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ABSTRACT 

 
Artificial intelligence (AI) is increasingly being adopted across technology 

domains, including healthcare, commerce, economy, energy, environment, trust 
and cybersecurity, transportation, etc. However, system owners, experts, 
regulators, developers, and other actors describe concerns regarding the risks 
associated with AI applications. This dissertation develops a framework for 
management of risk, cost, and schedule in AI applications in enterprise systems, 
focusing on healthcare technologies. The framework combines risk analysis and 
systems modeling with an understanding of recent AI healthcare applications. A 
risk register, which includes the Purpose (Pi), Structure (Sig), and Function (Phi) 
characteristic layers of a system, serves as the foundation of the framework. The 
proposed method identifies success criteria, research and development 
initiatives, and emergent conditions of AI healthcare systems within each layer. 
The outcomes have insights into the requirements and policies for healthcare 
organizations that are prioritizing initiatives and tracking potential disruptions. 
To demonstrate the framework, three cases of scenario-based disruption of 
priorities are described across three systems modeling layers: First, an analysis 
of hospital priorities is developed in the Purpose (Pi)/sector layer; this tracks the 
most disruptive system stressors. Second, an AI-assisted design optimization of 
a vascular anastomosis device is developed in the Structure (Sig)/device layer; 
this avoids costly physical experiments. Third, an analysis of AI-based diagnosis 
of cardiac sarcoidosis using multi-chamber wall motion is developed in the 
Function (Phi)/disease diagnosis layer; this avoids waste in programming 
examinations and procedures. Various eXplainable AI (XAI) techniques are then 
employed to interpret the outputs of the second and third cases. These techniques 
aid in improving communication between AI systems and non-technical users, 
enhancing understanding of AI outputs, reducing distrust in the AI results, and 
assisting in data evaluation. In addition, the framework is extended to quantify 
the dynamics of the system layers using resilience curves of order disruption. 
This scale-free quantification of resilience allows for the deployment of the 
framework across various application domains.  
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Chapter 1 | Introduction 

 
This chapter describes the motivation, purpose and scope, and organization of 

the dissertation.  

 

1.1. Motivation 

 
AI has the potential to bring about a significant transformation in healthcare 

systems, impacting how medical professionals approach diagnosis, treatment, 

patient care, and medical device design, among other areas [1]. According to 

FDA Commissioner Scott Gottlieb, M.D., "Artificial intelligence and machine 

learning have the potential to fundamentally transform the delivery of health 

care. As technology and science advance, we can expect to see earlier disease 

detection, more accurate diagnosis, more targeted therapies, and significant 

improvements in personalized medicine" [2]. 
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As with any technological advancement, AI carries inherent risks that require 

effective management. During the launch of the NIST AI RMF (National Institute 

of Standards and Technology Artificial Intelligence Risk Management 

Framework), published in 2023, Dr. Alondra Nelson, deputy director of the 

Office of Science and Technology Policy, acknowledges that "We know that 

artificial intelligence and other automated systems are shaping almost every part 

of our lives: The way we work, the way we learn, how we access healthcare, and 

how we find a good job." He added, "And yet, too often, the use of these 

technologies comes with serious risks. They can be used and abused to track our 

communities and to limit access to fundamental opportunities. Our 

Administration—like so many in industry, in Congress, and across the United 

States—is clear-eyed about these risks." Moreover, "for high-risk settings like 

diagnostic decision making, such over-reliance on advice can be dangerous." [3]. 

"AI can pose certain risks and a slew of unexpected risks" [4].  

Dr. John Smith, a leading expert in AI and healthcare, said, "The NIST AI Risk 

Management Framework is a valuable tool for organizations in the healthcare 

industry that are developing and deploying AI systems. It provides a framework 

for understanding and managing the risks associated with AI, and it can help 

organizations to build trustworthy and responsible AI systems that can improve 

patient care." 

With the above background, it is important to identify the NIST AI Risk 

Management Framework gaps and identify, assess, and mitigate the risks 

associated with AI in healthcare. As former FDA Commissioner Scott Gottlieb 

said, "We need to be proactive in modeling and managing these risks, so that we 

can ensure that AI is used for good, not for harm" [2] and Li said, "In the end, it 
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is about a human-centered approach". Thus, by actively addressing the risks in 

AI-based systems, healthcare organizations can fully leverage the benefits of AI 

while minimizing potential harm to patients, mitigating legal and financial risks, 

and safeguarding their reputation. 

 

1.2. Purpose and Scope 

 
Adopting an AI risk management framework is essential across diverse 

domains and systems. This framework fills the gaps in research within the 

Systems Engineering Body of Knowledge (SEBoK) related to AI risk 

management. Its implementation contributes to the field of systems engineering 

by providing a comprehensive approach to addressing AI-related risks in 

healthcare. This dissertation will be an intersection between risk analysis, 

systems modeling, and AI applications in healthcare. It will demonstrate 

enterprise risk management of AI in this domain using scenario-based 

preferences. Furthermore, it showcases the potential of trustworthy AI to 

enhance various engineering systems while effectively identifying associated 

risks.
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Figure 1. The dissertation theory and method conceptual diagram of systems modeling for enterprise risk management of AI in 

healthcare [5,6]. 
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Figure 1 describes the dissertation theory and method conceptual diagram of 

systems modeling for enterprise risk management of AI in healthcare. It 

comprises four steps: 1. Systems modeling and scenario generator, 2. Analyzing 

risks to system order, 3. Systems characteristics, and 4. Case studies. Each step will 

be explained in detail in the following chapters. 

 

1.3. Organization of the Dissertation 

 
Table 1 is a roadmap for the structure of this dissertation. It starts with the 

introduction and literature review in Chapter 1 and Chapter 2. Chapter 3 

introduces the theory and methods used in the dissertation. Chapter 4 describes 

the scenario-based disruption in priorities for the risk of AI in the healthcare 

Purpose (Pi) layer. Chapter 5 describes the scenario-based disruption of priorities 

in the risk of AI in the healthcare Structure (Sig)/device layer and describes 

methods to optimize and explain Vaso-Lock device design configurations using 

AI; then employ eXplainable AI (XAI) global and local interpreters to explain the 

output to non-technical users and Vaso-Lock designers. Chapter 6 describes the 

scenario-based disruption of priorities in the risk of AI in the healthcare Function 

(Phi) layer; this chapter describes methods to predict and explain the cardiac 

sarcoidosis diagnosis using machine learning classification models; then 

employs XAI global and local models to interpret the output for non-technical 

users. Chapter 7 describes two scenario-based disruptions of priorities in the risk 

of AI in the healthcare Function (Phi) layer considering two perspectives: First, 

from the perspective of the physicians and second, from the perspective of the 

patients. Chapter 8 describes the synthesis and comparison of cases, limitations, 
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and lessons learned. Chapter 9 is a discussion of research opportunities of 

evaluating system resilience by the degree of order disruption, and Chapter 10 

concludes the dissertation with the dissertation contributions, summary 

conclusions, and future works. 
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Table 1. Organization of the dissertation on enterprise risk management of AI in healthcare.  

Chapter 1 Introduction 
• Overview of the motivation, purpose, and 

scope of the work, and organization of the 
dissertation 

Chapter 2 Literature Review 

• Identification of gaps and opportunities based 
on literature and state of the practice in the 
fields of risk analysis, systems engineering, 
and AI applications in healthcare 

Chapter 3 Theory and Method 
• Introducing multi-layered scenario-based 

disruption of priorities method  

Chapter 4 
Case 1: Purpose (Pi) 
Layer 

• Scenario-based disruption of priorities 
method on healthcare Purpose (Pi) or sector 
layer 

Chapter 5 
Case 2: Structure (Sig) 
or Component Layer 

• Scenario-based disruption of priorities 
method on Structure (Sig) or component layer  

• Optimization of Vaso-Lock geometry: 
Description of methods used for AI-assisted 
design optimization framework to determine 
the optimal geometry of Vaso-Lock, a vascular 
anastomosis device 

• XAI models to interpret the predictions  

Chapter 6 
Case 3: Function (Phi) 
Layer 

• Scenario-based disruption of priorities 
method on Function (Phi) or disease diagnosis 
layer 

• Diagnosis of cardiac sarcoidosis: Description 
of a machine learning-based diagnosis of 
cardiac sarcoidosis using multi-chamber wall 
motion analysis 

• XAI models to interpret the predictions 

Chapter 7 
Case 3: Function (Phi) 
Layer – Perspectives 
Comparison 

• Comparing Case 3 scenario-based disruption 
of priorities methods considering two groups 
of experts and actors involved: Physicians 
versus patients 

Chapter 8 
Synthesis and 
Comparison of Cases 

• Highlight of the cases, limitations and lessons 
learned 

Chapter 9 
Discussion of Research 
Opportunities 

• Evaluation system resilience by the degree of 
order disruption 

Chapter 10 Conclusions  
• Summary of contributions, conclusions, and 

publications 
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Chapter 2 | Literature Review 

 
2.1. Introduction  
 

This chapter describes the review of literature in six sub-sections: Theory and 

methods of enterprise risk management, examples of AI unintended harms, AI 

and its risks in healthcare, the National Institute of Standards and Technology 

Artificial Intelligence Risk Management Framework (NIST AI RMF), 

opportunities to improve science and practice, and explainable artificial 

intelligent (XAI). 

 

2.2. Theory and Methods of Enterprise Risk Management  

 
There is urgency for systems modeling in terms of evolving priority orders of 

complex systems to complement existing systems models for Purpose, Structure, 

and Function. Priority orders involve assets, policies, investments, organizational 

units, locations, personnel, etc. Orders are disrupted by technologies, 
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environments, missions, obsolescence, regulations, behaviors, markets, human 

migrations, conflicts, etc. [7,8]. Systems engineering informs designs for 

unprecedented and unimagined disruptions. Risk, safety, security, trust, and 

resilience programs address scope, resources, and evaluation [9,10].  

Risk is defined as the specifics of what can go wrong, the likelihood that an 

event will occur, and the consequences if it does. Complementary definitions of 

risk are as follows: Risk has also been defined as the influence of scenarios on 

priorities [9–13]. ISO 31000 defines risk as the effect of uncertainty on objectives. 

Systems are exposed to various risks, such as disruptive, uncertain, and 

unpredictable events over time that affect the performance of the system level 

[13–15]. Risk could also appear as a combination of threat, vulnerability, 

consequence, or hazard, exposure, and effect [16]. In other words, these three risk 

components are called triplets [13,17].  

 

2.3. Examples of Artificial Intelligence (AI) Unintended Harms 

 

This section describes various risks linked to the utilization of AI, including 

apprehensions regarding errors, biases, and unintended consequences, which 

have impeded its broad acceptance and led to a decline in trust. The adverse 

impacts of AI are not confined to individuals and entities but can also reverberate 

throughout society, impacting it at large [18].  

AI algorithmic bias is a problem arising from the development and 

implementation of AI, which can have negative effects on effectiveness and 

fairness. Systemic bias, human bias, and statistical/computational bias are three 

main categories of AI bias. Systemic bias is a consequence of non-representative 
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samples, leading to errors. Algorithmic bias, such as under, over-fitting, and 

others, is a significant issue in machine learning, as it can be absorbed and 

perpetuated by AI systems, leading to systematically discriminatory outcomes. 

Insufficient training data and the absence of data not only diminish potential 

advantages but also engender the potential for harm. The absence of proper 

representation can result in recommendations that are ill-suited for individuals 

not adequately accounted for in the dataset. The algorithm might struggle to 

differentiate between individuals for whom there is insufficient data, hampering 

its ability to comprehend and adapt to variations [18]. 

Measurement and misclassification errors in the dataset are another source of 

bias in observational studies. Differential misclassification can occur due to 

errors by practitioners, and implicit biases related to patient factors like sex, race, 

ethnicity, and practitioner-related factors may also impact the quality of care 

provided [18]. 

Although this section is not the primary focus of this dissertation, it is worth 

mentioning some examples of unintended harms caused by AI to illustrate the 

serious risks associated with the technology. 

 

2.4. Artificial Intelligence (AI) and Its Risks in Healthcare 

 
With scientific advances in the healthcare domain and medical field [19], the 

systems face more demand for enhancing user services. The surge in this demand 

encourages the utilization of technology such as AI. In one hand, AI has 

revolutionized healthcare by transforming state-of-the-art diagnoses [20], 

treatment, disease prevention, surgical devices, and more [21,22]. Thus, 
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healthcare systems became a promising application area for this technology. For 

instance, in Europe, AI in the healthcare market exceeded $1.15 billion in 2020 

and is expected to grow more than 44.2% by 2027 [23]. AI in healthcare has the 

potential to significantly improve outcomes and reduce the costs and time of 

procedures [24]. However, applying AI in the healthcare domain has some limits 

and challenges. Managing risks caused by AI is as essential as managing risks 

caused by other technologies and disruptive events. AI holds significant 

promise; however, the present negative consequences of AI and the potential 

risks and harms associated with its ongoing advancement pose substantial 

threats. The dominance of large corporations in controlling technologies implies 

the need for caution when forecasting the potential advantages of AI [25]. AI 

algorithm apprehensions have emerged owing to errors, biases, and a lack of 

transparency; these concerns have led to a decline in trust among clinicians and 

patients. For instance, it poses the risk of further accentuating pre-existing biases 

against marginalized groups, leading to exacerbating inequities and unintended 

harms. Moreover, a lack of representation in the data can cause harm, for 

example, by advising courses of action that may not fit individuals not 

represented in the data or by failing to distinguish between individuals for whom 

there is insufficient data for the algorithm to understand variability [18]. The 

absence of well-established, reliable principles for properly utilizing AI and ML 

in healthcare has worsened the situation. The reliable application of AI in 

healthcare settings is a topic of discussion because there are no universally 

accepted guidelines for its implementation [26]. Using machine learning 

introduces diverse risks in “high-risk” AI systems such as healthcare [27]. Careful 

mitigation strategies are required to instill confidence in the system [28]. AI 
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should be valid and reliable, safe and fair [29], not biased [30,31], secure and 

resilient, explainable and interpretable, accountable and transparent [6,32–34]. 

However, transparency measures should depend on the area of AI application 

[35]. 

As mentioned, there are significant concerns regarding AI in healthcare, 

however, it is crucial to recognize the potential advantages that AI can offer to 

the field. Although there are difficulties, AI has the potential to transform 

healthcare by providing solutions that can improve patient care, streamline 

clinical processes, and enhance health results [6]. 

Moreover, important advantage of AI in the field of healthcare is its capacity 

to enhance and support clinical decision-making procedures. AI-driven 

diagnostic tools possess the capability to rapidly and accurately analyze 

extensive quantities of medical data, thereby assisting healthcare providers in 

making well-informed decisions pertaining to patient diagnosis and treatment 

strategies. This can result in the early identification of illnesses, the 

implementation of more tailored treatment strategies, and ultimately improved 

patient results [5,36]. 

Also, AI has the capacity to enhance operational efficiencies in healthcare 

systems. AI can enhance efficiency in administrative tasks, resource allocation, 

and scheduling by utilizing predictive analytics and optimization algorithms. 

This leads to cost reduction and better utilization of resources. This can enable 

healthcare professionals to allocate more time to direct patient care and decrease 

patient wait times [5]. 

Furthermore, the implementation of AI-powered technologies like remote 

patient monitoring, telemedicine, and wearable devices holds the promise of 
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expanding the availability of healthcare services, especially in areas that lack 

sufficient access or are geographically isolated. These technologies facilitate the 

ongoing monitoring of patient health in non-traditional healthcare 

environments, resulting in earlier intervention and improved management of 

chronic conditions. 

Moreover, the utilization of AI in research and development for drug 

discovery and development shows potential for expediting the rate of 

advancement in the field of medicine. Researchers can accelerate the discovery 

of new treatments and therapies for different diseases by utilizing AI algorithms 

to analyze molecular structures, forecast drug interactions, and identify potential 

therapeutic targets [19,23]. 

Nevertheless, it is crucial to approach the incorporation of AI in healthcare 

with prudence and awareness of the potential hazards and difficulties mentioned 

previously. Ensuring the ethical and responsible development, deployment, and 

use of AI technologies in healthcare is crucial for fully realizing their benefits and 

maximizing their positive impact on patient care and public health. Effective 

collaboration among healthcare professionals, researchers, policymakers, and 

technologists is essential for successfully navigating the intricacies involved and 

utilizing the revolutionary potential of AI to improve healthcare delivery and 

outcomes. 
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2.5. National Institute of Standards and Technology Artificial Intelligence Risk 

Management Framework 

 
The NIST AI RMF (National Institute of Standards and Technology Artificial 

Intelligence Risk Management Framework), published in 2023 [34], is a set of 

guidelines developed to help organizations manage risks associated with AI 

systems [34]. It covers technical, operational, and ethical considerations. The 

framework includes risk governance, assessment, mitigation, assurance, and 

communication. It emphasizes transparency, explainability [37], and 

accountability in AI systems. The framework assists organizations in identifying, 

assessing, and mitigating risks throughout the lifecycle of AI systems, promoting 

trust by evaluating trust and being responsive to reasons for mistrust and 

distrust, fairness, and reliability. In summary, the NIST AI Risk Management 

Framework addresses risks in designing, developing, using, and evaluating AI 

systems and products [34]. The framework describes the requirements that need 

to be addressed to have a trustworthy AI application. Figure 2 describes the NIST 

principles of trustworthy AI [28,34]. According to this figure, a trustworthy AI 

system should include all seven principles: 1. Accountable and transparent, 2. 
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Valid and reliable, 3. Safe, 4. Fair – With harmful bias managed, 5. Secure and 

resilient, 6. Explainable and interpretable, and 7. Privacy enhanced [34]. 

 

 
 

Figure 2. Principles of trustworthy AI adapted from the NIST AI Risk Management Framework 
[34].  

 
2.6. Opportunities to Improve Science and Practice 

 
The NIST AI risk management framework serves as a starting point for 

addressing the risks of AI. However, it is important to consider specific gaps and 

limitations. These include the need for more specificity in the framework, limited 

coverage of technical risks, the absence of clear guidance on adapting AI 
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applications, and challenges with integrating existing risk management 

frameworks specific to certain industries. Another area for improvement is the 

high-level guidance of the framework, which needs more detailed instructions 

for implementing specific risk management measures tailored to the unique AI 

applications of organizations. As a result, organizations may need help 

translating the framework into actionable steps. The NIST AI risk management 

framework is a dynamic framework that evolves. The NIST actively seeks 

feedback and input from various experts and actors to improve its effectiveness 

and address these limitations. 

With the above background, there is an opportunity for mathematical 

explanations and systems analysis to assist the widespread adoption of the NIST 

framework by critical organizations. 

 

2.7. Explainable Artificial Intelligence (XAI) 

 

Concerns are growing over the risks associated with AI advancements [1]. It 

has been observed that AI has surpassed human performance in a wide range of 

intellectually challenging tasks. One common approach involves developing 

machine learning models and assessing the associated risks [38]. Any necessary 

adjustments are made to the model based on this evaluation. However, failing to 

consider and recognize the potential risks of the system during the initial stages 

of design could lead to disastrous consequences and unintended harm to 

individuals and society. Thus, it is crucial to take a proactive approach to 

anticipate and resolve potential problems well in advance to help maintain the 

ability to make corrections and prevent irreversible consequences [38–40]. 
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Trustworthy AI and XAI ensure that AI predictions can be trusted and widely 

utilized. Due to this, research on XAI [41–44] has emerged. Transparency, 

fairness, bias avoidance, informativeness, causality, confidence, transferability, 

privacy and safety, and ease of use as essential factors in the design and 

development of XAI [39] should be considered. XAI also aims to provide insight 

into AI decision-making [45]. XAI is dedicated to creating prediction models that 

are easily comprehensible to humans. These models provide predictions and 

employ model-agnostic techniques to generate explanations for existing machine 

learning models [40,45–47]. 

Figure 3 describes the current taxonomy used to classify explanation 

methods. Two categories of explainable methods exist: 1. Explanation by design 

or intrinsic explainability, and 2. Black-box explanation or post-hoc 

explainability. One example of an intrinsic explanation is the decision tree model. 

The structure of the model can be easily understood due to its architecture. Some 

examples of post-hoc explainability include the support vector machine (SVM) 

model, extreme gradient boosting (XGBoost), and others. Figure 4 describes that 

as the performance of the models improves, their interpretability diminishes. 

Although the neural network (NN) model is highly accurate in its predictions, it 

is challenging to clearly explain how it arrives at its predictions [39,40].  
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Figure 3. Classification of explanation methods; adapted from [39,40,48] 

 

 
Figure 4. Scale-free interpretability and performance relations based in models type; as the 

performance of the models increase, the interpretability of the models decreases; adapted from 
[1,40,48].  
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reasoning of a black-box model [38,46]. Thus, the explanation provided is a 

comprehensive and universal explanation that applies to any situation. On the 

other hand, local explainers focus on explaining the reasons behind a black-box 

model decision for a particular instance [38]. Explanation methods that are 

model-agnostic can be used to interpret any black-box model. However, model-

specific explanation methods are specific to a particular type of black-box model 

[48]. 

Characteristics of other approaches for explaining decision-making in tabular 

data include feature importance, rule based, prototype, and counterfactual. 

SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-

Agnostic Explanations) [49,50] are two popular explainers that are considered 

feature importance types.  

Table 2 is a summary of XAI models. In the following sections, several XAI 

techniques will be utilized and discussed in various cases, highlighting their 

importance in identifying and resolving model errors, addressing potential 

biases, addressing ethical concerns, and promoting trust and cooperation 

between individuals and their AI assistants. In this dissertation, some models, 

including feature importance and rule-based explainers, were implemented.  
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Table 2. List of black-box explainer models for tabular data; adapted from [39] 

Type of the 
Explanations for 

Tabular 
Datasets 

Name of the Models Full Name of the Models Sources 

Feature 
Importance 

LRP Layer-wise Relevance 
Propagation 

Bach et al. (2015) 

LIME Local Interpretable Model-
Agnostic Explanations Ribeiro et al. (2016) 

SHAP SHapley Additive 
exPlanations 

Lundberg and Lee 
(2017) 

MAPLE 
Model-Agnostic Projection 

and Local Explanation Plumb et al. (2018) 

EBM Explainable Boosting 
Machine Nori et al. (2019) 

NAM Neural Additive Model Agarwal et al. (2021) 

CIU Counterfactual Inference for 
Understanding 

Anjomshoae et al. 
(2020) 

EEM Empirical Explanatory 
Models 

Chowdhury et al. 
(2022) 

DALEX 
Descriptive mAchine 

Learning EXplanations Lipovetsky (2022) 

Rule Based 

TREPAN Decision Tree Analyzer Shavlik (1995) 

MSFT Microsoft (not a specific 
XAI model, but a company) Chipman et al. (1998) 

CMM Conceptual Memory Model Domingos (1998) 

DECTEXT 
Decomposable Attention 

Model for Natural 
Language Inference 

Boz (2002) 

STA Sequential Testing 
Approach 

Zhou and Hooker 
(2016) 

SCALABLE-BRL Scalable Bayesian Rule Lists Yang et al. (2017) 

LORE Local Rule-Based 
Explanations 

Guidotti et al. 
(2019a) 

RULEMATRIX Rule Matrix Ming et al. (2019) 
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ANCHOR Anchors Ribeiro et al. (2018) 

GLOCALX Global-Local Explanations Setzu et al. (2019) 

SKOPERULE Scalable Rule-Based Models 
Friedman and 
Popescu (2008) 

Prototype 

PS Prototype Selection Bien and Tibshirani 
(2011) 

MMD-CRITIC Maximum Mean 
Discrepancy Critic 

Kim et al. (2016) 

PROTODASH 
Prototype Discovery for 
Anomaly Detection in 

SHapley space 

Gurumoorthy et al. 
(2019) 

TSP Time Series Pattern Tan et al. (2020) 

Counterfactual 

CEM Contrastive Explanation 
Method 

Dhurandhar et al. 
(2018) 

CFX 
Counterfactual 
Explanations Albini et al. (2020) 

DICE Diverse Counterfactual 
Explanations Mothilal et al. (2020) 

C-CHAVE 
Counterfactual-based 
CHAnge point Visual 

Explanation 

Pawelczyk et al. 
(2020) 

FACE Feature Attribution by 
Contrastive Explanation 

Poyiadzi et al. (2020) 

ARES 
Adaptive Rule-based Expert 

System Ley et al. (2022) 

 
 
2.8. Summary 

 

This chapter has described the literature on risk management in the context 

of AI and its risks in healthcare. It discusses the importance of systems modeling 

and risk management in addressing complex systems. The NIST AI risk 

management framework provides guidelines for managing risks associated with 
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AI systems, emphasizing transparency, explainability, and accountability. The 

framework aims to identify, assess, and mitigate risks throughout the lifecycle of 

AI systems, promoting trust, fairness, and reliability. The framework is a starting 

point for addressing AI risks, but it has limitations such as lack of specificity, 

technical risks, and guidance on adapting AI applications. Then, the chapter 

describes the use of XAI in explaining prediction models that are easily 

comprehensible to humans. Two categories of explainable methods exist: 

Intrinsic and black-box explainability. XAI techniques are also implemented to 

identify and resolve model errors, address potential biases, and promote trust 

and cooperation between individuals and AI assistants.  
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Chapter 3 | Theory and Method 

 
3.1. Introduction  

 

This chapter describes the theory and method. It introduces the initiatives, 

success criteria, emergent conditions, and scenarios as the components of the 

analysis. The multi-layered scenario-based disruption of priorities aims to find 

the most and least disruptive scenarios and prioritize the highest ranked 

initiatives for AI users at each system characteristic layer. Scenarios reflect the 

most uncertainties in the system life cycle identified by expert and decision-

maker points of view [9–11,51]. This section is divided into two subsections, as 

follows:  

 

3.2. Layers of System Characteristics in Enterprise Risk Management of AI in 

Healthcare 

 
In healthcare, a distinct void exists that calls for the convergence of risk 

analysis, systems modeling, and AI applications. Figure 1 and Figure 5 show that 
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in systems modeling, the defining systems characteristic layers of any system are 

Purpose1 (𝜋, Pi), Structure2 (s, Sig), Function3 (f, Phi), Interconnections (i, Iot), 

Environment (e, Eps), and Boundary (b, Bet) [6,52–55]. The Roman alphabets are 

employed to facilitate fluent reading and enhance annotations throughout this 

dissertation. Other studies may find additional layers for the AI risk management 

analysis.  

 

• Purpose (Pi) layer: This layer focuses on the objectives and overall goal of the 

system and includes the strategic and operational objectives of the system. This 

layer includes domain experts and actors in healthcare such as health center 

board members and clinicians responsible for the operation of a clinic 

section/sector. 

 

• Structure (Sig) layer: This layer includes the physical framework of the system 

which could resemble physical medical devices. These are device developers and 

designers involved in implementing AI in healthcare. 

 

• Function (Phi) layer: This layer includes a specific operation or a task defined 

and performed by medical professionals, such as disease diagnosis. For instance, 

physicians specializing in radiology and cardiology contribute to the functional 

aspects of AI applications in healthcare. 

 

 
 
1 In some literatures, Purpose (Pi) is also referred as behavior [52–54]. 
2 In some literatures, Structure (Sig) is also referred as elements or components [52–54]. 
3 In some literatures, Function (Phi) is also referred as process or operations [52–54]. 
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• Interconnections (Iot) layer: This layer describes the interactions and 

connectivity of medical components.  

 

• Environment (Eps) layer: This layer includes any external factors or 

environments that could affect the medical system outside its boundary. 

 

• Boundary (Bet) layer: This layer defines the limits of the medical system scope. 

This layer distinguishes the medical system from its external Environment (Eps).  

 

The scope of the dissertation is limited to the Purpose (Pi), Structure (Sig), and 

Function (Phi) layers.  

 
Figure 5. Six layers of system characteristics that can be used in enterprise risk management of 

AI in healthcare. Orange cells indicate the scope of this dissertation [6]. 

 
The following chapters will describe three scenario-based preference risk 

registers for deploying AI in complex engineering systems built on top of the 

NIST AI Risk Management Framework principles.  

The risks of AI in the healthcare context should be considered for involved 

subjects, including AI developers, healthcare clinicians, and patients distributed 

Purpose Layer (𝜋, Pi)

Structure Layer (s, Sig)

Function Layer (f, Phi)

Boundary Layer (b, Bet)

Environment Layer (e, Eps)

Interconnections Layer (i, Iot)



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

27 

at three layers: Insider, internal, and external layers, respectively4. The scope of 

Chapters 4, 5, and 6 is limited to the internal trustworthiness that AI providers 

address to AI users listed below. AI users and perspectives for the three 

healthcare layers are: 

 

• Purpose (Pi) layer: Domain experts and actors in healthcare, i.e., health center 

board members and clinicians5 responsible for the operation of a clinic 

section/sector;  

• Structure (Sig) layer: Device developers and designers6; 

• Function (Phi) layer: Physicians with specialties in radiology and cardiology7. 

 

3.3. Scenario-Based Disruption of Priorities  

 
This section describes a scenario-based disruption of priorities that is a 

mathematical decision model for system priorities. This framework extends a 

model applied to the trust and security of electric vehicle-to-grid systems and 

 
 
4 These AI actors may include trade associations, standards-developing organizations, 
researchers, advocacy groups, environmental groups, civil society organizations, end users, and 
potentially impacted individuals and communities. 
5 We acknowledge that trust relationships between patients and insurance providers could 
significantly differ. While the users of AI systems can be diverse, including patients and insurance 
providers, the focus of this case study is limited to the domain experts and actors in healthcare, 
i.e., health center board members and clinicians—a collaboration with Binagostar Eye Surgical 
Hospital board members in Shiraz, Iran. 
6 A collaboration with Johns Hopkins University, the department of mechanical engineering, the 
Massachusetts Institute of Technology, the University of Virginia, the department of data science, 
and the department of systems engineering. 
7 A collaboration with HDZ-NRW hospital, the department of radiology, nuclear medicine and 
molecular imaging, the heart and diabetes center North-Rhine Westphalia, the Ruhr University 
of Bochum. 
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hardware supply chains as R&D priorities for the security of embedded 

hardware devices [10,11]. The purpose of the framework is to assist decision-

makers with prioritizing resilience capabilities and identifying disruptive 

scenarios of trustworthy AI in healthcare systems. It also describes an elicitation 

of scenario-based preferences that aids in identifying system initiatives, success 

criteria, and emergent conditions. 

Figure 6 describes a conceptual diagram of the risk assessment methodology 

for the risk of AI in healthcare. The dissertation identifies criteria, initiatives, 

emergent conditions, and scenarios. The next step is to assess criteria-initiative, 

criteria-scenario effects, and emergent conditions-scenarios. Finally, the highest 

ranked initiatives and the most and least disruptive scenarios were identified.  

 

  
Figure 6. Conceptual diagram of risk assessment methodology for enterprise risk management 

of AI in healthcare, adapted from [6,10,11,18,40]. 

 
Success criteria, as the first element of the framework, are developed to 

measure the performance of investment initiatives based on the system objectives 

[8,10,11]. Success criteria are mainly derived from research on technological 

analyses, literature reviews, and expert opinions, which mainly describe the 

goals of the system. Their relationships with the initiatives are developed to 

Initiatives 

Success Criteria 

Emergent 
Conditions 

1. Baseline Criteria Importance 
2. Emergent Conditions-Scenarios Assessment 
3. Criteria-Initiative Assessment  
4. Criteria-Scenario Effect Assessment 

Study the scenarios 
that are most 

disruptive to the 
priorities among 

initiatives  
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measure the potential impact of investing in specific initiatives [51]. Any changes 

in success criteria affect expectations of success and represent the expert values. 

The set of success criteria is {c.01, c.02, …, c.m}.  

Since this framework builds on the NIST AI Risk Management Framework, 

the success criteria are the seven trustworthy AI system principles in Figure 2. The 

list of success criteria is comprised of c.01 – Safe, c.02 – Secure & Resilient, c.03 – 

Explainable & Interpretable, c.04 – Privacy Enhanced, c.05 – Fair (With Harmful Bias 

Managed), c.06 – Accountable & Transparent, c.07 – Valid & Reliable.  

The baseline relevance of criteria is established by interviewing experts and 

actors to assess each criterion under normal conditions, with the relative 

emphasis being scored as Low, Medium, and High. Based on this determination, 

each success criteria baseline weight is assigned. Table 3 describes that numbers 

0, 1, 2, and 4 are assigned to dashes (-), Low, Medium, and High, respectively. The 

values could change, considering various experts, actors, and contexts. A 

sensitivity analysis is provided in Chapter 7 to evaluate how the ranking of 

initiatives will change by increasing or decreasing the criteria scenario relative 

importance weights.  

 

Table 3. Criteria-scenario relative importance weights 

Criteria Scenario Relative Importance Weights 
High 4 

Medium 2 
Low 1 

- 0 
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Initiatives, as the second element of the model, represent a set of decision-

making alternatives in the form of technologies, policies, assets, projects, or other 

such investments [8,56]. The set of initiatives is {x.01, x.02, …, x.n}. Initiatives are 

developed through literature reviews and interviews with experts and actors to 

determine what components, actions, assets, organizational units, policies, 

locations, and allocations of resources constitute the system [6,9,51,57].  

To assess how well each initiative addresses the success criteria for each 

system characteristic layer in the enterprise risk management of AI in healthcare, 

experts and actors are interviewed as part of the criteria-initiative (C-I) 

assessment. In criteria-initiative assessment, the decision-makers assess to what 

degree they agree on initiative x.i address criterion c.j. In the C-I assessment, 

neutral entries are represented by a dash (-), somewhat agree is represented by an 

unfilled circle (○), agree is represented by a half-filled circle (◐), and strongly agree 

is represented by a filled circle (●) in the matrix [9,10,57]. Table 4 describes the 

weights associated with each degree initiative x.i address criterion c.j. 

 

Table 4. Criteria-initiative assessment weights 

Criteria-Initiative Assessment Degree Weights 
● strongly agree 1 
◐ agree 0.667 
○ somewhat agree 0.334 
➖ neutral 0 

 

The qualitative results of the project constraint matrix are converted into 

numerical weights [58,59] following a rank-sum weighting method [60] based on 

Equation 1:  
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𝑤! =	
"#$%&'!()

∑ +#$%&'!()!
"#$

   Þ  "j Î C                          (1) 

 

Where wj is the weight of the j-th criterion, m is the total number of criteria, 

and rankj is the ordinal rank of the j-th criterion [6,61]. 

 Emergent conditions, as the third element of the model, are events, trends, or 

other factors impacting the priorities of decision-makers in future strategic 

planning contexts. Emergent uncertainties significantly contribute to project 

failure and impact the ability of the system to meet success criteria [51]. The set 

of emergent conditions is {e.01, e.02, …, e.k}. In the framework, emergent 

conditions influence the relevance weights of individual prioritization criteria, 

increasing or decreasing. 

Scenarios are comprised of one or more emergent conditions [6,56]. The set of 

scenarios is {s.01, s.02, …, s.p}. 

The next step is to adjust the success criteria weights for each scenario. The 

effect of disruptive emergent conditions is operationalized by changing in the 

criteria weights. For each scenario, the user is asked to assess to what degree the 

relative importance of each criterion change given the scenario will occur [62]. 

Responses include decreased (D), decreased somewhat (DS), no change, increased 

somewhat (IS), and increased (I). These changes are recorded in the W matrix. In 

Equation 2, a is a scaling constant equal to {8, 6, 1, 1/6, 1/8} for increases, increases 

somewhat, no change, decreases somewhat, and decreases, respectively. The scaling 

constant is intended to be consistent with the swing weighting rationale. The 

swing weight technique accommodates adjustments for the additional scenarios. 

The procedure for deriving weights for an additive value function using the 
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swing weight method is thoroughly documented in the MCDA literature, as 

evidenced by works such as those by Keeney and Raiffa [59], Keeney [63], Belton 

and Stewart [64] and Clemen and Reilly [65]. Karvetski and Lambert explain the 

rationale for swing weighting as follows: α serves as a value multiplier, adjusting 

the trade-off between exchanging a high-level of performance for a low level of 

performance in one criterion and an exchange of a low level of performance for 

a high level of performance in another criterion. [61,66]. The swing weight 

technique was adopted to derive the baseline criteria weights (Wj) and the 

adjusted weights for each scenario [66].  

 

𝑊!" = 	a	 ∗ 	𝑊!   Þ  "j Î C, "p Î S                                 (2) 

 

Table 5 describes the weights assigned to each criterion relevant across each 

scenario. These changes are recorded in the W matrix.  

 

Table 5. Criteria-scenario importance change 

Criteria-Scenario Importance Change Weights 
Increases 8 

Increases Somewhat 6 
- 1 

Decreases Somewhat 0.1667 
Decreases 0.125 

 

The initiatives are prioritized with a linear additive value function, defined in 

Equation 3. vj(x.i), the partial value function of initiative x.i, and criterion c.j, 
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defined through the C-I assessment. V is a matrix that contains the relative 

importance scores for each initiative across each scenario. 

 

𝑉"(𝑥. 𝑖) = 	∑ 𝑤!"𝑣!(𝑥. 𝑖)#
!$%   Þ  "i Î X, "p Î S, "j Î C                (3) 

  

Each initiative score is ranked for each scenario, providing a ranking from 1 to 

n. Equation 4 describes this process, where > indicates that an initiative has a 

higher ordinal ranking. That is if the score of an initiative x.i is higher than that 

of an initiative x.a, then it has a higher ordinal ranking. For instance, they may 

be ranked 1 and 2 [6,40,67]. 

 

IF   𝑉"(x.i)  > 𝑉"(x.a)  THEN  x.i > x.a   Þ  "i, a Î X, "p Î S       (4) 

 

The next step is to calculate the disruptiveness score. Disruptiveness 

measures the degree to which priority orders change under a given scenario [67]. 

It is defined based on the sum of the squared differences in priority for each 

initiative compared to the baseline scenario [10,51,67]. Equation 5 describes the 

disruptiveness score for scenario s.p. 

 

𝐷" =	∑ 0𝑟&' − 𝑟&"3
()

&$%     Þ  "i Î X, "p  Î S                       (5) 
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rip is the rank of initiative x.i under scenario s.p, and ri0 is the rank of initiative 

x.i under the baseline scenario. These scores are then normalized on a 0-100 scale 

[6,8,11,56,57]. 

 

3.4. Summary 
 

The chapter has described the mathematical decision framework applied to 

the risks of AI in healthcare systems. Determining which assets are vulnerable to 

disruption will assist in prioritizing resilient strategies to identify the risks to the 

system using AI as an application to operate, design, develop, and diagnose. 

Chapters 4, 5, 6, and 7 will demonstrate the method for each characteristic of 

system layers. 
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Chapter 4 | Case 1 (Purpose (Pi) Layer) 

 
4.1. Introduction 

 
This chapter describes a risk register that acknowledges the Purpose (Pi) of the 

system. Initially, a mathematical decision framework is employed to assess the 

risks of AI in this layer. This layer focuses on the goals and objectives of the 

system, explicitly emphasizing the internal trustworthiness that involves AI 

providers catering to healthcare AI users across various roles. The users include 

those involved in hospital or healthcare institute/clinic operations and team 

members at all levels within the healthcare organization [6]. 

For demonstration, experts and actors from different medical specialties were 

engaged in the process and interviewed from the early stages of the study, from 

identifying the initiatives, emergent conditions, and scenarios to scoring and 

ranking assessments. The experts and actors for the Purpose (Pi) layer are the 

board members of Binagostar Eye Surgical Hospital. Three interviews were 
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conducted with board members of Binagostar Eye Surgical Hospital through the 

online platform [6].  

 

4.2. Scenario-Based Disruption of Priorities (Purpose (Pi) Layer) 

 
Table 6 describes seven success criteria that were identified for this layer. 

These seven success criteria are the principles of the NIST AI risk management 

framework that are shared as success criteria between all three Purpose (Pi), 

Structure (Sig), and Function (Phi) layers [6].  

 

Table 6. Success criteria for the Purpose (Pi), Structure (Sig), and Function (Phi) layers in 
enterprise risk management of AI in healthcare. Success criteria are adapted from the NIST AI 

risk management framework [6,18,34,40,68]. 

Index Criterion 
c.01 Safe 
c.02 Secure & Resilient 
c.03 Explainable & Interpretable  
c.04 Privacy Enhanced 

c.05 Fair – With Harmful Bias Managed 
c.06 Accountable & Transparent 
c.07 Valid & Reliable 
c.i Others 

 
 

Table 7 describes forty-three identified initiatives by interviewing the experts, 

actors, and literature reviews [6,9,34,35,69,70]. x.Pi.11 - Identify Roles and 

Responsibilities of Humans Involved in the AI Lifecycle is an example of an identified 

initiative [6].
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Table 7. Initiatives for the Purpose (Pi) layer in enterprise risk management of AI in healthcare 
[6]. Abridged from various sources that are identified in the narrative [6]. 

Index Initiative 
x.Pi.01 Identify At-Risk Components 
x.Pi.02 Understanding ML Tools to Uncover Subtle Patterns in Data 
x.Pi.03 Record-Keeping, Reserving, and Storing 
x.Pi.04 Data Governance and Management 
x.Pi.05 Data Traceability of the Process 
x.Pi.06 Clear and Plain Language  
x.Pi.07 Concise, Transparent, Easily Accessible Form and Process 
x.Pi.08 Human-AI Collaboration and Consulting 
x.Pi.09 Accurate, Appropriate, Clear and Accessible Information 
x.Pi.10 Providing of Information/Documents 
x.Pi.11 Identify Roles and Responsibilities of Humans Involved in the AI Lifecycle 
x.Pi.12 Ensuring Safety and Quality of AI in Healthcare 
x.Pi.13 Making Informed Decisions (Which in the Case of Patients Also Leads to the 

Realization of Individual Rights) 
x.Pi.14 Guaranteeing Quality and Safety 
x.Pi.15 Continuous Collecting, Generating, and Verification of Data, Information, and 

Knowledge 
x.Pi.16 Ex-Ante and Ex-Post Control Over the AI Outcomes 
x.Pi.17 Outcome Assessment Through Explanations, and Keeping the Records of AI 

Development and Testing 
x.Pi.18 Interpretation for an Erroneous Prediction to Understand the Cause of the Error 
x.Pi.19 Comprehension of AI-Based Devices and their Decisions 
x.Pi.20 Clinicians Shall be Provided with the Information that Enables them to Choose in 

What Situations to Apply AI Tools, How to Use them, and How to Verify the 
Results that an AI System Suggests 

x.Pi.21 The Safety Risks Specific to AI Systems Covered by the Requirements of the AI 
Regulation, and the Sectorial Legislation 

x.Pi.22 Tries to Minimize Risks to the Maximum Possible Extent 
x.Pi.23 Clinicians to be Convinced that Specific AI System Outcome is Safe 
x.Pi.24 Clinicians to be Convinced that AI Device is Generally Useful, Safe, and Efficient 
x.Pi.25 Clinicians to have All the Necessary Information, Documents, and Explanations 

Provided Directly (Through Interaction and Cooperation) or Indirectly (Through 
the Process of AI Device Verification and Authorization) by AI Developers 

x.Pi.26 Ability to Perform the Functions of the AI Internal Transparency 
x.Pi.27 Ensure the Safety and Quality of AI Medical Devices before and after they are 

Placed on the Market 
x.Pi.28 Identify Residual Risks, Contra-Indications, and Any Undesirable Side Effects, 

Including Information to be Conveyed to the Patient in this Regard  
x.Pi.29 Provide Specifications the User Requires to Use the Device Appropriately, e.g., If 

the Device Has a Measuring Function, the Degree of Accuracy Claimed for it 
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x.Pi.30 Provide Any Requirements for Special Facilities, or Special Training, or Particular 
Qualifications of the Device User and/or Other Persons 

x.Pi.31 Some Adaptations or Interpretations to the Nature of AI Technologies, their 
Opacity, and Self-Learning Shall be Made by Policy Makers for Ensuring 
Transparency at the Internal Level 

x.Pi.32  Data Governance and Management Practices Shall be Developed by AI Providers 
x.Pi.33 To Inform the Users on What Kind of Data was Used to Train and Validate an AI 

System and How System Parameters Might Change Depending on the Input Data 
x.Pi.34 The Required Information About the Device Risks, Side Effects, and Limitations 

Shall Cover the Risk of Algorithmic Changes, AI Providers Predictions of that 
Changes, As Well As the Explainability Limitations When it is Applicable (Black-
Box Models) 

x.Pi.35 AI Providers Have to Also Inform Users on Why and How the Benefits of the Use 
of this System Overweigh its Risks (Level of Accuracy, Comparison with Other 
Technologies, or Practices Available on the Market) 

x.Pi.36 AI Providers Shall Develop Possible Technical Measures to Implement 
Automatically Generated Explanations into their AI Systems (‘Explanations by 
Design’) 

x.Pi.37 Application-Grounded Evaluation of Interpretability Involves Conducting 
Human Experiments Within a Real Application 

x.Pi.38 The Quality of Explanations Developed by the AI Provider to be Supplied 
Together with the Device in Question Shall be Assessed by Healthcare 
Professionals Specializing in the Area of the Device Use 

x.Pi.39 Some Sort of Independent Bodies Representing Healthcare Professionals for their 
Participation in the AI-Device Evaluation Can be Created 

x.Pi.40 Accepting Some Degree of Opacity If the Benefits of the Use of AI Application 
Overweigh this Opacity Risk 

x.Pi.41 Providing Quality Records as A Part of the Quality Management System 
x.Pi.42 The Requirement to Use State-Of-The-Art Explainability Techniques Shall be Part 

of the Conformity Assessment Process 
x.Pi.43 Enables AI Providers to Justify the Acceptance of Some Level of Opacity (Because 

the Technologies that Solve it Do Not Exist) 
x.Pi.i Others 

 

Table 8 describes twenty-five emergent conditions identified through 

literature reviews [6,35,69] and interviews with the experts and actors regarding 

the risk of AI in the healthcare Purpose (Pi)/sector layer. An emergent condition 

for this layer could be e.Pi.19 - One-Size-Fits-All Requirements AI Model Challenges 

that may disrupt the system [6].  
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Table 8. Emergent conditions were used to create sets of scenarios for the Purpose (Pi) layer in 
enterprise risk management of AI in healthcare [6]. Abridged from various sources that are 

identified in the narrative [6]. 

Index Emergent Condition 
e.Pi.01 Lack of Algorithmic Transparency 
e.Pi.02 Low Quality and Relevance of the Inputs and thus the Relevant Procedures to Verify 

it 
e.Pi.03 Concerning the Trade-Off Between AI Accuracy and Explainability 
e.Pi.04 Impossible Reaching Zero Risks in AI Area 
e.Pi.05 Lack of Full Predictability (Due to Constant Self-Learning) of Some AI Applications 
e.Pi.06 Concerns About Information Provision 
e.Pi.07 Some AI Models are Opaque even for their Creators, and this Issue Brings us to the 

Last Level of Transparency – Insider Transparency 
e.Pi.08 Some AI Models are Inherently Opaque and Cannot be Fully Explained 
e.Pi.09 The Availability for Explanations and the Quality of the Data Used in the AI 

Development and Training Process 
e.Pi.10 Different Automated Explanations Techniques Available for the Model in Question 
e.Pi.11 Legislative Requirements (Already Existing or to be Adopted in the Future) 
e.Pi.12 Banning and Limitations of AI Technologies Usage in High-Risk Areas Such as 

Healthcare 
e.Pi.13 The Level of Algorithmic Opacity that Cannot be Technically Solved at the Moment 
e.Pi.14 Limitations in Always Accurately Predict the Outcomes of Medical Treatment 
e.Pi.15 Limitations in Explaining the Health Conditions of the Specific Person (Diagnose 

Him/Her) Or Explain Why His/her Treatment Did Not Help 
e.Pi.16 Shortage of AI in Cognitive Empathy 
e.Pi.17 Hard to Track and Measuring Emergent Risks by Organizations 
e.Pi.18 Security Concerns Related to the Confidentiality, Integrity, and Availability of the 

System and its Training and Output Data 
e.Pi.19 One-Size-Fits-All Requirements AI Model Challenges 
e.Pi.20 Unexpected Changes in the Environment or Use  
e.Pi.21 Data Poisoning 
e.Pi.22 Privacy Intrusions 
e.Pi.23 Lack of Access to the Ground Truth in the Dataset  
e.Pi.24 Intentional or Unintentional Changes During Training 
e.Pi.25 Cyber Attacks 
e.Pi.i Others 

 

 

 Table 9 describes ten scenarios that were identified by grouping one or more 

emergent conditions. For instance, e.Pi.02 - Low Quality and Relevance of the Inputs 

and thus the Relevant Procedures to Verify it and e.Pi.14 - Limitations in Always 
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Accurately Predict the Outcomes of Medical Treatment are grouped under s09. 

Uncontrollable Environment [6]. 

 

Table 9. Emergent conditions are grouped for the Purpose (Pi) layer in enterprise risk 
management of AI in healthcare which describes which emergent conditions fit in each scenario 

[6]. Abridged from various sources that are identified in the narrative [6]. 
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e.Pi.01 
 

✓ 
  

✓ ✓ 
 

✓ 
  

e.Pi.02 ✓ 
      

✓ ✓ 
 

e.Pi.03 ✓ 
         

e.Pi.04 
     

✓ 
 

✓ 
 

✓ 
e.Pi.05 

     
✓ 

 
✓ 

  

e.Pi.06 
 

✓ 
 

✓ 
      

e.Pi.07 
     

✓ 
    

e.Pi.08 
     

✓ 
    

e.Pi.09 
          

e.Pi.10 ✓ 
    

✓ 
 

✓ 
  

e.Pi.11 ✓ ✓ 
  

✓ 
 

✓ 
   

e.Pi.12 ✓ ✓ 
  

✓ 
 

✓ 
   

e.Pi.13 
     

✓ 
    

e.Pi.14 
    

✓ 
  

✓ ✓ 
 

e.Pi.15 
     

✓ 
  

✓ 
 

e.Pi.16 
  

✓ 
  

✓ 
    

e.Pi.17 ✓ 
 

✓ 
  

✓ 
 

✓ ✓ ✓ 
e.Pi.18 ✓ 

 
✓ 

   
✓ 

 
✓ 

 

e.Pi.19 
     

✓ 
  

✓ 
 

e.Pi.20 ✓ ✓ 
  

✓ 
 

✓ 
 

✓ 
 

e.Pi.21 
       

✓ 
  

e.Pi.22 
  

✓ ✓ 
      

e.Pi.23 ✓ 
      

✓ ✓ ✓ 
e.Pi.24 

       
✓ ✓ 

 

e.Pi.25 
   

✓ 
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 All criteria in Table 10 were categorized as having High relevance among the 

other criteria.  

 
Table 10. Baseline relevance for the Purpose (Pi) layer in enterprise risk management of AI in 

healthcare [6]. 

The criterion c.xx has s.00 - 
Baseline 

relevance 
among the 

other criteria 
c.01 - Safe has high relevance 
c.02 - Secure & Resilient has high relevance 
c.03 - Explainable & Interpretable has high relevance 
c.04 - Privacy Enhanced has high relevance 
c.05 - Fair - With Harmful Bias Managed has high relevance 
c.06 - Accountable & Transparent has high relevance 
c.07 - Valid & Reliable has high relevance 

 

 
Table 11 describes the criteria-initiative assessment of how well each initiative 

addresses the success criteria for this system layer. For instance, x.Pi.01 - Identify 

At-Risk Components addresses the success criteria c.01 – Safe by using Strongly 

agree as a filled circle (●) and agree for c.02 – Secure & Resilient by a half-filled 

circle (◐) [6].
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Table 11. The criteria-initiative assessment describes how well each initiative addresses the 
success criteria for the Purpose (Pi) layer in enterprise risk management of AI in healthcare. 

Strongly agree is represented by a filled circle (●), agree is represented by a half-filled circle (◐), 
somewhat agree is represented by an unfilled circle (○), and neutral is represented by a dash (➖) 

[6]. 

 c.01 c.02 c.03 c.04 c.05 c.06 c.07 
x.Pi.01 ● ◐ ○ ○ ◐ ○ ○ 
x.Pi.02 ➖ ➖ ● ◐ ○ ◐ ◐ 
x.Pi.03 ➖ ➖ ○ ● ➖ ◐ ➖ 
x.Pi.04 ○ ○ ○ ● ➖ ◐ ➖ 
x.Pi.05 ● ○ ○ ◐ ➖ ● ➖ 
x.Pi.06 ➖ ➖ ● ➖ ➖ ● ➖ 
x.Pi.07 ➖ ➖ ● ◐ ➖ ● ➖ 
x.Pi.08 ➖ ➖ ● ➖ ➖ ● ◐ 
x.Pi.09 ○ ○ ● ● ➖ ◐ ➖ 
x.Pi.10 ○ ○ ○ ● ➖ ◐ ➖ 
x.Pi.11 ○ ○ ◐ ◐ ◐ ◐ ◐ 
x.Pi.12 ● ● ➖ ➖ ○ ◐ ● 
x.Pi.13 ➖ ➖ ● ○ ➖ ● ○ 
x.Pi.14 ● ● ○ ➖ ○ ◐ ● 
x.Pi.15 ○ ◐ ● ● ○ ◐ ○ 
x.Pi.16 ◐ ◐ ◐ ➖ ◐ ◐ ● 
x.Pi.17 ◐ ◐ ◐ ➖ ◐ ◐ ● 
x.Pi.18 ◐ ◐ ● ➖ ➖ ● ● 
x.Pi.19 ● ● ● ○ ● ● ● 
x.Pi.20 ● ● ● ◐ ● ● ● 
x.Pi.21 ◐ ◐ ◐ ◐ ◐ ◐ ○ 
x.Pi.22 ● ● ◐ ◐ ➖ ◐ ◐ 
x.Pi.23 ● ● ● ● ● ● ● 
x.Pi.24 ● ● ● ● ● ● ● 
x.Pi.25 ● ● ● ● ● ● ● 
x.Pi.26 ○ ◐ ● ● ● ● ● 
x.Pi.27 ● ● ● ● ● ● ● 
x.Pi.28 ○ ○ ● ○ ○ ● ○ 
x.Pi.29 ● ● ● ● ● ● ● 
x.Pi.30 ◐ ◐ ● ◐ ◐ ● ◐ 
x.Pi.31 ◐ ◐ ● ◐ ◐ ● ◐ 
x.Pi.32 ○ ○ ○ ● ➖ ◐ ➖ 
x.Pi.33 ● ● ● ● ● ● ● 
x.Pi.34 ● ● ● ● ● ● ● 
x.Pi.35 ● ● ● ● ● ● ● 
x.Pi.36 ◐ ◐ ● ◐ ◐ ● ● 
x.Pi.37 ➖ ➖ ● ➖ ◐ ● ◐ 
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x.Pi.38 ◐ ◐ ● ○ ◐ ● ◐ 
x.Pi.39 ➖ ➖ ● ○ ● ◐ ○ 
x.Pi.40 ◐ ◐ ● ○ ○ ● ◐ 
x.Pi.41 ● ● ○ ➖ ○ ◐ ● 
x.Pi.42 ● ● ● ◐ ◐ ● ● 
x.Pi.43 ◐ ◐ ● ◐ ◐ ● ● 

 

Table 12 describes the criteria-scenario relevance assessment for the Purpose 

(Pi) layer which shows how well each scenario fits the success criterion. For 

example, scenario s.02 - Government Regulation and Policy, somewhat increases (SI) 

criterion c.04 – Privacy [6]. 

 
Table 12. The criteria-scenario relevance describes how well each scenario fits the success 

criterion for the Purpose (Pi) layer in enterprise risk management of AI in healthcare. Decrease 
Somewhat = DS, Decrease = D, Somewhat Increase = SI, Increase = I [6]. 

 s.01 s.02 s.03 s.04 s.05 s.06 s.07 s.08 s.09 s.10 
c.01 DS SI - D SI DS DS DS DS DS 
c.02 - SI - D SI DS DS DS DS DS 
c.03 - SI - - SI DS DS DS D - 
c.04 - SI D D SI - DS - - - 
c.05 DS SI - - SI DS DS DS - - 
c.06 DS SI - - SI DS DS - DS DS 
c.07 DS SI - - SI DS DS DS DS DS 
 

Ultimately, in Table 13, initiative-scenarios were ranked. The table describes 

the ranking of each initiative under each scenario for the Purpose (Pi) layer in the 

enterprise risk management of AI in healthcare and the results scores in the R 

matrix. This information is used to create the first artifact of the mathematical 

framework.
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Table 13. Initiative-scenario ranking chart. This table describes the ranking of each initiative 
under each scenario for the Purpose (Pi) layer in enterprise risk management of AI in healthcare. 
The green filled cells show a higher ranking and the red and orange filled cells indicate a lower 

ranking. 
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x.Pi.01 29 35 29 28 37 29 31 29 42 22 31 
x.Pi.02 31 26 31 34 26 31 27 31 31 23 22 
x.Pi.03 42 40 42 43 43 42 25 42 30 32 37 
x.Pi.04 36 27 36 40 40 36 21 36 24 27 32 
x.Pi.05 34 36 31 33 39 31 28 31 19 34 38 
x.Pi.06 43 43 43 39 36 43 43 43 43 43 42 
x.Pi.07 40 34 40 38 35 40 30 40 27 38 30 
x.Pi.08 40 42 40 35 27 40 42 40 40 42 41 
x.Pi.09 31 20 31 36 38 31 17 31 19 24 23 
x.Pi.10 36 27 36 40 40 36 21 36 24 27 32 
x.Pi.11 27 24 27 29 24 27 24 27 28 19 21 
x.Pi.12 28 39 28 25 34 28 40 28 41 39 43 
x.Pi.13 39 38 39 37 32 39 34 39 32 40 35 
x.Pi.14 22 32 24 21 30 24 35 24 36 36 39 
x.Pi.15 21 13 20 27 28 20 12 20 17 18 17 
x.Pi.16 22 30 22 19 20 22 35 22 36 30 28 
x.Pi.17 22 30 22 19 20 22 35 22 36 30 28 
x.Pi.18 26 23 26 23 22 26 39 26 33 41 36 
x.Pi.19 10 12 10 10 10 10 18 10 16 11 12 
x.Pi.20 9 9 9 9 9 9 10 9 10 10 10 
x.Pi.21 20 22 20 26 28 20 20 20 23 17 20 
x.Pi.22 19 18 19 24 33 19 19 19 22 25 27 
x.Pi.23 1 1 1 1 1 1 1 1 1 1 1 
x.Pi.24 1 1 1 1 1 1 1 1 1 1 1 
x.Pi.25 1 1 1 1 1 1 1 1 1 1 1 
x.Pi.26 12 11 12 12 11 12 9 12 9 9 9 
x.Pi.27 1 1 1 1 1 1 1 1 1 1 1 
x.Pi.28 30 25 30 30 25 30 32 30 29 33 25 
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x.Pi.29 1 1 1 1 1 1 1 1 1 1 1 
x.Pi.30 15 16 15 15 15 15 15 15 14 15 15 
x.Pi.31 15 16 15 15 15 15 15 15 14 15 15 
x.Pi.32 36 27 36 40 40 36 21 36 24 27 32 
x.Pi.33 1 1 1 1 1 1 1 1 1 1 1 
x.Pi.34 1 1 1 1 1 1 1 1 1 1 1 
x.Pi.35 1 1 1 1 1 1 1 1 1 1 1 
x.Pi.36 13 14 13 13 13 13 13 13 12 13 13 
x.Pi.37 35 41 35 31 18 35 41 35 35 35 26 
x.Pi.38 17 19 17 17 17 17 26 17 18 20 18 
x.Pi.39 31 37 31 32 23 31 33 31 34 21 19 
x.Pi.40 18 21 18 18 19 18 29 18 21 26 24 
x.Pi.41 22 32 24 21 30 24 35 24 36 36 39 
x.Pi.42 10 10 10 11 12 10 11 10 11 12 11 
x.Pi.43 13 14 13 13 13 13 13 13 12 13 13 

 

 

Based on the tables provided above, Figure 7 is generated, which describes 

how each scenario is given a disruptiveness score, where the higher the score, the 

more disruptive the scenario will be to a system. This figure describes that s.06 – 

Non-Interpretable AI and Lack of Human-AI Communications is the most disruptive 

scenario for trustworthy AI in the healthcare Purpose (Pi) layer [6]. In situations 

where the consequences of the actions of the system could be severe, such as 

when human life or liberty is at risk, AI developers and deployers should take 

proactive measures to adjust their transparency and accountability practices 

proportionally. Other disruptive scenarios to the system are s.08 - Human Errors 

in Design, Develop, Measurement, and Implementation, s.09 - Uncontrollable 

Environment, and s.10 - Expensive Design Process. These results will inform the 

development of subsequent resilience measures and could be expanded as the 

system model is improved. While scenarios s.03 – Privacy Attacks and s.05 – Cyber 

Security Threats hold significant roles within healthcare centers, they may not be 
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regarded as the most disruptive scenarios in this case. This is because these 

scenarios primarily focus on internal rather than external transparency, which 

involves patients and other external parties in the assessment process.
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Figure 7. Disruptive score of scenarios is based on the sum of squared differences in the priority of initiatives relative to the baseline 

scenario for the Purpose (Phi) layer in enterprise risk management of AI in healthcare. These are scenarios where they caused low levels 
of trust in AI [6].
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Figure 8 describes the variation in the prioritization of initiatives across 

scenarios. The blue dotted and red stripes highlight the possible upper and lower 

ranges of each initiative from the baseline rank of each initiative. In contrast, the 

black bar shows the baseline ranking of each initiative. The bar indicates the 

ranking range for each initiative, subject to disruptions by scenarios. More 

specifically, the red bar shows how far an initiative may fall in rank under various 

scenarios, and the blue bar shows how high an initiative may rise under various 

scenarios [6,9]. In other words, an initiative with a baseline ranking centered on 

a wide bar is sensitive to disruptions and does not consistently rank under 

disruptive scenarios. Suppose the baseline is positioned to the left of the bar with 

a long red segment. In that case, it indicates that the priority of the initiative has 

decreased because of one or more disruptions. When the initiative is represented 

by a long blue bar on the right side, it indicates that the initiative is likely to gain 

importance due to disruptions. Table 14 describes the highest ranked initiatives 

for the Purpose (Pi) layer [6]. 
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Figure 8. Distributions of initiatives influence rankings based on which emergent conditions that could arise more often or do not occur 
for the Purpose (Phi) layer in enterprise risk management of AI in healthcare; blue means promotion in ranking and red means demotion 

in ranking [6].
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Table 14. The highest ranked initiatives of the Purpose (Pi) layer in enterprise risk management 

of AI in healthcare [6]. 

Index Most Important Initiative 
Purpose (Pi) x.Pi.35 - AI Providers Have to Also Inform Users on Why and 

How the Benefits of the Use of this System Overweigh its Risks 
(Level of Accuracy, Comparison with Other Technologies, or 
Practices Available on The Market) 
 
x.Pi.34 - The Required Information About the Risks, Side Effects, 
and Limitations Shall Cover the Risk of Algorithmic Changes, AI 
Providers Predictions of that Changes, As Well As the 
Explainability Limitations When it is Applicable (Black-Box 
Models) 
 
 x.Pi.33 - To Inform the Users on What Kind of Data Was Used to 
Train and Validate an AI System and How System Parameters 
Might Change Depending on the Input Data 
 
x.Pi.29 - Provide Specifications the User Requires to Use the Device 
Appropriately, e.g., If the Device has a Measuring Function, the Degree 
of Accuracy Claimed for it 
 
x.Pi.27 - Ensure the Safety and Quality of AI Medical Devices before and 
after They Are Placed on the Market 
 
x.Pi.25 - Clinicians to Have All the Necessary Information, Documents, 
and Explanations Provided Directly (Through Interaction and 
Cooperation) or Indirectly (Through the Process of AI Device 
Verification and Authorization) by AI Developers 
 
x.Pi.24 - Clinicians to be convinced that AI Device is Generally Useful, 
Safe, and Efficient 
 
x.Pi.23 - Clinicians to be Convinced that Specific AI System Outcome is 
Safe 
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4.3. Summary 

 

This chapter has described a risk register for AI in healthcare, focusing on the 

Purpose (Pi) layer and employing a mathematical decision framework to gauge 

AI trustworthiness. It identifies forty-three initiatives, twenty-five emergent 

conditions, and ten scenarios impacting AI trustworthiness, emphasizing 

transparency, and accountability. Evaluations based on success criteria reveal 

varying initiative priorities across scenarios, underlining measures such as 

informing users about system benefits, ensuring the safety and quality of AI 

outcomes, and providing comprehensive AI risk information. Experts, actors, 

and managers will determine which resilience capabilities should be funded and 

applied to the system using a scenario-based preference framework.  

The next step is applying the mathematical decision framework to the risk of 

AI in the Structure (Sig) or component layer. 
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Chapter 5 | Case 2 (Structure (Sig) Layer) 

 
 
5.1. Introduction 
 
 

This chapter describes a case study in the Structure (Sig) layer. This layer 

includes the physical framework of the system, which could resemble physical 

medical devices, particularly in this case, the design optimization of the surgical 

suturing anastomosis. 

Every year, 310 million major surgeries are performed in the United States 

[71]. Vascular anastomosis is a common technique used in complex surgeries, 

with various handheld suturing techniques employed [72]. Figure 9 describes 

various handheld suturing techniques, such as end-to-end, side-to-end, and side-

to-side. This chapter focuses on the end-to-end technique. End-to-end suturing 

is the most common technique [73]; however, it can lead to potential 

complications such as thrombosis, fistula formation, vessel occlusion, 
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hemorrhage, wound infection, aneurysm formation, nerve damage, and chronic 

pain [49–56]. The handheld technique is also time-consuming, subject to human 

error, and can cause vessel damage or blood flow turbulence [72]. To mitigate 

these risks, careful attention and execution are required. 

 

 
Figure 9. Vascular anastomosis types, adapted from [82]. 

 

Sutureless vessel anastomosis is considered another alternative in operations 

such as magnetic compression anastomosis (MCA); however, hardships in the 

installation of the device, potential hazards to performers, and more, limit its 
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popularity [72]. Having reliable devices to improve the prognosis and patient 

health outcomes of surgical procedures is crucial. The outcome of the surgeries 

could heavily depend on the devices used for the patients. Thus, Kang et al. 

proposed a 3D printing prototype, Vaso-Lock, that replaces handheld suturing 

by holding together free vascular ends [83]. Vaso-Lock is a bioinspired, 

additively manufactured device that aims to simplify vascular anastomoses 

during surgical procedures compared to the traditional method of blood vessel 

hand-sewing. Figure 10 describes the design concept of the device that resembles 

the structure of the rose plant in which prickles are arranged around a cylindrical 

configuration. Such arranged prickle structures, fabricated with biodegradable 

materials, allow the device to be firmly attached to the inner side of blood vessels 

and help connect two vessels.  

The traditional design method will require an ensemble of ‘cut-and-try’ 

experiments. The experiment required identifying the device configurations, 3D 

modeling the device, and printing the device, the process of which may take 

several hours or even days. 

 

 
Figure 10. Bioinspired structure for blood vessel anastomosis. 
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A next step is to develop a scenario-based disruption of priorities for 

designing Vaso-Lock.  

 

5.2. Scenario-Based Disruption of Priorities (Structure (Sig) Layer) 

 
Scenario-based analysis is developed to identify the highest ranked initiatives 

and most and least disruptive scenarios in the risks of AI in device design 

(Structure (Sig) layer). This layer defines the physical structure of the healthcare 

system being modeled, which includes device and component design. The list of 

success criteria for Vaso-Lock is similar to the NIST AI Risk Management 

Framework seven principles that were listed in Figure 2. 

The experts and actors for the Structure (Sig) layer are research scientists and 

device designers from the mechanical engineering department at Johns Hopkins 

University and the Western University of Health Sciences College of Dental 

Medicine. Bi-weekly meetings were held with experts and actors from Johns 

Hopkins University from July 2022. Seven interviews were carried out with 

dentists at the Western University of Health Sciences College of Dental Medicine. 

All interviews were conducted using an online platform.  

Seven success criteria (Table 6), forty-seven initiatives (Table 15) [6,34], fifty 

emergent conditions (Table 16) [34], ten scenarios as the Purpose (Pi) layer (Table 

17), baseline relevance (Table 18), criteria-initiative assessment (Table 19), 

criteria-scenario relevance (Table 20), and initiative-scenario ranking chart (Table 

21) were identified and developed as follows for risk management of AI for Vaso-

Lock design and development [9,34,83–85]. 
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Table 15. Initiatives for the Structure (Sig) layer in enterprise risk management of AI in 
healthcare. Abridged from various sources that are identified in the narrative [6]. 

Index Initiative 
x.Sig.01 Identify At-Risk Components 
x.Sig.02 Understanding ML Tools to Uncover Subtle Patterns in Data 
x.Sig.03 Maintaining the Provenance of Training Data 
x.Sig.04 Safety/Verifiability of Automated Analyses 
x.Sig.05 Supporting Attribution of the AI System Decisions to Subsets of Training Data 
x.Sig.06 Correctly Labeling the Data 
x.Sig.07 Training Data to Follow Application Intellectual Property Rights Laws 
x.Sig.08 Find the Maximum value of the Max Force of the Device 
x.Sig.09 Maintain Organizational Practices Like Implement Risk Management to Reduce Harm 

Reduction and More Accountable Systems 
x.Sig.10 Prioritization Policies and Resources Based on Assesses Risk Levels 
x.Sig.11 Safety of Personally Identifiable Information 
x.Sig.12 Appropriate Accountability Mechanism, Roles and Responsibilities, Culture, and 

Incentive Structures for Risk Management to be Effective 
x.Sig.13 Identify the Right AI RMF in Different Context Based on Capabilities, Resources and 

Organization Size 
x.Sig.14 Identify AI Actors with Diversity in Experience, Expertise, Background, 

Demographically and Disciplinary  
x.Sig.15 Assist in Providing Context and Understanding Potential and Actual Impacts 
x.Sig.16 Identify a Source of Formal or Quasi-Formal Norms and Guidance for AI Risk 

Management 
x.Sig.17 Designate Boundaries for AI Operation (Technical, Societal, Legal, and Ethical) 
x.Sig.18 Promote Discussion of the Tradeoffs Needed to Balance Societal Values and Priorities 

Related to Civil Liberties and Rights, Equity, the Environment and the Planet, and the 
Economy 

x.Sig.19 Articulate and Document the System Concept and Objectives, Underlying 
Assumptions, and Context in Light of Legal and Regulatory Requirements and Ethical 
Considerations 

x.Sig.20 Gather, Validate, and Clean Data and Document the Metadata and Characteristics of 
the Dataset, in Light of Objectives, Legal and Ethical Considerations 

x.Sig.21 Pilot, Check Compatibility with Legacy Systems, Verify Regulatory Compliance, 
Manage Organizational Change, and Evaluate User Experience 

x.Sig.22 Operate the AI System and Continuously Assess its Recommendations and Impacts 
x.Sig.23 Balancing and Tradeoff Each of Trustworthy AI Systems Characteristics Based on the 

AI System Context of Use 
x.Sig.24 Reduce the Number of Experiments to be Cost and Time Effective by Optimizing the 

Configurations 
x.Sig.25 Ability of an Item to Perform as Required without Failure 
x.Sig.26 Confirmation, Through the Provision of Objective Evidence that the Requirements for 

a Specific Intended Use Have been Fulfilled 
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x.Sig.27 Closeness of Results of Observations, Computations, or Estimates to the True Values 
or the Values Accepted as Being True 

x.Sig.28 Human-AI Teaming  
x.Sig.29 Demonstrate External Validity or Generalizable Beyond the Training Conditions 
x.Sig.30 Ability of a System to Maintain its Level of Performance Under a Variety of 

Circumstances 
x.Sig.31 Minimizing Potential Harms to People if it is Operating in an Unexpected Setting 
x.Sig.32 Responsible Design, Development, and Deployment Practices 
x.Sig.33 Clear Information to Deployers on Responsible Use of the System 
x.Sig.34 Responsible Decision-Making by Deployers and End Users 
x.Sig.35 Explanations and Documentation of Risks Based on Empirical Evidence of Incidents 
x.Sig.36 Ability to Shut Down, Modify, or Have Human Intervention into Systems that Deviate 

from Intended or Expected Functionality 
x.Sig.37 Resilient to Withstand Unexpected Adverse Events or Unexpected Changes in the 

Environment or Use 
x.Sig.38 Maintain the Functions and Structure in the Face of Internal and External Change and 

Degrade Safely and Gracefully When this is Necessary 
x.Sig.39 Managing Risks from Lack of Explainability by Describing How AI Systems Functions 

Considering Users' Role, Knowledge, and Skill Level 
x.Sig.40 Communicating a Description of Why an AI System Made a Particular Prediction or 

Recommendation 
x.Sig.41 Securing Individual Privacy, Anonymity, and Confidentiality 
x.Sig.42 De-Identification and Aggregation for Certain Model Outputs 
x.Sig.43 Strengthened Engagement with Interested Parties and Relevant AI Actors 
x.Sig.44 AI Systems May Require More Frequent Maintenance and Triggers for Conducting 

Corrective Maintenance Due to Data, Model, or Concept Drift 
x.Sig.45 Human Roles and Responsibilities in Decision Making and Overseeing AI Systems 

Need to be Clearly Defined and Differentiated 
x.Sig.46 Explain and Identify Most Important Features Using AI Models 
x.Sig.47 Incorporates Processes to Assess Potential Impacts 
x.Sig.i Others 
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Table 16. Emergent conditions are used to create sets of scenarios for the Structure (Sig) layer in 
enterprise risk management of AI in healthcare. Abridged from various sources that are 

identified in the narrative [6]. 

Index Emergent Condition 
e.Sig.01 Systematic Biases in Clinical Data Collection 
e.Sig.02 Improperly Labeling the Data in Surgery-Specific Patient Registries 
e.Sig.03 Misidentification of Variables Used in Surgery-Specific Patient Registries 
e.Sig.04 Test Different Types of Transparency Tools in Cooperation with AI Deployers 
e.Sig.05 AI to be Susceptible to Unrealistic Expectations from Media 
e.Sig.06 Limitation in Types and Accuracy of Available Data 
e.Sig.07 Expensive Data Collection 
e.Sig.08 Time Consuming Data Collection 
e.Sig.09 Policy and Regulation Changes 
e.Sig.10 Difficult and Complex AI Algorithms Interpretability 
e.Sig.11 Lack of AI Determination of Casual Relationships in Data at Clinical Implementation 

Level 
e.Sig.12 Inability of AI in Providing an Automated Clinical Interpretation of its Analysis 
e.Sig.13 Non-Intuitive Hidden Layers in DL 
e.Sig.14 Abuse or Misuse of the Model or Data 
e.Sig.15 Challenges with Training Data to be Subject to Copyright 
e.Sig.16 Complicate Risk Measurement by Third Party Software, Hardware, and Data 
e.Sig.17 Hard to Track and Measuring Emergent Risks by Organizations 
e.Sig.18 Lack of Consensus on Robust and Verifiable Measurement Methods for AI 

Trustworthiness 
e.Sig.19 Misidentification of Different Risk Perspective in Early or Late Stages of AI Lifecycle 
e.Sig.20 Difference Between Controlled Environment vs. Uncontrollable and Real-World 

Settings 
e.Sig.21 Inscrutable Nature of AI Systems in Risk Measurements 
e.Sig.22 Hard to Find Human Baseline for AI Systems Intended to Replace Human Activity 
e.Sig.23 Risk Tolerance Influence by Legal or Regulatory Requirements Changes 
e.Sig.24 Unrealistic Expectations About Risk to Misallocate Resources 
e.Sig.25 Residual Risk or Risk Remaining after Risk Treatment Directly Impacts End Users 
e.Sig.26 Privacy Concerns Related to the Use of Underlying Data to Train AI Systems 
e.Sig.27 Energy and Environmental Implications Associated with Resource-Heavy Computing 

Demands 
e.Sig.28 Security Concerns Related to the Confidentiality, Integrity, and Availability of the 

System and its Training and Output Data 
e.Sig.29 General Security of the Underlying Software and Hardware for AI Systems 
e.Sig.30 One-Size-Fits-All Requirements AI Model Challenges 
e.Sig.31 Neglecting the Trustworthy AI Characteristics 
e.Sig.32 Difficult Decisions in Tradeoff and Balancing Trustworthy AI Characteristics by 

Organizations 
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e.Sig.33 Subject Matter Experts and Actors Can Assist in the Evaluation of TEVV Findings and 
Work with Product and Deployment Teams to Align TEVV Parameters to 
Requirements and Deployment Conditions 

e.Sig.34 Different Perception of the Trustworthy AI Characteristics Between AI Designer than 
the Deployer 

e.Sig.35 Potential Risk of Serious Injury or Death Call  
e.Sig.36 Unexpected Changes in the Environment or Use  
e.Sig.37 Data Poisoning 
e.Sig.38 Negative Risk Stem from a Lack of Ability to Make Sense of, or Contextualize, System 

Output Appropriately 
e.Sig.39 AI Allowing Inference to Identify Individuals or Previously Private Information About 

Individuals 
e.Sig.40 Privacy Intrusions 
e.Sig.41 Data Sparsity 
e.Sig.42 Fairness Perceptions Difference Among Cultures and Applications 
e.Sig.43 Computational and Statistical Biases Stem from Systematic Errors Due to Non-

Representative Samples 
e.Sig.44 Human-Cognitive Biases Relates to How the Experts and Actors Perceives AI System 

Information to Make a Decision 
e.Sig.45 Lack of Access to the Ground Truth in the Dataset  
e.Sig.46 Intentional or Unintentional Changes During Training 
e.Sig.47 Increased Opacity and Concerns About Reproducibility 
e.Sig.48 Computational Costs for Developing AI Systems and their Impact on the Environment 

and Planet 
e.Sig.49 Inability to Predict or Detect the Side Effects of AI-Based Systems Beyond Statistical 

Measures 
e.Sig.50 Presenting AI System Information to Humans is Complex 
e.Sig.i Others 
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Table 17. Emergent conditions grouping for the Structure (Sig) layer in enterprise risk 
management of AI in healthcare describes which emergent conditions fit in each scenario. 

Abridged from various sources that are identified in the narrative [6]. 
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e.Sig.01 
 

✓ 
        

e.Sig.02 
       

✓ 
  

e.Sig.03 
       

✓ 
  

e.Sig.04 
     

✓ 
    

e.Sig.05 
     

✓ 
    

e.Sig.06 
         

✓ 
e.Sig.07 ✓ 

        
✓ 

e.Sig.08 
         

✓ 
e.Sig.09 

 
✓ 

  
✓ 

     

e.Sig.10 
     

✓ 
    

e.Sig.11 
     

✓ 
    

e.Sig.12 
     

✓ 
    

e.Sig.13 
     

✓ 
    

e.Sig.14 
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✓ 
  

e.Sig.15 
 

✓ ✓ 
  

✓ 
    

e.Sig.16 
     

✓ 
   

✓ 
e.Sig.17 
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✓ 

 

e.Sig.18 
 

✓ 
  

✓ ✓ 
 

✓ ✓ ✓ 
e.Sig.19 

    
✓ ✓ 
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e.Sig.21 
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✓ ✓ ✓ 
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e.Sig.31 
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✓ 
  

e.Sig.32 ✓ 
   

✓ ✓ 
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e.Sig.33 
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e.Sig.34 
     

✓ 
    

e.Sig.35 
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✓ ✓ ✓ 
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✓ ✓ 

    

e.Sig.43 ✓ 
    

✓ 
 

✓ ✓ ✓ 
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e.Sig.48 ✓ 
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✓ ✓ 
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e.Sig.50 
     

✓ 
    

 
 

 

 
Table 18. Baseline relevance for the Structure (Sig) layer in enterprise risk management of AI in 

healthcare [6]. 

The criterion c.xx has 
s.00 - 

Baseline 
relevance among 
the other criteria 

c.01 - Safe has medium relevance 

c.02 - Secure & Resilient has medium relevance 

c.03 - Explainable & Interpretable has high relevance 
c.04 - Privacy Enhanced has low relevance 

c.05 - Fair - With Harmful Bias Managed has low relevance 

c.06 - Accountable & Transparent has high relevance 
c.07 - Valid & Reliable has high relevance 
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Table 19. The criteria-initiative assessment describes how well each initiative addresses the 
success criteria for the Structure (Sig) layer in enterprise risk management of AI in healthcare. 
Strongly agree is represented by a filled circle (●), agree is represented by a half-filled circle (◐), 
somewhat agree is represented by an unfilled circle (○), and neutral is represented by a dash (➖) 

[6]. 

 c.01 c.02 c.03 c.04 c.05 c.06 c.07 
x.Sig.01 ● ◐ ➖ ➖ ➖ ➖ ○ 
x.Sig.02 ➖ ➖ ○ ➖ ➖ ➖ ● 
x.Sig.03 ➖ ➖ ○ ➖ ➖ ○ ● 
x.Sig.04 ➖ ➖ ● ➖ ➖ ◐ ● 
x.Sig.05 ➖ ➖ ● ➖ ➖ ◐ ➖ 
x.Sig.06 ○ ➖ ➖ ➖ ● ● ● 
x.Sig.07 ○ ○ ◐ ➖ ➖ ○ ◐ 
x.Sig.08 ● ● ◐ ➖ ➖ ● ● 
x.Sig.09 ○ ◐ ● ➖ ○ ● ○ 
x.Sig.10 ➖ ➖ ◐ ○ ○ ◐ ◐ 
x.Sig.11 ➖ ➖ ➖ ● ➖ ◐ ➖ 
x.Sig.12 ○ ○ ◐ ➖ ➖ ○ ◐ 
x.Sig.13 ○ ○ ○ ○ ○ ○ ○ 
x.Sig.14 ➖ ➖ ➖ ➖ ◐ ➖ ➖ 
x.Sig.15 ➖ ➖ ● ➖ ➖ ➖ ➖ 
x.Sig.16 ○ ○ ○ ➖ ➖ ○ ○ 
x.Sig.17 ○ ○ ◐ ➖ ➖ ○ ◐ 
x.Sig.18 ➖ ➖ ○ ➖ ○ ➖ ➖ 
x.Sig.19 ● ○ ● ➖ ➖ ◐ ◐ 
x.Sig.20 ● ○ ● ➖ ➖ ● ◐ 
x.Sig.21 ○ ➖ ◐ ➖ ➖ ➖ ➖ 
x.Sig.22 ● ● ● ➖ ➖ ● ● 
x.Sig.23 ○ ○ ● ➖ ➖ ● ○ 
x.Sig.24 ● ● ● ➖ ○ ● ● 
x.Sig.25 ● ● ● ➖ ➖ ● ● 
x.Sig.26 ● ● ● ➖ ➖ ● ● 
x.Sig.27 ➖ ➖ ◐ ➖ ➖ ● ● 
x.Sig.28 ◐ ◐ ● ➖ ➖ ◐ ◐ 
x.Sig.29 ◐ ◐ ● ➖ ➖ ◐ ◐ 
x.Sig.30 ● ● ● ➖ ➖ ● ● 
x.Sig.31 ● ● ● ➖ ➖ ● ● 
x.Sig.32 ● ● ● ➖ ➖ ● ● 
x.Sig.33 ● ● ● ➖ ➖ ● ● 
x.Sig.34 ◐ ○ ● ➖ ➖ ◐ ◐ 
x.Sig.35 ● ● ● ➖ ➖ ● ◐ 
x.Sig.36 ● ● ● ➖ ➖ ● ➖ 
x.Sig.37 ● ● ○ ➖ ➖ ● ➖ 
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x.Sig.38 ◐ ◐ ○ ➖ ➖ ○ ◐ 
x.Sig.39 ● ● ● ➖ ➖ ● ● 
x.Sig.40 ● ● ● ➖ ◐ ● ● 
x.Sig.41 ➖ ➖ ➖ ○ ➖ ➖ ➖ 
x.Sig.42 ➖ ➖ ● ○ ➖ ➖ ➖ 
x.Sig.43 ◐ ◐ ● ➖ ➖ ◐ ◐ 
x.Sig.44 ◐ ● ● ➖ ● ● ● 
x.Sig.45 ◐ ◐ ● ➖ ➖ ◐ ◐ 
x.Sig.46 ◐ ◐ ● ➖ ➖ ◐ ◐ 
x.Sig.47 ◐ ◐ ● ➖ ➖ ● ◐ 

 
 
 
 
 
 
 
 

Table 20. The criteria-scenario relevance describes how well each scenario fits the success 
criterion for the Structure (Sig) layer in enterprise risk management of AI in healthcare. Decrease 

Somewhat = DS, Decrease = D, Somewhat Increase = SI, Increase = I [6]. 

 s.01 s.02 s.03 s.04 s.05 s.06 s.07 s.08 s.09 s.10 
c.01 D SI - - SI D DS D D D 
c.02 D SI - - SI D DS DS DS D 
c.03 DS SI - - I D DS D D D 
c.04 - SI D DS - - - - - - 
c.05 DS - - - SI - DS DS - - 
c.06 D SI - - I D DS D D D 
c.07 D SI - - I D DS D D D 
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Table 21. Initiative-scenario ranking chart. This table describes the ranking of each initiative 
under each scenario for the Structure (Sig) layer in enterprise risk management of AI in 

healthcare. The green filled cells show a higher ranking and the red and orange filled cells 
indicate a lower ranking. 
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x.Sig.01 40 43 40 40 40 42 43 42 42 43 43 
x.Sig.02 39 41 39 39 39 37 41 41 41 41 41 
x.Sig.03 35 39 35 35 35 35 37 37 37 37 37 
x.Sig.04 26 27 26 26 26 25 29 26 27 29 29 
x.Sig.05 36 38 36 36 36 36 39 38 39 39 39 
x.Sig.06 28 30 29 28 28 28 4 29 31 4 4 
x.Sig.07 31 33 31 31 31 31 33 32 34 34 33 
x.Sig.08 12 13 12 13 13 13 13 12 12 13 13 
x.Sig.09 23 23 23 23 23 22 15 23 22 15 15 
x.Sig.10 30 25 30 30 30 30 16 28 25 18 16 
x.Sig.11 43 29 43 44 44 44 29 31 27 29 29 
x.Sig.12 31 33 31 31 31 31 33 32 34 34 33 
x.Sig.13 37 32 37 37 37 38 27 36 32 27 27 
x.Sig.14 46 47 47 46 46 46 41 47 47 41 41 
x.Sig.15 42 42 42 42 42 41 45 43 43 45 45 
x.Sig.16 38 40 38 38 38 39 40 40 40 40 40 
x.Sig.17 31 33 31 31 31 31 33 32 34 34 33 
x.Sig.18 45 46 45 45 45 45 44 46 46 44 44 
x.Sig.19 21 16 16 16 16 16 19 16 23 25 19 
x.Sig.20 14 14 14 14 14 15 17 14 15 17 17 
x.Sig.21 44 44 44 43 43 43 46 44 44 46 46 
x.Sig.22 4 4 3 4 4 4 5 4 4 5 5 
x.Sig.23 25 26 25 25 25 27 28 25 26 28 28 
x.Sig.24 2 3 2 2 2 2 3 2 3 3 3 
x.Sig.25 4 4 3 4 4 4 5 4 4 5 5 
x.Sig.26 4 4 3 4 4 4 5 4 4 5 5 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

65 

x.Sig.27 26 28 26 26 26 25 29 26 27 29 29 
x.Sig.28 16 16 16 16 16 16 19 16 17 20 19 
x.Sig.29 16 16 16 16 16 16 19 16 17 20 19 
x.Sig.30 4 4 3 4 4 4 5 4 4 5 5 
x.Sig.31 4 4 3 4 4 4 5 4 4 5 5 
x.Sig.32 4 4 3 4 4 4 5 4 4 5 5 
x.Sig.33 4 4 3 4 4 4 5 4 4 5 5 
x.Sig.34 24 24 24 24 24 24 26 24 24 26 26 
x.Sig.35 12 12 12 12 12 12 13 12 12 13 13 
x.Sig.36 22 22 22 22 22 23 25 22 16 19 25 
x.Sig.37 29 31 28 29 29 29 32 30 30 32 32 
x.Sig.38 31 36 31 31 31 34 33 32 33 33 33 
x.Sig.39 4 4 3 4 4 4 5 4 4 5 5 
x.Sig.40 1 1 1 1 1 1 2 1 1 2 2 
x.Sig.41 47 45 46 47 47 47 47 45 45 47 47 
x.Sig.42 41 37 41 41 41 40 37 39 37 37 37 
x.Sig.43 16 16 16 16 16 16 19 16 17 20 19 
x.Sig.44 2 2 11 2 3 2 1 2 2 1 1 
x.Sig.45 16 16 16 16 16 16 19 16 17 20 19 
x.Sig.46 16 16 16 16 16 16 19 16 17 20 19 
x.Sig.47 14 14 14 14 14 14 17 14 14 16 17 

 

Figure 11 describes that s.06 – Non-Interpretable AI and Lack of Human-AI 

Communications is one of the most disruptive scenarios. This indicates the 

importance of explainable AI in medical device and implant design. 

Explainability can help answer the question of "how" the machine made a 

decision. Also, s.09 – Uncontrollable Environment, and s.10 – Expensive Design 

Process are other most disruptive scenarios [6]. 

Figure 12 describes the variation in the prioritization of initiatives across 

scenarios.  

Table 22 describes the highest ranked initiatives.
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Figure 11. Disruptive score of scenarios is based on the sum of squared differences in the priority of initiatives, relative to the baseline 

scenario for the Structure (Sig) layer in enterprise risk management of AI in healthcare. These are scenarios where they caused low levels 
of trust in AI [6].
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Table 22. The highest ranked initiatives of the Structure (Sig) layer in enterprise risk 

management of AI in healthcare. 
 

Index Most Important Initiative 
Structure (Sig) x.Sig.40 - Communicating a Description of Why an AI System 

Made a Particular Prediction or Recommendation 
 
 x.Sig.44 - AI Systems May Require More Frequent Maintenance 
and Triggers for Conducting Corrective Maintenance Due to Data, 
Model, or Concept Drift 
 
x.Sig.24 - Reduce the Number of Experiments to be Cost and Time 
Effective by Optimizing the Configurations 
 
x.Sig.39 - Managing Risks from Lack of Explainability by Describing 
How AI Systems Functions Considering Users' Role, Knowledge, and 
Skill Level 
x.Sig.33 - Clear Information to Deployers on Responsible Use of the 
System 
 
x.Sig.32 - Responsible Design, Development, and Deployment Practices 
 
x.Sig.31 - Minimizing Potential Harms to People if it is Operating in an 
Unexpected Setting 
 
x.Sig.30 - Ability of a System to Maintain its Level of Performance 
Under a Variety of Circumstances 
 
x.Sig.26 - Confirmation, Through the Provision of Objective Evidence 
that the Requirements for a Specific Intended Use Have Been Fulfilled 
 
x.Sig.25 - Ability of an Item to Perform as Required without Failure 
 
x.Sig.22 - Operate the AI System and Continuously Assessing its 
Recommendations and Impacts 
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Figure 12. Distributions of initiatives influence rankings based on which emergent conditions that could arise more often or do not occur 

for the Structure (Sig) layer in enterprise risk management of AI in healthcare; blue means promotion in ranking and red means 
demotion in ranking.
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Figure 12 describes that one of the highest ranked initiatives is x.Sig.24 - Reduce 

the Number of Experiments to be Cost and Time Effective by Optimizing the 

Configurations, which is one of the main objectives of the experts and actors in 

this case. This initiative requires experiments to determine the optimal geometry 

design of the device without the cut-and-try method. Also, designing the device 

has challenges, such as the experiments to test the vessel holding capability of 

Vaso-Lock are expensive and laborious, leading to a lack of training data. In 

addition, the operating condition of Vaso-Lock is highly random in a stochastic 

environment, as human vessel dimensions are not always similar and 

deterministic. This finding aligns with scenario s.09 – Uncontrollable Environment, 

which is one of the most disruptive scenarios to the system. Stochasticity can 

arise from various sources, including natural variations in blood vessel size and 

shape, unpredictable blood pressure and flow changes, and more. Uncontrollable 

features are identified as the outer diameter, inner diameter, and width of the 

vessel wall dimensions. 

 

5.3. AI-Assisted Framework in Optimizing the Geometry of Vaso-Lock8 

 
This section describes statistical analysis of Vaso-Lock and suggests new 

sample configurations with the maximum force a vessel could hold, and XAI 

analysis [39] to improve communication between AI systems and non-technical 

 
 
8 This case is a collaboration between the University of Virginia School of Data Science and Johns 
Hopkins University. The PIs are Prof. Stephen Baek and Prof. Sung H. Kang. The collaborators 
are Dr. Phong Nguyen, Negin Moghadasi, and Kate Beatrice Concannon.  
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users, enhance understanding of AI outputs, mitigate distrust in the AI outputs, 

and facilitate data evaluation. 

 

5.3.1. Data Exploratory  

 
This section explores the data provided by the experiments that were 

conducted. A total of 187 observations were generated from the experimental 

design. Observations were drawn from each cut-and-try experiment. Multiple 

configurations were measured for each experiment, which included the outer 

diameter of the vessel (OD), the inner diameter of the vessel (ID), the width of 

the vessel (WT), the outer diameter of the device (DOD), and the length of the 

vessel (Length). The uncertain environment of ID could be formulated as ID = 

𝑓(OD,WT). All configurations were measured in millimeters (mm). Ultimately, a 

value for maximum force for each experiment was measured. The maximum 

force value is measured in Newtons (N) and defined as the maximum force with 

which the device could hold two vessels together without tear, breakage or 

leakage. 

There are some constraints associated with the optimization process, such as: 

 

1. The operating condition is random and has a wide range of distribution. 

2. The wide range of distribution of operating conditions causes a variation in 

the device maximum force reaction. The variation range is vast, which results 

in the device not being robust. 

3. The experiment is costly and time-consuming, so the team intends to find the 

optimal device configuration with the minimum number of experiments.  
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The vessel configurations are defined in various ranges, resulting in balanced 

bins. The range defined for the number of rows is {1, 2, 3, 4}, the number of 

prickles is {2, 4, 6, 8, 10, 12, 14}, and the number of DODs is {3.5, 4.0, 4.5, 5.0, 5.5, 

6.0}. Considering various defined configurations, there are 168 combinations of 

configurations. Figure 13 describes the distributions for vessel OD, WT, and 

length. 

 

 
Figure 13. Blood vessel dimension-wide distribution that shows how broad the environment 

distribution is. 

 
Figure 14 describes the reaction force considering various device 

configurations and vessel diameters. There are three layers per sub-figure. The 

top layer represents the upper bound, the bottom layer shows the lower bound, 

and the middle layer shows mean values.  
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Figure 14. Reaction force with different device configurations and vessel diameters. Figure a) 

describes the reaction force considering various outer diameters and various numbers of rows. 
Figure b) describes the reaction force considering various outer diameters and devices. 

 
The next step is assessing the correlations between the features of the data. 

Figure 15 depicts the correlation among the features. The data demonstrates a 

strong positive connection between OD and ID, with a correlation coefficient of 

0.91. This indicates that when ID grows, there is a linear increase in OD. 
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Figure 15. The correlation matrix of the variables in the dataset shows the relationships between 

various variables. 

 

5.3.1.1. FEATURE IMPORTANCE 
 

A next step is determining the feature importance by splitting the dataset, 

which consisted of 187 observations, into a test set comprising 25% of the data 

and a train set comprising 75% of the data. Subsequently, Figure 16 describes that 

the number of rows is the most important feature among others using the 

random forest classifier to train the train set. The results show that the number 

of rows is an important factor in designing the device configuration. 
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Figure 16. Feature Importance. 

 

5.3.1.2. KERNEL DENSITY ESTIMATION (KDE) 

 

Most approaches in the literature have focused on modeling the probability 

distribution of the environment as a simple Gaussian distribution. This occurred 

because the Gaussian distribution has been extended to be applicable to 

numerous random variables. The analytical form provides a computational 

speed advantage to the optimization process. However, in some cases, 

environmental variables do not follow the Gaussian distribution, and therefore, 

attempting to make this assumption is incorrect. In this case, knowledge about 
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the distribution of the environmental variables was acquired by directly 

analyzing the data using the kernel density estimation (KDE) method [86–89].  

The KDE is a statistical method employed to estimate the probability density 

function of a random variable using a collection of observed data points [88,89]. 

Equation 6 is the KDE formulation:  

 

𝑓(𝑥) = 	 )
&,
	∑ 𝐾	(-#	-%

,
&
/0) )                                         (6) 

 

The formulas utilize the variable ℎ to denote the bandwidth, while n 

represents the number of data points. These rules offer bandwidth 

approximations derived from the characteristics of the dataset. As the value of h 

increases, the probability density function (PDF) becomes wider, resulting in a 

smoother curve. A decrease in the value of h corresponds to a narrower curve of 

the probability density function (PDF) and an increase in the level of detail in the 

data distribution. A broader curve indicates a wider distribution, whereas a 

narrower curve implies a more focused distribution. 

In this section, the KDE technique was employed to assess the probability 

distribution of the features in the data, utilizing the Gaussian distribution. This 

evaluation is illustrated in Figure 17. 
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Figure 17. Gaussian KDE is used for features such as rows, prickles, length, OD, ID, WT, DOD, 
and Max_Force. A broader curve indicates a wider distribution, whereas a narrower curve 

implies a more focused distribution. 
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However, there exist alternative distributions, such as the cosine distribution 

[90], which may yield more precise outcomes. Prior to proceeding, it is essential 

to determine the optimal bandwidth. Practically, there are multiple techniques 

available for choosing the bandwidth, such as rule-of-thumb methods like Scott's 

rule or Silverman's rule, cross-validation techniques, and optimization 

algorithms. In this section, the optimal value of h was determined using 

Silverman's rule. The KDE-Silverman Rule of Thumb (ROT) [90] is not the most 

optimal method for selecting bandwidth. However, it is commonly used as a 

quick and reasonably accurate estimator or as an initial estimator in multistage 

bandwidth selection processes. Equation 7 shows the formula for Silverman's 

rule:  

 

ℎ = 	 (1	∗	34%&5%$5	567/%4/8&
&

9&
)
$
&                                     (7) 

 

The cosine kernel is applied using Silverman's bandwidth [89,91] of 

0.26921718387928867. To achieve the desired level of smoothing, it may be 

necessary to modify the bandwidth based on the complexity of the data. Figure 

18 describes the distributions of each feature.  
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Figure 18. Cosine KDE is used for features such as rows, prickles, length, OD, ID, WT, DOD, 
and Max_Force. A broader curve indicates a wider distribution, whereas a narrower curve 

implies a more focused distribution. 
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The KDE shape of the curve is an indication of the underlying data 

distribution. Peaks in the curve signify areas with a high density, whereas valleys 

indicate areas with a low density. The modes in the KDE plot are associated with 

the peaks observed in the data distribution. Every mode corresponds to a unique 

group or cluster within the dataset. 

In the following sections, the ID KDE plot was utilized as clustering cut-off 

points. Since Gaussian KDE gives more information on the peaks of the features 

than cosine KDE, it will be utilized for xe to be drawn from this learning 

distribution. 

 

5.3.2. Clustering 

 
This section describes clustering the observations that are spread out across 

the average number of rows, the number of prickles per row, and the outer 

diameter of the device.  
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Figure 19. Clustering observations are based on the average number of rows, the average number of prickles per row, and the average 

value of the outer diameter of the device as one cluster. The figure describes that the distribution for one cluster is very wide.
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Figure 19 describes that the distribution for one cluster is very wide. To make 

the distribution of reaction force less variable, the observations were put into 

three separate clusters using the k-means method. Figure 20 indicates that the 

optimal number of clusters is three. The optimal number of clusters was 

determined by utilizing the Silhouette method and the generation of elbow plots. 

Figure 21 describes maximum force distributions based on the average number 

of rows, prickles, and DOD for all 187 observations. Reducing the distributions 

assists in finding the best optimal configurations for each cluster, which results 

in a more accurate and robust design. 

 

 

  

Figure 20. Top left: ID and OD linear relations; top right: ID KDE Gaussian Distribution 
showing the picks and valleys; bottom left: Define three centroids for three clusters (normalized 

scale); bottom right: Clustering observations based on ID in three groups.  
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Figure 21. Clustering the observations into three groups. The distributions describe the average 
distributions for rows, prickles, and DOD for ID.  Reducing the distributions assists in finding 
the best optimal configurations for each cluster, which results in a more accurate and robust 

design.
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5.3.3. Vaso-Lock Design Formulation 

 
The goal of the design optimization process is to find the set of 𝑥𝑑, 

𝑥𝑑 = [𝐷𝑂𝐷, 𝑅, 𝑃] that maximize the average response (reaction force/maximum 

force) of the design, given the variation of the environment and a probability 

distribution for each variable as: 

 

𝑥𝑒 = [OD ~ p(OD), L ~ p(L), WT ~ p(WT), ID ~ p(ID)] 

 

Additionally, the targeted system is subject to uncertainty due to 

measurement or manufacturing error (aleatoric or statistical uncertainty) and a 

lack of data (epistemic uncertainty). According to [92] “aleatoric (aka statistical) 

uncertainty refers to the notion of randomness, that is, the variability in the 

outcome of an experiment that is due to inherently random effects.” 

Additionally, [92] defines epistemic (also known as systematic) uncertainty as 

uncertainty resulting from a lack of knowledge (about the best model). In other 

words, it refers to the ignorance of the agent or decision-maker and, hence, to the 

epistemic state of the agent instead of any underlying random phenomenon. "As 

opposed to uncertainty caused by randomness, uncertainty caused by ignorance 

can in principle be reduced on the basis of additional information.” [92] 

The environmental variables, namely OD, ID, WT, and length of the vessels, 

are classified as epistemic and aleatoric uncertainty. For instance, it creates 

epistemic uncertainty if the variability in vessel dimensions is poorly understood 

or if there is insufficient information on the range of dimensions that are 

anticipated. However, the variability in vessel size falls under aleatoric 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

84 

uncertainty if it is inherent in the nature of the vessels and cannot be exactly 

predicted due to natural changes. For example, there may be inherent diversity 

in the size of vessels among different individuals, and this generates aleatoric 

uncertainty. Both kinds of uncertainties may be frequently present in real-world 

engineering situations.  

 

 5.3.3.1. RISK-AVERSION OPTIMIZATION 

 
To consider risk aversion in the risk management of Vaso-Lock design, two 

requirements must be satisfied:  

 

1. Safety condition, which refers to the most unfavorable scenario. The 

performance of Vaso-Lock, specifically the minimum reaction force of a 

specific design, must exceed a predetermined target value chosen by the user. 

 

2. The allowable parameter range is the constraint applied to the value of 𝑥𝑑 to 

ensure the fabricability of the device. 

 

Risk aversion [93,94] optimization problems involve uncertain parameters, 

which in this case are ID, OD, WT, and length. Equation 8 consists of 

two mathematical restrictions for an optimization problem. The initial constraint 

is an inequality that incorporates a function 𝜇𝐹(𝑤|𝑥), which denotes the mean of 

a distribution function F with w given 𝑥. The outcome of this subtraction is going 

to be bigger than a target value Ftarget, which is a term that involves a scaler of λ 

times the standard deviation σ of the same distribution function. 
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 𝑎𝑟𝑔𝑚𝑎𝑥	 ∫ 𝑓(𝑥*, 𝑥+)𝑝(𝑥+)𝑑𝑥+									𝑥+	~	𝑝(𝑥+)                        (8) 
 𝑥c  

 
𝑎𝑟𝑔𝑚𝑎𝑥	[𝐹(𝑥,) −	𝐹-./0+-]       

𝑥c        
 

                      𝑠.𝑡.:                                                   

𝜇𝐹(𝑤|𝑥) − 𝜆𝜎𝐹(𝑤∣𝑥) > 𝐹𝑡𝑎𝑟𝑔𝑒𝑡 

𝑥𝑙𝑜𝑤 ≤ 𝑥 ≤ 𝑥ℎ𝑖𝑔ℎ 

 

The second constraint establishes the boundaries for the variable "𝑥," 

mandating that it fall between the inclusive range of "𝑥low" and "𝑥high". Figure 22 

describes how the illustration computes the average force. The formula in the 

figure describes that the quantity F is determined by adding up the function 

values multiplied by their respective probabilities. The weights are represented 

by wi, and the summation is performed over N intervals or elements. The indices 

i correspond to the intervals into which the domain of xe has been divided. The 

figure conceptualized the consideration of lower bounds and higher bounds for 

xe as a constraint. These constraints are typically used to ensure that the solution 

to an optimization problem not only seeks to optimize a specific objective 

function but also satisfies specific performance criteria (like maintaining a value 

above a target threshold) and respects boundary conditions or limits on the 

variables involved. 

Figure 23 describes the incorporation of controllable and uncontrollable data 

for the problem formulation. 
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Figure 22. Conceptual average force computation. By multiplying the function values by their respective probabilities, one can calculate 
the quantity F.

x = (xd, xe)

f(xd, xe)

xe

p(xe)

xe low xe high xei

p(xei)

Divide the xe domain in 
small interval and take the 

weighted sum
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Figure 23. Problem formulation workflow and its extension of the design problem with uncertainty quantification. 
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5.3.4. Bayesian Optimization 

 
To deal with such a random environment, Bayesian optimization (BO) [95], an 

AI-assisted design optimization method and a model-based sequential 

optimization technique [96], capable of accounting for the uncertainty caused by 

the lack of training data and the randomness in operating environments, are 

applied. BO uses uncertainty aware exploration and exploitation trade-offs, 

reducing the required number of iterations [96]. Finding global optimization of 

non-convex functions is of interest to real-world applications [97]. Bayesian 

optimization is used to find the global optima when the evaluation is expensive 

by relying on querying distributions over functions defined by a surrogate model 

[95,98]. BO was utilized in a random environment to explore the design space. It 

was used in each of the three clusters to deal with operating conditions and 

epistemic uncertainty variation, find the best acquisition function, and use a 

tuned hyperparameter to reach the optimal point in each cluster. Equation 9 

shows that the BO formulation identifies maxima for a black-box in a search 

space 𝐸	 ⊆ ℝ!.   

 

x+ = argmax ∫ 𝑓(𝑥𝑑,𝑥𝑒)𝑝(𝑥𝑒)𝑑𝑥𝑒        𝑥𝑒 ~ 𝑝(𝑥𝑒),   𝑓(𝑥𝑑,𝑥𝑒) ~ 𝒩(µ𝑓,s𝑓)            (9) 
𝑥𝑒 ∈ 𝐸 

   

𝑝(𝑥𝑒) is the density of the environmental variable. 𝑓 in finding the best device 

configuration is expensive, and the Gaussian process (GP) is used as an 

approximator of the objective function [96]. The Bayesian optimization algorithm 

comprises two components:  

 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

89 

1. A Bayes statistical model for surrogate modeling and uncertainty 

quantification, and  

2. An acquisition function for determining the subsequent design sampling.  

 

 5.3.4.1. BAYES STATISTICAL MODEL FOR SURROGATE MODELING AND UNCERTAIN 
QUANTIFICATION 

 

Figure 24 depicts a conceptual diagram illustrating an active loop constantly 

updating the surrogate model. The process begins with the modeling of the 

surrogate model of the GP [99], followed by the selection of the next sample 

utilizing acquisition functions. Subsequently, additional experiments are 

conducted for validation purposes, and the convergence of the acquisition 

functions is assessed. 

The Gaussian process is simply defined as a joint distribution of all variables. 

A distribution model is formulated around functions [96,99], each having a mean 

𝜇"(𝑥) and covariance function or kernel function 𝜎"(𝑥, 𝑥#) and integral F as 

𝐹~𝒩(𝜇", 𝜎").  

The mean 𝜇", the variance 𝜎", and the integral F are computed in Equations 

10, 11, and 12 using the Bayesian Monte Carlo (BMC) method9 by using the kernel 

density estimation integration to compute the integration of kernel density 

estimation (KDE) as: 

 

 
 
9 Bayesian Monte Carlo refers to the use of Monte Carlo methods within Bayesian inference for 
probabilistic estimation and inference.  
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𝜇" =	<𝜇"(𝑥$ , 𝑥!)𝑝(𝑥!)𝑑𝑥!
	

	
=	𝔼[𝑓(𝑥)]																																						(10) 

 

𝜎" 	= 	< < 𝑐𝑜𝑣[𝑓(𝑥$ , 𝑥!), 𝑓(𝑥$ , 𝑥#!)]
	

&"	∈	%"

	

&"	∈	%"

𝑝(𝑥!)𝑝(𝑥#!)𝑑𝑥! 	𝑑𝑥#! 															(11) 

 

Here 𝜇𝐹 and	𝑐𝑜𝑣[𝑓(𝑥$ , 𝑥!), 𝑓(𝑥$ , 𝑥#!)] are the posterior mean and posterior 

covariance. Using 𝜇𝐹 and 𝜎", the probability distribution of 𝐹 can be fully 

defined.  

 

𝑓(𝑥)	~	𝐺𝑃	G𝜇"(𝑥)H, 𝜎"(𝑥, 𝑥#))																																														(12) 

 

The updated KDE model in the Bayesian optimization framework is used to 

select the next best candidate point for evaluation. This process was achieved 

using the acquisition function, which utilizes the KDE model to maintain a 

balance between exploration and exploitation. In summary, Bayesian Monte 

Carlo was used to sample from the KDE model over and over, the objective 

function was evaluated, the KDE model was updated, and new next points were 

chosen until convergence criteria were met or a predefined stopping criterion, 

like budget constraints, was reached. 

  

5.3.4.2. ACQUISITION FUNCTIONS 

 
This section describes the acquisition function for Bayesian optimization. 

Through scenario-based analysis, identifying the next optimal sampling point to 

maximize the acquisition functions emerges as a high-ranking initiative. This 
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section provides optimized sample points for each cluster utilizing an acquisition 

function. 

Some optimization problems have a black-box objective function whose 

derivatives are unknown. As previously mentioned, to approximate the objective 

function, surrogate models are used. In Bayesian optimization, the acquisition 

function was utilized to direct sampling to areas to improve the best observation 

by exploration and exploitation trade-offs [100]. The goal is to maximize the 

acquisition function to determine the next sampling point. Figure 25 describes 

three acquisition functions that were defined and suggests a sample 

configuration for each cluster. The acquisition functions are: 

 

a) Maximum probability of improvement (MPI) or PI 

 

The next point will be chosen concerning the current maximum point in the 

probability improvement function. In maximum probability of improvement 

(MPI), the probability of improvement was considered rather than the magnitude 

of the next point [101]. Equation 13 shows the maximum probability of 

improvement formula. 𝜇"(𝑥$)	and 𝜎"(𝑥$)	are the mean and variance of the 

regressor at point 𝑥d. 𝜉 is a parameter controlling the degree of exploration, and 

𝜓(𝑧) denotes the cumulative distribution function of a standard Gaussian 

distribution. Also, 𝑓 is the function to be optimized with an estimated maximum 

at point 𝑥$'.  

 

𝑃𝐼(𝑥*) = 𝜓 3%(5&)78(5&
')7	:

;%(5&)
                                          (13) 
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b) Upper Confidence Bound (UCB) 

 

Equation 14 describes the upper confidence bound formula. This most 

straightforward acquisition function used mean and standard deviation linearly 

for each point 𝑥 [101]. 𝛽 is a parameter controlling the degree of exploration. 

 

𝑈𝐶𝐵(𝑥*) = 𝜇<(𝑥*) + 	𝛽𝜎<(𝑥*)                                            (14) 

 

c) Expected Improvement (EI) 

 

Equation 15 shows the expected improvement formula. 𝜙(𝑧) denotes the 

density function of a standard Gaussian distribution. Ultimately, the objective is 

to find the maximum value of EI, as noted in Equation 16. 

 

𝐸𝐼(𝑥$) = (𝜇"(𝑥$) − 𝑓(𝑥$') − 	𝜉)	𝜓	(	
(&(&')+,(&'

()+	-
.&(&')

	) + 𝜎"(𝑥$)𝜙(	
(&(&')+,(&'

()+	-
.&(&')

	)	 (15) 

 
 

𝑎𝑟𝑔𝑚𝑎𝑥	𝐸𝐼	(𝑥*)                                                          (16) 
     𝑥c 

 

For the sake of this dissertation, the expected improvement (EI) acquisition 

function was employed for the Vaso-Lock project due to its capability of 

balancing exploration and exploitation. The upper confidence bound (UCB) and 

maximum probability of improvement (MPI) acquisition functions are 

considered for future work.
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Figure 24. A conceptual diagram of the Bayesian optimization approach used in the demonstration of the Structure (Sig) layer. The figure 
demonstrates the design optimization process, where a surrogate model approximates the acquisition function based on initial data. 

This function guides the selection of subsequent design examples until convergence or the budget limit is reached.
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Figure 24 also describes the process of design optimization. A surrogate model 

is created based on the initial data sample. Therefore, the surrogate model is 

employed to approximate the acquisition function. The subsequent design 

example is determined through the optimization of the provided acquisition 

function. Using the proposed design sample, physical experiments will be 

performed, and the design process will continue until the algorithm reaches 

convergence or the maximum budget is exhausted. 

 

5.3.4.3. CONSTRAINED BAYESIAN OPTIMIZATION 

 
The formulation in the previous section is for an unconstrained optimization 

problem, yet the scenario involves inequality constraints. However, as 

mentioned in the Risk-Aversion Optimization section, the process is subjected to 

lower bound inequality constraints besides the variable bounds. In Bayesian 

optimization for constrained problems, the acquisition function must be 

adjusted. Thus, particle swarm optimization (PSO), a gradient-free optimization 

algorithm, was employed. PSO helps to avoid sensitivity analysis of the 

optimization problem and guarantees global optima convergence, which is 

challenging with gradient-based algorithms. Also, to address this problem, EI 

can be employed to accommodate such constraints. In other words, when a 

constraint is violated, EI is set to 0. However, given that the constraint is 

estimated rather than absolute, uncertainty arises. Hence, the constrained EI 

takes the form below: 
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𝛼/01(𝑋) = 	𝛼/0(𝑋)	TPr(𝑐2(𝑋) ≥ 0	|𝒟) = 	𝛼/01(𝑋)	Tϕ(
𝜇2(𝑋)
𝜎2(𝑋)

)	
3

245

3

245

 

 

𝛼/0(𝑋) is the unconstrained EI and (𝑐2(𝑋) ≥ 0	|𝒟) is the probability of 

feasibility. 𝜇2(𝑋) is the mean of the estimation,  

𝜎2(𝑋) is the variance of the estimation and ϕ(()(6)
.)(6)

)	is the cumulative density 

function. 

In this case, a two-step approach can be adopted: First, determining the 

smallest force estimation and its variance concerning changes in the 

environment, and second, estimating the cumulative density to derive the 

feasibility weight. This approach ensures the integration of inequality constraints 

into the optimization process, facilitating more realistic and reliable outcomes. 

 

5.3.4.4. CONSTRAINED AND UNCONSTRAINED NEXT SUGGESTED POINTS 

 
Figure 25 and Figure 26 show the third round of suggested constrained and 

unconstrained design configurations utilizing the EI acquisition function for 

three clusters. The unconstrained design uses EI to find the point in the search 

space that maximizes the expected improvement over the current best value. The 

optimizer suggests new points for evaluation using EI, evaluates the objective 

function, updates the GP surrogate model, and repeats the process iteratively. 

Constrained Bayesian optimization utilizing EI imposes additional constraints 

on the search space, ensuring the suggested points satisfy the constraints of the 

problem. In this case, the constraints applied to improve the safety of the device 

are not to drop below a specific Max_Force threshold. Both aim to efficiently find 
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the global optimum of the objective function (Max_Focrce). These figures 

describe that despite the slightly lower force reaction for the constrained design, 

the worst-case force reaction of the constrained design is always above the 

Max_Force threshold. However, for the unconstrained design, despite having a 

higher average force reaction, the worst-case expected force reaction can be lower 

than the safety value. The suggested next points then went under physical 

design/production and Max_Force experiments. Then, the results and actual 

Max_Force were added to the original dataset for more rounds of data training 

until the results converged.  
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Figure 25. The third round of suggested constrained design configurations utilizes the expected 
improvement (EI) acquisition function for three clusters.

Suggestion
EIBounds2mm < ID < 3mm

Lower Bound Force: 3 (N)

3[1, 5]Row

4[2,15]Prickle per row

4.5 (mm)[2.5,4.5]DOD

3.93 ±0.96 (N)N/APred. force

3.97Current Best

3.18Lower Bound (Mean)

1.52Lower Bound (Std)

Suggestion
EIBounds3mm < ID < 4mm

Lower Bound Force: 3 (N)

3[1, 5]Row

5[2,15]Prickle per row

4.5 (mm)[3.25,5.0]DOD

4.05 ±1.05 (N)N/APred. force

4.1Current Best

3.15Lower Bound (Mean)

1.18Lower Bound (Std)

Suggestion
EIBounds4mm < ID < 5.75mm

Lower Bound Force: 3 (N)

3[1, 5]Row

6[2,15]Prickle per row

6.0 (mm)[3.25,6.5]DOD

3.66 (N)N/APred. force

3.61Current Best

3.29Lower Bound (Mean)

1.64Lower Bound (Std)
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Figure 26. The third round of suggested unconstrained design configurations utilizes the 

expected improvement (EI) acquisition function for three clusters. 

 
Figure 27 describes the average force convergence based on the number of 

iterations for both unconstrained and constrained scenarios. The unconstrained 

average force plot indicates that cluster 2 < ID < 3 reached convergences starting 

from the second iteration. Cluster 3 < ID < 4 converged in the third iteration, 

while cluster 4 < ID < 5.75 converged in the second iteration. While the 

constrained average force plot describes that more iterations are needed to assess 

the number of iterations so that the average force will converge.  

 

Suggestion
EIBounds2mm < ID < 3mm

Lower Bound Force: 3 (N)

3[1, 5]Row

3[2,15]Prickle per row

4.0 (mm)[2.5,4.5]DOD

4.05 ±1.07 (N)N/APred. force

3.91Current Best

Suggestion
EIBounds3mm < ID < 4mm

Lower Bound Force: 3 (N)

3[1, 5]Row

4[2,15]Prickle per row

4.5 (mm)[3.25,5.0]DOD

4.11 ±1.05 (N)N/APred. force

4.07Current Best

Suggestion
EIBounds4mm < ID < 5.75mm

Lower Bound Force: 3 (N)

3[1, 5]Row

5[2,15]Prickle per row

6.0 (mm)[3.25,6.5]DOD

3.71 (N)N/APred. force

3.61Current Best
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Figure 27. Unconstrained and constrained average force convergence by the number of 

iterations. According to the unconstrained average force plot, maximum force for clusters 2 < ID 
< 3 and 4 < ID < 5.75 converged after 2 iterations and cluster 3 < ID < 4 was converged after 3 
iterations. More iterations are needed for constrained average force to verify the number of 

iterations needed for the maximum force to be converged.  
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In summary, the environmental space was first clustered into smaller 

subspaces to diminish the variation of reaction force in accordance with 

variations in the environmental variables. Subsequently, the Bayesian 

optimization method was utilized to ascertain the optimal device configuration 

for each environmental variable subspace. Upon receiving design suggestions 

generated by the algorithm, a prototype of the device was fabricated, and 

physical tests were conducted. The data was then recorded and transmitted back 

to the algorithm for updating the surrogate model and proposing new design 

samples. The design process was sustained until either the convergence criteria 

were fulfilled, or the maximum number of iterations was attained. With Bayesian 

optimization, the optimal design configuration for Vaso-Lock can be found with 

a much smaller number of physical experiments, facilitating the device 

development process. With the assistance of AI, the Vaso-Lock optimal geometry 

can be discovered in less time and at lower labor costs. It also has the potential to 

transition the findings on AI-assisted design optimization to facilitate the 

development of medical devices in healthcare applications. 

In the next section, explainable AI models were used to identify the behavior 

of each feature and its effect on the Max_Force, assess the most important 

features in each cluster, validate the suggested points from the third round 

iteration, and find potential relations between the features that affect the 

Max_Force the most.  
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5.4. Explainable AI (XAI) of the Scenarios that are Most Disruptive tothe System 

Order 

 
This section describes the explainable AI (XAI) of the scenarios that are most 

disruptive to the system order. The lack of transparency of AI-based models is a 

significant obstacle to their implementation and is criticized due to their black-

box nature. This lack of transparency could deconstruct decision-making 

processes [102–104].  

Figure 11 described that one of the most disruptive scenarios was s.06 – Non-

Interpretable AI and Lack of Human-AI Communications. Also, interpreting and 

explaining the suggested sample were defined as some of the highest ranked 

initiatives in Figure 12 by x.Sig.40 - Communicating a Description of Why an AI 

System Made a Particular Prediction or Recommendation, and x.Sig.22 - Operate the 

AI System and Continuously Assessing its Recommendations and Impacts. Thus, to 

enhance trustworthy AI by explaining and interpreting the results and answering 

the question of "how" the system made a decision, Shapely additive explanations 

(SHAP) [105,106], local interpretable model-agnostic explanations (LIME), partial 

dependence plots (PDP) with ICE plots, interpret explaining boosting model 

generalize additive model (GAM), counterfactual analysis, and explain like I am 

5 (ELI5) were utilized to interpret the suggested sample points from the 

acquisition functions and to interpret the overall behavior of the observations in 

each cluster.  
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5.4.1. SHAP Analysis of the Scenarios that are Most Disruptive to System 
Order 

 
The SHAP [39,106–110] method is a highly efficient approach for XAI. It 

assigns values to the characteristics used for making predictions, indicating their 

impact on the output of the model. SHAP enables the identification of the factors 

that impact AI decisions, enhancing their interpretability and reliability. It is an 

explainer that can be applied to both local and global models. It calculates the 

importance of features using Shapley values, which are derived from cooperative 

game theory. The explanations provided by SHAP are based on additive feature 

attributions [39,107,108]. 

Figure 28 describes the SHAP global explanation utilizing the random forest 

model, where red dots indicate the positive impact and contributions of a 

particular feature to the prediction when it appears on the right side of the SHAP 

value 0 line. The blue observations on the left side of the SHAP value 0 line 

indicate negative influences and contributions to the prediction findings. Rows, 

as a feature, exhibit the most significant impact on the predictions. As the number 

of rows increases, the prediction value tends to rise, while a decrease in the 

number of rows leads to a decrease in the prediction value. Conversely, the ID 

exhibits an inverse relationship, where an increase in the ID value leads to a 

decrease in the prediction value. This is because the red observations are located 

on the left side of the SHAP value of 0. Thus, Rows and DOD have the most 

contributions, and WT and OD have the least contributions to the results. 
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Figure 28. Global SHAP analysis of feature contributions to output predictions for all instances 
using the random forest model. Higher number of rows and value of DOD corresponds with 

higher maximum force.  

 
The individual contributions of each feature were evaluated after clustering the 

observations by OD in this section using SHAP analysis. Three global SHAP 

analyses were developed for three observation clusters by OD, as follows: 1. OD 

< 4 mm, 2. 4mm < OD < 5 mm, 3. 5 mm < OD to identify the most and least 

contributing features to the outcome predictions. As an example,  

Figure 29 describes that the number of rows has positively contributed to 

increasing the maximum force the device could hold the vessels for cluster 4 mm 

< OD < 5 mm. However, the number of prickles has negatively contributed to the 

SHAP value. Figure 30 and Figure 31 show the results for the other two clusters 

of OD < 4 mm and 5 mm < OD, respectively. The results show that each cluster 

differs in feature contributions to the results; thus, clustering could reduce the 
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various distributions and result in more accurate suggested configurations of the 

device.  

 
 

Figure 29. Global SHAP analysis of feature contributions to output predictions for cluster 4mm 
< OD < 5 mm. Number of rows and length value are most correlated with the value of 

maximum force.  
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Figure 30. Global SHAP analysis of feature contributions to output predictions for cluster OD < 

4mm. Number of rows and ID values are most correlated with the value of maximum force. 
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Figure 31. Global SHAP analysis of feature contributions to output predictions for 5mm < OD. 

Number of prickles and OD values are most correlated with the value of maximum force. 
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5.4.2. Partial Dependence Plots with ICE Plots for the Scenarios that are Most 
Disruptive to System Order 

 
The partial dependence plots (PDP) or PD profiles were initially introduced 

by Friedman in 2000 in the context of gradient boosting machines (GBM) [109]. 

These visualizations demonstrate the incremental impact that one or two specific 

features have on the predicted outcome of a machine learning model. The essence 

of PDP lies in its ability to demonstrate the shifting predicted outcome as specific 

features shift while holding all other features constant. Comprehending the 

correlation between input features and predictions, understanding patterns, and 

detecting interactions [111].  

An individual conditional expectation (ICE) plot visually illustrates the 

variation in the predicted outcome for a single instance as a particular feature 

change. ICE plots enhance the partial dependence plot by visually representing 

the specific relationship between the predicted response and the feature for each 

observation [112]. ICE plots specifically illustrate the differences in the estimated 

values throughout the entire range of a covariate, indicating the presence and 

magnitude of heterogeneities. ICE plots involve the analysis of how individual 

features affect predictions for a particular instance [112].  

Figure 33 to Figure 39 describe the PDP with ICE plot using the random forest 

regression generated in the KNIME10 interface (Figure 32). The plots were 

generated for all the features, including device rows, device prickles, device 

DOD, vessel length, vessel OD, vessel ID, and vessel width.

 
 
10 KNIME is a free and open-source data analytics software. 

https://en.wikipedia.org/wiki/Free_and_open-source_software
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Figure 32. KNIME partial dependence/ICE plot workflow describes the workflow of the steps to generate partial dependence plots.
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Device Rows: 

 
Figure 33. Partial dependence plot (PDP) with ICE plot (KNIME workflow) for device rows 

using random forest regression. Number of rows corresponds to the Max_Force value. 

 
Figure 33 describes that when the number of device rows is increased while 

keeping all other features constant, the Max_Force also increases. 

 

Device Prickles: 

 
Figure 34. Partial dependence plot (PDP) with ICE plot (KNIME workflow) for device Prickles 

using random forest regression. Number of Prickles does not correspond to the Max_Force 
value. 
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Figure 34 describes that when the quantity of device prickles grows while 

maintaining the rest of the features unchanged, the Max_Force remains constant, 

and the line appears nearly horizontal. However, the Max_Force decreased as the 

number of prickles reached 14. This result is consistent with SHAP analysis for 

each cluster above, as if the number of prickles grows, they will have a negative 

impact and contribute to the Max_Force predictions.  

 
Vessel Length (L): 

 
Figure 35. Partial dependence plot (PDP) with ICE plot (KNIME workflow) for vessel length 

using random forest regression. Vessel length does not correspond to Max_Force value. 

 
Figure 35 describes that as the length of the vessel increases while maintaining 

all other characteristics constant, the Max_Force remains constant, and the line 

appears nearly horizontal. This result is in line with the SHAP analysis 

mentioned earlier, which indicates that vessel length does not have a significant 

impact on the fluctuations of Max_Force. 
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Vessel Outer Diameter (OD): 

 
Figure 36. Partial dependence plot (PDP) with ICE plot (KNIME workflow) for vessel outer 

diameter (OD) using random forest regression. OD value corresponds to the Max_Force value. 

Figure 36 describes that as the vessel outer diameter (OD) increases while 

maintaining all other characteristics constant, the Max_Force exhibits a gradual 

increase, with a peak occurring at 6.50 mm. 

 
Vessel Inner Diameter (ID): 

 
Figure 37. Partial dependence plot (PDP) with ICE plot (KNIME workflow) for vessel inner 

diameter (ID) using random forest regression. ID value corresponds to the Max_Force value. 
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Figure 37 describes a consistent decrease in Max_Force as the vessel ID 

increases, while all other features remain constant. This decrease continues 

smoothly until ID = 3 mm, at which point the line remains constant. 

 
Vessel Width (WT): 

 
Figure 38. Partial dependence plot (PDP) with ICE plot (KNIME workflow) of vessel width 

(WT) using random forest regression. Vessel width does not correspond with the Max_Force 
value. 

 
Figure 38 describes that when the value of vessel width grows while 

maintaining the rest of the features unchanged, the Max_Force remains constant, 

and the line appears nearly horizontal. However, the Max_Force increased as the 

vessel width value reached 1.10 mm. 
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Device Outer Diameter (DOD): 

 
Figure 39. Partial dependence plot (PDP) with ICE plot (KNIME workflow) for device outer 

diameter (DOD) using random forest regression. Device DOD corresponds to the Max_Force 
value. 

 
Figure 39 describes that when the value of DOD increases while keeping all 

other features constant, the Max_Force also increases. 

 
5.4.3. LIME Analysis of the Scenarios that are Most Disruptive to System Order 
 

LIME [39,49,109] explanations are explainers that are not dependent on any 

specific model and provide explanations in the form of feature importance 

vectors. The core concept of LIME is that the interpretation can be obtained from 

nearby data points that are randomly generated in the vicinity of the instance 

that requires explanation. LIME elucidates individual predictions by 

approximating the intricate model in a localized manner using a simpler and 

more comprehensible model. It creates a surrogate model that is easier to 

comprehend and utilizes it to gain insight into the logic behind the prediction for 

a particular instance [39,47,49]. 
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To elucidate the proposed subsequent aspects of the BO model in this case, 

LIME has been employed as a local explainer by utilizing the random forest. 

Figure 40 describes a detailed description of one of the proposed points, 

including rows of 3, prickles of 6, length of 16.79, OD of 5.55, ID of 4.2, WT of 

0.675, DOD of 6, and a predicted maximum force of 19.7. Rows, DOD, prickles, 

OD, and WT positively contribute to the predicted result, whereas ID and length 

negatively contribute to the MAX_Force prediction value. This approach is 

helpful in validating and verifying the suggested next point from BO. This figure 

describes that DOD greater than 4.50 has positive contributions to the prediction 

of Max_Force, and this is in line with the results in the PD plot from Figure 39. 

 

 
Figure 40. Local LIME explanation of BO suggested points (observation 204) utilizing the 

random forest model. Increasing the value of Rows, DOD, Prickles, OD, WT and decreasing the 
value of ID and Length corresponds to the prediction value of the Max_Force. The predicted 

value of the Max_Force is 14.85 and the actual value of the experiment is 19.7.  

 
5.4.4. GAM Analysis of the Scenarios that are Most Disruptive to System Order 

 

The concept of a generalized additive model (GAM) involves allowing the 

(generalized) linear model (GLM) to acquire information regarding non-linear 
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relationships. GAM relaxes the constraint that the relationship between variables 

must be a simple weighted sum. Instead, they posit that the outcome can be 

described as a combination of various functions of each feature [111,113].  

A GAM remains fundamentally a combination of feature effects, but it offers 

the flexibility to incorporate non-linear relationships between specific features 

and the output. In summary, generalized additive models are appropriate for 

examining the dataset and illustrating the correlation between the dependent 

variable and the independent variables [111,113]. The simplistic mathematical 

idea of GAM is to replace 𝛽7𝑥7  from GLM by 𝑓7G𝑥7H	which is a more flexible 

function as shown in Equation 17 [111]: 

 

𝑔(Ε8	(y|x)) = 𝛽9 +	𝑓5(𝑥5) +	𝑓5(𝑥5) 	+ ⋯+	𝑓:G𝑥:H                        (17) 

 

Figure 41 describes the combination of all Vaso-Lock feature effects, but it 

suggests the flexibility to incorporate non-linear relationships between specific 

features and the Max_Force. This figure shows that the Max_Force value 

increases proportionally with the number of rows. This finding is consistent with 

the PDP plots as well. The increase in the value of DOD leads to a corresponding 

increase in the Max_Force value for DOD. This validation confirms the accuracy 

of the PDP plots generated previously. The type of GAM model that allows a 

non-smooth functional form is the Explainable Boosting Machine (EBM). Unlike 

traditional GAMs which typically use smoothing splines or other smooth 

functions to model relationships between variables, EBMs use a series of decision 

trees as base learners, which can capture non-linear and non-smooth 

relationships in the data. 
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The dotted lines in the figure describe the average effect of each feature on 

the predictions of the model, while the red line shows the actual effect of the 

feature on a specific instance of the data (specified by sample_ind). Essentially, 

the dotted lines give the overall trend of how changing a particular feature affects 

the output of the model across the entire dataset, while the red line shows the 

impact of that feature for a specific data point. 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

117 

 
Figure 41. Interpret explaining boosting model, generalize additive model (GAM). Caption: The 

dotted lines represent the average effect of each feature on the model predictions across the 
dataset, while the red line illustrates the actual effect of a specific feature on a particular data 

instance (specified by sample_ind). 

Rows

Prickles

Length

OD

ID

WT

DOD
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5.4.5. Counterfactual Analysis of the Scenarios that are Most Disruptive to 
System Order 

 
A counterfactual explanation is a description of a causal situation that follows 

the structure: "If X had not happened, then Y would not have happened" [111]. 

Counterfactual explanations are employed to clarify the predictions made for 

specific instances. The term "event" refers to the anticipated result of a specific 

occurrence, while the "causes" are the specific feature values of this occurrence 

that were provided as input to the model and resulted in a particular prediction 

[111,114]. A specific category of explanation shows a connection between the 

potential outcomes if the input to a model has been changed in a specific manner. 

To summarize, A counterfactual explanation of a prediction refers to the minimal 

alteration in the values of the features that results in a change of the prediction 

to a predefined output [111,114]. Counterfactual analysis can indeed be used as 

a form of sensitivity analysis. The purpose of employing counterfactuals in the 

BO model is to assess the sensitivity of the model to minor changes in the input 

features. 

To assess the reliability of the BO suggestions in predicting outcomes, 

counterfactual inference was employed on observation 204, which represents a 

sample suggested by the BO. A neural network (NN) model was structured with 

three hidden layers using the mean_squared_error (MSE) loss function and 

Adam optimizer. The evaluation involved assessing the shift between the 

original prediction and the counterfactual prediction by incrementing each 

feature by a small amount of 0.1 unit. If the predictions made by the model show 

significant shifts when the input features are slightly modified, it suggests that 

the decision boundary of the model is highly sensitive to those features. 
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Conversely, if the predictions remain relatively consistent, it indicates that the 

decisions of the model are resistant to minor changes in the input, and it may 

indicate that the suggestions and model provided by the BO are resilient to 

variations and an unpredictable setting. As stated in Chapter 2, two of the NIST 

AI Risk Management Framework principles include the requirement for the 

system to be robust and resilient. The counterfactual analysis in this case 

demonstrated that the BO model is robust and resistant.  

Updated Prediction (for the original input): The model forecasts a value of 

approximately 3.878 for the "Max_Force" variable, considering the original 

features. 

Counterfactual Prediction (perturbed input): The model predicts a marginally 

increased value of approximately 3.955 for the "Max_Force" when every feature 

of the original instance changes by a small increase of 0.1. A minor change of 

0.077 in the prediction value could imply that the BO model is robust. 

 
Feature Differences: 
   Rows  Prickles  Length   OD   ID   WT  DOD 
0   0.1       0.1     0.1  0.1  0.1  0.1  0.1 
 
Original Prediction: [[3.878442]] 
Counterfactual Prediction: [[3.955788]] 
 
5.4.6. ELI5 Analysis of the Scenarios that are Most Disruptive to System Order 
 

"ELI5" is an abbreviation for "Explain Like I am 5." It refers to the process of 

simplifying complex concepts or ideas put forth by MIT. ELI5 is commonly used 

to debug regressor or classifier algorithms. ELI5 is not an appropriate approach 

for determining the impact of individual features on model performance. The 
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measure solely indicates the magnitude of changes in feature weights, so it does 

not consider the weights as feature important on a scale. Basically, it explains 

their predictions by assigning weights to decisions [110,115,116]. Positive 

weights imply that a rise in the value of the feature results in a corresponding 

increase in the predicted target value, whereas negative weights indicate the 

opposite. 

The bias term corresponds to the constant term in the linear model. The 

intercept represents the predicted target value when all features are set to zero. 

Put simply, it is the baseline prediction. 

For interpreting predictions utilizing an ELI5 interpreter, a variance inflation 

factor (VIF) was implemented. 

VIF is a measure of statistics employed in regression analysis to identify the 

presence of multicollinearity among predictor variables. Multicollinearity arises 

when there is a strong correlation between two or more predictor variables in a 

regression model, leading to challenges in interpreting the coefficients of the 

model. A VIF value below 10 is considered acceptable, while an increasing VIF 

indicates decreasing reliability of the regression results. Typically, a VIF 

exceeding 10 signifies a strong correlation and is considered problematic, so they 

were removed from the analysis. Table 23 describes the ultimate VIF scores, 

where the scores of all features are below 10.  

Upon implementing VIF, it is observed that two additional features, namely 

DOD-ID and OD-ID, exhibit stronger correlations with the prediction of 

Max_Force. These two features were incorporated into the ELI5 analysis.  
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Table 23. Variance inflation factor (VIF) 

 Variables VIF 

0 Rows 4.666047 

1 Prickles 3.157200 

2 DOD_ID 5.829551 

3 OD_ID 8.666678 

 

5.4.6.1. ELI5 GLOBAL INTERPRETATION  

 
After implementing VIF, two new features show more correlations with the 

prediction of Max_Force, which are DOD-ID and OD-ID. These two features 

were added to the ELI5 analysis. In Table 24, a global interpretation shows that 

for rows and DOD-ID, an increase in these values leads to an increase in the 

predicted target value. This result is also consistent with the global SHAP 

analysis that has been provided before, which shows that rows have the most 

contributions among other features. 

The bias term, denoted as -0.682, signifies the baseline prediction when all 

features possess a value of zero. 

 
Table 24. ELI5 global interpretation 

Contribution Feature 

+1.382 Rows 

+1.242 DOD_ID 
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Contribution Feature 

+0.125 Prickles 

-0.075 OD_ID 

-0.682 <BIAS> 

 
 

5.4.6.2. ELI5 LOCAL INTERPRETATION  

 
On the contrary, a local ELI5 explainer acquired instance number 60 of the 

dataset to examine the behavior of each design in response to the maximum force. 

As depicted in Table 25, an increase in both the number of prickles and rows 

results in a corresponding increase in the predicted target value. The bias term, 

denoted as -1.461, signifies the baseline prediction when all features possess a 

value of zero. 

 
Table 25. ELI5 local interpretation for instance number 60. 

Contribution Feature 

+1.716 Prickles 

+1.496 Rows 

+1.371 DOD_ID 
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Contribution Feature 

+0.011 OD_ID 

-1.461 <BIAS> 

 
 

5.5. GitHub Codes Link for Chapter 5 

 
The following is the link to Chapter 5 codes: 

 
  
https://github.com/nm2fs/PhD-Dissertation/ 
tree/3c5a70bfffc03100ce5ac284f818f3495a29f6b5/chapter5 
 
 
5.6. Summary 

 
This chapter has described the risks associated with AI in the Structure (Sig) 

layer and introduced a case study focusing on optimizing the design of Vaso-

Lock, a 3D printed prototype aimed at simplifying vascular anastomoses during 

surgical procedures. The study utilizes scenario-based analysis to identify highly 

ranked initiatives and the most disruptive scenarios. Bayesian optimization has 

been incorporated into the optimization process to navigate uncertain 

environments, followed by the use of explainable AI techniques to enhance 

interpretability and trust in model predictions.  

The next chapter will introduce the Function (Phi) layer. 

 

https://github.com/nm2fs/PhD-Dissertation/tree/3c5a70bfffc03100ce5ac284f818f3495a29f6b5/chapter5
https://github.com/nm2fs/PhD-Dissertation/tree/3c5a70bfffc03100ce5ac284f818f3495a29f6b5/chapter5
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Chapter 6 | Case 3 (Function (Phi) Layer) 

 
 
 
6.1.Introduction 

 
This chapter describes a case study in the Function (Phi) layer. This layer 

includes a specific operation or a task defined and performed by medical 

professionals, such as disease diagnosis, particularly in this case, the diagnosis of 

cardiac sarcoidosis.  

Sarcoidosis is an inflammatory, granulomatous systemic disease of unclear 

etiology with a heterogeneous course primarily affecting the lungs and lymph 

nodes (90%) [5,6,40,68,117–119] and invading the heart, leading to injury and 

fibrosis. According to [120] "a granuloma is a focal aggregate of immune cells 

that forms in response to a persistent inflammatory stimulus.” In rare cases, 

sarcoidosis can be chronic and progress with multiorgan involvement, often 

associated with extensive scarring, such as in the liver, skin, eyes, central nervous 

system, and heart. Most sarcoidosis patients have a short, self-limiting disease 
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course without permanent damage. However, a chronic or relapsing course can 

also be observed. Therefore, sarcoidosis patients should be screened for 

multiorgan involvement. Cardiac involvement is statistically relatively rare, with 

5% of sarcoidosis patients described [119,121]. Early diagnosis of cardiac 

sarcoidosis is crucial for timely treatment, prevention of cardiac damage, and 

management of potentially life-threatening complications. Also, it improves the 

overall management and long-term prognosis of cardiac sarcoidosis [5,6]. This 

chapter develops the third layer of the scenario-based disruption of priorities for 

disease diagnosis or the Function (Phi) layer.  

 

6.2. Scenario-Based Disruption of Priorities (Function (Phi) Layer) 

 
In this chapter, cardiac sarcoidosis is a resemblance to the Function (Phi) layer 

in the healthcare system [6,9,34,83–85]. The experts and actors for the Function 

(Phi) layer are director members of the cardiac radiology department, including 

two radiologists, a cardiologist, and an electrophysiologist who are experts and 

actors in cardiac sarcoidosis detection at the HDZ-NRW hospital in Germany. 

Five interview sessions were conducted through an online platform with the 

director of the cardiac radiology department at HDZ-NRW hospital.  

To develop scenario-based analysis for cardiac sarcoidosis, the success criteria 

list is similar to the Purpose (Pi) and Structure (Sig) layers, which are the seven 

principles of the NIST AI Risk Management Framework [6,40,68]. Identifying the 

highest ranked initiatives in diagnosing cardiac sarcoidosis and the most and 

least disruptive events will assist the decision-makers in determining where to 

invest more for the most desired outcomes for the experts and actors.  
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Seven success criteria (Table 6), forty-three initiatives (Table 26), fifty 

emergent conditions (Table 27), and ten scenarios (Table 28) were identified. 

Then, baseline relevance (Table 29), criteria-initiative assessment (Table 30), 

criteria-scenario relevance (Table 31), and initiative-scenario ranking (Table 32) 

were developed for risk management of AI in cardiac sarcoidosis diagnosis 

(Function (Phi) layer [6,40,68].  

 
Table 26. Initiatives for the Function (Phi) layer in enterprise risk management of AI in 

healthcare [6,40,68]. Abridged from various sources that are identified in the narrative [6,40,68]. 

Index Initiative 
x.Phi.01 Identify At-Risk Components 
x.Phi.02 Understanding ML Tools to Uncover Subtle Patterns in Data 
x.Phi.03 Maintaining the Provenance of Training Data 
x.Phi.04 Safety/Verifiability of Automated Analyses (Cardiac Region Detection Software) 
x.Phi.05 Reproducible Data and Method in Other Health Centers 
x.Phi.06 Correctly Labeling the Data 
x.Phi.07 Training Data to Follow Application Intellectual Property Rights Laws 
x.Phi.08 Informed Consent to Use Data 
x.Phi.09 Maintain Organizational Practices Like Implement Risk Management to Reduce 

Harm Reduction and More Accountable Systems 
x.Phi.10 Prioritization Policies and Resources Based on Assesses Risk Levels 
x.Phi.11 Safety of Personally Identifiable Information 
x.Phi.12 Appropriate Accountability Mechanism, Roles and Responsibilities, Culture, 

and Incentive Structures for Risk Management to be Effective 
x.Phi.13 Avoid Gender and Age Discriminations and Bias in Preparing Data 
x.Phi.14 Reducing Unnecessarily Procedures 
x.Phi.15 Reducing Costs and Time Consumption 
x.Phi.16 Able to Identify Healthy Volunteers before Starting the Procedures 
x.Phi.17 Designate Boundaries for AI Operation (Technical, Societal, Legal, and Ethical) 
x.Phi.18 To Help Policymakers Ensure that the Moral Demanding Situations Raised by 

Enforcing AI in Healthcare Settings are Tackled Proactively 
x.Phi.19 Articulate and Document the System Concept and Objectives, Underlying 

Assumptions, and Context in Light of Legal and Regulatory Requirements and 
Ethical Considerations 

x.Phi.20 Gather, Validate, and Clean Data and Document the Metadata and 
Characteristics of the Dataset, in Light of Objectives, Legal and Ethical 
Considerations 
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x.Phi.21 Pilot, Check Compatibility with Legacy Systems, Verify Regulatory Compliance, 
Manage Organizational Change, and Evaluate User Experience 

x.Phi.22 Operate the AI System and Continuously Assess its Recommendations and 
Impacts 

x.Phi.23 Balancing and Tradeoff Each of Trustworthy AI Systems Characteristics Based 
on the AI System Context of Use 

x.Phi.24 Reducing the Hospitalization Time of the Patient by Correct Diagnostics 
x.Phi.25 Explain and Identify Most Important Features Using AI Models 
x.Phi.26 Measurements Outlier Findings 
x.Phi.27 Closeness of Results of Observations, Computations, or Estimates to the True 

Values or the Values Accepted as being True 
x.Phi.28 Human-AI Teaming 
x.Phi.29 Demonstrate External Validity or Generalizable Beyond the Training Conditions 
x.Phi.30 Ability of a System to Maintain its Level of Performance Under a Variety of 

Circumstances 
x.Phi.31 Minimizing Potential Harms to People if it is Operating in an Unexpected Setting 
x.Phi.32 Responsible Design, Development, and Deployment Practices 
x.Phi.33 Clear Information to Deployers on Responsible Use of the System 
x.Phi.34 Responsible Decision-Making by Deployers and End Users 
x.Phi.35 Explanations and Documentation of Risks Based on Empirical Evidence of 

Incidents 
x.Phi.36 Ability to Shut Down, Modify, or Have Human Intervention into Systems that 

Deviate from Intended or Expected Functionality 
x.Phi.37 Human Roles and Responsibilities in Decision Making and Overseeing AI 

Systems Need to be Clearly Defined and Differentiated 
x.Phi.38 AI Systems May Require More Frequent Maintenance and Triggers for 

Conducting Corrective Maintenance Due to Data, Model, or Concept Drift 
x.Phi.39 Managing Risks from Lack of Explainability by Describing How AI Systems 

Functions Considering Users' Role, Knowledge, and Skill Level 
x.Phi.40 Communicating a Description of Why an AI System Made a Particular Prediction 

or Recommendation 
x.Phi.41 Securing Individual Privacy, Anonymity, and Confidentiality 
x.Phi.42 De-Identification and Aggregation for Certain Model Outputs 
x.Phi.43 Strengthened Engagement with Interested Parties and Relevant AI Actors 
x.Phi.i Others 
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Table 27. Emergent conditions were used to create sets of scenarios for the Function (Phi) layer 
in enterprise risk management of AI in healthcare [6,40,68]. Abridged from various sources that 

are identified in the narrative [6,40,68]. 

Index Emergent Condition 
e.Phi.01 Using Non-Important Features in Sarcoidosis Diagnostics as the Input 
e.Phi.02 Improperly Labeling the Data in Surgery-Specific Patient Registries 
e.Phi.03 Mis-Identification of Variables Used in Surgery-Specific Patient Registries 
e.Phi.04 Misunderstanding AI 
e.Phi.05 Limited Generalizability 
e.Phi.06 Limitation in Types and Accuracy of Available Data 
e.Phi.07 Expensive Data Collection 
e.Phi.08 Time Consuming Data Collection 
e.Phi.09 Policy and Regulation Changes 
e.Phi.10 Difficult and Complex AI Algorithms Interpretability 
e.Phi.11 Lack of AI Determination of Casual Relationships in Data at Clinical Implementation 

Level 
e.Phi.12 Inability of AI in Providing an Automated Clinical Interpretation of its Analysis 
e.Phi.13 Human Errors in Measurements 
e.Phi.14 Abuse or Misuse of the Model or Data 
e.Phi.15 Challenges with Training Data to be Subject to Copyright 
e.Phi.16 Complicate Risk Measurement by Third Party Software, Hardware, and Data 
e.Phi.17 Model Fails to Generalize  
e.Phi.18 Lack of Consensus on Robust and Verifiable Measurement Methods for AI 

Trustworthiness 
e.Phi.19 Mis-Identification of Different Risk Perspective in Early or Late Stages of AI Lifecycle 
e.Phi.20 Difference Between Controlled Environment vs. Uncontrollable and Real-World 

Settings 
e.Phi.21 Inscrutable Nature of AI Systems in Risk Measurements 
e.Phi.22 Systematic Biases in Clinical Data Collection 
e.Phi.23 Risk Tolerance Influence by Legal or Regulatory Requirements Changes 
e.Phi.24 Unrealistic Expectations About Risk to Misallocate Resources 
e.Phi.25 Residual Risk or Risk Remaining after Risk Treatment Directly Impacts End Users 
e.Phi.26 Privacy Concerns Related to the Use of Underlying Data to Train AI Systems 
e.Phi.27 The Energy and Environmental Implications Associated with Resource-Heavy 

Computing Demands 
e.Phi.28 Security Concerns Related to the Confidentiality, Integrity, and Availability of the 

System and its Training and Output Data 
e.Phi.29 General Security of the Underlying Software and Hardware for AI Systems 
e.Phi.30 One-Size-Fits-All Requirements AI Model Challenges 
e.Phi.31 Neglecting the Trustworthy AI Characteristics 
e.Phi.32 Difficult Decisions in Tradeoff and Balancing Trustworthy AI Characteristics by 

Organizations 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

129 

e.Phi.33 Subject Matter Experts and Actors Can Assist in the Evaluation of TEVV Findings 
and Work with Product and Deployment Teams to Align TEVV Parameters to 
Requirements and Deployment Conditions 

e.Phi.34 Different Perception of the Trustworthy AI Characteristics Between AI Designer than 
the Deployer 

e.Phi.35 Potential Risk of Serious Injury or Death Call  
e.Phi.36 Presenting AI System Information to Humans is Complex 
e.Phi.37 Data Poisoning 
e.Phi.38 Negative Risk Stem from a Lack of Ability to Make Sense of, or Contextualize, 

System Output Appropriately 
e.Phi.39 AI Allowing Inference to Identify Individuals or Previously Private Information 

About Individuals 
e.Phi.40 Privacy Intrusions 
e.Phi.41 Data Sparsity 
e.Phi.42 Fairness Perceptions Difference Among Cultures and Applications 
e.Phi.43 Computational and Statistical Biases Stem from Systematic Errors Due to Non-

Representative Samples 
e.Phi.44 Human-Cognitive Biases Relates to How the Experts and Actors Perceives AI System 

Information to Make a Decision 
e.Phi.45 Lack of Access to the Ground Truth in the Dataset  
e.Phi.46 Intentional or Unintentional Changes During Training 
e.Phi.47 Increased Opacity and Concerns About Reproducibility 
e.Phi.48 Computational Costs for Developing AI Systems and their Impact on the 

Environment and Planet 
e.Phi.49 Inability to Predict or Detect the Side Effects of AI-Based Systems Beyond Statistical 

Measures 
e.Phi.50 Over-Reliance on AI 
e.Phi.i Others 
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Table 28. Emergent conditions grouping for the Function (Phi) layer in enterprise risk 
management of AI in healthcare describes which emergent conditions fit in each scenario 

[6,40,68]. Abridged from various sources that are identified in the narrative [6,40,68]. 
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e.Phi.01   ✓                 
e.Phi.02               ✓     
e.Phi.03               ✓     
e.Phi.04           ✓         
e.Phi.05           ✓         
e.Phi.06                   ✓ 
e.Phi.07 ✓                 ✓ 
e.Phi.08                   ✓ 
e.Phi.09   ✓     ✓           
e.Phi.10           ✓         
e.Phi.11           ✓         
e.Phi.12           ✓         
e.Phi.13           ✓         
e.Phi.14           ✓   ✓     
e.Phi.15   ✓ ✓     ✓         
e.Phi.16           ✓       ✓ 
e.Phi.17           ✓     ✓   
e.Phi.18   ✓     ✓ ✓   ✓ ✓ ✓ 
e.Phi.19         ✓ ✓   ✓     
e.Phi.20                 ✓   
e.Phi.21           ✓         
e.Phi.22           ✓         
e.Phi.23   ✓                 
e.Phi.24           ✓   ✓     
e.Phi.25           ✓   ✓ ✓   
e.Phi.26     ✓               
e.Phi.27   ✓         ✓     ✓ 
e.Phi.28     ✓ ✓             
e.Phi.29       ✓             
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e.Phi.30           ✓   ✓ ✓ ✓ 
e.Phi.31           ✓   ✓     
e.Phi.32 ✓       ✓ ✓       ✓ 
e.Phi.33           ✓         
e.Phi.34           ✓         
e.Phi.35               ✓ ✓   
e.Phi.36                 ✓   
e.Phi.37     ✓ ✓       ✓     
e.Phi.38           ✓         
e.Phi.39     ✓               
e.Phi.40     ✓               
e.Phi.41               ✓ ✓ ✓ 
e.Phi.42   ✓     ✓ ✓         
e.Phi.43 ✓         ✓   ✓ ✓ ✓ 
e.Phi.44 ✓         ✓         
e.Phi.45 ✓             ✓   ✓ 
e.Phi.46         ✓ ✓   ✓     
e.Phi.47           ✓   ✓     
e.Phi.48 ✓           ✓     ✓ 
e.Phi.49           ✓ ✓   ✓   
e.Phi.50           ✓         

 

 
 

Table 29. Baseline relevance for the Function (Phi) layer in enterprise risk management of AI in 
healthcare [6,40,68]. 

The criterion c.xx has s.00 - Baseline relevance among 
the other criteria 

c.01 - Safe has high relevance 

c.02 - Secure & Resilient has medium relevance 

c.03 - Explainable & Interpretable has high relevance 
c.04 - Privacy Enhanced has medium relevance 

c.05 - Fair - With Harmful Bias Managed has medium relevance 

c.06 - Accountable & Transparent has high relevance 
c.07 - Valid & Reliable has high relevance 
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Table 30. The criteria-initiative assessment describes how well each initiative addresses the 
success criteria for the Function (Phi) layer in enterprise risk management of AI in healthcare. 

Strongly agree is represented by a filled circle (●), agree is represented by a half-filled circle (◐), 
somewhat agree is represented by an unfilled circle (○), and neutral is represented by a dash (➖) 

[6,40,68]. 

 c.01 c.02 c.03 c.04 c.05 c.06 c.07 
x.Phi.01 ● ◐ ○ ○ ○ ○ ○ 
x.Phi.02 ○ ➖ ○ ➖ ➖ ◐ ◐ 
x.Phi.03 ● ➖ ○ ◐ ◐ ◐ ● 
x.Phi.04 ● ◐ ● ○ ◐ ● ● 
x.Phi.05 ● ● ● ◐ ◐ ◐ ● 
x.Phi.06 ● ● ◐ ◐ ◐ ● ● 
x.Phi.07 ○ ○ ◐ ○ ○ ○ ◐ 
x.Phi.08 ● ● ➖ ● ➖ ○ ○ 
x.Phi.09 ○ ◐ ◐ ○ ○ ● ○ 
x.Phi.10 ○ ○ ◐ ○ ○ ◐ ◐ 
x.Phi.11 ● ● ➖ ● ○ ◐ ➖ 
x.Phi.12 ○ ○ ◐ ➖ ➖ ○ ◐ 
x.Phi.13 ◐ ◐ ○ ○ ● ◐ ◐ 
x.Phi.14 ● ● ➖ ➖ ● ● ● 
x.Phi.15 ● ● ➖ ➖ ● ● ● 
x.Phi.16 ● ● ◐ ○ ● ● ● 
x.Phi.17 ○ ○ ◐ ○ ○ ◐ ◐ 
x.Phi.18 ○ ○ ○ ● ● ◐ ○ 
x.Phi.19 ○ ○ ○ ● ● ◐ ○ 
x.Phi.20 ● ● ◐ ◐ ◐ ● ● 
x.Phi.21 ○ ○ ◐ ○ ○ ◐ ◐ 
x.Phi.22 ◐ ◐ ● ○ ○ ● ● 
x.Phi.23 ◐ ◐ ◐ ◐ ◐ ◐ ◐ 
x.Phi.24 ● ● ● ◐ ● ● ● 
x.Phi.25 ● ● ◐ ◐ ◐ ● ● 
x.Phi.26 ● ● ● ○ ○ ● ● 
x.Phi.27 ● ● ◐ ◐ ◐ ● ● 
x.Phi.28 ● ● ● ◐ ◐ ● ● 
x.Phi.29 ◐ ● ● ◐ ◐ ● ● 
x.Phi.30 ● ● ● ➖ ➖ ● ● 
x.Phi.31 ● ● ◐ ➖ ● ● ● 
x.Phi.32 ● ● ● ◐ ○ ● ● 
x.Phi.33 ○ ● ● ○ ○ ● ● 
x.Phi.34 ◐ ◐ ● ○ ○ ◐ ● 
x.Phi.35 ○ ◐ ◐ ○ ○ ● ○ 
x.Phi.36 ● ● ● ○ ○ ● ◐ 
x.Phi.37 ● ● ● ○ ○ ● ◐ 
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x.Phi.38 ◐ ● ● ○ ○ ○ ◐ 
x.Phi.39 ● ● ● ➖ ➖ ● ● 
x.Phi.40 ● ● ● ➖ ➖ ● ● 
x.Phi.41 ➖ ➖ ➖ ● ➖ ➖ ➖ 
x.Phi.42 ○ ○ ● ○ ➖ ○ ○ 
x.Phi.43 ○ ◐ ● ○ ○ ◐ ◐ 

 

 
 
 
 
 
 
 

Table 31. The criteria-scenario assessment describes how the scenarios influence the relevance 
of each success criterion for the Function (Phi) layer in enterprise risk management of AI in 

healthcare. Decrease Somewhat = DS, Decrease = D, Somewhat Increase = SI, Increase = I [6,40,68]. 

 s.01 s.02 s.03 s.04 s.05 s.06 s.07 s.08 s.09 s.10 
c.01 D SI D - SI DS DS D DS DS 
c.02 D SI D - SI D DS D DS DS 
c.03 DS SI D - I D - D D - 
c.04 - I - DS - - - - DS - 
c.05 DS I - - SI - DS - DS DS 
c.06 D SI D - I D DS D D DS 
c.07 D SI D - I D DS D D DS 
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Table 32. Initiative-scenario ranking chart. This table describes the ranking of each initiative 
under each scenario for the Function (Phi) layer in enterprise risk management of AI in 

healthcare. The green filled cells show a higher ranking and the red and orange filled cells 
indicate a lower ranking [6,40,68]. 
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x.Phi.01 37 38 38 35 34 35 32 38 35 35 38 
x.Phi.02 42 43 42 43 42 41 43 42 43 42 42 
x.Phi.03 25 17 25 15 25 25 14 33 15 25 33 
x.Phi.04 4 12 11 13 4 4 13 6 13 10 6 
x.Phi.05 11 4 4 11 8 12 5 4 11 5 4 
x.Phi.06 4 6 4 5 8 12 5 12 5 5 12 
x.Phi.07 39 40 39 36 38 34 36 34 36 39 34 
x.Phi.08 38 18 37 27 39 42 27 39 27 34 39 
x.Phi.09 29 31 31 30 29 29 30 26 30 32 26 
x.Phi.10 31 33 34 32 31 31 33 28 32 36 28 
x.Phi.11 36 15 33 18 37 40 18 37 18 29 37 
x.Phi.12 41 42 41 42 41 39 42 36 42 41 36 
x.Phi.13 27 30 27 17 27 28 17 35 17 27 35 
x.Phi.14 22 36 21 19 21 22 19 40 19 20 40 
x.Phi.15 22 36 21 19 21 22 19 40 19 20 40 
x.Phi.16 4 13 4 5 4 6 5 22 5 4 22 
x.Phi.17 31 33 34 32 31 31 33 28 32 36 28 
x.Phi.18 31 10 29 3 35 36 3 31 3 30 31 
x.Phi.19 31 10 29 3 35 36 3 31 3 30 31 
x.Phi.20 4 6 4 5 8 12 5 12 5 5 12 
x.Phi.21 31 33 34 32 31 31 33 28 32 36 28 
x.Phi.22 19 21 19 24 19 19 24 10 24 19 10 
x.Phi.23 24 16 24 14 24 24 15 23 14 24 23 
x.Phi.24 1 1 1 1 1 1 1 1 1 1 1 
x.Phi.25 4 6 4 5 8 12 5 12 5 5 12 
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x.Phi.26 11 14 12 21 4 4 21 6 21 10 6 
x.Phi.27 4 6 4 5 8 12 5 12 5 5 12 
x.Phi.28 2 2 2 2 2 2 2 2 2 2 2 
x.Phi.29 4 4 4 5 8 7 11 4 5 10 4 
x.Phi.30 16 27 16 37 14 9 37 17 37 16 17 
x.Phi.31 13 25 13 16 7 8 16 25 16 13 25 
x.Phi.32 3 3 3 12 3 3 12 3 12 3 3 
x.Phi.33 20 22 20 25 20 20 25 11 25 22 11 
x.Phi.34 21 23 23 26 23 21 26 16 26 23 16 
x.Phi.35 29 31 31 30 29 29 30 26 30 32 26 
x.Phi.36 14 19 14 22 17 17 22 8 22 14 8 
x.Phi.37 14 19 14 22 17 17 22 8 22 14 8 
x.Phi.38 26 24 26 28 26 26 28 20 28 26 20 
x.Phi.39 16 27 16 37 14 9 37 17 37 16 17 
x.Phi.40 16 27 16 37 14 9 37 17 37 16 17 
x.Phi.41 43 39 43 40 43 43 40 43 40 43 43 
x.Phi.42 40 41 40 41 40 38 41 24 41 40 24 
x.Phi.43 27 26 28 29 27 27 29 21 29 28 21 

 
 

Figure 42 describes that s.06 – Non-Interpretable AI and Lack of Human-AI 

Communications, s.03– Privacy attacks, and 08 – Human Errors in Design, Develop, 

Measurement, and Implementation have the highest disruption among other 

scenarios [6,40,68].  

Figure 43 describes the variation in the prioritization of initiatives across 

scenarios. Table 33 describes the highest ranking initiatives in the Function (Phi) 

layer.
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Figure 42. Disruptive score of scenarios is based on the sum of squared differences in the priority of initiatives, relative to the baseline 

scenario for the Function (Phi) layer in enterprise risk management of AI in healthcare. These are scenarios where they caused low levels 
of trust in AI [6,40,68].
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Figure 43. Distributions of initiatives influence rankings are based on which emergent conditions that could arise more often or do not 
occur for the Function (Phi) layer in enterprise risk management of AI in healthcare; blue means promotion in ranking and red means 

demotion in ranking [6,40,68]. 
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Table 33. The highest ranked initiatives of the Function (Phi) layer in enterprise risk 
management of AI in healthcare [6,40,68]. 

Index Most Important Initiative 
Function (Phi) x.Phi.27 – Closeness of Results of Observations, Computations, 

or Estimates to the True Values or the Values Accepted as Being 
True 
 
x.Phi.32 – Responsible Design, Development, and Deployment 
Practices 
 
x.Phi.29 – Demonstrate External Validity or Generalizable 
Beyond the Training Conditions 
 
x.Phi.28 – Human-AI Teaming 
 
x.Phi.25 – Explain and Identify Most Important Features Using AI 
Models 
 
x.Phi.24 – Reducing the Hospitalization Time of the Patient by Correct 
Diagnostics 
 
x.Phi.20 – Gather, Validate, and Clean Data and Document the 
Metadata and Characteristics of the Dataset, in Light of Objectives, 
Legal and Ethical Considerations 
 
x.Phi.16 – Able to Identify Healthy Volunteers Before Starting the 
Procedures 
 
x.Phi.06 – Correctly Labeling the Data 
 
x.Phi.04 – Safety/Verifiability of Automated Analyses (Cardiac region 
detection software) 

 
In the next section, sensitivity analysis is conducted to show how robust the 

mathematical framework is for the Function (Phi) layer outcomes.   
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6.2.1. Sensitivity Analysis of Scenario-Based Disruption of Priorities (Function 

(Phi) Layer) Mathematical Framework 

 

This section introduces a sensitivity analysis of the mathematical framework 

used in the Function (Phi) layer. Sensitivity analysis can be used to identify and 

assess the most significant exposure or risk factors, as well as the most resilient 

initiatives and priorities for risk mitigation [122]. Sensitivity analysis is an 

approach in this case to validate the results. This analysis is significant as it may 

be of interest to experts and actors who are concerned about the potential 

influence of different weighting scores on the outcomes. Two sets of success 

criterion relevance weightings were evaluated for two decision-makers: 1. 

Aggressive and assertive decision-makers. 2. Cautious decision-makers. The 

objective of this section is to assess how the rating of the relevance of success 

criteria will impact the baseline rankings of the initiatives. 

 

6.2.1.1. AGGRESSIVE DECISION-MAKER 

 
Table 34 describes that the success criterion relevance importance weight for 

"High" was to be changed by aggressive decision-makers from 4 to 10. Figure 44 

describes how the initiatives baseline rankings were altered in accordance with 

the changes in the relative importance weights. The green line shows the initial 

weighting with “High” weights of 4, and the red line shows the weight changes 

of “High” from 4 to 10 by the aggressive decision-makers. As an example, 

initiatives x.Phi.24 – Reducing the Hospitalization Time of the Patient by Correct 

Diagnostics, x.Phi.28 – Human-AI Teaming, and x.Phi.32 – Responsible Design, 
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Development, and Deployment Practices are resistant to ranking shifts; while some 

initiatives such as x.Phi.29 – Demonstrate External Validity or Generalizable Beyond 

the Training Conditions, and x.Phi.27 – Closeness of Results of Observations, 

Computations, or Estimates to the True Values or the Values Accepted as Being True 

dropped in baseline rankings. This analysis could assist in identifying initiatives 

that are more resistant to increasing success criteria relative to “High” weight. 

Overall, the majority of the rankings of the initiatives remained consistent, 

indicating the robustness of the framework. 

 

 
Table 34. Criteria-scenario relative importance weights. 

Criteria Scenario Relative Importance Weights 
High 10 

Medium 2 
Low 1 

- 0 
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Figure 44. Change in priority of initiatives for the Function (Phi) layer for an aggressive analyst. The framework is robust as most of the 

initiatives ranking did not change by increasing the criteria-scenario relative importance weights.
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6.2.1.2. CAUTIOUS DECISION-MAKER 

 
Following the section above, the same analysis assesses initiative ranking 

shifts for cautious decision-makers. Table 35 describes the success criterion 

relevance importance weight for "High" that was changed by cautious decision-

makers from 4 to 3. Figure 45 describes how the baseline initiatives rankings were 

altered in accordance with the changes in the relative importance weights. The 

green line shows the initial weighting with “High” weights of 4, and the blue line 

shows the weight changes of “High” from 4 to 3 by the cautious decision-makers. 

Sensitivity analysis confirmed that most of the initiatives did not shift in ranking. 

However, initiatives x.Phi.04 – Safety/Verifiability of Automated Analyses (Cardiac 

region detection software) and x.Phi.16 – Able to Identify Healthy Volunteers Before 

Starting the Procedures were most vulnerable to the changes in the criteria relative 

importance of “High” weight. 

 
Table 35. Criteria-scenario relative importance weights. 

Criteria Scenario Relative Importance Weights 
High 3 

Medium 2 
Low 1 

- 0 
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Figure 45. Change in priority of initiatives for the Function (Phi) layer for a cautious analyst. The framework is robust as most of the 

initiatives ranking did not change by decreasing the criteria-scenario relative importance weights.
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It could be implied from the sensitivity analysis that the multicriteria analysis, 

in this case, is robust as most of the initiatives did not shift in ranking. As 

described in Chapter 2, two of the NIST AI Risk Management Framework 

principles include the requirement for the system to be robust and resilient. The 

sensitivity analysis in this case demonstrated that it is robust and resistant to 

risks, which was consistent with these principles.  

The next section addresses the highest ranked initiatives identified in the 

previous section for the Function (Phi) layer using AI classification models for 

early detection of cardiac sarcoidosis.  

 

6.3. Diagnosis of Cardiac Sarcoidosis Using AI Classification Models 

 
Forty-five non-cardiac (NC, 56.5 (53.0; 63.0) years) sarcoidosis, eighteen cardiac 

sarcoidosis patients (CS, 64.0 (57.8; 67.0) years) patients, and forty-four healthy 

controls volunteers (CTRL, 56.5 (53.0; 63.0) years) underwent contrast-enhanced 

cardiac magnetic resonance (CMR) examination. Bi-Atrial and left ventricular 

strains and volumetrics of all cardiac chambers were assessed by algorithmic 

processing using classifiers such as support vector machine (SVM), K-Nearest 

neighbour (KNN), decision tree (DT), random forest (RF) logistic regression (LR), 

GBoost, XGBoost, and Voting [5].  

Figure 43 described that initiative x.Phi.16 – Able to Identify Healthy Volunteers 

Before Starting the Procedures was one of the most identified initiatives. Table 37 

describes competitive prediction rates achieved for discriminating between CTRL 

and all sarcoidosis patients (S) via 37 features, including age. Figure 47 describes 

that logistic regression, random forest, and SVM yielded the highest prediction 
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rates in the two-cluster (96.97%) model for CTRL and S diagnosis discrimination, 

further consolidated by confusion matrix data (e.g., two-cluster model; precision 

= 97%; recall = 97%; F1-score = 97% for CTRL and S). Random forest and Voting 

yielded the highest prediction rates in a three-cluster (81.82%) of CTRL, NC, and 

CS (Figure 46). Figure 48 describes poor algorithmic discrimination between NC 

and CS, with the highest prediction rates for decision trees, GBoost, and XGBoost 

(68.42%). To enhance the prediction rates between NC and CS, feature selection is 

used to reduce the complexity of the data and select the most contributing features 

to the prediction of the output. Thus, the random forest classifier selects the five 

most important features. Table 36 describes the five most important features with 

the highest algorithmic impact for NC versus CS. Features with higher 

importance scores are considered more influential in making predictions, while 

those with lower scores have less impact. All five parameters were based on left 

ventricular cardiac motion or volumetrics. Mainly, longitudinal strain rates of the 

left ventricle appeared to have a high discriminative value for machine learning 

algorithms. Among the most important features for both analyses was the 

routinely available indexed left ventricular end systolic volume [5]. The full 

names of the five features below are as follows:  

 

• LV_ESVi – indexed left ventricular end systolic volume,  

• LA_syst_radial_LAX_SR – left atrial systolic radial strain rate in longitudinal 

axis,  

• LA_diast_radial_LAX_SR – left atrial diastolic radial strain rate in longitudinal 

axis,  

• LV_radial_LAX_S – left ventricular radial strain in longitudinal axis,  
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• LA_syst_long_LAX_SR – left atrial systolic longitudinal strain rate in the 

longitudinal axis [5,40]. 

 

Table 36. Feature rates of the five most important parameters for machine learning 
discrimination generated by the random forest classifier [5]. 

Parameter Feature Rates 

LV_ESVi 0.045 

LV_syst_radial_LAX_SR 0.045 

LV_diast_radial_LAX_SR 0.049 

LV_radial_LAX_S 0.056 

LA_syst_long_LAX_SR 0.060 

 

A next step is the eight classifying ML models that predict the output using the 

reduced features dataset. The results show an enhancement. Figure 49 shows that 

logistic regression yielded the highest prediction rates in the two-cluster (89.47%) 

model for NC and CS diagnosis discrimination.
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Table 37. Eight classification algorithm performance on diagnosis of cardiac sarcoidosis [5,40]. 

  Logistic 
Regression KNN Decision 

Tree 
Random 
Forest SVM GBoost XGBoost Voting 

Three 
clusters 

CTRL, NC 
Sarc., 
Sarc. 

(with age) 

Accuracy% 69.70% 69.70% 75.76% 81.82% 75.76% 78.79% 78.79% 81.82% 

Precision 
Weighted-

Avg 
0.70 0.77 0.76 0.86 0.64 0.81 0.84 0.86 

Recall 
Weighted-

Avg 
0.70 0.70 0.76 0.82 0.76 0.79 0.79 0.82 

F1-Score 
Weighted-

Avg 
0.67 0.65 0.75 0.79 0.68 0.78 0.76 0.79 

Two 
clusters 
CTRL 

versus all 
Sarc. 

(with age) 

Accuracy% 96.97% 87.88% 87.88% 96.97% 96.97% 87.88% 90.91% 93.94% 

Precision 
Weighted-

Avg 
0.97 0.88 0.89 0.97 0.97 0.89 0.91 0.94 

Recall 
Weighted-

Avg 
0.97 0.88 0.88 0.97 0.97 0.88 0.91 0.94 

F1-Score 
Weighted-

Avg 
0.97 0.88 0.88 0.97 0.97 0.88 0.91 0.94 

Two 
clusters 
NC Sarc. 

versus 
Sarc. 

(with age) 

Accuracy% 52.63% 47.37% 68.42% 57.89% 63.16% 68.42% 68.42% 63.16% 

Precision 
Weighted-

Avg 
0.60 0.53 0.68 0.63 0.61 0.73 0.68 0.65 

Recall 
Weighted-

Avg 
0.53 0.47 0.68 0.58 0.63 0.68 0.68 0.63 

F1-Score 
Weighted-

Avg 
0.55 0.50 0.68 0.60 0.62 0.70 0.68 0.64 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

148 

Two 
clusters 
NC Sarc. 

versus 
Sarc. 

(with age) 
(Enhanced 

with 
Feature 

Selection) 

Accuracy% 89.47% 78.95% 68.42% 78.95% 84.21% 73.68% 68.42% 78.95% 

Precision 
Weighted-

Avg 
0.89 0.83 0.68 0.83 0.86 0.80 0.78 0.83 

Recall 
Weighted-

Avg 
0.89 0.79 0.68 0.79 0.84 0.74 0.68 0.79 

F1-Score 
Weighted-

Avg 
0.89 0.80 0.68 0.80 0.85 0.75 0.70 0.80 

 

 
 
 
 
 

 
Figure 46. Three clusters: CTRL, NC Sarc., Sarc. (with age) confusion matrix. 
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Figure 47. Two clusters: CTRL versus all Sarc. (with age) confusion matrices and ROC curve. 
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Figure 48. Two clusters: NC Sarc. versus Sarc. (with age) confusion matrices and ROC curve. 
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Figure 49. Two clusters: NC Sarc. versus Sarc. (with age) (enhanced with feature selection) 

confusion matrices and ROC curve. AUC score increases after reducing the complexity of the 
data by selecting five most correspondent variables to the classification predictions. 
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It is important to recognize that the effectiveness of machine learning models, 

like K-Nearest Neighbors (KNN), can be heavily influenced by factors such as 

hyperparameter configurations, feature selection, data preprocessing techniques, 

and the choice of evaluation metrics. If the performance of KNN, as depicted in 

Figure 48 , is lower than expected, it may be due to insufficient optimization of its 

hyperparameters, resulting in subpar performance. Nevertheless, it is worth 

noting that fine-tuning models can be resource-intensive and may not always 

yield substantial improvements. Therefore, refining the model through 

hyperparameter tuning in future work is a logical step towards potentially 

enhancing performance. It is essential to interpret the current findings with an 

awareness of this limitation. 

Employing hard classification metrics in Figure 47, Figure 48, and Figure 49 

can present ethical intricacies and necessitates meticulous deliberation. Hard 

classification is the process of directly assigning instances to specific classes 

without including any additional context or uncertainty estimates. When faced 

with situations where decisions made using these classifications can have 

substantial real-world effects, it is crucial to evaluate the ethical 

ramifications. Below are several crucial factors to take into account: 

1. Transparency and explainability: The provision of clear and understandable 

information about the decision-making process is essential for establishing 

confidence in machine learning systems. The use of hard classification may not 

offer adequate elucidation regarding the rationale behind a specific decision, 

resulting in a lack of comprehension and potential mistrust among users. 

2. Uncertainty estimation: Rather than solely depending on 

hard classifications, providing uncertainty estimates or probability scores can 
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provide more informative insights. Decision-makers can utilize these 

probabilities in conjunction with their expertise in the field to make more 

knowledgeable decisions and evaluate the corresponding risks. 

3. Distrust caused by eisclassification: Hard classification metrics may not 

effectively capture the actual costs in the real world that are linked to 

misclassifications. Various categories of misclassifications can result in different 

outcomes, and making the assumption that all misclassifications have the same 

costs can result in decisions that are not optimal. 

4. User involvement: When employing machine learning algorithms to 

facilitate decision-making, it is crucial to engage users and stakeholders in the 

process. Gaining insight into their preferences, concerns, and the possible 

consequences of misclassifications can assist in customizing the system to more 

effectively fulfill their requirements. 

5. Ethical considerations: The design and deployment of machine learning 

systems should be guided by ethical considerations. This encompasses the 

guarantee of equity, responsibility, and openness at every stage of the process. 

Engaging in hard classification without taking into account the wider 

circumstances and possible repercussions can result in unethical results. 

Although hard classification metrics offer a straightforward method for 

assessing machine learning algorithms, their application in decision-making 

should be exercised with caution. To address ethical concerns and foster trust in 

machine learning systems, it is beneficial to provide decision-makers with 

supplementary context, uncertainty estimates, and involve them in the decision-

making process. 
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To our knowledge, this dissertation is the first to demonstrate diagnostic 

prediction rates for cardiac sarcoidosis based on CS acquired multi-chamber wall 

motion and volumetrics analyses using supervised machine learning algorithms.  

The case study of the Function (Pi) layer thus has the following innovations:  

 

1. Accurate algorithmic discrimination is achieved between healthy subjects and 

all sarcoidosis patients, particularly with Voting and RF classifiers. 

2. Poor algorithmic discrimination of NC and CS patients is improved to 

accurate levels via algorithmic feature selection application, mainly using 

logistic regression and SVM classifiers. 

3. The algorithmic challenge associated with discrimination between both 

patient groups implies cardiac involvement may be more prevalent than 

anticipated, potentially evading CS detection [5]. 

 

The next section describes how to utilize XAI to address the most disruptive 

scenarios identified by the risk register for the Function (Phi) Layer. 

 

6.4. Explainable AI (XAI) of the Scenarios that are Most Disruptive to System 

Order 

 
This section describes explainable AI (XAI) techniques used for the risks of AI 

in the healthcare Function (Pi) layer. Previously, Figure 43 described that one of 

the highest ranked initiatives was x.Phi.25 – Explain and Identify Most Important 

Features Using AI Models. Also, in Figure 42, one of the most disruptive scenarios 

was s.06 – Non-Interpretable AI and Lack of Human-AI Communications. Thus, to 
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interpret the results for the AI users, perform feature importance, enhance 

understanding of AI outputs, mitigate distrust in the AI outputs, and facilitate 

data evaluation, Shapley additive explanations (SHAP), local interpretable 

model-agnostic explanations (LIME), and Anchors models were implemented, 

and individual and global contributions of each feature were evaluated. These 

XAI methods were used to find the most important features that mainly 

corresponded with the prediction, and the results also explain how the AI model 

came up with this decision to classify the patient as if they were diagnosed with 

cardiac sarcoidosis. 

 
6.4.1. SHAP Analysis of the Scenarios that are Most Disruptive to System 

Order 
 

In Chapter 5, SHAP was introduced. A positive SHAP value implies a positive 

impact on prediction. For instance, if the SHAP value in the analysis of cardiac 

sarcoidosis as a continuous target variable in the NC versus CS analysis 

approaches 1, it suggests that these features are strong positive predictors of 

cardiac sarcoidosis. As logistic regression yielded the highest prediction rates in 

the two-cluster (89.47%) model for NC and CS diagnosis discrimination, a global 

SHAP plot in  

Figure 50 was developed to understand the importance or contribution of the 

selected features. The results explain five features that have the most contribution 

to NC and CS diagnosis discrimination. This figure describes that 

LA_diast_radial_LAX_SR has the highest contribution to the predictions, 

followed by LV_radial_LAX_S and LA_syst_long_LAX_SR. In this figure, red 

dots implied higher values, and blue dots implied lower values for the features. 
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Thus, when LA_diast_radial_LAX_SR feature values are high (red), they have a 

strong positive impact on the prediction. On the contrary, when 

LV_radial_LAX_S and LA_syst_long_LAX_SR feature values are low (blue), they 

have a strong negative impact on the prediction [5].  

 

 
 

 
Figure 50. Global SHAP analysis of feature contributions of NC and CS diagnosis 

discrimination [5]. Top six most corresponding variables to the prediction of the cardiac 
sarcoidosis.
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6.4.2. LIME Explainer of the Scenarios that are Most Disruptive to System 
Order 

  

Following SHAP, which was utilized for global explanation in the previous 

section, LIME is helpful in interpreting the predictions and disease outcomes for 

each patient as an individual case. The LIME [40,49,123] plot describes how 

various features influence the predicted disease diagnosis of the patient. Each 

feature is depicted by a colored bar, where red signifies a negative impact (class 

0: CTRL, class 1: NC, and class 2: CS), and green indicates a positive impact. The 

length of the bar corresponds to the strength of the impact, with longer bars 

indicating a more pronounced influence. For instance, Figure 51 (top figure) is 

the local interpretation for a patient with an instance number of 30, which 

describes that RV_EF has the most negative impact and RA_long_LAX has the 

most positive impact on the prediction of class 1, which indicates that the patient 

is not diagnosed with cardiac sarcoidosis. This result addresses the objective of 

x.Phi.16 – Able to Identify Healthy Volunteers Before Starting the Procedures. 
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Figure 51. Local explanation of a patient with index number 30 prediction class using LIME; three clusters CTRL, NC Sarc., Sarc. (with 
age). RV_EF  and LV_diast_circumf_SAX_SR are the most negative correspondence  to the prediction of patient 30 cardiac sarcoidosis 

status.
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Figure 52. Local explanation of a patient with index number 10 prediction class using LIME; 

two clusters NC Sarc. versus Sarc. (with age) (enhanced with feature selection). Higher value of 
the most important features (except age) correspond to higher prediction probability that the 

patient does not diagnose with cardiac sarcoidosis.   

 
Figure 52 describes the LIME explanation for patients with index number 10. 

The probability of the patient being diagnosed with class 0 (CTRL) is 94%. The 

figure describes which of the five features positively corresponds with the class 0 

prediction of this instance, such as the higher value of LV_syst_radial_LAX_SR 

and the lower value for age. This analysis assists in explaining which features 

impact the prediction results [40]. 

 
6.4.3. Anchors Explainer of the Scenarios that are Most Disruptive to System 

Order 
 

As discussed earlier, SHAP is both a global and local explainer, while LIME is 

a local explainer. LIME has the disadvantage of being incapable of explaining 

models with non-decision boundaries, and it is not capable of explaining 

surrounding instances [124]. However, SHAP computation is costly and has the 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

160 

disadvantage of misinterpreting SHAP values11 [124]. Considering all the 

disadvantages of SHAP and LIME, Anchors, as another explainer, has been 

developed for this case. Anchors [125] are independent of the underlying model 

(model agnostic) that uses reinforcement learning methods to calculate the set of 

feature conditions [124]. Unlike SHAP, it does not impose a significant 

computational burden. It exhibits superior generalizability compared to LIME 

and can elucidate non-linear decision boundaries by operating on feature 

predicates instead of attempting to fit a linear model to the data [124]. 

Figure 53 describes an anchor local explanation for a patient with instance 

number 30. The length of the bars represents the values of individual features for 

the selected instance, offering insight into the significance of each feature 

concerning that instance and its predicted class. Features exhibiting noticeable 

differences across classes are likely pivotal factors influencing the decision of the 

model. The figure depicts the local explanation utilizing Anchors with fitting on 

the random forest classifier, which is classified into three categories: CTRL, NC, 

and CS. The bar chart depicts the significance or impact of 37 individual features. 

The objective is to elucidate the decision-making process of the model by 

emphasizing the important features that provide the most significant impact on 

the outcome of the model. All 37 features were scaled to have the same range for 

all features. The graph describes that LV_diast_radial_SAX_SR and 

LA_diast_long_LAX_SR have the most negative impacts on the outcome 

predictions, while LV_diast_circumf_SAX_SR and LA_long_LAX_S have the 

 
 
11 SHAP values explain the deviation from mean prediction and not the prediction [124]. 
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most positive impact and contributions to the outcome prediction results. These 

results will be assessed by physicians and medical experts for validation.  

 

 
Figure 53. Local explanation of a patient with index number 30 prediction class using Anchors; 

three clusters CTRL, NC Sarc., and Sarc. (with age). LV_diast_radial_SAX_SR and 
LV_diast_circumf_SAX_SR are most correspondence to the prediction of the patient 30 cardiac 

sarcoidosis status.  
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The only way to detect cardiac sarcoidosis is by using contrast agents during 

imaging. However, this chapter describes that a non-contrast diagnosis approach 

using machine learning has the potential to detect subclinical cardiac 

involvement. This approach can help identify early signs of cardiac sarcoidosis in 

patients who do not yet show symptoms. This is particularly beneficial for 

patients who cannot tolerate contrast agents or for whom they are 

contraindicated. While contrast agents remain an important tool in detecting 

cardiac sarcoidosis, the non-contrast diagnosis approach using machine learning 

is a promising development in the diagnosis and management of this condition.  

 

6.5. GitHub Codes Link for Chapter 6 

 

The following is the link to Chapter 6 codes: 
 
https://github.com/nm2fs/PhD-

Dissertation/tree/3c5a70bfffc03100ce5ac284f818f3495a29f6b5/chapter6 

 

6.6. Summary 

 
In summary, this chapter describes a comprehensive systems modeling 

framework aimed at enhancing trust in AI-assisted medical diagnosis, with a 

specific focus on the diagnosis of cardiac sarcoidosis and utilizing XAI 

techniques. The design includes two primary sections: 1. Identifying the most 

and least disruptive scenarios to the system, as well as the highest ranked 

initiatives for the system. 2. Utilizing XAI techniques such as SHAP, LIME, and 

Anchors models to provide explanations on how machine learning models justify 

https://github.com/nm2fs/PhD-Dissertation/tree/3c5a70bfffc03100ce5ac284f818f3495a29f6b5/chapter6
https://github.com/nm2fs/PhD-Dissertation/tree/3c5a70bfffc03100ce5ac284f818f3495a29f6b5/chapter6
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their outcomes. The findings indicate the significance of employing XAI in 

critical domains like healthcare, where the lives of the patients are in jeopardy. 

XAI can be employed to analyze the outcomes for AI users, determine the 

significance of features, improve comprehension of AI outputs, reduce 

skepticism towards AI outputs, and facilitate data assessment.  
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Chapter 7 | Case 3: Function (Phi) Layer – 

Perspectives Comparison 

 
7.1. Introduction 

 
This chapter describes a scenario-based preference risk register framework for 

quantifying AI-related risks in disease diagnosis from the perspectives of two 

expert groups. Two case studies, one involving physicians and the other 

involving patients as the leading experts and actors, are compared to evaluate 

the effectiveness of the framework and to evaluate how the initiatives ranking 

orders will evolve based on the most and least disruptive scenarios for each case. 

The framework is applied to realistic case studies on cardiac sarcoidosis, 

identifying success criteria, initiatives, emergent conditions, and the most and 

least disruptive scenarios. The success criteria align with the NIST AI Risk 

Management Framework seven trustworthy AI principles. Finally, the framework 
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identifies the most and least disruptive scenarios and the highest ranked 

initiatives for both cases. Results from Chapter 6 multicriteria decision analysis 

will be compared to those obtained in this chapter to show how changing 

perspectives and the involvement of other experts and actors will change 

initiatives, order disruptions, and scenarios.  

The introduction of AI in the healthcare domain holds great promise for 

improving medical research. However, it is essential to incorporate patient 

values, needs, and perspectives when implementing AI to meet their preferences 

and concerns. Below are some related studies by other researchers that consider 

the priorities and concerns of patients regarding the use of AI in healthcare 

systems [68]. 

Macri and Roberts stated that previous studies have explored various aspects 

of the views of patients, values, and worries related to the use of AI in healthcare. 

These concerns are comprised of trust, compassion, privacy [126], safety, 

autonomy, and fairness. To navigate these complexities, adopting a proposed 

values-based framework by the authors is essential. These frameworks assist 

healthcare providers and AI designers in addressing patient questions and 

designing AI systems that align with patients identified values. Considering the 

priorities of patients can support collaborative decision-making across a wide 

range of clinical AI applications, ensuring that choices are aligned with patient 

values and expectations [68,127]. 

Al Kuweiti et al. mentioned that healthcare innovations are derived from the 

experiences and needs of patients. Patients seek to have empowered digital 

interactions with their healthcare providers and access patient centered services 

on a global scale [128]. Ethical and societal issues related to AI intersect with 
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those arising from technology, automation, data use, and the growing use of 

telehealth and other technologies. As AI grows, ethical concerns [126,129,130] 

become an important problem that needs careful attention. These include 

accountability in AI driven decision making, the potential for AI to make 

incorrect judgments, issues with validation of AI results, the protection of 

sensitive data, systemic data, and algorithmic biases in AI training data [18], 

maintaining public trust in the development of AI and its benefits, its impact on 

privacy and liberty of each individual, and social isolation in healthcare settings, 

implications for healthcare roles of professionals and skills, and the potential 

misuse of AI. In addition, using AI for treatment, decision making, and managing 

healthcare devices introduces safety and reliability concerns. Despite its 

potential, AI is not resistant to errors, which can be challenging to detect and may 

have serious consequences. The lack of "explainability" [126] poses a significant 

challenge for AI, particularly in its practical applications across various fields, 

specifically in high-risk domains such as healthcare and national security [68]. 

Aggarwal et al. mentioned the issue of bias in AI algorithms used in healthcare 

[131]. They demonstrate how using biased or unsuitable data can exacerbate 

healthcare disparities and harm people. They also emphasize the importance of 

diversity, transparency, and accountability in developing AI algorithms, with a 

particular focus on addressing bias [126] and promoting fairness through AI in 

healthcare [132]. AI algorithms learn from data through a computational process. 

This can inadvertently perpetuate historical biases, such as those related to race, 

gender, or any demographic information, often without the awareness or intent 

of developers or practitioners. This issue is exacerbated when a diverse group of 

experts and actors, including patients and healthcare professionals, 
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characterizing the diversity of the populations served by AI solutions, are not 

involved in the decision making processes that shape and implement AI 

solutions [132]. Bias could be in various forms, such as data bias and algorithmic 

bias. Algorithmic bias could result from data bias [133]. Thus, it is important not 

to use biased data in training AI models, as garbage in leads to garbage out 

[18,68]. 

Moreover, Agarwal et al. emphasize the important role of early and accurate 

disease detection using AI models. Such methods can significantly reduce 

mortality rates, enhance disease prognosis, and identify risk factors [126] that 

contribute to complications, challenges, healthcare costs, and time [134]. 

Similarly, Kasthuri and Meeradevi describe the significance of early detection in 

healthcare AI diagnosis, especially for diseases that require immediate attention, 

such as breast cancer. Early detection plays a critical role in addressing patient 

concerns and ensuring timely interventions [68,135]. 

Khedkar et al. discuss that the concern for patients in healthcare AI diagnosis 

is their ability to understand and trust the predictions made by AI models [136]. 

This result aligns with the results from [6] that the lack of explainability and 

interpretability of AI in healthcare is the most disruptive scenario in ordering the 

initiatives and objectives of the experts and actors in healthcare [68].  

Moghadasi et al. note that the priorities of the patients regarding the impact 

and the risks of AI in medical diagnosis depend on the specific context. This 

highlights the importance of not making broad generalizations about patient 

perspectives across all contexts and healthcare settings [6,18]. 

This chapter is an extension to the papers titled “Systems Analysis of Bias and 

Risk in AI-enabled Medical Diagnosis” and “Risk Analysis of Artificial 
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Intelligence in Healthcare with Multilayer Concept of System Order” by 

Moghadasi et al. [6,68] to involve patients as the leading experts and actors to 

quantify risk as the disruption of the order of initiatives in healthcare systems 

with the focus on diagnosing cardiac sarcoidosis.  

As mentioned in Chapter 6, sarcoidosis is a systemic, inflammatory, and 

granulomatous disease of uncertain etiology. Timely detection of cardiac 

sarcoidosis is crucial for patients to prevent further harm to the heart and other 

organs [18,68]. 

Experts and actors in Chapter 6 are limited to physicians with specialties in 

radiology, cardiac imaging, and cardiology. It is essential to acknowledge that in 

the healthcare sector, individuals such as patients, caregiving partners, and 

community entities are taking on more prominent roles as experts and actors. 

Their expertise is supported by their personal experiences, which is a form of 

knowledge gaining recognition in a balance with established sources in various 

contexts. Consequently, their active participation is essential at every phase, 

beginning with the initial conceptualization and preliminary analysis of AI 

applications in healthcare. Thus, the results from Chapter 6 will be compared 

with the results from the most and least disruptive scenarios in this chapter and 

observe how the ranking orders will change by involving different experts and 

actors in the system. 
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7.2. Scenario-Based Disruption of Priorities (Function (Phi) Layer) 

 
This section develops a mathematical framework to help analysts 

comprehend which potential future conditions have the most significant 

disruptive impact on system priorities and how these priorities evolve in 

response to such disruptions. The framework aids experts and actors in selecting 

resilience measures based on evolving priorities in the face of disruptions. The 

results show what initiatives are most important for the patients and for the 

physicians and what scenarios disrupt these initiatives.  

For the sake of illustration, experts and actors are represented as two patients 

suspected to have cardiac sarcoidosis symptoms and signs. The engagement of 

patients commenced at an early stage of the study, encompassing activities such 

as identifying initiatives, emergent conditions, and scenarios and participating 

in the scoring and ranking assessments. These interactions were conducted 

through oral interviews to gather patient evidence by HDZ_NRW medical 

experts and actors12. In addition, medical experts and actors were invited for 

interviews to identify further initiatives and emerging factors, as well as to 

evaluate and assess them. Thus, to ensure a comprehensive understanding of the 

risks involved and to capture the nuances of patient experiences, medical experts 

 
 
12  Due to the privacy protection of the patients, all the patients’ information is protected and will 
not be shared with external sources. The medical experts and actors conducted all the interviews 
with the patients. 

One limitation of this chapter was the scarcity of patients suspected of having cardiac 
sarcoidosis. This was due to restrictions in Germany that limited direct access to patients for 
privacy and information protection and the scarcity of cardiac sarcoidosis disease. As a result, 
the number of patients included in the case study was limited to two. However, to obtain more 
precise results, a larger number of patients are required for the case study. 
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collaborated closely with patients throughout the risk assessment process. 

Patients were actively involved in identifying potential risks, providing insights 

into their perceptions and concerns, and contributing to the development of 

mitigation strategies. Patients suspected to have cardiac sarcoidosis symptoms 

and signs were asked to complete risk register tables, as discussed in Chapter 3. 

These tables include prompts to identify potential risks associated with their 

condition and assess their severity and likelihood. Thus, the inputs from the 

patients were gathered not through a formal survey but rather through informal 

interviews conducted by the medical experts. 

Patients formulate sets of initiatives, emergent conditions, and scenarios for 

analysis. They also derived from various sources, including third-party program 

analysis, literature reviews, established standards, internal expertise, and other 

references.  

Table 38 describes that all seven criteria have a high relevance among the 

other criteria. For instance, c.04 – Privacy Enhanced has a high relevance among 

the other criteria. 
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Table 38. Baseline relevance for cardiac sarcoidosis diagnosis in enterprise risk management of 
AI in healthcare [68]. 

The criterion c.xx has s.00 - 
Baseline 

relevance 
among the 

other 
criteria 

c.01 - Safe has high relevance 

c.02 - Secure & Resilient has high relevance 
c.03 - Explainable & Interpretable has high relevance 
c.04 - Privacy Enhanced has high relevance 
c.05 - Fair - With Harmful Bias Managed has high relevance 
c.06 - Accountable & Transparent has medium relevance 

c.07 - Valid & Reliable has high relevance 

 
 
Table 39 describes forty-three initiatives that the patients and the analysts 

identified. 
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Table 39. Initiatives address one or more of the success criteria for the risk of AI in cardiac 
sarcoidosis diagnosis. Abridged and adapted from various sources that are identified in the 

narrative [34,68,129,137–150]. 

Index Initiative 
x.01 Identify At-Risk Components 
x.02 Understanding ML Tools to Uncover Any Patterns in Data 
x.03 Maintaining the Provenance of Training Data 
x.04 Safety/Verifiability of Automated Analyses (Cardiac Region Detection Software) 
x.05 Reproducible Data and Method in Other Health Centers 
x.06 Correctly Labeling the Data 
x.07 Training Data to Follow Application Intellectual Property Rights Laws 
x.08 Informed Consent to Use Data 
x.09 Maintain Organizational Practices Like Implement Risk Management to Reduce Harm 

Reduction and More Accountable Systems 
x.10 Prioritization Policies and Resources Based on Assesses Risk Levels 
x.11 Safety of Personally Identifiable Information 
x.12 Effective Risk Management by Appropriate Accountability Mechanism, Roles and 

Responsibilities, and Incentive Structures for Risk Management to be Effective 
x.13 Avoid Gender and Age Discriminations and Bias in Preparing Data 
x.14 Reducing Unnecessarily Procedures 
x.15 Reducing Costs and Time Consumption 
x.16 Able to Identify Healthy Volunteers before Starting the Procedures 
x.17 Designate Ethical, Legal, Societal and Technical Boundaries for AI Operation 
x.18 Policymakers to Ensure the Moral Demanding Situations are Tackled Proactively 

x.19 Articulate and Document the Concept and Objectives of the System Considering Legal, 
Regulatory and Ethical Requirements 

x.20 Gather, Clean and Validate Data and Document the Metadata, Also Characteristics of 
the Dataset Considering Legal, Regulatory and Ethical Requirements 

x.21 - Key steps for implementing a new software system: Pilot, Compatibility with Legacy 
Systems, Regulatory Compliance, Organizational Change Management, and User 
Experience Evaluation 

x.22 Continuously Assess AI System Recommendations and Impacts 
x.23 Balancing and Trade Off of Trustworthy AI System Characteristics Based on Context 
x.24 Reducing the Hospitalization Time of the Patient by Correct Diagnostics 
x.25 Explain and Identify Most Important Features Using AI Models 
x.26 Measurements Outlier Findings 
x.27 Closeness of Results of Estimates, Observations and Computations to the Ground True 

(True Values) 
x.28 Human-AI Teaming 
x.29 Demonstrate Validity or Generalizability Beyond the Training Conditions 
x.30 System Ability to Maintain its Performance Under an Uncertain Circumstances 
x.31 Minimizing Potential Harms to People Under Unexpected Operating Settings 
x.32 Responsible AI System Design, Development and Deployment Practices 
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x.33 Clear Information to the Users on Responsible Use of the AI System 
x.34 Deployers and End Users to Make Responsible Decisions 
x.35 Documentation and Explanation of Risks, Grounded in Empirical Evidence from Past 

Incidents 
x.36 The Ability to Control, Adjust, or Involve Humans in Systems When They Do Not 

Perform as Intended or Expected 
x.37 Clear and Distinct Definitions of Human Roles and Responsibilities Are Essential for 

Decision Making and Oversight in the Context of AI Systems 
x.38 AI Systems May Need More Frequent Maintenance and Triggers for Corrective 

Maintenance Because of Data, Model, or Concept Drift 
x.39 Managing Risks from Lack of Explainability by Defining the AI Systems Functions 

Considering Users’ Role, Knowledge and Skill Level 
x.40 The Ability to Describe Why an AI System Made a Specific Prediction or 

Recommendation 
x.41 Securing Individual Privacy, Anonymity and Confidentiality 
x.42 The Process of Removing Identifying Information and Combining Specific Model 

Results to Maintain Privacy and Confidentiality in Certain Model Outputs 
x.43 Strengthened Engagement with Relevant AI Actors and Interested Experts and Actors 
x.i Others 

 
 

Analysts, acting on behalf of the patients, assess the relevance of each 

initiative to a specific criterion through a response scale, including "strongly 

agree," "agree," "somewhat agree," or "neutral," corresponding to initial even split 

weights of 1, 2/3, 1/3, and 0, respectively. For instance, in the case of the success 

criterion c.04 - Privacy Enhanced and an initiative such as x.41 - Securing Individual 

Privacy, Anonymity and Confidentiality impacts Privacy Enhanced, the evaluation 

would be "strongly agree" as shown in Table 40. 
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Table 40. The criteria-initiative assessment describes how well each initiative addresses the 
success criteria for the risk of AI in cardiac sarcoidosis diagnosis. Strongly agree is represented 

by a filled circle (●), agree is represented by a half-filled circle (◐), somewhat agree is represented 
by an unfilled circle (○), and neutral is represented by a dash (➖) [68]. 

 c.01 c.02 c.03 c.04 c.05 c.06 c.07 
x.01 ● ◐ ○ ○ ○ ○ ○ 
x.02 ➖ ➖ ○ ➖ ➖ ○ ○ 
x.03 ➖ ➖ ◐ ○ ◐ ◐ ○ 
x.04 ● ● ◐ ◐ ● ● ● 
x.05 ● ● ● ● ● ● ● 
x.06 ◐ ◐ ➖ ◐ ● ● ● 
x.07 ➖ ○ ➖ ● ◐ ◐ ◐ 
x.08 ● ● ◐ ● ◐ ● ◐ 
x.09 ➖ ○ ➖ ● ◐ ◐ ◐ 
x.10 ➖ ○ ➖ ● ◐ ◐ ◐ 
x.11 ● ● ◐ ● ◐ ● ◐ 
x.12 ○ ○ ◐ ➖ ➖ ○ ◐ 
x.13 ● ● ◐ ◐ ● ● ● 
x.14 ● ● ◐ ○ ● ● ● 
x.15 ● ● ○ ○ ● ● ● 
x.16 ○ ○ ○ ○ ○ ○ ● 
x.17 ○ ○ ◐ ○ ○ ◐ ◐ 
x.18 ○ ○ ◐ ○ ○ ○ ◐ 
x.19 ○ ○ ◐ ○ ○ ○ ◐ 
x.20 ◐ ◐ ◐ ○ ○ ○ ◐ 
x.21 ○ ○ ○ ○ ○ ○ ○ 
x.22 ○ ○ ○ ○ ○ ○ ○ 
x.23 ○ ○ ◐ ○ ◐ ◐ ◐ 
x.24 ● ● ● ◐ ● ● ● 
x.25 ○ ○ ◐ ○ ○ ◐ ○ 
x.26 ➖ ➖ ➖ ➖ ➖ ➖ ➖ 
x.27 ● ● ◐ ◐ ◐ ● ● 
x.28 ◐ ○ ○ ○ ○ ○ ○ 
x.29 ○ ○ ○ ◐ ◐ ➖ ◐ 
x.30 ○ ○ ○ ◐ ◐ ➖ ◐ 
x.31 ● ● ◐ ◐ ● ● ● 
x.32 ◐ ◐ ➖ ● ● ○ ◐ 
x.33 ○ ○ ○ ◐ ◐ ◐ ○ 
x.34 ◐ ◐ ➖ ● ● ○ ◐ 
x.35 ○ ○ ◐ ○ ○ ◐ ○ 
x.36 ○ ○ ● ○ ○ ○ ○ 
x.37 ○ ○ ◐ ○ ○ ◐ ○ 
x.38 ◐ ◐ ➖ ➖ ○ ➖ ◐ 
x.39 ○ ○ ● ➖ ➖ ◐ ○ 
x.40 ● ● ● ○ ● ● ● 
x.41 ● ● ○ ● ● ● ● 
x.42 ◐ ◐ ● ○ ◐ ◐ ◐ 
x.43 ○ ○ ○ ○ ○ ○ ○ 
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Table 41 describes the emergent conditions that were identified, and Table 42 

describes the scenarios that were developed by grouping the emergent 

conditions.  

 

Table 41. Emergent conditions were used to create sets of scenarios for the risk of AI in cardiac 
sarcoidosis diagnosis. Abridged and adapted from various sources that are identified in the 

narrative [6,11,34,68,137–139,143,150,151]. 

Index Emergent Condition 
e.01 Using Non-Important Features in Sarcoidosis Diagnostics as the Input 
e.02 Improperly Labeling the Data in Surgery-Specific Patient Registries 
e.03 Issue of Incorrect Identification and Labeling of Variables in Registries Used for 

Surgery-Related Patient Data, Highlighting the Potential Consequences of Such 
Misidentification 

e.04 Misunderstanding AI 
e.05 Limited Generalizability 
e.06 Limitation in Types and Performance of Available Data 
e.07 Expensive Data Collection 
e.08 Time Consuming Data Collection 
e.09 Policy and Regulation Changes 
e.10 Difficult and Complex AI Algorithms Interpretability 
e.11 Lack of AI Determination of Casual Relationships in Data at Clinical Implementation 

Level 
e.12 Inability of AI in Providing an Automated Clinical Interpretation of its Analysis 
e.13 Human Errors in Measurements 
e.14 Abuse or Misuse of the AI Model or Data 
e.15 Challenges with Training Data to be Subject to Copyright 
e.16 Complicate Risk Measurement by Third Party Software, Hardware and Data 
e.17 Model Fails to Generalize  
e.18 Lack of Robustness and Verifiable Methods for AI Trustworthiness 
e.19 Mis-Identification of Different Risk Perspective in Early or Late Stages of AI Lifecycle 
e.20 Difference Between Controlled Environment vs. Uncontrollable and Real-World 

Settings 
e.21 Inscrutable Nature of AI Systems in Risk Measurements 
e.22 Systematic Biases in Collecting Clinical Data 
e.23 Risk Tolerance Influence by Legal or Regulatory Requirements Changes 
e.24 Unrealistic Expectations About Risk to Misallocate Resources 
e.25 Residual Risk after Risk Treatment Directly Impacts Healthcare Deployers 
e.26 Privacy Concerns Regarding Using Underlying Data to Train the Systems 
e.27 The Energy and Environmental Implications Causing from Resource Heavy 

Computing Demands 
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e.28 Security Concerns Related to the Confidentiality of the System Training and Output 
e.29 Security of the System Underlying Software and Hardware 
e.30 One-Size-Fits-All Requirements AI Model Challenges 
e.31 Neglecting the Trustworthy AI Characteristics 
e.32 Difficult Decisions in Tradeoff and Balancing Trustworthy AI Characteristics by 

Organizations 
e.33 Subject Matter Experts and Actors Collaborate to Evaluate TEVV Findings, Aligning 

Parameters with Project Requirements and Deployment Conditions 
e.34 Different Perception of the Trustworthy AI Characteristics Between AI Designer than 

the Deployer 
e.35 Potential Risk of Serious Injury to the Patients 
e.36 Complexity of Explaining AI System to End Users 
e.37 Data Poisoning 
e.38 Negative Risks Result from an Inability to Appropriately Understand or Contextualize 

System Output 
e.39 AI Allowing Inference to Identify Individuals or their Private Information 
e.40 Privacy Intrusions 
e.41 Data Sparsity 
e.42 Fairness Perceptions Difference Among Cultures and Applications 
e.43 Computational and Statistical Biases Stem from Systematic Errors Due to Limited and 

Non-Representative Samples 
e.44 Human-Cognitive Biases Relates to How the Experts and Actors Perceives AI System 

Information and Use them to Make Decisions 
e.45 Lack of Access to the Ground Truth in the Dataset  
e.46 Intentional or Unintentional Changes During Training 
e.47 Increased Opacity and Concerns About Reproducibility 
e.48 Impacts of Computational Costs on the Environment and Planet 
e.49 Incapacity to Anticipate or Identify the Adverse Effects of AI-Driven Systems Beyond 

Statistical Metrics 
e.50 Over-Reliance on AI 
e.i Others 
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Emergent conditions and scenarios do not aim to encompass all conceivable 

future states or disruptions but focus on the concerns of system experts, actors, 

and analysts. 

Table 42 also describes ten scenarios as listed in Chapter 6 which are s.01 – 

Funding Decrease, s.02 – Government Regulation and Policy Changes, s.03 – Privacy 

Attacks, s.04 – Cyber Security Threats, s.05 – Changes in AI RMF, s.06 – Non-

Interpretable AI and Lack of Human-AI Communications, s.07 – Global Economic and 

Societal Crisis, s.08 – Human Errors in Design, Develop, Measurement and 

Implementation, s.09 – Uncontrollable Environment, and s.10 – Expensive Design 

Process. 
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Table 42. Emergent conditions grouping in the risk of AI in the diagnosis of cardiac sarcoidosis, 
identifying which conditions fit in each scenario, from various sources that are identified in the 

narrative [6,68]. 
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e.01  ✓      ✓   
e.02  ✓ ✓  ✓  ✓    
e.03  ✓   ✓ ✓  ✓   
e.04  ✓         
e.05 ✓    ✓  ✓ ✓ ✓ ✓ 
e.06       ✓ ✓ ✓ ✓ 
e.07 ✓      ✓ ✓ ✓ ✓ 
e.08 ✓         ✓ 
e.09      ✓     
e.10  ✓         
e.11      ✓     
e.12  ✓         
e.13  ✓      ✓   
e.14 ✓ ✓   ✓ ✓  ✓   
e.15     ✓      
e.16  ✓         
e.17 ✓    ✓  ✓ ✓ ✓ ✓ 
e.18 ✓ ✓   ✓  ✓ ✓ ✓ ✓ 
e.19  ✓         
e.20 ✓ ✓   ✓  ✓  ✓ ✓ 
e.21  ✓         
e.22 ✓    ✓  ✓ ✓ ✓ ✓ 
e.23      ✓     
e.24  ✓     ✓ ✓ ✓ ✓ 
e.25      ✓     
e.26   ✓        
e.27         ✓  
e.28   ✓ ✓       
e.29    ✓       
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e.30       ✓ ✓ ✓ ✓ 
e.31 ✓ ✓ ✓  ✓      
e.32  ✓    ✓     
e.33  ✓    ✓     
e.34 ✓ ✓   ✓   ✓   
e.35  ✓         
e.36  ✓         
e.37 ✓ ✓   ✓ ✓  ✓   
e.38  ✓         
e.39  ✓ ✓     ✓   
e.40   ✓        
e.41       ✓ ✓  ✓ 
e.42 ✓          
e.43 ✓      ✓ ✓ ✓ ✓ 
e.44     ✓      
e.45       ✓ ✓ ✓ ✓ 
e.46 ✓ ✓   ✓      
e.47       ✓ ✓ ✓ ✓ 
e.48       ✓ ✓ ✓ ✓ 
e.49  ✓         
e.50  ✓         
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For comparison, Table 39 and Table 41 are similar to the initiatives and 

emergent conditions identified in Chapter 6. The impact of scenarios on priorities 

is observed in terms of how scenarios influence the relative importance of success 

criteria. In other words, system priorities change when the system is exposed to 

disruptions. Patients then adjust the importance of the criteria for each scenario. 

Analysts evaluate if the relative importance of criterion c.j, increases, increases 

somewhat, remains unchanged (-), decreases somewhat, or decreases for scenario s.p 

compared to the baseline s.00.  

 

 

Table 43 describes the criteria_scenario relevance, and Table 44 describes the 

initiative-scenario ranking chart. 

 
 

Table 43. The criteria-scenario relevance describes how well each scenario fits the success 
criterion for cardiac sarcoidosis diagnosis in the risk of AI in cardiac sarcoidosis diagnosis. 

Decrease Somewhat = DS, Decrease = D, Somewhat Increase = SI, Increase = I [10,68]. 
 

 s.01 s.02 s.03 s.04 s.05 s.06 s.07 s.08 s.09 s.10 
c.01 DS IS D D IS DS - D DS DS 
c.02 DS IS D D IS DS - - DS DS 
c.03 DS IS - - IS D - - D - 
c.04 - I D D - - - D DS - 
c.05 DS I DS DS IS DS DS D DS DS 
c.06 DS IS D D I D - D D DS 
c.07 DS IS D D I D - D D DS 
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Table 44. Initiative-scenario ranking chart. This table describes the ranking of each initiative 
under each scenario. The green filled cells show a higher ranking and the red and orange filled 

cells indicate a lower ranking. 
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x.01 19 25 22 26 26 19 24 18 18 18 34 
x.02 42 42 42 41 41 42 42 42 42 42 41 
x.03 35 35 35 24 24 38 35 41 34 36 32 
x.04 4 6 4 6 6 5 8 4 5 4 7 
x.05 1 1 1 1 1 1 1 1 1 1 1 
x.06 13 15 13 32 32 13 15 14 26 13 28 
x.07 24 12 19 38 38 33 12 28 39 23 23 
x.08 8 3 8 10 10 11 3 8 8 8 4 
x.09 24 12 19 38 38 33 12 28 39 23 23 
x.10 24 12 19 38 38 33 12 28 39 23 23 
x.11 8 3 8 10 10 11 3 8 8 8 4 
x.12 41 41 41 25 25 36 41 36 25 41 40 
x.13 4 6 4 6 6 5 8 4 5 4 7 
x.14 10 17 11 9 9 8 17 11 8 10 12 
x.15 12 18 12 17 17 10 18 12 13 12 16 
x.16 27 29 27 30 30 21 29 24 32 27 35 
x.17 21 26 26 18 18 20 26 20 19 26 19 
x.18 29 27 29 19 19 22 27 21 20 27 26 
x.19  29 27 29 19 19 22 27 21 20 27 26 
x.20 17 23 17 15 15 17 23 17 14 17 17 
x.21 38 36 37 33 33 39 36 38 36 37 37 
x.22 38 36 37 33 33 39 36 38 36 37 37 
x.23 18 24 18 16 16 18 25 19 17 19 18 
x.24 2 5 3 2 2 2 7 2 2 3 2 
x.25 31 31 31 21 21 28 31 31 22 31 29 
x.26 43 43 43 43 43 43 43 43 43 43 43 
x.27 10 11 10 10 10 9 11 10 8 10 10 
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x.28 34 34 34 31 31 37 34 35 33 34 36 
x.29 22 20 24 28 28 26 20 26 30 21 21 
x.30 22 20 24 28 28 26 20 26 30 21 21 
x.31 4 6 4 6 6 5 8 4 5 4 7 
x.32 15 9 14 36 36 15 5 15 27 14 14 
x.33 20 19 23 27 27 25 19 25 29 20 19 
x.34 15 9 14 36 36 15 5 15 27 14 14 
x.35 31 31 31 21 21 28 31 31 22 31 29 
x.36 27 29 27 13 13 24 30 21 15 27 13 
x.37 31 31 31 21 21 28 31 31 22 31 29 
x.38 37 40 36 42 42 32 39 37 35 35 42 
x.39 35 39 40 14 14 31 40 34 16 40 33 
x.40 4 16 7 3 3 3 16 4 3 7 6 
x.41 2 2 2 5 5 4 2 2 4 2 2 
x.42 14 22 16 4 4 14 22 13 12 16 11 
x.43 38 36 37 33 33 39 36 38 36 37 37 

 

These assessments rely on expertise, institutional knowledge, and iteration 

with other experts and actors.  

In Figure 54, each scenario is given a disruptiveness score; the higher the 

score, the more disruptive the scenario will be to the system [10]. This figure 

describes that s.03 – Privacy Attacks, s.04 - Cyber Security Threats, s.06 – Non-

Interpretable AI and Lack of Human-AI Communications, and s.08 – Human Errors in 

Design, Develop, Measurement and Implementation are predicted to have the highest 

disruption among other scenarios in the realistic case study of the diagnosis of 

cardiac sarcoidosis. Features are drawn from the experience of the authors. 

In Figure 55, the chart describes the fluctuation in the prioritization of 

initiatives across different scenarios. The ranking of initiatives offers a holistic 

view of their overall performance. The highest ranked initiatives are x.04 - 

Safety/Verifiability of Automated Analyses (Cardiac Region Detection Software), x.05 - 

Reproducible Data and Method in Other Health Centers, x.08 - Informed Consent to Use 
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Data, x.11 - Safety of Personally Identifiable Information, x.13 - Avoid Gender and Age 

Discriminations and Bias in Preparing Data, x.14 - Reducing Unnecessarily Procedures, 

x.15 - Reducing Costs and Time Consumption, x.24 - Reducing the Hospitalization Time 

of the Patient by Correct Diagnostics, x.27 - Closeness of Results of Observations, 

Computations, or Estimates to the True Values or the Values Accepted as Being True, 

x.31 - Minimizing Potential Harms to People if it is Operating in an Unexpected Setting, 

x.40 - Communicating a Description of Why an AI System Made a Particular Prediction 

or Recommendation, and x.41 - Securing Individual Privacy, Anonymity, and 

Confidentiality.
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Figure 54. The disruptive score of scenarios is based on the sum of squared differences in the priority of initiatives relative to the 

baseline scenario in the risk analysis of AI in cardiac sarcoidosis diagnosis. 
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Figure 55. Distributions of initiatives that influence rankings are based on which emergent conditions could arise more often or do not 

occur in the risk of AI in cardiac sarcoidosis diagnosis; blue means promotion in ranking and red means demotion in ranking.
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The findings may not be extrapolated to other clinical centers in different 

geographical locations or even other departments within the same hospital. So, 

the framework should be generated for each case study individually. However, 

the framework is generalizable beyond the diagnosis of sarcoidosis and could be 

applied to any medical diagnosis [152]. 

Figure 56, derived from Chapter 6, involving physicians as the leading 

experts and actors, reveals that several scenarios hold the highest potential for 

disruption in the real-world diagnosis of cardiac sarcoidosis. Specifically, these 

scenarios include s.06 – Non-Interpretable AI and Lack of Human-AI 

Communications, s.03– Privacy attacks, and 08 – Human Errors in Design, Develop, 

Measurement and Implementation have the highest disruption among other 

scenarios.  

Additionally, Figure 57, also sourced from Chapter 6, highlights the most 

significant initiatives in this context by involving physicians (medical experts and 

actors) as the leading experts and actors. These initiatives are as follows: x.Phi.24 

– Reducing the Hospitalization Time of the Patient by Correct Diagnostics, x.Phi.28 – 

Human-AI Teaming, x.Phi.32 – Responsible AI System Design, Development and 

Deployment Practices, x.Phi.29 – Demonstrate Validity or Generalizability Beyond the 

Training Conditions, x.Phi.27 – Closeness of Results of Estimates, Observations and 

Computations to the Ground True (True Values), x.Phi.25 – Explain and Identify Most 

Important Features Using AI Models, x.Phi.20 – Gather, Clean and Validate Data and 

Document the Metadata, Also Characteristics of the Dataset Considering Legal, 

Regulatory and Ethical Requirements, x.Phi.16 – Able to Identify Healthy Volunteers 

before Starting the Procedures, x.Phi.06 – Correctly Labeling the Data and x.Phi.04 – 

Safety/Verifiability of Automated Analyses (Cardiac region detection software).
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Figure 56. The disruptive score of scenarios is based on the sum of squared differences in the priority of initiatives relative to the 

baseline scenario in the risk of AI in cardiac sarcoidosis diagnosis.
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Figure 57. Distributions of initiatives that influence rankings are based on which emergent conditions that could arise more often or do 

not occur in the risk analysis of AI in cardiac sarcoidosis diagnosis; blue means promotion in ranking and red means demotion in 
ranking.
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The methods employed in this chapter serve to enhance transparency and, by 

involving patients, identify the unintended adverse consequences of AI 

applications within healthcare systems. The initiatives and emergent conditions 

will continue to evolve with additional findings and are not confined to the lists 

provided above. 

On the one hand, Table 45 described that the most disruptive scenarios, when 

patients are involved in the framework design, encompass s.03 – Privacy Attacks, 

s.04 - Cyber Security Threats, s.06 – Non-Interpretable AI and Lack of Human-AI 

Communications, and s.08 – Human Errors in Design, Development, Measurement, 

and Implementation. On the other hand, the table describes that the most 

disruptive scenarios involving physicians in the framework design include s.06 

– Non-Interpretable AI and Lack of Human-AI Communications, s.03 – Privacy Attacks, 

and s.08 – Human Errors in Design, Development, Measurement, and Implementation. 

The outcomes underscore that patients prioritize early disease detection, cost and 

time savings in hospitalization and procedures, information privacy, and 

protection against cyberattacks. Physicians, conversely, emphasize the 

interpretability and explainability of AI models, the validity of AI models, 

reduced hospitalization time, and the minimization of human error in the 

diagnostic process. The table also describes that s.03 – Privacy Attacks, s.06 – Non-

Interpretable AI and Lack of Human-AI Communications, and s.08 – Human Errors in 

Design, Development, Measurement, and Implementation are mutually the most 

disruptive scenarios for both sets of experts and actors.  
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Table 45. Scenarios of the risk of AI that are most disruptive to the system order of technologies 
in medical diagnosis. The most disruptive scenarios were shown with +++ and the least 

disruptive scenarios were shown with + [68]. 

Disruptive Scenarios  
Experts and 

Actors 
(Patients) 

Experts and 
Actors 

(Physicians) 
s.01 – Funding Decrease + + 
s.02 – Government Regulation and Policy Changes + + 
s.03 – Privacy Attacks +++ +++ 
s.04 – Cyber Security Threats +++ + 
s.05 – Changes in AI RMF + + 
s.06 – Non-Interpretable AI and Lack of Human-AI 
Communications 

+++ +++ 

s.07 – Global Economic and Societal Crisis + + 
s.08 – Human Errors in Design, Develop, Measurement 
and Implementation 

+++ +++ 

s.09 – Uncontrollable Environment + + 
s.10 – Expensive Design Process + + 

 

Both patient and physician involvement are essential throughout the entire 

process, commencing with the initial conceptualization of the AI objectives of the 

application within healthcare. This framework possesses the potential to not only 

facilitate the transfer of findings to healthcare systems globally but also extend 

its applicability to other domains such as transportation, finance, design, and 

beyond. 

 

7.3. Summary 

 
This chapter has described a scenario-based preference risk register 

framework to assess AI-related risks in disease diagnosis, specifically focusing 

on cardiac sarcoidosis, from the viewpoints of both physicians and patients. By 

comparing two case studies, the framework evaluates the ranking of initiatives 

in response to disruptive scenarios, revealing that system priorities shift 
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accordingly. The most disruptive scenarios identified, particularly when patients 

are involved in framework design, include privacy attacks, cybersecurity threats, 

non-interpretable AI, and human errors. Conversely, scenarios prioritized by 

physicians emphasize AI model interpretability, validity, minimizing human 

error, and reduced hospitalization time. Despite these differences, certain 

disruptive scenarios overlap between patients and physicians. Involving both 

parties in the framework design ensures alignment with priorities such as early 

detection, cost savings, and privacy protection. The framework intends to 

broaden its application beyond healthcare to various domains such as 

transportation and finance. 
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Chapter 8 | Synthesis and Comparison 

of Cases 

 
8.1. Introduction 

 
This chapter describes the highlights of the cases, additional limitations, and 

lessons learned. This section also compares the highest ranking initiatives and 

the most disruptive scenarios for three cases of the healthcare system layers: 

Purpose (Pi), Structure (Sig), and Function (Phi). 

Table 46 and Table 47 suggest that the topic of the scenarios should be used 

to describe the scope of the tentative project, which shapes and guides the input 

of the R&D portfolio. This information allows investors and R&D managers to 

make informed decisions regarding resource allocation. Specifically, they can 

focus their investments on the most critical initiatives related to the risk analysis 

of AI [153] in healthcare applications. Additionally, they can consider the various 

scenarios presented in Table 46 ranging from the most disruptive to the least 
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disruptive. The dissertation recommends the following methods for user 

education about safe AI usage based on the results in this table: Informing users 

about why and how the benefits of using the AI system outweigh its risks 

compared to other technologies on the market, convincing clinicians that specific 

AI system outcomes are safe, providing information to users on what data to use 

for training, validating, and testing AI models, including potential changes due 

to various input data, highlighting that AI systems may require more frequent 

maintenance and triggers for corrective maintenance due to data, model, or 

concept drift, demonstrating the validity or generalizability of AI systems 

beyond the training conditions, emphasizing the closeness of results of estimates, 

observations, and computations to the ground truth (true values), and 

advocating for responsible AI system design, development, and deployment 

practices [6]. This analysis enables the identification of new topics that warrant 

additional resources and time, with the goal of improving the overall success of 

the system. For instance, Table 46 highlights scenario s.06 - Non-Interpretable AI 

and Lack of Human-AI Communications as the most disruptive scenario across all 

three layers of healthcare systems. Although the results from this pilot must be 

interpreted with caution and validated in a larger sample, this observation is 

consistent with the findings of [27,154], which indicate that AI transparency 

solutions primarily target domain experts and actors. Given the emphasis on 

"high-risk" AI systems, particularly in healthcare, this inclination is reasonable. 

Thus, optimizing trustworthy AI properties is recommended in these situations 

where scenarios involving the handling of sensitive and private data of 

individuals are present. By prioritizing the highest ranked initiatives and 

investing in identifying the most disruptive scenarios for the system, the full 
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potential of AI will be unlocked while responsibly integrating it into healthcare 

practices, benefiting both patients and the healthcare industry [6], although 

daily-based tasks that involve AI are less important for assessing the risks of AI 

in the domain, such as suggesting movies in online streaming or suggesting other 

items in online shopping systems. The necessity of AI interpretability and 

human-AI communications in everyday contexts for end users remains poorly 

understood. Existing research on this topic is limited, but the available findings 

suggest that this form of transparency may be insignificant to users in their 

everyday experiences [27].  

Another observation is that the risks of AI should be context-based [154] and 

it should consider all the participants, experts, and actors in the study for more 

comprehensive findings. One explanation does not fit all [155]. Moreover, having 

a human-in-the-loop [156] is important for AI prediction verification and 

facilitates effective collaboration and partnership between humans and AI [6].
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Table 46. Most and least disruptive scenarios with respect to rankings of the initiatives for 
systems characteristic layers in enterprise risk management of AI in healthcare. Most Disruptive 

Scenarios = (+++), Least Disruptive Scenarios = (+) [68]. 
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s.09 - Uncontrollable Environment 
 

+++ 
 

s.10 - Expensive Design Process 
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Table 47. The highest ranked initiatives of the systems characteristic layer in enterprise risk 
management of AI in healthcare [6]. 

Index Initiative 

Purpose (Pi) 

x.Pi.35 - Inform Users on Why and How the Benefits of the Use of AI 

System Overweigh its Risks Compare to Other Technologies on the 

Market 

x.Pi.23 - Clinicians to be Convinced that Specific AI System Outcome 

is Safe 

x.Pi.33 - Users to be Informed that What Data to Use for Training, 

Validating and Testing the AI Models; Also, any Potential Changes 

Due to Various Input Data 

Structure (Sig) 

x.Sig.40 - The Ability to Describe Why an AI System Made a Specific 

Prediction or Recommendation 

x.Sig.44 - AI Systems May Need More Frequent Maintenance and 

Triggers for Corrective Maintenance Because of Data, Model, or 

Concept Drift 

x.Sig.24 - Reduce the Number of Experiments to be Cost and Time 

Effective by Optimizing the Configurations 

Function (Phi) 

x.Phi.29 – Demonstrate Validity or Generalizability Beyond the 

Training Conditions 

x.Phi.27 – Closeness of Results of Estimates, Observations and 

Computations to the Ground True (True Values) 

x.Phi.32 – Responsible AI System Design, Development and 

Deployment Practices 

Boundary (Bet) tbd 

Environment (Eps) tbd 

Interconnections (Iot) tbd 
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In healthcare, experts and actors typically use AI as a decision-support system. 

Consequently, the development of solutions prioritizes the needs and 

requirements of these knowledgeable professionals. Recognizing this context, it 

becomes evident that addressing the issues of non-interpretable AI and a lack of 

human-AI communications is crucial within healthcare systems. This is essential 

not only to ensure patient safety but also to foster trust, consider ethical 

implications, promote continuous learning, and ensure compliance with legal 

and regulatory frameworks. The implementation of artificial intelligence in 

healthcare comes with more human risks than in other sectors due to its unique 

capacity to directly impact the quality of care and healthcare outcomes [6].  

Some methods are advised for confirming the efficacy of AI systems after 

training the dataset, such as confusion matrix analysis, using XAI techniques, 

having experts and actors in the loop to validate the outcome, continuous 

iteration and training monitoring, validation and testing assessments, bias, and 

fairness assessment, and more. Fairness and bias are also critical issues to 

understand and assess in AI applied to or used in the healthcare sector. For 

example, AI requires large, robust “training” databases, but many of the 

databases used for healthcare and medical datasets are limited. These data sets 

can perpetuate biases that exist in society and cause further health disparities and 

inequities. It is critical to have a clear understanding of possible biases that could 

exist in AI systems, as well as how choosing specific outcome variables and labels 

can impact predictions [157]. Moreover, studies have found that patients have 

concerns related to AI use in healthcare, including threats to patient choice, 

increased costs of healthcare, patient privacy and data security, and biases in the 

data sources used to train AI [158,159]. By involving patients and care partners, 
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it identifies and mitigates the risks of bias and unintended adverse consequences 

in AI applications within healthcare systems. Successfully using and 

implementing AI in healthcare settings will require a thoughtful understanding 

of social determinants of health, health equity, and ethics. The data used in the 

dissertation was collected to safeguard the privacy rights of individuals by 

implementing robust data collection measures, such as data quality assessments 

and validations by experts and actors, standard data collection procedures, clinic 

data security measures, and more. Improving data management procedures, 

including metadata documentation, collection, cleansing, and validation, is 

crucial for ensuring the quality, reliability, and usefulness of data. Integrating 

new software into an existing system requires careful planning to ensure 

compatibility, compliance with regulations, and a positive user experience by 

training on balanced datasets, performing risk analysis and assessment to find 

potential abnormalities in the dataset, enhancing data protection, and more [6]. 

The methods of this dissertation serve as a demonstration and emphasize the 

constraints associated with each disruptive scenario in tandem with the partial 

consideration of system layers. The dissertation serves to enhance transparency.  

The scope of initiatives and emerging conditions extends beyond the lists in 

this dissertation and will be further elaborated upon. While the dissertation 

primarily focuses on socioeconomic status, it is important to note that future 

endeavors will encompass other demographic factors linked to health disparities, 

such as race/ethnicity, sexual orientation, geographic location, and disability 

status. As an extension to this dissertation, the study by [160] demonstrated how 

developing plans with diverse participants in terms of expertise, aptitude, and 

background changes the most and least disruptive scenarios in the system [6]. 
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The upcoming interviews will encompass patients, care partners, and 

community-based organizations that work with populations affected by health 

disparities. It is crucial to recognize that individuals, including patients, 

caregiving partners, and community entities, are assuming increasingly 

important roles. These entities are acknowledged as authoritative sources due to 

their personal experiences, a form of knowledge gaining equitable recognition in 

various national contexts. Consequently, their involvement is important across 

all stages, starting from the initial conceptualization of AI application goals in 

healthcare [6]. 

 

8.2. Framework Scoring 
 
 

This section discusses various notes on the framework scoring that was 

introduced in Chapter 3.  

This dissertation framework is well-suited for use by healthcare 

professionals who lack the background necessary to comprehend and employ 

more complex methodologies that capture the intricacies of artificial intelligence. 

This argument acknowledges the limitations of the method and provides a clear 

explanation of why these limitations render it fit for its intended purpose. 

The advantage of ordinal over cardinal ratings that were utilized in Chapter 

3 is an improvement in ease of elicitation. The ratings in this dissertation are used 

as a measurement scale and are not vulnerable to ordinal disadvantages. Cox 

points out the subjectivity, loss of granularity, and challenges in prioritization 

associated with these matrices. Cox suggests the need for more robust, data-

driven approaches to improve the accuracy and reliability of risk assessments 
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through methods such as probabilistic risk assessment (PRA), Bayesian 

networks, or other quantitative methods [6,161,162]. To overcome this challenge, 

Krisper introduces different kinds of distributions, both numerically and 

graphically. Some common distributions of ranks are linear, logarithmic, normally 

distributed (Gaussian), and arbitrary (fitted) [163]. For instance, for each scenario in 

this dissertation, linear distributions of ranks were used. That is, the scales split a 

value range into equally distributed ranges of {8, 6, 1, 1/6, 1/8}. It is crucial to 

interpret these results thoughtfully before engaging in further discussions on 

alternatives, including non-linear combinations of statements within multi-

criteria decision analysis frameworks. The interpretation should be undertaken 

by principals and managers, considering the context of different systems. 

Rozell describes the challenges of using qualitative and semi-qualitative risk 

ranking systems. When time and resources are limited, obtaining a simple, fully 

quantitative risk assessment or an informal expert managerial review and 

judgment are considered better approaches [164]. In this dissertation, expert 

managerial review and judgment are the core of the risk registers across all three 

layers [6]. 

The innovation of the dissertation is not in the scoring but instead in the 

measurement of risk via disruptions of system order by scenarios. The readers 

are encouraged to select their ways of ordering and re-ordering the initiatives. 

The identification of scenarios that most disrupt the system order helps 

healthcare professionals in the characterization of AI-related risks. This 

characterization occurs in parallel across various system layers: Purpose, 

Structure, and Function. The method contributes to the reduction of errors, 

offering a user-friendly interface that enhances accessibility and ease of use. It 
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promotes adaptability, providing flexibility to accommodate diverse healthcare 

settings and contexts. This usability fosters increased engagement from both 

experts and actors, facilitating a more inclusive and comprehensive analysis of 

AI-related risks within the healthcare sector. 

 

8.3. Additional Limitations 
 

This section will describe the additional limitations of this dissertation. As a 

scenario-based methodology, this dissertation identifies the least and most 

disruptive scenarios within the context of the identified scenarios based on the 

available sources and data. Limited access to additional data and documents, as 

well as restricted expert engagement, are additional limitations. As an example, 

a limitation within the context of the Function (Phi) layer was that two patients 

were subjected to interviews for illustration due to the scarcity of patients 

suspected of having cardiac sarcoidosis and restrictions policies in Germany that 

limited direct access to patients for privacy and information protection; also, the 

scarcity of cardiac sarcoidosis disease. As a result, the number of patients 

included in the case study was limited to two. However, to obtain more precise 

results, a larger number of patients are required for the case study as a sample. 

It is important to consider the potential for biases among experts and actors 

during the interview process, given their diverse motivations. To mitigate any 

strategic or manipulative behavior that might affect the analysis results, 

conducting an investigation focused on identifying the most disruptive scenarios 

could be beneficial. The primary aim was not solely to aggregate expert inputs 
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but also to identify areas requiring further examination, preserving the unique 

influences of individual experts and actors. 

By acknowledging the biases and perspectives of individuals and 

communities, the proposed scenarios can effectively capture the diverse weights 

assigned by different experts and actors [58]. The matter of expert bias is of 

concern, not only in this context but also across the broader field. Various 

approaches could be employed to alleviate such biases. These methods include 

techniques such as simple averaging, assigning importance weights to experts 

and actors, employing the analytic hierarchy process (AHP), the fuzzy analytic 

hierarchy process (FAHP), decomposing complex problems into multiple layers, 

and others. Experts and actors could be weighted in future efforts according to 

their level of expertise in the field [10,11]. 

 

8.4. Summary 

 
The chapter has described the highlights of the three cases: Purpose (Pi), 

Structure (Sig), and Function (Phi), alongside discussing additional limitations and 

lessons learned. Furthermore, it has provided a comparison between the high 

ranked initiatives and the most disruptive scenarios across different layers of the 

healthcare system. 
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Chapter 9 | Discussion of Research 

Opportunities  

 
 
9.1. Introduction 

 
This chapter describes a complementary introduction to a fundamental 

methodology for comparing the order disruption of unrelated systems with 

different performance metrics and how it could assist managers, experts, and 

actors in making decisions for each system. 

 

9.2. On Evaluating System Resilience by the Trajectory of Order Disruption 

Overview 

 
This section is an overview of evaluating system resilience by the trajectory 

of order disruption that will be used to compare various healthcare Purpose (Pi), 
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Structure (Sig), and Function (Phi) layers in future work, as more information and 

data will be available. For a demonstration of the method, three unrelated 

systems with different performance metrics are described below. 

Systems operate differently in nature, and disruption of order in the system 

is inevitable in the operation of the systems. Comparing the order disruption of 

unrelated systems with different performance metrics could assist managers, 

experts, and actors in making decisions for each system [13]. 

For instance, in a power system, the lost power generation is typically 

measured in megawatts, and the persistence of the disruption is measured in 

megawatt-hours, as the area over the resilience curve. In a communications 

system, the performance in gigabits per second can be integrated over time as 

gigabits. The metrics of persistence in the two examples above are different. How 

to compare the resilience of different systems, such as: 

 

• Diminished performance of immigration to the U.S. based on the number of 

immigrants, 

• Diminished performance of technology companies based on generated 

revenue and 

• Diminished performance of pharmaceutical companies based on generated 

revenue [13]. 

 

9.2.1. Order Disruption 
 

Figure 58 describes a simple conceptual example of a disruption order of 

tokens. The top figure describes a baseline for disruption order analysis by 
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sorting tokens by their size. However, if the order of the tokens changes, it is 

considered a disruption to the order of the tokens. The bottom figure describes 

the disruption in the order of the tokens by their size. 

 

 
Figure 58. Top figure: Ordered tokens by size. Bottom Figure: Disrupted order tokens [13]. 

 
Considering the introduction to order disruption, the following section 

introduces the methodology for evaluating system resilience by the trajectory of 

order disruption. 

 
9.2.2. Reilience Curve 

 

Resilience curves represent the level of performance loss after a disruptive 

event over time. Resiliency curves are used to evaluate the behavior of the system 

and its resilience to critical scenarios. 

Figure 59 describes the disruption of performance or the system resilience 

curve (top figure) and the disruption of order (bottom figure) which starts with 

a steady state. This state describes the normal operation and performance of the 
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system before the disruptive event [165] causes performance loss. Disruption of 

performance ranges between 0% and infinity since sometimes the performance 

recovery could exceed the original performance of the system. In other words, 

the system could recover to more than 100% of its performance when it is capable 

of enhancing the level of functionality compared to the level before the 

disruption [166,167]. 100% means the system is fully operational, and 0% means 

that the system is not operational. The slope of the performance drop, or failure 

rate, depends on the resistance and adaptive capability of the disrupted system 

[168]. As the system improves its performance, it is in a recovery state. In some 

scenarios, the system cannot recover from the disruptive event, which results in 

performance collapse. After the recovery state, system performance reaches a 

new recovered steady state called a recovered steady state [15]. During the 

reaction period, the system is in a disrupted state [13].
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Figure 59. The concept for extending resilience analytics to systems order. The top figure 

describes a traditional systems resilience curve, and the bottom figure describes the disruption 
of the order curve [13]. 
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Disruption duration [168], or recovery period, is the linear distance between 

the occurrence of the disruptive event and the performance reaching the steady 

recovery point. The area integral above the curve shows the persistence of the 

lost performance. The larger the distance, the longer the time needed for the 

system to recover fully [13]. 

Disruption of performance shows the evolution of system performance by a 

disrupted event [168,169]. Disruption of order, however, shows the evolution of 

systems ordered by a disruptive event. Kendall’s tau matric is used to calculate 

the disruption of order, which will be defined in detail below [13]. 

Figure 60 characterizes different stages of resilience as a function of time. The 

left subfigure describes a conceptual diagram of a resilience curve for a scenario 

that disrupts the system plan. The right subfigure describes how a scenario 

affects the performance of the system, i.e., considering scenario S2, the 

performance of the system diverges from the plan line and adjusts to a new 

ending point. This divergence can be obtained from various emergent and future 

conditions. Emergent conditions are disruptive future events, trends, and other 

uncertainties that can affect a project, system, schedule, and budget [13]. 

Scenarios consist of one or more emergent conditions [9,10].
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Figure 60. Different stages of resilience as a function of time.
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9.2.3.  Kendall’s Tau 
 

Kendall’s tau statistic, 𝜏, in this chapter compares an initial, pre-shock set of 

priorities with the priorities after the shock. Priorities evolve with time after the 

shock.  

Munoz-Pichardo et al. define Kendall’s tau as “the proportional reduction in 

prediction errors obtained by predicting the ordering of pairs of observations on 

the objective variable based on the orderings of the pairs on the explanatory 

variables” [170,171]. Kendall’s tau is defined in Equation 18: 

 

𝜏	 = 	 |;%/$3'()*(+*,)-|#	|;%/$3.%/0()*(+*,)-||;%/$3'()*(+*,)-|(	|;%/$3.%/0()*(+*,)-|
                            (18) 

 

Assuming x and y are a pair point one, one point is xi, yi and the other point 

is xj, yj that i ≠ j. Concordant pair definition is xi > xj and yi > yj or xi < xj and yi < 

yj. Discordant pair definition is xi > xj and yi < yj or xi < xj and yi > yj [172]. 

This section aims to define a framework to compare countermeasures that 

improve resilience across different systems, focusing on restoring the disruption 

of order. The section describes scale-free comparisons of system resilience by the 

degree of order disruption [13]. 

Below are examples of unrelated systems that are reviewed as a 

demonstration in this chapter: 
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Table 48 describes the top ten countries of origin for immigrants to the U.S. 

from 2013 to 2020 [173]. The order of countries of origin for immigrants to the 

U.S. changed yearly. Various pull and push factors influence the order of 

countries in migration. On the one hand, the pull factors could be employment 

opportunities, better shelter, and higher standards of living; they also include 

social and political factors such as better healthcare facilities, religious tolerance, 

freedom from persecution, and more; on the other hand, the push factors could 

be economic factors such as lack of employment, low standards of living, and 

lack of food and shelter [174]. A pandemic as a disruptive scenario could be one 

of the factors that push immigrants from countries with weak healthcare facilities 

[13]. 

Table 49 describes the top ten technology companies based on revenue 

generation from 2015 to 2022 [175]. The order of technology companies was 

changing due to multiple disruptions. For instance, in 2020, as COVID-19 spread 

globally and caused major lockdowns, internet applications became more 

popular among users. The growth in the use of Internet applications has become 

a supercharging business for tech companies. They started to hire more 

employees as the profit grew, but after the pandemic was over, the yields 

dropped [176]. The pandemic could be named as one of the disruptive scenarios 

for order changing [13]. 

Table 50 describes the top ten valuable brands in the pharmaceutical industry 

from 2015 to 2022 [175]. The order of pharmaceutical companies was another 

domain affected by a disruptive scenario like the pandemic. For instance, Pfizer 

won the pandemic with its mRNA vaccine, which holds 70% of the U.S. and 
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European markets, and the antiviral Paxlovid pills to treat early symptoms of 

COVID-19 [13]. The profit of Pfizer has roughly doubled from 2020 to 2021 [177]. 
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Table 48. Top ten countries of origin for immigrants to the U.S. from 2013 to 2020 [13]. 

 2020 2019 2018 2017 2016 2015 2014 2013 
(BASELINE) 

1 Mexico Mexico Mexico Mexico Mexico Mexico Mexico Mexico 
2 India China Cuba China China China India China 
3 China India China Cuba Cuba India China India 

4 
Dominican 
Republic 

Dominican 
Republic India India India Philippines Philippines Philippines 

5 Vietnam Philippines Dominican 
Republic 

Dominican 
Republic 

Dominican 
Republic 

Cuba Cuba Dominican 
Republic 

6 Philippines Cuba Philippines Philippines Philippines Dominican 
Republic 

Dominican 
Republic 

Cuba 

7 El Salvador Vietnam Vietnam Vietnam Vietnam Vietnam Vietnam Vietnam 
8 Brazil El Salvador El Salvador El Salvador Haiti Iraq South Korea South Korea 
9 Cuba Jamaica Haiti Jamaica El Salvador El Salvador El Salvador Colombia 
10 South Korea Colombia Jamaica Haiti Jamaica Pakistan Iraq Haiti 
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Table 49. Top ten technology companies from 2015 to 2022 [13]. 

 2022 2021 2020 2019 2018 2017 2016 
2015 

(BASELINE) 

1 Apple Apple Amazon Amazon Amazon Google Apple Apple 

2 Amazon Amazon Google Apple Apple Apple Google Google 

3 Google Google Apple Google Google Amazon Amazon Microsoft 

4 Microsoft Microsoft Microsoft Microsoft Microsoft Microsoft Microsoft Samsung 

5 Facebook Samsung Facebook Facebook Samsung Facebook Facebook Amazon 

6 Samsung Facebook Samsung Samsung Facebook Samsung IBM 
General 
Electric 

7 Huawei WeChat Huawei Huawei Tencent IBM 
General 
Electric IBM 

8 WeChat Tencent WeChat WeChat Huawei Alibaba Intel Intel 

9 TikTok Huawei Tencent Tencent IBM Oracle Oracle Facebook 

10 Taobao Taobao Taobao Taobao Oracle Huawei Huawei Oracle 
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Table 50. Top ten pharmaceutical brands from 2015 to 2022 [13]. 

 2022 2021 2020 2019 2018 2017 2016 
2015 

(BASELINE) 

1 
Johnson & 

Johnson 
Johnson & 

Johnson 
Johnson & 

Johnson 
Johnson & 

Johnson 
Roche Roche Pfizer Bayer 

2 Roche Roche Roche Roche Bayer Pfizer Bayer Roche 
3 Pfizer AbbVie Bayer Bayer Pfizer Bayer Novartis Novartis 

4 
AstraZenec

a 
Bayer Abbott Pfizer Abbott Novartis Roche Pfizer 

5 Bayer 
Bristol-
Myers 
Squibb 

Merck & Co Abbott Novartis Merck & Co Merck & Co Merck & Co 

6 AbbVie Merck & Co Pfizer Merck & Co Sanofi Celgene GlaxoSmith
Kline 

Sanofi 

7 Merck & Co Pfizer Celgene Sanofi Merck & Co Sanofi Sanofi GlaxoSmith
Kline 

8 
Bristol-
Myers 
Squibb 

GSK GSK Celgene Celgene 
GlaxoSmith

Kline 
Celgene Biogen 

9 GSK Novartis Sanofi 
GlaxoSmith

Kline 
GlaxoSmith

Kline 
Abbvie 

Valeant 
Pharmace 

Valeant 
Pharmace 

10 Sanofi Sanofi AbbVie Novartis Biogen Biogen Biogen Celgene 
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Considering the cases have introduced above, the metrics of disruptions are 

not consistent between systems. The metrics of disruptions in Table 48 are based 

on the number of immigrants; while those in Table 49, and Table 50 are based on 

generated revenue. To find how a disruption scenario affects the order of a 

system each year, Kendall’s tau matric is implemented. Kendall’s tau is used to 

measure the disruption of systems perspective [12]. 

To find the Kendall’s tau [178] statistic for each system, a number has been 

randomly assigned to each name in Table 48, Table 49, and Table 50. For instance, 

in Table 48, numeric 1 has been given to Mexico, 2 to India, 3 to China, and so on. 

Fifteen values have been given to fifteen countries, sixteen to technology 

companies, and sixteen to pharmaceutical brands. As seen, the order of the 

numbers changes each year. Then pairs of years are compared with the baseline 

year using Equation 18. Most similar pairs receive a Kendall's tau score closer to 

1, and the least similar pairs receive a Kendall's tau score closer to 0. The baseline 

year in Table 48 is 2013, 2015 in Table 49, and 2015 in Table 50. For instance, in 

Table 50, Kendall’s tau score between pairs of 2022 and 2015 is 0.68. Table 51 

shows seven calculated Kendall’s tau scores from Table 48, Table 49, and Table 

50 [13].
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Table 51. Calculated Kendall’s tau scores for the three cases to estimate disruption of order 
[179]. 

Time Top Ten Pharmaceutical 
Companies 

Top Ten Tech 
Companies 

Top Ten Immigrants 
to the US 

t0 - - - 
t1 0.64 0.51 0.64 
t2 0.29 0.38 0.69 
t3 0.38 0.38 0.51 
t4 0.69 0.42 0.60 
t5 0.42 0.38 0.60 
t6 0.51 0.60 0.82 
t7 0.68 0.51 0.82 

 
 

Figure 61 describes a scale-free disruption order chart comparing three 

different systems with different units and timelines. Considering various 

emergent conditions and scenarios, the chart describes how a system is disrupted 

over time. For example, using Kendall’s tau measurement for the top ten 

pharmaceutical companies, pairs of years 2016 to 2022 are compared with the 

baseline year 2015, and the score is generated. Time 0 (t0, baseline) starts with a 

steady state, but at t1, a disruptive event causes performance loss and a degraded 

order slope. The disruptive order of the system fluctuated between t1 and t7. 

Considering various disruptive events, the system disruptive order may recover 

its pre-shock level or not at the resilience adaptation stage. Accordingly, 

Kendall's tau statistic compares the countermeasures that improve resilience 

across three different systems [179]. 
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Figure 61. Compare the resilience between three different systems using Kendall’s tau [13].
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Of course, the readers of the chapter should be interested in how the resilience 

of system orders matters for engineering design. A key contribution of this 

chapter is how engineering design can give attention to the scenarios (risks) that 

are most disruptive to system order [11]. Furthermore, engineering design pays 

attention to resilience by focusing on the trajectories of system order [180], in 

which the disruption of order is persistent [179]. The orders can be for system 

assets, projects, policies, products, processes, etc. The system thus consists of the 

sets of entities to be ordered and a mechanism for doing the ordering, for 

example, a figure of merit. The mechanism may be unknown, as in these 

examples, where only the ordering over time is observable. If it were necessary 

to know the mechanism of ordering, the usual methods of system identification 

[155] and estimation are available. To demonstrate the evaluation of resilience in 

terms of system orders, it is not necessary to know the mechanisms of ordering. 

Replacing system function with system order in the estimation and integration 

of resilience curves using Kendall’s tau statistic enables a new quantification of 

resilience as a disruption of system order that can be used across application 

domains of risk analysis. A reason for scale-free metrics of disruption (for 

example, Kendall's tau) is that an owner or regulator of multiple systems may be 

allocating shared and common resources to enhance resilience or identify risk. 

Ongoing work in the field of engineering systems is focused on disrupted order 

rather than disrupted performance [179].  

Readers should understand the technical mechanism of disruption that is 

underlying each of the examples. That is not a topic of this chapter, though it 

would be a worthwhile focus of system identification [54,181]. 
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The following steps of this effort are to study various mechanisms that 

underlie order disruption and to characterize how understanding those 

mechanisms is important to engineering design. While this chapter is an 

introduction to the shift in resiliency focus from performance to order, more 

studies could be provided on order and the implications for engineered systems. 

For example, how could one use Kendall's tau to engineer more resilient systems, 

recover from a disruptive event, or predict future events [179]. Examples of 

applications to be described include energy systems, communications systems, 

freight logistics, and cybersecurity. 

 

9.3. Summary 

 
This chapter has described an introduction to the research opportunity for 

evaluating system resilience by the trajectory of order disruption. This 

complementary model of a system as priority orders will be implemented to 

compare various healthcare Purpose (Pi), Structure (Sig), and Function (Phi) layers 

as more information and data become available. 
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Chapter 10 | Conclusions and Future 

Work 

 
 
10.1. Introduction 

 
This chapter describes the summary of contributions, summary conclusions, 

dissertation schedule and timeline, and other future works. 

 

10.2. Summary of Contributions 

 
This dissertation makes eight contributions at the intersection of risk analysis, 

systems modeling, and AI applications in healthcare. The seven contributions to 

this dissertation are as follows: 
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Contribution 1. Development of a Mathematical Framework for the Risks 

of AI in Healthcare 

This dissertation is the first to develop a mathematical framework to assess AI 

risks in healthcare across several system layers and to explain how disruptive 

scenarios influence system priorities. This framework aids in understanding and 

identifying potential disruptions. The objective is to identify scenarios that are 

most and least disruptive to the system order. The framework identifies various 

biases, focusing on those with the most disruptive impact on order. Rather than 

eliminate bias, the framework accounts for potential biases (scenarios) within 

each of the layers [6,10,11,18,51]. 

 

Contribution 2. Healthcare Center-Level Demonstration (Purpose Layer) 

This dissertation is the first to do the case demonstration, which describes the 

applicability of the framework at the operational level within healthcare centers 

that underlies its effectiveness in real-world settings [6]. 

 

Contribution 3: Healthcare Device-Level Demonstration (Structure Layer) 

This dissertation is the first to do the case demonstration, which describes the 

applicability of the framework at the device level, specifically its utility in 

analyzing the risks of AI in the Vaso-Lock optimization design [6]. 

 

Contribution 4. Healthcare Process-Level Demonstration (Function Layer) 

This dissertation is the first to do the case demonstration, which describes the 

applicability of the framework at the process level or disease diagnosis, 
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specifically its utility in analyzing the risks of AI in cardiac sarcoidosis diagnosis 

[5,6,18]. 

 

Contribution 5. Systems Simulation  

This dissertation is the first to do a machine learning-based diagnosis of 

cardiac sarcoidosis using multi-chamber wall motion analysis at the Function 

(Phi) layer. Explainable AI (XAI) techniques describe the validity of the 

predictions and explain and interpret the outcomes. Additionally, XAI 

techniques in a design optimization framework determine the optimal geometry 

of a vascular anastomosis device at the Structure (Sig) layer [5,6,18,40]. 

 

Contribution 6. Priority in Experts and Actors13 Involvement Effect 

 This dissertation is the first to do comparative analysis and introduces a 

multi-layered scenario-based disruption of priorities for the risk of AI in 

healthcare at the Function (Phi) layer, which involves two expert groups: Patients 

versus medical experts/physicians [6,68]. 

 

Contribution 7. Evaluation of System Resilience  

This dissertation is the first to evaluate system resilience and not only 

synthesizes lessons learned for the NIST and other practitioners but also provides 

actionable insights for enhancing future risk management strategies in healthcare 

[6,18,40,68]. 

 

 
 
13 Actors could refer to experts and stakeholders through the Dissertation.  
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Contribution 8. System Resilience Evaluation Based on the Degree of Order 

Disruption 

This dissertation is the first to introduce an approach for evaluating system 

resilience based on the degree of order disruption in various systems [13]. 

 

Seventeen publications from 2020 to 2024 document the previously mentioned 

contributions. 

 

10.3. Summary of Conclusions 
 

This section describes the summary conclusions of the chapters above. This 

dissertation focuses on research and development priorities for managing the 

risks associated with the risk of AI in health applications [182,183]. The 

methodology serves as a demonstration and emphasizes the constraints 

associated with the chosen scenarios and the partial consideration of system 

layers. The methodology identifies success criteria, R&D initiatives, and 

emergent conditions across multiple layers of the healthcare system, including 

the Purpose (Pi) layer, implant/device or the Structure (Sig) layer, and disease 

diagnosis or the Function (Phi) layer [6]. 

Figure 62 describes the dissertation theory and method conceptual diagram 

of systems modeling for enterprise risk management of AI in healthcare. Each 

related chapter of the dissertation is noted for each section.
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Figure 62. The dissertation theory and method conceptual diagram of systems modeling for enterprise risk management of AI in 
healthcare, with the notation of related chapters to each section [5,6]. 
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The core concept of the dissertation is not to make the judgments required 

by the model; instead, the focus is on measuring disruptive order. In other words, 

the emphasis is on adapting a figure of merit to score the initiatives and rank 

them rather than performing decision analysis [6].  

This dissertation achieves a balance between the goals of AI, human rights, 

and societal values by considering seven principles of the NIST AI risk 

management framework as the success criteria for all layers, and involving a 

variety of perspectives, managers, experts, and actors in each system layer in the 

process. By analyzing these initiatives, emergent conditions, and scenarios 

within the healthcare system layers, the dissertation identifies the most and least 

disruptive scenarios based on expert preferences [10]. This information allows 

experts, actors, and managers to make informed decisions regarding resource 

allocation and prioritize specific initiatives over others [6]. 

The initiatives outlined in this dissertation hold promise for improving 

communication and identifying the risks associated with AI in healthcare 

applications involving various experts and actors. Moving forward, it is 

important to incorporate the viewpoints of healthcare practitioners and patients 

who are directly impacted by these approaches [6].  

Notably, the methods described in this dissertation can offer patients insights 

into the relevance of AI applications in their treatment plans, promoting 

transparency for both patients and care partners. The initiatives and emergent 

conditions discussed in this dissertation provide a foundation for future research, 

which will build upon these findings to delve deeper into the subject. Further 

investigations will expand the analysis to encompass additional layers, such as 

the Boundary (Bet) that exists between patients and society. The extended scope 
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of this research endeavor will delve into the wider ramifications of AI within 

healthcare systems, elucidating its effects on diverse facets of society [6]. 

In summary, addressing the major challenge of risk assessment for AI tools, 

this dissertation introduces a context-specific approach to understanding the 

risks associated with AI, emphasizing that these risks cannot be universally 

applied. The proposed AI risk framework in this dissertation recognizes insights 

into quantifying risk by assessing the disturbance to the order of AI initiatives in 

healthcare systems. Additionally, the dissertation highlights the significant role 

of the human-in-the-loop in identifying the risks associated with AI in healthcare 

and evaluating and improving the suggestions and outcomes of AI systems [6].  

There are additional components of a practical AI risk management 

framework that may improve the accuracy and consistency of outputs produced 

by AI. These include fostering diversity among participants [160], identifying AI 

effects in terms of ethics [184], law, society, and technology, seeking official 

guidelines from experts and actors, considering various social values, enhancing 

and improving unbiased algorithms and data quality by prioritizing privacy and 

security, and regular maintenance of AI systems [34]. Moreover, identifying and 

minimizing uncertainties and unexpected scenarios, adhering to ethical and legal 

standards, ensuring the correctness of AI outputs and predictions through 

various validation and assessment practices, such as employing XAI techniques 

[41], ensuring human-AI teaming [160] and collaboration, and optimizing AI 

features and performance during design and implementation, among other 

aspects, are more components of a practical AI risk management framework. 

Given different business sizes and resource availability, and based on the 
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experience mentioned above, there is a need and opportunity for each system 

principal to determine appropriate AI risk management frameworks [6]. 

There are several potential methods for identifying reliable and trustworthy 

formal guidance for AI risk management. Seeking government guidance and 

guidelines from officials, R&D findings from industry and academia, verifying 

compliance with standard and legal protocols, and more could be some of the 

sources for risk management with AI. Several safeguards and security measures 

can be implemented to assist the dependability and more accurate operation of 

AI systems, such as validating the results by engaging the patients, medical 

professionals, and system designers in the loop, identifying and mitigating the 

risks of uncertain scenarios to the system, regular monitoring, and updating and 

training the system to adhere to ethical and lawful standards and protocols [6]. 

The methods outlined in the dissertation hold potential for cross-domain 

applicability beyond the healthcare sector. They can be adapted and applied to 

diverse fields such as transportation, finance, design, risk analysis of quantum 

technologies in medicine, and more [185]. By enhancing transparency and 

addressing the associated risks of AI, the research benefits not only healthcare 

systems globally but also various other applications and industries. The findings 

and insights gained from this dissertation can inform and guide the development 

and implementation of AI systems in a wide range of domains, such as supply 

chains, disaster management, emergency response, and more, fostering 

responsible and effective use of this technology. Also, the method and its rubrics 

have general relevance to a variety of life science topics across medical diagnosis, 

epidemiology, pathology, pharmacology, toxicology, microbiology, 

immunology, and more [6]. 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

229 

10.4. Schedule and Timeline 

 
Figure 63 describes the degree milestones. Figure 64 describes the journal and 

conference publications and conference presentations from 2020 to 2024. 



Negin Moghadasi | Ph.D. Dissertation | May 2024 

 
 

230 

 
Figure 63. Schedule of dissertation milestones from August 2022 to March 2024.
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Figure 64. Timeline of conference presentations and publications. Annotations above the timeline represent conference presentations, 
and annotations below the timeline shows journal and conference publications.
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10.5. Other Future Works 

 
This section describes several other future works, including: 1. Other system 

layers introduced in Figure 1 will be reviewed, such as Boundary (Bet), 

Environment (Eps), and Interconnection (Iot). For instance, a case study of the 

Boundary (Bet) could be the relations between patients and society. 2. Also, 

evaluating system resilience by the degree of order disruption for all layers will 

be addressed as a research opportunity to compare various layers with 

uncommon units as more information and data become available. 3. A 

demonstration of various systems with emerging AI applications, including 

cybersecurity of electric vehicle charging systems and supply chains, 

transportation, infrastructure, architecture, design, etc.  

 

10.6. Summary 

 

This chapter has described the summary of contributions, summary 

conclusions, dissertation schedule and timeline, and other future works. 

In summary, deciding whether to commission or deploy an AI system should 

involve evaluating its trustworthiness characteristics in the given context, along 

with weighing the relative risks, impacts, costs, and benefits, while considering 

the opinions of various experts and actors. As mentioned earlier in the 

dissertation, in situations where the consequences of the actions of the system 

could be severe, such as when human life or liberty are at risk, AI developers and 

deployers should take proactive measures to adjust their transparency and 

accountability practices proportionally. Organizations need to have practices and 
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governance structures in place that focus on reducing harm, such as risk 

management, to ensure that their systems are held accountable.  
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