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ABSTRACT 

A company that provides a service storing 

user’s files faced latency issues with an API 

that returns a given user’s file usage. The 

issues stemmed from the current 

implementation of the API essentially 

“counting” each individual file per customer. 

To remedy the issue, I worked with a team of 

software engineers to optimize the API by 

precomputing these values into a database to 

reduce the latency to a database read 

operation. This process involved identifying 

and modifying key components of the Java 

Spring backend of the product and interacting 

with existing and new AWS infrastructure. 

The P99 latency of the API was reduced from 

2 seconds to 40 milliseconds and removed an 

estimated 800,000 daily file usage 

aggregation operations from a stressed 

datastore. Implementing the project in 

production will involve adding existing user 

usage into the database and testing for edge 

cases resulting from data inconsistency and 

scale. 

 

1. INTRODUCTION 

Have you ever navigated to a website, only to 

be met with a loading spinner? After waiting 

a couple of seconds, you likely grew 

frustrated and navigated away. That was what 

the experience was like for the growing 

userbase of the user file storage service, a 

total number reaching the tens of millions. 

Worst-case latency was estimated to soon 

exceed recommended load times of 0-4 

seconds (Baker, 2022). 

 

As a result, my internship project focused on 

optimizing the API which returned customer 

file usage. The current implementation of the 

API computed a customer’s file usage by 

aggregating individual file sizes. This 

operation was executed as a query to a data 

store containing user file metadata. It was 

facing intense load, as it was used by a 

multitude of other internal and external 

services.  

 

Attempts to reduce latency and stress on the 

datastore already existed in the form of a 

caching mechanism, where user usage values 

existed for several minutes in a cache, before 

being considered stale and requiring a re-

computation of values. However, in the 

worst-case scenario, users could potentially 

update or delete a file and a change to their 

usage values would not be visible until the 

cached values expire after several minutes — 

a significant detriment to user experience.  

 

The proposed technical project solution 

focused on removing the dependence on the 

stressed data store. Its main goal was to 

precompute the user usage values instead of 

relying on “on-the-fly” aggregation. This 

would be done by maintaining a running total 

of usage values per user stored in a new 

external database, then examining each 



 

individual file upload or delete to increment 

or decrement their usage values. Then, the 

API could simply read the precomputed value 

from the database. 

 

2. RELATED WORK 

A major notable work that inspired the 

project was an internal company document 

detailing an investigation into why the data 

store was performing poorly, resulting in 

latency issues. The document revealed how 

the data store used indexing and sharding. 

Indexing is a technique to speed up queries 

without having to search every element in the 

datastore. The index key used an improperly 

used data type resulting in slow lookups. 

Sharding is a technique of partitioning data 

across servers, which can increase response 

times. However, historically, the data store 

was one of the largest ever in size, resulting 

in excessive number of shards, which brings 

drawbacks, like data inconsistencies and hot 

spotting. As a result, this document inspired 

my intern project aimed at removing the 

dependency on this data store. 

 

Precomputation has a wide range of uses and 

applications from compilers, machine 

learning, and databases. As a result, there is 

no single seminal usage of the technique, 

though it is broadly used in industry. For 

example, a blog post from the Uber Data/ML 

team describes the chronology of the 

engineering effort to develop a routing 

algorithm for their application (Uber, 2015). 

The algorithm needed to be fast, while 

handling real-time traffic. The article 

describes how routing algorithms represent 

real-world intersections and roads as a graph 

with nodes and edges, respectively. Edges 

have a weight to them, usually the time to 

travel across the road, along with other 

heuristic information. Finding an ETA for a 

route consists of summing up the weights of 

the edges to the destination. The article 

describes using contraction hierarchies, a 

method to speed this process up, which relies 

on precomputing “shortcut” paths and storing 

them as an additional edge, so this does not 

have to be done in real-time.  

 

3. PROJECT DESIGN 

The following subsections describe the 

system architecture of the current system and 

the project solution, as well as a discussion of 

the challenges faced during the transition. 

3.1 Current System Architecture 

The default flow of the file usage API 

consisted of a query to the datastore 

containing user file metadata. The datastore 

was considered the source of truth within the 

scope of the project. It aggregates the sizes of 

all the user’s files and returns that result. 

Attempts to reduce the number of these 

expensive computations existed in the form of 

a caching mechanism, where the cache 

periodically stored the computed usage 

values. First, the file usage API would read 

from the cache, if the timestamp (representing 

the last time the usage value was computed) 

exceeded a certain number of minutes, the 

API would proceed to query the datastore as 

normal. As shown in Figure 1, the newly 

computed value would be reinserted into the 

cache, overwriting the stale usage value. 

 
Figure 1: Current Architecture with Caching 

3.2 System Architecture of Project Solution 

The project solution would remove the 

caching mechanism and the dependence on 

the file data store completely. Instead, a pre-

existing data stream that provides information 

about individual file updates was utilized. 

The file update data stream represented a user 

uploading, deleting, or modifying a file, along 



 

with the size of the resultant file. These 

properties were used to decide whether to 

increment or decrement the running total of a 

user’s file usage, which was stored in a new 

database containing precomputed values.  As 

seen in Figure 2, the Precomputed Usage 

Manager represents the application code that 

performs the precomputation as described 

above.  

 
Figure 2: Project Architecture with Precomputation 

3.3 Challenges 

Many challenges occurred due to the nature 

of the architecture as a distributed system. 

Instances of application code run across 

multiple hosts as a means of horizontal 

scaling (Splunk, 2022). As a result, a user’s 

usage value may be precomputed 

concurrently on different machines, resulting 

in a race condition (Vagdevi, 2021). To 

address this issue, version numbers were used 

to determine if a race condition had occurred. 

A version number was assigned to each usage 

value that increments upon modification. By 

checking the current version number was 

unchanged before writing to the database, it 

can be determined a race condition occurred, 

in which the entire process can be retried.  

Another challenge resulted from integrating 

into the existing application and the size of 

the userbase. Individual file updates were 

presented as a difference between “old” and 

“new” files. For example, uploading a file 

was represented as the old file having a 

default values, such as having a file size of 

zero with no name, to the new file having the 

expected properties of the uploaded file. As a 

result, it was difficult to directly determine 

the intended operation of the file update and 

heuristics were used instead. However, due to 

the large number of possible states a file 

could be in, in addition to the large userbase 

increasing the likelihood of an edge case 

occurring, it was difficult to create a 

definitive implementation that manages every 

possible file update state. 

 

4. RESULTS 

A significant outcome of my project was 

removing the dependence of the user file 

usage API on the stressed data store. This 

resulted in a significant reduction of daily file 

usage aggregation operations by an estimated 

800,000. By reducing the number of calls to 

the stressed datastore, other remaining 

components dependent on it will generally 

benefit as it has a larger bandwidth to support 

these components.  The implementation also 

removes the necessity of the caching 

mechanism, which will eventually be phased 

out as the project implementation moves to 

production. This directly resolves the major 

user experience issue of stale file usage 

values being displayed for several minutes, as 

value will now be instantaneously updated. 

Furthermore, it provides the additional benefit 

of reducing the P99 latency from 2 seconds to 

a database read latency, which is around 40 

milliseconds. Many of the user mobile, web, 

and desktop applications rely on the file 

usage API, as well as other internal APIs; 

these will widely benefit from reduced 

latency times. Overall, this project served as a 

part of a larger effort to break up the 

monolithic backend. 

 

5. CONCLUSION 

The file usage API is a vital component of the 

system architecture and has an extensive 

history of maintenance throughout the 

lifetime of the legacy service provided by the 

company. Due to a wide dependence on this 



 

API throughout the system, my project was 

proposed to resolve latency and user 

experience issues. By using precomputation, 

the P99 latency of the API was reduced from 

2 seconds to 40 milliseconds and updates to a 

user’s usage became instantaneous. It is 

important to remember that, while these 

benefits are significant, the previous 

implementation of the API served adequately 

throughout the lifetime of the application. 

Only due to the increasing scale of the 

userbase did these issues emerge. The system 

architecture of an application should be 

constantly evolving as it responds to changing 

requirements. 

 

6. FUTURE WORK 

To ensure the project implementation is ready 

for release to the broader user base, extensive 

work needs to be done. Since a new database 

was created to maintain the users’ file usage, 

it does not contain existing usage values for 

users. There exist two approaches to populate 

the database with this data. One is database 

backfilling, which is the process of filling 

data from the past in a new system (Chen, 

2022). This can be done all at once with a 

script or another external process that 

transforms the historical data into the newer 

database, however, it can be costly, time-

consuming, and may require downtime as 

there are millions of users. The second 

approach is to fill this data in as users request 

usage data from the API. Filling in usage 

value upon request will gradually update 

users’ usage values into the database, but still 

depends on the previous implementation of 

the file usage API.  As a result, there 

continues to be many questions to be 

answered to fully release these changes. 
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