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DESIGNING TIME SERIES DATA STORAGE SYSTEMS

THAT BALANCE PERFORMANCE, USABILITY,

AND MULTI-TENANCY

Abstract

by Gary Michael Fitzgerald II,
University of Virginia

May 2022

The number of Internet of Things, or IoT, devices is growing rapidly (a 214% increase

from 2015 to 2020). Many expect the trend to continue, with some forecasts predicting 140%

growth through 2025. An area which stands to benefit from this expansion is the deployment

of time-series data-collecting devices, however, current methods of storing and interacting

with time series data are typically limited in one of two ways. Some systems are user-friendly

at the cost of query performance or maximum ingest rate. Others have great performance

but a more difficult user experience. To get around these issues, we propose a new method

for designing time series data management systems. Our method takes isolated features that

users desire, like flexible data ingestion and automated database configuration, and offers

guidance for how to combine them with a simple and scalable back-end architecture. Using

the new method, we built the Smart Infrastructure Foundation (SIF), a system optimized

for the collection and storage of sensor data from University buildings, which improves

upon existing solutions by offering a greatly simplified user experience without sacrificing

generality, scalability, or efficiency.
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Chapter One

Introduction

In recent years, the computing industry has played witness to incredible growth in the

Internet of Things (IoT) sector. Forecasters do not see this trend subsiding any time soon,

making IoT devices and their surrounding infrastructure a market area with ample room for

expansion and innovation [14]. As the IoT expands, the ubiquity of deployed sensors (e.g.

temperature, humidity, and air quality sensors placed throughout buildings) and volume of

data collected also stand to increase. The data typically collected by such devices is stored

as a sequence of correlated timestamps and measurements known as time series data. Many

solutions to storing this general form of data have been proposed and implemented in industry

and academia to varying degrees of success [5]. These solutions vary greatly and range from

complete systems designed to handle data ingest, storage, and retrieval, such as Optix.earth,

to strictly database solutions optimized for the sorting, storing, and retrieval of time series

data, like Amazon’s Timestream cloud service [3, 17]. Generally speaking, these ready-made

solutions offer their users the ability to upload time series data, store it in some efficient way,

retrieve and/or process the data at a later date, and may offer additional features designed

to make time series data more useful or easier to work with, such as measurement metadata.

These existing solutions for managing time series data can easily come up short when

considering many practical, real-world use cases. For instance, our research group needed a

single unified system owned and managed by a single authority so we could avoid spending
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time setting up a new time series database every time one was needed. This alone is not

enough to warrant a problem, but the central ownership model became an issue when we also

wanted to allow everyone to use this centralized service simultaneously without interfering

with one another or requiring inter-user coordination. In particular, the class of prebuilt

solutions tends to be lacking with regards to this multi-tenant case, varying data formats,

and enabling access to users who are more interested in analyzing data rather than of the

specifics of how the data must be represented in transit or a database. More custom solu-

tions can be created by starting with some existing database technology, like InfluxDB, and

adding the necessary infrastructural layers to make a more comprehensive data management

platform. Although custom solutions can solve some of these problems, they, like many of

the prebuilt solutions, tend to result in a system which is lacking in one of two ways: first,

some systems prefer raw database performance over usability, making it difficult, confusing,

or time consuming to get data in or out of the system. Second, system designers can come

at the problem from the opposite direction and value usability over back-end performance.

Continuing to manage our time series data with the existing industry tools or half-measure

custom solutions will lead to several issues as the IoT grows. With the tools available now,

users will have to deal with data format issues or build their own ingestion pipeline to

handle formatting concerns. If multiple tenants want to exist within the same system,

they will either need to coordinate to ensure they do not accidentally mix data, or develop

mechanisms to mitigate this concern altogether. If no multi-tenant controls are desired, users

will need to manually coordinate with one another to ensure different data series are not

combined. In summary, users of these systems will be forced to make a decision between

taking on more configuration tasks or investing the effort to design a custom solution to

meet their needs. Both of these consequences are laborious and ultimately distract from the

goal of the system: collect, store, and retrieve time series data.

To circumvent these issues, we first propose a new model for how to think about time

series data. In this model, we define generic vocabulary for describing time series data as
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well as a high level data format. Our new model allows us to think about such data in

an abstract way and reason about how management platforms ought to operate. Using

the model, we then propose a set of fundamental design principles for modern time series

data management platforms as we step into a future where there are more people using

more devices to log more time-based information. Among these principles are scalability,

configuration-less data ingestion, and avoiding reliance on a particular database technology.

Within the confines of our proposed model for time series data and while following our set of

design principles, we implement the Smart Infrastructure Foundation (SIF), a cloud-based

time series data management platform. We explore how SIF compares to existing platforms

and to the custom storage solution currently in place at the University of Virginia’s Link

Lab, and conclude with a discussion of how SIF could be improved in the future based on

the lessons we learned throughout this process.

1.1 Thesis Statement

Existing time series data management solutions fail to address a multi-tenant, general pur-

pose use case and typically do not balance back-end performance with front-end usability. A

new time series data platform that embraces the design principles of using an abstract data

model, remaining decoupled from a database implementation, promoting scalability, and re-

quiring zero configuration for data ingestion is able to maintain high performance while also

being usable across a diverse set of application use cases.

1.2 Contributions

The work we present advances the ways in which we think about designing complete time

series data management platforms. Specifically, we highlight the following key contributions:

• We define three design principles and a new data model intended to help system ar-
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chitects avoid issues typically associated with existing time series data management

platforms, particularly issues with multi-user operation.

• We develop key system abstractions that enable the cloud-based system to balance

performance and usability.

• We create an implementation of a cloud-based time series data management platform

built in accordance with our design principles, provided as an aid for understanding

how the design principles impact system development.

Funding for this project was provided by the University of Virginia’s Strategic Investment

Fund [20].
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Chapter Two

Literature Review

There have been many academic efforts to improve time series data management systems,

ranging from new database optimization techniques to explorations of enhanced IoT device

integration. Generally speaking, current efforts are primarily focused on individual compo-

nents – databases, in particular – rather than entire systems, which is where our work is

based.

Deri, et al. describe a new approach for a back-end database system optimized for the

storage of high-volume time series data sets [4]. Specifically, they offer reasons as to why

traditional relational databases are, on their own, not well suited to handle time series

data, including the fact that large relational tables may have indexes too large for the cache

and a lack of time-series-friendly data compression. To remedy these problems the authors

propose “tsdb”, a new database system aimed at making a more performant back-end service

for storing time series data. While this new approach makes compression of time series

data more efficient and query-able, it does not address usability concerns and is also now

positioned in a market occupied by numerous open source and freely available time series

database services.

Other authors have made similar efforts focused specifically on the database portion of

a time series data management system. Yang, et al. propose a novel time series database

technology, EdgeDB, designed to run on edge devices, rather than on some central or centrally
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distributed system [22]. EdgeDB’s relaxed resource requirements make it ideal for edge

devices and they claim the full potential of an IoT cloud can be unlocked by distributing

database work across many of these devices. However, this model assumes the presence of

edge devices as part of the IoT and data management platform architecture, which we do

not believe will be realistic in all use cases. We proceed in our work without the assumption

of compute-capable edge devices.

Wang, et al. also propose a back-end database which focuses on operating on edge

devices [21]. Unlike existing technologies like OpenTSDB, KairosDB, and InfluxDB, Apache

IoTDB has both substantially improved compression efficiency for time series data (compared

to OpenTSDB and KairosDB) as well as stronger query performance when aggregating data

over long time periods (compared to InfluxDB). While Apache IoTDB offers greatly improved

database performance, their edge-to-cloud demonstration applies only to a relatively narrow

use case which assumes the presence of an edge device running a database instance. We

believe this use case can be generalized to broaden usability while retaining some baseline

standard of back-end database performance.

Pelkonen, et al. approach the database problem from the perspective of query perfor-

mance. They propose a new time series database, Gorilla, which operates on primarily

in-memory storage and improves upon existing databases by exploiting the extra speed af-

forded by avoiding disk interactions [8]. Gorilla essentially acts as a “write-through” cache,

holding twenty-six hours worth of data in memory and sending the rest to HBase for long

term storage. As a purely back-end technology, Gorilla does little to solve the issues we see

with time series data before the database is even reached, such as various data formatting

problems. We believe a more well-rounded approach including components outside of the

database is necessary to create a system which more appropriately balances the concerns of

usability and back-end performance.

Rhea, et al. highlight Cisco Meraki’s usage of the LittleTable relational time series

database since 2008. LittleTable is highly performant, storage efficient, distributable, and
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fault tolerant [10]. However, in their presentation of the LittleTable system, there is no

mention of a metadata management system. This missing feature makes the organization

of data stored in the system of critical importance. Although this organization is possible

internally at Cisco, it is unlikely that such organization would persist in a similar system

which was open to the public.

Meehan, et al. recognize the challenges of scaling IoT-connected database systems us-

ing existing architecture which follows the “extract, transform, and load” data ingestion

model [6]. They claim this model is cumbersome and tends towards implementations which

are slow and will ultimately be unable to cope with the rapidly growing IoT. Meehan, et

al. propose a new ingestion model which uses an in-data-stream architecture to apply the

necessary transformations and cleaning to incoming data as it arrives. This stream-based

architecture bears some resemblance to the platform architecture we develop later in Chap-

ter 5, however does not make any attempt to improve the usability aspects beyond that of

existing tools.

Continuing with an exploration of the time series data ingestion process, Arman, et al.

propose automated mechanisms for data ingestion and regularization [2]. While this work

provides ample improvement over prior art in terms of usability by making data ingestion

easier, it does not address the back-end efficiency associated with their mechanisms or address

database concerns. Additionally, the scalability of their technique is not fully explained.
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Chapter Three

Current Technology

Before taking our own approach, we looked at several existing solutions to the problem of

collecting, storing, and managing time series data. In this chapter we will outline two such

solutions and discuss their basic architectures, benefits, drawbacks, as well as share any

special insights learned from our time working with them.

3.1 Amazon Timestream

Timestream is Amazon’s solution to the problem of storing and retrieving time series data [1].

They leverage their existing cloud infrastructure to create a cloud-based database service op-

timized specifically for data organized by timestamps, then add additional layers for data

ingestion and querying [17]. The resulting three-layer system is efficient and performant,

however, as we will demonstrate, it makes many of the mistakes we described earlier, in-

cluding a lack of consideration regarding how it interfaces with users, manual configuration

ahead of data ingestion, and high costs when ingesting small data packets.

Timestream’s architecture, shown in Figure 3.1, is fairly straightforward. The top layer

of the system, the data ingestion layer, allows users to send data to the system by invoking

certain methods from the AWS SDK. After it has been uploaded to the system, the data is

processed and prepared to be placed into the storage layer, where Timestream is really able to
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Figure 3.1 An overview of the Timestream platform architecture, highlighting its
three-layer design [17].

shine. In this storage layer, Amazon makes use of several interesting storage mechanisms to

improve query speed and storage costs. Their insight is to automatically move data between

the more expensive solid state, or in-memory, storage and cheaper magnetic storage based

on the likelihood of that data being queried for. Using the assumption that more recent data

is more likely to be queried for and, therefore, should have less query latency, Timestream

records the most recent data points in higher-speed, more costly solid state storage. After

a period of time has passed, the older data is asynchronously transferred to less expensive,

slower magnetic storage and deleted from the solid state storage pool. Despite this ongoing

manipulation of the storage location, the system’s user-interface (ingest and query APIs)

present a unified front that hides this optimization from the user.

Timestream offers some additional benefits, but a quick overview of their storage-layer

terminology is required to fully appreciate them. Similarly to the system we propose below

in Chapter 4, Timestream operates on a model for how Amazon envisions time series data.

In this model, the system’s storage layer contains one or more databases. Each database

contains at least one table, and each table is host to sets of related time series data. For

instance, one table could contain weather-related data sets like temperature, humidity, and
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air quality, while a second table contains hardware usage data sets, like CPU and memory

usage, hardware temperatures, and so forth. Since a database isolates groups of tables, it

could be used to represent a collection of tables from a single project, person, or organization.

A set of time series data in Timestream is composed of a collection of records, which can

be thought of as rows in a SQL database. Each record contains a timestamp and at least

one measurement or value. On a per-record basis, additional metadata can be provided to

describe how the measurement was collected or other relevant information concerning that

record. These metadata key/value pairs are referred to as dimensions, where each dimension

has a name and value [18]. For instance, a set of data points measuring temperature over

time in a building could have a dimension called “location” and a value corresponding to

where the data was collected, such as “office”. Using this storage-layer terminology, we can

discuss some additional benefits of using Timestream. Firstly, Amazon’s system supports

multi-measure records, allowing for a single row to contain multiple measurements. As an

example, a server computer could report CPU, memory, and network usage simultaneously

and Timestream can record them all in the same record, reducing the space required to

store the measurements. Second, the system supports unlimited dimensions and dimension

values, a feature that is not universally true of time series data management platforms and

will appear again in our discussion of Optix.earth, below.

Despite these benefits, Timestream does fall short of an ideal time series data management

system. First, it is not friendly towards small write requests. Since the service is billed based

on the number and size of writes, one might initially think that a reasonable number of very

small writes would be economical. However, since the minimum billed write size is 1KB,

smaller write requests end up being financially wasteful. Amazon recommends users of their

service add a batching layer which collects write requests and dumps them into Timestream

in larger, bulk requests [19]. This batching layer creates a number of issues, such as having to

build out an entire fourth layer of infrastructure with an efficient and reliable implementation.

Furthermore, Timestream has the same issues as many other existing platforms when it comes
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to supporting multiple tenants, users who don’t want to deal with setting up the AWS SDK,

and users who need to deploy many devices and lack the time to repeat the configuration

steps for each device. A final point of issue with the system is that it fails to provide read

consistency across the database. Specifically, certain write requests can take up to six hours

to fully process, depending on where Timestream decides to record them (in solid state or

magnetic storage). Batches of write requests which are followed immediately by queries are

by no means guaranteed to be reflected in the results of those queries. As proposed, our

platform implementation is more cost effective for small database writes without the need

for additional infrastructure, supports an unlimited number of simultaneous tenants with no

concerns of users depositing data into the shared storage locations, avoids the long-duration

delays between sending in a write request and the measurement appearing in the database,

and maintains scalability in the process.

3.2 Optix.earth

Data Sources

Ingest Engine

OR

Transform Lambda

Apache NiFiOpenTSDB

Metadata DB API

Users

RDS

HBase, S3

Figure 3.2 A simplified architecture diagram of the Optix.time system when de-
ployed in AWS. Certain details not relevant to our discussion are excluded.
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Optix.earth (Optix) is an end-to-end, closed-source time series data storage and querying

solution offered by General Atomics Commonwealth Computer Research, Inc. (CCRi) via

a premium subscription [3]. Optix’s technology stack, depicted in Figure 3.2, includes a

Java ingest engine, fully customizable data transformation modules, automatically scalable

storage via HBase, and utilizes the open-source program OpenTSDB as the underlying data

storage mechanism. Optix was, at the outset of our work, intended as a replacement for

our lab’s existing time series ingestion and storage pipeline due to a number of benefits it

appeared to have. After a deep exploration of the Optix system, we determined that it and

our time series database needs were not compatible. We also see room for improvement with

regards to supporting more general purpose use.

As a stand-alone product, Optix’s arguably best feature is that it completely abstracts

the database from the rest of the system. Instead of thinking about storing information in

database terms, the system offers a storage API consisting of data submission and retrieval

endpoints and enables users to think about their data in simpler terms. On the data ingestion

side, Optix offers a highly customizable and flexible ingest pipeline consisting of a Java

ingest engine and optional support for user-written Amazon Lambda functions to be used

as data transformers. These custom transformation functions make it incredibly easy to get

new devices sending data into the system and allow the user to edit their transformation

functions at any time in response to changing circumstances. Unfortunately, though, these

benefits come at the expense of scalability and user experience.

Optix’s Java ingest engine offers excellent ingest performance when using data transfor-

mation functions written in Java and compiled at run-time (somewhere in the millions of

data points per second, according to CCRi). However, these compiled transformation func-

tions require manual recompilation when modified. This is fine if there are not many users

or transformation functions, but as the system scales up, it becomes a problem for those

administering the system because this process is difficult to automate effectively and safely.

Considering the issues with this recompilation step, Optix users tend towards using Lambda
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functions as their method-of-choice for implementing data transformation logic. During our

time using the system, we essentially used Lambda functions as the exclusive method of

data transformation because of their simplicity and the ability to modify them on-the-fly.

After extensive and comprehensive experimentation with Optix, including getting devices

to stream data to the system, building a web front-end on top of their API, etc, we began

to encounter significant problems as we tried to scale up the system. With a higher ingest

rate (around twenty data points per second instead of one or two), Optix began to exhibit

ingest lag. Similarly to the phenomenon we described when discussing Timestream, data

points did not land in the Optix database until hours after they had been uploaded. We

later discovered through working with CCRi that this issue is due to latency originating from

the invocation of Lambda functions in AWS, making this feature of the Java ingest engine

essentially useless beyond data sources with very low input rates. With the only option now

being to write the data transformation functions in Java, it became clear Optix requires

additional layers of infrastructure in order to broaden its usability.

These additional layers are where Optix begins to exhibit some of the same flaws as

many other platforms. In an effort to appeal to users by offering an ingest pipeline that

is easy to set up and customize, Optix lost significantly on performance. In doing so, the

system falls victim to the database-performance-versus-system-usability trade-off. However,

even if this system was able to solve the ingest performance problem with Lambda functions

by switching to purely Java-based transformation functions, it makes the same mistakes

as Timestream did by failing to support basic requirements that many platforms will en-

counter, like supporting multiple tenants while avoiding the mixing of data. Also, without

the addition of supplemental infrastructure layers, Optix violates the database decoupling

and zero-configuration data-ingest principles we will discuss in the next chapter.

In spite of the many issues we discovered while exploring the Optix system, we believe it

helps demonstrate the importance of our proposed design methodology. Instead of focusing

primarily or exclusively on database or user interaction concerns, designers of time series data
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management systems need to consider each and ensure their platform effectively compromises

when there are differing goals or is able to build bridges to ensure both sides get what they

need, like when users would like to submit many data formats but the database can only

understand one format. It also validates our decoupled database principle, described below,

because a system which inherits flaws from its underlying database is, itself, a flawed system.

Optix shows us that an ideal platform will not expose database nuances, like the inability

to store unlimited metadata values, to its users.
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Chapter Four

Conceptual Framework

In this chapter, we will discuss the key insights and fundamental principles used to shape the

design of the SIF platform. These include the creation of an abstract model for time series

data sets, the decoupling of this model from any specific underlying database technology,

system-wide scalability, and zero-configuration data ingesting. For each principle, we will

explain precisely what it means in the context of time series data and why we believe it is

of critical importance.

4.1 A new time series data model

To create a system that effectively and efficiently handles time series data, we need to

define what exactly this type of data is, what it looks like, and how it can be characterized.

Consequently, the first and foremost design principle we considered was the creation of an

abstract time series data model. Our model consists of two parts: vocabulary describing the

components of time series data and a standardized data format to describe the individual

data points of a series.
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4.1.1 Model vocabulary

To aid with the definition and explanation of our model’s vocabulary, we will reference a

simple scenario where a researcher has deployed four sensors: two in a kitchen and two in

an office. In each room, one of the sensors measures temperature, while the other measures

humidity. Each room has four walls labeled according to the cardinal directions and a sensor

can be affixed to exactly one of these walls. Additionally, the sensors are mounted at some

height above the ground. In this example, although the units of measure for temperature,

humidity, and height above the ground are not relevant, we will occasionally reference SI

units.

The first term to consider is “metric”. A metric is a thing that is being measured; for

instance, in the example above, temperature and humidity are metrics because they are

things being measured over time. A “measurement” is the value of a metric at a particular

point in time. A measurement in our example could be 36.4°C for the metric “temperature”.

Unlike some other time series data systems, this model does not explicitly create support

for the “multi-measure records” mentioned during our exploration of Amazon’s Timestream

service. For example, our model would not directly support a metric whose value is a two-

dimensional vector, because this vector contains two values, or measurements. Additionally,

our model does not envision the measurement as a string, but rather a numeric value. The

simplest case we can use to illustrate this is the case of a GPS reporting its latitude and

longitude over time. These two values are sometimes recorded as a unified string, like

“31°52′38.3628′′N 104°51′ 29.106′′W”. While our model does not provide outright support for

this kind of time series, it does, however, offer the ability to record multiple measurements

using our metadata feature, explained below and explored further in subsequent sections.

Our metadata feature also allows for the recording of string data without further modification

to this model, although using metadata for these purposes introduces some implementation

complexities later on.
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With this definition of a metric, the most basic time series example would be a series

of measurements for a single metric over time. However, some data streams may contain

multiple metrics but still be related to one another. For instance, in our example, the devices

in the kitchen may produce different metrics (temperature vs. humidity), but they are clearly

related regarding their general deployment location (in the kitchen). We believe it is natural

in many scenarios to have multiple metrics which should be grouped together due to the

relation of what they are measuring or even simply for organizational purposes. We call

such a grouping of metrics an application, or “app” for short. Although the official definition

we provide users with in our “Getting Started” guide states that an app is a collection of

related data series, the definition of “related” is up for interpretation and can be defined by

users to represent whatever is convenient for them and their situation.

Lastly, we need to define “metadata”. Metadata refers to any additional information

belonging to a measurement other than the metric name and the actual measurement value.

In our example, metadata could include a label stating which wall the measurement was

collected from, such as “south” for measurements collected by sensors located on the South

wall, and a value, such as 54 cm, which describes how far off the ground the collecting sensor

is mounted. Metadata in this model can be recorded on a per-measurement basis and there

is no limit on the number of different metadata values which can be recorded, unlike some

existing time series data solutions. Metadata is defined through a key/value structure, so in

our running example, each data point would have a metric, like temperature, a value, like

36.4, and two metadata keys: location and height. Our model requires all measurements in a

single app to have the same metadata keys; this is somewhat restrictive, but is the result of a

compromise made to ease the process of ensuring that user queries for data can be answered

quickly and that the data can be stored efficiently. We will explore some of the specifics of

metadata in later sections.
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1 {
2 "token": "abcdefghijk123",
3 "app_name" : "office",
4 "data" : "ewogICAgInRpbWUiOiAxNjQyMzgyMTEzLjkyNCwKICAgICJtZXR..."
5 }

Listing 1 A sample SIF packet.

4.1.2 Model data format

In addition to the definitions we provided above, we found it necessary to create a generic

data format that is suitable for describing time series data sets in order to actually implement

our model. This format contains three sections: an authentication token, an app name, and

a data blob. Collectively, these three pieces of information constitute what we refer to as

a “SIF packet”, shown in Listing 1, because the packet contains all the details necessary to

prepare data for ingestion into the SIF platform.

The purpose of the authentication token in our model format is twofold. First, the

token identifies the data’s owner at the moment when it arrives in the system. One of our

system’s goals is to improve overall usability and user experience, so it follows that users

should not have to worry about how their data might interact with data other users are

ingesting simultaneously. Thus, the authentication token allows us to separate data as it

arrives according to its owner. Additionally, this token should also provide a layer of data

integrity; a proper authentication token should not be forgeable, therefore it should remove

the ability of malicious actors to insert arbitrary data on the behalf of legitimate users and

poison their data sets. This token is included in our model based on the assumption that

multiple users will want to use the system at the same time, an assumption which stems

from the observation of our current time series data management system that accepts data

input from a number of sources owned by varying parties. In this current system, steps have

to be taken to ensure data does not mix across different users and/or sensors; here the token

stands to improve things by making it possible for anyone to send in data without needing
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to consider global uniqueness in any way.

In the model’s data format, the app name is used to identify the application the incoming

data should be associated with. When describing the vocabulary, we discussed how an

application represents a user-defined grouping of metrics. Now, we see how the data format

allows for an application to be explicitly defined for new data. Current systems also have

some manual element of defining where data should be stored, such as a table name or similar

database-specific location, so we do not believe continuing to require this information in the

form of an app name as part of our new data format impacts user experience or the greater

usability or scalability of the model.

The final portion of the model data format is a data blob. We call this segment a blob

because we don’t want to over-define what data should look like, since different sensors,

devices, or other data sources may provide their information in different shapes, encodings,

and according to other styles. Thus, in order to protect the user experience, our model does

not constrain what user data should look like beyond the app name and token components.

Accordingly, the data blob is restricted only to data which a program is able to decode into

something representable using the set of vocabulary we previously outlined (i.e. it must

be possible to transform the raw data into a time series expressable using the terminology

established in Section 4.1.1). In the sample packet presented in Listing 1, we provide a partial

Base64 string as data purely for concise demonstration purposes, not because Base64 strings

are of special significance. Lastly, although we do not think it is necessary to define any

specific data format that all users must adhere to, later we define a “standard” format which

our implementation uses to ensure all components are speaking the same data language.

4.2 Decoupling from a database

The second fundamental design principle we considered is the ability for a time series data

system to be decoupled from any specific database technology. In theory, it should not matter

19



how the data is stored; whether data goes to InfluxDB, a SQL server, an Excel spreadsheet,

or something else, the system should operate in a way which allows for flexibility in the

storage location. A potential criticism of this design principle is that one might wonder how

often it would be necessary to change the underlying database once one has been selected.

Although a database change may initially seem like a scenario which is rather unlikely to

occur, we will demonstrate the value of this flexibility later on when discussing several key

aspects of our implementation. Speaking more generally, the benefit of decoupling a time

series data system from any one database technology allows the maintainers of that system

to continually migrate towards databases which better support time series data. “Better

support” could entail more effective data compression, speedier queries for time-sorted data,

or any number of desirable traits. The decoupling we have outlined here allows the system

designer to make their own choices about what underlying database is best for their scenario.

While existing systems are inseparable from their respective databases, our model aims

to exploit the benefits of varying database technology to produce a modifiable and agile

system model. For instance, with existing systems, any fundamental issue with the database

technology produces an impasse; if, for some reason, the database is not suitable for the

needs of a particular use case, the entire system must be avoided in order to skip over

the problem. A real-world example of such a shortfall is with the open source time series

database software OpenTSDB. In OpenTSDB, individual measurements are permitted to

have variable metadata values. Since these metadata values are allowed to hold string data,

it may initially appear that a user could use a system based on OpenTSDB to record data

from a mobile temperature sensor and store the location of the sensor as metadata on the

temperature measurement. However, OpenTSDB imposes a limit on the number of unique

values an individual metadata field can take on, which means that after some period of

time of storing this data, more measurements will be refused unless their recorded latitude

and longitude have already been seen by the database. Although the limit on the number

of unique metadata values is large, applications like GPS devices recording latitude and
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longitude can reach it quickly given the improbability they frequently record the exact same

position. Simply put, tying oneself to a single database makes it easy to inherit any flaws of

that database, should they arise.

To briefly summarize the decoupling principle which guides our eventual implementation,

we believe an effective time series data management system should not work only with a

single database technology in order for the system to maintain long-term flexibility and

upgradability. If a database service is rendered unsuitable for the purposes of a given use

case, a system needs to be able to be shifted away to a new service without requiring a

rewrite of a substantial proportion of the underlying infrastructure.

4.3 System-wide scalability

If a time series data management system existed which was perfect in nearly every way

(blazing-fast queries, high data compression rates, supported any data format, etc), but did

not scale well or at all, it would be completely unusable in many scenarios. Put simply, our

third design principle is that the system must be scalable not merely in one or two aspects,

but in every possible aspect. Examples of scalability range from the obvious to the subtle.

For instance, one would expect the database component of a system to work regardless of

use case, including working with both sparse and dense data sets without issue. These more

obvious examples of scalability tend to revolve around user expectations of the system as

it grows and becomes busier, however additional, more subtle, elements of scalability exist

with regard to the effort a user must invest in order to get their data into the proposed

system. For instance, consider the scenario where a user has a single device he/she would

like to connect to the system. If the system requires two minutes of configuration on the

user-end of things in order to get data flowing in from that device, that user will probably be

satisfied. However, if some other user has a thousand devices that all need to be connected,

he/she will likely be frustrated by how the device setup operation did not scale well and
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requires him/her to invest over thirty-three hours of work to get the system configured for

his/her devices.

We value scalability and demand its presence in all parts of our final implementation in

order to avoid the scenarios described above. Ultimately the greatness of any system we

build for time series data is irrelevant if it cannot handle a growing workload, especially

considering the substantial growth in IoT many expect we will see in the coming years and

how that will cascade down and result in new types and greater quantities of data-collecting

sensors.

4.4 Zero-configuration data ingesting

The final major design principle which influenced our design process is somewhat related to

the scalability issue we discussed above: a user might experience poor scalability through

endless device configuration. While the configuration might be reasonable for between one

and ten devices, it could easily become tedious and bothersome for tens or hundreds. In

order to completely eliminate this phenomenon from the equation, we claim a desirable

property of a time series data management system should be able to support data ingestion

from a new device or data source with zero preconfiguration. For this purpose, we define

preconfiguration to be any device or data source registration, definition, or provisioning,

including, but not limited to, the manual creation of data buckets, tables, or other similar

storage primitives, requiring any additional user input beyond the complete SIF packet itself

in order for data to be successfully ingested, or any other pre-communication between the

system and the user, excluding the negotiation of an authentication token, if required. In

short, the user should only be required to send in data with a proper token in order for the

system to attempt to process it. If the provided data is acceptable, it should be ingested

and stored without requiring anything more from the user.

Having explained what we believe the premise of zero-configuration should include, we
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must also describe what it should not include. First, zero-configuration does not mean users

will have an issue-free experience when trying to configure their devices to stream data

into the system. If a user does not adhere to certain guidelines and expectations laid out

in the details of a specific implementation, such as an authentication token format or the

expected structure of the SIF packet, the system cannot be reasonably expected to figure

out the message’s owner and their original intent. In anticipation of users making data input

mistakes, the system is also not expected to always fix certain issues, like a user supplying

the string “100” instead of the number one hundred. The zero-configuration design principle

does not require this scenario to result in the system automatically converting “100” to one

hundred. For the sake of usability and maintaining a simple user experience, the system may

need to handle certain common issues when possible or make assumptions when an ambiguity

appears, however this does not preclude the right of a system to fail to process a piece of data

due to user error. In this vein, zero-configuration does not mean the system must always

recover from all errors and proceed with data ingestion. Data is allowed to be determined

invalid or un-ingestable. In order to make the user experience less frustrating compared to

existing systems, the system should collect all errors which are most likely occurring due to

user error and report them to the offending user. Some data ingest systems can irritate users

when their data fails to reach the database but are not given a reason why. Consequently,

zero-configuration will also imply that any new time series data management system includes

some form of a warning system which alerts users to mistakes in their packets.

In summary, zero-configuration means a user should be able to stream data into the

system without warning (i.e. no preconfiguration, registration, or definition) and errors,

should they occur, need to be reported in a user-friendly manner which enables them to

understand how and why the data failed to be ingested.
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Chapter Five

SIF Design

Using the design principles outlined in the previous chapter, we created the Smart Infrastruc-

ture Foundation, or SIF, as our implementation of a modern time series data management

service. SIF takes to heart the main ideas discussed above and combines them into a single

cohesive technology stack that can be used to demonstrate the benefits of creating a system

according to our new set of requirements. In this chapter, we will go over the product of our

efforts, describing each component of the SIF platform, including its intended purpose, how

it operates, how it satisfies the fundamental principles discussed in the previous chapter, as

well as any implementation-specific details or requirements that came up.

5.1 Architectural overview

We first provide a brief overview of the system as a whole. SIF is implemented through

six main pieces: the underlying database technology, the ingest component, the insertion

component, a user-accessible API, a general management website aimed to wrap the API with

a friendly visual interface, and data visualization tools. Properly ingested data lands in the

database after the ingest component receives data from a user, authenticates and formats it,

forwards it to the insertion component, and the insertion component generates and executes

database insertion instructions. After data is in the database, it can be managed, retrieved,
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Figure 5.1 An architectural overview of the SIF platform

and visualized using the API, website, or our provided visualization tools.

5.2 Underlying database technology

The selection of a particular underlying database was the cornerstone of the implementation.

We had to make sure our choice granted us enormous flexibility with respect to what we could

store without sacrificing significant performance or losing substantial amounts of storage

space. Taking into account the issues we saw with OpenTSDB and Optix.earth, we decided

to use PostgreSQL as the bottom-layer database service [9]. PostgreSQL offers us the ability

to store a practically unlimited number of unique metadata values for our measurements

and many millions of rows of such measurements while maintaining fast query times. It

also makes it easy to separate user apps by provisioning different tables. Different tables

solve the issue of inter-user data collision by using a table naming scheme which makes

it impossible for two users to insert data into the same table. In order to address the

storage space concern, we opted to make use of a third-party PostgreSQL extension called
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timestamp metric value location height
14 : 23 : 55 temperature 36.4 south 54
14 : 27 : 03 humidity 52.6 south 54
14 : 33 : 48 temperature 37.1 south 39
14 : 34 : 19 humidity 48.4 south 39

Table 5.1 An example of what raw data collected from the kitchen example might
look like before compression occurs.

TimescaleDB [16]. Timescale is an optional add-on for PostgreSQL which offers a number

of time series data-specific features. Notable features we make use of in this system include

native data compression, optimization of time-sorted data queries, and improved row filtering

performance when querying for rows with specific metadata values.

At a high level, Timescale’s compression feature works by taking rows of the same metric

which share metadata values and storing the timestamps and values as compressed lists

within a single row. If we recall the example from earlier where the researcher had sensors

in a kitchen and an office, their raw data might look something like Table 5.1.

Timescale compresses by operating on a number of segmenting columns, determined

automatically in our system by the ingest component. Unique combinations of these columns

define different rows in the compressed version of the table. The compression process squeezes

data into a single row, storing the values of segmented columns (e.g. metric label and

non-numeric metadata) only a single time. One implementation-specific detail is regarding

numeric metadata, such as the height in this particular example. Since numeric data is

stored as double precision values and only rows with equal values (e.g. rows with the location

“south”) are compacted together, using numeric columns as compression segments can result

in smaller compression efficiency when floating point rounding errors occur. As a result,

we follow Timescale’s recommendation to avoid using floating point values as compression

segments. Table 5.2 illustrates the behavior of segmented columns as opposed to regular

ones. In the table, metric and location are segmented columns, while the others are regular

timestamp and numeric columns.

By carefully creating an automated process for identifying segmenting columns, we also
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timestamp metric value location height
[14 : 23 : 55, temperature [36.4, south [54, 54]
14 : 33 : 48] 37.1]
[14 : 27 : 03, humidity [52.6, south [39, 39]
14 : 34 : 19] 48.4]

Table 5.2 A compressed version of Table 5.1. The ingest component automatically
configures TimescaleDB’s compression algorithm on a per-app basis.

improve our query speeds. A common request a user might have for the system is to re-

trieve all temperature data recorded from sensors on the south wall of the kitchen. In this

instance, PostgreSQL need only reference the table corresponding to the kitchen app; from

this compressed table, a single row, shown above, contains all temperature readings under

the desired circumstances. In order to answer the query, Timescale simply has to expand the

compressed lists in this row instead of searching through a much larger set of rows looking

for the desired metric and location values. While not all queries can be optimized this well,

most see some benefit from this architecture.

5.3 Ingest component

The ingest component is the only part of the data ingestion pipeline which can be accessed

by users. As mentioned previously, the ingest component, among other roles, serves three

primary purposes: authenticate data arriving in the system, standardize its format, and pass

it downstream to the insertion component. In our implementation, illustrated in Figure 5.2,

the ingest component receives messages via the MQTT protocol, a lightweight message

transmission service which operates on a publish/subscribe model [15]. In MQTT, clients

wishing to send data first connect to a broker, then publish data to a particular channel,

known as a topic. The ingest component hosts such a broker and creates a client of its own

which subscribes, or listens, to all available topics. For each message that arrives, the ingest

component spawns an asynchronous message handler to consume the received data.
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Figure 5.2 Internal design of the ingest component. Items above the dotted line
are external to the ingest component and are included for clarity.

1 {
2 "token": "abcdefghijk123",
3 "app_name" : "office",
4 "data" : {
5 "time": 1642382113.924,
6 "metadata": {
7 "location": "south"
8 },
9 "payload": {

10 "temperature": 28.3
11 }
12 }
13 }

Listing 2 Another sample SIF packet, this time using the standard SIF data blob
format.
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During this consumption process, the ingest component’s message handler takes several

steps. First, the handler decodes the incoming message. We decided to make all incoming

messages adhere to a standard format: a stringified JSON which contains the pieces of the SIF

packet, as we described earlier, in key/value pairs. We opted to outsource the creation and

management of authentication tokens to Amazon’s Cognito service, which generates JSON

web tokens, or JWTs. Our decision to use Cognito is done in order to make implementation

easier later on when adding authenticated API and website layers to the technology stack.

Using a Cognito library, the ingest component decodes and validates the incoming token. If

the token is valid, the associated username is extracted and classified as the owner of all data

contained within that same packet. Recall that in Section 4.1.2, we declared our model to be

data-format agnostic. While this is a great feature for our users, it adds a layer of complexity

to our system because we have to handle any arbitrary data format. We achieve this through

the use of data transformation functions defined on a per-topic basis. Using JavaScript, a

user can write a custom transformation function which translates whatever their data is

into a standardized format, explained below, and attach that script to a particular ingest

component topic. As an example, assume their custom transformation script is run on all

packets received on topic “ABC”. Then, when publishing data to the ingest component, the

data represented in the format expected by their transformation function can be published

to the “ABC” topic and the ingest component will automatically know how to transform the

data it is given. In our implementation, we use a hash map to map topics to transformation

functions.

Transformation functions are expected to do one of two things: output a chunk of data

formatted according to our implementation-specific data format or throw a transformation

error. Our standardized data format is a JSON object with three required keys and one

optional one. Required keys include payload, metadata, and time. Payload is an object

which contains arbitrarily many key/value pairings, where keys are metrics and values are

measurements for that particular metric. In Listing 2, we can see the payload field has
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a “temperature” key which maps to 28.3. This will eventually represent a temperature

measurement of 28.3. Metadata is also an object and contains key/value pairs according to

the various pieces of metadata which are valid for a given app. Whether or not metadata

is valid for a given app is determined through a process described below. Sticking with the

same example, we see the location of this measurement is the southern wall, denoted by

“south”. Finally, the time field represents the time at which the measurement was taken,

formatted according to Unix time (the number of seconds since January 1st, 1970 at 12AM

UTC). We elected to use Unix time for providing timestamps in order to avoid all the issues

associated with representing dates and times using strings (e.g. strict formatting rules, time

zones, and daylight savings). The final component of our standard data format is an optional

“device” field. When specified, the system will report errors it encounters and include the

offending device in its report. For users ingesting lots of data from many sources into a single

app, this can help narrow down where the issue is coming from.

Immediately after the data transformation step, the handler checks with our database to

see if the necessary table and schema have been created. For new user apps, there will be

no app table in the database yet, so in order for ingests to succeed, it must be created. In

order to abide by our zero-configuration principle, the ingest component must do this creation

automatically and dynamically. Using the username parsed out of the decoded authentication

token and the app name provided by the user, the ingest component is able to generate a

globally unique table name. Notably, this naming scheme makes it impossible for unwanted

data mixing to occur between multiple users’ data. In order to avoid unintended mixing

within data streams owned by the same user, that user must take steps to avoid reusing

an app name. In order to define the table schema for PostgreSQL and select segmenting

columns for the TimescaleDB extension, the ingest component also needs to figure out what

metadata is being supplied for the given app. To do this, the ingest component looks at

the metadata supplied in the first packet for a new app. Each metadata field is added to

the app table as an optional (null-able) column, and metadata keys mapping to non-numeric
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values are marked as segmenting columns. Recall that our implementation is able to support

string data, but that all measurements are expected to be numeric. To make this work, the

ingest component also looks in the payload field for any metrics which map to non-numeric

values and adds those to the app table as optional columns, but marks them as normal,

non-segmenting columns, optimizing the table for TimescaleDB’s data compression features

without requiring any configuration on the part of the user. Although this automatic process

does not always result in the ideal compression rate or table schema for a particular use case,

its automated nature and overall accuracy are a reasonable approximation thereof. After

creating the necessary database schema, the ingest component caches the app name for an

hour to reduce how often it queries the database for the app’s existence. It’s important to not

cache the app name forever, though, because users may opt to delete apps in the future and

recreate them with different schemas. In order to support this feature, the caching time must

be finite and not extremely long; this results in periodic checks by the ingest component which

verify whether an app still exists. It’s worth noting here that these database interactions on

the part of the ingest component do not necessarily violate the decoupled database principle

we discussed earlier. While the ingest component’s programming would change should the

underlying database technology be changed, the logic itself remains the same and requires

only a change of database-specific language. Since the ingest component would need only a

surface-level rewrite of its logic in order to be effective with a new back-end database service,

we believe it satisfies the principle of a decoupled database.

Another interesting feature supported by the ingest component is the polling of user-

defined custom data sources. We will use a device from The Things Network (TTN) as

an example of such a custom data source. Data from TTN devices can be published to

a MQTT broker hosted by TTN, allowing third party clients to connect, subscribe, and

receive data points as they are sent to TTN. Every five minutes, the ingest component

asynchronously checks a list of user-defined data sources to see if any new sources have been

added which it needs to create listeners for. In the case of a TTN MQTT data source,
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the ingest component will automatically instantiate a listener using the source information

supplied by the user (host, port, username, password, etc) and connect it. For messages

received through the custom source, the ingest component assumes all data therein belongs

to the user who registered the source. It automatically parses out information such as app

name, timestamp, and device name, if they are provided. If any of these are unavailable,

generic defaults are supplied in their place (e.g. “source1” for app name, now for timestamp,

empty string for device). Data supplied through custom sources is expected to already

be in our implementation-specific data format since it is more complicated to specify an

ingest transformation in the case of a custom source and that TTN (and other similar

source providers) offer built-in transformation functions that can be used to properly format

outgoing data. As custom source data streams into the ingest component, it is able to skip

the authentication and transformation steps since the source is already associated with a

user on our platform and properly formatted. All that needs to be done is to check the

database to ensure the required schema exists and forward the parsed packet to the insertion

component.

If the ingest component encounters an error of any kind during data transformation,

automatic schema creation, or anywhere else in its ingest process, it will try to log that error

to the system with as much detail as possible, including the user, app name, and device the

data is associated with. Unfortunately, in order to associate errors with a user, they must

occur after token verification. Therefore, the only class of error the ingest component is

unable to report are token verification failures, since there is no way to attribute the error

to a particular user if the identity of the packet’s sender cannot be proven. Other errors

which are not reported to users are those which were not caused by them. Examples include

database connection failures, network problems, or bugs in the system. Prior to logging an

error, the ingest component checks to make sure the error it encountered is one a user can

actually cause; if not, it hides the error from the user and instead reports it to the debugging

console for an administrator to examine later.
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5.4 Insertion component

After the ingest component has fulfilled its role, we have made reference to how it forwards

the processed packets to the insertion component. In our implementation, the insertion

component hosts a second MQTT broker that is accessible only by itself and the ingest

component. Processed data packets are published to the insertion component by the ingest

component as they are prepared and upon their arrival the insertion component begins trans-

lating them into database-specific insertion instructions. In our case, this means the insertion

component generates SQL insert commands based on the format of each formatted packet.

As we mentioned in the previous section during our discussion of the ingest component, this

does not violate our decoupled database principle because the insertion component’s logic

works with any database service. It just needs to be told how to convert our standardized

messages into database inserts, and such a translation places no reliance on a particular

database technology.

In our implementation of the SIF platform, the insertion component attaches a listener

to its MQTT broker and instantiates handlers whenever a message is received. Recall that

the ingest component provides the name of the app table which each message needs to have

its data inserted into. Using this information, the insertion component needs only to convert

the time, metadata, and payload fields into insertion commands. Each key provided in the

payload object corresponds to a single row which is inserted into our database; for each of

these keys, the insertion component knows the timestamp, metric, and value. To complete

each row, the metadata object is inspected and additional column values are added based

on its contents. Here, we see how metadata supplied in the metadata object is applied to

every metric provided in the payload object and why if a user wanted to record temperature

and humidity measurement where one was tagged with the location “south” and the other

“north”, these measurements could not be placed in the same payload object in the same

packet. The decision to optimize towards shared metadata is based on the assumption that
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most data residing in a shared data packet probably shares its metadata with its neighboring

measurements. For instance, if a single sensor collected five different values, each value would

be tagged with the same location.

With the metadata added to each row, it can simply be inserted as expected. There is,

however, one special case which must be handled. We mentioned earlier that string data

is supported, but adding this support resulted in some implementation oddities. The main

point of interest regarding these oddities is located here in the insertion component. The

task it performs is as simple as described above when only numeric data is provided. When

string data is provided in the payload object, the insertion component recognizes this and

modifies the insertion command to take into account the fact that non-numeric data cannot

be provided as the value in app tables in our database. It sets the metric name in the same

way as before (based on the provided key in the payload), but assigns a dummy value of zero.

It then adds a metadata column to the insertion command, if it was not already provided,

with the same name as the metric and sets the value of this column to the provided string

value. Since the string data is implemented in our database as a special metadata value, the

insertion component makes a special exception to the “shared metadata” rule to ensure that

only a single row is actually given the string value that was sent in.

Similar to the ingest component, the insertion component listens closely for certain errors

and reports them back to users when they are relevant. Most of the issues the insertion

component encounters are related to database errors like unexpected data types or data which

did not quite match the schema of the table it was intended for. These and similar errors are

identified and reported with a user-friendly variant of the error. Instead of reporting an error

like “error at pgctl.c 78: unknown column ‘location’ ”, the insertion component identifies the

meaning of this error in the context of the SIF cloud platform and would instead report

“invalid metadata”. According to the error chart shown in Table 5.3, a user can quickly

discover the general source of the problem. This table contains not merely a sample of

possible error codes the system can generate, but actually a comprehensive list. Although
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Error Meaning

invalid app
An app with the specified name was not found. This means the

system was unable to automatically create this app for you. Make
sure you’re providing valid messages.

invalid metadata

Metadata keys were provided that did not match the expected
metadata schema for the specified app. Double check the metadata
you are sending and revisit the metadata discussion above to make
sure you’re doing the right thing.

unexpected string A string was provided as a metric value or as a metadata value
(expected number) for a metadata column whose data type is a number.
unexpected Boolean A Boolean was provided as a metric value.(expected number)
unexpected object An object was provided as a metric value or a metadata value,
(expected primitive) but these values should only ever be numbers or strings.

unsafe app name App names should only contain alphanumeric characters and
underscores. This error occurs if other characters are included.

invalid blob Data blobs you send to the ingest component should contain data
and app_name keys. If either is missing, this error will be triggered.

Table 5.3 The definitive list of errors that can be reported by the ingest and
insertion components and their respective meanings.

too few error codes would certainly be a net negative (since it would be harder to narrow

down the problem), each error in the error list allows a user trying to debug issues to narrow

down the location of the issue to a fairly specific part of the messages they are sending.

5.5 API

The ingest and insertion components cover the details of how users of the SIF platform can

get data into the system. Although important, getting data into the cloud is really only

half of what is necessary for a data management platform. In addition to storing their data,

users need to be able to view and export it, as well as have other helpful options such as

listing their apps or counting the number of data points in a particular time range. We

meet this requirement by building and making available to our users a REST API. Below

we will explain the functions of the API and how it adheres to the fundamental principles

we outlined in Chapter 4.

Our API offers a small but effective number of endpoints to access user data, allowing
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users to: list the apps registered to their account, get the schema for an app which he/she

owns, download data from a particular owned app for a given time range that match a given

set of metadata key/value pairs, download only a single metric (e.g. temperature) from a

particular owned app for a given time range that match a given set of metadata key/value

pairs, get a list of all metrics in a given app which he/she owns, and delete any owned

apps. A full API reference can be found on special documentation endpoints, linked in the

references below [11, 12]. As hinted at by the continued references to app ownership, all API

requests are authenticated using the same token scheme that we described when discussing

the ingest component in Section 5.3. Using this token, the API automatically determines

the user initiating the request and is able to run their queries only against apps which they

own. Aside from ownership and authentication, the main component which one may believe

to be missing from the API is the ability to filter downloads beyond that of a metric name.

Although it is true that downloads do not offer any fine-grain filtering functions beyond

metric names and basic metadata matching, we make the assumption that users will be able

to use our visualization service to make such specific queries, while downloads are intended

to be more of a bulk data extraction feature. Another point of note regarding the API’s

download feature is the use of a streamed response for all downloads. Notable benefits of

this approach, this reduces the amount of memory the server hosting the API request must

have and provides users with the ability to see the data arrive as it is extracted. However,

these positives come at the cost of an increased number of SQL queries made to our database

and a degradation of query speed as a download progresses through a time range containing

many data points (somewhere on the order of 106.8 measurements in a single time range).

Since most use cases will either be where a much smaller number of data points are being

downloaded or where large downloads are not expected to finish quickly, and that downloads

larger than 1GB could crash the server hosting the request, we believe the streamed response

to be an overall positive.

Regardless of its features, the API must align with the design principles we outlined
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Figure 5.3 After a user has logged into the SIF website, they are greeted with a
landing page which provides a list of their current apps.

earlier. Although the API cannot necessarily decouple itself from the database due to its

role as a data-extractor, it was written in such a way which requires only the changing of

database connection parameters and queries to work with a new data source. On the topic of

scalability, most of the API endpoints operate within Amazon’s API Gateway, a server-less

API architecture which permits massive scaling by instantiating additional request handlers

on-demand. As of writing, it is not possible to use a streamed response with Lambda

functions in the API Gateway, so the download endpoints are hosted on a separate EC2

instance placed under an application load balancer. The load balancer allows the download

endpoints to scale up, if necessary, by replicating the EC2 container and attaching it to the

load balancer as an alternative request handler.
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5.6 Website

The API is a great feature available to users with knowledge of how to use such a service,

but for users interested solely in basic data management and visualization, we also created

a website which wraps the API with simple features like showing a list of apps, initiating

data downloads from certain apps across a given time range, registering custom data sources,

viewing the user’s error log, and more. The website is hosted in the same scalable fashion

as the download endpoints of the API, providing for easy scaling if many users need to visit

the website simultaneously. A link to visit the website is provided in the references section

below [13].

Upon visiting the website, users must first login through Amazon’s Cognito service in

order to generate a token to use for authenticating future requests to the API. Once logged

in, the user is greeted with a list of their apps, shown in Figure 5.3. For each app, the schema

and metric list can be dynamically loaded, data can be downloaded from the specified time

range, and the app itself can be deleted. Using a navigation bar, users can access the custom

data source registration panel and input the details necessary to get data from a TTN

application into the SIF platform without programming anything. Finally, users can view a

list of errors the ingest and insertion components have encountered which were attributable

to them.

5.7 Data visualization tools

Although time series data can be easy to discuss, we find that it is often the case that a visu-

alization of what is being discussed conveys the ideas at hand much faster and more reliably

than pure text or speech. Accordingly, we elected to make Grafana, an industry standard

data visualization tool, available to our users. Getting new users set up with Grafana re-

quires minutes and, once their account is ready, they can immediately start viewing data
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being ingested in real time without needing to configure any database connections. Those

familiar with Grafana may be aware of the process required to add a new data source and

how it can be tedious if all the database connection details are not readily available. In

order to protect the security of our database, we keep these details private and simply make

a shared data source available to all our Grafana users. This shared connection is limited to

viewing data, so it’s impossible to accidentally harm the integrity of any stored data while

trying to make visualizations.

One drawback of our shared connection approach is the inability to regulate access to

certain data in our database. Specifically, any Grafana user is able to view data contained in

any app table, even those which they do not own. This is the primary limitation of taking the

shared database approach, and can be mitigated using several mechanisms, one of which we

describe below. In our case, this is not a major problem because sensitive data is not being

stored and the purpose of our user authentication steps is primarily organizational and to

prevent unintentional data-mixing between users. If a different use case required more data

security in Grafana (i.e. users can only see their own apps), the user setup process would be

more complex because a shared connection could not be used. Instead, the ingest component

would need to generate and issue database access credentials (username and password) to

each user when they create their first app. These credentials would only be permitted to

view app tables owned by the user they were issued to. Then, in Grafana, that user would

need to input all of our database connection information (e.g. host, port, etc.) followed by

the database username and password generated by the ingest component. We determined

that this additional complexity was, in our case, not worth the benefit of increased data

security. In the case where such security is desired, the process we just described would be

our first path forwards.
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Chapter Six

Evaluation

After working on our implementation of the SIF platform, we evaluated it by having two

users with very different time series data sets try to ingest their data. The tests occurred

when our implementation was finished but open to revision based on user feedback. Through

these experiments we learned what worked, which features were most helpful, what stood to

be improved, and the things our test users did not enjoy so much. In this chapter we cover

these topics and how the system has evolved as a result of input from our testing audience.

6.1 Dense and historical data

Our first test aimed to demonstrate the system was actually usable by someone without

insider knowledge of what was going on, could easily and seamlessly handle prerecorded

data, and that our data output services (our connection to Grafana and the user API)

successfully managed to deal with very dense data sets.

With respect to usability, the SIF platform proved very capable. With the appropriate

documentation, our first test user was able to easily modify a sample data ingestion script we

provide in a “Getting Started” guide and get his data flowing towards the ingest component.

We include a copy of the “Getting Started” guide, also known as the “SIF User’s Handbook”,

in Appendix A. We observed the ingest component to ensure it created the database schema
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we expected based on the data that was being sent in. Our automated mechanisms for de-

tecting and building the appropriate table schema, selecting columns to use as compression

segments, and transforming data into our standard intermediate format all worked as ex-

pected. Recall from Section 3.1 where we explored how Amazon’s Timestream service had,

at times, long delays associated with the ingestion of past data due to the in-memory versus

magnetic storage decisions being made in the background. SIF demonstrated the ability to

ingest past data points with no delays, even in the event data needs to be inserted into a

region of a table that Timescale has already compressed.

6.2 Real-time, diverse, and metadata-rich data

In the second testing scenario, we wanted to demonstrate the system’s ability to handle

real-time collection of data that is currently being processed and stored by our lab’s existing

time series data management system. Unlike the first test, the data collected by our lab

has lots of associated metadata and packets with highly variable schemas, providing a more

rigorous set of tests on the ingest and insertion components’ abilities to handle dynamic

environments. The ingest component continued to validate the automated mechanisms that

determine compression segments and table schemas. Meanwhile the insertion component

proved its database query translations could handle many permutations of our standard

data format. As in the first case, the process of getting the data flowing into our system

was relatively smooth, although this phase illuminated some problems that needed to be

addressed. At the time of testing, the SIF platform lacked the ability to report errors to

users, which resulted in some token and data formatting problems. These issues inspired

us to find a solution to the problem of error reporting and develop the scheme described in

Section 5.3.
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6.3 A custom data source

To test the custom data source feature, we used a LoRaWAN GPS device and routed its

data through the Things Network (TTN). A custom transforming function on TTN was used

to translate data posted by the device into the format expected by the SIF platform from

custom sources. Using the website, we created a custom source to link our TTN app to a SIF

app; after that, the ingest component automatically started polling TTN’s MQTT broker

for GPS data and routed it to the rest of our ingestion pipeline. One issue we encountered

during this process was the delay associated with adding or deleting a custom source from

an account. When a new source is added, it can take up to five minutes for the ingest

component to realize, since it checks the list on a set interval. Similarly, a deleted source

can take up to five minutes to actually stop ingesting data, despite it being removed from

the database immediately.

6.4 A survey of the system in the context of our goals

The final point of evaluation is to have a brief discussion around the system’s overall perfor-

mance, how well the model performed in helping us guide the implementation, and if there

are any improvements which could be made to our design model moving forwards. Across

all tests, we ingested around six-hundred million data points. Before the compression agent

ran, this data consumed over fifty gigabytes due to the unnecessary repetition of metric

names and static metadata items. However, after the Timescale compression agent ran, this

consumed less than three gigabytes on disk, implying less than five bytes of storage per

data point and over a ninety-five percent reduction in storage consumption. One limitation

we discovered in this regard was the periodic nature of the Timescale compression agent.

The agent runs on a set interval (for SIF, this interval is seven days) and compresses data

points which have been added since the previous execution. As a result, the disk where the
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database is located must be large enough to contain one interval worth of uncompressed

data. For some applications, like ours, this could be significantly larger than the amount

of space required to store the compressed versions. Regardless of this limitation, though,

this result proved our automated methods of detecting data schema and configuring the

compression agent accordingly are generally effective at reducing the space required to store

data without asking the user to set up anything. In a more general sense, other system

components like the API, visualization tools, and the website all performed well and proved

to be helpful tools in all of the testing scenarios we described above. Finally, the model was

crucial to guiding the overall development of the SIF platform. In particular, we found our

specification of a standard data format and the need for zero-configuration ingestion to be of

special importance in identifying where our system should begin (start with standardization

of data) and what it needs to do (figure out how to store what it is sent).
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Chapter Seven

Future work

There are at least three immediate avenues for future improvement of the SIF platform. The

first of these improvements, metadata malleability, makes the system more closely aligned

with the zero-configuration design principle we outlined in Section 4.4.

7.1 Metadata malleability

When the ingest component generates a new app table, it uses the first data packet’s schema

to dictate that of the entire app table. This is sufficient in most use cases, however we

recognize that the dynamic and automatic addition of new metadata columns at arbitrary

points in time would be a helpful feature for some users. Such a feature raises certain

questions; for example, what is the best way to backfill the new column for existing data

points (e.g. use null, specify a default, or a more complex mechanism)? Further research and

experimentation is necessary to determine whether Timescale can be instructed to handle

such table alterations efficiently – or at all – particularly when such alterations occur on

compressed tables. In order to adhere to our decoupled database principle, any issues with

Timescale in this regard would need to be resolved without impacting users.
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7.2 Security improvements

As it stands, the SIF platform is great for demonstrating many of the features we would

like to see in more time series data management systems, however it is not necessarily ready

for a production-level deployment. In particular, there are at least two security-related

improvements which could be made in the future. First and foremost, we highlight our use

of the MQTT protocol. In practice, we would use MQTT over SSL to ensure security and

privacy of data while it is being transmitted to the ingest component. Since security was not

a major focal point of the SIF project, we did not use SSL with our MQTT brokers in order

to simplify the implementation. Second, access to our time series database could be more

strictly controlled. As it stands, users of the SIF Grafana can technically view data from

others’ applications since all of our Grafana accounts use a shared PostgreSQL user. This

is a consequence of using a shared connection. In practice, we suggest adding a feature that

allows SIF to automatically create database users that only have access to apps belonging

to a particular person and sharing those credentials with the corresponding SIF user via

the website. We did not pursue this in our sample implementation since it would require

each user to create a database connection, potentially involving the configuration of SSL

certificates, a process we decided was not necessary in our case.

7.3 MQTT broker software

The SIF platform makes use of the open source MQTT broker software “mosquitto” [7].

Throughout our tests and use of the system, the mosquitto broker proved perfectly capable

in all regards except one. In order to make scalability of the ingest and insertion components

easier, shared MQTT topics are highly desirable. Shared topics allow multiple clients to

subscribe to a single topic and have messages published to that topic spread evenly instead

of each client being issued a copy. This automated load balancing mechanism is perfect
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for our architecture since multiple copies of the ingest and insertion components’ processes

could be launched and they would all share the work evenly. Unfortunately, we discovered

mosquitto has not been updated to support shared topics, as it is a relatively new addition

to the MQTT protocol. In the meantime, we implemented a manual form of load balancing

where the ingest component splits its output messages across different “channels” on a topic.

For example, the topic “/data” with channels 0 and 1 becomes topics “/data/0” and “/data/1”.

Once support for shared topic subscriptions becomes more standard, we recommend moving

away from the manual balancing used in our implementation.
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Chapter Eight

Conclusion

At the outset of this paper, we described some of the issues which existing time series data

management platforms often face. In particular, they are usually designed with a preference

towards the underlying database or towards its target audience, and this design focus tends

to result in obvious shortfalls on the side not primarily considered. We aim to help alleviate

these problems by proposing a new design framework to guide the construction of time series

data management systems. Then, using this framework, we build an end-to-end time series

data management platform which aims to solve some of the issues users face when trying

to use such data storage services in practice. We evaluate the implementation with three

distinct time series data use cases, analyzing the parts of the system which succeeded and

those which stand to be improved. Finally, we offer some potential future directions based

on what we have learned throughout this process.

Based on our work and results, we believe time series databases as they currently exist are

capable of supporting new use cases, but often require the development of substantial sur-

rounding software infrastructure. These modifications often introduce new design trade-offs,

like balancing back-end performance and front-end usability, which do not have straight-

forward answers and can be time consuming issues to deal with. We believe our proposed

data model and design principles aid in the design of systems which seek to better balance

these concerns and that our sample implementation of a platform built using such principles
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demonstrates how an effective blend of performance and usability can benefit the system, its

administrators, and its users.
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APPENDIX



Appendix A

SIF User’s Handbook

Beginning on the next page, we include the SIF User’s Handbook, also known as the “Getting

Started” guide. This document was provided to our system testers in Chapter 6.
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SIF User’s Handbook
Written by G. Michael Fitzgerald II

Last edited April 27th, 2022

The comprehensive source for getting started with the SIF cloud platform



I. Creating a SIF account
Visit https://uvasif.org and select “Sign Up”. Create a username and password, and enter

your name and email into the form. You need not enter your full name; a first name, nickname,
or initials are all fine. You will need this username and password to access all portions of the SIF
platform later on.

Verify your account was created successfully by signing in. If successful, you will be
greeted with the screen shown below. You will use the same username and password here in
order for the website to generate an access token for the current session.

We understand logging in twice seems redundant. Here is a brief explanation of why: we
use an Amazon authenticator to control access to the website. When you sign in, the
authenticator provides the website with an access token, not an identity token. Our API requires
an identity token, so we are left to generate this on our own. In practice, this means the first login
grants you access to the website, and the second login dictates whose apps you see. This allows
you, the user, to switch between different “profiles” without having to globally log out each time.
It also allows us to make sure you don’t get signed out unexpectedly by refreshing the token
before it has a chance to expire.



After authorizing, you should be greeted by a screen informing you that you have no
apps. If you see this, you’re done with this step and should move on to step two. If anything else
happens, contact a system administrator.

II. Creating your first app
Apps are created automatically as data is sent into the system, so let’s get set up with

sending data. This example uses Javascript, but any language with MQTT and Cognito libraries
would work. Other SIF users have also had success with Python.

→ Step 1: Generate a Cognito identity token
In Javascript, we can use the amazon-cognito-identity-js package for this task. Here’s a

snippet of example code:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

const ACI = require("amazon-cognito-identity-js");
var idToken;

const authDetails = new ACI.AuthenticationDetails({
Username: YOUR_USERNAME,
Password: YOUR_PASSWORD

});
const cognitoUser = new ACI.CognitoUser({

Username: YOUR_USERNAME,
Pool: new ACI.CognitoUserPool({

UserPoolId: "us-east-1_yfAGwxbYW",
ClientId: "4bfuvavalple0k8k6lj4oln5ne"

})
});

async function refreshToken() {
cognitoUser.authenticateUser(

authDetails,
{

onSuccess: function(result) {
const token= result.getIdToken().getJwtToken();
console.log(

"[%d] refreshed token: %s", new
Date().getTime() / 1000,
JSON.stringify(token)

);
idToken = token;

},
onFailure: function(err) {

console.error(err);
}

}
);

}



→ Step 2: Generate (or collect) some data
Any data format is supportable by the SIF platform. It is just a matter of defining your

format and getting a system administrator to add a new transformation topic for you.
Alternatively, you can bypass this step immediately if you’re willing to adhere to a particular
format. This default SIF format is a JSON, structured as follows:

{
"time": 1643298089.292, // Unix epoch time (seconds, not millis)
"device": "", // optional string to identify devices in the error log
"metadata": { // optional per-datapoint metadata key/value pairs

"location": "south_wall",
"facing": "east"

},
"payload": { // key-value pairs for each measurement

"metric1": 0.00,
"metric2": 0.00

}
}

With this format, one datapoint is created for each metric in the payload. When multiple
metrics are present, they are all given the same timestamp and metadata. If individual data points
require different timestamps and/or metadata, they will need to be contained within separate
instances of this JSON. If your data is in the default SIF format, here is an example of how you
can send it to our system to be stored:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

const mqtt = require("mqtt");
const client = mqtt.connect("mqtt://broker.uvasif.org");

async function collectData() {
try {

const timeval = new Date().getTime() / 1000;
const packet = {

time: timeval,
metadata: {

sensorType: "example",
fiftyFifty: parseInt(timeval) % 2

},
payload: {

sampleMetricA: Math.sin(timeval / 4),
sampleMetricB: Math.cos(timeval / 4)

}
};
const blob = {

app_name: "exampleApp",
token: idToken,
data: packet

};
console.log("[%d] Publishing data", timeval);
client.publish("data/ingest/passthrough", JSON.stringify(blob));

} catch(err) {
console.error(err);

}
}



Note the variable “blob” defined on lines 18-22 in the example above. This blob format is
required for all data sent to the SIF platform. Blobs received that have invalid tokens, do not
have an app name, are missing a data key, or any combination of similar issues are rejected
immediately. Your top level data structure must be like this blob: a stringified JSON with token,
app_name, and data keys.

There is one important thing to mention with respect to metadata. When a blob is sent in
with a new app name, the system recognizes this and automatically creates the new app
according to the metadata schema present in that blob. This means that if the first blob with
app name “myFirstApp” has no metadata keys, any future blob with app name “myFirstApp”
with metadata keys will be rejected. In short, the metadata keys present in an app’s first blob
dictate the full set of valid metadata keys. Future blobs for that app need not present all of the
metadata keys in order to be accepted, as each metadata key is optional, but no blob may present
any metadata key that was not present in the first blob. Furthermore, the data type of a metadata
value is also dictated by the first blob. Metadata values can be either strings or floats, and cannot
switch between the two.

Examples: Assume all blobs in this example are sent in with the app name “abc”. The
first blob has the following metadata:
{

"location": "kitchen",
"manufacturer": "ACME",
"deviceId": 0

}

For each of the following subsequent blobs, we provide the metadata section and assert
whether this would be accepted or rejected by the SIF platform:

Metadata Accepted or Rejected?

{
// no metadata keys

}
ACCEPTED

{
// valid subset of the initially provided keys
"location": "kitchen"

}

ACCEPTED

{
// valid subset w/ incorrect data type
"location": "office",
"deviceId": "zero"

}

REJECTED

{
// invalid subset
"orientation": "left",
"city": "New York",
"height": 73

}

REJECTED



III. Managing your apps at https://uvasif.org

A. Using the App Viewer
After you have sent in some data, log back into the website and a new app should have

appeared.

Here we can see the exampleApp has appeared and we are presented with some
information about the app. In the schema column, we are told the metadata schema of this app. In
the metrics column, we see a list of all metrics that have ever been received for that app. We are
also presented with two buttons: download and delete. The download button will download all
data for the app in the time range specified above the table. The number of data points in this
range is shown in parentheses on the download button (in the image, there are 3,231 data points
in the given time range). The delete button will delete the entire app and all of its data
forever. After deleting an app, you may need to refresh the page in order for the app to actually
disappear.

B. Registering custom sources
If you have an existing data stream that you’d like to redirect towards SIF, then custom

source registration is built for you. In the SIF website, you can pick a type of custom data source



(as of writing, support is limited to TTN-MQTT (The Things Network) streams), supply any
necessary credentials, and you’re done. Every 5 minutes SIF updates the custom source list and
attaches listeners to those added by users.

A major point of note with the custom data source system is expected data format. The
ingest system cannot currently interpret different formats originating from custom sources, so
any and all data published to a custom source and ingested into SIF must be structured according
to the standard SIF data format described previously in step 2 of Section II. For TTN-MQTT
streams, a custom formatter should be deployed with your application which outputs a
SIF-standard data blob in the decoded_payload section.

Data collected from custom sources will be filed under app names according to the
following logic: if the data packet contains an app_name field, use it as the app name. If such a
field is not present, use “customX”, where X is the custom source ID, as the app name. For



TTN-MQTT data, the system will try to extract the name of the TTN application where the data
is from and use that if an app_name field is not present.

C. Viewing the error log
Select “Error Log” from the navigation bar at the top of the website. If the system

encounters problems when processing data, it will try to associate that data with its owner and
log the event. The ingest system is capable of detecting several different common error types,
shown in the table below. In order for an error to appear in this log, it must have occurred in a
location where the system had access to your user name; this means that if you provide an
invalid token, that error will not appear in the log since the system was unable to verify the
owner of the token.

By default, the “device” column in the error log is blank. If you are experiencing many
errors or need to trace an error back to a single device, use the “device” field in the standard SIF
data format. When a loggable error event occurs, the system will log the device alongside the
error message, if one is provided.

Entries in the error log are unique with respect to the (app_name, device, error) tuple. The
timestamp of each entry represents the most recent time at which that error was triggered on the
specified app and device.



Errors & Their Meanings

Error Meaning

invalid app An app with the specified name was not found. This means the
system was unable to automatically create this app for you. Make
sure you’re providing valid messages.

invalid metadata Metadata keys were provided that did not match the expected
metadata schema for the specified app. Double check the metadata
you are sending and revisit the metadata discussion above to make
sure you’re doing the right thing.

unexpected string
(expected number)

A string was provided as a metric value or as a metadata value for
a metadata column whose data type is a number.

unexpected boolean
(expected number)

A boolean was provided as a metric value.

unexpected object
(expected primitive)

An object was provided as a metric value or a metadata value, but
these values should only ever be numbers or strings.

unsafe app name App names should only contain alphanumeric characters and
underscores. This error occurs if other characters are included.

invalid blob Data blobs you send to the ingest broker should contain data and
app_name keys. If either is missing, this error will be triggered.

IV. Visualizing your data on Grafana
This step requires contact with a Grafana administrator. They will create a Grafana

account with a temporary password and grant you access to the database instance. Once your
account has been created, visit https://vis.uvasif.org/ and sign in using the username and
password provided to you. Change your password immediately for account security. In the
bottom left corner hover over your profile icon and select “Preferences”. Scroll down to
the “Organizations” section, and verify your role as a LivingLinkLab editor is your current
role. It should look like this:

Once you have selected the LivingLinkLab Editor role, visit the “Explore” page via
the button on the left navigation tray, shown off to the right on this page. On the “Explore”
page, verify that the data source is set to “EC2 TS” at the top. Select the app you wish to
visualize data from by typing your app into the box displaying “user_demoApp”. The
format is “username_appName”; if my username was “user” and the app I wanted to use
was “demoApp”, then the “user_demoApp” shown in the image below would be correct.



Although not required to make the visualization work, it is generally a good idea to
change the metric column from “none” to “metric”. This will greatly improve the visualization
for apps containing multiple metrics, but can also improve single-metric apps by labeling the
time series with the appropriate metric name. Here is an example of a visualization generated
through this simple interface:

Don’t forget to set the time window in the upper right-hand corner of the page using the
clock icon!



V. Using the API
The SIF website and Grafana will cover most of the simple use cases users may

encounter. For more advanced operations or for certain “power users”, it could be nice to interact
with the SIF platform programmatically. For this, we grant all users access to the SIF API
immediately upon account creation. There are two base API URLs: one for bulk data downloads
and one for everything else. In this document, we provide examples on how to use one endpoint
from each of these API URLs. Full documentation is available at these links:

Regular API: https://api.uvasif.org/v2/documentation/
Download API: https://download.uvasif.org/v1/documentation/

Note: All endpoints, aside from the documentation ones, are secured using a token-bearer
authentication scheme. For these endpoints, you will need to provide a valid Cognito-issued JWT
in the “Authorization” header of the request.

a) Example #1: Retrieve a list of your apps.
i) According to the documentation, the endpoint we should use is /v2/apps/list.

This is part of the regular API, so the full URL we need to use is
https://api.uvasif.org/v2/apps/list.

ii) Command:
$ curl  –header "Authorization: yourJwtHere"

https://api.uvasif.org/v2/apps/list

iii) API response:
{

"code": 200,
"apps": [

"myApp",
"demoApp",
"SIF-test"

]
}

iv) Done! The API should always return a JSON according to the schemas described
in the documentation. If an invalid token is provided, the API will respond with a
HTTP 401 (Unauthorized) error.

b) Example #2: Download data from an app.
i) According to the documentation, the endpoint we should use to download all

metrics from an app is /v1/<app_name>/all. In this example, we will
download data from the “demoApp” app between July 1st, 2021 at 13:00:00 EST
and November 15th 2021 at 20:30:00 EST. This is a part of the download API, so
the full URL we need to use is https://download.uvasif.org/v1/demoApp/all.

ii) The download endpoints can make use of some additional query string arguments.
We can use these arguments to provide the desired data range we defined above.



The start time is 1625158800.000 in Unix epoch time (seconds). Similarly, the
end time is 1637026200.000. These are added to the request URL in the next
step.

iii) Command:
$ curl  –header "Authorization: yourJwtHere"

https://download.uvasif.org/v1/demoApp/all?start=16
25158800.000&end=1637026200.000

iv) API response: a csv containing the data from the given app in the given time
range. If no data is available, the CSV will only have a single row containing the
column headers.

v) Done! The API should always return either a CSV with data (0+ rows) or a JSON
that describes some error message. More information regarding the specifics of
usage and the various responses can be found in the API documentation, linked
above.

VI. That’s it!
If you were able to reach this point, you’re all set up and ready to fully enjoy the benefits

of the SIF platform. Reach out to a SIF administrator if you encounter issues.
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