradient. Here,

the average refractive index for horizontal and vertical input polarizations sees no

dependence on electric field gradients. So, if the effect of the electric field is equal

and opposite for ±45𝑜 polarizations, there is no steering from electric fields for

H/V polarizations. The only other ways steering can arise through Snell’s law is
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(1) if the refractive indices for ±45𝑜 polarizations aren’t perfect in their cancella-

tion (2) from a length gradient, which is the necessary second component of our

model

D.1.2 The Etalon effect in KD*P

Why isn’t the etalon effect a problem with KD*P? Firstly, KD*P’s are uniaxial

crystals with no intrinsic birefringence and hence can be cut with a large non-

parallelism without compromising their performance. Secondly, even if the face

cuts were quite parallel, and an etalon effect was observed, the phase shift of the

fast axis component of the back reflection would be precisely equal and opposite

to the phase shift of the slow axis component of the back reflection, and the

two on average would cancel leading to no helicity correlated charge asymmetry.

This is for two reasons (1) because the KD*P is uniaxial and the Pockels effect

induces a symmetrical shift in fast/slow refractive indices 𝑛𝑥 ≈ 𝑛0− 1
2
𝑛3
0𝑟63𝐸𝑧 and

𝑛𝑦 ≈ 𝑛0+
1
2
𝑛3
0𝑟63𝐸𝑧and (2) because the KD*P cell is running at QWV Δ𝑛𝐿 = 𝜋/2,

so the phase shift the back-face reflection undergoes in going 2L back and forth

round trip is +𝜋/2 for the fast axis and -𝜋/2 for the slow axis and 𝐴𝑞 = 𝑅(cos𝜑𝑓+

cos𝜑𝑠) = 𝑅(cos(𝜑0 + 𝜋/2) + cos(𝜑0 − 𝜋/2)) = 0. The KD*P crystals are coated

with Sol-gel which is broadband with a reflectance of 0.05-0.1% and if the face

cuts were parallel we would be able to examine the etalon effect for the individual

fast and slow axes and observe an Aq 1000ppm. We we able to examine the

behavior of KD*P cell and observed no etalon effect to within 100ppm. Therefore

the face cuts of our KD*P cell must be more non-parallel than the RTP crystals

(i.e. >0.05mrad).
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Figure D-4: Etalon effect in KDP. These measurements were performed by setting
input polarization along the fast axis or the slow axis (+-45deg) with a HWP,
scanning the applied voltage, and examining the transmission without an analyzer

D.1.3 Intensity Asymmetry Angle Dependence in KD*P

This result is presented in Appendix A and is different form Rupesh’s thesis

[163]. We note that the Newport 4-axis mount calibration, due to the presence

of a set set and differing calibration factor between pitch and yaw mar/turn,

caused some confusion in connecting calculation to actual measurements. Note

that KD*P has angle dependence in S1 and S2, but RTP just has angle dependence

in S1.

D.2 General Pockels Cell Considerations

D.2.1 Formulation

Here we summarize the formalized we used in describing Pockels cell behaviors.

Phase shifts for polarization along primary fast/slow axes i (=x’,y’ for KD*P, =y,z

for RTP)

𝜑𝑖 = 2𝜋𝑛𝑖𝐿/𝜆
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Helicity correlated phase shifts for components of polarization along primary axes

i, j

𝜑
𝑅(𝐿)
𝑖 = 2𝜋𝑛

𝑅(𝐿)
𝑖 𝐿𝑅(𝐿)/𝜆

where 𝐿𝑅(𝐿) = 𝐿0 if there is not piezoelectric effect at play, and

𝑛
𝑅(𝐿)
𝑖 = 𝑛0,𝑖 −

1

2
𝑛3
0,𝑖𝑟𝑖𝐸𝑧

for KD*P this becomes

𝑛
𝑅(𝐿)
𝑥′ = 𝑛𝑜 −

1

2
𝑛3
𝑜𝑟63𝐸

𝑅(𝐿)
𝑧 𝑛

𝑅(𝐿)
𝑦′ = 𝑛𝑜 +

1

2
𝑛3
𝑜𝑟63𝐸

𝑅(𝐿)
𝑧

for RTP this becomes [312]

𝑛𝑅(𝐿)
𝑦 = 𝑛0,𝑦 −

1

2
𝑛3
0,𝑦𝑟23𝐸

𝑅(𝐿)
𝑧 𝑛𝑅(𝐿)

𝑧 = 𝑛0,𝑧 −
1

2
𝑛3
0,𝑧𝑟33𝐸

𝑅(𝐿)
𝑧

where and typically the electrical field 𝐸𝑧 = 𝑉/𝑑 is symmetrically flipped 𝐸𝑅
𝑧 ≈

−𝐸𝐿
𝑧 and 𝑉 𝑅 ≈ −𝑉 𝐿 the voltages are nearly the same. We define a PITA voltage

and alpha voltage as

𝐸𝑅(𝐿)
𝑧 = ∓(𝐸𝑧,0 + 𝐸𝛼)− 𝐸Δ)

𝑉 𝑅(𝐿) = ∓(𝑉0 + 𝑉𝛼)− 𝑉𝑃𝐼𝑇𝐴)

Defining 𝛿-phase

𝛿𝑅(𝐿) = ∓(𝜋/2 + 𝛼)−Δ = 𝜑
𝑅(𝐿)
𝑥′ − 𝜑

𝑅(𝐿)
𝑦′

Transmission. Insert an analyzer after the Pockels cell with transmission coef-

ficients 𝑇𝑥, 𝑇𝑦 along an axis x, where 𝜓 is the angle subtended between x and the

horizontal axis. The transmission through the analyzer is given by:

𝑇𝑅(𝐿) = 𝑇
1

2
(1 + 𝜖/𝑇 cos(2𝜓) cos 𝛿𝑅(𝐿))
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where 𝜖 = 𝑇𝑥−𝑇𝑦, 𝑇 = (𝑇𝑥−𝑇𝑦)/2 defines the analyzing power of the polarizer(or

polarizing element).

Approximation

cos 𝛿𝑅(𝐿) = cos(∓(𝜋/2 + 𝛼)−Δ) ≈ 1− 𝛼∓Δ

cos 𝛿𝑅 − cos 𝛿𝐿 ≈ 𝛿𝑅 + 𝛿𝐿 = −2Δ

cos 𝛿𝑅 + cos 𝛿𝐿 ≈ 𝛿𝑅 − 𝛿𝐿 + 𝜋 = −2𝛼

Intensity asymmetry

𝐴𝑞 =
𝑇𝑅 − 𝑇𝐿

𝑇𝑅 + 𝑇𝐿
≈ 𝜖

𝑇
cos(2𝜓)

1

2
(cos 𝛿𝑅 − cos 𝛿𝐿) ≈ − 𝜖

𝑇
cos(2𝜓)Δ

for 100% analyzer

𝐴𝑞 ≈ −Δ

Transmission for 100% analyzer

𝑇 =
𝑇𝑅 + 𝑇𝐿

2
= 1 +

1

2
(𝑐𝑜𝑠𝛿𝑅 + 𝑐𝑜𝑠𝛿𝐿) ≈ 1 +

1

2
(𝛿𝑅 − 𝛿𝐿 + 𝜋) = 1− 𝛼

Stokes parameters

The Stokes parameters are defined (and measured) as [277] [278]:

𝑆0 = 𝑇𝑥+𝑇𝑦 >=
√︁
𝑆2
1 + 𝑆2

2 + 𝑆2
3 𝑆1 = 𝑇𝑥−𝑇𝑦 𝑆2 = 𝑇45𝑜 −𝑇135𝑜 = 2×𝑇45𝑜 −𝑆0

𝑆3 = 𝑆0 − 2× 𝑇𝑄𝑊𝑃 𝑖𝑛
45𝑜 = 𝐿𝑜𝑠𝑠𝑓𝑎𝑐𝑡𝑜𝑟 × (𝑇𝑄𝑊𝑃 𝑖𝑛

45𝑜 − 𝑇𝑄𝑊𝑃 𝑖𝑛
135𝑜 )

𝐿𝑜𝑠𝑠𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑇 (𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟, 𝑄𝑊𝑃 𝑜𝑢𝑡)/𝑇 (𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝑟, 𝑄𝑊𝑃 𝑖𝑛)

where S3 is found by inserting a QWP in with its fast axis along the horizontal

and measuring the transmission with the polarizer along 45𝑜, 135𝑜 and taking into
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account the loss-factor due to imperfect transmission through the waveplate. The

degree of polarization is 𝐷𝑜𝑃 =
√︀
𝑆2
1 + 𝑆2

2 + 𝑆2
3/𝑆0 and and the Stokes sets are

𝑆𝑃𝑃 = [𝑆0, 𝑆1, 𝑆2, 𝑆3]𝑃𝑃 = (1− 𝑃 ) * [𝑆 ′
0, 0, 0, 0]𝑈𝑁𝑃 + 𝑃 * [𝑆 ′

0, 𝑆
′
1, 𝑆

′
2, 𝑆

′
3]𝐸𝐿𝑃

𝑆𝐸𝐿𝑃 = [𝑆 ′
0, 𝑆

′
1, 𝑆

′
2, 𝑆

′
3]𝐸𝐿𝑃 = (1/𝑃 )*[𝑆0, 𝑆1, 𝑆2, 𝑆3]𝑃𝑃−((1−𝑃 )/𝑃 )*[𝑆0, 0, 0, 0]𝑈𝑁𝑃

where we define PP=partially polarized, ELP=elliptically polarized, UNP=unpolarized.

Note that 𝑆 ′
0 = 𝑆0 and may be normalized to 1. In normalized form,

𝑠𝑃𝑃 = [1, 𝑠1, 𝑠2, 𝑠3]𝑃𝑃 = [1, 𝑆1/𝑆0, 𝑆2/𝑆0, 𝑆3/𝑆0]𝑃𝑃

𝑠𝐸𝐿𝑃 = [1, 𝑠′1, 𝑠
′
2, 𝑠

′
3]𝐸𝐿𝑃 = (1/𝑃 )*(1/𝑆0)*[1, 𝑆1, 𝑆2, 𝑆3]𝑃𝑃−((1−𝑃 )/𝑃 )*[1, 0, 0, 0]𝑈𝑁𝑃

D.2.2 Angle-like Steering in KD*P

Ray Optics View

The operation of a KD*P crystal in a Pockels cell incurs voltage dependent

phase shifts on the beam 𝜑 = 2𝜋𝑛𝐿/𝜆. There can be gradients 𝑑𝑛
𝑑𝑋

, 𝑑𝐿
𝑑𝑋

, 𝑑𝑛
𝑑𝜃

, 𝑑𝑛
𝑑𝜃

.

These gradients are evident in PC translation scans.

Figure D-5: Charge asymmetry gradient for active KD*P with a vertical analyzer
after cell(“Gandalf”,Run2815, elog 656)

A 𝑑𝑛
𝑑𝑋

gradient can lead to an angle change Δ𝜃 just as 𝑑𝐿
𝑑𝑋

can by Snell’s Law.

(Secondarily, it should be noted, this angle change Δ𝜃 could via 𝑑𝑛
𝑑𝜃

, 𝑑𝑛
𝑑𝜃

create



D.2. GENERAL POCKELS CELL CONSIDERATIONS 430

a phase shift associated with the crystal’s angle-dependence, thereby connecting

position gradients with angular dependence gradients).

Figure D-6: Ray Separation. Horizontally polarized beam splits in the crystal
along the primary axes, angles not to scale.

Figure D-7: Coordinates. Primary crystal axes are along the diagonal with respect
to horizontal and vertical polarizations.

Since the crystal in the Pockels cell is birefringent, the beam should be viewed

as 2 separate rays: one with a polarization along the diagonal x’ and the other

along y’, the primary axes of the KD*P. These rays separate via a difference in
𝑑𝑛𝑥′
𝑑𝑥

and 𝑑𝑛𝑦′

𝑑𝑥
. In KD*P, 𝑛𝑥′ = 𝑛0 − 1

2
𝑟33𝐸𝑧𝑛

3
0 and 𝑛𝑦′ = 𝑛0 +

1
2
𝑟33𝐸𝑧𝑛

3
0 and the 2

rays separate into 4 rays for difference helicity states and different primary axes.

The gradients on average 𝑑
𝑑𝑥

𝑛𝑥′+𝑛𝑦′

2
= 𝑑

𝑑𝑥

𝑛0− 1
2
𝑟33𝐸𝑧𝑛3

0+𝑛0+
1
2
𝑟33𝐸𝑧𝑛3

0

2
= 𝑑𝑛0

𝑑𝑥
have zero

dependence on E-field, so in this model, there is no mean helicity correlated beam

shift to first order for H and V polarization; there is no helicity-correlated beam

steering steering for H and V polarization to first order in S1 and for no analyzer.

In S2, however, analyzing isolates 𝑛𝑥′ and 𝑛𝑦′ rays so that 𝑑𝑛𝑥′
𝑑𝑥

will change

for +Ez and -Ez producing position differences. In S2, there will be a position
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difference 𝑑𝑛𝑥′
𝑑𝑥

which is angle-like and grows as Leff increases and depends on how

far away you place the detector from the pockels cell.

Figure D-8: 4 Ray Separation. Horizontally polarized beam splits in the crystal
along the primary axes, and voltage application split the beam further, angles not
to scale.

Since we do see angle-like steering empirically without an analyzer, it must

be that the 𝑛𝑥′ and 𝑛𝑦′ don’t cancel out so nicely and give rise to steering for no

analyzer and for S1. This is the “normal” steering known about for quite some

time and mentioned in previous theses. There are several mechanisms which could

give rise to a non-cancellation in the electric field dependent terms in the refractive

indices : contributions from transverse field components Ex and Ey in the cell, 2nd

order Kerr contributions, stress-electric field coupling terms, terms which rotate

the primary axes of the crystal, intrinsic birefringence (𝑛0𝑥 ̸= 𝑛0𝑦), asymmetric

electro-optic coupling terms (𝑟33 etc. ) . Any term which (1) couples to electric

field (2) breaks x,y equal-and-opposite symmetry gives rise to angle-like steering

in KD*P.

S2 steering just depends on 𝜃′𝑥 . S1 and no-analyzer steering depends on the

difference between 𝜃𝑥′,0+𝜃𝑦′,0
2

− 𝜃𝑥′,1+𝜃𝑦′,1
2

and it makes no difference whether you are

analyzing or not, the angle-like position differences will be the same.

In S1, the “normal” steering term will be the same as when no analyzer is in.

In S2, this transforms and Δ < 𝜃𝑥′ + 𝜃𝑦′ > isn’t critical, only 𝜃𝑥′0 − 𝜃𝑥′1matters,

which is predictable from 𝑛𝑥′ = 𝑛0 − 1
2
𝑟33𝐸𝑧𝑛

3
0 and a gradient in either E or n.

Since this term is more predictable to first order, it is likely to dominate over the

“normal” steering for no-analyzer, it is likely to be balanced for S2 and S2+90𝑜
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(𝑛𝑥′&𝑛𝑦′), i.e. equal and opposite so the “normal” steering will produce and offset

in an RHWP scan in S1. And S2 steering will cause large position differences to

be located at S2 RHWP angles.

𝜃𝑥′0 − 𝜃𝑥′1 = 𝑅𝐻𝑊𝑃@𝑆2(45𝑜)

𝜃𝑦′0 − 𝜃𝑦′1 = 𝑅𝐻𝑊𝑃@𝑆2 + 90𝑜(135𝑜) = 4𝜃𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝜃𝑥′,0 + 𝜃𝑦′,0
2

− 𝜃𝑥′,1 + 𝜃𝑦′,1
2

= 𝑅𝐻𝑊𝑃@𝑆1(0𝑜&90𝑜)

=
𝑅𝐻𝑊𝑃@𝑆2

2
+
𝑅𝐻𝑊𝑃@𝑆2 + 90𝑜

2
= 𝑜𝑓𝑓𝑠𝑒𝑡

Figure D-9: RHWP scan. Isolating how angle-like steering in S1 and S2 contribute
to position differences in RHWP scans.

It should be noted that a more accurate model would consist of 4 gaussian

beams each with polarization along the two primary axes of the crystal, 2 for each

helicity state which make up approximately circular polarization.
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Figure D-10: 4 Gaussians. Horizontally polarized beam splits in the crystal
along the primary axes, and voltage application split the beam further, making 4
gaussian beam, 2 for each helicity state.

Does angle-like steering depend on input angle or position? Beam size

or divergence? No.

Phenomenologically , “normal” no-analyzer steering depends on position, which

is how the offset term in RHWP scans is controlled via Pockels Cell translation.

For no-analyzer and for S1 𝐷𝑥 ≈ 𝑎𝑌 𝐿𝑒𝑓𝑓 , 𝐷𝑦 ≈ 𝑏𝑋𝐿𝑒𝑓𝑓 . For 2 input beam

positions separated by Δ𝑤, the output HCB angle will be 𝑏Δ𝑥 and position dif-

ference 𝑏Δ𝑥𝐿𝑒𝑓𝑓 . For −Δ𝑤, the position difference is −𝑏Δ𝑥𝐿𝑒𝑓𝑓 . A beam of

diameter 2𝑤 will have an average position difference change from its spot-size of
𝑏Δ𝑥𝐿𝑒𝑓𝑓−𝑏Δ𝑥𝐿𝑒𝑓𝑓

2
= 0 . Therefore, spot-size doesn’t change “normal” steering in this

linear model.

What about S2 angle-like steering? Phenomenologically, position differences

in S2 have been observed to be linear with X,Y translation. Hence, just as for

no-analyzer, the spot-size will not affect S2 angle-like steering.

What about divergence? “Normal” steering depends on PC angle in measure-

ments. Again, it’s a linear dependence and +Δ𝜃 and −Δ𝜃 will cancel out on

average. Beam divergence does not affect steering in S2.

In summary, since PC angle affects position differences linearly in S1 and S2,

the beam divergence does not affect the angle-like steering terms in S1,S2.

Angle-like Steering Terms Equations

S1 & no analyzer:
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𝐷𝑥 = 𝐿𝑒𝑓𝑓
𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔𝑥

𝑑𝑦
Δ𝑦, 𝐷𝑦 = 𝐿𝑒𝑓𝑓

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔𝑦

𝑑𝑥
Δ𝑦 , where Δ𝑦 = 𝑦 − 𝑦0 is the

position change of the Pockels Cell from “center” y0 and Δ𝑥 = 𝑥 − 𝑥0 is the

position change of the Pockels Cell from “center” x0 where the steering is 0.

S2:

𝐷𝑥 = 𝜖𝐿𝑒𝑓𝑓𝛽(
𝑑2(𝑛𝑥′𝐿)

𝑑𝑥2 Δ𝑥 +
𝑑2(𝑛𝑥′𝐿)
𝑑𝑦𝑑𝑥

Δ𝑦), 𝐷𝑦 = 𝜖𝐿𝑒𝑓𝑓𝛽(
𝑑2(𝑛𝑥′𝐿)

𝑑𝑦2
Δ𝑦 +

𝑑2(𝑛𝑥′𝐿)
𝑑𝑥𝑑𝑦

Δ𝑥),

where this quantity is measurable with the QPD and it is related to 𝑛𝑥′ = 𝑛0 −
1
2
𝑟33𝐸𝑧𝑛

3
0 field gradients, index gradients, and possibly length gradients. 𝜖 is the

analyzing power of the photocathode.

These terms do not change with spot size or with divergence, but depend on

𝐿𝑒𝑓𝑓 an depend on the analyzing power for the term in S2.

We can rewrite them in terms of measurable quantities. For a 100% analyzer,
𝑑𝐷𝑥

𝑑𝑥
(angle-like,translation-dep, no-analyzer)= 𝐿𝑞𝑝𝑑

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔,𝑥

𝑑𝑦

𝑑𝐷𝑥

𝑑𝑥
(angle-like,translation-dep, S2)= 𝐿𝑞𝑝𝑑𝛽

𝑑2(𝑛𝑥′𝐿)
𝑑𝑥2

𝑑𝐷𝑥

𝑑𝑦
(angle-like,translation-dep, S2)= 𝐿𝑞𝑝𝑑𝛽

𝑑2(𝑛𝑥′𝐿)
𝑑𝑦𝑑𝑥

No Analyzer Angle-Dependent Steering

Figure D-11: Yaw and Steering. Even with no analyzer in, the PC angle can
cause further steering in the beam (Run2861)

We observe that even without an analyzer, the position differences change

with pockels cell angle (observed for input polarization vertical and horizontal in

elog666, Run2861, 40mm length KD*P Gandalf). There are some additional lin-
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ear terms with respect to angle of the pockels cell observed for no analyzer with

input polarization H or V of <20nm/mrad 84cm away. That’s <23nrad/mrad of

PC angle and for an Leff of 1.6m (for a 2m steering lens), that contributes 38nm

position difference for a 1mrad misalignment of PC angle. To compare with trans-

lational steering, for Horizontal input polarization, we observe 42nm/(1/10mm)

in PC translation at 84cm away. That’s 50nrad/(1/10mm) of PC translation.

When aligning the Pockels Cell and finding optimal position, if the angle is off by

0.5mrad, the zeroed out steering translation position could be off by 1/10mm, so

we should account for that shift .

If we assume the observed PC angle dependent terms are angle-like and not

position-like steering, they can account for as follows:

S1, S2 & no analyzer:

𝐷𝑥 = 𝐿𝑒𝑓𝑓 (
𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔𝑥

𝑑𝜃𝑥
𝜃𝑥 +

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔𝑥

𝑑𝜃𝑦
𝜃𝑦), 𝐷𝑦 = 𝐿𝑒𝑓𝑓 (

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔𝑦

𝑑𝜃𝑦
𝜃𝑦 +

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔𝑦

𝑑𝜃𝑥
𝜃𝑥)

D.2.3 Position-like Steering in KD*P

Gradients Discussion

Linear gradients in the asymmetry Aq with respect to pockels cell position

X in S1, produce position differences Dx. 2nd moment terms in asymmetry Aq

with respect to pockels cell position X produce 𝐷𝑥 ∼ 𝑋 terms. In S1, Aq is

determined by to 𝜑 in an expansion of 𝐶𝑜𝑠𝜑 near QWV where 𝜑 is the birefringence

𝜑𝑥′ −𝜑𝑦′ = 2𝜋(𝑛𝑥′ −𝑛𝑦′)𝐿/𝜆 and the Aq profile is determined the gradients in this

quantity. There are linear, quadratic and higher order terms in the S1 Aq profile

arising from birefringence gradients and crystal length gradients.

For S2, there is to first order, no net birefringence since S2 is defined along a pri-

mary axis of the crystal, so it can’t have any translation dependence. In practice,

phenomenologically, this may not be the case. There is a linear relationship ob-

served 𝐷𝑥 ∼ 𝑎𝑋 , 𝐷𝑥 ∼ −𝑎𝑌 , 𝐷𝑦 ∼ 𝑎𝑋, 𝐷𝑦 ∼ −𝑎𝑌 or 𝐷𝑥 ∼ −𝑎𝑋 , 𝐷𝑥 ∼ 𝑎𝑌

, 𝐷𝑦 ∼ 𝑎𝑋, 𝐷𝑦 ∼ −𝑎𝑌 depending on the sign for Xpc and Xqpd. However, it is
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possible these observed terms simply come from the mechanism of angle-like S2

steering via Snell’s Law described above, in which case the phenomenon observed

depends on Leff and is angle-like and not position-like.

The fact is there are Aq variations observed in S2 and translational dependen-

cies in position differences observed in S2. The Aq variations may contribute some

to the observed position differences via 𝐷𝑥 ∼ 𝑑𝐴𝑞
𝑑𝑥

and 𝑑𝐷𝑥

𝑑𝑥
∼ 𝑑2𝐴𝑞

𝑑𝑥2 just as they do

in S1. These are “position-like” position differences which will not depend on Leff,

but which will certainly depend on the spot-size.

Whether in S1, S2, or no-analyzer, if there is an Aq, 𝑑𝐴
𝑑𝑥

, or𝑑2𝐴
𝑑𝑥2 it will give rise

to position difference offsets and translational dependencies.

Several contributing factors to “position-like” position differences exist:
𝑑𝐴
𝑑𝑥

- Dx offsets, 𝑑𝐴
𝑑𝜃

- zero for “good” choice of angle but otherwise produces

Dx offsets, 𝑑2𝐴
𝑑𝑥2 Δ𝑥 - Dx translational dependence, 𝑑2𝐴

𝑑𝜃2
Δ𝜃 - Dx angle dependence,

𝑑2𝐴
𝑑𝑥2 & 𝑤𝑠𝑝𝑜𝑡 - Aq offsets which must be corrected with PC angle, 𝑑2𝐴

𝑑𝜃2
& 𝜃𝑑𝑖𝑣 - Aq

offsets which must be corrected with PC angle and which in turn makes a position

difference.

Radius and Angle Coupling

For a gaussian beam, r and 𝜃 are coupled in the ray-optics view. How are they

coupled?

Figure D-12: Wavefront. Propagation of wavefront of a gaussian beam.
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Figure D-13: Radius-Angle Coupling. Wavefront determines Radius of Curvature
which couples beam radius and direction.

Let 𝜃𝑤 denote the actual half-angle divergence at position z with 1/𝑒2 radius

w.

𝑟 = 𝑅𝑆𝑖𝑛(𝜃) ≈ 𝑅𝜃

𝑤(𝑧) = 𝑤0

√︃
1 +

𝑧2

𝑧2𝑅

𝑧𝑅 = 𝜋𝑤2
0/𝜆

𝑅(𝑧) = 𝑧(1 + (𝑧𝑅/𝑧)
2)

𝜃𝑤 =
𝑑𝑤

𝑑𝑧
=

𝜆

𝜋𝑤0

√︃
1

𝑧2𝑅/𝑧
2 + 1

Derivation:

𝑤0 =
𝜆

𝜋𝑤0

𝜋𝑤2
0

𝜆
=

𝜆

𝜋𝑤0

𝑧𝑅

(𝑤0/𝑧𝑅)
√︁
𝑧2𝑅 + 𝑧2 =

𝜆

𝜋𝑤0

√︁
𝑧2𝑅 + 𝑧2

𝑤0

√︁
1 + 𝑧2/𝑧2𝑅 =

𝜆

𝜋𝑤0

𝑧(1 + 𝑧2𝑅/𝑧
2)

√︃
1

𝑧2𝑅/𝑧
2 + 1

𝑤(𝑧) = 𝑅(𝑧)𝜃𝑤(𝑧)

𝑟 ≈ 𝑅𝜃 ≈ (𝑤/𝜃𝑤)𝜃
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If 𝑃 (𝑥) = 𝑃0𝑒
−2𝑥2/𝑤2 describes a gaussian beam, we may then also write 𝑃 (𝜃) as

well. For small angles, there’s an approximately linear relationship 𝜃(𝑟) = 𝑟(𝜃𝑤/𝑤)

and 𝑟(𝜃) = 𝜃(𝑤/𝜃𝑤) where 𝜃𝑤 = 𝜆
𝜋𝑤0

√︁
1

𝑧2𝑅/𝑧2+1
, 𝑤2 = 𝑤2

0 + 𝑤2
0
𝑧2𝜆2

𝜋𝑤4
0
. For r=0, 𝜃 = 0

and for r=w,𝜃 = 𝜃𝑤 , the divergence. Hence 𝑃 (𝜃) = 𝑃0𝑒
−2𝜃2/𝜃2𝑤 .

In terms of ray-optics if the steering lens is L1 from the Pockels Cell and the

cathode is L2 from the steering lens,⎡⎣𝑟𝑓
𝜃𝑓

⎤⎦ =

⎡⎣1− 𝐿2/𝑓 𝐿1 + 𝐿2 − 𝐿2𝐿1

−1/𝑓 1− 𝐿1/𝑓

⎤⎦⎡⎣𝑟
𝜃

⎤⎦
𝑟𝑓 = (1− 𝐿2/𝑓)𝑟 + (𝐿1 + 𝐿2 − 𝐿2𝐿1/𝑓)𝜃

Using 𝐿𝑒𝑓𝑓 = (𝐿1 + 𝐿2 − 𝐿2𝐿1/𝑓) and 𝜃 = (𝜃𝑤/𝑤)𝑟, we obtain

𝑟𝑓 = (1− 𝐿2/𝑓 + 𝐿𝑒𝑓𝑓𝜃𝑤/𝑤)𝑟

Hence

𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒 = (1− 𝐿2/𝑓 + 𝐿𝑒𝑓𝑓𝜃𝑃𝐶/𝑤𝑃𝐶)𝑤𝑃𝐶

which in turn makes a position difference. Note that if the beam goes through a a

focus after the Pockels cell, 𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒 is allowed to be negative to take into account

the sign flip.

1st moment terms

A gaussian beam has power distribution 𝑃 (𝑥) = 𝑃0𝑒
−2𝑥2/𝑤2 and it’s exposed

to a helicity dependent gradient 𝑃 ′ = 𝑃0𝑒
−2𝑥2/𝑤2

(1 ± 𝑑𝐴
𝑑𝑥
𝑥). Considering the ex-

pectation value of the position,

< 𝑥 >=

∫︀
𝑥𝑃 ′𝑑𝑥∫︀
𝑃 ′𝑑𝑥

=
𝑑𝐴
𝑑𝑥
𝑤2

4
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For helicity 0: 𝑟0 = 𝑑𝐴
𝑑𝑥
𝑤2/4 =< 𝑥0 >. For helicity 1: 𝑟1 = −𝑑𝐴

𝑑𝑥
𝑤2/4 =< 𝑥1 >.

Taking into account coupling between position and angle 𝜃(𝑥) ≈ 𝑥(𝜃𝑤/𝑤), 𝜃0 =

𝑑𝐴
𝑑𝑥
𝑤𝜃𝑤/4 and 𝜃1 = −𝑑𝐴

𝑑𝑥
𝑤𝜃𝑤/4.

In terms of ray optics, 𝑟𝑓 = (1− 𝐿2/𝑓)𝑟 + (𝐿1 + 𝐿2 − 𝐿2𝐿1/𝑓)𝜃. Generalizing

to take into account analyzing power and coupling in the gaussian beam between

position and angle 𝜃(𝑥) ≈ 𝑥(𝜃𝑤/𝑤),

Δ𝑥𝑓 = 𝜖(< 𝑥0 > − < 𝑥1 >)

= 𝜖((1− 𝐿2/𝑓)(𝑟0 − 𝑟1) + (𝐿1 + 𝐿2 − 𝐿2𝐿1/𝑓)(𝜃0 − 𝜃1)

= 𝜖(
𝑑𝐴

𝑑𝑥
𝑤2/2)(1− 𝐿2/𝑓 + 𝐿𝑒𝑓𝑓𝜃𝑤/𝑤)

Applying the relation between spot-sizes at the cathode and pockels cell 𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒 =

(1− 𝐿2/𝑓 + 𝐿𝑒𝑓𝑓𝜃𝑃𝐶/𝑤𝑃𝐶)𝑤𝑃𝐶 , we obtain

Δ𝑥𝑓 = 𝜖𝑤𝑃𝐶
𝑑𝐴

𝑑𝑥

𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

2

Likewise, in terms of angle 𝑃 ′ = 𝑃0𝑒
−2𝜃2/𝜃2𝑤(1± 𝑑𝐴

𝑑𝜃
𝜃). And its expectation value

< 𝜃 >=

∫︀
𝜃𝑃 ′𝑑𝜃∫︀
𝑃 ′𝑑𝜃

≈
𝑑𝐴
𝑑𝜃
𝜃2𝑤
4

For helicity 0: 𝜃0 = 𝑑𝐴
𝑑𝜃
𝜃2𝑤/4 =< 𝜃0 >. For helicity 1: 𝜃1 = −𝑑𝐴

𝑑𝜃
𝜃2𝑤/4 =< 𝜃1 >.

Taking into account coupling between position and angle 𝑥(𝜃) ≈ 𝜃(𝑤/𝜃𝑤), 𝑥0 =

𝑑𝐴
𝑑𝜃
𝜃𝑤𝑤/4 and 𝑥1 = −𝑑𝐴

𝑑𝜃
𝜃𝑤𝑤/4 . In terms of ray optics,

Δ𝑥𝑓 = 𝜖(< 𝑥0 > − < 𝑥1 >) = 𝜖((1−𝐿2/𝑓)(𝑟0− 𝑟1)+ (𝐿1+𝐿2−𝐿2𝐿1/𝑓)(𝜃0−

𝜃1) = 𝜖( 𝑤
𝜃𝑤
)(𝑑𝐴

𝑑𝑥
𝜃2𝑤/2)(1− 𝐿2/𝑓 + 𝐿𝑒𝑓𝑓𝜃𝑤/𝑤)

Applying the relation between spot-sizes at the cathode and Pockels cell 𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒 =

(1− 𝐿2/𝑓 + 𝐿𝑒𝑓𝑓𝜃𝑃𝐶/𝑤𝑃𝐶)𝑤𝑃𝐶 , we obtain

Δ𝑥𝑓 = 𝜖𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒
𝑑𝐴

𝑑𝜃

𝜃𝑃𝐶

2
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Including 2nd moment terms

There are 2nd order terms 𝑑2𝐴
𝑑𝜃2

, 𝑑2𝐴
𝑑𝑥2 which lead to a linear dependence of Dx

on X,𝜃 alignment: 𝑑2𝐴
𝑑𝑥2 𝑥, 𝑑2𝐴

𝑑𝜃2𝑥
𝜃𝑥, 𝑑2𝐴

𝑑𝑦𝑑𝑥
𝑦, 𝑑2𝐴

𝑑𝜃𝑦𝑑𝜃𝑥
𝜃𝑦. These terms act as corrections to

the 1st moment terms.

Δ𝑥𝑓,𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 = 𝜖𝑤𝑃𝐶(
𝑑𝐴

𝑑𝑥
+
𝑑2𝐴

𝑑𝑥2
𝑥+

𝑑2𝐴

𝑑𝑦𝑑𝑥
𝑦)
𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒

2

Δ𝑥𝑓,𝑎𝑛𝑔𝑙𝑒 = 𝜖𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒(
𝑑𝐴

𝑑𝜃
+
𝑑2𝐴

𝑑𝜃2𝑥
𝜃𝑥 +

𝑑2𝐴

𝑑𝜃𝑦𝑑𝜃𝑥
𝜃𝑦)

𝜃𝑃𝐶

2

We can rewrite the coefficients of these terms as a function of measurable quanti-

ties. For a 100% analyzer at the QPD position,

𝐷𝑥(position-like, translation-dep) = 𝑤𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑𝐴
𝑑𝑥

𝑑𝐷𝑥

𝑑𝑥
(position-like, translation-dep) =

𝑤𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑2𝐴
𝑑𝑥2

𝑑𝐷𝑥

𝑑𝑦
(position-like, translation-dep) =

𝑤𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑2𝐴
𝑑𝑦𝑑𝑥

𝐷𝑥(position-like, angle-dep) =
𝜃𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑𝐴
𝑑𝜃

𝑑𝐷𝑥

𝑑𝜃𝑥
(position-like, angle-dep) =

𝜃𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑2𝐴
𝑑𝜃2𝑥

𝑑𝐷𝑥

𝑑𝜃𝑦
(position-like, angle-dep) =

𝜃𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑2𝐴

𝑑𝜃𝑦𝑑𝜃𝑥

Asymmetry Offset Terms

There are Aq offset terms which cannot be corrected with PITA voltage in S2

and which must be corrected either by translation or angle. Usually, we do this

with angle. Offset terms can arise from spot size w and divergence 𝜃𝑑𝑖𝑣 combined

with 2nd order terms of Aq: 𝑑2𝐴
𝑑𝑥2 ,𝑑2𝐴

𝑑𝜃2
.

In KD*P, the asymmetry angle dependence can be approximated to second-

order as

𝐴(𝜃) = − 𝜖

𝑇

𝜋𝐷

𝜆
𝑛𝑜

(𝑛2
𝑜 − 𝑛2

𝑒)

𝑛𝑒2
[2𝜉𝑥𝜉𝑦𝑐𝑜𝑠(2𝜓) + (𝜉2𝑥 − 𝜉2𝑦)𝑠𝑖𝑛(2𝜓)] =
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= −𝑘[2𝜉𝑥𝜉𝑦𝑐𝑜𝑠(2𝜓) + (𝜉2𝑥 − 𝜉2𝑦)𝑠𝑖𝑛(2𝜓)]

This is an expansion of 𝑠𝑖𝑛(𝜉𝑥) and 𝑠𝑖𝑛(𝜉𝑦) terms and higher order terms do exist

and could potentially manifest themselves in large deviations from the Aq saddle-

point or in position differences and spot size asymmetries. We only examine the

2nd order terms here.

For a gaussian beam, 𝑃 (𝜃) = 𝑃0𝑒
−2𝜃2/𝜃2𝑤 . Examining the averaged values of

the asymmetry over the beam in S2,

< 𝐴(𝜃+𝛿𝜃𝑥) >≈
∫︀
𝐴(𝜃 + 𝛿𝜃𝑥)𝑃 (𝜃)𝑑𝜃∫︀

𝑃𝑑𝜃
≈
∫︀
−𝑘(𝜃 + 𝛿𝜃𝑥)

2𝑒−2𝜃2/𝜃2𝑤𝑑𝜃∫︀
𝑒−2𝜃2/𝜃2𝑤𝑑𝜃𝑑𝜃

≈ −𝑘𝛿𝜃2𝑥−𝑘/4𝜃2𝑤𝑥

< 𝐴(𝜃 + 𝛿𝜃𝑦) >≈ +𝑘𝛿𝜃2𝑦 + 𝑘/4𝜃2𝑤𝑦

An astigmatic/elliptical divergence of the laser shifts the asymmetry such that

the zero of Aq is not at 𝜃𝑥 = 𝜃𝑦 = 0 . For 1mrad half-angle divergence, 𝑘 =

2.4𝑥104𝑝𝑝𝑚/𝑚𝑟𝑎𝑑2(theoretically, experimentally this is 10X smaller), this shifts

by 6000ppm meaning to zero out Aq in S2, we have to pick an angle not centered

on the saddle point and off by 0.5mrad, leading to a position difference.

In S1, 𝐴 = −𝑘2𝜉𝑥𝜉𝑦 and the divergence along the diagonal x’,y’ is 𝜃𝑥′ =
𝜃𝑤𝑥+𝜃𝑤𝑦√

2

and < 𝐴(𝜃 + 𝛿𝜃𝑥′) >≈ −𝑘 𝛿𝜃𝑥+𝛿𝜃𝑦√
2

− 𝑘
4

𝜃𝑤𝑥+𝜃𝑤𝑦√
2

.

All together,

< 𝐴(𝜃) >= − 𝜖

𝑇

𝜋𝐷

𝜆
𝑛𝑜

(𝑛2
𝑜 − 𝑛2

𝑒)

𝑛𝑒2

×[(2𝜉𝑥𝜉𝑦 + 𝜃2𝑤𝑥′
/4− 𝜃2𝑤𝑦′

/4)𝑐𝑜𝑠(2𝜓) + (𝜉2𝑥 − 𝜉2𝑦 + 𝜃2𝑤𝑥
/4− 𝜃2𝑤𝑦

/4)𝑠𝑖𝑛(2𝜓)]

where x’ and y’ are 45𝑜 relative to x,y. Either S1 or S2 could have and Aq

offset if the divergence for x,y or x’,y’ differ. But if the beam is elliptical along
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x/y then S2 has the offset term.

2nd order terms in translational dependence combined with a spot-size can

also result in Aq offsets. For a quadratic 𝐴(𝑥) ∼ 𝑥2 or 2𝑥𝑦 or 𝑦2 ,

𝐴𝑜𝑓𝑓𝑠𝑒𝑡 =
𝜖

𝑇
(
𝑤2

𝑥

4

𝑑2𝐴

𝑑𝑥2
+
𝑤2

𝑦

4

𝑑2𝐴

𝑑𝑦2
+
𝑤𝑥𝑤𝑦

4
(
𝑑2𝐴

𝑑𝑥𝑑𝑦
+

𝑑2𝐴

𝑑𝑦𝑑𝑥
))

The total offset in S2 is important because it cannot be corrected with voltage

so it must be corrected with PC angle misalignment. The total offset can be

written as the sum of the spot-size induced and divergence induced offsets.

𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑡𝑜𝑡𝑎𝑙|𝑆1 = 𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑠𝑖𝑧𝑒 + 𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

=
𝜖

𝑇
(
𝑤2

𝑥

4

𝑑2𝐴

𝑑𝑥2
|𝑆1 +

𝑤2
𝑦

4

𝑑2𝐴

𝑑𝑦2
|𝑆1 +

𝑤𝑥𝑤𝑦

4
(
𝑑2𝐴

𝑑𝑥𝑑𝑦
|𝑆1 +

𝑑2𝐴

𝑑𝑦𝑑𝑥
|𝑆1))

− 𝜖

𝑇

𝜋𝐷

𝜆
𝑛𝑜

(𝑛2
𝑜 − 𝑛2

𝑒)

𝑛𝑒2
[𝜃2𝑤𝑥′

/4− 𝜃2𝑤𝑦′
/4]

𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑡𝑜𝑡𝑎𝑙|𝑆2 =
𝜖

𝑇
(
𝑤2

𝑥

4

𝑑2𝐴

𝑑𝑥2
|𝑆2 +

𝑤2
𝑦

4

𝑑2𝐴

𝑑𝑦2
|𝑆2 +

𝑤𝑥𝑤𝑦

4
(
𝑑2𝐴

𝑑𝑥𝑑𝑦
|𝑆2 +

𝑑2𝐴

𝑑𝑦𝑑𝑥
|𝑆2))

− 𝜖

𝑇

𝜋𝐷

𝜆
𝑛𝑜

(𝑛2
𝑜 − 𝑛2

𝑒)

𝑛𝑒2
[𝜃2𝑤𝑥

/4−𝜃2𝑤𝑦
/4] ≈ 𝜖(

𝑤2

4
)(
𝑑2𝐴

𝑑𝑥2
|𝑆2+

𝑑2𝐴

𝑑𝑦2
|𝑆2+(

𝑑2𝐴

𝑑𝑥𝑑𝑦
|𝑆2+

𝑑2𝐴

𝑑𝑦𝑑𝑥
|𝑆2))

− 𝜖

𝑇

𝜋𝐷

𝜆
𝑛𝑜

(𝑛2
𝑜 − 𝑛2

𝑒)

𝑛𝑒2
[𝜃2𝑤𝑥

/4− 𝜃2𝑤𝑦
/4]

The astigmatism/ellipticity in the divergence of the beam and the spot size on

the PC both affect the Aq offset in S2 which in turn affects the angle at which the

PC must be set.

Alignment of the PC usually involves setting Aq=0 in S2 via angle adjustment

and setting no-analyzer position differences to zero using translation adjustments

on the QPD with 100% analyzing power. If there’s no offset in S2, then we

sit on the saddlepoint and 𝑑𝐴
𝑑𝜃

= 0. If there is an offset, then 𝜃0 is chosen so
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A=0 and 𝑑𝐴
𝑑𝜃

= 𝑑2𝐴
𝑑𝜃2
𝜃0 . Suppose there is a positive Aq offset in S2, we must

decrease the asymmetry by setting 𝜃𝑥0 to a non-zero value, while 𝜃𝑦0 = 0. We

solve 𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑠𝑖𝑧𝑒|𝑆2 + 𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒|𝑆2 + 𝐴(𝜃𝑥0) = 0 and obtain

𝜃𝑥0 =

√︂
1

𝑘
(𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑡𝑜𝑡𝑎𝑙|𝑆2)

=

√︃
𝜃2𝑤𝑦

4
−
𝜃2𝑤𝑥

4
− (

𝑤2
𝑥

4

𝑑2𝐴

𝑑𝑥2
|𝑆2 +

𝑤2
𝑦

4

𝑑2𝐴

𝑑𝑦2
|𝑆2 +

𝑤𝑥𝑤𝑦

4
(
𝑑2𝐴

𝑑𝑥𝑑𝑦
|𝑆2 +

𝑑2𝐴

𝑑𝑦𝑑𝑥
|𝑆2))

Or if the offset in Aq is negative, we obtain

𝜃𝑦0 =

√︂
−1

𝑘
(𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑡𝑜𝑡𝑎𝑙|𝑆2)

=

√︃
𝜃2𝑤𝑥

4
−
𝜃2𝑤𝑦

4
+ (

𝑤2
𝑥

4

𝑑2𝐴

𝑑𝑥2
|𝑆2 +

𝑤2
𝑦

4

𝑑2𝐴

𝑑𝑦2
|𝑆2 +

𝑤𝑥𝑤𝑦

4
(
𝑑2𝐴

𝑑𝑥𝑑𝑦
|𝑆2 +

𝑑2𝐴

𝑑𝑦𝑑𝑥
|𝑆2))

These Aq offset angle corrections will give rise to the presence of position

differences both in S1 and S2 via

Δ𝑥𝑓,𝑎𝑛𝑔𝑙𝑒 = 𝜖𝑤𝑐𝑎𝑡ℎ𝑜𝑑𝑒(
𝑑𝐴
𝑑𝜃𝑥

+ 𝑑2𝐴
𝑑𝜃2𝑥
𝜃𝑥 +

𝑑2𝐴
𝑑𝜃𝑦𝑑𝜃𝑥

𝜃𝑦)
𝜃𝑃𝐶

2

Angle Asymmetry Gradients

The angle dependence of Aq combined with beam divergence position-angle

coupling gives rise to angle dependent position differences in both S1 and S2. An

astigmatism/ellipticity in the laser which forces the KD*P angle to be offset from

the angle-saddle-point will cause the beam to sit on an asymmetry gradient with

respect to angle. The laser divergence will then couple this gradient with respect

to angle to a gradient with respect to position and hence, a position difference.

𝐴(𝜃) = −𝑘[2𝜃𝑥𝜃𝑦𝑐𝑜𝑠(2𝜓) + (𝜃2𝑥 − 𝜃2𝑦)𝑠𝑖𝑛(2𝜓)]

𝑑𝐴(𝜃)

𝑑𝜃𝑥
= −2𝑘[𝜃𝑦𝑐𝑜𝑠(2𝜓) + 𝜃𝑥𝑠𝑖𝑛(2𝜓)]
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𝑑𝐴(𝜃)

𝑑𝜃𝑦
= −2𝑘[𝜃𝑥𝑐𝑜𝑠(2𝜓)− 𝜃𝑦𝑠𝑖𝑛(2𝜓)]

For small divergence, there’s an approximately linear relationship coupling angle

and position 𝜃(𝑟) = 𝑟(𝜃𝑤/𝑤) and 𝑟(𝜃) = 𝜃(𝑤/𝜃𝑤) w. At the location of the Pockels

Cell,

𝑑𝐴(𝜃)

𝑑𝑥
=
𝑑𝐴(𝜃)

𝑑𝜃𝑥

𝑑𝜃𝑥
𝑑𝑥

= −2𝑘
𝜃𝑤𝑥

𝑤𝑥

[𝜃𝑦𝑐𝑜𝑠(2𝜓) + 𝜃𝑥𝑠𝑖𝑛(2𝜓)]

𝑑𝐴(𝜃)

𝑑𝑦
=
𝑑𝐴(𝜃)

𝑑𝜃𝑦

𝑑𝜃𝑦
𝑑𝑦

= −2𝑘
𝜃𝑤𝑦

𝑤𝑦

[𝜃𝑥𝑐𝑜𝑠(2𝜓)− 𝜃𝑦𝑠𝑖𝑛(2𝜓)]

These gradients will give rise to position differences at the qpd:

𝐷𝑥 =
𝜃𝑤𝑥𝑤𝑞𝑝𝑑𝑥

2

𝑑𝐴

𝑑𝜃𝑥
= −𝑘𝜃𝑤𝑥𝑤𝑞𝑝𝑑𝑥 [𝜃𝑦𝑐𝑜𝑠(2𝜓) + 𝜃𝑥𝑠𝑖𝑛(2𝜓)]

𝐷𝑦 =
𝜃𝑤𝑦𝑤𝑞𝑝𝑑𝑦

2

𝑑𝐴

𝑑𝜃𝑦
= −𝑘𝜃𝑤𝑦𝑤𝑞𝑝𝑑𝑦 [𝜃𝑥𝑐𝑜𝑠(2𝜓)− 𝜃𝑦𝑠𝑖𝑛(2𝜓)]

𝑘 =
𝜖

𝑇

𝜋𝐷

𝜆
𝑛𝑜

(𝑛2
𝑜 − 𝑛2

𝑒)

𝑛𝑒2

This effect means that small beam divergence through the Pockels cell is critical

for minimizing position differences. Typically, the divergence is <0.5mrad going

through the Pockels cell. In the past, attempts have been made to tightly focus the

laser through the Pockels cell with a lens in order to reduce spot-size and position

differences. It was observed that rather than reducing the position differences, this

tight focus within the Pockels cell amplified position differences very strongly. The

equations above explain this effect. Focusing the laser tightly tends to increase

the divergence outside the focus, which increases the position differences, even

though the beam spots-size is small. When the Raleigh range is short, it’s hard

to keep the whole length of the 40mm long crystal in a where the divergence is

<0.5mrad. If the focus of the laser is not exactly in the center of the crystal,

or if there is an astigmatism such that the horizontal and vertical foci occur in

different locations, the average divergence will be large and contribute significantly
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to position differences. This when attempting to reduce position differences, it is

important to reduce both spot-size and divergence within the KD*P crystal.

Figure D-14: Beam Profile. A 50cm lens is placed upstream of the Pockels cell.
Due to laser astigmatism, the x/y foci occur at different locations and the average
divergence is not small.

Non-Gaussian Tails

For a gaussian beam, 𝑃 (𝜃) = 𝑃0𝑒
−2𝜃2/𝜃2𝑤 the asymmetry gradients as a function

of PC angle don’t change with laser divergence, at least when the function form

of asymmetry only contains second order terms in angle. But a non-symmetric

beam can cause the asymmetry gradients to change in measurement.

Suppose we model a tail as just a flat-top distribution with a mean 𝜃𝑡0 and with

𝜃𝑡𝑤 and Intensity 𝑃𝑡 so that the new distribution in angle is 𝑃 (𝜃) = 𝑃0𝑒
−2𝜃2/𝜃2𝑤 +𝑃𝑡

for 𝜃𝑡0 − 𝜃𝑡𝑤 < 𝜃 < 𝜃 + 𝜃𝑡𝑤 and 𝑃 (𝜃) = 𝑃0𝑒
−2𝜃2/𝜃2𝑤 otherwise. We assume that the

peak power of the tail is much smaller than the peak power of the gaussian in our
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approximation below

< 𝐴(𝜃 + 𝛿𝜃𝑥) >≈
∫︀
𝐴(𝜃 + 𝛿𝜃𝑥)𝑃 (𝜃)𝑑𝜃∫︀

𝑃𝑑𝜃

≈ −𝑘𝛿𝜃2𝑥 − 𝑘/4𝜃2𝑤𝑥
+
𝑃𝑡𝑘
√︀

2/𝜋𝜃𝑡𝑤𝑥

𝑃𝑜|𝜃𝑤𝑥|
(−4𝛿𝜃𝑥𝜃𝑡0𝑥 − 2𝜃2𝑡0𝑥 + 𝜃2𝑤𝑥/2− 2𝜃2𝑡𝑤𝑥/3)

< 𝐴(𝜃 + 𝛿𝜃𝑦) >≈
∫︀
𝐴(𝜃 + 𝛿𝜃𝑦)𝑃 (𝜃)𝑑𝜃∫︀

𝑃𝑑𝜃

≈ +𝑘𝛿𝜃2𝑦 + 𝑘/4𝜃2𝑤𝑦
−
𝑃𝑡𝑘
√︀

2/𝜋𝜃𝑡𝑤𝑦

𝑃𝑜|𝜃𝑤𝑦|
(−4𝛿𝜃𝑦𝜃𝑡0𝑦 − 2𝜃2𝑡0𝑦 + 𝜃2𝑤𝑦/2− 2𝜃2𝑡𝑤𝑦/3)

𝑑 < 𝐴(𝜃 + 𝛿𝜃𝑥) >

𝑑𝛿𝜃𝑥
≈ −2𝑘𝛿𝜃𝑥 − 4𝜃𝑡0𝑥

𝑃𝑡𝑘
√︀
2/𝜋𝜃𝑡𝑤𝑥

𝑃𝑜|𝜃𝑤𝑥|

𝑑 < 𝐴(𝜃 + 𝛿𝜃𝑦) >

𝑑𝛿𝜃𝑦
≈ +2𝑘𝛿𝜃𝑦 + 4𝜃𝑡0𝑦

𝑃𝑡𝑘
√︀
2/𝜋𝜃𝑡𝑤𝑦

𝑃𝑜|𝜃𝑤𝑦|

Non-Gaussian tails can give rise to position difference offsets, charge asymme-

try offsets and linear terms in Aq with respect to angle.

Photocathode Analyzing Power

The strength an direction of the photocathode’s analyzing power is a significant

parameter. Let the analyzing direction be 𝜓𝑐𝑎𝑡ℎ𝑜𝑑𝑒 relative to the vertical. Define

positive 𝜖 such that polarization along 𝜓𝑐𝑎𝑡ℎ𝑜𝑑𝑒 has a higher transmission than

polarization along 𝜓𝑐𝑎𝑡ℎ𝑜𝑑𝑒 + 90𝑜 . If we rotate a waveplate such that the input

polarization is along 𝜃𝑝𝑜𝑙 the analyzing power in that direction will be

𝜖(𝜃𝑝𝑜𝑙) = 𝜖0𝐶𝑜𝑠[2(𝜃𝑝𝑜𝑙 − 𝜓𝑐𝑎𝑡ℎ𝑜𝑑𝑒)]

𝜖(𝑆1, 𝑉 ) = 𝜖0𝐶𝑜𝑠[2𝜓𝑐𝑎𝑡ℎ𝑜𝑑𝑒]

𝜖(𝑆1 + 90𝑜, 𝐻) = 𝜖0𝐶𝑜𝑠[𝜋 − 2𝜓𝑐𝑎𝑡ℎ𝑜𝑑𝑒]

𝜖(𝑆2,+45𝑜) = 𝜖0𝐶𝑜𝑠[𝜋/2− 2𝜓𝑐𝑎𝑡ℎ𝑜𝑑𝑒]
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𝜖(𝑆2,−45𝑜) = 𝜖0𝐶𝑜𝑠[−𝜋/2− 2𝜓𝑐𝑎𝑡ℎ𝑜𝑑𝑒]

It should be noted that the 2 theta RHWP terms wind up dominating once the

cathode analyzing power is rotated.

It should be noted that to predict behavior in the injector, it is necessary to

know the focusing and electron beam propagation post-pockels cell. The position

differences observed in beam BPM will be proportional to the spot-size of the

electron beam. The electron beam coming off the cathode will be the same size

as the laser beam incident upon it assuming no quadratic terms in QE.

The quantum efficiency also affects the position differences. There can be linear

and quadratic terms in QE and analyzing power 𝑑𝑄𝐸
𝑑𝑥

, 𝑑𝜖0
𝑑𝑥

,𝑑
2𝑄𝐸
𝑑𝑥2 , 𝑑2𝜖0

𝑑𝑥2 .

Suppose the gaussian spot over time degrades the QE proportional to the

intensity of light. Then there will be a “hole” in the QE, gaussian in shape,

which will result in a smaller efficiency near the laser peak and a relatively larger

efficiency near the laser spot wings, resulting in a larger electron beam effective

spot size than the laser beam incident upon it. The larger electron beam spot size

will then result in larger position differences as the QE hole deepens. Numerically,

if the average photocathode QE drops by some fraction D due to a gaussian laser

spot 𝑃0𝑒
−2𝑥2/𝑤2 , the QE profile would conform to the function (1−

√
2𝐷𝑒−2𝑥2/𝑤2

)

and the electron beam would come off the cathode as (1 −
√
2𝐷𝑒−2𝑥2/𝑤2

)𝑒−2𝑥2/𝑤2

which to first order has a spot size modified by a factor 𝑤𝑒− = 𝑤𝑙𝑎𝑠𝑒𝑟(1+
(1−1/𝑒2)𝐷

2
√
2

)

.

If we a have a position difference in a gaussian laser beam which is then exposed

to a gaussian QE form, what does that do to the position difference? we can com-

pute the expectation value of the position to first order < 𝑥 >≈
∫︀
𝑄𝐸(𝑥)𝑃 (𝑥+Δ𝑥)𝑑𝑥∫︀
𝑄𝐸(𝑥)𝑃 (𝑥+Δ𝑥)𝑑𝑥

≈∫︀
𝑥(1−

√
2𝐷𝑒−2𝑥2/𝑤2

)𝑒−2(𝑥+Δ𝑥)2/𝑤2
𝑑𝑥∫︀

(1−
√
2𝐷𝑒−2𝑥2/𝑤2

)𝑒−2(𝑥+Δ𝑥)2/𝑤2
𝑑𝑥

≈ −Δ𝑥(1+𝐷/2). Therefore, the position difference

increases as the QE hole deepens. 𝐷𝑥,𝑒− =< 𝑥0 > − < 𝑥1 >= (𝑥0−𝑥1)(1+𝐷/2) =

𝐷𝑥,𝑙𝑎𝑠𝑒𝑟(1 +𝐷/2)

This equation was demonstrated empirically at JLab by moving the laser out
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of a QE hole D-15 and comping overall position differences in the injector D-26 .

Figure D-15: QE scans of photocathode showing a QE hole where the laser had
been

The hole-equation predicts when comparing a flat region of 0.507%QE (0.352%

gun off) with a hole region with 0.3674%QE (0.25% gun off), if the laser is about

the size of the hole, the position differences will scale by a factor of 0.73X, so 38%

decrease in position differences outside the hole. Average position differences in

the injector showed a factor of 0.77X decrease in y position differences and 0.64X

in x position differences and a 0.71X decrease overall. The observed effect of the

QE hole was very similar to what what predicted by simply assuming the hole was

the same size as the laser beam.

Regarding any 1st order slopes in the QE, this will shift the overall position

by 1
4
𝑑𝑄𝐸
𝑑𝑥

, but not the position differences.

There can be a gradient in the analyzing power. The analyzing power of the

the photocathode was measured by rotating the RHWP with the PC HV off for

three locations :

∙ (1) in a high QE plateau uniform region: analyzing power = 5.36%±0.37%,

QE(gun off)≈0.352%, QE(gun on)≈0.5067%(Polog 3470276)

∙ (2) on a QE gradient: analyzing power = 5.62±0.37%, QE(gun off)≈0.324%,QE(gun

on)≈0.4886%

∙ (3) in a QE hole: analyzing power = 5.97%±0.37%, QE(gun off)≈0.25%,
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QE(gun on)≈0.3674%

Figure D-16: Cathode analyzing power at three locations (1) in a QE hole (2) on
a QE gradient (3) in a high QE plateau uniform region. Polog 3470271

If there is a slope in the analyzing power, it will make no difference to position

differences which are not polarization dependent, such as the angle-like steering

terms present with no analyzer. However, if there is, for example, a charge asym-

metry in S1 and a gradient in the analyzing power over the face of the cathode,

then there will be a position difference proportional to the size of the beam spot,

the gradient, and the asymmetry.

Figure D-17: Gradient in Analyzing Power on the photocathode combined with
a linear polarization asymmetry leads to a position difference

Quantitatively, if a circularly polarized gaussian beam has power distribution

𝑃 (𝑥) = 𝑃0𝑒
−2𝑥2/𝑤2 , with an S1 asymmetry in polarization Aq, and it’s exposed

to an analyzing power, the resulting distribution will be 𝑃 ′ = 𝑃0𝑒
−2𝑥2/𝑤2 1

2
(1 ±
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𝜖𝐴𝑞). If there’s a gradient in the analyzing power, the distribution will be 𝑃 ′ =

𝑃0𝑒
−2𝑥2/𝑤2 1

2
(1± (𝜖+ 𝑑𝜖

𝑑𝑥
𝑥)𝐴𝑞). Considering the expectation value of the position,

< 𝑥 >=

∫︀
𝑥𝑃 ′𝑑𝑥∫︀
𝑃 ′𝑑𝑥

= ±
𝐴𝑞,𝑆1

𝑑𝜖
𝑑𝑥
𝑤2

4

Hence the position difference induced by an analyzing power gradient on the pho-

tocathode is

𝐷𝑥 =
𝐴𝑞

𝑑𝜖
𝑑𝑥
𝑤2

𝑐𝑎𝑡ℎ𝑜𝑑𝑒

2

Measurable Quantities

Many translation scans and angle scans were performed at UVa on a Goose

and Housego KD*P with 20mmm aperture (“Gandalf”) for input polarization H,

V, +45𝑜, - 45𝑜, and for no analyzer after the PC, analyzer oriented along V (S1),

and analyzer oriented along H (S2). These studies were done with qpd at a couple

different distances from the PC to distinguish angle-like and position like steering

terms.

Figure D-18: Charge asymmetry gradient for active KD*P with a vertical analyzer
after cell(“Gandalf”, Run2815, elog 656)
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Figure D-19: Charge asymmetry gradient for active KD*P with a vertical analyzer
after cell(“Gandalf”,Run2857, elog 665)

In the table below, na=no-analyzer and H,x’,y’ indicates the input polarization

direction. All units are Dx[um], Dy[um],x[mm],y[mm],𝜃[mrad],A[ppm],L[m],w[mm],𝜃𝑑𝑖𝑣[mrad]

are evaluated near Xpc 8-9.2mm, Ypc 10.8-11.5mm. Values obtained for KD*P

cell Gandalf, 20mm aperture, 40mm length with an 800nm laser with qpd 84cm

from cell center (see elog 718). A simulation of KD*P RHWP scans is done in

elog 719.

𝑑𝐷𝑥
𝑑𝑥

|𝑆2,𝐻 0.4 𝑑𝐷𝑥
𝑑𝑦

|𝑆2,𝐻 -0.3
𝑑𝐷𝑦
𝑑𝑥

|𝑆2,𝐻 0.25
𝑑𝐷𝑦
𝑑𝑦

|𝑆2,𝐻 -0.35
𝑑𝐷𝑥
𝑑𝑥

|𝑆1,𝐻 0.75 𝑑𝐷𝑥
𝑑𝑦

|𝑆1,𝐻 -0.225
𝑑𝐷𝑦
𝑑𝑥

|𝑆1,𝐻 0.225
𝑑𝐷𝑦
𝑑𝑦

|𝑆1,𝐻 0.66
𝑑𝐷𝑥
𝑑𝑥

|𝑆2,𝑉 0.3 𝑑𝐷𝑥
𝑑𝑦

|𝑆2,𝑉 -0.225
𝑑𝐷𝑦
𝑑𝑥

|𝑆2,𝑉 0.183
𝑑𝐷𝑦
𝑑𝑦

|𝑆2,𝑉 -0.25
𝑑𝐷𝑥
𝑑𝑥

|𝑆1,𝑉 -0.86 𝑑𝐷𝑥
𝑑𝑦

|𝑆1,𝑉 0
𝑑𝐷𝑦
𝑑𝑥

|𝑆1,𝑉 0.175
𝑑𝐷𝑦
𝑑𝑦

|𝑆1,𝑉 0
𝑑𝐷𝑥
𝑑𝑦

|𝑛𝑎,𝑉 -0.29
𝑑𝐷𝑦
𝑑𝑥

|𝑛𝑎,𝑉 0.225 𝑑𝐷𝑥
𝑑𝑦

|𝑛𝑎,𝐻 -0.133
𝑑𝐷𝑦
𝑑𝑥

|𝑛𝑎,𝐻 0.155
𝑑𝐷𝑥
𝑑𝑦

|𝑛𝑎,𝑥′ -0.1709 𝑑𝐷𝑥
𝑑𝑥

|𝑛𝑎,𝑥′ 0.3584
𝑑𝐷𝑦
𝑑𝑦

|𝑛𝑎,𝑥′ -0.3624
𝑑𝐷𝑦
𝑑𝑥

|𝑛𝑎,𝑥′ 0.1911
𝑑𝐷𝑥
𝑑𝑦

|𝑛𝑎,𝑦′ -0.1855 𝑑𝐷𝑥
𝑑𝑥

|𝑛𝑎,𝑦′ -0.3663
𝑑𝐷𝑦
𝑑𝑦

|𝑛𝑎,𝑦′ 0.3774
𝑑𝐷𝑦
𝑑𝑥

|𝑛𝑎,𝑦′ 0.18
𝑑𝐷𝑥
𝑑𝜃𝑥

|𝑛𝑎,𝐻 0 𝑑𝐷𝑥
𝑑𝜃𝑦

|𝑛𝑎,𝐻 0
𝑑𝐷𝑦
𝑑𝜃𝑥

|𝑛𝑎,𝐻 0.016
𝑑𝐷𝑦
𝑑𝜃𝑦

|𝑛𝑎,𝐻 0
𝑑𝐷𝑥
𝑑𝜃𝑥

|𝑛𝑎,𝑉 0.0125 𝑑𝐷𝑥
𝑑𝜃𝑦

|𝑛𝑎,𝑉 0.0183
𝑑𝐷𝑦
𝑑𝜃𝑥

|𝑛𝑎,𝑉 0
𝑑𝐷𝑦
𝑑𝜃𝑦

|𝑛𝑎,𝑉 -0.0183
𝑑𝐷𝑥
𝑑𝜃𝑥

|𝑆2,𝐻
𝑑𝐷𝑥
𝑑𝜃𝑦

|𝑆2,𝐻
𝑑𝐷𝑦
𝑑𝜃𝑥

|𝑆2,𝐻
𝑑𝐷𝑦
𝑑𝜃𝑦

|𝑆2,𝐻

𝑑𝐴
𝑑𝑥

|𝑥0,𝑆1
2600 𝑑𝐴

𝑑𝑥
|𝑥0,𝑆2

-100 𝑑𝐴
𝑑𝑦

|𝑦0,𝑆1
600 𝑑𝐴

𝑑𝑦
|𝑦0,𝑆2

-1333
𝑑2𝐴

𝑑( 1√
2
(𝜃𝑦+𝜃𝑥))2

|𝑆1
-1210 𝑑2𝐴

𝑑( 1√
2
(𝜃𝑥−𝜃𝑦))2

|𝑆1
1580 𝑑2𝐴

𝑑𝜃2𝑥
|𝑆2

-491.6 𝑑2𝐴
𝑑𝜃2𝑦

|𝑆2
1645

𝐴𝑜𝑓𝑓𝑠𝑒𝑡,𝑡𝑜𝑡𝑎𝑙|𝑆2
-500 𝐿𝑞𝑝𝑑 0.84 𝑤𝑃𝐶,𝑥 1.130 𝑤𝑃𝐶,𝑦 1.201

𝜃𝑑𝑖𝑣,𝑥 0.6167 𝜃𝑑𝑖𝑣,𝑦 0.4964 𝑤𝑞𝑝𝑑𝑥 1.648 𝑤𝑞𝑑𝑝𝑦 1.618

[KD*P measured dependencies]

Table D.1: Data from runs: 2841, 2838, 2850, 2848, 2847 and 2826, 2827, 2828,
2860, 2861, 2857, 2841, 2859 and 2857, 2857 elog714, elog714 (in order of each
row)

In converting measurables to the characterization parameters, we can average

H and V polarization measurements and use the following equations to aid us:
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𝑑𝐷𝑥
𝑑𝑥 |𝑆2 = 𝑑𝐷𝑥

𝑑𝑥 |𝑆2(position-like) +𝑑𝐷𝑥
𝑑𝑥 |𝑆2(angle-like) = 𝑤𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑2𝐴
𝑑𝑥2 |𝑆2+𝐿𝑞𝑝𝑑𝛽

𝑑2(𝑛𝑥′𝐿)
𝑑𝑥2 |𝑆2

𝑑𝐷𝑥
𝑑𝑦 |𝑆2 = 𝑑𝐷𝑥

𝑑𝑦 |𝑆2(position-like) +𝑑𝐷𝑥
𝑑𝑦 |𝑆2(angle-like) = 𝑤𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑2𝐴
𝑑𝑦𝑑𝑥 |𝑆2+𝐿𝑞𝑝𝑑𝛽

𝑑2(𝑛𝑥′𝐿)
𝑑𝑦𝑑𝑥 |𝑆2

𝑑𝐷𝑥
𝑑𝑥 |𝑆1 = 𝑑𝐷𝑥

𝑑𝑥 |𝑆1(position-like) +𝑑𝐷𝑥
𝑑𝑥 |𝑆1(angle-like) =

𝑤𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑2𝐴
𝑑𝑥2 |𝑆1

𝑑𝐷𝑥
𝑑𝑦 |𝑆1 = 𝑑𝐷𝑥

𝑑𝑦 |𝑆1(position-like) +𝑑𝐷𝑥
𝑑𝑦 |𝑆1(angle-like) = 𝑤𝑃𝐶𝑤𝑞𝑝𝑑

2
𝑑2𝐴
𝑑𝑦𝑑𝑥 |𝑆1+𝐿𝑞𝑝𝑑

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔,𝑥

𝑑𝑦 |𝑆1

𝑑𝐷𝑥
𝑑𝑦 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝐻𝑝𝑜𝑙 =

𝑑𝐷𝑥
𝑑𝑦 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝐻𝑝𝑜𝑙(angle-like) = 𝐿𝑞𝑝𝑑

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔,𝑥

𝑑𝑦 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝐻𝑝𝑜𝑙

𝑑𝐷𝑥
𝑑𝑦 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑥′𝑝𝑜𝑙 =

𝑑𝐷𝑥
𝑑𝑦 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑥′𝑝𝑜𝑙(angle-like) = 𝐿𝑞𝑝𝑑𝛽

𝑑2(𝑛𝑥′𝐿)
𝑑𝑦𝑑𝑥 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑥′𝑝𝑜𝑙

𝑑𝐷𝑥
𝑑𝑥 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑥′𝑝𝑜𝑙 =

𝑑𝐷𝑥
𝑑𝑥 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑥′𝑝𝑜𝑙(angle-like) = 𝐿𝑞𝑝𝑑𝛽

𝑑2(𝑛𝑥′𝐿)
𝑑𝑥2 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑥′𝑝𝑜𝑙

𝑑𝐷𝑥
𝑑𝑦 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑦′𝑝𝑜𝑙 =

𝑑𝐷𝑥
𝑑𝑦 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑦′𝑝𝑜𝑙(angle-like) = 𝐿𝑞𝑝𝑑𝛽

𝑑2(𝑛𝑦′𝐿)

𝑑𝑦𝑑𝑥 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑦′𝑝𝑜𝑙

𝑑𝐷𝑥
𝑑𝑥 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑦′𝑝𝑜𝑙 =

𝑑𝐷𝑥
𝑑𝑥 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑦′𝑝𝑜𝑙(angle-like) = 𝐿𝑞𝑝𝑑𝛽

𝑑2(𝑛𝑦′𝐿)

𝑑𝑥2 |𝑛𝑜−𝑎𝑛𝑎𝑙,𝑦′𝑝𝑜𝑙

𝑑𝜃𝑠𝑡,𝑦
𝑑𝑥

0.226𝑢𝑟𝑎𝑑
𝑚𝑚

𝑑𝜃𝑠𝑡,𝑥
𝑑𝑦

-0.252 𝑢𝑟𝑎𝑑
𝑚𝑚

𝑑𝜃𝑠𝑡,𝑥
𝑑𝜃𝑥

7.44 𝑛𝑟𝑎𝑑
𝑚𝑟𝑎𝑑

𝑑𝜃𝑠𝑡,𝑥
𝑑𝜃𝑦

10.89 𝑛𝑟𝑎𝑑
𝑚𝑟𝑎𝑑

𝑑𝜃𝑠𝑡,𝑦
𝑑𝜃𝑥

9.52 𝑛𝑟𝑎𝑑
𝑚𝑟𝑎𝑑

𝑑𝜃𝑠𝑡,𝑥
𝑑𝜃𝑦

-10.89 𝑛𝑟𝑎𝑑
𝑚𝑟𝑎𝑑

𝑑𝜃𝑠𝑡,𝑥
𝑑𝜃𝑥

0
𝑑𝜃𝑠𝑡,𝑦
𝑑𝜃𝑦

0

𝑑𝐴
𝑑𝑥

|𝑥0,𝑆1
1284 𝑝𝑝𝑚

𝑚𝑚
𝑑2𝐴
𝑑𝑥2 |𝑥0,𝑆1

-60 𝑝𝑝𝑚

𝑚𝑚2
𝑑2𝐴
𝑑𝑦𝑑𝑥

|𝑥0,𝑦0,𝑆1
15 𝑝𝑝𝑚

𝑚𝑚2
𝑑𝐴
𝑑𝑦

|𝑦0,𝑆1
261 𝑝𝑝𝑚

𝑚𝑚

𝑑2𝐴
𝑑𝑦2 |𝑦0,𝑆1

340 𝑝𝑝𝑚

𝑚𝑚2
𝑑2𝐴
𝑑𝑥𝑑𝑦

|𝑥0,𝑦0,𝑆1
104 𝑝𝑝𝑚

𝑚𝑚2
𝑑𝐴
𝑑𝑥

|𝑥0,𝑆2
-167.2 𝑝𝑝𝑚

𝑚𝑚
𝑑2𝐴
𝑑𝑥2 |𝑥0,𝑆2

-13 𝑝𝑝𝑚

𝑚𝑚2

𝑑2𝐴
𝑑𝑦𝑑𝑥

|𝑥0,𝑦0,𝑆2
-88 𝑝𝑝𝑚

𝑚𝑚2
𝑑𝐴
𝑑𝑦

|𝑦0,𝑆2
-147.7 𝑝𝑝𝑚

𝑚𝑚
𝑑2𝐴
𝑑𝑦2 |𝑦0,𝑆2

72 𝑝𝑝𝑚

𝑚𝑚2
𝑑2𝐴
𝑑𝑥𝑑𝑦

|𝑥0,𝑦0,𝑆2
33 𝑝𝑝𝑚

𝑚𝑚2

𝑑2𝐴
𝑑𝜃𝑦𝑑𝜃𝑥

|𝜃0 -1395 𝑝𝑝𝑚

𝑚𝑟𝑎𝑑2
𝑑2𝐴

𝑑𝜃𝑥𝑑𝜃𝑦
|𝜃0 -1395 𝑝𝑝𝑚

𝑚𝑟𝑎𝑑2
𝑑2𝐴
𝑑𝜃2𝑥

|𝜃0 -491.6 𝑝𝑝𝑚

𝑚𝑟𝑎𝑑2
𝑑2𝐴
𝑑𝜃2𝑦

|𝜃0 1645 𝑝𝑝𝑚

𝑚𝑟𝑎𝑑2

𝛽
𝑑2(𝑛

𝑥′𝐿)

𝑑𝑥2 0.4266𝑢𝑟𝑎𝑑
𝑚𝑚

𝛽
𝑑2(𝑛

𝑥′𝐿)

𝑑𝑦2 -0.4341𝑢𝑟𝑎𝑑
𝑚𝑚

𝛽
𝑑2(𝑛

𝑥′𝐿)

𝑑𝑥𝑑𝑦
0.2275𝑢𝑟𝑎𝑑

𝑚𝑚
𝛽

𝑑2(𝑛
𝑥′𝐿)

𝑑𝑦𝑑𝑥
-0.2035𝑢𝑟𝑎𝑑

𝑚𝑚

𝛽
𝑑2(𝑛

𝑦′𝐿)

𝑑𝑥2 -0.4361𝑢𝑟𝑎𝑑
𝑚𝑚

𝛽
𝑑2(𝑛

𝑦′𝐿)

𝑑𝑦2 0.4492𝑢𝑟𝑎𝑑
𝑚𝑚

𝛽
𝑑2(𝑛

𝑦′𝐿)

𝑑𝑥𝑑𝑦
0.2142𝑢𝑟𝑎𝑑

𝑚𝑚
𝛽

𝑑2(𝑛
𝑦′𝐿)

𝑑𝑦𝑑𝑥
-0.2208𝑢𝑟𝑎𝑑

𝑚𝑚

Empirically,

𝑑𝐷𝑥

𝑑𝑦
|𝑛𝑜−𝑎𝑛𝑎𝑙,𝐻𝑝𝑜𝑙 =

1

2
(
𝑑𝐷𝑥

𝑑𝑦
|𝑛𝑜−𝑎𝑛𝑎𝑙,𝑥′𝑝𝑜𝑙 +

𝑑𝐷𝑥

𝑑𝑦
|𝑛𝑜−𝑎𝑛𝑎𝑙,𝑦′𝑝𝑜𝑙)

implies
𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔,𝑥

𝑑𝑦
= 𝛽(

𝑑2(𝑛𝑥′𝐿)

𝑑𝑦𝑑𝑥
+
𝑑2(𝑛𝑦′𝐿)

𝑑𝑦𝑑𝑥
)

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔,𝑦
𝑑𝑥

= 𝛽(
𝑑2(𝑛𝑥′𝐿)

𝑑𝑥𝑑𝑦
+
𝑑2(𝑛𝑦′𝐿)

𝑑𝑥𝑑𝑦
)

And we know from experience,

0 =
𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔,𝑥

𝑑𝑥
= 𝛽(

𝑑2(𝑛𝑥′𝐿)

𝑑𝑥2
+
𝑑2(𝑛𝑦′𝐿)

𝑑𝑥2
) =

𝑑𝜃𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔,𝑦
𝑑𝑦

= 𝛽(
𝑑2(𝑛𝑥′𝐿)

𝑑𝑦2
+
𝑑2(𝑛𝑦′𝐿)

𝑑𝑦2
)

which implies
𝑑2(𝑛𝑥′𝐿)

𝑑𝑥2
= −𝑑

2(𝑛𝑦′𝐿)

𝑑𝑥2
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𝑑2(𝑛𝑥′𝐿)

𝑑𝑦2
= −𝑑

2(𝑛𝑦′𝐿)

𝑑𝑦2

Theoretically, for a 40mm KD*P cell, at 800nm wavelength we’d predict(ref:

elog 662) a value 10X larger than what we observe in the lab:

𝑘 =
𝜖

𝑇

𝜋𝐷

𝜆
𝑛𝑜

(𝑛2
𝑜 − 𝑛2

𝑒)

𝑛𝑒2
= 12, 102

𝑝𝑝𝑚

𝑚𝑟𝑎𝑑2
=

−1

2

𝑑2𝐴

𝑑𝜃𝑦𝑑𝜃𝑥

=
−1

2

𝑑2𝐴

𝑑𝜃𝑥𝑑𝜃𝑦
=

−1

2

𝑑2𝐴

𝑑𝜃2𝑥
=

1

2

𝑑2𝐴

𝑑𝜃2𝑦

By entering these values into our equations, we can predict 4 data points in

the RHWP scans at S1,S2, S1+90, S2+90 . We are able to predict the 4𝜃 terms

to within a factor of 2 in the case of the UVa Pockels cell with a 100% analyzer

(Gandalf KD*P, elog )

Figure D-20: Rotation of the cube polarizer analyzer scan (equivalent to RHWP
scan) for IHWP in and IHWP out. UVa KD*P Cell Gandalf.
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Figure D-21: Predictions of RHWP scan for UVa KD*P Cell Gandalf.

We can also attempt to predict JLab RHWP scans, though we don’t know the

focusing after the photocathode on the various BPMs in the beamline. However,

examining the first bpm 0I01 after the photocathode a RHWP observed is shown

from Haplog 3288, Run2219 and Run2220. This demonstrates that to within a

factor 2 or so, we can estimate the behavior of the position differences in the

injector with this model of the KD*P characterization.

Figure D-22: RHWP scan for IHWP in and IHWP out. JLab KD*P cell.

Spot-size Studies

At UVa and at JLab, spot-size studies were performed which demonstrated

the power of spot-size reduction in minimizing position differences.
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The studies at UVa were done with a well collimated ≤ 0.1-0.2mrad divergence

beam, insertion of 1m lens upstream of the cell, and insertion of a -75cm lens

downstream of the cell before the quad-photodiode.

Figure D-23: UVa Spot Size Study Table Layout.

The UVa spot size studies (Lab26 elog 750) demonstrate the power of spot-size

reduction in minimizing position differences. The 4𝜃 terms in RHWP scans quan-

tify the analyzing-like, position-like position differences, arising from asymmetry

gradients. The table below of the UVa results show that the position differences

are approximately proportional to the spot-size at the qpd and in the Pockels

cell. In the upstream lens insertion, the divergence of the beam at the Pockels cell

remained small so that divergence dependence played less of a role.

𝑤𝑃𝐶𝑥 𝑤𝑃𝐶𝑦 𝑤𝑞𝑝𝑑𝑥 𝑤𝑞𝑝𝑑𝑥 4𝜃 term Dx 4𝜃 term Dy Predicted Reduction Actual Reduction

mm mm mm mm 𝜇m 𝜇m
𝑤𝑝𝑐𝑤𝑞𝑝𝑑

𝑤𝑝𝑐0𝑤𝑞𝑝𝑑0

no lens 1.35 1.46 1.43 1.58 1.3-1.5 0.76-1.1 1X 1X

1m lens in 0.324 0.341 0.886 0.891 2.2-3.1 2.5-4.3 N/A Not Realigned

1m lens in 0.324 0.341 0.886 0.891 0.29-0.27 0.24-0.09 7X 5.2X

-75cm lens in 0.324 0.341 2.06 1.907 0.47-0.54 0.33-0.36 3X 2.7X

Figure D-24: JLab Pockels Cell.
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Spot-size studies were also performed at JLab by analogous insertion of a 1m

lens upstream and changing the downstream steering lens from 2m focal length

to 0.75m focal length. It was demonstrated that reducing the spot-size on the

cathode by a factor of 2X, by changing the steering lens, reduced the position

differences in the injector beamline by˜2X.

Figure D-25: JLab Spot Size Study Table Layout.

The results of the JLab spot-size studies are summarized in the following table:

Figure D-26: JLab Spot Size Study Results.

There is a life-time cost to cathode spot-size reduction (Polog 3473865) as the

smaller spot results in faster QE degradation. If one wishes to improve the cathode

lifetime by expanding the beam at the cathode, the spot-size at the Pockels cell

must be reduced to make up for it and keep the position differences small. Thus

it was also important to explore spot-size reduction at the Pockels cell position,

instead of at the cathode. While UVa studies definitively proved spot-size reduc-

tion at the Pockels cell reduces position differences, the JLab studies did not show

such reduction (see table above). This was due to the divergence of the laser.

The JLab Hall A laser differed from the UVa laser in an important way: it was

more divergent and it was astigmatic. In addition to being very large (2mm waist
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in x, 1.7mm waist in y at the PC), the Hall A laser divergence was measured to

be 0.58mrad in x and 0.44mrad in y initially, which was 2-5X larger than the UVa

laser (Polog 3473285). The x/y divergences of the HallA laser differed and the

laser was heavily astigmatic so that the divergence, especially along the y axis,

was large at the crystal position when the lens was inserted. The laser was picked

off and profiled, M-squared was and the astigmatism was measured with a 50cm

lens. The astigmatism was measured to be 42cm coming out the the telescope by

the PPLN crystal (Polog 3473180)

Figure D-27: M2 measurement of Hall A laser. Polog 3473100.

This JLab study demonstrates the very great need to have both small laser

spot-size and small divergence at the Pockels in order to achieve small position

differences and Parity Quality Beam.
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