
2-Segal Maps Associated to a category with cofibrations

Tanner Carawan
Charlottesville, Virginia

B. Math. The College of William and Mary, 2018

A Dissertation presented to the Graduate Faculty
of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Mathematics

University of Virginia



2

Contents

1 Introduction 6

2 Waldhausen Categories 9

2.1 Categories with cofibrations . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Categories with fibrations . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Waldhausen categories . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 The S•-construction and 2-Segal objects 18

3.1 The S•-construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 2-Segal objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Homotopy limits and projective 2-limits 28

5 2-Segality of discrete variants of the S•-construction 33

6 2-Segality of topological versions of the S•-construction 47

7 2-Segality of categorical versions of the S•-construction 51



3

8 A sufficient condition for S•C to be 2-Segal 55

A Upper and lower 2-Segal 61



4

Acknowledgments

I am very grateful to Julie Bergner for guiding me through the program starting in

my second year here. I thank the committe members Nick Kuhn, J.D. Quigley, and

Nilanga Liyanage for their time reading this work and overseeing the defense. I also

thank Philip Hackney for introducing me to the notion of upper and lower 2-Segal

spaces and suggesting that these were likely the same as what I was calling right

and left 2-Segal spaces. Credit to Eleanor McSpirit and Will Craig for giving me

resources on formatting this work. I would like to thank Alejandro De Las Peñas

Castano, Hasan Saad, Yaolong Shen, and Aoran Wu for their close friendships and

help. I would also like to thank the many other graduate students here and formerly

here whom I had fun with. Finally, I want to thank my friends from high school and

college, my maternal grandparents Benny and Perry, my parents Ellie and Eric, Ro,

my brother Brett, and my nephew Thomas for their unwavering love and support.



5

Abstract

Waldhausen’s S•-construction gives a way to define the algebraic K-theory space

of a category with cofibrations. Specifically, the K-theory space of a category with

cofibrations C can be defined as the loop space of the realization of the simplicial

topological space |iS•C|. Dyckerhoff and Kapranov observed that if C is chosen to be

a proto-exact category, then this simplicial topological space is 2-Segal. We say that

X is 2-Segal if its 2-Segal maps, indexed by decompositions of polygons, are weak

equivalences. A natural question is then what variants of this S•-construction give

2-Segal spaces. We find that for |iS•C|, S•C, wS•C, and the simplicial set whose nth

level is the set of isomorphism classes of S•C, there are certain 2-Segal maps which are

always equivalences. However for all of these simplicial objects, none of the rest of the

2-Segal maps have to be equivalences. We also reduce the question of whether |wS•C|

is 2-Segal in nice cases to the question of whether a simpler simplicial space is 2-Segal.

Additionally, we give a sufficient condition for S•C to be 2-Segal. Along the way we

introduce the notion of a generated category with cofibrations and provide an example

where the levelwise realization of a simplicial category which is not 2-Segal is 2-Segal.
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Chapter 1

Introduction

Algebraic K-theory is an area of math where groups indexed by integers are assigned

to rings, exact categories, and other objects. Algebraic K-theory groups often enjoy

theorems like Additivity, Localization, and Approximation and this area of math has

connections to number theory and topology.

In the process of extending the collection of objects for which K-groups are defined

to have an algebraic K-theory of spaces, Waldhausen gave the S•-construction which

can be applied to an exact category or more generally to a category with cofibrations.

Let E be an exact category. The S•-construction produces a sequence of spaces,

the nth one of which is the realization of a category iSnE of diagrams built from the

exact sequences of E . This sequence of spaces determines a space called the K-theory

space, and the homotopy groups of this space are the K-theory groups.

Although the homotopy-theoretic properties of Waldhausen’s S•-construction are

still being investigated, two independent groups of authors, one consisting of Dyckerhoff

and Kapranov [3] and another consisting of Gálvez-Carrillo, Kock, and Tonks [5],

noticed that if E is an exact category, then the sequence of spaces |iSnE| has the
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structure of a 2-Segal space.

A sequence of spaces Xn, n ≥ 0, form a 2-Segal space if for every order preserving

map α : {0 ≤ 1 ≤ · · · ≤ m} → {0 ≤ 1 ≤ · · · ≤ n} (written α : [m] → [n]), there are

compatibly chosen maps Xn → Xm such that certain induced maps Xk → X2 ×hX1

X2 ×hX1 · · · ×
h
X1 X2, called 2-Segal maps, are weak equivalences. We think of a 2-Segal

space as having a space of objects X0, a space of morphisms X1, and an up-to-homotopy

sometimes-defined multivalued composition given by a span X1 ×hX0 X1 ← X2 → X1;

notice that the indices on the left are 0 and 1 and not 1 and 2. The 2-Segal maps

being weak equivalences says that this composition is associative up-to-homotopy.

Another benefit of the S•-construction is that it applies to a huge class of categories,

categories with cofibrations. For C a category with cofibrations this work addresses

whether the 2-Segal maps from the |iSnC| to iterated homotopy pullbacks are also

weak homotopy equivalences. We find that a certain collection of them are, but none

of the rest have to be. We also give a sufficient condition for S•C to be a 2-Segal space.

Finally, we do the preceeding with several variants of the S•-construction. Along the

way, we introduce the notion of a generated category with cofibrations and provide an

example where the levelwise realization of a non 2-Segal space is 2-Segal.

The work is structured as follows. We begin with the inputs to variants of the

S•-construction in Chapter 2. Then in Chapter 3 we review the S•-construction itself.

Chapter 4 is a technical aside on homotopy limits. In Chapter 5 we prove our main

result for a discrete version iso(s•C) of the S•-construction. Then in Chapter 6 we
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prove our main result for a topological version |iS•C| of the S•-construction and we

give our progress on analyzing the 2-Segal maps of |wS•C| when C is a Waldhausen

category. In Chapter 7 we prove our main result for the categorical S•-constructions

S•C and wS•C. In the final non-appendix chapter we provide a sufficient condition

for S•C to be 2-Segal. In the appendix we show that one of our central definitions is

equivalent to a preexisting one, namely that left and right 2-Segal are the same as

lower and upper 2-Segal.
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Chapter 2

Waldhausen Categories

In this chapter, we review categories with cofibrations and Waldhausen categories

because they are the inputs to the S•-construction. We also introduce a dual notion

to that of a category with cofibrations, a category with fibrations.

2.1 Categories with cofibrations

We begin by defining a category with cofibrations. In this section we include relevant

terminology and facts about categories with cofibrations as well.

Definition 2.1. [12, 1.1] A category with cofibrations is a category C with a zero object

0 and a distinguished class of morphisms called the cofibrations. These cofibrations and

zero object are such that for any object A of C, the unique map 0→ A is a cofibration,

every isomorphism is a cofibration, the composite of cofibrations is a cofibration, and

the pushout of a cofibration always exists and is a cofibration.

We indicate that a morphism is a cofibration by drawing our arrows with a tail

(↣).
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Example 2.2. A motivating, and for our purpose central, example is Rf , the category

of finite based CW-complexes with specified CW structure and based cellular maps

[13, 9.1.4]. In Rf the cofibrations are the cellular inclusions and the 0 object is the

singleton space.

One reason for having categories with cofibrations is to be able to consider cofibra-

tion sequences, for which we need the following definition.

Definition 2.3. Let f : X → Y be a morphism in a category with a 0 object. The

cokernel of f is an object Q together with a morphism q : Y → Q such that qf = 0

and if gf = 0 then g factors through q.

In a category with cofibrations, the cokernel of a cofibration always exists because

the cokernel of i : A↣ B is the pushout of A→ 0 along i.

Definition 2.4. A cofibration sequence is a cofibration followed by its cokernel. We

denote the cokernel object of i : A ↣ B by coker(i) and the cokernel morphism by

B ↠ coker(i). We sometimes denote the cokernel object by B/A.

Definition 2.5. A functor F : C → D between categories with cofibrations is called

exact when it preserves zero objects, cofibrations, and pushouts of cofibrations.

The use of the word "exact" comes from thinking about categories with cofibrations

as generalizations of abelian categories.

Definition 2.6. We say A is a subcategory with cofibrations of a category with cofi-

brations C if the inclusion of A into C is an exact functor, and the cofibrations in A
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are the cofibrations of C with source and target in A and with cokernel in A.

The category whose objects are small categories with cofibrations and whose

morphisms are exact functors, is called the category of categories with cofibrations and

we denote it by Cof.

2.2 Categories with fibrations

Here we present the dual notion to a category with cofibrations. By dual notion, we

mean that the opposite category of a category with cofibrations is a category with

fibrations and vice versa. Everything that follows in later sections about categories

with cofibrations has a dual version for categories with fibrations.

Definition 2.7. A category with fibrations is a category C with a zero object and a

distinguished class of morphisms called the fibrations. These fibrations and zero object

are such that for any object A of C, the unique map A → 0 is a fibration, every

isomorphism is a fibration, the composite of fibrations is a fibration, and the pullback

of a fibration always exists and is a fibration.

We indicate that a morphism is a fibration by drawing our arrows with two heads

(↠). This notation does not mean however that the morphism is the cokernel of a

cofibration. Similarly, in a category with fibrations we denote that a morphism is the

kernel of a fibration by drawing our arrow with a tail (). We call a fibration preceded

by its kernel a fibration sequence.



12

We denote the category whose objects are categories with fibrations by Fib.

Example 2.8. Consider the category Vectk of k-vector spaces and linear maps. The

0-dimensional k-vector space together with the collection of surjective linear maps

give this category the structure of a category with fibrations.

2.3 Waldhausen categories

Waldhausen categories are categories with cofibrations, together with another class of

morphisms meant to behave like weak homotopy equivalences.

Definition 2.9. [12, 1.2] A Waldhausen category is a category with cofibrations that

has a class w of morphisms called weak equivalences, such that all isomorphisms are

weak equivalences, w is closed under composition, and pushouts along cofibrations are

unique up to weak equivalence. To be precise, this last condition means that if in the

commutative diagram
B A C

B′ A′ C ′

the vertical arrows arrows are in w, then the induced map B ∪A C → B′ ∪A′ C ′ is in

w. We write wC for the subcategory of C whose collection of morphisms is w and co

wC for the subcategory of C whose collection of morphisms is the cofibrations in w.

The maps in co wC are called acyclic cofibrations.

Example 2.10. Let C be a category with cofibrations. Then we can make C a

Waldhausen category by taking the weak equivalences to be the isomorphisms.
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Example 2.11. Consider the category LC whose objects are ordered pairs of based

finite sets (L,C) and whose morphisms are componentwise based functions. A map

(L,C) → (L′, C ′) is a cofibration if the maps L → L′ and C → C ′ are injective. A

map (L,C)→ (L′, C ′) is a weak equivalence if the map C → C ′ is a bijection. A zero

object is given by an ordered pair of singletons. Pushouts are taken componentwise.

We picture an object in this category as lines and circles attached to a common point.

For example we visualize (L = {∗, ℓ1, ℓ2, ℓ3}, C = {∗, c1, c2}) as

ℓ1 ℓ2

ℓ3

c1 c2

.

We think of maps between objects as maps of based CW complexes which are either

the identity or constant on each cell.

Example 2.12. Another example is given by Rf . Here the weak equivalences are the

weak homotopy equivalences.

Definition 2.13. [12, 1.2] A functor F : C → D between Waldhausen categories is

called exact when it is exact as a functor between categories with cofibrations and sends

weak equivalences to weak equivalences.

There are some commonly ascribed additional properties a Waldhausen category
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might have. To define these properties it is convenient to give names to some categories

one can construct given a category with cofibrations.

Definition 2.14. Let C be a category. Its arrow category Ar(C) is a category whose

objects are morphisms in C and whose morphisms are commutative squares in C.

We denote a morphism from f : X → Y to f ′ : X ′ → Y ′, depicted as

X X ′

Y Y ′

f f ′

ϕ

ψ

by (ϕ, ψ) : f → f ′. Two functors that one always has are the source and target functors

S : Ar(C) → C and T : Ar(C) → C which take morphisms in C to their sources and

targets, respectively. If C is a category with cofibrations, then Ar(C) is a category with

cofibrations, where a cofibration is given by a pair of cofibrations in C. The category

Ar(C) is Waldhausen with weak equivalences given by pairs of weak equivalences.

Definition 2.15. The full subcategory of Ar(C) on the cofibrations of C, which we

denote by F1C, is a category with cofibrations the maps (A↣ B)→ (A′ ↣ B′) such

that A↣ A′, B ↣ B′, and A′ ∪A B ↣ B′ are cofibrations in C. The category F1C is

Waldhausen with weak equivalences the component-wise weak equivalences.

Definition 2.16. A Waldhausen category is saturated if whenever gf is a weak

equivalence, then f is a weak equivalence if and only if g is a weak equivalence.

Motivated by mapping cylinders of spaces, one has the following definition.
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Definition 2.17. Let C be a Waldhausen category. A mapping cylinder functor on

C is a functor from Ar(C) to the category of diagrams in C taking f : A → B to a

diagram

S(f) M(f) T (f)

T (f)

if jf

f
rf =

where M(f) is called the cylinder of f . The induced natural transformations, i : S →

M , j : T → M , and r : M → T are called the top inclusion, bottom inclusion, and

retract, respectively. The functor M and the natural transformations must satisfy the

following axioms.

• (MapCyl 1) The functor i ⊔ j : Ar(C)→ F1C is exact.

• (MapCyl 2) For every object Y in C, M(0→ Y ) = Y with r0→Y and j0→Y the

identity.

We say that C satisfies the mapping cylinder axiom if it has a mapping cylinder

such that for all f : X → Y in C, rf : M(f)→ Y is a weak equivalence.

Notice that these axioms imply the following.

• (MapCyl 3) For every morphism (ϕ, ψ) : f → f ′ in Ar(C), M((ϕ, ψ)) : M(f)→

M(f ′) is a weak equivalence if ϕ and ψ are weak equivalences.

• (MapCyl 4) For every morphism (ϕ, ψ) : f → f ′ in Ar(C), M((ϕ, ψ)) : M(f)→

M(f ′) is a cofibration if ϕ and ψ are cofibrations.
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• (MapCyl 5) For every morphism (ϕ, ψ) : f → f ′ in Ar(C), the diagram

X ⊔ Y M(f) Y

X ′ ⊔ Y ′ M(f ′) Y ′

ϕ⊔ψ

if ⊔jf

if ′ ⊔jf ′

M((ϕ,ψ))

rf ′

ψ

rf

commutes. Furthermore, if ϕ and ψ are cofibrations, then the induced map

(X ′ ⊔ Y ′) ⊔
X⊔Y M(f)→M(f ′) is a cofibration.

• (MapCyl 6) Given a diagram of the form

A B

A′ B′

f

f ′

in C, there is a commutative diagram

A ⊔B M(f)

A′ ⊔B′ M(f ′)

A′/A ⊔B′/B M(f ′/f).

where f ′/f is the map from A′/A to B′/B induced by f and f ′.

Proposition 2.18. Let C be a saturated Waldhausen category together with a functor

M : Ar(C)→ C and natural transformations r : M → T , i : S → M , and j : T → M ,

where T is the target functor and S is the source functor. Suppose that the f component

of r, rf , is a weak equivalence when f is a weak equivalence and that M satisfies

(MapCyl1), (MapCyl3) and (MapCyl4). Then the inclusion

ι : co wC → wC is a homotopy equivalence.
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Proof. By Quillen’s Theorem A [10, 1], it suffices to show that ι is initial. We must

show that for every Y ∈ ob(wC), ι/Y is contractible. An object of ι/Y is an object X

in C together with a weak equivalence f from X to Y . A morphism in ι/Y from (X, f)

to (Z, g) is an acyclic cofibration h : X → Z such that gh = f . We define a functor

m : ι/Y → ι/Y that sends (X, f)→ (M(f), rf ). The fact that m is a functor follows

from r being a natural transformation, rf being a weak equivalence, and M satisfying

(MapCyl3) and (MapCyl4). Now i defines a natural transformation idι/Y → m using

(MapCyl1), the assumption that C is saturated, and that i is a natural transformation

from S to M . Similarly, j defines a natural transformation from the constant functor

with image object (idy, Y ) to m. We therefore have homotopies from the identity on

|ι/Y | to |m| and from a constant map from ι/Y → ι/Y to |m|. We conclude that

ι/Y is contractible, and since Y was arbitrary, |ι| is a homotopy equivalence.
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Chapter 3

The S•-construction and 2-Segal
objects

3.1 The S•-construction

A sequence of cofibrations in C together with choices of cokernels gives an object in

the category SnC. The categories SnC taken together with certain functors between

them form the simplicial category S•C. This construction was given in Waldhausen’s

paper [12, §1] en route to creating an algebraic K-theory of spaces. We now review

this construction and 2-Segal objects.

Definition 3.1. The category ∆, called the simplex category, has objects the ordered

sets [n] : = {0 ≤ 1 ≤ · · · ≤ n} and morphisms order-preserving maps.

We note that if we view [n] as a poset category, then ∆ can be viewed as the full

subcategory of the category of small categories Cat, on those categories of the form

[n] for some nonnegative integer n. It is often helpful to know that every morphism in

∆ is the composite of face and degeneracy maps. The face maps δni : [n− 1]→ [n] are

the injective maps "skipping i", and the degeneracy maps σni : [n+ 1]→ [n] are the
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surjective maps "hitting i twice". Given a functor X : ∆op → D, a simplicial object in

D, we denote X([n]) by Xn and we denote the image of δni by di and the image of σni

by si.

Definition 3.2. Given categories A and B, the category of functors Fun(A,B) has

functors from A to B as its objects and natural transformations as its morphisms.

Example 3.3. The arrow category of C (Definition 2.14) may be identified with

Fun([1], C).

Example 3.4. Fix n ∈ N. Viewing [n] as a poset category we consider Ar[n]. Any

morphism i → j in [n] may be identified with the pair (i, j) where i ≤ j. Any

commutative square
i j

i′ j′

in [n] may be identified with two pairs, (i, j) and (i′, j′), where i ≤ j and i′ ≤ j′, and

with i ≤ i′ and j ≤ j′. In other words, Ar[n] may be identified with the poset category

whose objects are pairs (i, j) with 0 ≤ i ≤ j ≤ n, and where (i, j) ≤ (i′, j′) if and only
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if i ≤ i′ and j ≤ j′. The diagram

(n, n)

...

(2, 2) · · · (2.n)

(1, 1) (1, 2) · · · (1, n)

(0, 0) (0, 1) (0, 2) · · · (0, n)

gives a picture of this category.

Definition 3.5. For C a category with cofibrations, SnC is the full subcategory of the

category of functors A : Ar[n] → C, (i, j) 7→ Ai,j on those functors with Aj,j = 0 for

every j, and Ai,j ↣ Ai,k ↠ Aj,k a cofibration sequence for every i < j < k. For C a

category with fibrations SnC is the full subcategory of Fun(Ar[n], C) on functors A with

Aj,j = 0 for every j and Ai,j ↣ Ai,k ↠ Aj,k a fibration sequence for every i < j < k.

Waldhausen [12, 1.3] showed that SnC is a category with cofibrations whenever C

is.

Proposition 3.6. The assignment [n] 7→ SnC defines a functor S•C : ∆op → Cof.

Proof. Objects of SmC are also functors Ar[m]→ C. The map [n]→ [m] in ∆ induces a

map Ar[n]→ Ar[m] which in turn induces a map SmC → SnC given by precomposition.

Therefore our assignment is a functor from ∆op → Cat. We have mentioned that SnC



21

is a category with cofibrations so it remains to check that the images of morphisms in

∆op are exact. See [12, 1.1].

Similarly, if C is a category with fibrations then [n] 7→ SnC defines a functor

∆op → Fib.

Definition 3.7. There is a forgetful functor Cat→ Set that sends a small category

to its set of objects and a functor to the corresponding function on sets of objects. We

denote the composite ∆op S•C−−→ Cat→ Set by s•C.

Each simplicial map α : [m]→ [n] induces a map between the set of isomorphism

classes of the objects of SnC and the set of isomorphism classes of the objects of SmC

Definition 3.8. We denote by iso(s•C) the simplicial set that takes [n] to iso(snC),

the set of isomorphism classes of objects in SnC.

Since a Waldhausen category is also a category with cofibrations, we may apply the

iso(s•−),s•-, and S•-constructions. For each n, SnC is a Waldhausen category where

a weak equivalence is a component-wise weak equivalence. The subcategory of weak

equivalences in SnC is denoted by wSnC. Since C is also a Waldhausen category with

weak equivalences the isomorphisms, we can consider SnC as a Waldhausen category

whenever C is a category with cofibrations.

Proposition 3.9. [12, 1.6.1] If C is a saturated Waldhausen category satisfying the

mapping cylinder axiom, then SnC satisfies the hypotheses of Proposition 2.18.
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3.2 2-Segal objects

The goal of this paper broadly is to see what structure S•C and its variants have,

given the properties we assume for C. Some structure that S•C might have is that of

a 2-Segal category. We review 2-Segal objects here. The definition of a 2-Segal object

was inspired by the definition of a 1-Segal object so we start there.

Definition 3.10. A simplicial set X is a 1-Segal set if the map Xn → X1×X0 X1×X0

X1 · · · ×X0 X1 induced by {i, i+ 1} ↪→ [n] for all i ∈ [n− 1] is a bijection for all n ≥ 2

[1, 1.1].

A 1-Segal set is always isomorphic to the nerve of a category, so we think of a

1-Segal set as corresponding to a category with objects the 0-simplices and 1-simplices

the morphisms [3, 2.2.2]. Therefore in some sense, one can study categories by studying

1-Segal sets. If, instead of strict composition, we wanted to model composition up

to homotopy we could replace pullbacks with homotopy pullbacks and change the

requirement of having a bijection to having a weak equivalence. One framework where

we have homotopy pullbacks and weak equivalences is that of model categories.

Definition 3.11. For a model category D, a simplicial object in D is 1-Segal if the

map Xn → X1×hX0 X1×hX0 X1 · · · ×hX0 X1 induced by {i, i+ 1} ↪→ [n] for i ∈ [n− 1] is

a weak equivalence where the right-hand side is an iterated homotopy pullback.

Remark 3.12. We could instead take D to be an (∞, 1)-category or any other category

with a notion of homotopy limits and weak equivalences.
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The maps in the above definitions are called 1-Segal maps. We can describe them

in a different way that better suggests the generalization to 2-Segal maps. In a

sufficiently nice model category D there are derived mapping objects Maph(K,X) for

all simplicial sets K and simplicial objects X in D [1, 1.1]. The derived mapping

objects are such that if W : A → SSets is a diagram, then Maph(colimAWa, X) is

weakly equivalent to holimAMaph(Wa, X) and Maph(∆[n], X) is weakly equivalent to

Xn for all n. Now fix n and consider the diagram

∆[0] ∆[1] ∆[0] ∆[1] ∆[0] · · · ∆[0]

∆[n].

0→0 0→1 0→0 0→1 0→0 0→1

0→0
0→0,1→1 0→1,1→2

0→2 0→n

From the diagram above there is an induced map ∆[1]⊔∆[0]∆[1]⊔∆[0] · · ·⊔∆[0]∆[1]→

∆[n] that we think of as the inclusion of the spine of ∆[n] into ∆[n]. It turns out that

applying Maph(−, X) yields a map fitting into the commutative square

Maph(∆[1] ⊔∆[0] ∆[1] ⊔∆[0] · · · ⊔∆[0] ∆[1], X) Maph(∆[n], X)

X1 ×hX0 X1 ×hX0 · · · ×
h
X0 X1 Xn.

≃ ≃

Therefore the 1-Segal maps are induced by the inclusion of a 1-dimensional subsimplicial

set of ∆[n] made up of (n− 1) 1-simplices glued to each other along 0-simplices. To

obtain 2-Segal maps we can start with subsimplicial sets of ∆[n] consisting of (n− 2)

standard 2-simplices glued to each other along 1-simplices. These 2-dimensional

subsimplicial sets can be unfolded and stretched into a triangulation of a regular n-gon.

We number the vertices of polygons to give a way of specifying triangulations.
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Definition 3.13. We say that a polygon has its vertices cyclically labeled if it is

possible to read the vertices in counterclockwise order as 0, 1, 2 . . . , n for some n. We

write Pn for the regular (n+ 1)-gon with cyclically labeled vertices.

1 2

3

0

1

2 3

4 0 1

23

Example Non-exampleNon-example

Figure 1

Figure 1 shows some examples and non-examples of cyclically labeled polygons.

The middle polygon in that figure is P4.

Definition 3.14. A polygonal subdivision of a cyclically labeled polygon P is a collec-

tion P of polygons contained in P such that members of P have their vertices among

the vertices of P , and such that any two members of P are either disjoint or intersect

on a common edge. A triangulation is a polygonal subdivision consisting of triangles.

A polygonal subdivision inherits labelings on the vertices of its members from the

labeling of the polygon it subdivides. A diagonal of a polygonal subdivision is an edge

of a member of the subdivision that is not an edge of the polygon being subdivided.
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1 2

0
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2 3

4 0
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Example Non-exampleNon-example

Figure 2

0

1

3

Figure 2 above shows some examples and non-examples of polygonal subdivisions

of cyclically labeled polygons. In the right picture, the triangle with vertices 0, 2,

and 3 intersects the triangle with vertices 0, 1, 3, on more than a common edge. The

picture on the left has subdividing polygons with a vertex not among the vertices of

the polygon being subdivided. In the center picture, the edge from vertex 1 to vertex

3 is a diagonal since it is not an edge of the five-sided polygon being subdivided.

We now describe how we can define 2-Segal maps without derived mapping

objects using the middle triangulation in Figure 2 as an example. The triangulation

corresponds to the category

{1, 2, 3} ← {1, 3} → {1, 3, 4} ← {1, 4} → {0, 1, 4}.

Now consider PFin(N), the category of finite ordered subsets of (N,≤) and order-

preserving functions, PFin(N). The diagram above can be extended to the commutative
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diagram

[2] [1] [2] [1] [2]

{1, 2, 3} {1, 3} {1, 3, 4} {1, 4} {0, 1, 4}

[4] = [4] = [4] = [4] = [4]

∼= ∼= ∼= ∼= ∼=

in PFin(N) where the top vertical morphisms are unique isomorphisms. Deleting the

middle row we get the diagram

[2] [1] [2] [1] [2]

[4] = [4] = [4] = [4] = [4]

{1,2,3} {1,3} {1,3,4} {1,4} {0,1,4}

δ2
1 δ2

2 δ2
2 δ2

0

in ∆ where the vertical morphisms are labeled by their images. Now if X is a simplicial

object in C we have a corresponding diagram

X2 X1 X2 X1 X2

X4 = X4 = X4 = X4 = X4.

{1,2,3} {1,3} {1,3,4} {1,4} {0,1,4}

d2
1 d2

2 d2
1 d2

0

Thus there is an induced map X4 → X2 ×X1 X2 ×X1 X2, which we write as X4 →

X{1,2,3} ×X{1,3} X{1,3,4} ×X{1,4} X{0,1,4}. If D is a sufficiently nice model category, then

the induced map fits into the commutative square

Maph(∆[4], X) Maph(∆[2] ⊔∆[1] ∆[2] ⊔∆[1] ∆[2], X)

X4 X{1,2,3} ×hX{1,3}
X{1,3,4} ×hX{1,4}

X{0,1,4}.

≃ ≃

We have associated a map to a given polygonal subdivision. In general the

procedure is as follows. Suppose we are given a simplicial object in D, X and a
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polygonal subdivision P of an n-gon. First, we extend X to a functor X : PFin(N)→ D.

After identifying objects of PFin(N) with order-preserving bijections of the form

fI : [k] → {i0, . . . , ik} = I, X is given by X(fI) = Xk and by sending α : I = {i0 <

i1 < . . . < ik} → J = {j0 < j1 < . . . < jm} to X(f−1
J αfI). And now the 2-Segal map

associated to the polygonal subdivision P and the functor X, fP , is the map from Xn

to the homotopy limit over X of the poset category of vertex sets appearing in the

subdivision.

Definition 3.15. A simplicial object X in a model category C is 2-Segal if for every

polygonal subdivision P of Pn, the map fP is a weak equivalence. The collection of

maps fP for P a polygonal subdivision of Pn for some n are called the 2-Segal maps.

Proposition 3.16. The simplicial topological space |S•C| is 2-Segal for any category

with cofibrations C.

Proof. For all n, SnC has a zero object given by the diagram with all objects 0. Thus

|SnC| is contractible. The homotopy pullback respects weak homotopy equivalence so

the 2-Segal maps of |S•C| are between contractible spaces. Such maps are automatically

weak homotopy equivalences.
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Chapter 4

Homotopy limits and projective
2-limits

The homotopy limit of a diagram of spaces is generally more difficult to compute than

the limit of a diagram of spaces. We replace homotopy limits with something a little

easier to work with, what Dyckerhoff and Kapranov call projective 2-limits [3, 1.3.6].

Finally, we give a technical result on homotopy limits of diagrams of categories.

Definition 4.1. Let A be a small category and (Ca)a∈A be a diagram of categories.

The projective 2-limit 2 lima∈A Ca is the category where an object is data consisting of:

(0) for all a ∈ ob(A), an object ya of Ca; and,

(1) for all u : a→ b in A, an isomorphism yu : u∗(ya)→ yb in Cb; such that

(2) if a u−→ b
b−→ c is a composable pair of morphisms in A, then yvu = yv ◦ v∗(yu).

A morphism in 2 lima∈A Ca from (ya, yu) to (y′
a, y

′
u) is a system of morphisms ya → y′

a

in Ca commuting with the yu and y′
u.

We note the similarity between the projective 2-limit of a diagram into Cat and

a certain characterization of the ordinary limit of a diagram into Cat. Let A be a



29

small category and (Ca) a small diagram of categories. A limit object of the diagram

is given by the category where an object consists of:

(0) for all a ∈ ob(A), an object ya of Ca; such that

(1) for all u : a→ b in A, u∗(ya) = yb.

A morphism in limA Ca from (ya) to (y′
a) is a system of morphisms ya → y′

a such that

for all u : a→ b, u∗(ya → y′
a) = yb → y′

b.

So the difference between the ordinary limit and the projective 2-limit is that

in the projective 2-limit, instead of having u∗(ya) = yb for all u : a → b we replace

equalities with isomorphisms and require these isomorphisms to be coherent.

The projective 2-limit of a diagram of the form A→ B ← C is denoted by A×(2)
B C

and called a 2-fiber product.

Example 4.2. Consider the category [0] with one object and just the identity mor-

phism. Let F : [0] → Cat be a [0]-diagram of categories. Write C for the unique

category in the image of the diagram. Then 2 lima∈[0] Ca = C because an object of

2 lima∈[0] Ca is an object ya of Ca = C together with an automorphism yu of ya such

that yu = y2
u. Applying y−1

u to both sides shows that yu must be the identity.

Example 4.3. We describe the 2-fiber product A ×(2)
B C of the diagram A

F−→

B
G←− C. By definition, an object is data consisting of objects a ∈ ob(A), b ∈

ob(B), and c ∈ ob(C), and isomorphisms yidA
: a ∼= a, yidB

: b ∼= b, yidC
: c ∼= c,

yF : F (a) ∼= b, and yG : G(c) ∼= b. We write this object of A ×(2)
B C as the tu-

ple (a, b, c, yidA
, yidB

, yidC
, yF , yG). Some of this data is actually superfluous. The
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same argument in the previous example shows that yidA
, yidB

, and yidC
are all

the identity. Thus we may describe an object by only giving the data in the tu-

ple (a, b, c, yF : F (a) ∼= b, yG : G(c) ∼= b). A morphism from (a, b, c, yF : F (a) ∼=

b, yG : G(c) ∼= b) to (a′, b′, c′, y′
F : F (a′) ∼= b′, y′

G : G(c′) ∼= b′) consists of morphisms

fA : a→ a′, fB : b→ b′, and fC : c→ c′ such that the diagram

F (a) b G(c)

F (a′) b′ G(c′)

F (fA) G(fC)

∼=
∼=

∼=
∼=

commutes.

For the homotopy limits we want to replace, the model structure for Cat that we

have in mind is the so-called "canonical model structure". We begin by defining the

fibrations for this model category

Definition 4.4. [11, §2] A functor F : C → D is an isofibration if whenever c is an

object of C and f : F (c)→ d is an isomorphism, there is a g such that F (g) = f .

Proposition 4.5. [11, 3.1] There is a model category structure on Cat, called the

canonical model category structure, such that the fibrations are the isofibrations,

the cofibrations are the functors injective on objects, and the weak equivalences are

equivalences.

Proposition 4.6. [3, 1.3.8] Let | − | : Cat→ T op denote geometric realization. For

any diagram of categories A→ Cat, a 7→ Ca, we have a natural morphism of spaces
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f : |2 lima∈ob(A) Ca| → holima∈ob(A)|Ca|. If A → Cat has image in the category of

groupoids, then 2 lima∈ob(A) Ca is a groupoid and f is a weak equivalence.

Let C → D ← E be a diagram of groupoids. In light of the previous proposition,

if we had a weak equivalence between |C ×2
D E| and |C ×hD E| then we would have a

weak equivalence between |C|×h|D| |E| and |C×hDE|. There are some strong conditions

under which there is a weak equivalence between |C ×2
D E| and |C ×hD E|. We do not

use these conditions in what follows but believe they are of independent interest, so

we give them here. To arrive at these conditions we need to pick a particular model

for the homotopy pullback of categories, which we do now.

There is a functorial factorization of each morphism in Cat into a trivial cofibration

followed by a fibration. In this factorization, the functor F : C → D factors through

L(C), a category whose objects are tuples (c, d, ϕ) where c ∈ ob(C), d ∈ ob(D),

and ϕ : F (c)
∼=−→ d is an isomorphism in D. In the canonical model structure, every

category is fibrant, so by [6, 13.1.3], Cat is right proper. Thus the homotopy pullback

of C → D ← E may be defined by first factoring as C → L(C)→ D ← L(E)← E

and then taking the pullback of L(C)→ D ← L(E) [6, 13.3.2]. We conclude that a

particular model for the homotopy pullback of C F−→ D
K←− E is presented by a category

with objects (c, d, e, ϕ : F (c)
∼=−→ d, ψ : F (c) = K(e)

∼=−→ d), and a morphism from

(c, d, e, ϕ : F (c)
∼=−→ d, ψ : F (c) = K(e)

∼=−→ d) to (c′d′, e′, ϕ′ : F (c′)→ d′, ψ′ : K(e′)→ d′)

is given by a pair c→ c′ in C and e→ e′ in E such that F (c→ c′) = K(e→ e′).

Proposition 4.7. If C F−→ D
K←− E is a a diagram of groupoids with either F or K full
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and surjective on objects, then |C ×hD E| is weakly homotopy equivalent to |C| ×h|D| |E|.

Proof. Without loss of generality assume F is full and surjective on objects. We

define a functor H : C×hDE → C×2
DE by sending (c, d, e, ϕ : F (c)→ d, ψ : K(e)→ d)

to (c, d, e, ϕ, ϕ). Notice that H forgets about ψ. For L : A → B we write L/b for

the slice category whose objects are morphisms L(a) → b. We claim that for any

(c′, d′, e′, ϕ′, ψ′) in C ×2
D E, the category H/(c′, d′, e′, ϕ′, ψ′) has an initial object. Then

Quillen’s Theorem A [10, 1] applies to the discussion after Proposition 4.6 to give the

result. Let a be some object that F sends to K(e′), h be some morphism F sends to

ϕ′−1ψ′. We claim that for H/(c′, d′, e′, ϕ′, ψ′), an initial object is (a, d′, e′, ψ′, ψ′) with

the morphism part of the object given by h, idd′ , ide′ . To verify this data gives an initial

object we take any object of H/(c′, d′, e′, ϕ′, ψ′), meaning a tuple (c′′, d′′, e′′, ϕ′′, ψ′′)

with F (c′′) = K(e′′), gC : c′′ → c′, gD : d′′ → d′, and gE : e′′ → e′ such that

F (c′′) d′′ K(e′′)

F (c′) d′ K(e′)

F (gC) gD K(gE)

ϕ′′

ϕ′′

ϕ′

ψ′

commutes.

The unique morphism needed is given by the pair (g−1
C h, g−1

E ).
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Chapter 5

2-Segality of discrete variants of the
S•-construction

Let C be a category with cofibrations. We determine which 2-Segal maps for iso(s•C)

are necessarily bijections. These 2-Segal maps turn out to be those from triangulations

of Pn for which each triangle contains the vertex 0.

First, we remark that the 2-Segal maps for s•C are almost never bijective. An exam-

ple illustrates the general problem. Consider the 2-Segal map s3C → s{0,1,2}C ×s{0,2}C

s{0,2,3}C. If this map were injective then any diagram of the form

A2,3

A1,2 •

A0,1 A0,2 A0,3

could be uniquely completed to an object of s3C. Any completion of the above diagram

amounts to a choice of cokernel of A01 → A03 but there is no reason a priori for there

to be a unique cokernel for this morphism in C. The general failure of any 2-Segal

map for s•C to be bijective is why we look at iso(s•C) instead.
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Lemma 5.1. Suppose that for every n ≥ 3 and 0 ≤ j ≤ n, the map Xn →

X{0,j,j+1,...,n} ×X{0,j} X{0,1,...,j} is a bijection. Then the 2-Segal map, coming from

the triangulation T where each triangle contains the vertex labeled 0 under some cyclic

labeling, is bijective.

Proof. We use the hypothesis repeatedly. The bijections

Xn

∼=−→ X{0,n−1,n} ×X{0,n−1} X{0,1,...,n−1}

X{0,1,...,n−1}
∼=−→ X{0,n−2,n−1} ×X{0,n−2} X{0,1,...,n−2}

...

X{0,1,2,3}
∼=−→ X{0,2,3} ×X{0,2} X{0,1,2}

combine to give that fT : Xn → X{0,n−1,n} ×X{0,n−1} X{0,n−2,n−1} ×X{0,n−2} · · · ×X{0,2}

X{0,1,2} is a bijection.

Similarly, if the map Xn → X{0,1,...,j,n} ×X{j,n} X{j,j+1,...,n} is a bijection for every

n ≥ 3 and 0 ≤ j ≤ n, then the 2-Segal map coming from the triangulation T where

each triangle contains the vertex labeled n under some cyclic labeling is bijective.

The previous lemma motivates us to define a weakened version of 2-Segal sets.

Definition 5.2. Suppose X is a simplicial object in C.

• We say X is left 2-Segal if for every n ≥ 3 and 0 ≤ j ≤ n, the map Xn →

X{0,j,j+1,...,n} ×hX{0,j}
X{0,1,...,j} is a weak equivalence.

• We say X is right 2-Segal if for every n ≥ 3 and 0 ≤ j ≤ n, the map Xn →

X{0,1,...,j,n} ×hX{j,n}
X{j,j+1,...,n} is a weak equivalence.



35

The last fact we use to prove that certain fT are always bijective is the following.

Lemma 5.3. Let Mn be the set of isomorphism classes of chains of (n−1) cofibrations.

The function µn : iso(snC) −→Mn that sends [A] to [A0,1 ↣ A0,2 ↣ · · ·↣ A0,n] is a

bijection.

Proof. An inverse is defined as follows. Suppose [A0,1 ↣ A0,2 ↣ · · · ↣ A0,n] is an

element of Mn. Let Ak,k = 0 for all k. Then for all other pairs i, j with 0 < i ≤ n and

0 ≤ j ≤ n, let Ai,j be a pushout object of the diagram 0← A0,i → A0,j noting that

all pushouts of a given diagram are isomorphic. Now, there are induced morphisms

that make [A] into an element of iso(snC).

Similarly, if C is a category with fibrations and En is the set of isomorphisms

classes of chains of (n− 1) fibrations, then the function iso(snC)→ En which sends

[A] to [A0,n ↠ A1,n ↠ · · ·↠ An−1,n] is a bijection.

Proposition 5.4. Let T be a triangulation of Pn. If each triangle of T contains the

vertex 0, then the 2-Segal map fT of iso(s•C) associated to T is a bijection.

Proof. Our proof is an adaptation of Dyckerhoff and Kapranov’s proof of a similar

result [3, 2.4.8]. By Lemma 5.1, it suffices to show that the 2-Segal map iso(snC)→

iso(s{0,1,...,j}C)×iso(s{0,j}C) iso(s{0,j,j+1,...,n}C) is a bijection for any j. This 2-Segal map

fits into the commutative diagram
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iso(snC) iso(s{0,1,...,j}C)×iso(s{0,j}C) iso(s{0,j,j+1,...,n}C)

Mn Mj ×iso(s{0,j}C) Mn−j+1

µj×µn−j+1µn

ϕj

where ϕj is a bijection given by [A0,1 ↣ A0,2 ↣ · · · ↣ A0,n] 7→ ([A0,1 ↣ A0,2 ↣

· · ·↣ A0,j], [A0,j ↣ A0,j+2 ↣ · · ·↣ A0,n]) so the result follows by Lemma 5.3.

In essence, the above argument worked because having all polygons in the subdivi-

sion containing the vertex 0 means that objects in the right hand side of the 2-Segal

map have complete top rows. A complete top row is enough to specify an object in

S•C up to isomorphism because all the lower parts of an object of SnC are pushouts

of the cofibrations in the top row, and taking pushouts of cofibrations is exactly what

we can do in a category with cofibrations.

Call the 2-Segal maps corresponding to triangulations where each triangle has the

vertex 0 the left 2-Segal maps. Call the 2-Segal maps corresponding to triangulations

where each triangle has the vertex n the right 2-Segal maps. We prove that the left

2-Segal maps are the only 2-Segal maps corresponding to triangulations for iso(s•C)

that are always bijective. Specifically we prove the following proposition.

Proposition 5.5. For iso(s•C) the 2-Segal maps fT which are not left 2-Segal are not

necessarily surjective.

First we provide a category with cofibrations such that some of its 2-Segal maps

of the type in Proposition 5.5 are not surjective. We then use an inductive argument
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relying on the structure of triangulations of polygons to show that for this category

with cofibrations none of the 2-Segal maps of Proposition 5.5 are surjective.

We want a category with cofibrations with as few cofibrations as possible. We are

thus led to a notion of generated categories with cofibrations.

Definition 5.6. Let D be a subcategory of C that contains a 0 object of C and all

morphisms between its objects and 0 that are in C. Then we denote the intersection

of all subcategories with cofibrations of C containing D by ⟨D⟩. We call ⟨D⟩ the

category with cofibrations generated by D in C.

Now we justify the terminology.

Lemma 5.7. The intersection of a collection of subcategories with cofibrations of C is

a category with cofibrations.

Proof. Let Da be a subcategory with cofibrations of C for all a ∈ I. Then ∩a∈IDa

contains 0 and it is a zero object for this category. Suppose f is a cofibration in C

which is in ∩a∈IDa and g is a morphism in ∩a∈IDa. Then the pushout of f along g is

in all Da.

Remark 5.8. We can also describe ⟨D⟩ as a colimit. Let D = D0 be a subcategory of

C containing a zero object of C and all morphisms between its objects and 0 that are in

C. For all i ≥ 0, let Di+1 be the smallest subcategory of C containing Di, all pushouts

of a cofibration in Di along a morphism in Di and all morphisms between 0 and objects

of D and these pushouts. Then we claim that colimiDi ∼= ⟨D⟩. Each Di is necessarily
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in ⟨D⟩ so we just need to show that colimiDi is a subcategory with cofibrations of C.

The zero object condition follows from each Di satisfying the same condition. Suppose

f is a morphism of Di and g is a cofibration of Dj. Then f and g are morphisms in

Dmax(i,j) so the pushouts of f along g and g along f are in Dmax(i,j)+1.

The category D appearing in the following proposition is used to prove Proposition

5.5.

Proposition 5.9. There is a category with cofibrations D such that the 2-Segal maps

iso(snD)→ iso(s{0,1,n}D)×iso(s{1,n}D) iso(s{1,2,...,n}D) are not surjective.

Proof. We first consider the n = 3 case. Showing that

iso(s3D)→ iso(s{0,1,3}D)×iso(s{1,3}D) iso(s{1,2,3}D)

is not surjective amounts to showing that there is a diagram

A0,1 • A0,3

A1,2 A1,3

A2,3

that cannot be completed to an object of s3D.

Consider the subcategory of Rf generated by the diagram
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• •

• • • T 2

S1 • •

• • • • T 2/S1

∆̂

S2

p p

||

p

||

||

||

||

where the same marking on different edges indicates that those edges should be

identified with each other or is used to indicate the image of an object. The notation

∆̂ is used because the corresponding CW complex looks like a triangle turned into

a hat by pinching two corners together. Let D0 be the smallest category containing

the preceding diagram and all morphisms between its objects and 0. To complete

the above diagram to an object of s3⟨D0⟩, we must insert an subcomplex of T 2, X,

with 1 0-cell, 3 1-cells, and 1 2-cell in the first row in order for ∆̂ to be the cokernel

object of the inclusion of S1 into X. Up to homeomorphism, the only subcomplex

of T 2 with this number of cells in each dimension is P , a triangle viewed as a CW

complex in the natural way with all of its vertices identified. Recall how Di+1 (see

Remark 5.8) is constructed from Di and that ⟨D0⟩ = colimiDi. We claim that P is
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not in ⟨D0⟩. First, note that every object in ⟨D0⟩ has one 0-cell. This is because all

the objects in D0 have one 0-cell as their basepoint and all the morphisms in D0 are

basepoint preserving. Also, note that for all j, the objects that are in Dj+1 but not

Dj are pushout objects of pushout diagrams like

X Y

Z X ⊔ Y/(x ∼ f(x))

f

whose left vertical morphisms and top horizontal morphisms are in Dj. This implies

that if a 2-cell in Y is attached along k 1-cells then the image of that 2-cell in

X ⊔ Y/(x ∼ f(x)) is attached along at most k 1-cells. Since the bottom map is a

cellular inclusion, a 2-cell in the pushout that is also in Z is attached along the same

number of 1-cells that it is in Z. Since the most 1-cells that a 2-cell is attached

along among the objects of D0 is 3, it follows that all 2-cells in any object of ⟨D0⟩ are

attached along at most 3 1-cells.

Now suppose to reach a contradiction that j is the smallest number for which

an object of the form W ∨ P is in Dj (where W might be a point). Then there is a

pushout diagram of the form

X Y

Z W ∨ P

f

where the left vertical morphism and top horizontal morphism are in Dj−1. The 2-cell

C in P in W ∨P is attached along 3 1-cells. There is a 2-cell in either Z or Y that gets
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mapped via the bottom horizontal or right vertical map onto C. Suppose a 2-cell in

Z gets mapped onto C. Then since the bottom horizontal map is a cellular inclusion,

P is a wedge summand of Z which is a contradiction. Suppose a 2-cell C ′ in Y gets

mapped onto C by the right vertical map. Then C ′ must be attached in Y along 3

1-cells by earlier remarks. If there is another 2-cell C ′′ in Y that is attached along

one of the 1-cells that C ′ is attached along, then that common 1-cell gets contracted

by the right vertical map since there is not a 2-cell attached to C along a common

1-cell in W ∨ P . But then there would be at most 2 1-cells that P is attached along

in W ∨ P . This is a contradiction so we conclude that no 2-cell shares a common

bounding 1-cell with C ′. Thus P is a wedge summand of Y , a contradiction. We

conclude that P is not in ⟨D0⟩ so we have the n = 3 case of the proposition.

Now in any subcategory with cofibrations of Rf , the n = 3 case implies the other
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cases because then the diagram

A0,1 • • · · · • • A0,3

0 0 · · · 0 A1,2 A1,3

0 · · · 0 A1,2 A1,3

. . . ... ... ...

0 A1,2 A1,3

A1,2 A1,3

A2,3

cannot be completed to an object of snD.

Remark 5.10. In a conversation, Maxine Calle pointed out that for any finite CW

complex X we can do the above argument in an analogous subcategory of Rf (X) since

the X gets carried along in taking pushouts.

We now take a detour into the structure of triangulations of polygons needed to

set up an inductive argument for the proof of Proposition 5.5.

Lemma 5.11. Every triangulation of a Pn has a triangle whose vertices are labeled

by j − 1, j, j + 1 for some j.
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Proof. The vertices of P2 are labeled by 0, 1, 2 so we can take j = 1. There are two

triangulations of P3. The triangulation with a diagonal from 0 to 2 contains the

triangle labeled by 0,1,2. The triangulation with a diagonal from 1 to 3 contains the

triangle labeled by 1,2,3. We proceed by induction. Suppose the result is true for

n = k. Consider a triangulation of the regular (k + 1)-gon. Let i < j be the labels for

the vertices of a diagonal of the triangulation. If j = i+2 then we are done. If j ̸= i+2

then consider the induced triangulation on the polygon with vertices i, i+ 1, . . . j. By

inductive assumption, this triangulation contains a triangle of the desired form which

is then in the larger triangulation. The result follows by induction.

Note in the previous lemma that j − 1, j, j + 1 are strictly consecutive, not just

consecutive modulo n. So what is the difference in significance between triangles with

consecutive vertices and triangles with vertices consecutive modulo n? Consider the

following example. The triangulation

0

1

2

3

4

can be built up as

0

1

2 0

12

3 0

1

2

3

4
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Notice that at each step the last triangle added had its vertices consecutive modulo

n and that the last triangle added always has a vertex not connected to any diagonals.

Lemma 5.12. Viewing the edges and vertices of a triangulation of a Pn as a graph,

every vertex has valency at least 2. The vertices of valency 2 are exactly those j for

which j − 1, j, j + 1 mod n is a triangle in the triangulation.

Proof. Every triangulation can be constructed by attaching triangles to each other

along edges like the example above. Starting with a triangle with vertices cyclically

labeled, we add a triangle glued along one of the edges of the original triangle. Then

we relabel the vertices keeping 0 at the same place. Now we add another triangle

and relabeling while keeping 0 at the same place and repeat. The construction of the

triangulation of the pentagon above gives an example. At the end of each relabeling

the last triangle added has become one with vertices labeled j − 1, j, j + 1 mod k for

some j and k. The process of attaching a triangle as above increases the degree of

two of the vertices by 1 and adds a vertex of degree 2; namely, the middle vertex in a

triangle with consecutive vertices modulo n.

Lemma 5.13. When T is a triangulation containing the triangle T0 which we iden-

tify with the label set of its vertices {j − 1, j, j + 1}, the natural morphisms of the

form limT iso(s•C)→ limT ,T0 iso(s•C) are surjective. Here, limT ,T0 iso is abbreviated

notation for limT −{T0,{j−1,j+1}}.

Proof. Suppose the triangles of T are T1, T2, . . . , Tn−2, and T0 := {j−1, j, j+1} where
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we identify each triangle with the set of lables on its vertices. Then limT iso(s•C)

may be represented by the set whose elements are tuples of isomorphism classes

([A1], [A2], . . . , [An−2], [A0]) where Ai ∈ sTi
C for all i, and if Ti ∩ Tk = {ℓ,m}, then

the images of [Ai] and [Ak] in iso(s{ℓ,m}C) are the same. Similarly, limT ,T0 iso(s•C)

may be represented by the set of tuples of isomorphism classes ([A1], [A2], . . . , [An−2])

where Ai ∈ sTi
C for all i, and if Ti ∩ Tk = {ℓ,m}, then the images of [Ai] and [Ak]

in iso(s{ℓ,m}) are the same. Consider a generic element ([A1], [A2], . . . , [An−2]) of

limT ,T0 iso(s•C). There is a unique k and α such that {k, j − 1, j + 1} = Tα is the

only other triangle of T that shares an edge with {j − 1, j, j + 1}. Assume k < j − 1.

The other case (k > j + 1) is similar. A preimage of this generic element is given by

([A1], [A2], . . . , [An−2], [0 ↣ (Aα)j−1,j+1 ↠ (Aα)j−1,j+1]).

Proof of Proposition 5.5. We proceed by induction on the number of sides of the

polygon being subdivided. For n = 3 the result follows from Proposition 5.9. Let C

be the subcategory of Rf from the proof of Proposition 5.9. Suppose the result is

true for n = k. Let T be a triangulation of the regular (k + 1)-gon with cyclically

labeled vertices where some triangle in the triangulation does not contain the 0 vertex.

We view the vertices and edges of the triangulation as a graph. There are two cases:

either the degree of the vertex 0 is 2 or it is greater than 2.

Suppose the degree of the vertex 0 is 2. Then by Lemma 5.12, the triangle given

by 0, 1, k + 1 is in T . The induced triangulation on the polygon with vertices labeled

from 1 to k + 1 contains a triangle with vertices of the form j − 1, j, j + 1 by Lemma
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5.11. We have a commutative diagram

iso(sk+1C) limT iso(s•C)

iso(s{0,1,...,j−1,j+1,...k+1}C) limT −{j,j−1,j+1}−{j,j+1}iso(s•C)

where by {j, j − 1, j + 1} we mean the triangle with those vertices. The top and

bottom maps are 2-Segal maps, the left vertical map is the appropriate face map of

iso(s•C) which is surjective, and the right vertical map is projection. The right vertical

map is surjective by Lemma 5.12. The inductive hypothesis gives that the bottom

horizontal map is not surjective so the top horizontal map cannot be surjective.

Now suppose the degree of the vertex labeled 0 is greater than 2. Then there is a

j ≠ 1, k + 1 such that the edge from 0 to j is a diagonal of the triangulation. This

diagonal splits Pn into two cyclically labeled triangulated polygons. One of these two

triangulated polygons must now contain a triangle that does not contain the vertex

labeled 0. Proceeding like above we can reduce our attention to the 2-Segal map

corresponding to the triangulated sub-polygon with a triangle not containing 0. Look

at the degree of the vertex 0; if it is not 2 repeat this procedure until the degree of

the vertex 0 is 2. Then proceed as in the first case.

We have shown that for all categories with cofibrations C, iso(s•C) is left 2-Segal

but need not be fully 2-Segal.
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Chapter 6

2-Segality of topological versions of
the S•-construction

Let C be a category with cofibrations. The goals of this chapter are threefold. First,

we show that the left 2-Segal maps for |iS•C| are weak equivalences. Second, we show

these are the only 2-Segal maps, corresponding to triangulations, which are necessarily

weak equivalences. The proofs given are more categorical versions of the proofs given

for iso(s•C). Finally, we give a partial result for |wS•C|.

Proposition 6.1. Let C be a category with cofibrations and T be the triangulation of

Pn where each triangle of T contains the vertex 0. Then fT is a weak equivalence.

Lemma 6.2. Let MnC be the groupoid whose objects are chains of (n− 1) cofibrations

in C and whose morphisms are isomorphisms of such chains. The functor µn : iSnC →

MnC which sends A to A0,1 ↣ A0,2 ↣ · · ·↣ A0,n is an equivalence.

The proof is analogous to that of Lemma 5.3.

Proof of Proposition 6.1. By Proposition 4.6 it suffices to show that the functor

Φj : iSnC → iS{0,1,...,j}C×(2)
S{0,j}C iS{j,j+1,...,n}C is an equivalence. There is a commutative
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diagram

iSnC iS{0,1,...,j}C ×(2)
iS{0,j}C iS{j,j+1,...,n}C

Mn Mj ×(2)
iS{0,j}C Mn−j+1

µn

Φj

µj×µn−j+1

ϕj

where ϕj is an equivalence so Φj is an equivalence.

Now we turn to the "only" part of the result.

Lemma 6.3. A functor between groupoids that is not essentially surjective cannot

induce a weak homotopy equivalence between realizations.

Proof. Suppose F : C → D is a functor between groupoids that induces a weak

homotopy equivalence |C| → |D|. Then |F | gives a surjection (in fact a bijection)

between path components of the 1-skeleta. Since all edges in the 1-skeleta come from

isomorphisms this cannot be the case unless F is essentially surjective.

Because of Lemma 6.3, it suffices to show that the maps from iSnC to 2-fiber

products of categories corresponding to 2-Segal maps are not necessarily essentially

surjective.

Lemma 6.4. When T is a triangulation containing the triangle {j − 1, j, j + 1}, the

natural morphisms of the form 2 limT (iS•C) → 2 limT −{j−1,j,j+1}−{j−1,j+1}(iS•C) are

surjective on objects.

The proof is the same as for Lemma 5.13 with "bijection" replaced by "essentially

surjective" except that one must keep track of the isomorphisms that are part of the
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data of an object in a 2 limit. We use the fact that a composite of essentially surjective

functors is essentially surjective and if G and F are functors and GF is essentially

surjective, then so is G.

Proposition 6.5. There is a category with cofibrations D such that the natural map

iSnD → iS{0,1,n}D ×(2)
iS{1,n}D iS{1,2,...,n}D is not essentially surjective.

The proof is essentially the same as the proof of Proposition 5.9.

Proposition 6.6. The 2-Segal maps of |iS•C| which are not left 2-Segal are not

necessarily weak equivalences.

Proof. By Lemma 6.3 and Proposition 4.6, it suffices to show that the corresponding

maps into the projective 2-limits of categories are not necessarily essentially surjective.

The proof is the same as the proof of Proposition 5.5, but with limits replaced by

projective 2-limits.

Now having the weak equivalences all be isomorphisms is an unusually special

situation. Another unusually special situation is having all morphisms be weak

equivalences. We have seen that |S•C| is 2-Segal and |iS•C| is left 2-Segal and may be

2-Segal. What can we say in the middle cases of arbitrary Waldhausen categories? So

far we have not been able to say anything, but if C is a nice Waldhausen category we

can say the following.
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Proposition 6.7. If C is a saturated Waldhausen category satisfying the mapping

cylinder axiom, then a 2-Segal map of |wS•C| is a weak equivalence if and only if the

corresponding 2-Segal map for |wcofM•C| is a weak equivalence.

Proof. By Proposition 2.18, the maps wcofSnC → SnC are homotopy equivalences.

Analogously to Lemma 6.2, the maps wcofMnC → wcofSnC are homotopy equiva-

lences. All of these maps commute with face and degeneracy maps. Since in T op all

spaces are fibrant, the result follows.
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Chapter 7

2-Segality of categorical versions of
the S•-construction

We have seen that |S•C| is always 2-Segal (Proposition 3.16). Here we show that S•C

is always left 2-Segal for C a category with cofibrations but is not always 2-Segal.

In particular, a simplicial object in Cat can be left but not fully 2-Segal while its

geometric realization is fully 2-Segal. We will also see that wS•C behaves similarly

to S•C. Some of our arguments are parallel to the ones given in the previous two

sections.

Lemma 7.1. Let Mn be the category whose objects are chains of (n− 1) cofibrations

in C and whose morphisms are morphisms of such chains. The functor µn : SnC →Mn

which sends A to A0,1 ↣ A0,2 ↣ · · ·↣ A0,n is an equivalence.

Lemma 7.2. If i : {0, j} → α = {α1, . . . , αl} is injective then SiC : SαC → S{0,j}C is

an isofibration.

Proof. Let A be an object of SαC and f̃ : (SiC)(A) = A0,j → B0,j be an isomorphism

in S{0,j}C. We want to produce an object B of SαC and a morphism f : A→ B such
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that (SiC)(f) = f̃ . We gain both B and f by extending the diagram

A0,α1 A0,α2 · · · A0,αk
B0,j A0,αk+1 · · · A0,αl

A0,α1 A0,α2 · · · A0,αk
A0,j A0,αk+1 · · · A0,αl

a2 a3 ak a ak+1 ak+2 al

= = =

a2 a3 ak

f̃

f̃a ak+1f̃
−1

=

ak+2 al

=

using the equivalence of the previous lemma.

We conclude that for any j, S{0,1,...,j}C ×hS{0,j}C S{0,j,j+1,...,n}C is equivalent to the

ordinary pullback. Now in the same way as Lemma 5.3 and Proposition 6.1, there is a

commutative diagram

SnC S{0,1,...,j}C ×S{0,j}C S{0,j,j+1,...,n}C

Mn Mj ×S{0,j}C Mn−j+1.

The bottom and vertical maps are equivalences, so the top map is an equivalence.

Now suppose C is a Waldhausen category. Consider the map wSnC → wS{0,1,...,j}C

×hwS{0,j}CwS{0,j,j+1,...,n}C. The isomorphisms in wSmC are the same as the isomorphisms

in SmC. Thus wS{0,1,...,j}C → wS{0,j}C is an isofibration and the homotopy pullback

can be replaced by an ordinary pullback. We can for each n, consider the category

wMn whose objects are chains of n− 1 cofibrations in C and whose morphisms are

componentwise weak equivalences. We get, like above for S•C, a commutative diagram
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wSnC wS{0,1,...,j}C ×wS{0,j}C wS{0,j,j+1,...,n}C

wMn wMj ×wS{0,j}C wMn−j+1

where the bottom and vertical maps are equivalences..

From the above considerations in S•C and wS•C we get the following proposition.

Proposition 7.3. The left 2-Segal maps of S•C and wS•C, are equivalences of cate-

gories.

Remark 7.4. The nerve functor applied to a morphism which is the image of an

injection under S•C is not a fibration of simplicial sets since this nerve is not cofibered

over groupoids [7, 2.1.1.2]. Since N(SiC) is not a fibration we do not have a reason to

be able to replace a homotopy pullback with a pullback when studying the 2-Segal maps

of |S•C|. Just like the S•C case, wS{0,1,...,j}C → wS{0,j}C is never fibered in groupoids.

Proposition 7.5. There is a category with cofibrations D such that the natural map

SnD → S{0,1,n}D ×S{1,n}D S{1,2,...,n}D is not essentially surjective.

The same category D used for Proposition 5.9 can be used here, and the proof

is the same as the one there. Since equivalences of categories must be essentially

surjective, we get that the 2-Segal map SnD → S{0,1,n}D ×hS{1,n}D S{1,2,...,n}D is not an

equivalence. Proposition 6.6 has an analogue with the same proof here as well.

Proposition 7.6. The 2-Segal maps fT corresponding to triangulations where some

triangle does not contain 0 are not necessarily weak equivalences.
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By Proposition 3.16, we know that |S•C| is always 2-Segal, so Proposition 7.6

gives an example where geometric realization of categories does not commute with

homotopy pullbacks.

Because iS•C is a special case of wS•C, and we have replaced the homotopy pullback

with an ordinary pullback, the argument of Proposition 6.5 gives a wS•C version of

Proposition 7.6.

Proposition 7.7. The 2-Segal maps fT with source wS•C corresponding to triangula-

tions where some triangle does not contain 0 are not necessarily weak equivalences.
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Chapter 8

A sufficient condition for S•C to be
2-Segal

We now have some examples of possible strict left 2-Segal spaces : iso(s•C), S•C, wS•C,

and |iS•C|. Therefore, we now look for sufficient conditions under which some of these

simplicial spaces are necessarily 2-Segal. Analyzing our previous work we find the

following criterion.

Proposition 8.1. Let C be a category with cofibrations. Then S•C is 2-Segal if any

diagram in C of the form

A • X

0 B Y

can be extended to

A C X

0 B Y

where the squares are pushouts and the right square is a pullback.

Proof. By [3, 2.3.2(4)] and since we argued in Section 7 that we can replace homotopy

pullbacks in the 2-Segal maps of S•C with ordinary pullbacks, it suffices to show that
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the 2-Segal maps of the forms SnC → S{0,j,j+1,...,n}C ×S{0,j}C S{0,1,...j}C and SnC →

S{0,1,...j,n}C×S{j,n}C S{j,j+1,...,n}C are equivalences. The 2-Segal maps of the first of these

two forms are equivalences by the work in Section 7. We focus on 2-Segal maps of

the second form. To show essential surjectivity of these it suffices to show that the

diagram

A0,1 A0,2 · · · A0,j • • · · · • A0,n

A1,2 · · · A1,j • • · · · • A1,n

... ... ... ... ... ...

Aj−1,j • • · · · • Aj−1,n

Aj,j+1 Aj,j+2 · · · Aj,n−1 Aj,n

Aj+1,j+2 · · · Aj+1,n−1 Aj+1,n

... ...

An−2,n−1 An−2,n

An−1,n

can be extended to an object of SnC compatible with the given morphisms. We make

this extension one object at a time. First, we use our hypothesis to extend

A0,j • A0,n

0 Aj,j+1 Aj,n.
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The newly added object we denote by A0,j+1. Next, we use our hypothesis to extend

A0,j+1 • A0,n

0 Aj+1,j+2 Aj+1,n.

Proceeding in this way fill out the first row. Now we add in the rest of the required

objects by taking cokernels of composites of morphisms in the first row. Compatibility

with preexisting morphisms in the first j rows of the diagram comes from the uniqueness

part of the universal property for pushouts. That the last n− j rows may come from

choices of cokernels in the first row comes from the fact that if A ↣ B ↠ D,

(A ↣ B ↣ C) ↠ E, and D ↣ E ↠ F are cofibration sequences, then so is

B ↣ C ↠ F . To show fullness, it suffices to show that

B0,j B0,n

A0j A0n

0 Bj,j+1 Bj,n

0 Aj,j+1 Aj,n

can be extended to

B0,j B0,j+1 B0,n

A0j A0,j+1 A0n

0 Bj,j+1 Bj,n

0 Aj,j+1 Aj,n

where the extension on the front and back faces comes from applying the hypothesis.

This extension is obtained by applying the hypothesis to the front and back faces
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and then using that the back right square is a pullback square. We must check

commutativity of the three squares containing the morphism A0,j+1 → B0,j+1. The

top right square and vertical middle square commute because the morphism A0,j+1 →

B0,j+1 was induced by the commutative square

A0,j+1 A0,n B0,n

Aj,j+1

Bj,j+1 Bj,n

.

Commutativity of the top left square comes from the uniqueness part of the universal

property of the pullback: A0,j → B0,j ↣ B0,j+1 and A0,j ↣ A0,j+1 → B0,j+1 both can

both be added to give a commutative diagram

A0,j B0,j

0 B0,j+1 B0,n

Bj,j+1 Bj,n

.

The uniqueness part of the universal property of pullbacks and pushouts gives faith-

fulness.

Example 8.2. The category Rf satisfies the hypothesis of Proposition 8.1. The

missing object in

A • X

0 B X/A
g

q

f
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can be filled in with q−1(g(B)) which inherits its CW structure from X. The object

A is a subcomplex of q−1(g(B)) since it is a subcomplex of X that q maps to the

basepoint of X/A which is contained in g(B). The needed map from q−1(g(B)) to

B is g−1q where g−1 is defined on g(B) and q is restricted to q−1(g(B)). We have a

commutative square of the right shape and it remains to check that the left square is a

pushout and the right square is biCartesian. The middle vertical map is the restriction

of the map which quotients by A so the left square is a pushout. A model for the

pushout of B ← q−1(g(B)) ↣ X is B ⊔x∼g−1q(x) X. The process of quotienting by

this relation can be described in two steps. First A ⊂ X gets identified with the point

A ∈ X/A. Next q−1(g(B)) is bijectively identified with B − {A}. The resulting space

is X/A. The right square is pullback since given an extension problem of the form

Z

q−1(g(B)) X

B X/A

h

k

q

g

the unique solution is given by k with restricted codomain. The morphism k has

image in q−1(g(B)) since q(k(Z)) ⊂ g(B) by commutativity.

As a special case, we get that the category of based finite sets with injective maps

as cofibrations satisfies the hypothesis of Proposition 8.1. In fact, the arguments of

this example go through for the category of based sets with cofibrations the injective

maps in this category.

Remark 8.3. Proto-exact categories with admissible monomorphisms as cofibrations
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as defined in [3, 2.4.2] are close to satisfying the hypothesis of Proposition 9.1. The

part about the left square being a pushout is where this hypothesis conceivably might

fail for a proto-exact category. Conversely, a category with cofibrations need not be

exact if we say the admissible monomorphisms are cofibrations and their cokernels are

admissible epimorphisms. This is because the cokernels of cofibrations do not need to

be closed under composition.
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Appendix A

Upper and lower 2-Segal

Here we prove that what we have been calling left and right 2-Segal are the same as

lower and upper 2-Segal respectively.

Definition A.1. Let D be a model category, X : ∆op → D a simplicial object, and

0 < i < n. Consider the squares

Xn+1 Xn Xn+1 Xn

and

Xn Xn−1 Xn Xn−1

dn+1

di

dn

di.

d0

d0

didi+1

We say X is upper 2-Segal if for any choices of i and n, the left square is homotopy

cartesian. We say X is lower 2-Segal if for any choices of i and n, the right square is

homotopy cartesian.

Remark A.2. We use the formulation that appears in [4, 1] but the first place the

definition appears in the literature is [8, 2.2].

Proposition A.3. A simplicial object in a model category is upper 2-Segal if and

only if it is right 2-Segal, and it is lower 2-Segal if and only if it is left 2-Segal.



62

Proof. We prove the first statement; the second statement is dual. It is known

that a simplicial object Y is lower 2-Segal if and only if for each n the map Yn →

Y{0,1,n} ×hY{1,n}
Y{1,2,...,n} is a weak equivalence. So if X is right 2-Segal then by duality

and definition we can conclude that X is upper 2-Segal. Now we turn to the converse.

We can restate our definition of right 2-Segal in terms of homotopy pullback squares

as follows. A simplicial object X in a model category is right 2-Segal exactly when

the diagram
Xk Xj+1

Xk−j X1

(dj+1)k−j−1

(d0)j

(d1)k−j−1

(d0)j

is homotopy cartesian for all 0 < j < k.

Assume that X is upper 2-Segal. Then

X3 X2

X2 X1

d2

d0 d0

d1

is homotopy cartesian by assumption. In other words X3 ≃ X{0,1,3} ×hX{1,3}
X{1,2,3}.

By assumption, we have homotopy cartesian squares

X4 X3 X3 X2

and

X3 X2 X2 X1

d2

d0 d0

d1

d2

d0

d1

d0

so that
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X4 X2

X3 X1

d2d2

d0 d0

d1d1

is homotopy cartesian. Similarly, we have the homotopy cartesian square

X4 X2

X3 X1.

d0d0

d0d0

d3 d1

For n ≤ 5 we have verified that for 0 < j < k < n, the square

Xk Xj+1

Xk−j X1

(dj+1)k−j−1

(d0)j

(d1)k−j−1

(d0)j

is homotopy cartesian. To use induction, assume that for some n ≥ 5 the above square

is homotopy cartesian for all 0 < j < k < n. Because X is upper 2-Segal,

Xn Xn−1

Xn−1 Xn−2

d0

d3

d0

d2

is homotopy cartesian. By inductive assumption, the square

Xn−1 X2

Xn−2 X1

(d2)n−3

d0

(d1)n−3

d0

is homotopy cartesian so we get the homotopy cartesian square

Xn Xn−1

X2 X1.

d0

(d2)n−2 (d1)n−2

d0
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If j ̸= 1, then by inductive assumption the square

Xn−1 Xj

Xn−j X1

(dj)n−j−1

(d0)j−1

(d1)n−j−1

(d0)j−1

is homotopy cartesian. By inductive assumption the square

Xj+1 X2

Xj X1

d0

(d2)j−1

d0

(d1)j−1

is homotopy cartesian. Putting the previous three squares together we have the

commutative diagram

Xn

Xj+1 Xn−1

X2 Xj Xn−j.

X1 X1

(dj+1)n−j−1
d0

d0 (dj)n−j−1

(d2)j−1

(d1)j−1d0 (d0)j−1

(d0)j−1

(d1)n−j−1

The left and center squares together form a homotopy cartesian rectangle, and the

left and right squares are homotopy cartesian, so the rectangle formed by the right

and center squares is homotopy cartesian. By induction we conclude that X is right

2-Segal.
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