
Deployment of Web Applications in the AWS Environment 

 

CS4991 Capstone Report, 2023 

 

Alan Gray 

Computer Science 

The University of Virginia 

School of Engineering and Applied Science 

Charlottesville, Virginia USA 

apg2fds@virginia.edu 

 
ABSTRACT  

Over the course of the last three summers as 

an intern for QinetiQ, a DC based defense 

contractor, I added features to existing 

projects and developed new tools as needed. I 

used the React framework, deployed with 

various Amazon Web Services (AWS). I 

designed the solutions to use a React front 

end for easy changes and add-ons using AWS 

Amplify to deploy the front end, and a 

combination of AWS Cognito, API gateway, 

and DynamoDB in order to sign in, and 

retrieve and store data. Finally, I used AWS 

lambda functions to tie everything together. 

This experience allowed me to learn a lot 

about AWS and full stack development, while 

producing useful products in a workplace. I 

found that the currently available cloud 

computing options make standing up new 

projects very easy for full stack developers, 

allowing us to focus efforts on more 

important parts of the project. In the future, I 

anticipate adding additional security features 

to lock down the applications more. 

 

1. INTRODUCTION 

To understand how web applications work, 

there are a few key concepts to know: the 

front end, the back end, and how they are 

connected. The front end is how the user 

interacts with the application, which in web 

development is usually some code that 

produces a web page (i.e. a combination of 

HTML, CSS, and JavaScript).  

 

I wrote my front end code in the react 

framework, which uses an extension of 

JavaScript called JSX to produce HTML, and 

JavaScript and CSS for styling. I developed 

the back end for these projects using AWS’s 

DynamoDB service, which just stores key-

value pairs like a JSON file. However, 

because it is hosted through AWS, it allows 

for autoscaling as necessary to keep accessing 

data from the front end fast. In this project, I 

connected the front and back ends by using 

AWS API Gateway and AWS Lambda 

functions. Through those, I essentially made 

links that, when accessed, returned some data 

to the front end. 

 

2. RELATED WORKS 

Most directly-related works that I took 

inspiration from are under NDA and cannot 

be discussed here. However, the main source 

that made it possible for me to design these 

sites was the Udemy React course (Grider, 

2016). This is an excellent course for anyone 

seeking to learn more about the React 

framework. It assumes students know very 

little and carries them through to a moderate 

level of competence. 

 

In addition, for anyone seeking to learn more 

about how AWS services work, there is a 13-

hour YouTube video that goes through 

everything needed to pass the AWS cloud 

practitioner exam and teaches everything one 

may want to know (Brown, 2021). For those 

just looking to produce something similar to 



 

the project described here, the whole course 

may not be necessary, though shorter 

segments may be helpful. 

 

3. PROJECT DESIGN 

This project description covers all the 

services and connections necessary to deploy 

web applications to AWS, starting with the 

frontend, then the backend, then the 

middleware used to connect the two. 

 

3.1 Frontend 

For the projects I did with QinetiQ, the front 

ends were all developed in React. React 

allows for a combination of HTML, CSS and 

JavaScript to be served relatively easily to the 

end user by using a Model View Controller 

design. From there, I gave AWS amplify 

access to the GitHub repository that stores the 

React Code. AWS Amplify is a nice solution 

in comparison to running this on EC2 

instances because besides providing a small 

file that tells Amplify how to run the code, 

there is very little overhead to be done. This 

allowed me not to worry about the EC2 

instance going down, since AWS uses cloud 

services to keep Amplify instances up all the 

time. 

 

3.2 Backend 

The backend for my projects was hosted in 

the form of a DynamoDB instance that allows 

for NoSQL storage of the data. This enabled 

quick deployment and more additions to the 

database without having to worry about a 

schema, since the users of the sites I 

developed would not be inputting data 

directly into the database, allowing me to use 

a more relaxed schema. 

 

3.3 Middleware 

The middleware for this project is really what 

tied it all together. For authentication into the 

app, I used AWS Cognito, which allows for 

easy authentication within the React 

framework. It also allows for account detail 

verification through post sign up scripts, 

meaning I was able to verify that any emails 

provided were in QinetiQ’s domain, and then 

verify the user had access to that email 

through email verification rather than 

allowing for malicious users to enter any 

email on that domain to gain access to the 

website. 

 

The scripts used for verification with AWS 

Cognito were AWS Lambda scripts, and they 

also provided much of the middleware that 

the user did not directly see. The other major 

script beyond the account verification was a 

Lambda script that accessed data from the 

database when the user needed it. 

 

To organize and better serve those AWS 

Lambda scripts to the webpage in a more 

readable format (rather than some excessively 

long default Lambda script URL), I used 

AWS API Gateway. This also allowed me to 

control access to the data much better, 

including the ability to shut down access to 

the data should that be necessary, for a 

database refactoring or something similar.  

 

4. RESULTS  

Overall, the technology stack described here 

worked very well for me. I was able to use 

the same stack to stand up two different 

projects during the summer, and it is now my 

go-to tech stack when I need to set something 

up in AWS. It provides a cloud solution that 

is rarely offline, while not costing a lot of 

money to host because of the relatively 

simple architecture. It also provides an easy 

way to share changes in close to real time 

when I was trying to iterate on the sites’ 

designs with someone and could not share my 

screen for local testing for whatever reason. 

 

5. CONCLUSION 

Overall, this project provides a good basic 

framework for others to start with when 



 

dealing with AWS. This can act similarly to 

as a skeleton solution, enabling someone new 

to AWS to easily deploy a web application. 

This project is more of a quick start guide for 

understanding the basics of deploying, rather 

than an extensive list of everything one will 

ever need to know regarding AWS. 

 

6. FUTURE WORK 

In terms of future additions to my projects 

with QinetiQ, I intend to add a head site 

allowing access to a portfolio of the products 

I have developed for the company. A single 

URL would provide easier access for those 

who are helping me, and  could make it easier 

for less technical people inside the company 

to get some examples of what we can do.  

 

In addition, this project did not go into 

domain registration, which is something I 

intend on implementing in the future. This 

would allow the sites to have URLs that make 

sense instead of the URLs automatically 

generated by AWS lambda, which tend to be 

long , random combinations of letters and 

numbers. This step would be necessary to roll 

these types of projects out to the end 

customers eventually anyway, so getting that 

running properly before rolling it out would 

be helpful. AWS, which has this service built 

in, allows clients to buy domains and deploy 

various sites within that domain to prevent 

spending more money on multiple domains. 

 

7. ACKNOWLEDGMENTS 

My mentor and supervisor for this project 

was Marcellus Black, a UVA graduate that 

works at QinetiQ. He helped me find the right 

solutions for problems as they arose and 

helped me iterate on the UI design of the 

sites. 

 

REFERENCES 

Grider, S. (2016). The complete react native 

+ hooks course | Udemy. The Complete 

React Native + Hooks Course. 

https://www.udemy.com/course/the-

complete-react-native-and-redux-

course/  

Brown, Andrew. (2021). AWS Certified 

Cloud Practitioner Certification Course 

(CLF-C01) - Pass the Exam! [Video]. 

YouTube. 

https://www.youtube.com/watch?v=SO

TamWNgDKc.  


