
Optimizing APIs: Using Precomputation to Reduce Complexity and Latency

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Jared Nguyen

Spring, 2022

Technical Project Team Members

Jared Nguyen

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

MC Forelle, Department of Engineering and Society

Daniel Graham, Computer Science

Optimizing APIs: Using Precomputation to Reduce

Complexity and Latency

CS4991 Capstone Report, 2023

Jared Nguyen

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

jtn2km@virginia.edu

ABSTRACT

A company that provides a service storing

user’s files faced latency issues with an API

that returns a given user’s file usage. The

issues stemmed from the current

implementation of the API essentially

“counting” each individual file per customer.

To remedy the issue, I worked with a team of

software engineers to optimize the API by

precomputing these values into a database to

reduce the latency to a database read

operation. This process involved identifying

and modifying key components of the Java

Spring backend of the product and interacting

with existing and new AWS infrastructure.

The P99 latency of the API was reduced from

2 seconds to 40 milliseconds and removed an

estimated 800,000 daily file usage

aggregation operations from a stressed

datastore. Implementing the project in

production will involve adding existing user

usage into the database and testing for edge

cases resulting from data inconsistency and

scale.

1. INTRODUCTION

Have you ever navigated to a website, only to

be met with a loading spinner? After waiting

a couple of seconds, you likely grew

frustrated and navigated away. That was what

the experience was like for the growing

userbase of the user file storage service, a

total number reaching the tens of millions.

Worst-case latency was estimated to soon

exceed recommended load times of 0-4

seconds (Baker, 2022).

As a result, my internship project focused on

optimizing the API which returned customer

file usage. The current implementation of the

API computed a customer’s file usage by

aggregating individual file sizes. This

operation was executed as a query to a data

store containing user file metadata. It was

facing intense load, as it was used by a

multitude of other internal and external

services.

Attempts to reduce latency and stress on the

datastore already existed in the form of a

caching mechanism, where user usage values

existed for several minutes in a cache, before

being considered stale and requiring a re-

computation of values. However, in the

worst-case scenario, users could potentially

update or delete a file and a change to their

usage values would not be visible until the

cached values expire after several minutes —

a significant detriment to user experience.

The proposed technical project solution

focused on removing the dependence on the

stressed data store. Its main goal was to

precompute the user usage values instead of

relying on “on-the-fly” aggregation. This

would be done by maintaining a running total

of usage values per user stored in a new

external database, then examining each

individual file upload or delete to increment

or decrement their usage values. Then, the

API could simply read the precomputed value

from the database.

2. RELATED WORK

A major notable work that inspired the

project was an internal company document

detailing an investigation into why the data

store was performing poorly, resulting in

latency issues. The document revealed how

the data store used indexing and sharding.

Indexing is a technique to speed up queries

without having to search every element in the

datastore. The index key used an improperly

used data type resulting in slow lookups.

Sharding is a technique of partitioning data

across servers, which can increase response

times. However, historically, the data store

was one of the largest ever in size, resulting

in excessive number of shards, which brings

drawbacks, like data inconsistencies and hot

spotting. As a result, this document inspired

my intern project aimed at removing the

dependency on this data store.

Precomputation has a wide range of uses and

applications from compilers, machine

learning, and databases. As a result, there is

no single seminal usage of the technique,

though it is broadly used in industry. For

example, a blog post from the Uber Data/ML

team describes the chronology of the

engineering effort to develop a routing

algorithm for their application (Uber, 2015).

The algorithm needed to be fast, while

handling real-time traffic. The article

describes how routing algorithms represent

real-world intersections and roads as a graph

with nodes and edges, respectively. Edges

have a weight to them, usually the time to

travel across the road, along with other

heuristic information. Finding an ETA for a

route consists of summing up the weights of

the edges to the destination. The article

describes using contraction hierarchies, a

method to speed this process up, which relies

on precomputing “shortcut” paths and storing

them as an additional edge, so this does not

have to be done in real-time.

3. PROJECT DESIGN

The following subsections describe the

system architecture of the current system and

the project solution, as well as a discussion of

the challenges faced during the transition.

3.1 Current System Architecture

The default flow of the file usage API

consisted of a query to the datastore

containing user file metadata. The datastore

was considered the source of truth within the

scope of the project. It aggregates the sizes of

all the user’s files and returns that result.

Attempts to reduce the number of these

expensive computations existed in the form of

a caching mechanism, where the cache

periodically stored the computed usage

values. First, the file usage API would read

from the cache, if the timestamp (representing

the last time the usage value was computed)

exceeded a certain number of minutes, the

API would proceed to query the datastore as

normal. As shown in Figure 1, the newly

computed value would be reinserted into the

cache, overwriting the stale usage value.

Figure 1: Current Architecture with Caching

3.2 System Architecture of Project Solution

The project solution would remove the

caching mechanism and the dependence on

the file data store completely. Instead, a pre-

existing data stream that provides information

about individual file updates was utilized.

The file update data stream represented a user

uploading, deleting, or modifying a file, along

with the size of the resultant file. These

properties were used to decide whether to

increment or decrement the running total of a

user’s file usage, which was stored in a new

database containing precomputed values. As

seen in Figure 2, the Precomputed Usage

Manager represents the application code that

performs the precomputation as described

above.

Figure 2: Project Architecture with Precomputation

3.3 Challenges

Many challenges occurred due to the nature

of the architecture as a distributed system.

Instances of application code run across

multiple hosts as a means of horizontal

scaling (Splunk, 2022). As a result, a user’s

usage value may be precomputed

concurrently on different machines, resulting

in a race condition (Vagdevi, 2021). To

address this issue, version numbers were used

to determine if a race condition had occurred.

A version number was assigned to each usage

value that increments upon modification. By

checking the current version number was

unchanged before writing to the database, it

can be determined a race condition occurred,

in which the entire process can be retried.

Another challenge resulted from integrating

into the existing application and the size of

the userbase. Individual file updates were

presented as a difference between “old” and

“new” files. For example, uploading a file

was represented as the old file having a

default values, such as having a file size of

zero with no name, to the new file having the

expected properties of the uploaded file. As a

result, it was difficult to directly determine

the intended operation of the file update and

heuristics were used instead. However, due to

the large number of possible states a file

could be in, in addition to the large userbase

increasing the likelihood of an edge case

occurring, it was difficult to create a

definitive implementation that manages every

possible file update state.

4. RESULTS

A significant outcome of my project was

removing the dependence of the user file

usage API on the stressed data store. This

resulted in a significant reduction of daily file

usage aggregation operations by an estimated

800,000. By reducing the number of calls to

the stressed datastore, other remaining

components dependent on it will generally

benefit as it has a larger bandwidth to support

these components. The implementation also

removes the necessity of the caching

mechanism, which will eventually be phased

out as the project implementation moves to

production. This directly resolves the major

user experience issue of stale file usage

values being displayed for several minutes, as

value will now be instantaneously updated.

Furthermore, it provides the additional benefit

of reducing the P99 latency from 2 seconds to

a database read latency, which is around 40

milliseconds. Many of the user mobile, web,

and desktop applications rely on the file

usage API, as well as other internal APIs;

these will widely benefit from reduced

latency times. Overall, this project served as a

part of a larger effort to break up the

monolithic backend.

5. CONCLUSION

The file usage API is a vital component of the

system architecture and has an extensive

history of maintenance throughout the

lifetime of the legacy service provided by the

company. Due to a wide dependence on this

API throughout the system, my project was

proposed to resolve latency and user

experience issues. By using precomputation,

the P99 latency of the API was reduced from

2 seconds to 40 milliseconds and updates to a

user’s usage became instantaneous. It is

important to remember that, while these

benefits are significant, the previous

implementation of the API served adequately

throughout the lifetime of the application.

Only due to the increasing scale of the

userbase did these issues emerge. The system

architecture of an application should be

constantly evolving as it responds to changing

requirements.

6. FUTURE WORK

To ensure the project implementation is ready

for release to the broader user base, extensive

work needs to be done. Since a new database

was created to maintain the users’ file usage,

it does not contain existing usage values for

users. There exist two approaches to populate

the database with this data. One is database

backfilling, which is the process of filling

data from the past in a new system (Chen,

2022). This can be done all at once with a

script or another external process that

transforms the historical data into the newer

database, however, it can be costly, time-

consuming, and may require downtime as

there are millions of users. The second

approach is to fill this data in as users request

usage data from the API. Filling in usage

value upon request will gradually update

users’ usage values into the database, but still

depends on the previous implementation of

the file usage API. As a result, there

continues to be many questions to be

answered to fully release these changes.

REFERENCES

Baker, K. (2022, April 7). 11 Website Page

Load Time Statistics You Need [+ How

to Increase Conversion Rate].

Hubspot.com; HubSpot.

https://blog.hubspot.com/marketing/pag

e-load-time-conversion-rates

Chen, B. (2022, November 9). The Data

Engineer’s Guide To Backfilling Data.

Retrieved April 18, 2023, from Monte

Carlo Data website:

https://www.montecarlodata.com/blog-

backfilling-data-guide/

ETA Phone Home: How Uber Engineers an

Efficient Route. (2015, November 3).

Uber Blog.

https://www.uber.com/blog/engineering

-routing-engine/

 Splunk. (2022). Splunk; Splunk.

https://www.splunk.com/en_us/data-

insider/what-are-distributed-

systems.html

Vagdevi K. (2021, April 21). Race Condition

and Deadlock | CloudxLab Blog.

CloudxLab Blog.

https://cloudxlab.com/blog/race-

condition-and-deadlock/

https://blog.hubspot.com/marketing/page-load-time-conversion-rates
https://blog.hubspot.com/marketing/page-load-time-conversion-rates
https://www.montecarlodata.com/blog-backfilling-data-guide/
https://www.montecarlodata.com/blog-backfilling-data-guide/
https://www.uber.com/blog/engineering-routing-engine/
https://www.uber.com/blog/engineering-routing-engine/
https://www.splunk.com/en_us/data-insider/what-are-distributed-systems.html
https://www.splunk.com/en_us/data-insider/what-are-distributed-systems.html
https://www.splunk.com/en_us/data-insider/what-are-distributed-systems.html
https://cloudxlab.com/blog/race-condition-and-deadlock/
https://cloudxlab.com/blog/race-condition-and-deadlock/

