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Abstract

Bearings serve a critical role in rotordynamic systems by providing sup-
port for the rotating components. Fluid-�lm bearings work by supporting the
rotor on a thin �lm of �uid. This type of bearing can be responsible for pro-
viding the majority of damping in a system, which reduces rotor vibrations.
The working surfaces of these bearings are often made of a softer, sacri�cial
layer that is used to protect the rotor surface in the case of metal-to-metal
contact and to absorb any hard particulates in the �uid that could score
the journal surface. Under heavy loads, this layer can be heavily damaged
resulting in bearing failure when the journal speed is too slow to support
the load on a hydrodynamic �lm. In these cases, high pressure oil is often
supplied to the working surface of the bearing via ports to lift the rotor hy-
drostatically. These ports are feed into machined jacking pockets or grooves,
which serve to distribute the oil underneath the rotor. The bearing load is
then held hydrostatically until the rotor speed is adequate to support the
load on a hydrodynamic �lm. Often the high pressure oil supply is shut o�
during normal operation to reduce power loss. It is generally assumed that
these pockets and grooves do not a�ect the hydrodynamic performance of
the bearing but data on the accuracy of this assumption is limited.

This dissertation presents a comprehensive, multi-part study on the in-
�uence of hydrostatic lift features on the performance of �uid-�lm, journal
bearings and an additional study on the applicability of di�erent turbulence
models in thin-�lm applications. The �rst study presents an examination of
a two-pad, �xed-geometry bearing with a stadium-shaped/rectangular jack-
ing pocket using CFD simulations. As the depth of the feature increases, the
pressure pro�le is found to shift through two di�erent regimes. The �rst is
characterized by an increase in the load capacity of the bearing and occurs
with depths shallower than 0.28× the bearing radial clearance (Cb). The
second regime is characterized by a loss of load capacity and an equalizing
of the pressure throughout the pocket. This regime occurs for pockets with
depth up to 6.6×Cb. Finally, increasing the pocket depth beyond this depth
does not change the pressure pro�le or further reduce load capacity. Next
design-of-experiment and regression models were utilized to examine the in-
�uence of the jacking pocket geometry on the power loss, journal position,
and sti�ness of the �lm. The bearing sti�nesses varied by up to 25% from
the nominal, smooth bearing case for the direct sti�nesses and 12% for the
cross coupled sti�nesses. Current literature on �uid-�lm bearings with hy-
drostatic lift features has been limited to multi-recess bearings with applied
high pressure oil or to thrust bearings. This paper is the �rst to examine the
in�uence of the geometry of one such feature on the operational and dynamic



characteristics of the bearings.
The next study expanded upon the �rst study by examining the in�uence

of a pair of double diamond, jacking pockets and an hourglass-shaped, jack-
ing groove on the same two-pad bearing. The same two regimes were found
as the depth of the jacking feature was increased. The �rst regime occurs
with depths shallower than 0.28 × Cb to 0.60 × Cb. For all three jacking
features, the second regime occurred for pocket depths up to 7 × Cb. In-
creasing the feature depth beyond this depth ceased to in�uence the pressure
pro�le further. Next design-of-experiment and regression models were used
to examine the in�uence of the the di�erent jacking feature geometries on
the power loss, journal position, and sti�ness of the �lm. The presence of
all three jacking feature had a minimal in�uence on the bearing power loss
and the journal position. The power loss varied between 3% to 1% of the
nominal, smooth bearing case for the di�erent designs. The journal position
varied up to 6% of the nominal case. The bearing sti�nesses varied by up to
40% from the nominal case for the direct sti�nesses and 104% for the cross
coupled sti�nesses. The jacking grooves had signi�cantly less in�uence than
the pockets. This study expanded the applicability of the �rst novel study by
examining two additional jacking features, which included multiple pockets
and a system of grooves.

The third study was an examination of the applicability of the Reynolds
equation in analyzing bearings with jacking grooves. Several methods were
examined to allow the use of Reynolds equation. Biasing the element dis-
tribution towards the jacking features was crucial for keeping the analy-
sis runtime within a reasonable limit while still achieving accurate results.
The Reynolds equation was compared with CFD results for several di�erent
pocket geometries. The Reynolds equation accurately captured the pressure
pro�le, despite the lack of �uid inertia, when an optimization was performed
on the journal position. Furthermore, the increase in rotor eccentricity com-
pared with the CFD equilibrium position was limited to 4% of the radial
clearance. Reynolds equation is thus an excellent tool for e�ciently analyz-
ing bearings with jacking features and will result in a slightly more conser-
vative bearing design due to the lack of inertia. Multiple studies have been
performed on hydrostatic lift features which utilized the Reynolds equation
for capturing the hydrodynamic behavior in the bearing. This has been done
without any justi�cation for its use. This study was the �rst to examine the
applicability of the Reynolds equation and its assumptions across a hydro-
static lift feature. This study will increase the credibility of these studies by
providing justi�cation for its use.

Computational �uid dynamics (CFD) is a powerful tool for examining
the behavior in a �uid-�lm bearing. Modeling turbulence in a bearing is



challenging due to the wide range of Reynolds number that can occur in a
single bearing. The last study examines three di�erent methods for modeling
turbulence, along with the laminar assumption, in a four-pad journal bearing
using CFD. The predominant model that is used with CFD in prior litera-
ture is a two-equation turbulence model. This is often done regardless of
the Reynolds number or presented with inadequate data for calculating the
Reynolds number. A pad model was developed for a four-pad, tilting-pad,
journal bearing. Each model is simulated across a broad range of Reynolds
numbers. The two-equation is not always the best choice and justi�cation
should be presented for the choice of turbulence model. The one-equation
turbulence model has the advantage of accurately predicting the behavior
of laminar �ow and providing a better prediction near the onset of turbu-
lence. This is highly advantageous in bearings where portions of the �lm can
be turbulent while other portions are laminar. A single turbulence model
can be provided for the whole bearing which will greatly reduce simulation
runtimes.
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1 Introduction

Bearings are machine components used to support rotating machinery.
There are two main types of bearings: radial journal bearings and thrust
bearings. Journal bearings are used to support lateral loads, which include
the weight of the shaft in horizontal machines, while thrust bearings are
used to support any axial (thrust) loads. Fluid-�lm bearings are common in
many types of rotating machines and carry the applied loads on a thin �lm of
�uid. These bearings can have excellent load capacities and damping charac-
teristics, without signi�cant complexity. The performance of the bearing is
dependent upon the eccentricity or displacement of the journal axis from the
centerline of the bearing for journal bearings or the height of the runner for
thrust bearings, which is a function of the applied loads. The temperatures
in the bearing, the resulting �uid viscosity, and structural deformations are
also important for proper bearing operation. Bearings contribute both sti�-
ness and damping to the overall rotordynamic system. Often the damping is
crucial for successful rotor operation at velocities higher than the system crit-
ical speeds, while the sti�ness can be important in positioning those critical
speeds away from the machine operating speeds.

1.1 Overview of Previous Work

Fluid-�lm bearings are widely used components in many rotordynamic
machines. Accurately understanding the steady-state and dynamic behavior
of these components can be critical to proper and safe machine operation.
This is especially true as machine operating speeds and applied loads on the
bearings increase.

To compensate for high loads during machine startup and shutdown and
to avoid wiping of the bearing surfaces, hydrostatic ports, grooves, and pock-
ets are often machined into the surfaces of the bearings. These ports are sup-
plied with pressurized lubricant to hydrostatically lift the journal and avoid
dry rubbing of the metal components. Pockets and grooves are machined to
distribute the lubricant underneath the journal and hydrostatically support
the rotor. Girard �rst took out a patent on hydrostatic, water bearings as
early as 1865, although they remained little more than curiosities for three-
quarters of a century. In 1973, Walter and Brasch [1] presented a detailed
report on the �rst application of hydrostatic bearings in industrial machines.
Hydrostatics was �rst applied as a lifting feature to gas bearings in 1953.
More recently there has been some investigations into the in�uence of these
jacking features. Raud et. al. [2] presented a 3D isothermal, numerical study
into the behavior of a journal bearing with jacking pockets at low speeds.

1



This study ignored the rapid pressure changes that can hydrodynamically
occur at the leading and trailing edge of the pockets. Thus their numerical
methods are only applicable at low speeds when the hydrodyamic in�uences
of the bearing are negligible.

Some bearings are designed for a continuous �ow of the high pressure oil
during operation. This tends to improve the load capacity of the bearings
but increases the power loss in the machine. These bearings are commonly
referred to as hybrid bearings as they rely on both hydrostatics and hydro-
dynamics in their operation. Most of these bearings have a series of pockets
in close proximity to each other and are referred to as multirecess bearings.
There are a variety of di�erent approaches used for capturing the in�uence
of the hydrodynamics in multi-recess, hydrostatic, journal bearings. San
Andres [3] presented a numerical analysis of hydrostatic, journal bearings.
This was done by solving the 2D momentum and continuity equations on the
bearing lands coupled with the continuity equation throughout the bearing
pocket. These equations were coupled with a pressure spike equation found
by Constantinescu and Galetuse [4]. San Andres found that �uid inertia
is crucial in hydrostatic bearings and will result in higher recess pressures.
Braun et. al. [5] used the 2D momentum and continuity equations to exam-
ine the �ow in a recess. They examined the in�uence of the pocket depth,
among other things, on the pressure pro�le. It was found that a shallow
pocket would have an improved pressure pro�le resulting in an increased
load capacity. As the pocket became deep (a 1.5 ratio of the rotating surface
height, assuming a concentric rotor and the recess depth), the pressure pro�le
would cease to change. Helene et. al. [6] performed a two-dimensional CFD
analysis of just the jacking recess, assuming an in�nitely long bearing and
recess. The paper examines the recirculation in the recess and its e�ect on
the pressure under both laminar and turbulent �ow conditions. They con-
cluded that it was very di�cult to separate the viscous and inertial e�ects
in the �ow in the recess. Helene et. al.[7] expanded this study by solving
the full 3D Navier-Stokes equation in a single rectangular pocket. Liang et.
al. [8] performed a numerical analysis on a hydrostatic journal bearing but
chose to ignore the hydrodynamic in�uence all together. No justi�cation
was presented for this assumption. Several authors have performed numer-
ical studies of these bearing by coupling hydrostatic results together with a
hydrodynamic smooth bearing model. Johnson and Manring [9] performed
a 1-D analytical study of a single thrust pad with a hydrostatic lift pocket.
The pressure is solved for using the Reynolds equation but di�erent boundary
conditions are applied for the pressure induced by the oil injection than for
the pressure due to the thrust runner motion. However, the validity of the
Reynolds equation near the edge of the pockets due to the sudden transition
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in �lm thickness is not discussed. The study found that wide deep pockets
exhibited the largest load capacity, and that the impact of the pocket depth
is reduced as the depth increases past the nominal �lm thickness. Kumar
et. al. [10] performed such an analysis on a hydrostatic journal bearing and
using the Reynolds equation to account for hydrodynamics and the Dufrane
model [11] to account for wear. Dwivedi et. al. [12] assumed a linear decrease
of pressure across the bearing land due to the land's narrowness. While a
variety of di�erent approaches have been used to analyze the performance
of multi-recess hydrostatic journal bearings, most of them rely on several
large assumptions related to the hydrodynamic portion of the physics (ig-
nored hydrodynamic e�ects [9], assumed a smooth pad for hydrodynamic
e�ects [8], used the Reynolds equation [10]), and adequate justi�cations are
not presented in their defense.

Other times the high pressure ports are shut o� during hydrodynamic
operation to reduce power losses in the machine. There have been a small
number of studies devoted to examining the in�uence of the presence of jack-
ing features on the hydrodynamic performance of �uid-�lm bearings, with
the majority of these papers having a thrust bearing application. In 1975,
Wordsworth and Ettles [13] performed a simple numerical calculation us-
ing Reynolds equation on the in�uence of jacking pockets on hydrodynamic
thrust pads. They found that pockets with areas of 25% of the pad surface
area had a load capacity of 91% of a pad without the pocket. This loss could
be minimized if the recesses follow the constant pressure contours on the
pad. Heinrichson [14] wrote his dissertation on the numerical modeling of
thrust bearings with jacking pockets. He used a 3-D thermoelastohydrody-
namic (TEHD) analysis of tilting-pad thrust bearings including recesses. An
extended Reynolds equation is solved for the �lm ignoring inertial e�ects.
Three-dimensional thermal analyses were used for deep recesses assuming
uniform recess temperature caused by the re-circulation in the recess. This
same re-circulation was absent in grooves with a depth the same order of
magnitude as the �lm thickness. The dissertation showed that bearings with
recesses resulted in a decrease in friction coe�cient. Heinrichson et. al.
[15, 16] performed a numerical and experimental study examining the in�u-
ence of injection pockets on the performance of tilting-pad thrust bearings.
The developed numerical model was a three-dimensional TEHD analysis of a
single thrust pad including the injection pocket utilizing the Reynolds equa-
tion. The model was able to demonstrate that a shallow pocket at a depth
of 1.1× the nominal runner height is able to positively contribute to the load
capacity of the bearing while a deeper pocket has a negative e�ect. This
numerical work was also coupled with an experimental study [16] in which
the in�uence of the oil injection pocket on the pressure distribution and the
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oil �lm thickness was investigated. The numerical model corresponded well
at low loads but di�erences up to 25% were seen at the higher applied loads
and rotor velocities. De Pellegrin and Hargreaves [17] presented a numeri-
cal study of a sector-shaped pad examining the e�ect of the recess size and
shape on bearing performance. Isoviscous and isothermal assumptions were
made. The study found that certain types of grooves can promote oil �lm
thickness and reduce power loss up to a certain angular velocity and vis-
cosity thresholds. Fillon et. al. [18] performed a THD analysis of a large
tilting-pad thrust bearing with a lifting pocket. Previous papers [19, 20]
had performed analyses on the same bearings but neglected to model the
pocket. Fillon et. al. [18] coupled the generalized Reynolds equation with
the full three-dimensional energy equations. The conical pocket was modeled
by increasing the oil �lm thickness at the pocket. To achieve convergence,
a much �ner mesh was required than in the previous studies [19, 20]. The
author found that the recesses had a signi�cant e�ect on both the pressure
and temperature �elds. Zouzoulas and Papadopoulos [21] performed a com-
putational �uid dynamics (CFD) analysis on a variety of thrust bearing pads
with various surface geometries and properties, including a pad with one large
pocket, a pad with several circumferential grooves, a pad with several radial
grooves, a pad with a series of rectangular texturing (very small pockets),
and a smooth pad with a hydrophobic surface. The authors solved for the
numerical solution of the Navier Stokes and energy equations for incompress-
ible �ow. The bearing with the single large pocket with a depth of 1× the
nominal runner height was found to increase the minimum �lm thickness by
up to 20%, lower the friction torque by up to 8% and decrease the maximum
�lm temperature by up to 8◦ C, while the bearing with the circumferential
grooves saw similar but lower numbers for each of the prior bearing �ow
characteristics. The bearings with the radial grooves and with the rectangu-
lar texturing were both shown to inhibit the pressure buildup as the edges
of the surface feature were perpendicular to the �ow path. In 2017, Fu and
Untaroiu [22] published a paper where they presented a methodology for pre-
dicting the behavior of �uid-�lm journal bearings with rectangular, circular,
triangular, elliptical, and annular shaped jacking recesses. The paper focused
on the statistical methodology and presented results in the form of �gures of
the overall �ow patterns. The main focus on bearings with jacking features
has been on hydrostatic operating conditions and on thrust bearings. The
primary method of modeling the in�uence of hydrodynamics has been the
use of Reynolds equation. This has been done with no justi�cation for its
application.

Another phenomena this dissertation examines is turbulence. Turbulence
can be an important feature that many studies have ignored or considered
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improperly. Turbulence is a deviation from the stable laminar �ow condi-
tions, in which the �uid moves in layers, to a more irregular �ow. While
a turbulent �ow is characterized by randomness with respect to both time
and spatial coordinates, it can be characterized by statistically distinct av-
erage values [23]. Turbulence is caused by high friction forces at a wall or
between di�erent �uid layers of varying velocities. The viscosity of the �uid
dampens out turbulence as more viscous �uids can absorb more of the kinetic
energy [24]. Predicting the transition from laminar to turbulent �ow is dif-
�cult and not well understood. Turbulence can have a signi�cant in�uence
on the operation of �uid-�lm journal bearings. This is especially true for
bearings operating at high speeds or which use low viscosity �uids, such as
water, as the working �uid [25]. Turbulence will begin to occur locally in
�ows with Reynolds numbers of 2000 and higher, where Re = rωh/ν is the
local Reynolds number [26, 27].

The onset of turbulence will cause an increase in the heat transfer in the
�lm, thereby lowering the peak �lm temperature. Szeri [28] found that the
onset of turbulence causes a decrease in the maximum pad temperature. Hopf
and Schüler [29] con�rmed this behavior and found that this drop in temper-
ature occurs in the vicinity of the minimum �lm thickness where the largest
variation in temperature exists. They attributed this behavior to the mixing
and increased heat transfer in the presence of high thermal gradients. There-
fore, turbulent bearings will often run with lower peak temperatures than
laminar bearings. However, as the turbulence increases further, this cooling
e�ect can be o�set by the increased heat generation [26, 30, 31]. Turbulence
will usually result in an improvement in the load capacity of the bearing
[32, 33, 25]. The lower �lm temperatures and improved load capacity will
cause a variation of the journal equilbrium eccentricity, which along with the
changes in the �uid characteristics, will alter both the sti�ness and damping
characteristics of the �lm. Turbulence also causes an increase in the power
loss of a bearing, which can be up to 1000 horsepower in bearings larger than
31 inches in diameter [34].

To solve the inherent closure problem that occurs in turbulence problems,
Boussinesq [35] related turbulence shear stress to mean �ow variables using
Equation 1.1.

τij = 2µtS
∗
ij −

2

3
ρkδij, (1.1)

where τij is the Reynolds stress tensor, µt is a proportionality constant called
the eddy viscosity, S∗ij is the trace-less mean strain rate tensor, ρ the �uid
density, k is the turbulent kinetic energy, and δij is the Kronecker delta. This
relationship is utilized in a branch of turbulence models known as eddy vis-
cosity models. The primary distinction between the di�erent eddy viscosity
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models is the method by which the eddy viscosity term is calculated. These
models are commonly categorized by the number of di�erential equations that
are required to solve for the eddy viscosity. zero-equation models relate the
eddy viscosity algebraically to various �ow parameters. one-equation mod-
els add a di�erential equation that is used to solve for the turbulent kinetic
energy (k). two-equation models add an additional equation that solves for
some form of the turbulent dissipation (ε, ω). Both the one and two-equation
models then algebraically relate these new turbulent parameters to calculate
the eddy viscosity.

Constantinescu [36] developed analytical equations for the velocity dis-
tributions in a �lm using Prandtl mixing length hypothesis and the thin �lm
approximation. Prandtl mixing length hypothesis is given by Equation 1.2.

−ρu′v′ = ρl2
∂ū

∂y
|, ∂ū
∂y
|, (1.2)

where u′v′ represents the Reynolds stresses and l is the mixing length. The
exact dependence of the rate of �ow on the pressure dependence is replaced
by a linear relationship to obtain a simple pressure di�erential equation and
its solution. Ng [37] worked to �x some anomalies with Constantinescu's
work [36] by using Boussinesq approximation [35] for the Reynolds stresses
which resulted in Equation 1.3 for two-dimensional thin �lm �ow

τ = µt(1 +
ε

ν
)
du

dy
, (1.3)

where ε is the turbulent di�usivity. Reichardt's formula [38] (Equation 1.4)
is used to calculate the eddy di�usivity.

ε

ν
= k(y+ − δ+l tanh

y+

δ+l
), (1.4)

where k and δ+l are constants, y+ is the dimensionless distance to the wall
and is equal to yut

ν
, y is the distance from the wall, and ut is the �wall velocity�

parallel to the wall (
√

τw
ρ
). These assumptions allow for the development of

alternative equations for the velocity pro�le. Both Constantinescu's [36] and
Ng's [37] velocity equations are based on perturbing a Coullete �ow. Elrod
and Ng [39] applied the theory developed by Ng [37] to the �ow inside of
�uid-�lm bearings and expanded it to include both Coullete and Poseuille
�ows.

In 1970, Hanjalick [40] developed a turbulence model composed of two
partial di�erential equation for the turbulent kinetic energy (k) and the tur-
bulent dissipation rate (ε). These terms were algebraically related to the
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eddy viscosity. To apply the model to the viscous layer, Jones and Launder
[41] added viscous di�usion, Reynolds number dependent functions, and ad-
ditional terms to account for the fact that the dissipation processes are not
isotropic. This model is known as the k-ε turbulence model and was further
validated by Launder and Sharma [42].

In 1988, Wilcox [43] made a review of the current two-equation turbu-
lence models and determined that these models failed to accurately predict
boundary layer �ow in the presence of an adverse pressure gradient. He de-
veloped a new model to better account for this short coming. This model was
further improved to account for misalignment of the Reynolds stress tensor
and the mean strain rate tensor principle axes [44]. This model is known as
the k-ω turbulence model. Mentor [45, 46] further developed the model by
Wilcox [43] to remove the dependence on arbitrary free stream values. This
was done by using the Wilcox [43] model for the �rst 50% of the boundary
layer and then transitioning to the Jones and Launder's [41] k-ε model in
a k-ω formulation. This model is known as the Baseline (BSL) k-ω model.
Mentor [45, 46] made further modi�cations to the BSL model to develop the
Shear Stress Transport (SST) k-ω model.

In 1997 Mentor [47] combined Bradshaw's assumption [48] in which the
turbulent kinetic energy is assumed to be proportional to the turbulent shear
stresses, with the k-ε turbulence model to develop a one-equation turbulence
model known as the Eddy Viscosity Transport model. Reynolds equation
uses a thin �lm approximation to reduce the Navier-Stokes equations into a
single di�erential equation. There have been numerous modi�cations made to
the Reynolds equation to incorporate a turbulence model. A zero-equation,
eddy viscosity model is usually used [49, 50, 51].

With the increase in computational power, the use of computational �uid
dynamics (CFD) to solve the full or steady Navier-Stokes equations in the
analysis of the operation of �uid-�lm bearings has become more prevalent.
The proper use of turbulence models is important to fully understand the
bearing behavior. Unfortunately, many of the papers utilizing CFD neglect to
mention the Reynolds number and turbulence model that were used. Those
papers which do specify a turbulence model tend to heavily favor the two-
equation turbulence models although a justi�cation for this choice is gener-
ally not given. For example, Ravikovich et. al. [52] performed a steady-state
CFD study on three di�erent bearings which used water, oil, and gas as the
operating �uids. They used the SST k-ω turbulence model for all of the bear-
ings despite the huge variance in the Reynolds number. The oil bearing was
operating at Reynolds numbers below 5, while the water bearing and the gas
bearing operated at Reynolds numbers above 1e7. Ghezali et. al. [53] ana-
lyzed the �ow in a hydrostatic bearing with Reynolds numbers varying from
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500-3500. Again the SST k-ω turbulence model was used for all of the anal-
yses. Worse, many authors do not provide enough information to calculate
the Reynolds number of the bearing �ow. Edney et. al. [54], Uhkoetter et.
al. [55], Manshoor et. al. [56], and Fu and Untaroiu [22] all used k-ε models.
These studies examined oil �ow in a variety of bearing types. (hydrostatic
bearings [22], �xed-geometry bearings [55, 56] and six-pad, tilting-pad bear-
ings [54]). However, inadequate information was provided to calculate the
Reynolds numbers. This missing data makes examining the validity of the
chosen turbulence model impossible. Several of these di�erent turbulence
models are used in this dissertation to examine the applicable ranges in thin
�lm applications.

1.2 Scope of Current Work

The primary focus of prior research in the literature related to bearings
with jacking features has been on either hydrostatic operation or on thrust
bearings. These often involve the use of the Reynolds equation without any
justi�cation for the appropriateness of its use. As such, an important goal of
this work was to expand current understanding by looking at the in�uence
of jacking pockets on the performance of �uid-�lm, journal bearings. This
was done in two stages to gain insight into the appropriateness of Reynolds
equation. First, multiple CFD studies were performed on three di�erent
jacking feature geometries, including both pockets and a groove. Several
of these studies were then repeated using the Reynolds equation, and these
results are compared with the CFD.

The second chapter of this dissertation focuses on the hydrodynamic
regime of a �uid-�lm, journal bearing with a rectangular/stadium-shaped
jacking pocket. CFD was used to examine the in�uence of the pocket on
the operation of the bearing. These �ndings were used to make an ini-
tial examination of the validity of the assumptions involved in the Reynolds
equation. The in�uence of the various geometric parameters of a stadium-
shaped jacking pocket on the performance and dynamic characteristics of a
journal bearing were examined using CFD. A baseline, numerical model was
developed and validated without the presence of the jacking pocket. The
jacking pocket was added to the model, and an investigation was performed
examining the in�uence of the depth and circumferential length of the jack-
ing pocket on the pressure pro�le of the �lm. Next, a series of simulation
cases were selected using design-of-experiment methods. The test cases were
used to create response surface models relating the jacking pocket geometry
to the static and dynamic characteristics of the bearing. The goal of this
study was to develop an increased understanding of the in�uence of jacking
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pocket geometry on the performance of �uid-�lm, journal bearings, which
has been largely absent in literature. This study is the �rst to examine how
each aspect of a jacking pocket's geometry in�uence the operation and linear
sti�ness values of a �uid-�lm journal bearing.

The third chapter presents an extension of the second chapter by examin-
ing two additional jacking feature geometries. The two geometries selected for
this study were a pair of diamond-shaped pockets and an hourglass-shaped
groove. Some initial studies were performed on these di�erent geometries
examining the in�uence of particular aspects of their geometries at a �xed
journal position. The depth of both geometries was varied in a similar man-
ner as performed in Chapter 2. The width of the hourglass-shaped groove
was also varied to further understand the transition between pockets and
grooves. Separate design-of-experiments were then performed for both jack-
ing features. The in�uence of the geometries on the power loss, journal
eccentricity position, and direct and cross-coupled sti�nesses were examined.
Linear regression models were developed for each case and the relationships
were discussed in terms of the physics. This study expanded upon the �rst
study by adding two additional jacking feature geometries, making all of the
results more applicable over a broader ranges of geometries.

The fourth chapter presents an examination of the use of Reynolds equa-
tion in analyzing bearings that includes jacking pockets. The stadium-shaped
jacking pockets from Chapter 2 were used. A new tool was developed which
solves the Reynolds equation while allowing axial variation in the �lm thick-
ness. Several di�erent methods are presented with the goal of reducing the
simulation runtime while still achieving accurate results. These methods
were then applied to a range of pocket depths and compared with the CFD
results from Chapter 2. A discussion is included on the applicability and
the advantages of the di�erent methods. Lastly, the superior method was
compared with several of the pocket designs that were developed in the
design-of-experiment performed on the stadium-shaped pocket previously.
The Reynolds equation results were compared with the CFD results while
maintaining identical �lm geometries as the CFD. Then an optimization
was performed on the Reynolds solution to �nd an equilibrium journal po-
sition. These new results along with the new journal equilibrium position
were compared with the CFD results. Justi�cation for the acceptable use of
the Reynolds equation for bearings with hydrostatic lifting feature has not
been previously addressed in the literature. This chapter demonstrates how
the Reynolds equation can successfully be used to capture the physics that
occur in these bearings

An additional study was performed on the use of di�erent turbulence
models in CFD models of bearings. The two-equation, turbulence model is
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the primary turbulence model used in CFD in literature. This was often
done with little justi�cation of the choice of model and often presented with
inadequate data for calculating the Reynolds number. Therefore, the �fth
chapter of this dissertation presents a study of three di�erent turbulence
models, along with the laminar model, over a wide range of Reynolds numbers
to try to better determine the applicability of each model. A discussion is
presented on di�erent �ow conditions that occur in tight clearances, as seen
in �uid-�lm bearings. A CFD model of a four-pad, tilting-pad bearing was
developed and validated versus experimental results [57]. This CFD model
was used to examine a two-equation model (k-ω SST), a one-equation model
(eddy viscosity transport), a zero-equation model, and a laminar model over
a broad range of Reynolds numbers from 10 to 40e3. The �fth chapter of this
document presents an argument against always using the more complicated
turbulence model for all �ow conditions in thin �lm applications, which has
been the trend in the literature.
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2 Hydrodynamic Performance Characteristics

of a Fluid-Film Journal Bearing with a Rect-

angular Jacking Pocket

Nomenclature

Cb Bearing radial clearance
d Pocket depth
h Local �lm thickness
K Sti�ness
lc Pocket circumferential length
lc,pad Pad circumferential length
P Pressure
U Surface velocity
la Pocket axial length
la,pad Pad axial length
x Circumferential coordinate
y Axial coordinate
µ Local �uid viscosity
ξ Power loss
ρ Fluid density
τs Surface shear stress

2.1 Introduction

Fluid-�lm bearings are widely used components in many rotating ma-
chines. Accurately understanding the dynamic behavior of these components
is critical to proper and safe machine operation. This is especially true as
machine operating speeds and applied bearing loads increase.

To compensate for high loads during machine startup and shutdown, and
to avoid wiping or damaging the bearing surface, hydrostatic pockets and
grooves containing ports to the pressurized lubricant supply can be added to
the bearings. Hydrostatic ports are supplied with pressurized lubricants dur-
ing startup and shutdown to lift the shaft and avoid severe rubbing. Pockets
and grooves are added to adequately distribute the lubricant underneath the
journal and ensure rotor lift o� is achieved prior to startup. More recently,
there have been some investigations into the in�uence of these jacking pock-
ets on bearing performance. Sometimes the supply pressure to these ports is
left on during the regular, hydrodynamic bearing operation to improve the
load capacity of the bearings. This bearing design is commonly referred to
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as a hybrid bearing as it includes both hydrostatics and hydrodynamics in
their operation. San Andres [3] presented a numerical analysis of hydrostatic,
journal bearings. This was done by solving the 2D momentum and conti-
nuity equations on the bearing lands coupled with the continuity equation
throughout the bearing pocket. This was coupled together with a pressure
spike equation found by Constantinescu and Galetuse [4]. San Andres found
that �uid inertia is crucial in hydrostatic bearings and will result in higher
recess pressures. Braun et. al. [5] used the 2D momentum and continuity
equations to examine the �ow in a recess. They examined the in�uence of
the pocket depth, among other things, on the pressure pro�le. It was found
that a shallow pocket would have an improved pressure pro�le. As the pocket
became deep (a ratio of the rotating surface height, assuming a concentric
rotor, and the recess depth of 1.5), the pressure pro�le would cease to change.
Helene et. al. [6] performed a two-dimensional CFD analysis of the jacking
recess alone, assuming an in�nitely long bearing and recess. The paper ex-
amined the in�uence of the local Reynolds number and the pocket depth
on the �uid recirculation in the recess and the pressure distribution under
both laminar and turbulent �ow conditions. They found that it is di�cult to
separate the viscous and inertial e�ects in the recess �ow. Helene et. al.[7]
expanded this study by solving the full 3D Navier-Stokes equation in a single
rectangular pocket. Liang et. al. [8] performed a numerical analysis on a
hydrostatic journal bearing, but chose to ignore the hydrodynamic regime all
together. No discussion is presented as to the errors introduced due to this
assumption. Several authors have performed numerical studies of these bear-
ings by coupling hydrostatic results together with a hydrodynamic smooth
bearing model. This method ignores any in�uence that the recess has on
the hydrodynamic �ow. Johnson and Manring [9] performed a 1-D analyti-
cal study of a single thrust pad with a hydrostatic lift pocket. The laminar
Reynolds equation was solved to calculate the hydrodynamic pressure, and
�ow rate equations were used to determine the hydrostatic pressure. These
two resulting pressures were then summed together. One of the key assump-
tions of the Reynolds equation is the thin �lm assumption. No discussion is
presented as to the validity of this assumption near the edge of the pockets
due to the sudden transition in �lm thickness. The study found that wide,
deep pockets exhibited the largest load capacity, where deep pockets are de-
�ned by a depth of 0.75 times the nominal �lm thickness. This study was
limited to relatively shallow pockets. Pocket depths varying up to 50 times
the nominal �lm thickness are commonly used in industrial practice. Johnson
and Manring [9] state that the impact of the pocket depth is reduced as the
depth increases past unity with the nominal �lm thickness. Kumar et. al.
[10] also performed a Reynolds equation based analysis on a hydrostatic jour-
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nal bearing and using the Reynolds equation to account for hydrodynamics
and the Dufrane model [11] to account for wear. The various hydrodynamic
assumptions (ignored hydrodynamic e�ects [9], assumed a smooth pad for
hydrodynamic e�ects [8], used the Reynolds equation [10]) made in these pa-
pers may not be adequate in capturing the whole physics of these bearings,
and adequate justi�cations are not presented in their defense.

For other bearing designs, the sole purpose of the jacking feature is to
sustain the rotor in the high friction regimes. In these cases, the supply pres-
sure to the hydrostatic ports is shut o� to reduce power losses in the machine.
There have been few studies devoted to examining the in�uence of jacking
features on the hydrodynamic performance of �uid-�lm bearings. The ma-
jority of papers that investigate jacking pocket e�ects have been related to
thrust bearing applications. In 1975, Wordsworth and Ettles [13] performed
a simple numerical calculation using the Reynolds equation to model the in-
�uence of jacking pockets on hydrodynamic thrust pads. They found that
thrust pads with pockets taking up 25% of the pad surface area had a load
capacity of 91% of a pad without the pocket. This loss was minimized if
the recesses followed constant pressure contours on the pad. Heinrichson [14]
wrote a dissertation on the numerical modeling of thrust bearings with jack-
ing pockets. The dissertation employed a 3-D thermoelastohydrodynamic
(TEHD) analysis of tilting-pad thrust bearings including recesses. An ex-
tended Reynolds equation is solved for the �lm, ignoring inertial e�ects. The
temperature in the recess was assumed to be uniform due to the �ow recir-
culation. Three-dimensional thermal analyses were used for the rest of the
�ow and pads including this boundary condition. Re-circulation was absent
in pockets with a pocket depth on the same scale as the �lm thickness. The
dissertation showed that these recesses decreased the friction coe�cient of
the bearings. Heinrichson et. al. [15, 16] performed a numerical and experi-
mental study examining the in�uence of injection pockets on the performance
of tilting pad thrust bearings. The numerical model was a three-dimensional
TEHD analysis of a single thrust pad, including the injection pocket, utilizing
the Reynolds equation. The model showed that a shallow pocket at a depth
of 1.1× the nominal runner height positively contributes to the load capacity
of the bearing, while a deeper pocket has a negative e�ect. Heinrichson also
performed an experimental study [16] which investigated the in�uence of the
oil injection pocket on the pressure distribution and the oil �lm thickness.
The numerical model corresponded well at low loads but predicted runner
heights up to 25% lower than the measurements at the higher loads and ve-
locities. Fillon et. al. [18] performed a THD analysis of a large tilting-pad
thrust bearing with a lifting pocket. Previous papers [19, 20] had performed
analyses on the same bearings but failed to capture the physics adequately
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near the lifting pocket due to neglecting to model the pocket. Fillon et. al.
coupled the generalized Reynolds equation with the full three-dimensional
energy equations. The conical pocket was modeled by a series of steps with
increasing oil �lm thickness. To achieve convergence, a much �ner mesh
(860% increase in number of elements) was required than in the previous
studies [19, 20]. The recesses had a signi�cant e�ect on both the pressure
and temperature �elds.

The primary focus of prior research in the literature on bearings with
jacking features has been on either the hydrostatic operation or on the op-
erating characteristics of thrust bearings. This study focuses exclusively
on the hydrodynamic regime of a �uid-�lm journal bearing containing a
rectangular/stadium-shaped, jacking pocket. CFD was used to achieve high
accuracy. These �ndings were used to make an initial examination of the
validity of the Reynolds equation assumption. The in�uence of the various
geometric parameters of a stadium-shaped, jacking pocket on the perfor-
mance and dynamic characteristics of a journal bearing were examined using
CFD. A baseline numerical model was developed and validated without the
presence of the jacking pocket. The jacking pocket was added and an in-
vestigation was performed examining the in�uence of the depth and circum-
ferential length of the jacking pocket on the pressure pro�le of the bearing.
Next a series of simulation cases were selected using design of experiments
methods. The test cases were used to create response surface models relating
the jacking pocket geometry to the static and dynamic characteristics of the
bearing. The goal of this study was to develop an increased understanding
of the in�uence of jacking pocket geometry on the performance of �uid-�lm,
journal bearings, which has been largely absent in literature.

The objectives for this chapter were to:

1. Develop an understanding of how the depth of the pocket in�uences
the

• Pressure pro�le throughout the �lm

• The hydrodynamic forces

2. Develop an understanding of how the circumferential width of the
pocket in�uences the pressure pro�le throughout the �lm

3. Understand how the di�erent aspects of the stadium-shaped, jacking
pocket geometry (axial length, circumferential length, pocket depth)
in�uence the

• The direct (Kxx and Kyy) and cross-coupled (Kxy and Kyx) sti�-
nesses
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Table 1: Fitzgerald and Neal [58] bearing geometry

Journal Diameter mm 76.2
Axial Length mm 38.1
Pad Thickness mm 9.5
Radial Cb mm 0.076

Pad Arc Length deg 151.3
Preload 0.0
O�set 0.5

Shell Heat Conductivity W/m-◦C 50
Lubricant Density kg/m 855

Lubricant Speci�c Heat J/kg-◦C 1952
Lubricant Heat Conductivity W /m-◦C 0.15
Lubricant Viscosity at 40 ◦C Pa-s 0.028
Lubricant Viscosity at 99 ◦C Pa-s 0.0047
Lubricant Supply Temperature ◦C 50

Shaft Speed rpm 8000
Load kN 5.43

• Power loss

• Journal equilibrium position (eccentricity ratio and attitude angle)

4. Develop models for each of these outputs

2.2 CFD Model

The experimental study of Fitzgerald and Neal [58] was chosen as the
baseline for this study. The bearing is a two-pad, �xed-geometry bearing
with geometry characteristics and operating conditions given in Table 1 and
a lateral cross section illustrated in Figure 1.

Fitzgerald and Neal [58] presented thermal results from their experiments.
However, in this study, an isothermal assumption was used as the focus was
on the �ow characterstics of bearings with jacking pockets. The initial CFD
model was validated by creating a model of the bearing using a 2-D ther-
moelastohydrodynamic (TEHD) code called MAXBRG [59]. This program
solves the 2-D modi�ed Reynolds, energy, and elasticity equations. The code
calculates the maximum Reynolds number in the bearing and uses either the
Reichardt turbulence model [38] or a laminar assumption accordingly. The
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Figure 1: Cross section of rotor and pads of Fitzgerald and Neal's bearing
[58]

Figure 2: Comparison between experimental results[58] and 2-D TEHD solver
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laminar assumption was used as the code predicted a maximum Reynolds
number of 300. Comparisons of the pad surface temperature pro�le along
the axial centerline between Fitzgerald and Neal [58] and MAXBRG can be
seen in Figure 2. The results for the bottom pad agreed quite well, although
MAXBRG did slightly overpredict the peak temperature.

The bottom pad is responsible for all of the load capacity of the bear-
ing design. Therefore, only the bottom pad of the bearing was modeled
with CFD. ANSYS CFX was used to perform the CFD analysis in this
study. To validate the isothermal CFD model, the validated MAXBRG
model was recalculated with an isothermal assumption and compared with
the CFD results. The CFD model was assumed to be laminar due to the low
Reynolds number. The axial centerline pressure comparison between CFD
and MAXBRG can be seen in Figure 3. While the CFD model captured the
overall shape of the pressure pro�le given by MAXBRG, the results had an
approximate peak di�erence of 13%. This di�erence was the result of the as-
sumptions used in the di�erent equations that each method employed. One
di�erence is that the Reynolds equation neglects all of the inertial terms.
The density of the �uid was set to 1% of the actual density to remove the
inertia from the CFD model for a better comparison. Excellent agreement
can be seen between MAXBRG and the CFD results with negligible density
in Figure 3. As the model was validated with MAXBRG, the inertia was
added back into the CFD model. The inertia terms, in the normal density
CFD model, will increase the load capacity of the bearing. These results
agree with other studies [60, 61] on the in�uence of inertia in �uid-�lm bear-
ings. It was concluded that the CFD model is an adequate approximation
of the validated MAXBRG model, while also accounting for the inclusion of
inertial e�ects on the �ow, which is neglected in the Reynolds equation.

In Figure 3, negative pressure results are reported. In most bearings
these negative pressures are not realistic as cavitation will occur. Modern
CFD software can model this cavitation using a two-phase �ow model. In
this study, the cavitation was accounted for by reassigning negative pressure
values to zero. This assumption is not particularly accurate in the region
immediately prior to cavitation and introduces some small errors into the
results. However, this method is very simple to use and allows for a greatly
reduced run time when compared to a full two-phase simulation. This method
is commonly used in literature [62] for this reason. Therefore, an assumption
of zero pressures was chosen for its simplicity and was used in all of the
following analyses.

After verifying the smooth bearing CFD model against the validated
MAXBRG model, a jacking pocket was added to create a new CFD model.
When a rectangular jacking pocket is machined into the surface of the pad,
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Figure 3: Comparison between CFD and 2-D TEHD solver
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Figure 4: Two-dimensional view of bottom pad with stadium-shaped, jacking
pocket geometry

the axial ends are often left as semicircles. This shape (rectangle with a
semi-circle on either end) is known as stadium-shaped (also obround or dis-
corectangular). This new CFD model was created with a parameterized,
jacking pocket geometry. The jacking pocket was located axially-centered
and circumferentially in-line with the direction of loading. For the sake of
reducing the model size, axial symmetry is used in each of the CFD models
in this study. Figure 4 shows a 2D representation of the full pad surface
including the stadium-shaped pocket and the line of symmetry.

A mesh independence study was performed to ensure the accuracy of
the CFD model. A stadium-shaped jacking pocket with an axial length of
17.78 mm (47% of the pad axial length) and a circumferential length of
12.7 mm (12% of the pad circumferential length) was chosen for the mesh
independence study. A deep pocket of 10 times the bearing clearance was
used. The journal eccentricity ratios were �xed at values given in Table 2.
The number of cross �lm elements was varied from 20 elements to 50 elements
and the number of cross pocket elements was varied from 15 elements to 100
elements. The results of the mesh independence study are shown in Table
3. The pressure pro�le changed negligibly when varied from the coarse mesh
to the �ner mesh. The 3 million element mesh was used to balance the
computational costs with result accuracy.
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Table 2: Fixed Eccentricity Values

xj/Cb 0.4085
yj/Cb 0.4508

Table 3: Mesh Independence Study

Number of Peak Percent
Elements Pressure (MPa) Change (%)

225,000 5.88 -1.38
3,000,000 5.84 -0.61
9,000,000 5.80 -

2.3 Pocket Depth vs Pressure Pro�le Study

A study was performed to analyze the in�uence that the depth of the
jacking pocket has on the centerline pressure pro�le. The journal eccentricity
(Table 2) and jacking pocket length and width used were the same as for the
mesh independence study. The depth of the pocket was varied from 0.01×Cb
to 50 × Cb over 36 levels. A selection of the resulting centerline pressure
pro�les can be seen in Figures 5-6.

Figure 5 shows the pressure with the jacking pocket depth varying from
0.01×Cb to 0.28×Cb. As the pocket got deeper the pressure at the entrance
to the jacking pocket decreased. The peak pressure increased by 30% and
reached a maximum at the exit of the pocket. The pressure sharply increased
across the pocket and then suddenly dropped after the trailing edge of the
pocket.

Figure 6 shows the results as the pocket depth increases further to 6.6×Cb.
The peak pressure dropped, while the pressure reduction at the leading edge
of the pocket disappeared. The pressure pro�le matches between the 6.6×Cb
case and the smooth bearing up to the pocket leading edge. Beginning at the
leading edge of the pocket, the pressure �attened until a jump occurs at the
pocket's trailing edge. The pressure pro�le ceased to change as the pocket
depth increased past 6.6×Cb (up to 50×Cb). The lack of change occurring
above 6.6 × Cb is attributed to axial vorticies occurring in the pockets. An
example of these vortices are shown in Figure 7. Vortices will �ll up the larger
pockets reducing the change to the jetstream �ow. This trend agrees with
an analytical study by Branagan [63] on the in�uence of scratch depths. The
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Figure 5: Centerline pressure for bearing with jacking pocket varying from
0.01× Cb to .28× Cb
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Figure 6: Centerline pressure for bearing with jacking pocket varying from
0.5× Cb to 6.6× Cb

ratios of vertical force in bearings with and without jacking grooves are shown
in Figure 8 as a function of pocket depth. Pockets with a depth of less than
1× Cb experience an increase in the vertical hydrodynamic force. The peak
increase in vertical force occurs at 0.28 × Cb. A loss of vertical force occurs
as the pocket depth increases, as would be expected from the reduction of
the peak pressures seen in Figure 6. When the jacking pocket is deeper than
1×Cb, the overall pressure generated by the pad was reduced. Pockets with
a depth of 6.6×Cb and deeper generate 11% less vertical force than a smooth
bearing. These results agree with the theoretical results seen in Heinrichson
et. al. [15, 16]. They found that pockets less than 1.1 × Cb contributed
positively to the pressure generation, while deeper pockets inhibited it.

A simple hydrodynamic (HD) script was written using FreeFem++ which
solves the laminar, isoviscous Reynolds equation given in Equation 2.1.

∂

∂x
(
ρh3

12µ

∂p

∂x
) +

∂

∂y
(
ρh3

12µ

∂p

∂y
) =

ρU

2

∂h

∂x
(2.1)

Figure 9 shows a side by side comparison of the CFD centerline pressure
pro�le to that generated by the HD code with jacking pocket depths varying
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Figure 7: Streamlines along the centerline of pocket

Figure 8: Ratio of vertical force of pad with pocket to smooth pad
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Figure 9: Comparison between CFD and HD pressure pro�les for pockets
between 0.01× Cb to 0.5× Cb

from 1% to 50% of the radial clearance. As stated above, the Reynolds
equation does not include the inertial terms which results in lower peak
pressures [60, 61]. Therefore, while the HD code underpredicted the CFD
results, the change in the shape of the curve is still the same. The pressure
drop forms at the leading edge of the pocket, and the peak pressure increases.
However as the jacking pocket depth is increased beyond 50% of the radial
clearance, the results of the HD code begin to diverge from the CFD results.
Relating to Figure 10, the pressure pro�le of the HD code does show a �at
pressure pro�le across the pocket and a sharp increase at the trailing edge of
the pocket at higher depths. However, the HD results also showed an overall
increase in the pressure pro�le intensity with depth as also seen in Figure 10.
The CFD pressure results ceased increasing after a depth of 6.6×Cb. Based
on this, it was hypothesized that at a depth of approximately 0.5 × Cb, the
assumptions used in the Reynolds equation break down and this methodology
is no longer a viable means of solving for the pressure across a jacking pocket.

Next another CFD study was performed by varying the circumferential
length of the jacking pocket from 12% down to 1.2% of the pad circumfer-
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Figure 10: HD pressure pro�les for pockets between 1.7× Cb to 9.1× Cb
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Figure 11: Centerline pressure for bearing with jacking pocket circumferential
length varying from 100% to 10% of the initial pocket length of 12.7 mm

ential length over 10 levels. The same baseline hydrostatic jacking pocket
geometry was used with the pocket depth being set to 10× Cb. The center-
line pressure of these simulations were compared with the smooth bearing
case in Figure 11. Seen in Figure 11, as the pocket circumferential length is
reduced, the pressure spike at the trailing edge of the pocket increases greatly
while the pressure across the pocket increases slowly. Overall as the pocket
length decreases, convergence to the smooth bearing case is observed

2.4 Design-of-Experiments and Linear Regression Mod-

els

An experimental design of CFD simulations was performed on the stadium-
shaped jacking pocket to examine the in�uence of the pocket geometry on
the operation and dynamic characteristics of the bearing. The three design
parameters and their bounding values are presented in Table 4.

The seven responses examined in this study are the direct and cross cou-
pled sti�ness, power loss, eccentricity, and attitude angle. A central compos-
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Table 4: Design Parameters

Parameters Lower Bound Upper Bound

d 0.5× Cb 10× Cb
la 33% la,pad 87% la,pad
lc 5% lc,pad 15% lc,pad

ite (CC) design [64] was performed with 5 di�erent levels (separate values
for each parameter). The CC design was selected to allow the �tting of a
response surface that could show curvature and include potential �rst order
interaction e�ects between the three design variables. The CC design resulted
in �fteen di�erent design cases. Three of these �fteen points were found to be
outliers based on the distribution of externally studentized residuals, across
all of the responses, so three more points were added close to these to check
the validity of outlying data points and improve the models' accuracy. In
contrast with the prior studies, the equilibrium eccentricity position for each
particular pocket geometry was found through iterating the CFD model ge-
ometry to balance the load with generated force. This was done using an
optimization routine which minimized the sum of the external forces and the
generated hydrodynamic forces using the Nelder-Mead algorithm [65]. All
of the resultant sum of forces were reduced to less than 0.5% of the applied
load. This process was worth while to ensure the improved understanding of
actual running conditions. A perturbation method is used to calculate the
sti�nesses for each pocket geometry. Cases were run with perturbation values
set to 10%, 1%, and 0.1% of the bearing radial clearance. The perturbation
size of 1% of Cb resulted in the lowest percent di�erence when compared with
MAXBRG's (TEHD) sti�ness calculation for the smooth case. Most of the
di�erence resulted from how cavitation was handled. Lastly, power loss was
calculated using Equation 2.2 on the journal surface with some modi�cations.

ξ = U

∫
A

τsdA (2.2)

Power loss is reduced in the cavitated region due to the air streamlets taking
up space in the �ow �eld. MAXBRG uses an equivalent, reduced bear-
ing axial length method to account for the reduced power loss in the cavi-
tated region. Multiple di�erent eccentricities were tested for this bearing in
MAXBRG and the equivalent bearing axial length varied minutely around
0.3×wpad. Therefore this value was used to account for the power loss reduc-
tion in the cavitated region in the CFD model. Lastly, to include the power
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Table 5: Response Data Summary

Response Units Min. Max. Std. Dev.

Kxx N/mm 1.09e5 1.42e5 2.87e3
Kxy N/mm 2.41e4 2.61e4 190
Kyx N/mm -2.93e5 -2.60e5 4.50e3
Kyy N/mm 1.06e5 1.12e5 1.34e3
ξ W 1.12e3 1.15e3 4.25

e/Cb - 0.56 0.61 3.12e-3
φ degrees 44 47 0.37

loss on the top pad, MAXBRG was run at the same eccentricity as found
through the CFD optimization and the power loss of the smooth top pad
was added to that calculated from CFD of the bottom pad. The additional
power loss from the top pad was an order of magnitude less than the bottom
pad.

An overview of the response data is presented in Table 5. and can be
compared with the responses of the smooth bearing presented in Table 6. In
all cases, the jacking pocket caused a reduction in power loss. This agrees
with Heinrichson's �ndings [14]. This was due to the reduction of the velocity
gradient in the region of the pocket from an increase in local �lm thickness.
However, the overall reduction in power loss was quite minimal. The jacking
pockets also uniformily decreased the attitude angle. This trend was not
unexpected, as the pocket tends to push the hydrodynamic load towards the
leading edge of the pad. Therefore any change in the attitude angle will be
back towards the pad trailing edge to balance the loads. Conversely, the
eccentricity ratio was increased due to the reduction in the pressure pro�le
caused by the pocket, resulting in a higher eccentricity ratio necessary to
carry an equivalent load. The direct horizontal sti�ness is also increased due
to the presence of the pocket. The increased eccentricity results in a sti�er
�lm.

A regression model was �tted for each response. Initially a full quadratic
model with linear interaction terms was chosen. Then each term was evalu-
ated for its statistical signi�cance [66]. The R2, adjusted R2, and p-values for
each model are reported in Table 7. An R2 value is a measure of the model's
ability to capture the variation in the response. An adjusted R2 value is
used to prevent statistically insigni�cant terms from arti�cially increasing
the R2 measure. Therefore, an adjusted R2 value of 0.80 means that the
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Table 6: Response Data for Smooth Bearing

Response Units Value

Kxx N/mm 127200
Kxy N/mm 24030
Kyx N/mm -277800
Kyy N/mm 105700
ξ W 1157

e/Cb - 0.55
φ degrees 47

Table 7: R2 Values for Best Fit Linear Regression Models

Response R2 Adjusted R2 p-Value

Kxx 0.88 0.83 9.6e-5
Kxy 0.92 0.90 2.9e-7
Kyx 0.79 0.69 2.0e-3
Kyy 0.52 0.48 1.2e-3
ξ 0.77 0.74 3.6e-6

e/Cb 0.96 0.95 1.6e-7
φ 0.61 0.55 1.4e-3

model is able to predict only 80% of the variation of the data. Conversely,
this means that 20% of the variation cannot be explained by the model. The
p-values in this chapter are the result of an ANOVA test comparing the value
of the coe�cient of each term to zero. The null hypothesis being that the
coe�cient is zero, which would suggest that the coe�cient does not belong
in the model. So a 0.05 p-value represents a 95 percent con�dence that the
coe�cient is not equal to zero. This is not directly related to the relative
strength of the correlation between the model and the response data, like an
R2 value. Instead, it is the likelihood that an individual coe�cient, or the
entire model of coe�cients, found signi�cance due to random chance. Each
regression model was built up using forwards regression by adding coe�cient
terms based on their individual p-value. All of the models developed in this
chapter had p-values below the standard limit for statistical signi�cance of
0.05. The parameter coe�cients for each model are reported in Tables 8 and
9.
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Table 8: Regression model coe�cients for power loss and eccentricity

ξ e/Cb φ

A1 1.14e3 1.72e-3 46.1
A2 -985 5.93e-6 0.761
A3 -22.6 1.03e-4 -0.869
A4 - 2.17e-5 -
A5 - -3.40e-5 -
A6 - 1.20e-4 -

Table 9: Regression model coe�cients for sti�ness coe�cients

Kxx Kxy Kyx Kyy

A1 1.23e5 2.50e4 -2.71e5 1.08e5
A2 2.12e3 -519 -2.67e3 4.14e3
A3 1.02e4 938 -9.99e3 -
A4 -9.70e3 1.50e3 2.00e4 -
A5 -1.25e4 - -2.35e4 -
A6 2.50e4 - -3.47e4 -
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Of all the responses, the direct horizontal sti�ness showed the largest
variability over the design range with a standard deviation of 5.5% and an
overall change of 27% of the mean value. The smooth bearing response fell
close to the center of this range. A reduced quadratic model, with pocket
depth and axial length having the largest in�uences on the response, was
selected to have the best �t. This model is de�ned in Equation 2.3.

Kxx = A1 + A2d+ A3la + A4lc + A5d
2 + A6l

2
a (2.3)

The pocket depth's in�uence on the pressure pro�le explains its large in�u-
ence on Kxx. The pocket depth's ability to both increase or decrease the
peak pressure would help explain variation of Kxx about the smooth bearing
case. Figure 12 shows the model prediction compared with the CFD data
points. All of the data points fall close to the line and have no clear pattern
of distribution about the line. This shows that the model is able to capture
not only the major trends, but also capture most of the variation that occurs
within this data set with relatively small errors. Figure 13 shows that the
residuals match with the expected normal distribution of error between the
model and the data points. Figures 14 and 15 depict some response surface
plots using the regression model. From these plots, the quadratic shape of
the model and some of the interaction e�ects between the di�erent design
parameters can be seen. Both of these �gures show a distinct pocket axial
length of 10 mm (26% of pad axial length) which results in the lowest hori-
zontal sti�ness. Figure 14 shows a pocket depth of 0.5 mm (6.6xCb) which
results in a maximum value of Kxx. These surface response plots can be
useful tools in guiding engineers in re�ning their designs.

The direct vertical sti�ness has a variability resulting in a standard de-
viation of 1.2% and a overall change of 5.8% of the mean value. The best �t
model for Kyy was a simple linear model related only to the axial length of
the pocket given in Equation 2.4.

Kyy = A1 + A2la (2.4)

This model was not very good. The adjusted R2 value was 0.48 meaning
that it is only predicting half of the variability in the data about its mean.
However, the model did have a p-value of 1.2e-3 which is below the stan-
dard cuto� of 0.05 for statistical insigni�cance. This means that although
the model doesn't capture all of the trends in the data, what is captured is
relevant. As the axial length of the pocket increased, this model predicted
a higher sti�ness. As the axial length of the pocket is increased, the high
pressure that occurs at the center of the bearing is distributed throughout
the pocket. This will result in an increased pressure distribution directly
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Figure 12: Plot of CFD data points compared with the Kxx model prediction
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Figure 13: Plot of Kxx residuals compared with an expected normal distri-
bution around the model prediction
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Figure 14: Kxx compared with pocket depth and axial width

underneath the rotor leading to an increase in the vertical sti�ness. Figure
16 shows a plot of the predicted responses compared to the assumed normal
distribution. The data on this plot seems to correspond to several di�erent
lines of varying slopes. A possible explanation for this could be the presence
of several di�erent �ow regimes within the design space. Another hypothesis
for the inadequacy of the model as a predictive tool is based on the vortices
in the pocket. Figures 7, 17, and18 show vortices of varying size and orienta-
tion are occurring within the pockets of varying geometries. These complex
�ows present a challenge to �tting a linear model to the direct vertical sti�-
ness. Owing to the location of the pocket, the sti�ness of these complex
pocket �ows are directly included in Kyy. This hypothesis could also ex-
plain the presence of varying lines in Figure 16. While this model is able to
demonstrate the rough trend in the data, it needs signi�cant improvements
to be a useful design tool. One possible means of improving the model is by
rede�ning the relationship of the design variables and the Kyy response. An-
other alternative is by expanding the number of data points and developing
multiple higher complexity models.

Kxy was �t with the full linear model given in Equation 2.5.

Kxy = A1 + A2d+ A3la + A4lc (2.5)
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Figure 15: Kxx with varying axial length and circumferential length of the
pocket

35



Figure 16: Plot of Kyy residuals compared with an expected normal distri-
bution around the model prediction
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Figure 17: Overhead view of streamlines in pocket
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Figure 18: Isoparametric view of streamlines in pocket

This model explained 92% of the data's variation about its mean, thus cap-
turing all of the major trends in the data. Kyx was �t with a linear model
which included a linear interaction term between pocket depth and pocket
axial length (Equation 2.6).

Kyx = A1 + A2d+ A3la + A4lc + A5dla + A6l
2
a (2.6)

This model, while capturing the general trends, failed to capture all of the
variability of the data points. This can be seen by its low adjusted R2 value
of 0.69. However, the p-value of this model was 2.0e-3 which means it is
statistically relevant. Although the model has a low adjusted R2 value, the
relationships that it does contain are valid. All of the coe�cients of this
model are negative except for A4. The circumferential length of the pocket
increases this cross coupling term towards positive. There are several higher
order terms that include the pocket axial length. This axially expanded
pocket will distribute the high pressure oil farther out. Similar to Kyy, the
complexity of the pocket �ow makes accurately modeling Kyx signi�cantly
more challenging. Therefore more data would be required to improve this
model.

The eccentricity ratio varies by just 6% of the radial clearance. The result-
ing regression model for eccentricity ratio is the reduced quadratic equation
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given in Equation 2.7.

e

Cb
= A1 + A2d+ A3la + A4lc + A5d

2 + A6l
2
a (2.7)

The absence of the pocket circumferential length quadratic term from this
model can best be explained due to the upper limit imposed in this study.
The pocket was limited to a maximum circumferential length of 12.7% of the
pad's length. Due to this upper constraint, the circumferential length was
limited to a smaller range. This likely kept the pocket in�uence constrained
to a linear relationship. It would be valuable to expand the range of this de-
sign variable to see if this linear relationship would break down. The pocket
was also limited to the converging portion of the �uid-�lm. It might also be
worth examining some cases with larger circumferential pocket lengths. The
relationship to circumferential length would likely require a more complex
model. The pocket axial length is allowed to cover between 33% and 87% of
the pad axial length. The size of this range lends itself to requiring a more
complex model. The attitude angle didn't vary greatly over the whole range.
The attitude angle had a 3◦ variation across all of the di�erent geometries
(including the smooth pad). The reason for the lack of response may be re-
lated to the bearing loading. As �xed-geometry, journal bearings are loaded,
the equilibrium position would follow an arc traveling towards the leading
edge of the pad [67]. If this bearing is in the light to medium loaded range of
this arc, then changing the shape of the pressure pro�le won't have as strong
of an in�uence. The chosen model has a low adjusted R2 value of 0.55 but a
p-value of 1.4e-3 and is given in Equation 2.8.

φ = A1 + A2d+ A3la (2.8)

The pocket depth will increase the attitude angle while the axial length will
decrease it. One reason for the poor adjusted R2 value could be due to the
small size of the range of the responses. The numerical error from the eccen-
tricity optimization solution may have had an increased contribution to the
variability of this data. However, the eccentricity ratio had an adjusted R2

value of 0.95 which disagrees with any numerical error from the optimization
search. There is a possibility that the eccentricity ratio model is being over-
�tted. More data points would be required to further validate the model and
test the numerical error hypothesis.

As mentioned earlier, the geometry and depth of the stadium shaped
pocket have minimal in�uence on the power loss of the bearing. This response
varied up to a 2.9% reduction of the smooth bearing's power loss across the
entire range of pocket designs. The best �t model for modelling the power
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loss was a reduced linear model (Equation 2.9).

ξ = A1 + A2d+ A4lc (2.9)

This model had an adjusted R2 value of 0.74. This model is adequate for
general trends but could likely be improved with additional data points. An
increase in pocket circumferential length or depth were both found to cause a
reduction in power loss. The increased depth would result in a lower velocity
gradient at the shaft surface causing a reduction in power loss. The axial
length of the pocket was found to have statistically negligible e�ect on the
power loss. This absence was unexpected as the increased area of the pocket
would be expected to decrease the velocity gradient, and thus the shear
stress, on the surface of the rotor. Owing to the stadium-shape, vorticity
in the loading direction occurs in both of the axial edges of the pocket as
shown in Figure 17. The size of these vortices is strongly related to the
circumferential length of the pocket, as this de�nes the radius of the end
semi-circles. The current hypothesis is that the in�uence of these vortices on
the power loss is much stronger than the increased area of the pocket. These
vortices may also help to explain the power loss reduction found above and
in Heinrichson [14]. These hypotheses were not explored in this study and is
an area requiring further research.

2.5 Conclusions

In this study a CFD model was developed for a �uid-�lm bearing with
stadium-shaped jacking pocket. The model was validated using experimental
results and a TEHD code. Then a stadium-shaped jacking pocket was added
to the bearing and the pocket circumferential length, axial length, and depth
were all allowed to vary. The in�uence of pocket depth and circumferential
length was examined individually using CFD. Then design-of-experiment and
linear, regression models were used to examine each of the parameters and
any interaction e�ects.

As pocket depths increased, the pressure pro�le transitioned between two
regimes before achieving a steady pressure pro�le for deep pockets. Pocket
depths up to 30% of the radial clearance will cause an increase in the load
capacity of the bearing and cause a 6% increase in the vertical load. As the
depth increased, the pressure pro�le shifted. The pressure became constant
across the pocket and a spike in pressure occurred behind the trailing edge
of the pocket. This transition to a deep pocket completed at a pocket depth
of about 7xCb. These deep pockets experienced a 5% drop in the vertical
force generated by the bearing. Similar pressure pro�le shapes (with a re-
duced pressure due to inertial e�ects) were achieved by solving the Reynolds
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equation. This held true for depths up to 0.5 × Cb. This Reynolds solution
breaks down for pockets deeper than this.

As the circumferential length of a deep pocket (10 × Cb) decreased, the
pressure pro�le approached that of a smooth bearing. This means that cir-
cumferentially thin pockets should have a very minimal in�uence on the
performance of a bearing.

The stadium-shaped, jacking pocket geometry did not have a strong in-
�uence on most of the responses examined in this study. The pocket had
the largest in�uence on the sti�ness characteristics of the bearing with Kxx

varying up to 25%. Such a large variation in Kxx could have a signi�cant
in�uence on the operating characteristics of the machine. A quadratic, lin-
ear, regression model was created for this response which was able to quite
accurately cover the design space. The Kyy response was much more di�cult
to model. The reason for this may have been due to the complexity of the
various �ows within the pocket itself. This complexity makes the empirical
modeling of the direct sti�ness in line with the pocket extremely challenging.
Adding additional data points and higher order models may be required to
better capture this response.

This study is the �rst to examine how each aspect of a jacking pocket's
geometry in�uence the operation and linear sti�ness values of a �uid-�lm
journal bearing. It examined the applicability of the Reynolds equation to
solving these problems and presented some issues that can arise. It also pro-
vides valuable data which can be used for further veri�cation and validation
in future studies.

These jacking pockets did have an in�uence on the generated vertical
forces and the sti�ness characteristics of the bearing. In most cases these
bearing features won't signi�cantly compromise the overall bearing perfor-
mance. However, for heavily loaded bearings with narrow safety margins and
for highly sensitive machines, understanding the in�uence of these features
on the speci�c design could be crucial to success. The direct horizontal sti�-
ness of the bearing did experience a sign�cant variation depending on the
pocket geometry. Understanding this variation can be important to the safe
operation of these machines, especially if subjected to any horizontal loading.
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3 Hydrodynamic Performance Characteristics

of a Fluid-Film Journal Bearing with Jacking

Features

Nomenclature

P Pressure
x Circumferential coordinate
Cb Bearing radial clearance
dg Depth of diamond-shaped, jacking pockets
d̄g dg/Cb
df,g Depth of hourglass-shaped, jacking groove
d̄f,g df,g/Cb
df,l Depth of land region inside of hourglass-shaped, jacking groove
d̄f,l df,l/df,g
ldd,a Axial length of diamond-shaped, jacking pockets
l̄dd,a ldd,a/lm
ldd,c Circumferential length of diamond-shaped, jacking pockets
l̄dd,c ldd,c/lp,c
lf,a Axial length of hourglass-shaped, jacking groove
l̄f,a lf,a/lp,a
lf,c Circumferential length of hourglass-shaped, jacking groove
l̄f,c lf,c/lp,c
lm Distance from diamond-shaped, jacking pocket outer corner to pad, axial

center
l̄m lm/lp,a
lp,a Axial length of the pad
lp,c Circumferential length of the pad
wf Width of hourglass-shaped, jacking groove
w̄f wf/Cb

3.1 Introduction

For many rotordynamic machines, the bearings are often among the
cheaper components. Therefore, many bearing surfaces are composed of
softer material than the journal to protect the rotor from damage on con-
tact, such as during startup or shutdown or incidental contact while running.
Heavy rotors can cause damage to the soft surface materials of supporting
bearings during machine startup or shutdown. The journal and bearing sur-
faces will travel through several di�erent friction regimes before the �lm can
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generate enough pressure hydrodynamically to fully support the gravity load
of the rotor. Prior to this, the bearing operates in the boundary or mixed lu-
brication regimes which have signi�cantly higher coe�cients of friction than
the fully hydrodynamic regime. The high friction coupled with the heavy
loads can cause extreme damage to the soft bearing surfaces. The surface of
these bearings are designed to include jacking pockets or grooves to support
the rotor and protect the bearing surfaces during these operations. These
are machined into the face of the bearing and are connected to a feed port
which is in turn connected to a high pressure oil supply. The machined jack-
ing feature is used to distribute this oil to a large area under the rotor and
support the high loads hydrostatically. This function is vital for successful
operation at low speeds. Often the high pressure oil is shut o� once the rotor
speed is adequate to support the bearing loads hydrodynamically.

There have been an array of studies performed on these features under
hydrostatic and mixed conditions. A variety of assumptions (ignored [8],
smooth pad [8], Reynolds equation [9, 10]) are made to account for the hy-
drodynamic operation in these papers, and adequate justi�cations are not
presented in their defense. There are also several di�erent studies performed
on thrust bearings with various jacking features [14, 15, 16, 18, 19, 20]. There
have been a limited number of studies on the in�uence of jacking features on
the operation of journal bearings. A computational �uid dynamics (CFD)
study (Chapter 2) was performed on the e�ects of the geometry of a stadium-
shaped, jacking pocket on operational and dynamic bearing characteristics.
The pocket depth was varied between 0.01 × Cb − 50 × Cb. The resulting
hydrodynamic load was found to increase by 11% of the smooth case for a
pocket depth of 0.28 × Cb. The load decreases as the depth of the pocket
increases past this point. The hydrodynamic load reaches 6% less than the
smooth case for bearings with pocket depths of 6.7× Cb or greater.

This chapter presents an extension of Chapter 2 by including two addi-
tional jacking feature geometries. The two geometries selected for this study
were a pair of diamond-shaped pockets and a hourglass-shaped groove. Some
initial studies were performed on these di�erent geometries examining the in-
�uence of particular aspects of their geometries with a �xed journal position.
The depth of both geometries was varied in a similar manner as the stadium-
shaped pocket study. The width of the hourglass-shaped groove was also var-
ied to better understand the transition between pockets and grooves. Then
separate design-of-experiments were performed for both jacking features. The
in�uence of the di�erent aspects of the jacking features' geometries on the
power loss, journal static eccentricity position, and direct and cross-coupled
sti�nesses were examined. Linear regression models were developed for each
response for each feature and the relationships are discussed in terms of the
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physics. This study expands upon the novel study performed in Chapter 2
by including two additional jacking features.

The objectives for this chapter were to:

1. Develop a model of a �uid-�lm bearing with a pair of double diamond,
jacking pockets and use this model to

(a) Develop an understanding of how the depth of the pocket in�u-
ences the

• Pressure pro�le throughout the �lm

(b) Understand how the di�erent aspects of the geometry of the pair
of double diamond pockets (axial length, circumferential length,
axial distance from centerline, pocket depth) in�uence the

• The direct (Kxx and Kyy) and cross-coupled (Kxy and Kyx)
sti�nesses

• Power loss

• Journal equilibrium position (eccentricity ratio and attitude
angle)

(c) Develop models for each of these outputs

2. Develop a model of a �uid-�lm bearing with a hourglass-shaped, jacking
groove and use this model to

(a) Develop an understanding of how the depth of the pocket in�u-
ences the

• Pressure pro�le throughout the �lm

(b) Develop an understanding of how the groove width of the pocket
in�uences the pressure pro�le throughout the �lm

(c) Understand how the di�erent aspects of the hourglass-shaped groove
geometry (axial length, circumferential length, groove width, groove
depth, contained land area depth) in�uence the

• The direct (Kxx and Kyy) and cross-coupled (Kxy and Kyx)
sti�nesses

• Power loss

• Journal equilibrium position (eccentricity ratio and attitude
angle)

(d) Develop models for each of these outputs

3. Compare the results of both of these models with the results from
Chapter 2
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3.2 Bearing Model

The bearing used in this study was selected from the experimental study
of Fitzgerald and Neal [58]. The bearing is a two-pad, �xed-geometry bearing.
Table 10 contains the bearing geometry and operating conditions. The base
CFD model without a jacking feature was validated in our previous study in
Chapter 2. The bottom pad is the predominant contributor to the bearing
operation due to the orientation of the loading and the angular size of each
of the pads. Therefore, only the bottom pad was modeled to reduce the
computational time of the simulations. The maximum Reynolds number
was ∼ 300 so a laminar assumption was used for all the simulations in this
chapter.

When the thickness of the �lm diverges after the location of minimum
�lm thickness, the volume of oil in the �lm is insu�cient to �ll up the whole
volume. Several studies were performed and found that the oil breaks up into
streamlets with dissolved gases �lling in the open channels [68]. In bearing
applications, this process is known as cavitation. Modern CFD codes have
the ability to perform complex two-phase �ows to model the cavitation. The
downside of these methods is the large increase in simulation runtimes. An
extremely simple method of accounting for caviation is to assume that all
negative pressure results are zero. This method does introduce some error
into the simulation as mass �ow rate at the beginning of the cavitated region
is not preserved. While less accurate, this model was chosen for its modeling
simplicity and reduced simulation time, and the amount of error introduced
by this simpli�cation is fairly small. This method has been commonly used
in literature [62]. Axial symmetry was also used for all of the simulations in
this study to reduce the size of the models.

3.3 Double Diamond Jacking Pockets

3.3.1 CFD Model

The �rst jacking feature that was examined was a pair of diamond-shaped,
jacking pockets. Figure 19 shows a representation of the full pad with the
double diamond pockets, as well as the axis of symmetry. These pockets are
equidistant from the axial center of the bearing and are circumferentially in-
line with the direction of loading. Both pockets have the same geometry. The
de�ning characteristics for the geometry and location of the jacking feature
are the pocket circumferential length (ldd,c), the axial length of a single pocket
(ldd,a), the distance from the pocket outer most, axial corner to the plane
of symmetry (lm), and the pocket depth (dg). All of these parameters are
shown in Figure 19, aside from the pocket depth. Each of these variables was
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Table 10: Fitzgerald and Neal [58] bearing geometry

Journal Diameter mm 76.2
Axial Length mm 38.1
Pad Thickness mm 9.5
Radial Cb mm 0.076

Pad Arc Length deg 151.3
Preload 0.0
O�set 0.5

Shell Heat Conductivity W/m-◦C 50
Lubricant Density kg/m 855

Lubricant Speci�c Heat J/kg-◦C 1952
Lubricant Heat Conductivity W /m-◦C 0.15
Lubricant Viscosity at 40 ◦C Pa-s 0.028
Lubricant Viscosity at 99 ◦C Pa-s 0.0047
Lubricant Supply Temperature ◦C 50

Shaft Speed rpm 8000
Load kN 5.43

Figure 19: Pad and double diamond pocket geometries

nondimensionalized for use in this study. The nondimensional equations are
presented in the Nomenclature.

To balance simulation run time and accuracy of the results, a mesh density
study was performed. The representative geometry of the double diamond
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Table 11: Mesh Independence Design Parameters

d̄g 16.5
l̄dd,c 0.126
l̄dd,a 0.682
l̄m 0.733

xj/Cb 0.4085
yj/Cb 0.4508

Table 12: Double Diamond Mesh Density Information

Number of Elements Vertical Load Percent Di�erence

- kN %
5.91e5 3.01 3.8
1.01e6 3.08 1.4
3.71e6 3.12 0.22
8.21e6 3.12 0

pockets used for the mesh testing are given in Table 11, along with the
journal eccentricity. This eccentricity was chosen as it was the equilibrium
position for the case with a smooth pad. Four di�erent mesh densities were
investigated. The resulting vertical loads are presented in Table 12, along
with the number of elements in each mesh. The 1 million element mesh was
chosen for this study as it allowed for a low run time with minimal losses in
accuracy.

3.3.2 Pocket Depth vs Pressure Pro�le Study

The in�uence of the depth of the double diamond, jacking pockets on the
centerline pressure pro�le and the vertical hydrodynamic force on the shaft
was examined. The same jacking pocket geometry and shaft eccentricity
that was used in the mesh independence study was used in this examination.
The nondimensional depth of the pocket was varied from 0.01 to 50 while
the rest of the pocket geometry was held constant. Figure 20 shows the
bearing centerline pressure pro�les for a dg varying from 0.01 to 0.29. The
pressure immediately proceeding and in the �rst half of the pocket decreased
as the pocket depth increased. Following this region, a sharp rise in pressure
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Figure 20: Centerline pressure for bearing with nondimensional jacking
pocket depth varying from 0.01 to 0.29

occurred, resulting in a maximum increase in the peak pressure of 6% for
the 0.29 case. This peak occurred slightly behind the groove, at the same
location as seen in the smooth case (dg = 0.01). Figure 21 shows the pressure
pro�le as dg is increased up to 0.6. The initial pressure drop continued, but
the peak pressure started to drop as well. The peak pressure location also
shifted further downstream of the pocket.

Figure 22 shows the centerline pressure pro�le results as the pocket depth
was increased to 6.3× Cb. As the depth increased further, the pressure pro-
ceeding to the pocket experienced a small increase in pressure, while the
pressure at the center of the pocket dropped. This resulted in two pressure
peaks, one at the leading edge of the pocket and another one slightly down-
stream of the pocket. The downstream peak pressure continued to drop as
the pocket deepened down to a 20% reduction from the smooth case. Figure
23 shows the pressure pro�les of the �ow running through the center of the
pocket corresponding to Figure 22. The centerline pressure at circumferen-
tially corresponding to the center of the groove experienced a discontinuous
gradient. This was most likely due to the collision of two vertices. Pockets
deeper than 6.7×Cb ceased to have any additional in�uence on the pressure
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Figure 21: Centerline pressure for bearing with nondimensional jacking
pocket depth varying from 0.34 to 0.60
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Figure 22: Centerline pressure for bearing with nondimensional jacking
pocket depth varying from 0.82 to 6.7

pro�les and the vertical hydrodynamic forces. Branagan [63] found a similar
limit by applying short bearing theory to a bearing with a circumferential
scratch. This limit also corresponds well with what was found in Chapter 2.
Figures 24 and 25 show the pressure pro�le of the �lm for two of the groove
depths. The peak pressure is reduced while a more uniform pressure from
the groove region occurs farther downstream and upstream of it, as well as
further axially.

The pressure pro�le predominately shifted between two regimes (Figure
20 and Figure 22). In Chapter 2, these two regimes were distinct with an
exact, nondimensionalize depth of the stadium-shaped, jacking pocket of 0.28
at which the �ow shifted between them. In this study, that transition was
less distinct, and there were a small range of depths (0.34 × Cb- 0.6 × Cb
where trends from both of the regions occurred. This transitional regime
was captured in Figure 21.
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Figure 23: Pocket centerline pressure for bearing with nondimensional jack-
ing pocket depth varying from 0.82 to 6.7

Figure 24: Film pressure for pair of diamond-shaped, jacking pockets with
nondimensional depths of 0.5
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Figure 25: Film pressure for pair of diamond-shaped, jacking pockets with
nondimensional depths of 2.38

3.3.3 Design-of-Experiments and Linear Regression Models

A design-of-experiments was utilized to better categorize the in�uence
of the double-diamond jacking pockets on the bearing performance. The
jacking pocket's geometric design variables were varied over the ranges shown
in Table 13.

The seven responses that were examined were power loss, eccentricity
ratio, attitude angle, and both the direct and cross-coupled sti�ness terms.
A central composite design (CC) [64] was performed at �ve di�erent levels
(di�erent values for each design parameter). A CC design was chosen to
allow the �tting of regression models, which included curvature and �rst
order interaction e�ects between the design parameters. This design resulted
in twenty �ve di�erent geometric cases. Di�ering from the above pocket
depth study, the equilibrium position for each bearing was found using the
Nelder-Mead algorithm [65]. The resulting sum of forces were reduced to
below 0.5% of the applied load for each case. Finding the equilibrium allows
for an improved understanding of actual running conditions. The method
of calculating the sti�nesses and the power loss are described in Chapter
2. Across the span of responses, three of the pocket designs were found
to be outliers based on the distribution of externally studentized residuals
across all of the responses. Each one of the outliers had a very large spread
between the pockets (m̄) and a short circumferential length (l̄dd,c). The wide
pocket spread moves the pockets farther from the high pressure region of the
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Table 13: Double Diamond Design Parameters

Parameters Upper Bounds Lower Bounds

d̄g 0.01 20
l̄dd,c 0.05 0.15
l̄dd,a 0.25 0.9
l̄m 0.25 0.9

pad at the axial center, while a short circumferential length can reduce the
overall e�ectiveness as demonstrated in the previous study (Chapter 2) on
stadium-shaped, jacking pockets. The combination of these things resulted
in a reduction in the in�uence of the pocket geometry resulting from the
reduced overall pocket in�uence on bearing operation.

A summary of the span of the bearing response is shown in Table 14.
All of the cases showed a decrease in power loss when compared with the
smooth bearing case. This agrees with what was seen in Chapter 2 as well
as with Heinrichson's �ndings [14]. This is due to the pocket's presence
decreasing the cross �lm velocity gradient which reduces the shearing on the
surface of the journal. The drop in power loss was rather small owing to the
relatively low surface area of the pockets when compared with the rest of the
pad area. All of the sti�nesses showed an increased variation over the whole
range of responses when compared to the stadium-shaped pocket design-of-
experiment. This is likely due to the larger range of pocket depths used
in this study. In Chapter 2, The pockets' depth was limited to the second
pocket depth regime and deep pockets. Expanding this range to include the
�rst regime should greatly increase the spread of the sti�ness responses as
the pressure lift due to shallow pockets would be captured.

A least-squares linear regression model was developed for each the seven
di�erent bearing responses [66]. An R2 value is a measure of a model's
ability to accurately predict the variability in the data. The addition of
each new term will improve the R2 value at least a little. An adjusted R2

value accounts for this by adding a penalty for each new term to prevent
statistically insigni�cant terms. A model that predicts 80% of the variation
of the response will have an adjusted R2 value of 0.80. This also means that
20% of the variation can not be explained by the model. Another analysis
of variance (ANOVA) statistic is the p-value. This represents the likelihood
that the relationships in the model can be attributed to chance. A con�dence
interval of 95% that the model can not be attributed to chance results in a
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Table 14: Double diamond pocket DOE response summary

Response Units Min. Max. Std. Dev.

Kxx N/mm 9.53e4 1.43e5 7467
Kxy N/mm 1.21e4 3.84e4 4544
Kyx N/mm -2.97e5 -2.11e5 16509
Kyy N/mm 9.29e4 1.31e5 5014
ξ W 1.13e3 1.15e3 1.79

e/Cb - 0.581 0.600 6.52e-4
φ degrees 45.7 47.9 0.133

Table 15: Response Data for Smooth Bearing

Response Units Value

Kxx N/mm 1.27e5
Kxy N/mm 2.40e4
Kyx N/mm -2.78e5
Kyy N/mm 1.06e5
ξ W 1.16e3

e/Cb - 0.55
φ degrees 47
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Table 16: R2 Values for Best Fit Linear Regression Models

Response R2 Adjusted R2 p-value

Kxx 0.66 0.60 3.15e-4
Kxy 0.36 0.20 1.09e-1
Kyx 0.59 0.52 1.34e-3
Kyy 0.74 0.57 6.80e-3
ξ 0.90 0.86 1.88e-6

e/Cb 0.998 0.996 4.23e-10
φ 0.96 0.94 2.03e-7

Table 17: Regression model coe�cients for power loss and eccentricity

ξ e/Cb φ

A1 1.38e3 0.579 47.0
A2 0.752 2.18e-3 0.365
A3 -3.58 1.26-2 -0.235
A4 -7.18 0.117-2 0.433
A5 3.94 3.13e-3 0.547
A6 8.00 -1.90-2 0.294
A7 - 4.15e-2 -0.498
A8 - -5.29e-3 0.446
A9 - - -1.94

p-value of 0.05. A p-value can be obtained for each individual coe�cient,
as well as for the model as a whole. The regression model for each response
was developed using forwards regression by adding new terms based on their
individual p-value. All of the models presented in this chapter had p-values
below the standard limit for statistical signi�cance of 0.05. The R2 values,
adjusted R2 values, and p-values for each model are presented in Table 16.
The coe�cients for each of the di�erent regression models are presented in
Tables 17 and 18.

For the direct horizontal sti�ness, the data showed an overall variation
of 38% of the smooth case, although the standard deviation was only 6%.
A model was developed with linear relationships to each of the the design
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Table 18: Regression model coe�cients for sti�ness coe�cients

Kxx Kyx Kyy

A1 1.19e5 -2.57e5 1.15e5
A2 2.28e4 -3.15e4 -1.05e3
A3 -7.15e3 1.73e4 -6.70e3
A4 -1.15e4 2.60e4 -3.35e3
A5 - - 2.61e3
A6 - - -1.87e4
A7 - - -2.40e4
A8 - - -1.08e4

variables with the exception of the pocket depth as shown in Equation 3.1.

Kxx = A1 + A2l̄dd,a + A3l̄dd,c + A4l̄m (3.1)

Both the circumferential length of the pocket and the distance between the
pockets decrease the horizontal sti�ness while the axial length increases it.
An increased circumferential pocket length will allow the high pressure to be
distributed towards the leading and trailing of the pad. This higher pres-
sure will increase the sti�ness of the �lm. The in�uence is limited, as the
pocket does not extend far from the vertical axis. The previous study in
Chapter 2 found similar correlation for both of the corresponding design pa-
rameters to axial and circumferential lengths of the stadium-shaped pocket.
The adjusted R2 value of this model was 0.6 meaning that the model only
explained 60% of the variation in the data. This model did have a p-value
of 3.15e − 4 meaning that the relationships captured by the model are sta-
tistically signi�cant. Figure 26 shows a plot of the externally studentized
residuals compared with the assumed normal probability distribution. The
plotted line is the idealized case. A good model would expect to see a random
distribution on either side of this case. However, the data shows an arcing
shape that di�ers from the normal distribution. These results, coupled with
the low adjusted R2 values, shows that the model is failing to capture some
important relationships between the design parameters.

The direct vertical sti�ness showed variation of 36% and a standard devia-
tion of 5% with respect to the smooth case's Kyy response. Two outliers were
found for this response. These outliers had wide pocket distribution and short
circumferential lengths which greatly reduced the in�uence of these pockets
on the pressure distribution, resulting in negligible in�uence on the vertical
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Figure 26: Plot of Kxx externally studentized residuals compared with the
assumed normal probability distribution around the predicted
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sti�ness. Equation 3.2 presents a reduced, quadratic model for the vertical
sti�ness. All of the terms in the model reduced the vertical sti�ness, with
the exception of the �rst order pocket spread term. There were interaction
terms between the pocket spread and both the depth and the axial length.
The second of these terms is likely due to the nondimensionalization of the
axial length. An increase in the spread of the pockets will cause an increase
in the overall axial length of the pocket.

Kyy = A1 + A2d̄g + A3l̄dd,a + A4l̄dd,c + A5l̄m

+A6d̄g l̄m + A7l̄dd,al̄m + A8l̄
2
dd,c

(3.2)

Only 57% of the variability in the data was captured by the model based on
the adjusted R2 value. This means that the model did not capture all aspects
of this response's behavior. The p-value was 1.34e− 3 which signi�es that it
was highly unlikely that the trends captured in this model were attributed to
chance. Figure 27 shows the externally studentized residuals compared with
the assumed normal probability distribution for Kyy. This data fell along
a line which di�ers from the idealized case. A second line trend seems to
occur at lower values but a limited number of data points makes this more
uncertain. The current model for the direct vertical sti�ness did not capture
all of the trends in the data.

Kxy had the largest variation of all of the responses with an overall vari-
ation of 110% and a standard deviation of 19% of the smooth case. Unfor-
tunately a reasonable model was unable to be developed for this response.
The best calculated model had a p-value of 0.11 which means that there was
an 11% likelihood that the model could be attributed to chance. This was
below the standard 95% con�dence interval. The Kyx response varied by
31% of the smooth case response and had a standard deviation of 6%. A
�rst-order, regression model with all terms for each of the design parameters
except pocket depth was �t to the data and is presented in Equation 3.3.

Kyx = A1 + A2l̄dd,a + A3l̄dd,c + A4l̄m (3.3)

Unfortunately an adequate empirical regression model for describing the
double diamond jacking pockets' in�uence on the bearing sti�ness was not
found based on these design variables. The adjusted R2 values for each of
the responses was at or below 0.60. These models were inadequate as at best
they described up to 60% of the variation in the data. However, all of these
models, with the exception ofKxy had p-values smaller than 0.05. This means
that while each of the models failed to fully model the response, the models
were statistically signi�cant. One reason for the low adjusted R2 values was
the complexity of the �ow around these pockets. This complexity occurred

58



Figure 27: Plot of Kyy externally studentized residuals compared with the
assumed normal probability distribution around the predicted
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Figure 28: Radial vorticity at trailing edge of diamond pocket

as a result of the orientation of the diamonds in relationship to direction of
the �ow in the �lm. Figures 28-30 show this �ow for three di�erent pocket
shapes. Signi�cant vorticity in all three dimensions was occurring in the
pocket, especially along the trailing edge of the pocket.

The power loss had an overall variation of 1.7% and a standard deviation
of 0.15% of the smooth case power loss. Overall the pocket geometry had
a minimal in�uence on the power loss of the bearing. This agrees with the
results presented in Chapter 2. The variation seen in this study was less
than was seen with the stadium-shaped, jacking pocket (Chapter 2). This
is attributed to the reduced area of the double diamond pocket designs and
the shift of the pockets away from the axial centerline. A reduced quadratic
model was developed and is shown in Equation 3.4. The dimensionless pocket
depth had the largest in�uence on the power loss, followed by the distance
between the pockets. This model had an adjusted R2 value of 0.86. The
model described the variation of the data well, although more data points
could be used to improve its predictive capabilities.

ξ = A1 + A2d̄g + A3l̄dd,c + A4l̄m + A5d̄g l̄m + A6d̄
2
g (3.4)

The eccentricity ratio had a variation of 3.4% of the smooth case with a
standard deviation of 0.1%, while the attitude angle varied up to 4.7% and
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Figure 29: isometric view of streamlines in a diamond pocket

Figure 30: Streamlines running across and in a diamond pocket.
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had a standard deviation of 0.3%. The attitude angle changed by slightly
more than 2 degrees over the whole range. Two outliers were excluded from
these results. One of the outliers had a very shallow pocket and was in
the regime 1 where additional lift is generated. The other pocket had an
extremely wide axial spread on the pockets. This meant it had a signi�cantly
reduced in�uence on the load carrying portion of the bearing at the axial
center. When these cases were included the eccentricity ratio actually varied
by 10% of the smooth case response. The model for the eccentricity ratio
is given in Equation 3.5. The equation was a reduced quadratic model with
two monovariate quadratic terms and 4 interaction terms. The adjusted R2

value was 0.996. This model can explain over 99% of the variation of the
data across the design range. The pocket depth had a large in�uence on
the eccentricity ratio. The shallow pockets generated additional lift while
the deeper pockets caused a loss in the pressure generation. The distance
between the pockets also had a large in�uence on the eccentricty ratio. The
larger distance between the pockets moved the pockets farther away from the
pressure generating region of the pad minimizing the in�uence of the pockets.

e/Cb = A1 + A2d̄g + A3l̄dd,a + A4l̄dd,c

+A5l̄m + A6d̄
2
g + A7barl

2
dd,c + A8l̄

2
m

(3.5)

The regression model for the attitude angle is given in Equation 3.6 and
had an adjusted R2 of 0.94. This is a good model as it explains 94% of the
variation of the data.

φ = A1 + A2d̄g + A3l̄dd,a + A4l̄dd,c + A5l̄m

+A6d̄g l̄dd,c + A7l̄dd,al̄dd,c + A8l̄dd,al̄m + A9l̄
2
dd,a

(3.6)

3.4 Hourglass-Shaped Jacking Groove

3.4.1 CFD Model

The second jacking feature geometry examined in the chapter was an
hourglass-shaped groove. Figure 31 shows the groove and some of the de�n-
ing geometric parameters, along with the axis of symmetry. The entire fea-
ture was de�ned by the circumferential length (lf,c), the axial length (lf,a),
the width of the groove (wf ), the groove depth (dfg), and the depth of the
contained land region (dfl). This land region was composed of the two trian-
gular regions contained by the groove. These are sometimes machined to a
depth between the pad surface and the groove depth. The geometry features
were non-dimensionalized in this study. These nondimensional parameters
are de�ned in the Nomenclature.
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Figure 31: Pad and hourglass-shaped groove geometry

Table 19: Hourglass-Shaped Groove Mesh Independence Design Parameters

d̄f,g 10
d̄f,l 0.05
l̄f,a 0.575
l̄f,c 0.1
w̄f 10

xj/Cb 0.4085
yj/Cb 0.4508

Table 20: Hourglass Mesh Density Information

Number of Groove Line Percent
Elements Peak Pressure Di�erence

- MPa %
2.99e5 6.11 1.2
1.70e6 6.14 0.72
2.14e6 6.15 0.55
9.74e6 6.18 0
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A mesh independence study was performed to balance the accuracy of
the results with simulation runtime. The hourglass-shaped, jacking groove
geometry is given in Table 19, along with the eccentricity position of the rotor.
The number of elements and the peak pressure circumferentially inline with
the center of the bottom of the hourglass shape are shown in Table 20 for
several meshes of varying densities. The 1.7 million element mesh was chosen
to reduce the runtime while still achieving accurate results.

3.4.2 Groove Depth vs Pressure Pro�le Study

A study was performed on the in�uence of the groove's depth on the
pressure pro�le. The geometry of the jacking groove is the same as presented
in Table 19. This table also contains the journal eccentricity that is used in
each of the following simulations in this study. The nondimensional groove
depth (d̄f,g) was varied between 0.1 to 10. Figures 32-33 show the resulting
centerline pressure pro�les. The pressure pro�le shifted between two di�erent
regimes. Figure 32 shows the �rst regime where the pressure drops at the
leading edge of the jacking groove followed by a rapid rise in pressure. Figure
33 shows the second regime which is characterized by a constant pressure
across the groove and a pressure spike following the groove. The load capacity
of the bearing decreases in this regime. These results match those seen in
Section 3.3.2 for the pair of double diamond pockets and in Chapter 2 for the
stadium-shaped pocket. Both the hourglass-shaped groove and the stadium-
shaped pocket had very distinct regimes, while there was some overlap of
these regimes in the case of the double diamond jacking pockets. Figures 34
and 35 show the pressure pro�le of the �lm for two of the groove depths. The
peak pressure is reduced while a more uniform pressure from the groove region
occurs farther downstream and upstream of it, as well as further axially.

3.4.3 Groove Width vs Pressure Pro�le Study

Another study was performed on the in�uence of the hourglass-shaped
groove width on the pressure pro�le. The same operating variable, design
parameters, and automatic mesh generation options were used in this study
as presented in Section 3.4.1. The nondimensional groove width was varied
from 1.67 to 16.3. The centerline pressure pro�le is plotted in Figure 36. As
the groove was widened, the higher pressure at the center of the pad was
bled o� towards the axial edges of the pad along the trailing arms of the
hourglass. This phenomena can be seen in the streamlines shown in Figure
37. Vortices in the groove carry the �ow out towards the trailing corners.
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Figure 32: Centerline pressure pro�le with nondimensional jacking grove
depth varying from 0.1 to 0.6
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Figure 33: Centerline pressure pro�le with nondimensional jacking grove
depth varying from 0.7 to 6.6

Figure 34: Film pressure for hourglass-shaped, jacking groove nondimen-
sional depth of 0.34
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Figure 35: Film pressure for hourglass-shaped, jacking groove nondimen-
sional depth of 3.64

Figure 36: Centerline pressure for bearing with nondimensional jacking
groove width varying from 1.67 to 16.3
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Figure 37: Bottom view of streamlines in a bearing including an hourglass-
shaped jacking groove

Table 21: Hourglass Shape Design Parameters

Parameters Equation Upper Bounds Lower Bounds

d̄f,g df,g/Cb 0.1 20
d̄f,l df,l/Cb 0.01 1
l̄f,c lf,c/lp,c 0.05 0.15
l̄f,a lf,a/lp,a 0.25 0.9
w̄f wf/Cb 5 20

3.4.4 Design-of-Experiments and Linear Regression Models

The next study was to use a design-of-experiment to test the bearing
operation sensitivity to geometric changes of the hourglass-shaped groove.
The bounds of the design parameter are presented in Table 21.

The same seven responses used for the pair of diamond jacking pockets
Section 3.3.3 were examined here. A CC design [64] was performed which
resulted in twenty seven di�erent groove geometry cases. As in Section 3, the
Nelder-Mead algorithm [65] was used to �nd a equilibrium position of the
shaft. Four of the data points had issues converging to a stable equilibrium
point. These four points were ignored in this study.

A summary of the responses is shown in Table 22. The power loss was
lower across all the designs than seen in the smooth bearing case (Table 15).
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Table 22: Hourglass-shaped, jacking groove DOE response summary

Response Units Min. Max. Std. Dev.
Kxx N/mm 9.55e4 1.20e5 1385
Kxy N/mm 2.26e4 2.67e4 393
Kyx N/mm -2.73e5 -2.10e5 2036
Kyy N/mm 9.55e4 1.08e5 842
ξ W 1136 1152 0.678

e/Cb - 0.546 0.572 6.33e-4
φ degrees 45.64 48.44 0.104

Table 23: R2 Values for Best Fit Linear Regression Models

Response R2 Adjusted R2

Kxx 0.96 0.95
Kxy 0.75 0.72
Kyx 0.98 0.98
Kyy 0.81 0.80
ξ 0.99 0.97

e/Cb 0.99 0.98
φ 0.96 0.95

This agrees with what was found by Heinrichson [14], and in Chapter 2 and
in Section 3.3.3. Overall the range of responses were quite similar to that
seen by the pair of diamond jacking pockets. However, the hourglass-shaped
groove had much smaller standard deviation for the sti�nesses.

Linear, regression models were developed for each of the seven responses.
The same methodology was used as performed in Section 3.3.3. Two points
were determined to be outliers based on the distribution of externally stu-
dentized residuals across all of the responses. One of these outliers had a
shallower depth than the rest of the cases. The other outlier had a shorter
circumferential length. As the circumferential length of the hourglass be-
comes shorter, it will eventually approach an axial groove, which will have
a minimal in�uence on the pressure pro�le as shown in Chapter 2. The R2

values, adjusted R2 values, and p-values are presented in Table 23. The
coe�cients for each of the di�erent models are presented in Tables 24 and
25.
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Table 24: Regression model coe�cients for power loss and eccentricity

ξ e/Cb φ

A1 1.14e3 0.559 47.5
A2 -0.630 2.18e-3 0.448
A3 -2.12 9.20e-3 0.793
A4 -1.00 3.22e-3 -0.133
A5 -7.55 1.02e-3 0.346
A6 -0.645 2.68e-3 -0.442
A7 -2.50 3.40e-3 -0.343
A8 -1.95 1.96e-3 -
A9 -3.46 - -
A10 4.38 - -
A11 2.78 - -

Table 25: Regression model coe�cients for sti�ness coe�cients

Kxx Kxy Kyx Kyy

A1 1.11e5 2.25e4 -3.11e5 9.88e4
A2 2.24e3 2.44e4 6.16e5 -3.27e3
A3 -1.25e4 1.26e3 7.97e3 -
A4 -3.01e3 - - -
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The direct horizontal sti�ness had a variation of 19% of the smooth case
across the whole range but a standard deviation of only 1.1%. After the
reduction of the full quadratic regression model for Kxx, there were no inter-
action terms with statistical signi�cance. This model is shown in Equation
3.7.

Kxx = A1 + A2d̄f,g + A3l̄f,c + A4l̄
2
f,c (3.7)

This model excellently accounted for the variability of the data as seen by
its adjusted R2 of 0.95. This model was dependent only on the depth of
the groove and the circumferential length of the hourglass shape. The cir-
cumferential length had a stronger in�uence on the direct horizontal sti�ness
than the groove depth, for both linear and a quadratic terms. Both of the
length terms decreased the sti�ness term, while the groove depth increased
the sti�ness.

The direct vertical sti�ness varied by 12% with a standard deviation of
only 1% of the smooth case. The regression model was a simple �rst-order
model dependent only on the circumferential length of the hourglass shape
(Equation 3.8).

Kyy = A1 + A2l̄f,c (3.8)

This model was able to capture some of the major trends in the data but
only captured 80% of the variability, as seen by its adjusted R2 value. The
expansion of the lower pressure region, as seen in Figure 38 caused a reduc-
tion in the horizontal sti�ness of the bearing. The pressure build up across
region in between the two circumferentially oriented grooves was more lim-
ited. Expanding the axial distance between these two sections of the groove,
increased the area axially of this lower pressure but did not have as signi�cant
e�ect on the upstream or downstream pressures. Expanding these sections
circumferentially, caused a circumferential expansion of this lower pressure
region. This moved the higher pressures on either side circumferentially of
this region farther away from the direction of loading. This translation of
peak pressure can be seen in Figure 38. This translation also caused a re-
duction in the peak pressure and some of the pressure in the groove region.
The drop in the peak pressures resulted in a reduction in the sti�ness of the
�lm.

The lower model quality of the vertical sti�ness matched the Kyy model
quality presented in Chapter 2, which was explained by the complexity of the
�ow in and around the groove. Figures 39, 37, and 40 show the steamlines
around the hourglass-shaped groove of various geometry. The diverse �ow
patters occurred directly in line with the negative y-axis, causing a directly
impact on the horizontal sti�ness of the bearing. This makes the modeling of
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(a) Short circumferential groove

(b) Long circumferential groove

Figure 38: Pressure pro�les with varying circumferential length of the
hourglass-shaped groove
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Figure 39: Streamlines in and around a hourglass-shaped groove showing
radial vorticity

Figure 40: Bottom view of streamlines through a hourglass-shaped jacking
groove

this parameter more challenging. Further data points are required to improve
the predictive capability of this model.

Kxy had a variation of 17% of the smooth case response across the whole
range and a standard deviation of only 2%, whereasKyx varied by 23% across
the whole range with a standard deviation of 1%. The resulting form of the
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best �t, regression model was the same for both of the cross coupled sti�nesses
and is given in Equation 3.9. The coe�cients for the models were di�erent
though, as shown in Table 25. The Kyx model predicted the variability of
the data with an adjusted R2 of 0.98. However, the Kxy model exhibited
an adjusted R2 value of 0.7. These models were only dependent upon the
circumferential length of the hour-glass and the width of the groove. An
increase to both of these factors increased both of the cross coupled terms.

Kxy||Kyx = A1 + A2l̄f,c + A3w̄f (3.9)

The power loss had very limited response to the variation in the geometry
of the hourglass-shaped, jacking groove. A variation of 1.4% of the smooth
case power loss was seen across the whole range with a standard deviation
of 5.9e-2%.

ξ = A1 + A2d̄f,g + A3d̄f,l + A4l̄f,c + A5l̄f,a+

A6w̄f + A7d̄f,g l̄f,a + A8d̄f,l l̄f,c + A9l̄f,cl̄f,a+

A10d̄
2
f,l + A11l̄

2
f,c

(3.10)

The eccentricity ratio had a variation of 4.7% while the attitude angle
had a variation of 5.9% of their corresponding responses for the smooth
case. These two responses had standard deviations below 0.2%. Reduced
quadratic models were used to describe these responses, which are presented
in Equations 3.11 and 3.12. Both of these models predict most of the vari-
ability in the data, as seen by their high adjusted R2 values of 0.98 and 0.95,
respectively.

e/Cb = A1 + A2d̄f,g + A3l̄f,c + A4l̄f,a+

A5w̄f + A6d̄f,gw̄f + A7l̄
2
f,a + A8w̄

2
f

(3.11)

φ = A1 + A2d̄f,g + A3l̄f,c + A4l̄f,a+

A5d̄f,g l̄f,c + A6d̄
2
f,g + A7l̄

2
f,a

(3.12)

3.5 Conclusions

In this study, the in�uence of the geometries of both a pair of diamond
pockets and an hourglass-shaped groove on bearing performance was exam-
ined. CFD was utilized to develop an understanding of the bearing oper-
ation. A study was performed by varying the depth of both of the jack-
ing features and comparing the di�erent pressure pro�les. A similar study
was performed by varying the width of the groove for the hourglass shape.
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Design-of-experiment was performed for the two jacking features, and linear
regression models were developed for each of the di�erent bearing responses.

The pressure pro�les of the pair of diamond pockets, the hourglass-shaped
groove, and the stadium-shaped pocket, all shifted between two regimes as
the depth of the feature increased. The �ow trends were similar for each
geometry. The �rst regime saw a drop in pressure occurring immediately
prior to the leading edge of the feature. This was followed by a rapid in-
crease in the pressure across the pocket or groove. The second regime was
characterized by a constant pressure across the feature and the peak pressure
occurring just downstream. For both the hourglass shape and stadium shape,
the two regimes had a distinct boundary with a certain depth at which the
pro�le changed regimes. This depth was 0.6 × Cb for the hourglass shape,
and 0.28 × Cb for the stadium shape. The double diamond had a range of
depths between the two regimes where behavior from both of the regimes was
seen. The pressure at the leading edge of the pocket continued to drop as
the peak pressure started decreasing as well. This range occurred at pocket
depths varying from 0.34 × Cb - 0.60 × Cb. For all three jacking feature ge-
ometries, as pocket depths approached 6.7×Cb the changes in the pressure
pro�le decreased. Pocket depths beyond this value ceased to have any fur-
ther in�uence on the pressure pro�le. This limit agrees with the study on
circumferential scratches by Dr. Branagan [63].

The presence of jacking features had minimal in�uence on the power loss
in the bearing and journal equilibrium position. This held true for all three
designs. However, it can change the sti�ness characteristics by a signi�cant
amount. The geometry of the pair of double diamonds pockets had variation
inKxx, Kyy, Kxy, andKyx of 38%, 36%, 104%, and 31%, respectively. Failing
to understand the in�uence of this design can introduce a high degree of cross
coupling in the system. This can contribute signi�cantly to rotordynamic
instability. The geometry of the stadium-shaped pocket from Chapter 2 had
variation in Kxx, Kyy, Kxy, and Kyx of 27%, 6%, 8%, and 12%, respectively.
The pocket depth in Chapter 2 was more limited than the studies performed
in this chapter. It is hypothesized that this is the reason that the variation is
so much higher for the pair of diamond pockets than for the stadium-shaped
pocket. The hourglass-shaped groove had variation in Kxx, Kyy, Kxy, and
Kyx of 23%, 12%, 26%, and 20%, respectively. This jacking feature has much
less of an e�ect on the �lm sti�ness than the pair of diamond pockets (and
potentially the stadium-shaped pocket). The variation in sti�ness caused by
the groove can still be important to understand to ensure overall machine
stability.The variation in the direct sti�ness terms can in�uence the location
of the system critical speeds, which can result in higher than acceptable
vibration in the machines.
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This study builds upon the prior novel study presented in Chapter 2 by
analyzing two additional jacking feature designs. The two regimes happen
regardless of geometry type, and the transition between the two regimes
occurs in the same range of depths. Deep pockets in which the pressure
pro�le ceases to change occurred at approximately 6xCb for all three cases.
Lastly, it was demonstrated that the presence of jacking features in journal
�uid-�lm bearings can have an appreciable in�uence on the sti�ness of the
�lm and should be accounted for to ensure safe machine operation. This
chapter broadens the applicability of Chapter 2 as these trends hold true for
varying size, shape, and number of pockets and for complicated grooves.
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4 Thermoelastohydrodynamic Analysis of Jour-

nal Bearings with Rectangular Jacking Pock-

ets

4.1 Introduction

Fluid-�lm bearings are vital components for the safe and successful oper-
ation of many industrial rotordynamic machines. In many larger operations,
the price of the rotors are orders of magnitude more expensive than the bear-
ings themselves. In these cases, the bearing surfaces are made with a softer
sacri�cial material to protect the journal during contact and to fully envelop
hard particulates that could damage the rotor surface.

During startup (and shutdown) of these machines, the friction that oc-
curs at the bearing surface transitions through several di�erent regimes. Very
high friction occurs in the initial stages when metal-to-metal contact is oc-
curring. As the rotor speed increases, the friction reduces as the contact
shifts to a mixed lubrication regime. The oil �lls up the gaps between the
rotor and bearing, though contact still occurs between the asperities of both
surfaces. When the rotor spins at a high enough rate to generate a fully
formed hydrodynamic �lm, low friction occurs.

For heavily loaded bearings, the high frictions that occurs in the early
stages of startup and late stages of shut down are high enough to cause
complete bearing failure due to excessive wiping of the soft surface material.
Often high pressure oil is supplied to the bearing surface to hydrostatically
support the bearings during these operations. This oil is fed to the pad using
oil ports. These oil ports are connected to machined pockets or grooves that
are designed to distribute the oil beneath the journal to enable hydrostatic
lift. These machined features are vital for low speed operations. After the
�lm is hydrodynamically capable of supporting the loads on the bearing, the
high pressure oil is often shuto� to reduce power losses in the system.

Several studies were performed on these features under both hydrostatic
and mixed conditions. There were a variety of di�erent assumptions used
(ignored [9], smooth pad [8], Reynolds equation [10]) in the literature to
account for these features under hydrodynamic operation and rarely were
adequate justi�cations presented in their defense. Several di�erent studies
were performed on the hydrodynamic performance of these features on thrust
bearings [14, 15, 16, 18, 19, 20].

The number of studies that analyzed these feature's in�uence on �uid-
�lm, journal bearings is greatly limited. Two computational �uid dynamics
(CFD) studies on the in�uence of the geometry of several di�erent jacking
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feature designs on dynamic performance of the bearings are presented in this
dissertation (Chapter 2 and Chapter 3). The �rst study was focused on a
stadium-shaped/rectangular jacking pocket design. The pocket depth was
varied between 0.01 × Cb − 50 × Cb. The resulting hydrodynamic force was
found to increase by 11% of the smooth case for a pocket depth of 0.28×Cb.
The force decreased as the depth of the pocket increases beyond this. The
hydrodynamic force reached 6% less than the smooth case for bearings with
pocket depths of 6.7×Cb or greater. A design-of-experiment was performed
on the bearing and used to develop regression models for several di�erent
bearing performance characteristics. The second study examined a pair of
diamond shaped jacking pockets and an hourglass-shaped groove. The groove
was found to have a less of an e�ect on the bearing performance when com-
pared with the pockets. For all the designs, as the feature depths increased
beyond 6.6×Cb−7×Cb, the in�uence on the �lm pressure became negligible.

This study presents an examination of the use of Reynolds equation in
analyzing �uid-�lm bearings which include jacking pockets. The stadium-
shaped, jacking pockets from the previous CFD study (Chapter 2) were used.
A new tool was developed to solve the Reynolds equation while allowing for
axial variation in the �lm thickness. Several di�erent methods are presented
with the goal of reducing the simulation runtime while still achieving accu-
rate results. These methods were applied to a range of pocket depths and
compared with the previous CFD results. A discussion is included on the
applicability and the advantages of the di�erent methods. Lastly, the best
method was compared with several of the pocket designs that were developed
in the design-of-experiment performed on the stadium-shaped pocket previ-
ously. The Reynolds equation results were compared directly with the CFD
results with identical �lm geometries. An optimization was then performed
on the Reynolds solution to �nd an equilibrium journal position. These new
results along with the new journal equilibrium position are compared with
the CFD results.

The objectives for this chapter were to:

1. Develop a suitable method for applying the Reynolds equation to �uid-
�lm, journal bearings containing jacking features with

• Accurate results

• Reasonable runtimes

2. Validate the method using CFD results from Chapter 2

3. Compare optimized CFD results with optimized Reynolds equation re-
sults
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Table 26: Fitzgerald and Neal [58] bearing geometry

Journal Diameter mm 76.2
Axial Length mm 38.1
Pad Thickness mm 9.5
Radial Cb mm 0.076

Pad Arc Length deg 151.3
Preload 0.0
O�set 0.5

Shell Heat Conductivity W/m-◦C 50
Lubricant Density kg/m 855

Lubricant Speci�c Heat J/kg-◦C 1952
Lubricant Heat Conductivity W /m-◦C 0.15
Lubricant Viscosity at 40 ◦C Pa-s 0.028
Lubricant Viscosity at 99 ◦C Pa-s 0.0047
Lubricant Supply Temperature ◦C 50

Shaft Speed rpm 8000
Load kN 5.43

4.2 Bearing Model

The bearing from the experimental study of Fitzgerald and Neal [58]
was chosen as the baseline for this study. The bearing is a two-pad, cylin-
drical bore bearing with geometry characteristics and operating conditions
presented in Table 26 and a bearing cross section illustrated in Figure 41.

A model of this bearing was developed using MAXBRG, a thermoelas-
tohydrodynamic (TEHD) code developed at ROMAC laboratory [59]. This
code solves the modi�ed 2D Reynolds equation, energy equation, and elas-
ticity equations. The maximum Reynolds number in the �lm was �300 so the
�ow was assumed to be laminar. The temperature results from MAXBRG
were compared with Fitzgerald and Neal's [58] experimental results in Fig-
ure 42. The results for the loaded pad are in good agreements, although
MAXBRG does slightly overpredict the peak temperature.
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Figure 41: Lateral cross section of two-pad, cylindrical bore bearing from
Fitzgerald and Neal [58]
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Figure 42: Comparison between experimental results[58] and 2-D TEHD
solver
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4.3 CFD Model

4.3.1 Smooth Bearing

An isothermal model was developed of the loaded pad of the Fitzgerald
and Neal [58] bearing using ANSYS CFX. The top pad was neglected as
the bottom pad was solely responsible for supporting the bearing loads. As
the bearing and journal geometry created an axially symmetric �uid �lm, a
symmetry boundary condition was applied along the axial centerline of the
bearing. This line of symmetry can be seen in Figure 44. This assumption
helped to reduced the size of the CFD model and shorten the simulation time.
The �ow was assumed to be laminar based on the low Reynolds number.

When the �ow in a �uid-�lm, journal bearing gets past the minimum
�lm thickness location and enters the diverging region, the amount of oil in
the �lm is insu�cient to �ll the available volume. This additional volume is
predominantly �lled by the release of entrapped gases in the oil. It has been
shown that the oil streamlets form as the �lm breaks up. In bearings, this
process is called cavitation [68]. Current CFD software allows for full analysis
of the two-phase �ow in the diverging region. However, this signi�cantly
increases the runtime of the simulations. Another method is to assume that
the negative pressures results are zero. While this method does not preserve
mass conservation in the cavitated region and can introduce some errors in
the pressure proceeding this region, it has been commonly used in literature
[62] as it allows for much quicker simulations. The errors introduced by
this simpli�ed method are small, so it was used to decrease the simulation
runtime.

The experimentally validated MAXBRGmodel was rerun with the isother-
mal assumption and using the same cavitation method to validate the CFD
model. The results of both of these cases are presented in Figure 43. The
peak pressure of the CFD results was approximately 20% higher than the
peak pressure calculated by MAXBRG. The Reynolds equation assumes that
the inertial e�ects in the �lm are negligible. The �uid density in the CFD
model was set to 1% of the actual �uid density to approximate this assump-
tion. These results are also shown in Figure 43. The CFD results with
negligible inertia showed excellent comparison with the MAXBRG results,
though there is a slight shift in the angular location of the peak pressure.
As the model was validated with MAXBRG, the inertia was added back into
the CFD model.
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Figure 43: Comparison between 2-D TEHD solver and CFD model
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Figure 44: Two-dimensional view of bottom pad surface including a stadium-
shaped/rectangular jacking pocket

4.3.2 Bearing with Stadium-Shape Jacking Pocket

After the base CFDmodel was validated, a stadium-shaped jacking pocket
was added to it. This pocket was located axially centered on the pad and
inline with the gravity loading. Figure 44 shows a two-dimensional represen-
tation of the pad surface including a stadium-shaped jacking pocket, along
with the line of symmetry. The pocket geometry was de�ned by the axial
length of the pocket (la), circumferential length of the pocket (lc), and the
pocket depth (d). The line of symmetry, shown in Figure 44, was used to
reduce the model size.

A reasonable simulation runtime was necessary for this model due to the
need to �nd a journal equilibrium position in some of the following studies.
Performing such an optimization requires a series of simulations to be per-
formed. Therefore, a mesh independence study was performed on the CFD
model to balance the simulation time and results' accuracy. The journal
position and jacking pocket geometry used in this mesh independence study
are presented in Table 27. The journal position that was used was selected
as it was the equilibrium position found for the case with the smooth pad
surface. The results are presented in Table 28. Large changes in the peak
pressure did not occur as the mesh density increased to the �ner meshes. The
3 million element mesh was chosen to ensure accuracy of the results while
also minimizing the runtime of the simulations.
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Table 27: Fixed Eccentricity Position and Stadium-Shaped Jacking Pocket
Geometry for Mesh Independence Study

xj/Cb 0.4085
yj/Cb 0.4508
la/La 0.47
lc/Lc 0.12
d/Cb 10

Table 28: Mesh Independence Study

Number of Peak Percent
Elements Pressure (MPa) Change (%)

225,000 5.88 -1.38
3,000,000 5.84 -0.61
9,000,000 5.80 -

4.4 Thermohydrodynamic Model

4.4.1 Thermohydrodynamic Equations

A TEHD solver was developed to analyze the capabilities of the Reynolds
equation in solving for the performance of bearings with jacking features.
This new code is largely based o� of MAXBRG [59] and is called MAXBRG3D.
MAXBRG solves the Reynolds equation, the energy equation, and the elas-
ticity equations in two-dimensions. The new code has been expanded to
account for all three dimensions in the energy and elasticity equations, as
well as introducing axial variation into the Reynolds equation.

MAXBRG solves the modi�ed, two-dimensional Reynolds equation given
in Equation 4.1 with the turbulence factors given in Equations 4.2-4.5 [59].

∂

∂x
{h3Γ(x, z)

∂p

∂x
}+

∂

∂z
{h3Γ(x, z)

∂p

∂z
} = −UG(x, z)

∂h

∂x
(4.1)

Γ(x, z) =

∫ 1

0

[
ξ2(x, y, z)− ξ2(x, 1, z)

ξ1(x, 1, z)
ξ1(x, y, z)

]
dy (4.2)

G(x, z) =
1

ξ1(x, 1, z)

∫ 1

0

ξ1(x, y, z)dy (4.3)
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ξ1(x, y, z) =

∫ y

0

1

µe(x, y′, z)
dy′ (4.4)

ξ2(x, y, z) =

∫ y

0

y′

µe(x, y′, z)
dy′ (4.5)

MAXBRG3D solves the same modi�ed Reynolds equation but adds axial
variation by expanding the �lm thicknesses equation. This �lm thicknesses
equation is given in Equation 4.6. A new term (fa) has been included which
is a function of axial and circumferential position. This term was used to
account for jacking pockets and can be used for other axially varying features
as well.

h(θ) = cp −Xjcos(θ)− Yjcos(θ)−
(cpm)cos(θ − θp)− fa(θ, z)

(4.6)

MAXBRG3D calculates the maximum Reynolds number in the bearing.
If the �ow is above a user speci�ed value then the code will use Reichardt's
formula [38] to calculate the eddy viscosity. These equations are shown in
Equation 4.7 and Equation 4.8. These equations are valid for fully developed
turbulence. A scaling factor is used to handle the transition from laminar to
turbulence [69]. The results in this study had maximum Reynolds numbers
of 300 which is well in the laminar regime.

µe(x, y, z) = µ
(

1 +
εm
ν

)
(4.7)

εm
ν

= κ
[
y+ − σ+

l tanh
y+

σ+
l

]
(4.8)

Under normal �ow conditions, MAXBRG assumes no axial temperature
variation. This assumption is based on the signi�cantly higher circumferen-
tial velocities along with the high radial heat dissipation [70]. However, the
assumption breaks down with the inclusion of axially varying features in the
bearing. Therefore, MAXBRG3D solves the full energy equation given in
Equation 4.9.

ρCp

(
u
∂T

∂x
+ w

∂T

∂z

)
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+ µe

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
] (4.9)

MAXBRG3D utilizes 9 node, two-dimensional elements for the Reynolds
equation and 27 node, three-dimensional elements for the energy and elastic-
ity equations. Quadratic shape elements are used to describe the behavior of

86



Table 29: Mesh Densities and Approximate Solution Time

Number of Number of Approximate Solution
Elements Nodes Runtime (s)

336 1.42e3 18
792 3.29K 96
1.58K 6.53K 750
10.5e3 42.4K 42e3
29.4e3 118K 259e3

the nodal values throughout each of the elements. Another advantage of these
shape functions was the ability to model of complicated pocket shapes with-
out drastically increasing the mesh size. The CFD stadium-shaped, jacking
pocket study in Chapter 2 contained a small discussion of the use of Reynolds
equation in analyzing bearings with jacking pockets. This work utilized lin-
ear shape functions. It is hypothesized that the use of quadratic functions
will limit the errors seen previously with deep pockets.

4.5 MAXBRG3D Mesh Density Study

A hydrodynamic study was done to better understand the in�uence of
the mesh density on the results of the Reynolds equation. The same stadium
geometry and journal eccentricity position were used as were presented in
Table 27. Five meshes were used varying from three hundred to twenty nine
thousand elements. The number of nodes in each mesh increase at a higher
rate than the number of elements. Therefore the greater mesh densities can
be taxing to the available computational resources, especially memory, and
can have very large runtimes. Table 29 shows the di�erent meshes along with
approximate runtimes for a single solution of the Reynolds equation. These
�ve meshes were used to examine bearings with pockets of three di�erent
depths. A shallow pocket depth of 0.28×Cb was chosen as this was the case
with the highest load capacity (Chapter 2). A deep pocket 6.6×Cb deep was
chosen as this was the limit at which the pressure change became negligible.
Lastly, a depth of 1.1×Cb was selected as it lies between the deep and shallow
pocket cases. Figure 45-47 show the resulting centerline pressures for each
mesh alongside the CFD results.

Based on Figure 46 a good solution for a shallow pocket was achieved with
a mesh of 1500 elements. The 300 and 700 element meshes show fairly good
results, although they slightly overpredict the peak pressure. The 1.1 × Cb
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Figure 45: Centerline pressure of pad with 0.28×Cb depth stadium-shaped,
jacking pocket for various mesh densities
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Figure 46: Centerline pressure of pad with 1.1 × Cb depth stadium-shaped,
jacking pocket for various mesh densities
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Figure 47: Centerline pressure of pad with 6.6 × Cb depth stadium-shaped,
jacking pocket for various mesh densities
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deep case was the most mesh density dependent of the three cases. It required
approximately twenty nine thousand elements for a good solution. The ten
thousand element mesh had fairly good results but had a higher peak pressure
and had a low pressure point right at the leading edge of the pocket. Figure
46 shows that both of these trends are numerical in nature. As the mesh
density increases, they disappear. As seen in Figure 47, the deep pocket
results require a mesh of around ten thousand elements before the change in
solution isn't signi�cant. The coarse meshes underpredict the pressure across
the pocket and reduce the pressure rise downstream of the pocket.

4.5.1 Step Scaling Method

A numerical method was investigated for getting solutions for deep pock-
ets in a more reasonable amount of time. The �lm thickness is a nodal value
which has a distinct value at each of the 9 nodes in the two-dimensional
Reynolds equation mesh. The quadratic shape functions are used to deter-
mine the �lm thickness throughout the element. Based on the �lm thickness
equation (Equation 4.6) and the axial functions used to account for the jack-
ing groove, the nodes on the border of the pocket have �lm thickness of
at least the pocket depth greater than their neighbors that are not in the
pocket. A three-dimensional visualization for neighboring elements at the
pocket border is shown in Figure 48. Six of the nodes in the element 1 are
outside of the pad and have a larger height (lower �lm thickness) than the
remaining three nodes which are on the border of the pocket. These nodes at
the border have the pocket depth added onto the �lm thickness that occurs
due to the journal eccentricity. A curve is shown which approximates the pad
height across the element 1. Across the �rst half of this element, there is a
slight decrease in �lm thickness (increase in pad height) due to the quadratic
shape functions. As the elements on the border of the pocket decrease in
size, this loss in �lm thickness decreases.

A method referred to as step scaling was proposed to achieve an approx-
imate solution with fewer elements. This method involves separating the
mesh into two regions: the pocket region and the land region. These two
mesh regions can be solved separately but coupled together by using a pres-
sure boundary condition. This separation is done by allowing the shared
nodes on the border of the pocket to have two values for the �lm thick-
ness. When adding element 1 to the global matrix, the pocket depth is not
included in the �lm thickness calculation. However, the depth is included
when the elemental matrix for element 2 was calculated. Figure 49 shows
a similar three-dimensional visualization. Each of the shared nodes on the
pocket border have two distinct �lm thickness values. This method does not

91



Figure 48: Pocket edge with no step scaling

Figure 49: Pocket edge with step scaling

preserve the mass �ow continuity around the edge of the pocket.
As deep pockets do not experience large pressure changes across the

pocket, it was hypothesized that this method would be best suited for approx-
imating bearings with these pockets. Figure 50 shows the centerline pressures
for each of the di�erent meshes while utilizing the step scaling method. All
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Figure 50: Centerline pressure of pad with 6.6 × Cb depth stadium-shaped,
jacking pocket for various mesh densities with full step scaling

of the di�erent meshes resulted in the exact same solution. This allows the
use of the sparse mesh, which greatly reduces the required runtime. This so-
lution did result in a completely constant pressure across the pocket whereas
the CFX solution did have a slight increase across the pocket. This trend of
identical solutions held true across the whole range of depths for all of the
meshes using this method. This method could be applied with even fewer
elements than is presented in this dissertation with the same results.

4.5.2 Mesh Distribution

To solve the �ow using �nite element analysis, the pad surface was meshed
by breaking the mesh into 5 di�erent regions that are shown in Figure 51.
The area inside the pocket (region 3) was meshed uniformly on an isometric
square and mapped to the stadium shape. The regions above and below the
pocket (regions 4 and 5) were meshed in the same way. The regions upstream
and downstream of the pocket (regions 1 and 2) were meshed with a uniform
distribution circumferentially. However, the axial distribution corresponded
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Figure 51: Map of di�erent regions used to mesh the stadium shaped jacking
pocket on the pad surface

Figure 52: Mesh of pad surface with stadium-shaped jacking pocket with no
element biasing

to the axial distribution of regions 3, 4, and 5. This resulted in a tight band
of elements to either side circumferentially of the leading and trailing edges
of the pocket. Figure 52 shows an example mesh.

Another method that was examined to allow the use of sparser meshes
was to bias all of the elements towards the pocket. In each of the four regions
bordering the pocket, a bias was applied to shift more of the elements towards
the pocket. Regions 1 and 2 were biased circumferentially, while regions 4
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Figure 53: Mesh of pad surface with stadium-shaped jacking pocket with
element biasing toward the pocket

and 5 were biased axially. The bias that was used was a quadratic function.
The resulting mesh is shown in Figure 53. A small band of elements can be
seen on all sides of the pocket. These smaller elements decrease the loss of
�lm thickness that is introduced by the use of quadratic elements (Figure
48).

A similar mesh independence study was performed for each of three dif-
ferent depths. The centerline pressure results of this study are shown in
Figure 54-56. The shallow pocket now achieves a stable solution with the
300 element mesh as seen in Figure 54. This represents a 98% reduction
in simulation runtime. Figure 55 shows the solution for the 1.1 × Cb deep
pocket. In this case, the 792 element mesh resulted in a stable solution. The
solution using 336 element mesh was good but still had some slight numeri-
cal oscillation occurring in the pressure rise across the pocket. This resulted
in a 99.7% reduction in simulation time compared with the unbiased mesh
results. The deep pocket results are presented in Figure 56. The 300 element
mesh is an excellent solution and had minimal di�erences from any of the
�ner meshes. The unbiased mesh required at least 1500 elements. The same
98% reduction in run time as seen in the 0.28×Cb deep pocket occurs when
using the biased mesh with the deep pocket.

4.6 Thermal Model

Based on several CFD simulations, a trend was noticed of fairly constant
average �lm temperature across the pocket. Based on this a simpli�ed ther-
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Figure 54: Centerline pressure of pad with 0.28×Cb depth stadium-shaped,
jacking pocket for various mesh densities with biased mesh
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Figure 55: Centerline pressure of pad with 1.1 × Cb depth stadium-shaped,
jacking pocket for various mesh densities with biased mesh
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Figure 56: Centerline pressure of pad with 6.6 × Cb depth stadium-shaped,
jacking pocket for various mesh densities with biased mesh
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mal solution is proposed to achieve accurate results without having to model
the complex velocity in the pocket. The 3D energy equation (Equation 4.9)
was solved ignoring the presence of the pocket and the heat generation term
in the �ow above the pocket.

4.7 Varying Depth Studies

4.7.1 Pinned Eccentricities Study

In the previous CFD study on stadium-shaped jacking pockets, the in-
�uence of the pocket depth was examined across a range of pocket depths.
This same study was repeated using MAXBRG3D. The pocket geometry
and position of the journal are the same as used in the mesh independence
study (Table 27). The pocket depth was varied from 0.01 × Cb to 6.6 × Cb.
The CFD cases were rerun with 1% of the �uid density (negligible inertial
e�ects) to make better comparisons with the Reynolds equation results. The
whole range of pocket depths were simulated in MAXBRG3D using the three
methods mentioned above and compared with CFD.

Initially in the CFD results, the load capacity of the bearing increased
as the pocket depth increases. This increase in load peaked at a depth of
0.28 × Cb. After this, the load capacity droped by 11% at a pocket depth
of 6.6 × Cb and deeper. Figure 57 and Figure 58 show how the step scaling
method performed across the range of depths, along with the CFD results.
The step scaling completely failed to capture the �rst regime where the pres-
sure increased. The slope of the pressure across the pocket immediately
started falling towards a constant pocket pressure. The �nal pressure pro�le
is achieved at a depth of about 3×Cb in contrast with the 6.6×Cb seen using
CFD. Based on this, this method is not valid for modeling jacking pockets
unless the pockets are deep.

The next plots (Figures 59-60) show a comparison between the results of
the unbiased and the biased meshes. The unbiased cases were run using either
the twenty nine thousand element or the ten thousand element meshes. These
high density meshes were required to get smooth results for depths between
0.5 × Cb-3.0 × Cb. The biased case was run using the 700 element mesh.
The results for these two di�erent meshes were identical with the exception
of the case with a pocket depth of 0.5 × Cb. This depth required the 1400
element mesh while utilizing biasing. Figures 59-60 show the curves across
all of the depths range. The results were the same for all cases. As both
methods achieve similar results, the biased mesh is recommended due to its
greatly reduced runtime.

Figure 61 shows the �rst regime comparing CFD with the MAXBRG3D
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Figure 57: Pressure pro�les in regime 1 using CFD and MAXBRG3D with
step scaling method

Figure 58: Pressure pro�les in regime 2 using CFD and MAXBRG3D with
step scaling method
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Figure 59: Pressure pro�les in regime 1 using MAXBRG3D with biased and
unbiased meshes

Figure 60: Pressure pro�les in regime 2 using MAXBRG3D with biased and
unbiased meshes
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Figure 61: Pressure pro�les in regime 1 using CFD and MAXBRG3D with
biased mesh

results using the biased mesh. The results are very similar in shape, although
pressures developed using the Reynolds equation were almost exactly 90% of
the CFD results. Figure 62 plots this comparison of the biased mesh with
the CFD results multipled by a factor of 0.9. These results matched up very
well. The second regime is plotted in Figure 63 for the actual CFD results.
Again the trends calculated by the Reynolds equation correlated very well to
the CFD results but were 10% lower. The 0.9 factor yielded similar results
across this regime as well.

The Reynolds equation is capable of capturing all of the trends seen in
CFD. It did underpredict the �lm pressure by about 10% of the CFD pres-
sure. Solving the Reynolds equation using the step scaling method around
the border of the pocket, while the fastest method requiring the fewest ele-
ments, only produces good results for bearings with deep pockets (> 6.6×Cb).
The biased mesh is the superior method for using the Reynolds equation for
analyzing bearings with jacking pockets for pockets of all depths. It allowed
for the sparsest meshes and could accurately solve for the whole range of
depths. This method optimizes simulation time with accurate results.

4.7.2 Optimized Eccentricities Study

A design-of-experiments was used in Chapter 2 to examine the bearing
performance of the Neal and Fitzgerald [58] bearing with a stadium-shaped,
jacking pocket using CFD. Fifteen di�erent stadium-shaped, jacking pocket
geometries were developed. The Nelder-Mead algorithm was used to �nd the
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Figure 62: Pressure pro�les in regime 1 using CFD multiplied by a factor of
0.9 and MAXBRG3D with biased mesh

Figure 63: Pressure pro�les in regime 2 using CFD and MAXBRG3D with
biased mesh
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Figure 64: Di�erence between the hydrodynamic forces predicted by CFD
versus MAXBRG3D when pinned at the same journal eccentricity

steady-state, journal equilibrium position. Fluid inertia was included in this
model.

MAXBRG3D was run with the same �fteen jacking pocket geometries.
Initially it was run with the journal eccentricity position set to the values
found previously using CFD. The pressure pro�les and hydrodynamic forces
were expected to be lower than the CFD results based on the lack of inertia
in MAXBRG3D. The di�erence between the MAXBRG3D results and CFD
results as a percent of the CFD are presented in Figure 64. The horizontal
force varies between 18-22% aside from the one outlier at 16%. The vertical
forces varied between 14-15% with two outliers at 12% and 11%.

In the second portion of this study, MAXBRG3D was allowed to iterate
on the solution to �nd an equilibrium position for the rotor. The eccentricity
positions found using MAXBRG3D were expected to be larger than those
found using the CFD. As the journal was closer to the pad surface this
resulted in lower �lm thicknesses and higher pressures. This increase in
pressure was expected to o�set the pressure increase due to inertia found
in the CFD. Figure 65 shows the eccentricity positions, nondimensionalized
by the radial clearance, of each of the di�erent designs. The scale on both
axes has been increased for better clarity. The lack of inertia causes a drop
in the eccentricity in the y-direction of about 0.04 × Cb, along with a slight
shift in the x-direction. The dimensionless eccentricity varied by 0.037-0.032,
while the attitude angle varied by 2.07 − 3.09◦. The eccentricity positions
did not change signi�cantly in any of the cases and would be unlikely to have
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Figure 65: Di�erence between the equilibrium journal positions predicted by
CFD versus MAXBRG3D

Table 30: Fixed Eccentricity Position and Stadium-Shaped Jacking Pocket
Geometry for Mesh Independence Study

Case Number l̄a/La l̄c/La d̄/Cb
1 0.41 0.13 7.6
3 0.87 0.10 5.3
9 0.41 0.13 2.9

a signi�cant e�ect on the thermodynamics of the bearing, which is often the
main concern with lower �lm thicknesses.

The centerline pressure pro�les of three of the cases are presented in
this chapter. These cases along with their geometry are presented in Ta-
ble 30. They were chosen as they well represented the range of di�er-
ent responses. The centerline pressure pro�les are shown in Figures 66-68.
The MAXBRG3D results have the same pro�le shape as the CFX when
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Figure 66: MAXBRG3D and CFD centerline pressures for bearing with case
number 1 pocket geometry

pinned at the same eccentricity, despite the overall lower pressures. When
MAXBRG3D is allowed to iterate to an equilibrium solution, the pressure
pro�les match up almost exactly. In case number 3, the pressure pro�le drops
as it enters the pocket. The axial length of the pocket design was very long,
and the pocket served to move �uid from the high pressure region in the
center of the bearing to the lower pressure areas along the axial edges. This
caused the drop in the pressure seen in Figure 67.

4.8 Conclusions

The goal of this chapter was to further the understanding about the
validity of using the Reynolds equation to solve for �uid-�lm, journal bearings
including jacking features. This was achieved by comparing results of the
Reynolds equation to results from an experimentally veri�ed CFD model.
The two-pad bearing contained a single stadium-shaped, jacking pocket on
the bottom, loaded pad.

Several di�erent meshing methods for use with the Reynolds equation
were examined to �nd a good solution in a reasonable amount of time. The
�rst method involved using evenly distributed elements across the pad, while
still placing nodes around the pockets' border. The second method (step
scaling method) involved solving for the pocket region and the land region
separately with a shared boundary condition at the border of the pocket.
The last method was to bias the elements in the land region towards the
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Figure 67: MAXBRG3D and CFD centerline pressures for bearing with case
number 3 pocket geometry

Figure 68: MAXBRG3D and CFD centerline pressures for bearing with case
number 9 pocket geometry
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pocket. A series of mesh density studies of each of the di�erent methods was
performed. The biased mesh and the step scaling method could converge
to stable solutions with signi�cantly fewer elements. Each of these methods
were then used to examine the pressure pro�le as the pocket depth varied
from 0.01×Cb - 6.6×Cb. The step scaling method did not correlate well with
any of the CFD data besides the deep pocket case (6.6×Cb). Both the biased
and unbiased mesh solutions achieved similar results, although the unbiased
mesh was signi�cantly more dense and took much longer to run. Biasing the
elements was found to be crucial to getting accurate solutions in a reasonable
amount of time for anything besides deep pockets. This biasing reduces the
size of the elements around the border of the pocket which reduces the error
introduced by the step change in �lm thickness due to the quadratic shape
functions.

Lastly several di�erent pocket geometries were examined, with both pinned
and optimized equilibrium shaft positions, and compared with CFD results.
Although the Reynolds equation underpredicts the pressure in the bearing
for a �xed �lm shape, it does capture the shape of the pro�le accurately. The
prediction will be excellent when the Reynolds solution can iterate to �nd an
equilbrium journal position. This will be slightly higher than the eccentricity
found by iterating on the CFD solution, which includes the inertial e�ects.
This increase, however, is not signi�cant and is conservative in terms of safe
bearing performance. This means that the �lm thickness will be slightly
smaller and will result in slightly hotter bearing temperatures. These new
temperatures won't be signi�cant but will result in a slightly safer bearing
design.

This chapter demonstrates how the Reynolds equation can successfully
be used to capture the physics that occur in a �uid-�lm, journal bearing con-
taining jacking pockets. Biasing should be used to ensure that thin elements
exist around the border of the pocket while not requiring extremely large
meshes. Although the Reynolds equation underpredicts the pressure in the
bearing for a given journal position, this di�erence doesn't exist when the
journal is allowed to �nd its own equilibrium position. The change in journal
position will result in a slightly more conservative bearing design.
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5 Turbulence Modeling in Thin Film Applica-

tions

Nomenclature

y+mesh Nondimensional distance from wall of �rst element layer in the mesh
τij Turbulence shear stress
µt Turbulence eddy viscosity
Sij Mean rate of strain tensor
ρ density
k Turbulence kinetic energy
δij Kronecker delta
y+ Nondimensional distance from wall
u∗ Friction velocity
y Distance from wall
ν Kinematic viscosity
ω Speci�c rate of dissipation
ε Rate of dissipation of turbulent energy
Cb Bearing radial clearance
h Film thickness

5.1 Introduction

Turbulence can be an important feature that many studies have ignored
or considered improperly. Turbulence is a deviation from the stable laminar
�ow conditions, in which the �uid moves in layers, to a more irregular �ow.
While a turbulent �ow is characterized by randomness with respect to both
time and spatial coordinates, it can be characterized by statistically distinct
average values [23]. Turbulence is caused by high friction forces at a wall
or between di�erent �uid layers of varying velocities. The viscosity of the
�uid dampens out turbulence as more viscous �uids can absorb more of
the kinetic energy [24]. Predicting the transition from laminar to turbulent
�ow is di�cult and not well understood. Turbulence can have a signi�cant
in�uence on the operation of �uid-�lm journal bearings. This is especially
true for bearings operating at high speeds or which use low viscosity �uids,
such as water, as the working �uid. Turbulence will begin to occur locally in
�ows with Reynolds numbers of 2000 and higher, where Re = rωh/ν is the
local Reynolds number [26, 27].

Initially while performing the CFD studies in Chapter 2, it was hypoth-
esized that the jacking pocket might induce turbulence in the �lm due to
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the increased �lm thickness. Therefore the initial model of Fitzgerald and
Neal [58] bearing was created with a SST k-ω turbulence model. This tur-
bulence model was chosen based on its common use in literature and the
y+mesh values in the mesh. The pressure pro�le using this model resulted in a
20% drop in the peak pressure, which disagreed with what has been reported
in literature[32, 33, 25]. Based on this disagreement, an investigation was
performed on the appropriate use of di�erent turbulence models in �uid-�lm
bearings.

The onset of turbulence causes an increase in the heat transfer in the
�lm resulting in lower �lm temperature. Szeri [28] found that the onset of
turbulence causes a decrease in the maximum pad temperature. Hopf and
Schüler [29] con�rmed this behavior and found that this drop in temperature
occurs in the vicinity of the minimum �lm thickness where the largest varia-
tion in temperature exists. They attributed this behavior to the mixing and
increased heat transfer in the presence of high thermal gradients. Therefore,
turbulent bearings will often run with lower peak temperatures than laminar
bearings. However, as the turbulence increases this cooling e�ect is o�set
by an increase in heat generation [26, 30, 31]. Turbulence will usually result
in an improvement in the load capacity of the bearing due to the increased
radial motion in the �lm acting on the journal. As a result of the change
in temperature and the improved load capacity, the turbulence will alter the
equilibrium position of the rotor [32, 33, 25]. This, along with the thermal
changes of the �uid characteristics, will alter both the sti�ness and damping
characteristics of the �lm. Turbulence also causes an increase in the power
loss of a bearing which can be up to 1000 horsepower in bearings larger than
31 inches in diameter [34].

To solve the inherent closure problem that occurs in turbulence problems,
Boussinesq [35] related turbulence shear stress to the mean �ow variables
using Equation 5.1.

τij = 2µtS
∗
ij −

2

3
ρkσij, (5.1)

where τij is the Reynolds stress tensor, µt is a proportionality constant called
the eddy viscosity, S∗ij is the trace-less mean strain rate tensor, ρ the �uid
density, k is the turbulent kinetic energy, and δij is the Kronecker delta. This
relationship is used in a branch of turbulence models known as eddy viscosity
models. The primary distinction between the di�erent eddy viscosity models
is the method by which the eddy viscosity term is calculated. These models
are categorized by the number of di�erential equations that are required to
solve for the eddy viscosity. Zero-equation models relate the eddy viscosity
algebraically to various �ow parameters. One-equation models add a di�er-
ential equation to solve for the turbulent kinetic energy (k). Two-equation
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models add an additional equation that solves for some form of the turbulent
dissipation (ε, ω). Both the one and two-equation models algebraically relate
these new turbulent parameters to the eddy viscosity.

In his dissertation in 1970, Hanjalick [40] developed a turbulence model
with two partial di�erential equation which are solved for the turbulent ki-
netic energy (k) and the turbulent dissipation rate (ε). These values are
algebraically used to solve for the turbulent eddy viscosity term. To apply
the model to the viscous sublayer, Jones and Launder [41] added viscous
di�usion, Reynolds number dependent functions, and additional terms to
take into account the nonisotropy of the dissipation processes. This model
is known as the k-ε turbulence model and was further validated in Launder
and Sharma [42].

In 1988, Wilcox [43] made a review of the current two-equation turbu-
lence models and determined that these models failed to accurately predict
boundary layer �ow in the presence of an adverse pressure gradient and de-
veloped a new model to better account for this short coming. This model was
further improved to account for misalignment of the Reynolds stress tensor
and the mean strain rate tensor principle axes [44] and is known as the k-ω
turbulence model. Menter [45, 46] further developed the model developed
by Wilcox [43] to remove the dependence on arbitrary free stream values.
This was achieved by using the Wilcox [43] model for the �rst 50% of the
boundary layer and then transitioning the model to a k-ε model [41] in a k-ω
formulation. This model is known as the Baseline(BSL) k-ω model. Menter
[45, 46] made further modi�cations to the BSL model to allow this altered
model to account for transport of shear stresses in the presence of an adverse
pressure gradient in the boundary layers. This new model is called the Shear
Stress Transport (SST) k-ω model.

In 1997 Mentor [47] combined Bradshaw's assumption [48], in which the
turbulent kinetic energy is assumed to be proportional to the turbulent shear
stresses, with the k-ε turbulence model to develop a one-equation turbulence
model known as the Eddy Viscosity Transport model. Reynolds equation
uses a thin �lm approximation to reduce the Navier-Stokes equations into a
single di�erential equation. There have been numerous modi�cations made to
the Reynolds equation to incorporate a turbulence model. A zero-equation,
eddy viscosity model is usually used [49, 50, 51].

With the increase in computational power, the use of computational �uid
dynamics (CFD) to solve the full or steady Navier-Stokes equations in the
analysis of the operation of �uid-�lm bearings has become more prevalent.
The proper use of turbulence models is important in fully understanding the
behavior of the bearing. Unfortunately, many of the papers utilizing CFD
neglect to mention the Reynolds number and turbulence model that were
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used. Those papers which do specify a turbulence model tend to heavily favor
the two-equation turbulence models although a justi�cation for this choice is
generally not given. For example, Ravikovich et. al. [52] performed a steady-
state CFD study on three di�erent bearings which used water, oil, and gas as
the operating �uid. They used the SST k-ω turbulence model for all of the
bearings despite the large variance in Reynolds numbers. The oil bearing was
operating at a Reynolds number below 5, while the water and gas bearings
operated at Reynolds numbers above 1e7. Ghezali et. al. [53] analyzed the
�ow in a hydrostatic bearing with Reynolds numbers varying from 500-3500.
Again the SST k-ω turbulence model was used for all of the analysis. Worse,
many authors do not provide enough information to calculate the Reynolds
number of the bearing �ow. Edney et. al. [54], Uhkoetter et. al. [55],
Manshoor et. al. [56], and Fu and Untaroiu [22] all used k-ε models. These
studies examined oil �ow in a variety of bearing types. (hydrostatic bearings
[22], �xed-geometry bearings [55, 56] and six-pad, tilting-pad bearings [54]).
However, inadequate information was provided to calculate the Reynolds
numbers. This missing data makes examining the validity of the chosen
turbulence model impossible.

The two-equation, turbulence model is the primary turbulence model
used in CFD in literature. This was often done with little justi�cation of the
choice of model and often presented with inadequate data for calculating the
Reynolds number. Therefore, this chapter presents a study of three di�er-
ent turbulence models, along with the laminar model, over a wide range of
Reynolds numbers with the goal of trying to better determine the applica-
bility of each model. A discussion is presented on di�erent �ow conditions
in tight clearances, as seen in �uid-�lm bearings. To accomplish this, a CFD
model was developed of a four-pad tilting pad-bearing and validated against
experimental results [57]. The CFD model was used to examine a 2-equation
turbulence model (k-ω SST), a 1-equation model (eddy viscosity transport), a
zero-equation model, and a laminar model under a broad range of Reynolds
numbers. The Reynolds number is varied from 10 to 40e3. This chapter
presents an argument against using the more complicated turbulence model
for all �ow conditions in thin �lm applications, which has been the trend in
the literature.

The objectives for this chapter were to:

1. Discuss the issues with modeling turbulence in �uid-�lm bearing appli-
cations

2. Compare the results across a broad range of Reynolds numbers of using
CFD with a
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• laminar model

• zero-equation turbulence model

• one-equation turbulence model

• two-equation turbulence model

3. Examine the the appropriate range of Reynolds number for the appli-
cability of each of the di�erent models

5.2 Theoretical Comparisons

Boundary layers form along the surfaces of the bearing and journal. These
boundary layers are formed of three distinct layers. Closest to the wall is the
viscous sublayer. The lower velocities due to the no-slip condition on the wall
result in lower Reynolds number and predominantly laminar �ow. The next
region is the bu�er layer. The �ow in this region is neither fully turbulent nor
fully laminar. The last sublayer of the boundary layer is the log-law region.

An important parameter pertaining to the sublayers is the nondimen-
sional distance from the wall. One method of de�ning a non-dimensional
distance for a wall-bounded �ow is by using y+ de�ned in Equation 5.2

y+ =
u∗y

ν
, (5.2)

where u∗ is the friction velocity, y is the distance from the wall, and ν is
the local kinematic viscosity. The variable, y+mesh is also typically used in
numerical modeling in reference to a mesh where y. Equation 5.2 is still used
but y is rede�ned as the height of the �rst element layer. Each turbulence
model has an acceptable range for the y+mesh.

Von Karman's theory states that the viscous layer exists in the region
with a y+ value less than 5. The bu�er layer occurs in the region with a
y+ between 5 and 30, and beyond that is the log-law region. Due to the
incorporation of the Reynolds number into the y+ value, this theory holds
for �ows across the spectrum of Reynolds numbers.

The k-ω SST[45, 46] (2-equation) model requires a y+mesh below the viscous
layer or less than 5. However, it is generally recommended that this value
actually be less than that so that there are multiple elements in the viscous
layer. Conversely the k-ε turbulence model [41] requires a y+mesh above the
bu�er layer or greater than 30.

Turbulence modeling in machine components with very tight clearances
can develop into several di�erent �ow pro�les depending upon the speeds and
dimensions involved. Considering the �ow between two �at plates of di�er-
ing velocities with a small clearance, Figures 69-71 shows the di�erent �ow
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Figure 69: Flow pro�le of �ow where viscous sublayers on the walls contact

pro�les that can occur. In cases of relatively low speed and tight clearances
(Figure 69), the viscous sublayers from both walls �ll the entire clearance
and laminar �ow occurs across the �lm. This case can be modeled easily
using standard laminar assumptions. When the involved velocities or clear-
ances increase, there will be room for the entirety of both viscous sublayers
and only a single bu�er layer (Figure 70). This bu�er layer is composed of
the interaction between the bu�er layers from each wall. The turbulent ki-
netic energy becomes important in this �ow regime. However, the turbulent
dissipation term will be signi�cantly less than seen in fully turbulent �ow.
The last case (Figure 71) occurs under higher velocities and clearances. This
case has a turbulent core in the center of the �ow and a bu�er and viscous
sublayer on each wall. Now the turbulent dissipation becomes important as
energy is dissipated from the system. It is important to know whether a
turbulent core has formed to model the turbulence in machine components
with extremely tight clearances. If the turbulent core does not form, then the
turbulent dissipation term should not be included in the turbulence model.

Because of the highly varying �lm thickness in a bearing (0 < h < 2Cb
for a cylindrical bore, �xed geometry bearing), the local Reynolds number
can vary signi�cantly. The �ow in the �lm can have both turbulent �ow and
laminar �ow in di�erent regions of the �lm. This makes modeling the �ow in
many bearings challenging as most models require a single turbulence model
or laminar assumption for the whole �ow. The ability of a turbulence model
to accurately predict �ow in both the laminar and turbulent regions would
be extremely useful in the modeling of �uid-�lm bearings.
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Figure 70: Flow pro�le of �ow where boundary layers from the walls contact

Figure 71: Flow pro�le of �ow with turbulent core
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Table 31: Taniguchi [57] bearing geometry

Journal Diameter mm 479
Axial Length mm 300
Pad Thickness mm 11
Radial Cb mm 0.612

Pad Arc Length deg 80
Preload 0.0
O�set 0.5

Shell Heat Conductivity W/m-◦C 50
Lubricant Density kg/m 855

Lubricant Speci�c Heat J/kg-◦C 1952
Lubricant Heat Conductivity W /m-◦C 0.15
Lubricant Viscosity at 40 ◦C Pa-s 0.028
Lubricant Viscosity at 99 ◦C Pa-s 0.0047
Lubricant Supply Temperature ◦C 40

Shaft Speed rpm 3000
Load kN 180

5.3 CFD Bearing Model

For this study, ANSYS CFX was used to analyze the di�erent turbulence
models over a broad range of Reynolds numbers. Four turbulence mod-
els were chosen with varying complexity. The k-ω SST (2-equation) model
[45, 46], the eddy viscosity transport model [47] (1-equation model), a zero-
equation model based on a variation of the Prandtl-Kolmogorov expression,
and a laminar model were chosen in this study. The application of these
turbulence models to �uid-�lm, tilting-pad bearings using oil as the working
�uid was examined. A bearing model was constructed based on the experi-
mental study of Taniguchi et. al. [57]. The bearing is a four-pad, tilting pad
bearing and its geometric parameters and operating conditions are given in
Table 31 and a cross section is shown in Figure 72. A CFD model was cre-
ated of pad 3 using ANSYS CFX. Due to the nature of tilting pad bearings
with the load between pads, it was assumed that this pad will be supporting
half of the rotor load and have a horizontal force equal but opposite to that
experienced on pad 4 [71]. Using the experimental �lm thickness data, an
operating eccentricity and pad tilt angle were calculated.

Figure 73 presents some experimental and numerical results from Taniguchi
et. al. [57]. The drop in the maximum temperature around 3000 rpm oc-
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Figure 72: Taniguchi et. al. [57] Cross Section

curred due to the onset of turbulence [28, 29]. The operating conditions at
the turbulence onset (grey oval in Figure 73) were chosen to allow easy vali-
dation of the model with the results that were presented and to enable tuning
of the model between laminar and turbulent �ow conditions.

As this study was focused mainly on the turbulence �ow models, an iso-
viscous, isothermal model was used. Axial symmetry along the center of the
bearing was assumed to reduce the size of the model. The model was set up
to easily transition between a laminar assumption or a zero-equation, one-
equation, or two-equation turbulence model. A structured mesh was used
composed of quadrilateral elements. Figure 74 shows a close-up view of the
leading edge and axial symmetry edge for the 3 million element mesh.

Results of a mesh density study using the one-equation turbulence model
are presented in Table 32. Increasing the mesh density from 3 million ele-
ments to 12 million elements yielded a change of less than 5%. Therefore,
the 3 million element mesh was chosen for this investigation. This mesh was
further re�ned for some of the cases with lower Reynolds numbers. The re-
sults from the 3 million element mesh were compared with the experimental
results in Figure 75. The numerical results show generally good agreement
with the experimental results. The CFD results underpredict the peak pres-
sure by about 6% and fails to capture the pressure ram near the pad inlet.
This inability to capture the pressure ram e�ect was expected as the �ow
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Figure 73: Taniguchi et. al. [57] Experimental and Numerical Results
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Figure 74: Close-up of 2.9 Million Element Mesh
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Table 32: Mesh Densities for Pad 3 CFD Model using 1-Equation Turbulence
Model

Number of Maximum Percent
Elements Pressure Di�erence (%)

1.7 Million 6.47 -
2.9 Million 3.71 42.7
12 Million 3.54 4.64

Figure 75: Pad 3 Centerline Pressure Comparison

region preceding the pad was not included in the model.

5.4 Results

After validating the base CFD case against the experimental data from
Taniguchi et. al. [57], the in�uence of Reynolds number on the �lm hydrody-
namic load of the di�erent turbulence models was examined. The Reynnolds
number was varied from 10 to 40e3 by varying the oil viscosity from 1.196
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to 2.989e-4 Pa-s. Low Reynolds numbers were included in this range as it
would be highly advantageous in the modeling of �uid-�lm bearings for a
turbulence model to capture both the laminar and turbulent �ow behav-
ior. The resulting vertical load data is shown in Figure 76. The y axes
show both the minimum and maximum Reynolds numbers that occur in the
bearing based on the minimum and maximum �lm thicknesses. The applied
load on pad 3 for the actual oil viscosity is also shown. The zero-equation
model vastly overestimated the results in the laminar regime and was not
in agreement with the other turbulence models in the laminar regime. The
two-equation model did not predict an increase in the hydrodynamic load
until the Reynolds numbers in the bearing varied between 1000-2400. These
Reynolds numbers are much higher than those at which turbulence occurs in
bearings [31, 72, 57]. When the onset of turbulence should be occuring, the
two-equation model is still underpredicting the laminar solution. This was
contrary to what is commonly seen in bearing operations [32, 33, 25]. The
two-equation model also underpredicted the experimental results. The two-
equation model underestimated the vertical force in the laminar regime with
di�erences of 22% of the laminar results. The one-equation model matched
fairly well with the laminar case at low Reynolds number, with di�erences
of 6% of the laminar results. When the Reynolds numbers in the bearing
were between 250-617, the one-equation model experienced an increase in
the vertical force with increasing Reynolds number up to a minimum bear-
ing Reynolds number of around 2500. Suganami and Szeri [31] and Brockwell
et. al. [72] predicted the onset of turbulence occurring at Reynolds num-
bers between 400-900 and 500-800 respectively. These ranges correlated well
with the location of the increased load predicted by the one-equation model.
Figure 77 shows the same data but scaled by the laminar results. The two-
equation model did not increase the load capacity of the bearing until well
into the turbulent regime. The main di�erence between the one-equation and
two-equation model is the inclusion of the dissipation di�erential equation.
The magnitude of the dissipation term was causing the lower than expected
hydrodynamic forces.

Another CFX mesh was created containing approximately 50 million el-
ements to examine the in�uence of mesh density on the di�erences between
the laminar assumption and the turbulence models at low Reynolds numbers.
This model was run for each minimum Reynolds number case varying from
10 to 750. The percent di�erences between the 3 million element model and
the 50 million element model are presented in Table 33.

The resulting vertical forces are plotted for the laminar, 1-equation, and
2-equation models in Figure 78 and Figure 79. The drop in the di�erence be-
tween the one-equation model and the laminar case can be seen in Figure 79.
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Figure 76: Load capacity for the coarse mesh (3 million elements)

Figure 77: Nondimensional load capacity for the coarse mesh (3 million ele-
ments)
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Table 33: Percent di�erences between the 50 million and 3 million mesh
results for each turbulence model

Re Laminar 0-Equation 1-Equation 2-Equation

10 1.3 -6.0 -1.7 -6.6
25 0.2 -8.8 -1.4 -7.4
50 -0.1 -16.6 -1.7 -7.7
75 -0.2 -20.6 -1.9 -7.9
100 -0.3 -23.7 -1.9 -8.0
250 -0.5 -33.3 -1.0 -8.5
500 -0.9 -38.2 -2.8 -10.5
750 -1.3 -39.2 -12.0 -2.7

For low Reynolds numbers, increasing the number of elements to 50 million
did not greatly alter the results for one-equation turbulence model. However,
the overall resulting percent di�erence between the laminar model and the
one-equation model for Reynolds numbers in the laminar regime dropped
from 5-6% to 3-4%. The �ner mesh one-equation results still digressed from
the laminar results at Reynolds numbers between approximately 250-617, the
same as the coarse mesh. The �ner mesh two-equation results also showed
an increase in vertical load in the laminar regime. The di�erences between
the two-equation and laminar results in this regime dropped from 22-13% to
16-12%. As the Reynolds number increased the results appeared to match
up with the coarse results. The pad model with the �ner mesh was not ana-
lyzed for Reynolds numbers high enough for the onset of turbulence for the
two-equation model. However, based on Figure 79, the onset wouldn't have
changed signi�cantly based on the higher density mesh.

5.5 Conclusions

Two-equation turbulence models have been the primary method used in
the literature for simulating turbulence in �uid-�lm bearings. This is com-
monly done regardless of the Reynolds number and without any justi�cation
of the selected turbulence model. Another challenge in analyzing �uid-�lm
bearings is the wide range of Reynolds numbers that occurs in the di�erent
portions of the �lm. A turbulence model that can accurately predict the �ow
in both the turbulent regions and the laminar regions of the same �ow would
be highly advantageous. This study examined the acceptable use of several
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Figure 78: Mesh comparison of hydrodynamic forces in line with direction of
loading at low Reynolds numbers

Figure 79: Mesh comparison of nondimensional hydrodynamic forces in line
with direction of loading at low Reynolds numbers

124



di�erent eddy viscosity turbulence models for thin �lm applications.
First a brief discussion of the wall e�ects on the turbulence in a thin-�lm

was presented. Next, a bearing case study was presented which examined the
in�uence of several di�erent turbulence models on the hydrodynamic forces
across a broad range of Reynolds number. The base CFDmodel was validated
against experimental data from Taniguchi et. al. [57]. Then the geometry
of the �lm was �xed and the Reynolds number was varied by altering the
�uid viscosity. The hydrodynamic loads are presented for simulations using
three di�erent turbulence models and a laminar �ow model. The three turbu-
lence models were a zero-equation model based on the Prandtl-Kolmogorov
expression, the eddy viscosity transport model (one-equation), and the k-ω
SST model (two-equation).

For laminar �ow conditions, the one-equation model corresponds quite
well with the laminar model (up to 6% di�erence in vertical, hydrodynamic
load). The one-equation model predicted the increase in hydrodynamic
loads at Reynolds numbers which correspond well with prior studies [31, 72].
Therefore, the one-equation turbulence model can be used for bearings with
Reynolds numbers near the predicted values for the onset of turbulence. The
engineer does not have to know the exact Reynolds number at which this
occurs, and this turbulence model can be used across the whole bearing de-
spite the variation of Reynolds numbers. The two-equation model underpre-
dicts the loads by up to 22% in the laminar regime, while the zero-equation
model largely overpredicts them. The increase in vertical load occurred well
after the predicted onset Reynolds numbers [31, 72] for the two-equation
model. The vertical load predicted by the two-equation model was improved
to 16% underprediction in the laminar region when a very �ne mesh was
used. Achieving a �ne enough mesh to further reduce this error is generally
not practical with current computers. This underprediction continued even
when the Reynolds number was large enough for turbulence to begin to occur.
This drop in load capacity did not correspond well with current experimen-
tal literature on �uid-�lm bearings [31, 72]. It would be highly advantageous
to take advantage of the one-equation model's capability to more accurately
capture the behavior in laminar and lower Reynolds numbers turbulence in
�uid-�lm bearing application. This would reduce the reliance on experimen-
tal parameters to determine the onset of turbulence. The one-equation model
is able to achieve this quite well. Further studies are needed for determining
the appropriate Reynolds numbers and method of transitioning from a one-
equation model to a two-equation model while using a reasonable number of
elements.

125



6 Conclusion

In Chapter 2 and Chapter 3, CFD models were developed for a �uid-�lm
bearing with a stadium-shaped, jacking pocket, a pair of diamond-shaped,
jacking pockets, and a hourglass-shaped, jacking groove. The models were
validated using experimental results and a TEHD code. De�ning parameters
of the jacking features' geometries were then varied to assess their in�uence
on bearing performance. The depth of the feature was varied for all three
designs, along with the circumferential length of the stadium-shaped pocket
and the groove width of the hourglass-shaped groove. Finally, design-of-
experiment and linear regression models were used to examine each of the
di�erent geometric parameters and any interaction e�ects.

As the depth of the features increase, the pressure pro�le transitions be-
tween two regimes before reaching a steady pressure pro�le for deep pockets.
Stadium-shaped jacking pocket depths up to 0.28×Cb increased the load ca-
pacity of the bearing by as much as 6%. A similar increase was seen for the
double diamond pockets, although the peak load capacity occurred at pocket
depths of 0.60 × Cb. As the depths increased further, the pressure became
constant across the pocket and the peak pressure shifted downstream of the
pocket. In all three cases, the transition to a deep pocket is completed at a
pocket depth of about 7 × Cb. The hourglass-shaped groove shows similar
results for depths beyond 0.60×Cb but had a slight loss in load capacity for
shallow grooves. The pair of diamond pockets, the hourglass-shaped groove,
and the stadium-shaped pocket all transitioned between two regimes as the
depth of the feature increased. The �ow trends were similar for each geom-
etry. The �rst regime saw a drop in pressure occurring immediately prior
to the leading edge of the feature. Downstream of the leading edge of the
feature, a rapid increase in the pressure occurred. The second regime was
characterized by equalization of the pressure across the feature and develop-
ment of a peak pressure occurring slightly downstream of the feature. The
two regimes were very distinct, with a speci�c depth at which the transi-
tion happened, for both the hourglass-shaped groove and stadium-shaped
pocket. This occurred at a depth of 0.6×Cb for the groove and 0.28×Cb for
the stadium-shaped pocket. The double diamond pockets gradually shifted
between the two regimes. The pressure at the leading edge of the pocket
continued to drop as the peak pressure decreased. This range occurred at
depths varying from 0.34× Cb - 0.60× Cb.

The presence of jacking features had a minimal e�ect on the power loss
in the bearing and journal equilibrium position. This held true for all three
geometries. However, their presence can change the sti�ness characteristics
by a signi�cant amount. The geometry of the pair of double diamonds pock-
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ets had variation in Kxx, Kyy, Kxy, and Kyx of 38%, 36%, 104%, and 31%,
respectively. Failing to understand the in�uence of this design can introduce
a high degree of cross coupling in the system. This can contribute signif-
icantly to rotordynamic instability. The geometry of the stadium-shaped
pocket from Chapter 2 had variation in Kxx, Kyy, Kxy, and Kyx of 27%, 6%,
8%, and 12%, respectively. The pocket depth in Chapter 2 was more limited
than the studies performed in Chapter 3. It is hypothesized that this is the
reason that the variation is so much higher for the pair of diamond pockets
than for the stadium-shaped pocket. The hourglass-shaped groove had vari-
ation in Kxx, Kyy, Kxy, and Kyx of 23%, 12%, 26%, and 20%, respectively.
This jacking feature has much less of an e�ect on the �lm sti�ness than the
pair of diamond pockets (and potentially the stadium-shaped pocket). The
variation in sti�ness caused by the groove can still be important to under-
stand to ensure overall machine stability.The variation in the direct sti�ness
terms can in�uence the location of the system critical speeds, which can re-
sult in higher than acceptable vibration in the machines. These studies are
the �rst to examine how each aspect of a jacking pocket's geometry in�uence
the operation and linear sti�ness values of a �uid-�lm journal bearing.

In Chapter 4, the applicability of the Reynolds equation to �uid-�lm,
journal bearings with jacking pockets was examined. This was done by
comparing results using a Reynolds equation solver to an experimentally
veri�ed CFD model. Several di�erent methods for performing an analysis
using the Reynolds equation were examined. The superior method was to
bias the elements towards the pocket to minimize the size of the elements
along the border of the pocket. This method was applied to several di�erent
stadium-shaped jacking pocket designs. While the Reynolds equation gen-
erally underpredicts the pressure pro�le, this di�erence disappears when the
journal eccentricity is optimized to an equilibrium position. Performing this
optimization increased the eccentricity positions by 2-4% of the total radial
clearance. Aside from being minimal, this increase is a conservative error
which will result in safer bearing operation.

Justi�cation for the acceptable use of the Reynolds equation for bearings
with hydrostatic lifting feature has not been previously addressed in the lit-
erature. The results of this work demonstrate that the Reynolds equation
can be used successfully to capture the physics that occur in �uid-�lm, jour-
nal bearings containing jacking pockets. Biasing should be used to ensure
that thin elements exist around the border of the pocket. These thin ele-
ments reduce the numerical error associated with the sudden transition in
�lm thickness. Doing this will help reduce overall mesh sizes and simulation
runtimes. Although the Reynolds equation underpredicts the pressure in the
bearing for a given journal position, this di�erence is mitigated by allowing
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the journal to �nd its own equilibrium position. Conversely, the changes
in journal equilibrium position due to the lack of inertia terms in Reynolds
equation and other modeling errors will result in a more conservative bearing
design.

Chapter 5 presented a case study on the in�uence of several di�erent tur-
bulence models on the hydrodynamic forces generated in a �uid-�lm, journal
bearing. A base model was developed and validated against experimental
data. The Reynolds number was then varied from 10 to 40e3 by altering
the �uid viscosity and the hydrodynamic forces are presented. The three
di�erent turbulence models are a zero-equation model based on the Prandtl-
Kolmogorov expression, the eddy viscosity transport model (one-equation),
and the k-ω SST model (two-equation), as well as a laminar �ow model.
Because of the highly varying �lm thickness in a bearing, the local Reynolds
number can vary signi�cantly throughout the �lm. The ability of a turbu-
lence model to accurately predict �ow in both the laminar and turbulent
regions would be extremely useful in the modeling of �uid-�lm bearings.

The one-equation model corresponds best with the laminar model under
laminar �ow conditions. The two-equation model underpredicts the loads by
up to 22% while the zero-equation model largely overpredicts them. A very
�ne mesh was able to reduce the error in the two-equation model to 10%
in this region. Increasing the �neness of the mesh enough to further reduce
the error isn't achievable on a standard computer. The underpediction of
this model continues even when the Reynolds number is large enough for
turbulence to begin to occur, and this drop in load capacity does not corre-
spond well with experimental literature of �uid-�lm bearings. It would be
highly advantageous to take advantage of the one-equation model's capabil-
ity to more accurately capture the behavior in laminar and lower Reynolds
numbers turbulence in �uid-�lm bearing application. This would reduce the
reliance on experimental parameters to determine the onset of turbulence.
The one-equation model is able to achieve this quite well. Further studies
are needed for determining the exact Reynolds number and a proper method
for transitioning from a 1-equation model to a 2-equation model.
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