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Introduction 

This paper presents a strategy for data manipulation to quickly convert complex video             

data into simple positional data using prior or learned information about a target. The proposed               

process is intended for drone use to abstract information either for tracking or for submitting to                

another autonomous system. For that reason the output data set is minimized to the task and the                 

data processing time is such that the process can run on real-time video streams.  

A network including autonomous agents, especially those that also include          

non-autonomous agents, values greatly the ability to represent data minimally.          

Semi-Autonomous systems must take into account the limited capacity for human pieces to take              

in large quantities of data quickly. For that reason, being able to simplify data such as locational                 

data from video footage to simplified graphics such as radar-maps is highly valuable. The              

proposed algorithm provides one such way to simplify video data into more easily digested              

features such as global position.  

Background 

Automation requires, first and foremost, data processing. The natural environment is           

complex and requires an automated system to process and account for unimaginable variables.             

For this reason, a sizable amount of the work done in the field of automation is in data                  

processing and manipulation. Especially with the onset of automated vehicles, a focus has arisen              

to more accurately and more precisely process visual data into features that are usable and               

trainable in automated systems. Many automated systems today use some combination of            

algorithmic design paired with machine learning. Drones and low-flying unmanned aircraft rely            

 



 

even more heavily on visual data as nonvisual streams such as radar and lidar require               

considerably more technical resources to provide similar coverage.  

MBZIRC is an automation competition that focuses on using aerial (UAV) and ground             

(UGV) robots, in cooperation and alone, to complete navigation and manipulation tasks. Virginia             

Tech and the University of Virginia worked cooperatively under the leadership of Professor             

Tomonari Furukawa to compete in the MBZIRC competition in 2020. The competition was             

ranked in terms of three challenges and a grand challenge. The challenges, as described by the                

official website, are as follows: 

1. UAVs will autonomously track and interact with a set of objects following 3D             

trajectories inside the arena.  

2. A team of UAVs and a UGV will collaborate to autonomously locate, pick, transport and               

assemble different types of brick shaped objects to build predefined structures, in an             

outdoor environment.  

3. A team of UAVs and a UGV will collaborate to autonomously extinguish a series of               

simulated fires in an urban high rise building fire fighting scenario. 

4. The Grand Challenge requires a team of robots (UAVs and UGVs) to compete in a               

triathlon type event that combines Challenges 1, 2 and 3. 

The specific procedures employed to complete these tasks is described below. 

Objectives 

My research was done as a part of the UAV team with the intent of aiding their work to                   

complete challenge 1. To complete challenge 1, the UAV would have to move throughout an               

arena (100m by 60m) and pop a series of balloons that were randomly distributed throughout the                

 



 

space, in addition, the UAV would have to secure a target being held by a second UAV that                  

would be flying a figure-8 pattern within the arena. The target ball would detach from the UAV                 

carrying it when a force of fewer than four newtons was applied to it. To complete this task the                   

UAV would have to be able to identify spherical objects of a distinct color in space and                 

approximate their distance.  

The primary objective of my research was to manipulate incoming visual data streams to              

be accessible by a drone mid flight. The subgoals for this task included identifying and tracking                

objects within the frame, gaining heading information based on location within the frame, and              

deriving positioning data from known aspects of the object paired with apparent size in the video                

stream. In the context of the MBZIRC competition, the goal of the research was to be able to                  

autonomously locate and track an object moving through the air via drone. Routing and              

movement controls for the drone were abstracted upstream in the workflow.  

Due to the complexity of visual data processing, this research will stand on the shoulders               

of giants. Thanks to the work of the developers of OpenCV, the process of identifying and                

tracking objects in the visual field can be simplified. Part of the research objective is to integrate                 

the open source algorithms made accessible by OpenCV into the real-time drone data processing.              

The resultant data is intended for use in the control processes of a drone attempting to track and                  

close in on a target.  

MBZIRC 2020 and Team VICTOR 

MBZIRC 2020 

All challenges are intended to be completed autonomously; manual controls are           

allowed during the competition, although they are penalized. 

 



 

Figures 1 A-C, below, depict the target ball and way that the ball is mounted to the target                  

drone for challenge 1. The target drone is specified to have a flight speed of less than 10 meters                   

per second and flies in a figure 8 pattern around the arena. For this challenge, teams are allowed                  

up to three UAVs total. The target ball weighs less than 0.15 kg and is attached magnetically to                  

the rod hanging from the target drone shown in the figures. The landing area for drones is a                  

square 100 square meter landing pad on the ground and the UAVs have up to 20 minutes to                  

complete the challenge. The number of target balloons is unspecified. The UAVs must take off               

and fly autonomously for full scoring and the target ball must be delivered to the landing                

location. 

 

Figures 1 A: Drone, rigid attachment link B: Rigid Rod, C: Target ball 

Challenge 2 requires the building of a structure using bricks from the arena. There are               

four brick colors that correspond to sizes and indicate the order in which bricks must be added to                  

the wall. The bricks are cuboids that have the following color-dimension pairings, Red: 0.30m x               

0.20m x 0.20m, Green:0.60m x 0.20m x 0.20m, Blue:1.20m x 0.20m x 0.20m, Orange: 1.80m x                

0.20m x 0.20m. The bricks must be assembled in a loop of red, green, blue, orange bricks. The                  

 



 

bricks weigh between one and two kilograms based on their size and are intended to be gripped                 

magnetically. MBZIRC suggests teams to coordinate UAV and UGV actions, stipulating that            

some bricks must be carried by UAVs. Teams are given 30 minutes to complete the challenge. 

 

Figure 2: Image of MBZIRC competition arena 

Challenge 3 involves the putting out of simulated fires in a tower. The tower is up to 18                  

meters tall and has large window-like openings on multiple floors. Up to three UAVs and a UGV                 

can all be equipped with water-based extinguishers carrying up to three liters of pressurized              

water. The challenge duration is 20 minutes.  

The grand challenge is a 30 minute window in which up to three UAVs and one UGV are                  

tasked with completing all three of the other challenges. The arena for the grand challenge is 150                 

meters by 60 meters. 

Team VICTOR Contributions 

The strategy employed to catch the ball for challenge 1 was to trap the ball in a small net                   

cage above the drone. By moving the drone up and under the target, the ball is positioned                 

between the arms. Once this is achieved, the arms close, trapping the ball in the netted area.  

 



 

 

Figure 3: Drone catching target ball using netting and arms 

The ball falls then down to the catch-and-release mechanism, which is a small panel that can                

rotate out of the way of the ball once the drone has moved to the drop location. 

 

Figure 4: Drone catch-and-release mechanism 

The other task in challenge 1, balloon popping, could be done simply by bringing the blades of                 

the drone close enough to the balloons to make contact. The blades can easily pop inflated                

balloons, making the majority of this task dependent on the targeting and waypoint algorithms. 

Challenge 2 is based primarily on the magnetic gripper shown below. The team focussed              

here primarily on the UGV automation and using it as the primary base for building the wall. The                  

UGV here used a relatively simple state machine for control here. The UGV would loop through                

 



 

the stages of moving to the pile of bricks, identifying a target, pickup, moving to the droposs                 

location, and dropoff. 

 

Figures 5 A: UGV magnetic gripper, B: UGV moving bricks onto loading tray 

A second, larger, UAV was rigged up with a small hose for use in challenge 3. A UGV                  

was also outfitted in this way. Each of these were used independently and in tandem to put out                  

fires for challenge 3. The strategy employed to complete this stage is to coordinate the two                

robots to attack found fires from multiple directions. Each system employs its own fire              

identification algorithm, but can communicate with a central hub. 

 

Figures 6 A: UAV with hose attachment, B: UGV expelling water at a simulated fire 

Technical Details 

The UAV system combined the computing power of three independent but coordinated            

systems: a Pixhawk (a set of sensors and a computing system running an autopilot software               

 



 

designed for drones), an Nvidia TX2 (an onboard computer), and a remote computer system. The               

Pixhawk sends control signals to a ROSnode called mavros, which is a communications node              

built to bridge autopilot systems. Mavros is then in communications with the core control logic               

in the TX2, which receives signals from the detection and tracking protocols, object avoidance              

protocols, the PCL manager, waypoint targeting, and from teleoperation controls if enabled. The             

goal for my capstone was to integrate a fast-running section between tracking and core logic to                

simplify tracking data so that it can be used to create a more accurate waypoint. For a                 

visualization of this system, see figure 7 below. 

 

Figure 7. System Diagram  1

1 Masaki Shibuya, April 2020. 

 



 

OpenCV was used to track the target objects based on the USB camera datastream. The               

algorithm for doing this was to perform a Gaussian blur on the input frame to account for                 

flickering and randomness. The model is trained using the target object in a variety of lightings                

and manual data highlighting to identify the normal expected color range of the target. Using               

these color filters, the data is then cropped to isolate areas that could contain the target object.                 

OpenCV has fast contour-identifying algorithms; these are then used to identify the largest             

closed region of highlighted space. This region should well approximate the target using the              

following assumptions: the object is a singular color, the object is easily differentiable from the               

background, the background contains no other large objects of the same color.  

Once an enclosing circle is created within the image, the pertinent information can be              

extracted. An effort was made here to correct for the fisheying of the camera lens. This line of                  

effort can be fruitful, but most modern cameras come with built-in rectification as a low-level               

process. This rectification makes the visual data much simpler to process algorithmically. There             

is some amount of stretching that occurs as the object is moved away from center-frame. This                

stretching is minimal for most cameras, so it can be ignored, although it can also be corrected for                  

relatively easily using a transformation matrix that needs to be tuned to the camera.  

Trigonometric corrections are then used to adjust for the fact that the fixed-distance from              

the camera is a curved surface. This correction converts the spherical data into the cartesian               

coordinate system for spatial mapping. The image is adjusted based on the camera angle              

differences between the x and y axes. Temporal blending is used to ensure that occasionally               

erratic data does not affect the output beyond an acceptable range. That data is then normalized                

with data that came from images that were taken at a similar time and passed to the ROS system                   

 



 

to be converted to global space and used to guide the movement of the UAV. Local to global                  

data conversion is done via affine transform using a matrix that is maintained by the drone using                 

gyrometer data. 

Original Contributions 

While my work does not propose a new methodology for data processing, I designed and               

developed an algorithmic solution to combine disparate data into concise and usable data. A              

simple data flow controls the processing of camera data, see figure 8.  

 

Figure 8. Data flow 

My methodology abstracts the data as much as possible before processing. By removing             

large regions of the input data stream and abstracting the object identifier within the image into                

the bounding box location, the distance calculation step can be done extremely quickly. As              

described in the technical details section, the process works by isolating the object within the               

frame and pairing known information regarding the object’s size and the intrinsic parameters of              

the camera with the object’s respective size and location within the frame to produce positioning               

data that can then be converted from local camera space into global coordinates or the local                

coordinate system of the drone. My contribution to this research was the development of this               

process and the algorithm that defines the distance calculation metric.  

 

Validation 

 



 

Validation for this software was done using standard four-level testing. Design and            

first-level (unit) testing were interspersed as a variety of algorithmic adjustments needed to be              

made for code consistency. These changes included the shift away from using rectification in the               

algorithm and adjusting the correction matrix. These unit tests were used for small data-sets              

composed of real data in a controlled environment.  

Simulated integration tests were done using Unity to simulate the camera frame on             

targets of known distance and size. This stage of testing proved to be useful, although it was not                  

necessarily representative of the final results. The testing drove design towards a more modular              

base, as the rectification was considerably different in the simulated environment as compared to              

the real one.  

When the algorithm was pushed to stage two and third level of testing, real world               

integrated tests, there were a few features that appeared to have been unaccounted for. Simple               

off-by-a-constant corrections helped, but there was some skewing with data nearing the edges of              

the range. I attempted to correct this in a number of ways; adding and removing variables in my                  

equations, but what ended up working was bypassing a section of code that was intended to                

correct for the spherical nature of the constant distance plane (as that was being done as a part of                   

the rectification step internally in the camera). I noticed that on the camera that we were using,                 

unlike similar cameras, the ball’s shape was generally maintained throughout the entire area of              

view. Many fisheye cameras rectify in such a way as to skew the lengths of target in their                  

images, whereas this one elected to focus the skew primarily on curvature rather than length,               

vastly simplifying the image processing problem. Once this realization was made and some data              

normalization was added, the algorithm functioned accurately to within 2% of the correct             

 



 

absolute distance and direction vector when tested on a 10cm ball between 1m and 5m away                

from the camera.  

Figures 9,10 below show the validation of the system using varied distances. The former              

shows the measured distance against the ground truth (measured by hand), while the latter shows               

the measured distance divided by the ground truth.  

 

Figure 9. Measured Distance vs Ground Truth*     Figure 10. Measured Distance / Ground Truth vs Distance* 

Validation was performed against the ground truth using measurements made by a tape             

measure from a 78 degree FOV USB camera. Validation was performed across two axes. First,               

the camera was pointed directly at the target, in this case a 10cm green foam ball and steady-state                  

measurements were taken from the system measuring the distance to the ball at regular intervals;               

a second measurement was made to identify the time between movement stoppage and             

steady-state values being output from the system. Steady-state was defined as data being             

consistent to within 3% of previous values for 5 consecutive frames. For figure 11, percent               

accuracy is calculated as 1-�, where � (percent error) is the absolute value of the measurement                

 



 

divided by the ground truth minus 1.  See figure 11, figure 12. 

 

Figure 11. Measurement Accuracy vs Distance*     Figure 12. Time to Stabilize Result vs Distance* 

A followup test was performed in an effort to identify bias in the visual field. This test                 

was performed by positioning the same 10cm ball at 3 meters away from the camera and moving                 

it about the camera’s visual field, taking measurements at regular intervals. Figure 13 shows the               

accuracy of the measurements with respect to its location within the visual field.  

 

Figure 13. Plot of Prediction Accuracy Against Region of Frame* 

*Data in these figures stands as a placeholder for real testing values 

  

 



 

Conclusion 

This paper has presented a strategy for data manipulation to quickly convert complex             

video data into simple positional data using prior or learned information about a target. By               

leveraging known information, automated systems can quickly assess their environments and           

ignore the vastness of data represented by a live video feed. This is more likely to produce good                  

results when paired with a machine learning algorithm as a considerable reduction in degrees of               

freedom enables a much more comprehensive and accurate response map in the input space.  

The research goals were achieved. Validation in controlled settings on spherical targets            

was successful. For spherical targets of a unique color, the algorithm was able to identify the                

location of the target in global space to within 2% up to a tested distance of five meters. The                   

accuracy of this identification should diminish slowly for larger distances; the upper limits of the               

protocol were not found during validation. Results demonstrated the effectiveness and           

applicability of the proposed approach. As a proof-of-concept, this model of data transformation             

was effective and fast enough to be deployed for live processes during drone tracking flights.  

Further research goals include the incorporation of correction features for complex           

geometry and for less easily recognizable targets in less clear visibility environments. Most             

target shapes will not be represented at distinct distance/orientation pairings identically in video             

footage, this feature of irregular objects can be exploited by simulating orientations of the target               

and matching a theoretical orientation with the video footage, once this is completed, the              

proposed process can be used to identify its location in global space. This process can also be                 

applied to non-uniform spheroids or objects of known relative orientation to the camera             

leveraging standard computer vision processes. 

 


