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Abstract 

The complex, dynamic nature of native tissues requires next-generation biomaterials that 

are highly tunable and robust to address current engineering problems.  Peptides are 

common key components of biomaterials as they undergo specific interactions that can 

be tailored by a wide sequence design space, but peptides are limited by a lack of in vivo 

stability.  To overcome this instability and expand the tunability of biomaterials, we 

leveraged stereochemistry-directed interactions and polymer-peptide conjugation as 

tools to increase peptide stability and modulate specific interactions.  In this thesis, we 

investigated the specific interactions of several peptides as therapeutics and biomaterials 

and expanded on the design rules that govern stereochemistry-directed interactions and 

polymer-peptide conjugate biomaterials.  In Chapter 2, we utilized photochemistry and 

the specific, yet displaceable interactions between coiled coil peptides to develop a 

biomaterial with user-defined, spatiotemporal control over the presentation of 

biomolecules on the surface.  Uniting specific coiled coil interactions with the benefits of 

stereochemistry-directed interactions, in Chapter 3 we demonstrated that 

stereochemistry-directed interactions between coiled coils yields complexes that possess 

greater binding strength and are more enzymatically stable than analogous coiled coils 

composed of only L-peptides.  In Chapter 4 we further employed stereochemistry-directed 

interactions in the design of polymer-peptide conjugate biomaterials to disperse and 

prevent aggregates of toxic proteins implicated in amyotrophic lateral sclerosis (ALS), 

where both D- and L-conjugates successfully dispersed aggregates of a model toxic 

protein.  To target another class of highly charged toxic proteins implicated in ALS, in 

Chapter 5 we designed a set of peptides to interact electrostatically with these proteins 
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and characterized their interactions using isothermal titration calorimetry to select 

candidates for conjugation to polymers as polymer-peptide therapeutics.  Together, these 

studies enhance the tunability and functionality of biomaterials by leveraging specific 

peptide interactions and expanding the design rules for stereochemistry-directed 

interactions and polymer-peptide conjugates.   
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Chapter 1. Introduction 

The use of biomaterials to tackle engineering problems in the fields of regenerative 

medicine and therapeutics requires materials that are robust and highly tunable to 

recapitulate the highly specific interactions that drive the complex, dynamic nature of 

native tissues.1  Peptides are widely used biomaterials that undergo specific biomimetic 

interactions and are relatively easy to synthesize, have a wide range of different functions 

due to a high degree of possible structural diversity, can easily be modified to incorporate 

non-native chemistries, and are composed of the same chemical building blocks as 

natural proteins, making them likely to be biocompatible.2–4  While peptides have these 

advantages, they often suffer from a poor half-life in vivo due to a combination of low 

enzymatic stability and susceptibility to renal clearance.5–7  This limits the application of 

peptides as therapeutics or biomaterials as they are often cleared from the body or broken 

down from the active form before they perform their intended functions.  Two strategies 

to allay these concerns and make peptides more bioavailable are the use of 

stereochemistry-directed interactions and conjugation to polymers.   

1.1  Stereochemistry-directed peptide interactions 

All amino acids that comprise peptides and proteins occur in one of two 

stereochemistries, L or D, where the stereochemistry of an amino acid is dependent on 

the spatial arrangement of the side chain in 3D space (Figure 1.1).  L-amino acids, and 

therefore L-peptides and L-proteins, are naturally occurring and therefore recognized by 
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enzymes, which cleave them by their 

amide bonds.  On the other hand, D-amino 

acids, which are chemically equivalent to L-

amino acids except by the direction the 

side chain points in 3D space, are 

unaffected by degrading enzymes as the 

enzymes do not recognize the amino acids 

in this spatial arrangement.8–12  While we 

could use D-peptides for our biomaterials applications and not have to worry about 

degradation, tunability, cost, and specific interactions between D- and L-peptides provide 

compelling reasons to explore blending D- and L-peptides to take advantage of 

stereochemistry-directed interactions.  For example, in regenerative medicine a scaffold 

needs to degrade or rearrange to allow for new tissue growth.  If only D-peptides were 

used, the biomaterial would not degrade for a long time and may interfere with regrowing 

the desired tissue.  Cost is also an important consideration, as D-amino acids cost more 

than L-amino acids, so using biomaterials prepared from a blend of D- and L-peptides 

would reduce costs significantly and increase the probability of commercial success, 

which in turn will make the biomaterial more likely to become available to patients.  Finally, 

specific interactions between D- and L-peptides may contribute tunable control over both 

the degradation of peptide materials and peptide-peptide binding strengths.13   

Stereochemistry-directed interactions offer tunable control over the degradation rate 

of L-peptides.  One example is the degradation of the pentapeptide KYFIL (K = lysine, Y 

= tyrosine, F = phenylalanine, I = isoleucine, and L = leucine).  When hydrogels composed 

Figure 1.1. D- and L-peptides of the same sequence 
are chemically equivalent in every way except the 
direction that their side chains point, such that they 
are mirror images of each other.  Blending D- and L-
peptides yields heterochiral complexes with unique 
properties derived from stereochemistry-directed 
interactions. 
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of L-KYFIL are exposed to proteinase K, ~60% of the peptide is degraded after just one 

hour.  However, >90% of the KYFIL peptide remains intact over 72 h when hydrogels 

composed of a 1:1 heterochiral mixture (50% L-KYFIL and 50% D-KYFIL) are exposed to 

the same enzyme.12  In another example, hydrogels formed from the peptide L-Ac-

(FKFE)2 (E = glutamate) degrade by >95% after 5 days of incubation with each of three 

different enzymes, while hydrogels formed from a heterochiral mixture of Ac-(FKFE)2 

resist degradation by all three enzymes over the same time period.  Of note, when 

hydrogels composed of 75% L-Ac-(FKFE)2 and 25% D-Ac-(FKFE)2 were exposed to the 

same enzymes, they degraded but at a much slower rate (after 5 days, about 50% of the 

peptide remains), demonstrating the high degree of tunability offered by stereochemistry-

directed interactions.14   

In addition to peptide degradation rate, stereochemistry-directed interactions also 

modulate the strength of the binding interaction between peptides and, by extension, 

macroscopic properties.  For example, the β-sheet forming, self-assembling MAX1 

peptide assembles to form fibrous hydrogels with storage modulus G’ ~ 200 Pa in 

aqueous buffer.  A 1:1 heterochiral mixture of D-MAX1 and L-MAX1 yields fibrous 

hydrogels with a 4x increase in modulus (G’ ~ 800 Pa).15  These results were attributed 

to stronger, more favorable packing interactions between the side chains of D- and L-

MAX1 that were not possible in assemblies of MAX1 with only one stereochemistry.16  

Consistent with these findings for MAX1, hydrogels made from 1:1 blends of D- and L-Ac-

(FKFE)2 were stiffer than hydrogels prepared from L-Ac-(FKFE)2.  Moreover, the enthalpy 

of the interaction between D-(FKFK)2 and L-(FEFE)2 exceeds that between the same 

peptides in the L-configuration by nearly 10 kcal/mol.17  However, blending D- and L-
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peptides that assemble into hydrogels does not always result in stronger mechanics.  In 

fact, 1:1 heterochiral blends of KYFIL in 1X PBS result in a ~10x decrease in storage 

modulus (G’ ~ 31 kPa for L-KYFIL vs. G’ ~ 3 kPa for 1:1 L:D-KYFIL).  This decrease is 

accompanied by a significant change in morphology from fibrous for L-KYFIL to plate-like 

structures for 1:1 L:D-KYFIL, suggesting that the drop in modulus is due to morphology 

rather than a loss of peptide interaction.12  For the other examples with MAX1 and Ac-

(FKFE)2, the morphology of the peptide assemblies remained the same,15–17 raising 

questions about what sequence differences contribute to this differential response to 

heterochiral assembly.  The peptide Aβ(16-22) also undergoes a morphological change 

from fibrous to rigid, semi-crystalline structures in a heterochiral mixture.  The heterochiral 

mixture was demonstrated to be more thermodynamically favorable than the homochiral 

mixture, but these peptides were not used to make hydrogels.18  MAX1 and Ac-(FKFE)2 

both have alternating hydrophilic and hydrophobic amino acid sequences, whereas KYFIL 

and Aβ(16-22) contain longer stretches of hydrophobic amino acids.  These sequence 

differences may begin to explain the differences in the outcomes of heterochiral assembly, 

but further work is needed to confirm this as a design rule.  In another example, triple 

helices of the collagen-mimetic peptide (PPG)10 are soluble but heterochiral mixtures 

precipitate, a result attributed to more favorable packing interactions for the heterochiral 

triple helices.19  These findings are intriguing because typically, achieving large changes 

in the mechanical properties of peptide materials requires either changing the sequence 

of the peptide or changing the concentration, which can be time- and cost-intensive.  

Having the option to tune binding strength and therefore mechanical properties of peptide 
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materials via stereochemistry-directed interactions provides another useful tool for 

preparing next-generation biomaterials. 

As demonstrated by the examples above, stereochemistry-directed interactions have 

the potential to increase tunability in degradation profiles and peptide-peptide interaction 

strength, providing an exciting opportunity to introduce more tunability into the peptides 

we use in biomaterials.  Of note, stereochemistry-directed interactions have only been 

shown to result in unique properties compared to homochiral interactions for peptides 

with β-sheet or α-helical secondary structure, which is an important design consideration 

when planning to implement stereochemistry-directed interactions in biomaterial design.  

Additionally, these heterochiral interactions have been explored in relatively few peptide 

sequences, leaving open questions about the design rules and outcomes of these 

interactions.  To learn more about the design rules for stereochemistry-directed 

interactions, it will be important to generate a larger body of evidence with a wide variety 

of peptide sequences demonstrating that heterochiral peptides form complexes and 

modulate peptide properties.  Thus far, heterochiral interactions have largely been studied 

in β-sheet peptides, with only a couple examples of helical peptides that undergo 

stereochemistry-directed interactions.19–21  Even among helical peptide examples, these 

reports demonstrate that interaction occurs, but how they influence the properties of the 

peptide materials needs to be further explored.  Further, neither the peptides K3 

(SNFLSCYVSGFHPSDIEVDLLK) nor L4K8L4 undergo stereochemistry-directed 

interactions, preferentially interacting with only peptides of the same stereochemistry 

when D- and L-peptides were mixed.22,23  Of note, the L4K8L4 peptide has a similar 

sequence pattern to the Aβ(16-22) peptide that did form heterochiral complexes.  It has 
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not yet been determined what differences between these peptides and the other peptides 

discussed above cause one set to undergo stereochemistry-directed interactions and not 

the other, but further exploration of this sequence space may unlock the full potential of 

stereochemistry-directed interactions in peptide-based biomaterials. 

1.2  Polymer conjugation 

Another method to address the existing drawbacks of peptide-based biomaterials 

surrounding enzymatic degradation and rapid renal clearance is to attach the peptides to 

polymers via conjugation reactions (Figure 1.2).  Polymer-peptide conjugation not only 

increases the overall size of the material, sometimes through supramolecular assembly, 

to help it avoid renal clearance, but the polymer can also serve to increase the solubility 

of the peptide, slow enzymatic degradation, and reduce cytotoxicity.24–27  Combining 

peptides and polymers marries the functional diversity and biocompatibility of peptides 

with the robust mechanics and wide range of compositions and architectures available to 

polymers.  
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Figure 1.2.  Conjugating peptides to polymers allows us to take advantage of the benefits of both 

components.  Conjugates may assemble into micellar or other structures, dependent on the relative 

hydrophilicities of the polymer and peptide.  The increase in size of conjugate structures protects the peptide 

from renal filtration and the polymer also protects the peptide from enzymes. 

Polymer-peptide conjugates are used to protect peptides from premature clearance 

or breakdown, keep peptides soluble, and direct supramolecular assembly in a wide 

variety of applications.  Antimicrobial peptides are among the most common classes of 

peptides conjugated to polymers, typically to avoid renal filtration and enzymatic 

degradation while increasing antimicrobial peptide solubility.25,28  Antimicrobial peptides 

that are cytotoxic are often conjugated to neutral, hydrophilic polymers to avoid 

interactions with mammalian cells, but they typically also lose activity against bacteria.  

The structural diversity of polymers is crucial here, as changing the polymer architecture 

can balance antimicrobial activity and cytotoxicity.25  In another example, polymer-peptide 

conjugates were used to disrupt aggregation of the amyloid beta (Aβ) peptide implicated 

in Alzheimer’s disease.29–31  The hydrophobic β-sheet breaker peptide iAβ5 (LPFFD) was 

conjugated to a comb-shaped (poly[N-(2-hydroxypropyl) methacrylamide]) (polyHPMA) 

polymer to yield a polyHPMA backbone with pendant iAβ5 peptide groups.  Alone in 1X 

phosphate buffered saline (PBS) at 10 μM, the amyloid β fragment Aβ40 formed fibrillar 

aggregates hundreds of nanometers in size, but when incubated with the polyHPMA-iAβ5 

comb-shaped conjugate, Aβ40 formed only small aggregates of a few nanometers.  In 

this example, the polymer served as a carrier that solubilized the hydrophobic β-sheet 

breaker peptide to allow it to interact with Aβ40 without the treatment itself aggregating in 

solution.  Further examples of polymer-peptide conjugates include drug delivery by 

polypeptide-PEG micelles, where the conjugate assembles into micelles that provide 
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stability and controlled release for drugs encapsulated within the micelle.24,32–34  These 

examples and more, highlighted in recent reviews,24,25,27,35 underscore the benefits of 

preparing hybrid materials composed of polymers and peptides to benefit from the best 

properties of each material.   

1.3  Thesis overview 

In this thesis, we aim to design more tunable peptide biomaterials, gain further 

understanding of the design rules governing stereochemistry-directed interactions, and 

attach peptides to polymers to develop new therapeutics for amyotrophic lateral sclerosis.   

We break these goals into four chapters in this thesis (Figure 1.3).  We first develop a 

tunable biomaterial scaffold with spatiotemporal control over the presentation of 

biomolecules in collaboration with Prof. Chris Highley’s lab.  We use a combination of 

photochemistry and specific, yet displaceable interactions between helical coiled coil 

peptides to provide spatial and temporal control, respectively, over biomolecule 

presentation on the scaffold (Chapter 2).  To explore the knowledge gap in how 

stereochemistry-directed interactions affect the properties of helical peptide assemblies 

and leverage the benefits of stereochemistry-directed interactions in the same coiled coil 

system that provided spatiotemporal control over biomolecule display, we investigated 

heterochiral blends of coiled coils.  We show that stereochemistry-directed interactions 

between coiled coils furnishes complexes that bind more strongly to each other and are 

more enzymatically stable than analogous coiled coils composed of only L-peptides 

(Chapter 3).  We also leverage peptide self-assembly and stereochemistry-directed 

peptide interactions within a polymer-peptide conjugate biomaterial we developed to 
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target and disperse aggregates of toxic proteins implicated in amyotrophic lateral 

sclerosis (ALS) (Chapter 4).  Finally, to target a highly charged sub-class of these toxic 

proteins implicated in ALS, we designed a series of peptides to interact electrostatically 

with these proteins and characterized the interactions between peptide candidates and 

mimics of the toxic proteins using isothermal titration calorimetry (ITC).  This study will be 

used to inform future studies and inform the best candidate peptides for attachment to 

polymers as toxic protein-sequestering polymer-peptide therapeutics (Chapter 5).  

Together, the work presented here contributes to the understanding and leveraging of 

peptide interactions to realize highly tunable biomaterials and new therapeutics, including 

highlighting the untapped potential of stereochemistry-directed interactions in the design 

of biomaterials. 

 

Figure 1.3.  Thesis overview. 
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Chapter 2. Spatiotemporal control over biomolecule presentation in vitro 

2.1  Introduction 

In this chapter, we developed a biomaterial scaffold with the capability to present 

biomolecules with spatial and temporal control.  This work was a collaborative effort with 

Greg Grewal and Chris Highley and was published in 2021 in Biomaterials Science.  My 

contribution to this work was primarily in the characterization of the coiled coil peptide 

interactions, so that will be the focus of the results in this chapter. 

The ability to spatiotemporally control the presentation of relevant biomolecules in 

synthetic culture systems has gained significant attention as researchers strive to 

recapitulate the complex, dynamic nature of the extracellular matrix (ECM) in vitro.1,2  The 

ECM is the native tissue environment that plays a central role in regulating cellular fates 

through a combination of biophysical and biochemical processes.3–6  In efforts to 

recapitulate microenvironmental features of the ECM in vitro, the dynamic nature of the 

ECM must be considered, with the presentation of cell fate cues in flux during continual 

restructuring.6–9  To develop culture systems that influence cell migration, proliferation, 

and differentiation, approaches are needed to engineer the presentation of molecules 

involved in cell fate decisions.10–12  Hydrogel biomaterials are advantageous in vitro 

platforms as they can replicate tissue-specific mechanics and be modified with 

biomolecules through numerous established strategies.13–16 

The immobilization of biomolecules onto or within tissue culture substrates is 

important when engineering environments that mimic the ECM.17–19  One successful 

approach for incorporating bioactive molecules into scaffolds is photo-mediated thiol–ene 
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click conjugation.20–22  Modifying hydrogel-forming polymers with norbornene groups 

enables spatial control over biomolecule presentation via photo-mediated thiol–ene click 

conjugation when used in conjunction with photomasks that selectively shield light.3,17,18  

Controlling the localization of molecules on tissue culture scaffolds affords the ability to 

establish a spatial distribution of bio-active cues and gradients of signaling molecules to 

better recapitulate physiological environments and potentiate downstream cellular fates.23 

While providing spatial control, a drawback of these covalent methods for conjugation 

of biomolecules to hydrogels is that the resulting materials do not capture the dynamic 

nature of the ECM in vivo.10,11  Cells continually transduce signals provided by 

biochemical and biophysical cues in their microenvironment,24 and to achieve the 

dynamic characteristics of natural tissue in a biomaterial system, the ability to define the 

presentation of relevant signals, both spatially and temporally, is necessary.19  To this end, 

there have been significant strides towards developing techniques to dynamically 

introduce bioactive cues into hydrogel systems.25  For example, photo-mediated thiol–

ene conjugation with subsequent photocleavage by means of o-nitrobenzyl-based ether 

linkers enabled reversible incorporation of bioactive compounds into hydrogel networks.26  

In a biologically inspired example, 3,4-dihydroxy-L-phenylalanine (DOPA), a catechol-

containing amino acid present in mussels, facilitated reversible incorporation of 

biomolecules through dynamic-covalent esters formed between DOPA and phenylboronic 

acid.27  These methods demonstrate efficacy in reversible incorporation of biomolecules; 

however, they primarily leverage covalent bonds when immobilizing bioactive molecules 

– thus motivating exploration into reversibility driven by noncovalent interactions. 
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Supramolecular interactions offer approaches for dynamic incorporation of 

biomolecules into hydrogel scaffolds to capture the dynamic biochemical and biophysical 

features of cellular microenvironments.28,29  For example, host–guest pairs within 

hydrogels rapidly assemble, but can dissociate under externally applied forces.30,31  

Adhesive peptides appended to a naphthyl group achieve temporally controlled 

presentation within a hydrogel via interactions with a β-cyclodextrin host immobilized to 

alginate.31  Subsequent addition of a bio-inert peptide attached to a higher affinity 

adamantane guest displaced the adhesive peptide and resulted in smaller 3T3 fibroblast 

cell areas.  Additionally, oligonucleotides can be designed for reversible pairing through a 

similarly competitive process known as toehold-mediated strand displacement.32–34  In 

toehold-mediated strand displacement, two complementary oligonucleotides pair, with 

one of the oligonucleotides designed with a longer ‘toehold’ region that can remain 

unpaired prior to introduction of a third, longer oligonucleotide designed to be fully 

complementary with the toehold-containing sequence and therefore a higher affinity 

binder.  Adding the longer complementary strand displaces the shorter strand due to the 

higher affinity interaction between the two longer oligonucleotides.  This non-covalent 

interaction facilitates reversible, repeatable, and specific addition or removal of 

biomolecules under short timescales through differences in association affinities on 

hydrogel scaffolds.  This approach utilizes oligonucleotides and thus would require 

tagging proteins with oligonucleotides for specific interactions with proteins.  The 

approach could be improved upon by substituting the need for oligonucleotides with 

peptides. 
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We sought here to adopt concepts from each platform to develop a new peptide-based 

method that affords reversible, dynamic incorporation of bioactive molecules into hydrogel 

networks with spatiotemporal control.  We employ coiled coil-forming peptides that 

supramolecularly assemble in a specific manner in solution.35–37  Like toehold-mediated 

strand displacement with DNA, Gröger et al. showed coiled coil peptides to undergo a 

similar process.35  Introduction of a longer, higher affinity peptide to a lower affinity, 

toehold-containing coiled coil complex (dissociation constant, KD ∼10−8 M) displaced the 

shorter, lower affinity component and yielded a high affinity coiled coil (KD ∼10−9 M).  

These associations are similar in nature to other specific supramolecular assemblies, 

such as cyclodextrin-adamantane (KD∼10−5 M)31 and cucurbituril host–guest systems (KD 

∼10−11–10−12 M).29 We considered that the comparatively moderate affinities in the coiled 

coil system (KD ∼10−8–10−9 M)35 would allow for stable presentation of biomolecules over 

extended periods of time, with facile release potentiated via the addition of specific 

competitive molecules.  Furthermore, while cyclodextrin and cucurbituril-based 

assemblies are reversible, the relatively straightforward synthesis of peptides and 

potential to reversibly trigger binding and release over multiple cycles under physiological 

conditions render coiled coil peptide platforms highly attractive for dynamic modulation of 

synthetic cellular microenvironments. 

We sought to strategically design coiled coil-forming peptides to allow for both 

spatially-controlled conjugation via photo-mediated thiol–ene reactions and temporal 

control of biomolecule presentation via toehold-mediated strand displacement of coiled 

coil complexes.  The ability to disrupt these associations in a temporally controlled way 

and remove the biomolecules provides the desired constitutive “on/off” functionality – 
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enabling facile reversible functionalization of in vitro culture systems.  Herein, we describe 

the design, structural and thermodynamic characterization, and patterning of 

biomolecules using a coiled coil peptide-based system on both hyaluronic acid (HA) and 

fibrous poly(ethylene glycol) (PEG) hydrogel surfaces. Using the patterned substrates, 

we demonstrate temporal attachment and release of biomolecules.  To showcase the 

potential of this system in modulating bioactivity in engineered microenvironments, we 

build on previous work studying supramolecular assemblies in reversible modulation of 

cell adhesion and morphology in vitro.31,33  The reversible presentation of an adhesive 

sequence enables visual confirmation of changes occurring at the cellular level of in vitro 

models and may be of use in studies perturbing microenvironmental adhesion to ECM-

derived peptide binding sequences to understand cell fate decisions. 

Taken together, this coiled coil-forming peptide system represents a compelling 

platform for reversible, spatiotemporally controlled presentation of bioactive molecules.  

We note that this user-defined release process can be repeated over multiple cycles, 

lending itself to applications that require spatiotemporally controlled presentation of 

biomolecules that can be modulated through external cues as well as be reloaded for 

subsequent multi-stage release.  In addition to the examples discussed here, this platform 

may be broadly applicable to understanding and controlling biomolecular composition in 

cellular microenvironments, for example to dynamically present growth factors and 

cytokines to modulate bioactivity in vitro. 
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2.2  Results and discussion 

Towards introducing spatiotemporally controlled signals within model tissue-mimetic 

hydrogel environments, we investigated the ability of supramolecular coiled coil 

complexes to facilitate dynamic presentation of molecular adhesion motifs on or within 

both 2D HA hydrogels and fibrous PEG hydrogels.  Many tissue-specific ECMs have 

fibrous components and thus fibrous hydrogels are of interest as in vitro models that 

recapitulate features of native ECM.6,13  However, electrospinning PEG to prepare fibrous 

hydrogels is less reproducible than forming 2D HA hydrogels, so we investigated both 

hydrogel systems. 

Hyaluronic acid is a hydrophilic, non-sulfated glycosaminoglycan that is ubiquitous in 

natural ECM, and thus intrinsically biocompatible.15,16  PEG is a hydrophilic, 

biocompatible synthetic polymer used widely for biomedical applications, including for 

solubilization of therapeutics and as components of ECM-mimetic hydrogels.13  Both HA 

and PEG are amenable to chemical modification either on the side chains or at the chain 

ends.13  We installed norbornene moieties on both HA and PEG (NorHA and PEG-NB, 

respectively) to enable efficient, spatially controlled photo-mediated thiol–ene click 

reactions for addition of thiolated cross-linkers and biomolecules.17,21  The resulting 

NorHA hydrogels and PEG-NB fibers were crosslinked using dithiothreitol (DTT) as a 

crosslinker, adjusting the stoichiometry to leave residual norbornene groups available for 

post-crosslinking photo-controlled addition of thiolated peptides.3,17,21 

Coiled coil-forming peptides were designed as shown in Figure 2.1 based on a 

previously described complementary glutamic acid/lysine (E/K)-rich peptide pairs that 
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form heterodimeric coiled coils and 

undergo toehold-mediated strand 

displacement.35,37,38  We modified the 

sequences with cysteine residues to 

facilitate thiol–ene conjugation to NorHA 

and PEG-NB and demonstrate the 

immobilization of fluorophore or adhesive 

motif-tagged complementary peptides via 

coiled coil formation.  Specifically, for 

immobilization to the hydrogel surfaces, a 

tethered peptide (“T-peptide”) was 

designed with a cysteine for conjugation, a 

glycine spacer, and three repeating 

heptads of EIAALEK as the glutamic acid 

(E)-rich coiled coil-forming motif (I = 

isoleucine, A = alanine, L = leucine).  The 

complementary association peptide (“A-

peptide”) was designed with four 

repeating, lysine (K)-rich complementary 

KIAALKE heptads.  The extra heptad 

repeat provides a toehold motif for 

triggered removal of the A peptide in the presence of the higher affinity disruptor peptide 

(“D-peptide”) having four complementary repeating E-rich EIAALEK heptads.  We 

Figure 2.1.  Coiled coil peptides and schematic of peptide 
association and subsequent removal from a surface via 
toehold-mediated strand displacement.  A) Coiled coil 
peptides used in this study.  Blue regions indicate E-rich 
coiled coil sequence repeats, orange regions indicate K-
rich sequence repeats, the purple cysteine amino acid 
indicates the site where the coiled coil is bound to the 
hydrogel surface, and the yellow region indicates the RGD 
cell-binding motif representing a biomolecule attached to 
the coiled coil.  B) Tethered peptides are covalently bound 
to NorHA/PEG-NB surfaces prior to incubation with A-
peptide to form a T-peptide: A-peptide complex on the 
surface.  The system is then incubated with D-peptide to 
interrupt the complex and preferentially form D-peptide: A-
peptide complex, removing the A-peptide from the surface 
and leaving the T-peptide ready to form a new complex.  
Both the A-peptide and coiled-RGD peptide can fill the 
same role, as both have the same K-rich coiled coil 
structure, this example demonstrates the system with A-

peptide. 
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hypothesized that this difference in affinities would facilitate removal of A-peptides from 

the hydrogels by disrupting the A-peptide: T-peptide coiled coils upon introduction of the 

D-peptide in solution.  We further extend this platform for dynamic incorporation of 

adhesive ligands (here, the fibronectin-derived RGD motif) for use in cell culture systems. 

To accomplish this, we modified the A-peptide with an RGD sequence (“coiled-RGD”) at 

the N-terminus.  Successful synthesis of these four peptides was confirmed by 

electrospray ionization mass spectrometry (Figure A1), purity was determined by 

analytical-scale reverse-phase high performance liquid chromatography (Figure A2), and 

secondary structure was confirmed using circular dichroism spectroscopy (Figure A3). 

2.2.1 Thermodynamic characterization of coiled coil peptide interactions using 

isothermal titration calorimetry (ITC) 

Prior to applying these peptides to NorHA hydrogels and PEG-NB fibers for reversible 

biomolecule attachment, their interactions when forming complexes were characterized 

using ITC.  ITC is a solution-based, label-free technique to acquire thermograms for 

biomolecular interactions that can be integrated and fit to thermodynamic models to 

obtain thermodynamic properties.39,40  The coiled coil forming peptide pairs were 

analyzed in either NIH 3T3 fibroblast medium, PBS, or both, to obtain baseline-subtracted 

thermograms and integrated heats of interaction.  Under the same conditions as the cell 

culture study (performed in NIH 3T3 fibroblast medium), the titrations of T-peptide into 

coiled-RGD peptide and coiled-RGD peptide into D-peptide were compared to a control 

titration of non-complementary T-peptide into D-peptide (Figure 2.2).  The T-peptide: 

coiled-RGD peptide titration (Figure 2.2A) best fit a two-site binding model (giving two KD 
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values, KD,1 = 9.16x10-9 M and KD,2 = 3.81x10-7 M) and did not fit well to a single-site 

binding model.  This is consistent with the two-stage binding process reported for coiled 

coil dimerization.35,41  However, for the titration of T-peptide into A-peptide (Figure A7), 

which has the same coiled coil sequence as the coiled-RGD peptide but with a 

fluorophore attached to the N-terminus rather than an RGD motif, we observe a good fit 

for a single-site binding model, so the two-site binding of the T-peptide and coiled-RGD 

peptide may instead be related to interactions with the RGD motif.  The dissociation 

constants obtained from the two-site binding model indicate strong binding affinities, 

which is advantageous for the stable presentation of biomolecules over long periods of 

time. 

Interestingly, the titration of coiled-RGD peptide into D-peptide also exhibits signs of a 

multi-stage binding process, but with both exothermic and endothermic heats of 

interaction (Figure 2.2B).  We did not observe any switching from exothermic to 

endothermic heats of interaction for coiled coils with mismatched lengths, but this 

phenomenon did remain consistent for the same-length titration of A-peptide into D-

peptide (Figure A10).  This indicates that, for these coiled coils of the same length, 

peptide-peptide interactions are initially exothermic, but as the molar ratio of coiled-RGD 

peptide or A-peptide to D-peptide increases, molecular rearrangements which result in 

the endothermic (entropically favorable) release of ordered water molecules and 

exchange of excess coiled-RGD or A-peptide dominate the interaction.42–45  This 

exothermic to endothermic switching precluded us from being able to fit the data with a 

binding model, but the larger magnitude of the heats of interaction from the coiled-RGD 

peptide: D-peptide interaction (~-80 kJ/mol, Figure 2.2B) compared to the heats 



24 
 

associated with the T-peptide: coiled-RGD peptide interaction (~-30 kJ/mol, Figure 2.2A), 

indicate that the coiled-RGD peptide: D-peptide complex is thermodynamically favored 

over the T-peptide: coiled-RGD peptide complex.  Therefore, we conclude that the coiled-

RGD peptide will preferentially interact with the D-peptide in the presence of the T-peptide 

– facilitating reversibility in our system. 

 

Figure 2.2.  Baseline-subtracted thermograms (top) and integrated heats of interaction (bottom) for the 

titrations of A) T-peptide into coiled-RGD peptide, B) coiled-RGD peptide into D-peptide, and C) T-peptide 

into D-peptide.  Where possible, the integrated heats of interaction were fit to a two-site binding model (red 

line) from which thermodynamic parameters were determined.  The interaction between the T-peptide and 

the coiled-RGD peptide was high affinity, as evidenced by the KD values on the order of 10-7-10-9 M, 

indicating that the presentation of biomolecules on surfaces will be stable.  The larger exothermic heats of 

interaction measured for the coiled-RGD peptide: D-peptide interaction demonstrates that these 

interactions between same-length coiled coils are stronger.  No appreciable heats of interaction were 

observed for non-complementary T-peptide and D-peptide. 
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As expected, the titration of T-peptide into D-peptide results in little to no interaction 

(Figure 2.2C), as these peptides are non-complementary, both being E-rich.  The heats 

of interaction are essentially 0 kJ/mol after subtracting out the heats of dilution of T-

peptide into media and media into D-peptide.  This confirms that there will be no off-target 

effects of the D-peptide interacting with T-peptide on the surface of our hydrogels. 

These ITC experiments were also conducted in 1X PBS (pH 7.4 ± 0.05) to determine 

whether the NIH 3T3 fibroblast medium contributed to the results.  We found that there 

were only marginal differences in the resultant heats of interaction (Figures A7-A11) 

when these coiled coils are titrated in 1X PBS compared to fibroblast medium.  

Additionally, all ITC experiments were replicable multiple times, as evidenced by the 

similarities between 2-5 replicates of each titration (Figures A4-A11). 

2.2.2 Monitoring strand displacement by ITC 

While the above ITC results suggest that strand displacement should occur for our 

coiled coil system, as the coiled coils with mismatched lengths have small heats of 

interaction than coiled coils of the same length, we sought to directly measure strand 

displacement using ITC.  For this study, we used the coiled coil sequences without N- or 

C-terminal modifications: (EIAALEK)3 (E3) in place of the T-peptide, (KIAALKE)4 (K4) in 

place of the A-peptide or coiled-RGD peptide, and the D-peptide was unchanged as 

(EIAALEK)4 (E)4.  We incubated K4 with either E3 or E4 overnight in 1X PBS, then 

performed a titration of the remaining E coil into that complex (E4 added to the K4:E3 

complex and E3 added to the K4:E4 complex) (Figure 2.3).  We found that there were no 

observed heats of interaction when E3 was titrated into K4:E4, which indicates that no 
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strand displacement occurred.  This was expected as we found that the K4:E4 interaction 

was stronger than the K4:E3 interaction, so E3 was unable to displace E4.  However, when 

we titrated E4 into the K4:E3 complex, we observed endothermic heats of interaction 

integrating to a maximum of ~20 kJ/mol.  This again is consistent with entropically 

favorable molecular rearrangements from the release of both bound structured water and 

counterions from the free toehold region of the longer K4 as it preferentially complexes 

with E4.  This titration provides a direct measurement of the thermodynamics of coiled coil 

strand displacement, corroborating our conclusions from the ITC data for the pairs of 

coiled coils. 

 

Figure 2.3.  Baseline-subtracted thermograms and integrated heats of interactions for the titrations of A) 

E3 into a pre-formed K4:E4 complex and B) E4 into a pre-formed K4:E3 complex.  No appreciable heats of 

interaction are observed for the titration of the shorter E3 into the length-matched K4:E4 complex.  However, 

endothermic heats of interaction are observed for the titration of the longer E4 into the length-mismatched 
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K4:E3 complex where the K4 has a toehold region, suggesting an entropically favorable molecular 

rearrangement.  This offers a direct measurement of the thermodynamics of strand displacement. 

2.2.3 Coiled coils photopatterned on a surface enable spatiotemporally controlled 

presentation of biomolecules on the surface 

With the thermodynamic characterization of coiled coils showing promising results for 

the strand displacement potential for these coiled coils, we next moved to covalently 

binding the T-peptide to NorHA and PEG-NB surfaces with spatial control.  T-peptides 

were attached to NorHA or PEG-NB surfaces via a photo-mediated thiol-ene reaction, 

with a photomask applied to generate 100 μm-wide stripes of T-peptides on the surface 

(Figure 2.4A).  To demonstrate the ability to leverage coiled coil interactions to present a 

biomolecule on the surface, we swelled the surfaces with A-peptide, tagged with a 

fluorescein fluorophore (FAM), and imaged the surfaces using a Widefield microscope 

(Figure 2.4B).  The micrographs of the FAM bound to the NorHA hydrogel and PEG-NB 

fiber surfaces demonstrate that not only is the FAM-tagged A-peptide present on the 

surfaces, but it is only present in the 100 μm stripes along which T-peptide was reacted. 
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Figure 2.4.  A) Schematic of the supramolecular, coiled coil-based FAM patterning process.  The surface – 

either NorHA hydrogel or PEG-NB fibers – is swelled with thiolated T-peptide.  A photomask is applied and 

the surface is irradiated with 365 nm light.  The surface is then washed and swelled with FAM-tagged A-

peptide.  Finally, the surface is washed once more to remove unbound peptide.  B) Representative 

micrographs and intensity profiles of FAM fluorescence on NorHA hydrogels and PEG-NB fibers.  Scale 

bars = 100 μm.  Dashed white lines indicate sample location of intensity profiles plotted for each micrograph.  

Credit to Greg Grewal for conducting these experiments and creating this figure. 

With the spatial control over biomolecule presentation verified, we next demonstrated 

temporal control over biomolecule presentation by multiple cycles of release and loading 

of the FAM-tagged A-peptide on the surfaces (Figure 2.5A).  By the ITC data we have 

analyzed for the coiled coil binding pairs, we expect that A-peptide bound to T-peptide on 

the surface will be released upon the introduction of D-peptide, with free T-peptide 

available on the surface, ready for another complementary coil with the same or a new 

biomolecule to be introduced.  A NorHA hydrogel surface was loaded with FAM-tagged A-

peptide and the fluorescence intensity of the outer swelling solution was monitored with 

time (Figure 2.5B).  For the first 24 h, we held the hydrogels in 1X PBS.  Over this time, 
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we saw little to no fluorescence intensity in the outer solution, indicating that the peptides 

are stable on the hydrogel surface.  After 24 h, D-peptide was introduced to trigger the 

release of the A-peptide.  Over 8 h of release, we observed increasing FAM fluorescence 

in the outer solution, indicating that the A-peptide was being released from the surface.  

To demonstrate full temporal control, we sought to load and release over multiple cycles.  

After 8 h of release, the D-peptide was removed, and fresh A-peptide was introduced and 

held for another 24 h.  Over this 24 h span, we observed no increase in FAM fluorescence, 

again supporting that our biomolecule-presenting peptides on the surface were stable.  

After this 24 h period, D-peptide was once again added to the hydrogel and FAM 

fluorescence was observed to increase, demonstrating that the A-peptide was again 

released. 

 

Figure 2.5.  A) Schematic of FAM-tagged A-peptide release from surfaces via toehold-mediated strand 

displacement upon the addition of the complementary, length-matched D-peptide.  After release of A-

peptide from the surface, the surface can be reloaded with a new K4 coiled coil, in this example it is reloaded 
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with another FAM-tagged A-peptide.  B) Cumulative FAM fluorescence intensity of the outer swelling 

solution for over time to show repeated loading and release of FAM-tagged A-peptides from NorHA 

hydrogels.  Hydrogels are loaded with FAM-tagged A-peptide then held in 1X PBS for 24 h, over which no 

fluorescence is observed, indicating that the A-peptide is stable on the surface over time.  After 24 h, the A-

peptide is released via addition of D-peptide for 8 h, over which the fluorescence intensity increases as A-

peptide is released from the surface into the outer solution.  Hydrogels were then reloaded with A-peptide 

for 24 h before the D-peptide disruption was repeated for 8 h.  This experiment demonstrates that the 

surface can be loaded, released, reloaded, and released again over multiple cycles.  Credit to Greg Grewal 

for conducting these experiments and creating this figure. 

2.2.4 Fibroblast cells respond to the presentation and removal of RGD motifs on 

scaffolds 

To test cell behavior on NorHA hydrogels and PEG-NB fibers displaying the RGD motif 

via coiled coil-mediated presentation, we cultured NIH 3T3 fibroblasts on both scaffolds 

after functionalizing the surface with coiled-RGD peptide.  Cells adhered to and spread 

on the surface of scaffolds functionalized with coiled-RGD peptide (Figure 2.6A,B).  The 

addition of D-peptide to remove the coiled-RGD peptide from the surface induced a 

significant change in cell adherence and area, with cell area being reduced by ~50% for 

cells seeded on NorHA hydrogels and for cell area decreasing on PEG-NB fibers to 

approximately the same sizes as observed on unmodified PEG-NB fibers (Figure 2.6C).  

These results demonstrate the temporal control that is possible over cellular growth and 

morphology by presentation of different cues over time using this system. 
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Figure 2.6. Effect of coiled-RGD peptide removal from A) NorHA hydrogel and B) PEG-NB fiber surfaces 

via addition of D-peptide on 3T3 fibroblast morphology.  Surfaces were functionalized with 10 μM coiled-

RGD peptide, then fibroblasts were seeded on the surface.  Micrographs on the left show fibroblasts seeded 

on A) NorHA hydrogel and B) PEG-NB surfaces with coiled-RGD present.  Micrographs on the right show 

fibroblasts on each surface after treated with 100 μM D-peptide.  For both surfaces, cell exhibited fewer 

extensions and covered less surface area.  C) Quantification of cell area across groups in the experiment.  

Statistics solely compared cell area after treatment with D-peptide to the control and 10 μM coiled-RGD 

groups prior to treatment with D-peptide. Scale bars = 25 μm, n.s. = no significance, *p < 0.05, **p < 0.01, 

error bars represent standard deviation.  Credit to Greg Grewal for conducting these experiments and 

creating this figure. 

2.3  Conclusions 

Coiled coil peptides offer a versatile system for engineering spatial and temporal 

signals into hydrogel environments.  Biofunctionality of a peptide can readily be altered 
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through standard peptide synthesis techniques, and thiol groups in cysteine residues 

allow their incorporation via light-controlled reactions amenable to spatial patterning, as 

well as by other bioconjugation reactions, such as Michael additions.  The supramolecular 

coiled coil interaction also presents a reversible platform that allows for the repeated 

introduction and removal of bioactivity within in vitro hydrogel and hydrogel fiber culture 

systems.  Proof-of-concept experiments showing the reversible functionalization of the 

surface with FAM demonstrated the efficacy of this system to achieve high spatial and 

temporal control.  Release was dependent on toehold-mediated strand displacement 

induced by addition of D-peptide and the process could be repeated by reloading with A-

peptide.  Using a version of the A-peptide modified with an RGD motif (coiled-RGD) for 

cell studies illustrated the ability to culture fibroblasts on materials functionalized with 

RGD via this coiled coil system.  Removal of the coiled-RGD peptide via introduction of 

the D-peptide caused a statistically significant decrease in cell spread area on both 

hydrogels and fibers, indicating that the reversal of RGD presentation has a direct impact 

on fibroblast morphology.  On the basis of these observations, future work should allow 

for the investigation of how dynamism in cell culture environments affects downstream 

cell behaviors.  User-defined perturbations to these culture environments will enable fine-

tuned control over the in vitro microenvironment.  Future work will also consider 

differences in cell behaviors on hydrogels and hydrogel-based fibers, as well as 

differences between hydrogel backbone materials in this system.  We believe this platform 

might be applied to many other areas of research that desire user-controlled addition and 

subsequent temporal release of bioactive compounds that can be reloaded for multiple 

release cycles. 
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2.4  Materials and methods 

2.4.1 Synthesis of norbornene-functionalized hyaluronic acid (NorHA) 

NorHA was synthesized as previously described.17  Briefly, sodium hyaluronate (HA, 

Lifecore, 62 kDa) was dissolved in deionized (DI) water with Dowex 50 W × 8 ion-

exchange resin (3 g resin per 1 g HA) for 2 h, and subsequently filtered, titrated to pH 

7.02–7.05 with tert-butylammonium hydroxide (TBA, FisherSci) to yield HA-tert-

butylammonium salt (HA-TBA).  The final product was frozen at −80 °C, lyophilized, and 

stored under nitrogen.  HA-TBA was then dissolved in anhydrous dimethyl sulfoxide 

(DMSO) and allowed to react with benzotriazole-1-yl-oxy-tris-(dimethylamino)-

phosphonium hexafluorophosphate coupling reagent (BOP, Sigma, 0.3 mol equivalents 

relative to carboxylic acids on HA), and 5-norbornene-2-methylamine (nor-amine, Sigma, 

1 mol equivalent relative to carboxylic acids on HA) to functionalize HA with norbornene 

groups.  After ∼2 h, the reaction was quenched with cold DI water, and the solution was 

transferred to a membrane (molecular weight cutoff: 6–8 kDa) and dialyzed against DI 

water for 5 d.  Precipitate was removed by filtration, and the solution was re-dialyzed 

against DI water for 5 d prior to freezing at −80 °C, lyophilizing, purging with nitrogen, and 

storing at −20 °C until ready for use.  The degree of modification was determined to be 

∼25% by 1H nuclear magnetic resonance spectroscopy (1H NMR, 500 MHz Varian Inova 

500). 
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2.4.2 Peptide synthesis 

All peptides used in this study were synthesized using a Liberty Blue (CEM) 

automated, microwave-assisted solid phase peptide synthesizer via Fmoc methods.  

Briefly, Rink amide resin (Advanced Chemtech, Rink Resin SS, 100–200 mesh, 1% DVB) 

was swollen with dimethylformamide (DMF, Aldrich, ACS reagent grade), and the 

immobilized Fmoc group removed with 20% (v/v) piperidine in dimethylformamide.  Fmoc-

protected amino acids (Advanced ChemTech, 0.2 M in DMF, 5 equivalents relative to 

theoretical available sites on the resin) and the coupling agents diisopropylcarbodiimide 

(DIC, Aldrich, 99%, 1 M in DMF) and Oxyma Pure (Advanced ChemTech, 1 M in DMF) 

were added to the reaction vessel and heated to 90 °C for 4 min.  The Fmoc deprotection 

and coupling steps were repeated to build the peptide from the C-terminus to the N-

terminus.  For fluorescent peptides, 5(6)-carboxyfluorescein (Sigma Aldrich, ≥95%) was 

added last onto the N-terminus.  The resultant peptides were cleaved from the resin with 

a cocktail of 92.5% trifluoroacetic acid (TFA, Aldrich, 99%), 2.5% triisopropylsilane (TIPS, 

Aldrich, 99%), 2.5% 2,2′-(ethylenedioxy) diethanethiol (DODT, Aldrich, 95%), and 2.5% 

DI water, and then isolated by precipitation into cold diethyl ether (Aldrich, ACS reagent, 

contains butylated hydroxytoluene as inhibitor) and centrifugation.  After removal of ether 

under vacuum, the peptides were resuspended in DI water, frozen in liquid nitrogen, 

lyophilized, and stored at −20 °C as powders until ready for use.  High performance liquid 

chromatography (HPLC) was used to determine peptide purity; since we noted no 

appreciable byproduct species, the peptides were used without further purification 

(Figure A2). Peptide primary structure was confirmed via electrospray ionization mass 
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spectrometry (Figure A1). Secondary structures were determined by circular dichroism 

(CD) spectroscopy (Figure A3). 

2.4.3 Isothermal titration calorimetry 

Experiments were performed using a standard volume affinity isothermal titration 

calorimeter (TA Instruments, New Castle, DE) with peptide solutions prepared in either 

1X phosphate buffered saline (PBS) or NIH 3T3 fibroblast culture medium at indicated 

concentrations.  Peptide solutions were adjusted to pH 7.4 using NaOH or HCl and then 

degassed for 10 min at 25 °C.  Titrations consisted of an initial 2 μL injection, followed by 

24 or 49 injections (10 μL each) of one peptide solution (150–200 μM) into 1.3 mL of a 

second peptide solution (10–20 μM).  Following an initial delay of 200 s, injections were 

separated by 200 s.  Experiments were performed at 25 °C with the stirring speed set to 

125 rpm and the cooling rate set to medium.  The reference cell was filled with 1.3 mL of 

degassed, deionized water.  The thermograms were analyzed using NanoAnalyze 

software (TA Instruments) and heats of binding (in kJ/mol) were obtained by integrating 

the area under each injection peak in the baseline-subtracted thermograms, then dividing 

by moles of each injected volume.  When possible, the resultant curves were then fit to 

either the independent (one site) or multiple sites (two site) binding models to 

obtain KD values. Heats of dilution from blank injections – either peptide (150–200 μM) 

into 1X PBS/fibroblast medium or 1X PBS/fibroblast medium into peptide (10–20 μM) – 

were subtracted from experimental heats to yield the blank-corrected data.39 In all 

analyses, we neglected the heats from the initial 2 μL injection. 
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2.4.4 Fabrication of NorHA hydrogels 

Prior to formation of NorHA hydrogels, glass coverslips (22 × 22 mm) were 

functionalized with 3-(mercaptopropyl) trimethoxysilane (MTS, Sigma Aldrich, 95%) to 

present pendant sulfhydryl groups as follows.  Briefly, glass coverslips were plasma 

treated (Harrick Plasma) for 3 min, and MTS was added dropwise to plasma treated 

surface prior to being baked at 100 °C for 1 h, and 120 °C for 10 min in an exhausted 

oven.  The coverslips were washed sequentially in dichloromethane (DCM), 70% ethanol 

in water, and DI water, then stored under inert atmosphere until ready for use.  NorHA 

hydrogels were synthesized from a solution consisting of 5% (w/v) NorHA, 1 mM lithium 

phenyl-2,4,6-trimethyl benzoylphosphinate (LAP) photoinitiator to induce thiyl radicals, 

and dithiothreitol (DTT) for crosslinking ([thiol]: [norbornene] = 0.6) in PBS.  For each 

hydrogel, 50 μL of the NorHA solution was pipetted onto a thiol-functionalized glass 

coverslip (22 × 22 mm), sandwiched with an 18 × 18 mm coverslip, and crosslinked by 

irradiation for 2 min at 365 nm (10 mW cm−2, Omnicure) to covalently stabilize the gel 

network.  NorHA hydrogels to be used in spatial patterning experiments were incubated 

in a 1% (w/v) bovine serum albumin (BSA) solution in PBS for 30 min to limit nonspecific 

binding prior to subsequent experiments; NorHA hydrogels to be uniformly patterned were 

incubated solely in PBS prior to use in experiments. 

2.4.5 Preparation of norbornene-functionalized poly(ethylene glycol) (PEG-NB) 

electrospun fibers 

The electrospinning protocol was adapted from Sharma and coworkers21 and all fibers 

were collected on thiolated coverslips – identical to those used for preparing the 2D 
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NorHA hydrogels.  Solutions consisting of 8-arm PEG-NB (10% w/v, ∼20 kDa, JenKem 

Technology, USA), polyethylene oxide (5% w/v, ∼400 kDa, carrier polymer), DTT 

([thiol] : [norbornene] = 0.6), and 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone 

(I2959, 0.05% w/v) were mixed for at least 24 h in PBS.  Electrospinning was conducted 

on a custom setup with the following parameters: 16-gauge needle; ∼15 cm between the 

needle and collection surface; 0.8 mL h−1 flow rate; 10–14 kV positive voltage applied to 

the needle; and 6 kV negative voltage applied to the collection surface.  Fibers were 

collected for at least 10 min and crosslinked for 15 min (365 nm, 10 mW cm−2, Omnicure) 

under nitrogen.  Fibers were then incubated in a 1% (w/v) BSA/PBS solution if they were 

to be spatially patterned or in PBS alone if they were to be uniformly patterned prior to 

subsequent experimentation. 

2.4.6 Photoligation of peptides to hydrogels and fibers 

NorHA hydrogels and PEG-NB fibers were fabricated with a 0.6 thiol: norbornene ratio 

to avail norbornene groups for photo-patterned attachment of thiolated peptides after 

crosslinking.  For fluorescent-based experiments, solutions of thiolated peptides (20 μM, 

T-peptide or thiolated fluorophore), BSA (1% w/v), and LAP (1 mM) in PBS were added 

dropwise to the surface of the hydrogels/fibers, covered with photomasks (CAD/Art 

Services), and irradiated (365 nm, 10 mW cm−2) for 2 min.  For cell-based experiments, 

a 100 μM solution of the T-peptide with 1 mM LAP in PBS was added dropwise to the 

surface of the hydrogels/fibers and irradiated with light (365 nm, 10 mW cm−2) for 2 min.  

Following radical-induced thiol–ene coupling of the peptides to the hydrogel/fiber 

surfaces, samples were washed 3x in PBS for at least 30 min per wash to remove 
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unreacted peptide and stored at room temperature until further use.  Hydrogels/fibers with 

covalently tethered fluorophores were imaged directly after the wash steps, while other 

samples were used in coiled coil experiments as described below. 

2.4.7 Formation of coiled coil complexes and subsequent peptide release 

To induce coiled coil peptide complex formation on NorHA hydrogels and PEG-NB 

fibers, the scaffolds with tethered T-peptide were swollen with a 20 μM solution of the 

complementary A-peptide (2 mL per well) for 3 min prior to washing 3x with PBS for at 

least 30 min per wash to remove unbound peptide.  To release the A-peptide, D-peptide 

was introduced into the system (3 mL per well, 20 μM for fluorescence experiments) at 

multiple time points.  During the disruption process, the higher affinity D-peptide binds A-

peptides, disrupting the A-peptide: T-peptide coiled coil and removing the A-peptides from 

the surface. Solution (1 mL) was removed at predetermined timepoints and the remaining 

2 mL were aspirated off and replaced with fresh D-peptide solution.  Aliquots collected at 

each time point were stored at 4 °C until analysis. 

To introduce an Arg-Gly-Asp (RGD) cell adhesion motif into hydrogels and fibers for 

cell culture, 100 μM of the T-peptide was tethered to the substrates by the radical-induced 

thiol–ene click reaction as described above. Subsequently, following the same protocol 

as above, solutions of either 0 μM, 10 μM, or 100 μM of a complementary peptide 

containing an RGD sequence (coiled-RGD peptide, GYGRGDSPG(KIAALKE)4) were 

added to supramolecularly attach the adhesion motif to the surface.  For disruption of this 

complex and removal of RGD from the system, 100 μM solutions of the D-peptide were 

used. 
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2.4.8 Determination of peptide release 

Kinetics of peptide release from NorHA hydrogels were indirectly assessed using plate 

reader measurements of fluorophore intensity in the supernatant at time points during 

disruption.  Briefly, the A-peptide was synthesized as described above with 5(6)-

carboxyfluorescein (FAM) included on the N-terminus during peptide synthesis, and the 

fluorescence of the disruption solution at each time point was determined via a BioTek 

Synergy 4 fluorescence spectrophotometer (excitation: 495 nm; emission: 518 nm). Three 

hydrogels were assessed for each experimental group.   

Peptide release was further assessed visually using fluorescence microscopy (Leica 

DMi8 Widefield) during disruption. At each time point, fluorescent images (20x, dry) were 

taken of each NorHA hydrogel and the average intensity of photopatterned stripes was 

determined via ImageJ pixel intensity analysis. Three stripes per hydrogel were 

measured across three hydrogels for each experimental group. 

2.4.9 Cell culture 

NIH 3T3 fibroblasts (kindly provided by Dr Steven Caliari at the University of Virginia) 

were used for all cell experiments (passages 4–8).  Cells were cultured in Dulbecco's 

modified Eagle's medium (DMEM) fortified with 10% (v/v) calf bovine serum (ATCC) and 

1X antibiotic-antimycotic (Gibco).  Prior to seeding cells on 2D NorHA hydrogels or PEG-

NB fibers, hydrogels and fibers were sterilized with germicidal light for 2 h and swelled 

with culture medium for at least 30 min.  Cells suspended in culture medium were seeded 

at a density of 5 × 104 cells per hydrogel or fiber sample and allowed 24 h to adhere to 

the surface. Cells were then fixed for subsequent analysis, as described below. 
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For release experiments, hydrogel/fibrous scaffolds were similarly seeded at a density 

of 5 × 104 cells per scaffold, and cells were allowed to adhere for 24 h.  Following the 24 

h window, the medium was removed and replaced with culture medium containing D-

peptide (2 mL, supplemented with 100 μM of the D-peptide) to induce release of the A-

peptide.  The D-peptide-containing medium was exchanged a total of two times, with 

exchanges at 1 h intervals, to facilitate displacement of coiled-RGD peptide.  An 

incubation time of 1 h was allowed after the second treatment for a cumulative 3 h window.  

Following this release cycle, cells were fixed and treated for subsequent analysis. 

2.4.10 Cell staining 

For analysis of cell experiments, fibroblasts were fixed in a 10% (v/v) solution of 

neutral buffered formalin for 15 min before permeabilization with a 0.1% (v/v) Triton X-

100/PBS solution for 10 min.  Samples were then blocked by incubation in a 3% (w/v) 

BSA solution for at least 1 h to prevent nonspecific binding.  F-actin was visualized by 

staining with Alexa Fluor-488-phalloidin (Thermofisher, 1 : 600 dilution) for at least 1 h and 

nuclei were visualized by staining with DAPI (ThermoFisher, 1 : 1 × 104 dilution) for 1 min.  

Samples were washed once with PBS, once with 0.1% (v/v) TWEEN-20 in PBS, and 

again in PBS after the staining steps to remove unbound fluorophore.  All samples were 

protected from light and stored at 4 °C until imaging. 

2.4.11 Imaging and image analysis 

All imaging was conducted on a Leica DMi8 Widefield microscope.  Coverslips with 

NorHA hydrogels or PEG-NB fibers were placed on microscope slides, sandwiched with 
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a 25 × 25 mm coverslip, and inverted for imaging.  Imaging settings (exposure time and 

light intensity) were held constant for all imaging where fluorescence intensities were 

compared across multiple samples.  For imaging of hydrogels containing fluorescent 

peptides, three distinct photopatterned stripes per scaffold from three scaffolds were 

imaged for analysis.  Images acquired with the 20× dry objective were used for intensity 

comparisons.  To evaluate pattern fidelity, we plotted the normalized intensity line profiles 

across 3 stripes on each sample; all intensity profiles were normalized to the lowest 

intensity value corresponding to each representative image. 

For cellular experiments, at least three distinct areas per scaffold for three hydrogel 

and three fibrous scaffolds were imaged for cell spread area analyses.  A 40x dry objective 

was used for cell area measurements, while a 100x oil immersion objective was used to 

visualize F-actin formation. 

2.4.12 Statistical analyses 

For quantitative comparisons between two experimental groups, independent t-tests 

were used; for comparisons with more than two experimental groups, a one-way ANOVA 

was leveraged in conjunction with a Tukey HSD post-hoc test with an α value of 0.95 

indicating statistical significance. 

2.5  References 

(1) Wade, R. J.; Burdick, J. A. Engineering ECM Signals into Biomaterials. Mater. 

Today 2012, 15, 454–459. https://doi.org/10.1016/S1369-7021(12)70197-9. 

(2) Velasco-Hogan, A.; Xu, J.; Meyers, M. A. Additive Manufacturing as a Method to 



42 
 

Design and Optimize Bioinspired Structures. Adv. Mater. 2018, 30 (52), 

e1800940. https://doi.org/10.1002/adma.201800940. 

(3) Wade, R. J.; Bassin, E. J.; Gramlich, W. M.; Burdick, J. A. Nanofibrous Hydrogels 

with Spatially Patterned Biochemical Signals to Control Cell Behavior. Adv. Mater. 

2015, 27 (8), 1356–1362. https://doi.org/10.1002/adma.201404993. 

(4) Baker, B. M.; Trappmann, B.; Wang, W. Y.; Sakar, M. S.; Kim, I. L.; Shenoy, V. 

B.; Burdick, J. A.; Chen, C. S. Cell-Mediated Fibre Recruitment Drives 

Extracellular Matrix Mechanosensing in Engineered Fibrillar Microenvironments. 

Nat. Mater. 2015, 14 (12), 1282–1268. https://doi.org/10.1038/nmat4444. 

(5) Davidson, C. D.; Wang, W. Y.; Zaimi, I.; Jayco, D. K. P.; Baker, B. M. Cell Force-

Mediated Matrix Reorganization Underlies Multicellular Network Assembly. Sci. 

Rep. 2019, 9 (1), 12. https://doi.org/10.1038/s41598-018-37044-1. 

(6) Baker, B. M. Deconstructing the Third Dimension - How 3D Culture 

Microenvironments Alter Cellular Cues. J. Cell Sci. 2012, 125 (13), 3015–3024. 

https://doi.org/10.1242/jcs.079509. 

(7) Frantz, C.; Stewart, K. M.; Weaver, V. M. The Extracellular Matrix at a Glance. J. 

Cell Sci. 2010, 123, 4195–4200. 

(8) Lutolf, M. P.; Hubbell, J. A. Synthetic Biomaterials as Instructive Extracellular 

Microenvironments for Morphogenesis in Tissue Engineering. Nat. Biotechnol. 

2005, 23 (1), 47–55. https://doi.org/10.1038/nbt1055. 

(9) Wade, R. J.; Bassin, E. J.; Rodell, C. B.; Burdick, J. A. Protease-Degradable 



43 
 

Electrospun Fibrous Hydrogels. Nat. Commun. 2015, 6, 6639. 

https://doi.org/10.1038/ncomms7639. 

(10) DeForest, C. A.; Anseth, K. S. Photoreversible Patterning of Biomolecules within 

Click-Based Hydrogels. Angew. Chemie - Int. Ed. 2012, 51 (8), 1816–1819. 

https://doi.org/10.1002/anie.201106463. 

(11) Grim, J. C.; Marozas, I. A.; Anseth, K. S. Thiol-Ene and Photo-Cleavage 

Chemistry for Controlled Presentation of Biomolecules in Hydrogels. J. Control. 

Release 2015, 219, 95–106. https://doi.org/10.1016/j.jconrel.2015.08.040. 

(12) Stevens, M. M.; George, J. H. Exploring and Engineering the Cell Surface 

Interface. Science (80-. ). 2005, 310 (5751), 1135–1138. 

https://doi.org/10.1126/science.1106587. 

(13) Caliari, S. R.; Burdick, J. A. A Practical Guide to Hydrogels for Cell Culture. Nat. 

Methods 2016, 13 (5), 405–414. https://doi.org/10.1038/nmeth.3839. 

(14) Anseth, K. S.; Tibbitt, M. W. Hydrogels as Extracellular Matrix Mimics for 3D Cell 

Culture. Biotechnol. Bioeng. 2009, 103 (4), 655–663. 

https://doi.org/10.1002/bit.22361. 

(15) Highley, C. B.; Prestwich, G. D.; Burdick, J. A. Recent Advances in Hyaluronic 

Acid Hydrogels for Biomedical Applications. Curr. Opin. Biotechnol. 2016, 40, 35–

40. https://doi.org/10.1016/j.copbio.2016.02.008. 

(16) Burdick, J. A.; Prestwich, G. D. Hyaluronic Acid Hydrogels for Biomedical 

Applications. Adv. Mater. 2011, 23 (12), 41–56. 



44 
 

https://doi.org/10.1002/adma.201003963. 

(17) Gramlich, W. M.; Kim, I. L.; Burdick, J. A. Synthesis and Orthogonal 

Photopatterning of Hyaluronic Acid Hydrogels with Thiol-Norbornene Chemistry. 

Biomaterials 2013, 34 (38), 9803–9811. 

https://doi.org/10.1016/j.biomaterials.2013.08.089. 

(18) Hui, E.; Gimeno, K. I.; Guan, G.; Caliari, S. R. Spatiotemporal Control of 

Viscoelasticity in Phototunable Hyaluronic Acid Hydrogels. Biomacromolecules 

2019, 20 (11), 4126–4134. https://doi.org/10.1021/acs.biomac.9b00965. 

(19) Burdick, J. A.; Murphy, W. L. Moving from Static to Dynamic Complexity in 

Hydrogel Design. Nat. Commun. 2012, 3, 1269. 

https://doi.org/10.1038/ncomms2271. 

(20) Hoyle, C. E.; Bowman, C. N. Thiol-Ene Click Chemistry. Angew. Chemie - Int. Ed. 

2010, 49 (9), 1540–1573. https://doi.org/10.1002/anie.200903924. 

(21) Sharma, S.; Floren, M.; Ding, Y.; Stenmark, K. R.; Tan, W.; Bryant, S. J. A 

Photoclickable Peptide Microarray Platform for Facile and Rapid Screening of 3-D 

Tissue Microenvironments. Biomaterials 2017, 143, 17–28. 

https://doi.org/10.1016/j.biomaterials.2017.07.025. 

(22) Tam, R. Y.; Smith, L. J.; Shoichet, M. S. Engineering Cellular Microenvironments 

with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell 

Culture Models. Acc. Chem. Res. 2017, 50 (4), 703–713. 

https://doi.org/10.1021/acs.accounts.6b00543. 



45 
 

(23) Fisher, S. A.; Tam, R. Y.; Fokina, A.; Mahmoodi, M. M.; Distefano, M. D.; 

Shoichet, M. S. Photo-Immobilized EGF Chemical Gradients Differentially Impact 

Breast Cancer Cell Invasion and Drug Response in Defined 3D Hydrogels. 

Biomaterials 2018, 178, 751–766. 

https://doi.org/10.1016/j.biomaterials.2018.01.032. 

(24) Weng, G.; Bhalla, U. S.; Iyengar, R. Complexity in Biological Signaling Systems. 

Science (80-. ). 1999, 284 (5411), 92–96. 

https://doi.org/10.1126/science.284.5411.92. 

(25) Fumasi, F. M.; Stephanopoulos, N.; Holloway, J. L. Reversible Control of 

Biomaterial Properties for Dynamically Tuning Cell Behavior. J. Appl. Polym. Sci. 

2020, 137 (25), 49058. https://doi.org/10.1002/app.49058. 

(26) DeForest, C. A.; Tirrell, D. A. A Photoreversible Protein-Patterning Approach for 

Guiding Stem Cell Fate in Three-Dimensional Gels. Nat. Mater. 2015, 14, 523–

531. https://doi.org/10.1038/nmat4219. 

(27) Liu, L.; Tian, X.; Ma, Y.; Duan, Y.; Zhao, X.; Pan, G. A Versatile Dynamic Mussel-

Inspired Biointerface: From Specific Cell Behavior Modulation to Selective Cell 

Isolation. Angew. Chemie - Int. Ed. 2018, 57 (26), 7878–7882. 

https://doi.org/10.1002/anie.201804802. 

(28) Mann, J. L.; Yu, A. C.; Agmon, G.; Appel, E. A. Supramolecular Polymeric 

Biomaterials. Biomater. Sci. 2018, 6, 10–37. 

https://doi.org/10.1039/C7BM00780A. 

(29) Appel, E. A.; Biedermann, F.; Rauwald, U.; Jones, S. T.; Zayed, J. M.; Scherman, 



46 
 

O. A. Supramolecular Cross-Linked Networks via Host-Guest Complexation with 

Cucurbit[8]Uril. J. Am. Chem. Soc. 2010, 132 (40), 14251–14260. 

https://doi.org/10.1021/ja106362w. 

(30) Highley, C. B.; Rodell, C. B.; Burdick, J. A. Direct 3D Printing of Shear-Thinning 

Hydrogels into Self-Healing Hydrogels. Adv. Mater. 2015, 27 (34), 5075–5079. 

https://doi.org/10.1002/adma.201501234. 

(31) Boekhoven, J.; Pérez, C. M. R.; Sur, S.; Worthy, A.; Stupp, S. I. Dynamic Display 

of Bioactivity through Host-Guest Chemistry. Angew. Chemie - Int. Ed. 2013, 52 

(46), 12077–12080. https://doi.org/10.1002/anie.201306278. 

(32) McNamara, S. L.; Brudno, Y.; Miller, A. B.; Ham, H. O.; Aizenberg, M.; Chaikof, E. 

L.; Mooney, D. J. Regenerating Antithrombotic Surfaces through Nucleic Acid 

Displacement. ACS Biomater. Sci. Eng. 2020, 6 (4), 2159–2166. 

https://doi.org/10.1021/acsbiomaterials.0c00038. 

(33) Freeman, R.; Stephanopoulos, N.; Álvarez, Z.; Lewis, J. A.; Sur, S.; Serrano, C. 

M.; Boekhoven, J.; Lee, S. S.; Stupp, S. I. Instructing Cells with Programmable 

Peptide DNA Hybrids. Nat. Commun. 2017, 8, 15982. 

https://doi.org/10.1038/ncomms15982. 

(34) Freeman, R.; Han, M.; Álvarez, Z.; Lewis, J. A.; Wester, J. R.; Stephanopoulos, 

N.; McClendon, M. T.; Lynsky, C.; Godbe, J. M.; Sangji, H.; Luijten, E.; Stupp, S. 

I. Reversible Self-Assembly of Superstructured Networks. Science (80-. ). 2018, 

362 (6416), 808–813. https://doi.org/10.1126/science.aat6141. 

(35) Gröger, K.; Gavins, G.; Seitz, O. Strand Displacement in Coiled-Coil Structures: 



47 
 

Controlled Induction and Reversal of Proximity. Angew. Chemie - Int. Ed. 2017, 

56 (45), 14217–14221. https://doi.org/10.1002/anie.201705339. 

(36) Lupas, A. N.; Gruber, M. The Structure of α-Helical Coiled Coils. Adv. Protein 

Chem. 2005, 70 (04), 37–38. https://doi.org/10.1016/S0065-3233(05)70003-6. 

(37) Litowski, J. R.; Hodges, R. S. Designing Heterodimeric Two-Stranded Alpha-

Helical Coiled-Coils. J. Biol. Chem. 2002, 277 (40), 37272–37279. 

https://doi.org/10.1074/jbc.M204257200. 

(38) Litowski, J. R.; Hodges, R. S. Designing Heterodimeric Two-Stranded a -Helical 

Coiled-Coils : The Effect of Chain Length on Protein Folding , Stability and 

Specificity. J. Pept. Res. 2001, 58, 477–492. 

(39) Archer, W. R.; Schulz, M. D. Isothermal Titration Calorimetry: Practical 

Approaches and Current Applications in Soft Matter. Soft Matter 2020, 16, 8760–

8774. https://doi.org/10.1039/d0sm01345e. 

(40) Kabiri, M.; Unsworth, L. D. Application of Isothermal Titration Calorimetry for 

Characterizing Thermodynamic Parameters of Biomolecular Interactions: Peptide 

Self-Assembly and Protein Adsorption Case Studies. Biomacromolecules 2014, 

15, 3463–3473. https://doi.org/10.1021/bm5004515. 

(41) De Crescenzo, G.; Litowski, J. R.; Hodges, R. S.; O’Connor-McCourt, M. D. Real-

Time Monitoring of the Interactions of Two-Stranded de Novo Designed Coiled-

Coils: Effect of Chain Length on the Kinetic and Thermodynamic Constants of 

Binding. Biochemistry 2003, 42, 1754–1763. https://doi.org/10.1021/bi0268450. 



48 
 

(42) Kabiri, M.; Bushnak, I.; McDermot, M. T.; Unsworth, L. D. Toward a Mechanistic 

Understanding of Ionic Self-Complementary Peptide Self-Assembly: Role of 

Water Molecules and Ions. Biomacromolecules 2013, 14 (11), 3943–3950. 

https://doi.org/10.1021/bm401077b. 

(43) Archer, W. R.; Fiorito, A.; Heinz-Kunert, S. L.; Macnicol, P. L.; Winn, S. A.; 

Schulz, M. D. Synthesis and Rare-Earth-Element Chelation Properties of Linear 

Poly(Ethylenimine Methylenephosphonate). Macromolecules 2020, 53, 2061–

2068. https://doi.org/10.1021/acs.macromol.9b02472. 

(44) Darby, S. J.; Platts, L.; Daniel, M. S.; Cowieson, A. J.; Falconer, R. J. An 

Isothermal Titration Calorimetry Study of Phytate Binding to Lysozyme: A Multisite 

Electrostatic Binding Reaction. J. Therm. Anal. Calorim. 2017, 127 (2), 1201–

1208. https://doi.org/10.1007/s10973-016-5487-6. 

(45) Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. Multicopper 

Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Appl. Mater. 

Interfaces 2017, 9, 1352–1360. https://doi.org/10.1021/acsami.6b15124. 

  

  



49 
 

Chapter 3. Designing coiled coils for heterochiral complexation to enhance binding 

and enzymatic stability 

3.1  Introduction 

In this chapter, we built upon our knowledge of the specific biomolecular interactions 

between coiled coils that we leveraged in Chapter 2 to explore stereochemistry-directed 

interactions in these coiled coil systems.  This work represents an important advance 

bringing together the specific, complementary biomolecular interactions of coiled coils 

with the advantages in enzymatic stability and stronger binding interactions for 

stereochemistry-directed interactions. 

Coiled coils are common helical structural motifs estimated to be found in 

approximately 10% of all eukaryotic proteins.1,2  Specifically, coiled coils mediate 

interactions between proteins, operating, for example, in the regulation of DNA 

transcription and muscle contraction.3,4  These functions are possible in complex 

biological environments as coiled coils have strong binding with a high degree of 

specificity.4,5  Coiled coil specificity and affinity are derived from a combination of 

hydrophobic, electrostatic, and hydrogen bonding interactions, arising from conserved 

regions within coiled coil sequences.  Typically, coiled coils are composed of repeating 

patterns of seven amino acids (i.e., a heptad), labeled abcdefg, where amino acids in the 

a and d positions are hydrophobic and often those in the e and g positions are charged 

(Figure 3.1A).3,6–9  While the strong affinity and high specificity of coiled coils make them 

attractive for use in biomaterials applications,10–16 the lifetime of peptides in vivo is limited 

by poor enzymatic stability.17–20 
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One strategy to make peptide materials more stable is to alter stereochemistry, as D-

amino acids resist degradation by enzymes.21–25  While we could certainly improve the 

enzymatic stability of coiled coil biomaterials by making them entirely of D-amino acids, 

recent reports suggest that invoking stereochemistry-directed interactions between 

entirely L-peptides and entirely D-peptides gives rise to properties unique to those of 

naturally occurring L-peptides, including enhanced mechanics, stronger peptide-peptide 

interactions, and greater enzymatic stability.  For example, 1:1 heterochiral blends of the 

D- and L-forms of the β-sheet forming peptide ‘MAX1’ result in hydrogels with a stiffness 

four times greater than those formed from homochiral D- or L-MAX1.26,27  In another 

example, homochiral triple helices of the collagen-mimetic peptide (PPG)10 are soluble 

but heterochiral mixtures precipitate, a result attributed to more favorable packing 

interactions for the heterochiral triple helices compared to homochiral.28  Moreover, the 

enthalpy of interaction is stronger between heterochiral blends of peptides Ac-(FKFK)2-

NH2 and Ac-(FEFE)2-NH2 as compared to homochiral peptide interactions.29  With 

respect to enzymatic stability, the L-form of the peptide Ac-(FKFE)2-NH2 degrades within 

a day upon incubation with protease, while 1:1 blends of D- and L-(FKFE)2 remain stable 

for at least 5 days, similar to the D-form of the peptide.30  We sought to combine the 

enhanced interactions and enzymatic stability of heterochiral mixtures with the specific, 

strong binding of coiled coils into components of next-generation biomaterials.  
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Figure 3.1. (A) Helical wheel diagram of the heptad repeat abcdefg, with hydrophobic interactions between 

complementary coils highlighted in yellow and electrostatic interactions between complementary coils 

highlighted in blue.  (B) Sequences of K4
7
 and E4

7
 aligned with the heptad abcdefg registry. 

Interest in heterochiral assemblies of coiled coil peptides stems back to early structural 

considerations for proteins.31,32  Reports include a tetramer formed from heterochiral 

heptads,33 yet more recent work by Gellman and coworkers highlighted that heptads may 

not be the most ideal sequence pattern for heterochiral assembly.  Crystal structures 

revealed that side chain interactions between hydrophobic residues on heterochiral 

peptides occurred in a repeating pattern of residues spaced 3, 4, and 4 residues apart, 

rather than with a 3 and 4 residue spacing typical of the heptad repeating structure.  The 

3,4,4 spacing is consistent with a noncanonical repeating sequence pattern of eleven 
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amino acids (i.e., a hendecad),  labeled abcdefghijk, where the hydrophobic amino acids 

are in positions a, d, and h.34,35  In this case, the hendecad structure is preferred because 

coiled coils of opposing stereochemistry are unable to supercoil, a correction which aligns 

the hydrophobic faces of the coiled coils in conventional homochiral heptads.  Rather, the 

hydrophobic faces of hendecads align without a need for supercoiling, making them 

amenable to any combination of stereochemistry.  While these reports provide a good 

basis for the structural considerations of heterochiral coiled coils, the potentially unique 

properties of the resulting heterochiral complexes have not yet been studied.   

Here, we redesign the complementary glutamic acid/lysine (E/K)-rich coiled coil 

sequences (Figure 3.1B) ubiquitously employed as components in previously reported 

biomaterials10,13,14 to promote heterochiral complexation and compare the intermolecular 

interactions and enzymatic stability of the resulting complexes to those of analogous 

homochiral coiled coils.  We found that, to allow for heterochiral complexation and the 

possibility of accessing unique heterochiral blend properties, we needed to redesign the 

original heptad repeat sequences of the E/K coils as hendecad repeat sequences.  The 

heterochiral hendecad repeat complexes exhibit higher binding strength and greater 

enzymatic stability than analogous all L hendecad complexes.  Unlocking the benefits of 

stereochemistry-directed interactions in widely used biomaterial motifs such as coiled 

coils has the potential to greatly extend the lifetime of and tailor intermolecular interactions 

for next-generation materials. 
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3.2  Results and discussion 

Here we investigate the effects of stereochemistry-driven interactions on the affinity 

and stability of coiled coil complexes.  Using isothermal titration calorimetry and high 

performance liquid chromatography-based enzymatic stability measurements, we 

compare the affinities and enzymatic stabilities of analogous homochiral and heterochiral 

coiled coils composed of either repeating heptads or hendecads.  This study 

demonstrates the advantages of heterochiral coiled coil complexes and provides a 

template for modifying existing heptad coiled coils to accommodate heterochiral coiled 

coil formation. 

3.2.1. Heptad coiled coil formation: homochiral vs. heterochiral 

The anion-rich coiled coil (EIAALEK)n (En
7
, where n is the number of heptad repeats 

and the 7 superscript indicates a heptad repeat) and cation-rich coiled coil (KIAALKE)n 

(Kn
7
) are known to form homochiral complexes when n≥3.14  The secondary structure of 

these coiled coils was confirmed to be α-helical by circular dichroism (CD) spectroscopy 

(Figure B27).  We used isothermal titration calorimetry (ITC), a label-free, solution-based 

technique used to study interactions between biomolecules,36 to assess the 

thermodynamics of heptad coiled coil complex formation.  The homochiral titration of L-

K4
7
: L-E4

7
 in 1X PBS at pH 7.4 results in heats of interaction that are initially exothermic 

(with a maximum binding heat of -98 ± 4 kJ/mol) until reaching a molar ratio of ~0.8:1 L-

K4
7
: L-E4

7
, after which endothermic heats of interaction (with a maximum of binding heat of 

63 ± 0.6 kJ/mol) are observed (Figure 3.2A).  This may indicate that coiled coil 

interactions are initially exothermic due to enthalpically favorable electrostatic interactions 
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between complementary coils, but as binding partners are consumed, molecular 

rearrangements which result in the endothermic (entropically-favorable) release of 

ordered water molecules dominate the heats of interaction.37–39  These thermograms 

were reproducible (Figure B21), yet did not fit well to single-site or multisite binding 

models that would allow us to obtain a binding constant to compare to other pairs.  The 

1:1 mixture of L-K4
7
 and L-E4

7
 yields blends that are also helical, having a stronger helical 

CD signal than the individual coiled coils (Figure B28A).  In contrast to the homochiral 

titration, the heterochiral titration of D-K4
7
 (designed by simply switching the chirality of all 

amino acids in the peptide from L to D) into L-E4
7
 produces only endothermic binding heats 

smaller in magnitude (having a maximum binding heat of 48 ± 0.3 kJ/mol) than the 

corresponding homochiral pair (Figure 3.2B).  This finding may indicate that interactions 

between the heterochiral heptad coils are dominated by endothermic hydrophobic 

interactions, with little contribution from electrostatic interactions.  To test this, we 

repeated the homochiral titration of L-K4
7
 into L-E4

7
 in 10X PBS, where we expected the 

excess salt to screen electrostatic interactions.  Supporting our hypothesis, we found the 

heats of interaction in 10X PBS to be endothermic in contrast to the exothermic and 

endothermic heats of interaction that we observed in 1X PBS (Figure 3.2C).  Additionally, 

the CD signal of the 1:1 mixture of D-K4
7
 into L-E4

7
 is very close to zero at all wavelengths 

between 200 nm and 250 nm, indicating that the CD is simply the sum of the equimolar 

D- and L-coils (Figure B28C).  Together, these findings indicate that simply inverting the 

stereochemistry of one peptide in heptad-based coiled coils disrupts complex formation 

to some degree, ablating any potential for stronger interactions in heterochiral complexes 

compared to homochiral complexes in this heptad configuration, which is consistent with 
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previous reports of non-ideality for heterochiral complexation of heptad-based coiled 

coils. 

 

Figure 3.2.  Thermograms and integrated binding heats of: (a) homochiral heptad coiled coils L-K4
7
 and L-

E4
7
 in 1X PBS; (b) heterochiral heptad coiled coils D-K4

7
 and L-E4

7
 in 1X PBS; and (c) homochiral heptad coiled 

coils L-K4
7
 and L-E4

7
 in 10X PBS.  While both exothermic and endothermic binding heats are observed for 

interactions between homochiral coils in 1X PBS, only endothermic binding heats are observed for 

interactions between heterochiral coils in 1X PBS and interactions between homochiral coils in 10X PBS. 

3.2.2. Enzymatic degradation of heptad coiled coils 

While we did not observe stronger binding for heterochiral heptads, knowing that 

stereochemistry-driven interactions are expected to provide both binding strength and 

enzymatic stability advantages, we next examined whether these heptads would exhibit 

more enzymatic stability in a heterochiral mixture compared to homochiral.  Solutions of 

K4
7
 and E4

7
 (200 μM in 1X PBS at pH 7.4) were blended as homochiral (L-K4

7
: L-E4

7
) or 

heterochiral (D-K4
7
: L-E4

7
) mixtures.  These blends were then incubated with 5 μg/mL 

Proteinase K, an enzyme known for its broad-spectrum activity and expected to cleave 
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after the I, A, L, and E residues of these peptides.  Immediately after adding Proteinase 

K, as well as after 1, 3, 6, 12, and 24 h incubations, we used high performance liquid 

chromatography (HPLC) to monitor the degradation of the coiled coils.  In the HPLC 

eluent (low pH and in the presence of an organic solvent, acetonitrile), the coiled coil 

complex does not remain bound, resulting in two peaks corresponding to intact, K4
7
 

(eluting at 5.7 min) and intact E4
7
 (eluting at 6.9 min).  In the absence of Proteinase K, K4

7
 

and E4
7
 exhibit little to no degradation over 24 h in the homochiral or heterochiral blends 

(Figure B31).  In the presence of Proteinase K, we observe that ~50% of the coiled coils 

degrade after 6 h and none of the intact coiled coils remain after just 24 h (Figure 3.3A).  

For the heterochiral blend, the D-K4
7
 coil experiences little to no degradation, as expected.  

However, the L-E4
7
 coil in the heterochiral complex degrades more rapidly than it did in the 

homochiral complex, as the peak at 6.9 min disappears completely within 12 h (Figure 

3.3B).  This is consistent with the lower heats of binding that we observe in heterochiral 

heptads, as the L-coil in the homochiral complex is better protected from the protease, 

perhaps due to shielding from the complex.  The mere presence of a D-peptide in the 

material is insufficient to slow enzymatic degradation.  These results further motivated us 

to design coiled coils with a hendecad repeating pattern and repeat these experiments.  
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Figure 3.3. Enzymatic stability of heptad coiled coils in the presence of 5 μg/mL Proteinase K.  HPLC 

chromatograms and percent intact K4
7
 and E4

7
 by peak area immediately after addition of and upon incubation 

for 1, 3, 6, 12, and 24 h with Proteinase K in A) a homochiral blend and B) a heterochiral blend. 

3.2.3. Design of hendecad coiled coils 

From Gellman and coworkers’ work, we know that a hendecad repeating structure 

(abcdefghijk), where a, d, and h are hydrophobic residues, is favorable for heterochiral 

coil formation.34,35  To assist with the redesign of the heptad coiled coils to a repeating 

hendecad structure based on En
7
 and Kn

7
, we employed helical wheel diagrams to visualize 

potential sequences.  We observed that, as expected, the hydrophobic residues in the a 

and d positions of the heptad are gathered on one face of the helix, with charged residues, 

in the case of K4
7
, cationic residues specifically, flanking on either side (Figure 3.4A).  With 

this knowledge, we used the same amino acids from Kn
7
 to design a coiled coil with 
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hendecad repeat structure.  We first placed isoleucines and leucines in the a, d, and h 

positions, then cationic lysine residues in the e, g, and k positions to place them on either 

side of the hydrophobic face of the helix (Figure 3.4B), matching the placement of amino 

acids around the helix that we observed in the heptad repeat structure.  The b, c, i, and j 

positions were filled with alanines, similar to the heptad structure, and the f position was 

filled with glutamic acid, serving the same role as in the heptad to provide solubility while 

being on the opposite side from the interacting face of the helix.  For the E-rich hendecad, 

we used the same sequence except with all lysines exchanged for glutamic acids and 

vice versa.  Using this newly designed hendecad-based coiled coil sequence, we again 

investigated complex formation and enzymatic stability of homochiral and heterochiral 

coils.  
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Figure 3.4.  Helical wheel diagrams of: (A) K4
7
; and (B) K3

11
.  Helical wheels generated using HeliQuest 

(https://heliquest.ipmc.cnrs.fr/).  (C) Sequences of K4
7
 and K3

11
 aligned with the heptad abcdefg and 

hendecad abcdefghijk registers. 

3.2.4. Hendecad coiled coil formation: homochiral vs. heterochiral 

To elucidate whether the change from a heptad to a hendecad repeating structure 

affords stronger heterochiral complex affinity compared to homochiral, we examined 

hendecad complex formation using ITC.  We investigated hendecad coiled coils with a 

length of three repeats (K3
11

 and E3
11

) as they have a similar number of amino acids to the 

heptad coiled coils we used previously (33 amino acids for three repeats of the hendecad 

https://heliquest.ipmc.cnrs.fr/
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and 28 amino acids for four repeats of the heptad).  First, we confirmed the helical 

secondary structure of these newly designed hendecad coiled coils using CD 

spectroscopy (Figure B27B).  The homochiral titration of L-K3
11

 into L-E3
11

 in 1X PBS at pH 

7.4 results in an interaction that is initially exothermic (with a maximum binding heat of --

46 ± 8 kJ/mol) and becomes endothermic (with a maximum binding heat of 26 ± 1 kJ/mol) 

at a molar ratio of ~0.5 L-K3
11

: L-E3
11

 (Figure 3.5A), similar to the profile observed for the 

homochiral interaction of the heptad coils L-K4
7
 and L-E4

7
.  The binding heats then trend to 

zero (after subtracting the dilution heats of injectant into buffer and buffer into titrand) for 

all molar ratios > 1.6 L-K3
11

: L-E3
11

, indicating no further interaction.  Blending these coiled 

coils at a 1:1 ratio yields a mixture with a stronger α-helical signal by CD spectroscopy 

than either individual coiled coil (Figure B28B).  The heterochiral titration also begins with 

exothermic binding heats that become endothermic, but this titration has a second 

exothermically dominated domain at molar ratios > 1.2 D-K3
11

: L-E3
11

 and the binding heats 

don’t trend to zero until molar ratios > 2.5 D-K3
11

: L-E3
11

 (Figure 3.5B).  While the maximum 

exothermic binding heats for the homochiral titration and the two exothermic domains of 

the heterochiral interaction are similar in magnitude (-46 ± 8 kJ/mol for the homochiral 

interaction and -46 ± 1 kJ/mol and -44 ± 0.7 kJ/mol for the first and second exothermic 

domains of the heterochiral interaction), the maximum endothermic binding heats for the 

heterochiral interaction are much greater than the homochiral interaction (26 ± 0.7 kJ/mol 

for the homochiral titration and 88 ± 5 kJ/mol for the heterochiral titration). This indicates 

a stronger binding affinity for the heterochiral interaction of these hendecad coiled coils 

that mirrors what has been previously reported for Ac-(FKFE)2.29  Similarly to heterochiral 

heptad coiled coils, the CD signal for 1:1 D-K3
11

: L-E3
11

 (Figure B28D) is close to zero for 
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the wavelength range from 200 nm to 250 nm, due to opposing stereochemistries of the 

equimolar blend of peptides.  

 

Figure 3.5.  Thermograms and integrated binding heats of: (a) homochiral hendecad coiled coils L-K3
11

 and 

L-E3
11

 in 1X PBS; and (b) heterochiral hendecad coiled coils D-K3
11

 and L-E3
11

 in 1X PBS.  Larger heats of 

interaction are observed for the heterochiral complex than for the homochiral complex. 

3.2.5. Enzymatic degradation of hendecad coiled coils 

Encouraged by the stronger binding affinity we observed for heterochiral hendecad 

coiled coils compared to homochiral, we next investigated the enzymatic stability of our 

designed hendecad coiled coils.  We incubated solutions of homochiral (L-K3
11

: L-E3
11

) or 

heterochiral (D-K3
11

: L-E3
11

) hendecad coiled coils with 5 μg/mL Proteinase K as we did for 

the heptad coiled coils (200 μM each in 1X PBS at pH 7.4).  Similar to the heptad coiled 

coils, the hendecad coiled coils elute as two separate peaks, one for K3
11

 (eluting at 5.9 
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min) and one for E3
11

 (eluting at 7.9 min).  When incubated in buffer alone without 

Proteinase K, both the homochiral and heterochiral complexes remain stable over 30 h 

(Figure B32).  In the presence of Proteinase K, both L-K3
11

 and L-E3
11

 in the homochiral 

complex degrade completely in under 6 h, with only 11% and 7% of the peak area for 

each, respectively, remaining after 3 h (Figure 3.6A).  On the other hand, 44% of the L-

E3
11

 in the heterochiral complex remains after 30 h of incubation (Figure 3.6B), and we 

found that even after 7 days of incubation, L-E3
11

 did not completely degrade as 23% of 

the peptide still remains (Figure B33).  As expected, the D-K3
11

 in the heterochiral complex 

remains largely stable over the 30 h incubation with Proteinase K.  These results 

demonstrate that forming a heterochiral complex using our designed hendecad coiled 

coils is an effective strategy to protect a coiled coil in the natural L stereochemistry from 

degradation. 
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Figure 3.6.  Enzymatic stability of hendecad coiled coils in the presence of 5 μg/mL Proteinase K.  HPLC 

chromatograms and percent intact K3
11

 and E3
11

 by peak area immediately after addition of and upon 

incubation for 1, 3, 6, 12, and 30 h with Proteinase K in A) a homochiral blend and B) a heterochiral blend. 

3.3  Conclusions 

This work highlights that peptides can be rationally designed to undergo heterochiral 

interactions and thereby unlock a larger range of binding affinities and better control over 

enzymatic stability.  Experiments with coiled coils featuring the canonical heptad repeat 

pattern reveal that they bind stronger as homochiral compared to heterochiral mixtures, 

but with limited enzymatic stability.  Redesigning these heptad coiled coils into 

noncanonical hendecad repeat patterns enables complexation from both homochiral and 

heterochiral mixtures, with greater binding strength and enzymatic stability observed for 
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the latter.  The consistency between the binding heats observed in ITC and the enzymatic 

degradation profiles from HPLC throughout the manuscript corroborated the ITC results 

we observed despite not fitting the ITC data to binding models.  We observed that, in 

cases where the binding heats for one complex were smaller than another, the L-peptides 

in that complex degraded more quickly in the presence of enzyme, suggesting that such 

enzymatic stability measurements are a useful tool to assess intermolecular interactions.  

Going forward, while the design rules for homochiral coiled coils with heptad repeating 

patterns are relatively well known, continuing to correlate peptide sequence design in 

both homochiral and heterochiral mixtures of hendecad coiled coils to properties of the 

resulting complexes will provide important insights that enrich our molecular toolkit for 

engineering tunable materials. 

3.4  Materials and methods 

3.4.1. Materials 

Phosphate-buffered saline (PBS) pellets, sodium hydroxide (NaOH, 97%) pellets, 

acetonitrile (HPLC grade), trifluoracetic acid (TFA, 99%), dimethyl sulfoxide (99.9%), 

hydrochloric acid (37 wt%), dimethylformamide (DMF, ≥99.8%), diethyl ether (≥99.0%, 

contains butylated hydroxytoluene as inhibitor), triisopropylsilane (98%), piperidine 

(≥99%), 2,2′-(ethylenedioxy)diethanethiol (95%), diisopropyl carbodiimde (99%), and 

Proteinase K (from Tritirachium album) were purchased from Sigma-Aldrich.  Ultrapure 

water (18.2 MΩ cm) was obtained from a Thermo Scientific Smart2Pure water purification 

system.  All chemicals were used without further purification.  We note that each PBS 

pellet, when dissolved in 200 mL of DI water yields 1X PBS (137 mM NaCl, 2.7 mM KCl, 
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10 mM Na2HPO4, 1.8 mM KH2PO4).  To prepare 10X PBS, we dissolved each PBS pellet 

in 20 mL of DI water. 

3.4.2. Coiled coil synthesis 

Coiled coils were synthesized in-house using a CEM Corporation Liberty Blue 

automated, microwave-assisted solid phase peptide synthesizer via Fmoc methods on 

Rink amide resin SS (0.5 mmol/g substitution, 100-200 mesh, 1% divinylbenzene, 

Advanced ChemTech).  All syntheses began with swelling the resin in dimethylformamide 

(DMF) then two “dummy” coupling steps, where DMF is added to the reaction vessel 

alone and is heated to 90 °C like a normal coupling method.  These “dummy” coupling 

steps serve to allow the instrument to fully warm up and consistently hit the target 

temperature before starting the synthesis.  Fmoc-protected amino acids (Fmoc-Lys(Boc)-

OH, Fmoc-Ile-OH, Fmoc-Leu-OH, Fmoc-Ala-OH, and Fmoc-Glu(OBut)-OH) were used to 

grow the amino acid chain.  Fmoc protecting group removal was performed using 20% 

(v/v) piperdine in DMF and coupling reactions were performed with amino acids in the 

presence of the coupling agents diisopropylcarbodiimide (1 M in DMF) and Oxyma Pure 

(1 M in DMF) at 90 °C for 2 min.  The Fmoc removal and amino acid coupling steps were 

repeated to build the peptide from C-terminus to N-terminus.  The peptides were cleaved 

from the resin and side chain protecting groups (Boc and OBut) were removed via a 3 h, 

room temperature reaction in a cleavage cocktail containing 92.5% (v/v) trifluoroacetic 

acid, 2.5% triisopropylsilane, 2.5% 2,2’- (ethylenedioxy)diethanethiol, and 2.5% water 

purified by reverse osmosis (RO water).  The peptides were precipitated in cold ether and 

centrifuged (4816 x g for 5 min at 4 °C) to isolate a peptide pellet.  The peptide pellets 
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were washed once more in cold ether and centrifuged under the same conditions to re-

isolate peptide pellets.  The pellets were dried under vacuum for 45 min before being 

suspended in RO water, frozen in liquid nitrogen, lyophilized, and stored as powders at -

20 °C. 

3.4.3. Analytical-scale high performance liquid chromatography (HPLC) 

Peptide samples were dissolved at 1-2 mg/mL in HPLC solvent (95% ultrapure water 

+ 0.1% TFA, 5% acetonitrile + 0.1% TFA) and filtered through 13 mm syringe filters with 

0.45 μm polytetrafluoroethylene membranes (VWR) into 2 mL vials.  HPLC was 

performed on a Waters Alliance e2695 HPLC system with a 2998 photodiode array 

detector with separation achieved using an XBridge C18 reverse-phase column (4.6 x 75 

mm, 3.5 μm particle size).  For crude and purified peptide samples, a 1 mL/min linear 

gradient from 5-95% (v/v) acetonitrile in water + 0.1% TFA over 9 min was employed to 

elute the peptides from the column operating at 35 °C.  The only exceptions were l-E4
7 

and d-E4
7, which were eluted on a 1 mL/min gradient from 5-62% (v/v) acetonitrile in water 

+ 0.1% TFA over 17 min to better separate the peaks.  Elution was monitored by 

absorbance at 214 nm. 

3.4.4. Peptide purification by preparative-scale high performance liquid 

chromatography (HPLC) 

To purify peptides, 30-40 mg of peptide was dissolved in 10 mL of HPLC solvent (95% 

ultrapure water + 0.1% TFA, 5% acetonitrile + 0.1% TFA) and twice filtered through 25 

mm syringe filters with 0.45 μm polytetrafluoroethylene membranes.  The filtered solution 
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was loaded into the injection loop of a Waters 2545 HPLC system with an attached 2489 

photodiode array detector and Waters Fraction Collector III collection system.  The 

sample was separated on an XBridge C18 reverse-phase column (30 x 150 mm, 5 μm 

particle size).  The gradients used to achieve separation are listed in Table B1.  Eluent 

was collected in 13 x 100 mm glass culture tubes (VWR) and the fractions of eluent that 

eluted from the desired product peak were combined and lyophilized.  The lyophilized 

powders were used to obtain HPLC chromatograms and mass spectra of purified 

peptides and then were stored as powders at -20 °C. 

3.4.5. Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) 

mass spectrometry 

MALDI-TOF mass spectrometry was used to verify the mass of the purified peptides.  

Samples were prepared at ~1 mg/mL in RO water.  These samples were mixed 1:1 with 

a solution of cyano-4-hydroxycinnamic acid (CHCA) matrix prepared in 70% (v/v) 

acetonitrile in water + 0.1% TFA (2 μL of sample + 2 μL of CHCA solution) by pipetting up 

and down 6 times.  Upon mixing, a 2 μL aliquot was pipetted onto a FlexiMass SR48 

target plate (Shimadzu) and left at room temperature to dry.  MALDI-TOF was performed 

on a Shimadzu 8030 MALDI-TOF using MALDI TOFMix (LaserBio Labs) as a calibrant. 

3.4.6. Isothermal titration calorimetry 

ITC experiments were performed on a standard volume Affinity ITC (TA Instruments).  

All peptide solutions were prepared at 200 μM in 1X or 10X PBS, pH corrected to 7.40 ± 

0.05 by adding 1-5 μL of 1 M NaOH and degassed for 5-10 min using a TA Instruments 
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degassing station at 400 mm Hg.  The solution to be loaded into the syringe (the titrant) 

was used as prepared, whereas the solution to be loaded into the sample cell (the titrand) 

was diluted to 20 μM by adding 9 μL of 1X or 10X PBS to 1 μL of 200 μM sample.  The 

pH of the 20 μM sample was checked and always found to be within pH 7.40 ± 0.05.  The 

titrant and titrand pH were always checked to ensure they were with pH 7.40 ± 0.05 

immediately prior to experiments to avoid substantial heat contributions from the heat of 

mixing of solutions with different pH.  The 20 μM sample was also degassed before use.  

Titrations consisted of an initial 2 μL injection followed by 24 10 μL injections of 200 μM 

titrant solution injected into 1.3 mL of 20 μM titrand solution.  Following an initial delay of 

200 s, injections were separated by 250 s, unless otherwise noted.  Experiments were 

performed at 25 °C with a stirring rate of 125 rpm.  The reference cell was filled with 1.3 

mL of degassed, deionized water that is exchanged weekly.  The resulting thermograms 

were baseline-subtracted and heats of binding were obtained by integrating the area 

under each injection peak using NanoAnalyze (TA Instruments).  The obtained heats of 

binding were then divided by moles of injectant.  Heats of dilution (titrations of titrant into 

buffer and buffer into titrand) were analyzed similarly, and the molar heats of dilution were 

subtracted from the molar heats of binding to yield the final plots of kJ/mol of injectant vs. 

mole ratio for each titration.  Reported values for maximum exothermic and endothermic 

heats of interaction are the average of two separate experiments, with standard deviation 

reported. 
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3.4.7. Coiled coil degradation 

Degradation was monitored by HPLC.  Solutions of individual coiled coils were 

prepared at 200 μM in 1X PBS and pH corrected to 7.40 ± 0.05 using 1-15 μL of 1 M 

NaOH.  A stock solution of Proteinase K enzyme was prepared at 0.5 mg/mL.  For each 

pair of peptides, 1.5 mL of each 200 μM solution was mixed, then 30 μL of 0.5 mg/mL 

Proteinase K was added to the 3 mL total mixed solution to obtain a final concentration of 

5 μg/mL Proteinase K.  Each degradation solution was stirred at 250 rpm for the duration 

of the experiment.  For each timepoint, a 1 mL aliquot of degradation solution was added 

to an HPLC vial, a 100 μL injection was performed on HPLC, and the remaining 900 μL 

was returned to the bulk degradation solution.  To normalize for slight shifts in elution time 

due to changing solvent or environmental conditions, a MATLAB script (included in SI) 

was used to align all K4
7 (for heptad degradation) or K3

11 (for hendecad degradation) 

peaks to the same elution time as the elution at t = 0 h. 

3.4.8. Circular dichroism (CD) spectroscopy 

To confirm coiled coil stereochemistry and secondary structure, we measured CD 

spectra for individual and mixtures of coiled coils.  Unless otherwise noted, samples were 

prepared at 100 μM in 1X PBS (pH 7.4).  For measurement of coiled coil complexes, 

individual coiled coils were prepared at 200 μM in 1X PBS, then mixed in equal volumes.  

Measurements were performed on a Jasco J-1500 CD spectrophotometer at 20 °C using 

a 1 mm path length quartz cuvette from 250 nm to 200 nm at a scanning speed of 50 

nm/min.  In Section 4.1, we provide details on how we optimized these conditions.  For 
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temperature-dependent studies, spectra were taken at 5 °C intervals from 5 °C to 95 °C 

using a heating rate of 5 °C/min. 
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Chapter 4. Designing polymer-peptide conjugates to target aggregates that are 

implicated in ALS 

4.1 Introduction 

In this chapter, we designed polymer-peptide conjugates to sequester toxic 

aggregating proteins implicated in amyotrophic lateral sclerosis (ALS).  We investigated 

both D- and L-peptides as components of the polymer-peptide conjugate to further explore 

the design rules of stereochemistry-directed interactions. 

ALS, also known as Lou Gehrig’s disease, is a lethal neuromuscular disease.1–3  There 

were approximately 222,000 cases of ALS worldwide in 2015 and that number is 

estimated to increase by 69% to 376,000 cases by 2040.4  Current treatment options 

include the drugs riluzole5 and edaravone6, which slow ALS progression but fail to 

significantly extend patient survival,5,7 highlighting the urgent need for new ALS therapies.   

In 40-50% of familial and 5-10% of sporadic cases of ALS,8 a mutation of the C9orf72 

gene results in a hexanucleotide expansion of guanine and cytosine.  This particular 

hexanucleotide, GGGGCC, is typically repeated up to 23 times in healthy patients, but in 

patients with ALS it is repeated hundreds 

or thousands of times.9,10  Following 

transcription in this repeat expansion 

region, repeat-associated non-ATG (RAN) 

translation occurs, resulting in erroneous 

protein production (Figure 4.1).11,12  This 

results in the accumulation of repeating 

Figure 4.1.  C9orf72 gene mutation in ALS.  A 
hexanucleotide expansion of GGGGCC occurs within 
the gene, which, upon transcription, results in 
aggregation of repeating hexanucleotide RNA foci, 
loss of C9orf72 protein, and RAN translation of toxic 
DPRs.  Toxic DPRs aggregate, capture proteins, and 
cause cellular stress, leading to motor neuron death. 
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hexanucleotide RNA foci,10 a loss of the C9orf72 protein,13 and the production of five 

dipeptide repeat proteins (DPRs): glycine-alanine (GA)n, glycine-arginine (GR)n, proline-

arginine (PR)n, glycine-proline (GP)n, and proline-alanine (PA)n.12,14  The pathogenic 

mechanism of the C9orf72 mutation is not yet fully understood, and likely results from a 

combination of these three mutation effects, but it is known that (GA)n, is toxic in cell 

culture15,16 and is present in characteristic inclusions in the affected brain regions of 

patients with ALS.17  The (GA)n DPR, in a manner somewhat similar to the amyloid β 

protein implicated in Alzheimer’s disease, is an aggregating protein.16  (GA)n DPRs form 

insoluble cytoplasmic aggregates that transmit between cells18 and are toxic to cultured 

cells and primary neurons, including toxic mechanisms such as autophagy abnormalities 

and endoplasmic reticulum (ER) stress.16,19,20  Therefore, a method of alleviating (GA)n 

toxicity provides a therapeutic opportunity. 

Recent reports indicate that biologics designed to sequester or prevent the production 

of DPRs have had success in mitigating the deleterious hallmarks of ALS.18,21,22  For 

example, antibodies engineered to target (GA)n reduced (GA)n aggregation both in vitro 

and in vivo18,21 and, more recently, afforded favorable behavioral outcomes in ALS mouse 

models.21  In fact, in the ALS mouse model, mice that were treated with antibodies had a 

significant increase in survival compared to mice that received no treatment.21  Antisense 

oligonucleotides targeting the DPR-coding RNAs reduced levels of RNA foci and DPRs, 

changes which resulted in recovery from cognitive deficits in a mouse model.22   

While the above examples highlight the transformative therapeutic potential of DPR 

sequestration for ALS patients, the use of biologics presents several key challenges 

including: the time- and cost-intensive production processes; susceptibility to 
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physicochemical alterations during manufacture and transport;23 enzymatic 

degradation;23 undesirable immunogenic effects;24 and the need for extensive use of cold-

chain to deploy these treatments in developing countries.25  It will be very important to 

consider the deployment of therapeutics in developing countries moving forward, as the 

cases of ALS are predicted to shift from predominantly developed countries to developing 

countries over the next 15 years.4  To address these limitations, we seek to engineer 

synthetic therapeutics targeting (GA)n DPRs that will be easier to produce, less 

susceptible to physiochemical changes, and can be designed to eliminate the need for 

cold chain. 

 For our synthetic design to target (GA)n, we designed a polymer-peptide conjugate 

with two components: a (GA)n-binding peptide and a hydrophilic, biocompatible polymer 

(Figure 4.2).  We expect that the peptide will target the (GA)n DPRs in solution, while the 

polymer component will keep the conjugate and targeted DPR soluble to prevent and/or 

reverse aggregation.  A similar strategy has been reported for targeting amyloid β.26–28  

Treatment of Aβ40 with a comb-shaped conjugate of the β-sheet breaker iAβ5 conjugated 

to a backbone of poly[N-(2-hydroxypropyl) methacrylamide]) leads to dispersal of Aβ40 

aggregates.  To determine whether a similar approach would similarly disperse (GA)n 

aggregates, we sought to design a similar system.  For the binding peptide, we selected 

(GA)10, matching the structure of the aggregating DPR.  This peptide was chosen to 

promote interactions with the full length (GA)n protein while remaining hydrophilic enough 

to be processable and dynamic enough to be available to interact with outside (GA)n.  The 

iAβ5 peptide used to target Aβ40 was designed by a similar approach, as it is a short 

peptide that was taken from the full length protein.28,29  We examined both L-(GA)10 and 
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D-(GA)10, as recent work with β-sheet forming peptides suggests that stereochemistry-

directed interactions between an L-peptide (the stereochemical configuration that is 

naturally occurring, so the configuration that the (GA)n DPR will be in) and a D-peptide 

(does not occur naturally) lead to stronger binding between the peptides.30–32  If this holds 

true for (GA)n, then the D-(GA)10 may target the (GA)n DPRs more strongly than L-(GA)10. 

In this chapter, we sought to fill two knowledge gaps.  First, we wanted to determine 

whether attaching a peptide designed to interact with (GA)n to a hydrophilic polymer would 

effectively disperse (GA)n aggregates in a similar manner to the approach that was 

previously shown to be effective against aggregates of Aβ40.26–28  While this polymer-

peptide approach was successful for Aβ40, the degree to which this approach is broadly 

applicable is not yet known.  The success of the polymer-peptide conjugate may be 

dependent on the choice of the peptide component in the conjugate, which we also 

investigated.  To better understand the extent to which stereochemistry-directed 

interactions affect peptide-peptide interactions, we compared D- and L-conjugates to 

determine whether there was a difference in their ability to disperse aggregates of L-(GA)n.  

Here we report the effects our designed polymer-peptide conjugates have on the 
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aggregation of model toxic (GA)n proteins using solution turbidity and transmission 

electron microscopy (TEM) studies. 

 

Figure 4.2.  Proposed method of targeting (GA)n DPRs. 

4.2 Results and discussion 

4.2.1. (GA)10 recapitulates the features of toxic (GA)n and is a suitable model toxic 

DPR 

We began by investigating (GA)10 as a model (GA)n DPR.  We selected n = 10 repeats 

initially as this length was just soluble enough in the presence of aqueous solvent to allow 

for solution characterization.  We confirmed the primary structure and purity of (GA)10 

using NMR spectroscopy, MALDI-TOF mass spectrometry, and HPLC (Figure C1).  To 

confirm that (GA)10 is of sufficient length to recapitulate the physical properties observed 

in native (GA)n species, we verified the β-sheet secondary structure and the aggregation 

behavior of (GA)10.  Fourier-transform infrared spectroscopy (FTIR) of (GA)10 in both 

powder form (Figure C2) and in 10 mM phosphate buffer (Figure 4.3A) shows a strong 

peak characteristic of β-sheet formation at 1624 cm-1.33  The β-sheet secondary structure 

is further confirmed by the concentration-dependent fluorescence of the amyloid dye 
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Thioflavin T in the presence of (GA)10 (Figure 4.3B).  As for aggregation, (GA)10 at 2.1 

mM (3 mg/mL) in 10 mM phosphate buffer results in a visually turbid solution seconds 

after dissolution (Figure C3) and after incubation overnight shows signs of aggregation 

by transmission electron microscopy (TEM) (Figure 4.3C, Figures C5-C6).  The 

combination of retaining the same secondary structure and aggregating in aqueous 

solution make (GA)10 a suitable model for the toxic (GA)n DPRs in this study, as it will 

allow us to test methods of preventing aggregation and dispersing pre-formed 

aggregates. 

 

Figure 4.3.  Characterization of (GA)10 features.  A) IR spectrum of 3 mg/mL (GA)10 in 10 mM phosphate 

buffer, with a characteristic β-sheet peak at 1624 cm-1 highlighted.  B) Thioflavin T fluorescence as a function 

of (GA)10 concentration in 10 mM phosphate buffer.  The dotted line is meant as a linear guide for the eye.  

C) TEM image of (GA)10 after overnight incubation in 10 mM phosphate buffer.  Scale bar is 500 nm.  

Multiple levels of aggregation are observed, with small aggregates coming together to form larger 

aggregates. 
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4.2.2. Design, synthesis, and characterization of (GA)n-targeting polymer-peptide 

conjugates 

Similarly to the design of the amyloid β breaker iAβ5,29 which was directly inspired by 

the hydrophobic region of the N-terminal domain of amyloid β, we directly modeled our 

(GA)n-binding peptide off (GA)n itself, using (GA)10 as the (GA)n-binding peptide in our 

polymer-peptide conjugate.  We selected poly(ethylene glycol) (PEG) as the polymer 

component of our polymer-peptide conjugate for its significant aqueous solubility and 

demonstrated biocompatibility.34  As the (GA)10 in the peptide component of the conjugate 

is expected to interact with (GA)n DPRs, we need a polymer with high solubility to prevent 

the conjugate from becoming too hydrophobic and participating in aggregation itself.  

Additionally, PEG is widely used in biomaterials and FDA-approved, making it a logical 

choice for a potential therapeutic.35   

To conjugate (GA)10 to PEG, we used thiol-maleimide chemistry.  A thiol was added to 

the (GA)10 sequence via addition of a cysteine residue, and we also included three glycine 

residues as a spacer to separate the (GA)10 from the polymer and allow it to be more 

flexible.  This resulted in a final sequence of CGGG-(GA)10.  The (GA)10 peptide was 

dissolved at 1 mM in an aqueous 7 M urea solution, where the presence of urea (a known 

denaturant)36 supports solubilization, and stirred at a 2:1 volume ratio with a 1 mM 

solution of methoxypolyethylene glycol maleimide (mPEG-mal) (5000) at room 

temperature for 1 h (Figure 4.4A).  A 1.25:1 ratio of peptide: polymer was not sufficient 

to drive the reaction of the polymer to completion, so a 2:1 molar ratio of thiol (peptide): 

maleimide (polymer) was used (Figure C7).  After an hour, HPLC shows a reduction in 

the size of the peptide peak, the disappearance of the polymer peak, and the appearance 
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of two new peaks (Figure 4.4B), one corresponding to the conjugate and one broad peak 

hypothesized to be conjugate that has begun interacting with free CGGG-(GA)10 peptide 

in solution.  This would make sense as the conjugate is designed to target (GA)n proteins 

and is corroborated by the fact that a 2:1 excess of CGGG-(GA)10: mPEG-mal is required 

to react all of the polymer (Figure C7), likely because some of the peptide is being 

sequestered by the conjugates as they are formed.  To separate the conjugate from the 

excess peptide and the conjugate already containing sequestered peptide, we used 

preparative-scale HPLC to isolate the peak corresponding to the conjugate.  The product 

obtained from this purification was confirmed to be mPEG-CGGG-(GA)10 conjugate by 

NMR spectroscopy (Figure C8) and the purity was confirmed by size exclusion 

chromatography (SEC) (Figure C8) and HPLC (Figure C8).  We produced both L- and D-

CGGG-(GA)10 conjugates in this manner and further characterized them by TEM following 

overnight incubation in 10 mM phosphate buffer (Figure 4.4C, Figures C9-C10).  We 

observe the presence of rod-like morphology throughout the sample, suggesting 

assembly of the conjugates into cylindrical micelles with a hydrophilic PEG exterior and 

a hydrophobic (GA)10 interior. 
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Figure 4.4.  Synthesis and characterization of mPEG-CGGG-(GA)10 conjugates.  A) Synthesis of mPEG-

CGGG-(GA)10 conjugates via thiol-maleimide chemistry.  B) HPLC chromatogram showing the reaction 

mixture after 1 h (black trace), mPEG-mal alone (blue trace), and L-CGGG-(GA)10 alone (orange trace).  

After 1 h of reaction, the largest peak in the reaction mixture (at 6.1 min) is a new peak, attributed to the 

newly formed conjugate, and elutes between the polymer peak and the peptide peak.  The other major 

peak in the chromatogram, a very broad peak that elutes from 7.2 to 9 min, is attributed to conjugate product 

that interacts with peptide reactant.  C) TEM image of mPEG-L-CGGG-(GA)10 after overnight incubation in 

10 mM phosphate buffer.  A rod-like morphology is observed throughout the sample, suggesting a cylindrical 

micelle morphology for the conjugate.  Scale bar is 500 nm. 

4.2.3. Co-incubation of (GA)10 with mPEG-CGGG-(GA)10 conjugates 

To test the efficacy of the mPEG-CGGG-(GA)10 conjugates in preventing aggregation 

of the (GA)10 model toxic DPR, we incubated (GA)10 in 10 mM phosphate buffer containing 

either mPEG-L-CGGG-(GA)10, mPEG-D-CGGG-(GA)10, the mPEG-mal we used for 

conjugation as a control, or with no additives, just (GA)10 in buffer alone.  As a measure 

of aggregation, we observed the turbidities of solutions from each treatment group over 
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time by monitoring absorbance at 550 nm and plotting absorbance units with the 

absorbance of the buffer subtracted out (Figure 4.5).  The absorbance of the conjugates 

alone in buffer is similar to the absorbance of buffer alone (Figure C11), so the addition 

of conjugate to the solution does not artificially increase turbidity.  The (GA)10 in each 

condition was incubated at 3 mg/mL (2.1 mM), a concentration at which we have observed 

(GA)10 to be insoluble.  We dissolved the conjugates and mPEG-mal control at 7 mg/mL, 

which for the conjugates is approximately 1 mM conjugate and 0.25 mM peptide content 

on the conjugate.  The duration of this experiment was 14 days, over which bacteria may 

be expected to grow in aqueous conditions.  To determine whether bacterial growth 

contributes to a rise in turbidity, we monitored the turbidity of a solution of 10 mM 

phosphate buffer for a duration of 28 days and did not observe any increase in turbidity 

(Figure C12).  The experiment was performed with three separately prepared vials for 

each condition, and each timepoint is plotted with a bar to show the average turbidity as 

well as individual data points corresponding to each individual vial in the treatment group.  

We observe that the control condition where buffer alone is added to (GA)10 continually 

increases in turbidity and heterogeneity between vials over time.  Unexpectedly, the 

control condition where we added mPEG-mal to (GA)10 has an increase in turbidity over 

the first day, then remains stable, rather than continuing to increase like the buffer alone.  

mPEG-mal has a functional reactive group, so it is possible that the maleimide is reacting 

with the free amine on the (GA)10, leading to less aggregation.  We further tested this in 

a second turbidity study by comparing a PEG (5000)-methyl ether (PEG-ME) without a 

reactive group against the mPEG-mal (Figure C13).  We found that the aggregation 

behavior of (GA)10 treated with PEG-ME is similar to (GA)10 treated with buffer alone, 
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supporting that the maleimide group is interacting with (GA)10 and preventing aggregation.  

As the conjugates we are using are purified and do not contain PEG with free reactive 

units, the best control treatment group is PEG-ME, so we used that going forward in future 

experiments.   

For the (GA)10 treated with the mPEG-L-CGGG-(GA)10 conjugate, there is a sharp 

drop in turbidity over the first day, followed by sustained incremental decreases in turbidity 

over the 14 days of this experiment, demonstrating the ability of the conjugate to not only 

prevent aggregation, but also reverse the initial aggregation that occurred.  Finally, co-

incubation of (GA)10 with the mPEG-D-CGGG-(GA)10 conjugate leads to higher average 

turbidities than the mPEG-L-CGGG-(GA)10 conjugate at the t = 0 days time point taken 

just after adding the conjugate to (GA)10, but we note that this is at least partially due to 

one vial that had a much higher turbidity than the others in the group.  Interestingly, we 

find that over time that high turbidity vial becomes less turbid to the point where it is similar 

in turbidity to the other two vials in the sample group after 10 days.  Similarly to the mPEG-

L-CGGG-(GA)10 conjugate group, we observe that the mPEG-D-CGGG-(GA)10 decreases 

in turbidity over time, albeit with a more gradual decrease than for the mPEG-L-CGGG-

(GA)10 group.  This result may indicate that the opposite stereochemistries pack together 

differently, causing a difference in the rate at which (GA)10 is targeted by the mPEG-D-

CGGG-(GA)10 conjugate, but further studies would be needed to confirm this.  Overall, 

both conjugate treatment groups have a marked effect of not only preventing aggregation 

but also reversing it, even with an order of magnitude less peptide content present in the 

conjugate (~0.25 mM) compared to the free (GA)10 (~2.1 mM).   
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Figure 4.5.  Turbidity over time for (GA)10 treated with four different conditions: 10 mM phosphate buffer 

alone, 7 mg/mL mPEG-mal, 7 mg/mL mPEG-L-CGGG-(GA)10, and 7 mg/mL mPEG-D-CGGG-(GA)10.  When 

incubated in buffer alone, the (GA)10 increases in turbidity over time.  However, when incubated with just 

polymer (mPEG-mal), the turbidity initially increases then remains stable, indicating that the polymer alone 

prevented further aggregation.  This result was attributed to the presence of a reactive group on mPEG-

mal.  The mPEG-L-CGGG-(GA)10 treatment group led to a decrease in (GA)10 turbidity with a sharp drop 

over the first day, then steadily decreased throughout the remainder of the experiment.  Finally, the mPEG-

D-CGGG-(GA)10 treatment group initially did not lead to a decrease in (GA)10 aggregation, but over time did 

decrease in turbidity. 

In addition to turbidity, we monitored thioflavin T fluorescence as a measure of 

aggregation.  However, we observed trends that were not at all similar to the trends 

observed for the turbidity experiment.  While there were some changes in the first couple 

days, from 2 days to 14 days there was little to no change in fluorescence, with the 

fluorescence values being very similar across all conditions tested (Figure C14).  These 

results indicate that either the thioflavin T was able to diffuse into the conjugates and stain 

both free, aggregated (GA)10 and (GA)10 taken up by the conjugates, leading to a constant 
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level of fluorescence at most time points, or the (GA)10 concentration in the outside 

solution does not change but the level of aggregation of the (GA)10 changes.   

4.2.4. Morphological behavior of (GA)10 incubated in buffer and with conjugates 

At the beginning and end of the turbidity experiment performed above, small aliquots 

of each solution were examined by TEM to examine changes in the morphological 

characteristics of the (GA)10 under different conditions (Figure 4.6, Figures C15-C20).  

Immediately after adding (GA)10 to buffer alone (t = 0 days), we already observed 

aggregation beginning to occur, with a mixture of small, independent aggregates and 

larger structures that seem to be made up of groups of those smaller aggregates.  To rule 

out the possibility of the 10 mM phosphate buffer contributing to the structures that we 

observed, we took TEM images of the buffer alone and saw no evidence of any structures 

formed (Figure C4).  After 14 days of incubation in buffer, we observe the formation of 

much larger aggregates, which aligns with the turbidity data indicating that the solution 

became more turbid over time.  For both groups of (GA)10 treated with conjugate at t = 0 

days, we observed both cylindrical structures that are consistent with the structures of the 

conjugates and some small aggregates.  After 14 days of incubation, we still observe a 

mixture of both conjugates and small aggregates for both L- and D-conjugates, but there 

is nothing similar to the large aggregation observed for the (GA)10 incubated in buffer 

alone.  These data taken together with the turbidity data indicate that the mPEG-L-CGGG-

(GA)10 and mPEG-D-CGGG-(GA)10 conjugates may have some therapeutic potential as 

they prevent (GA)n aggregation. 
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Figure 4.6.  TEM images of (GA)10 incubated in buffer alone, 7 mg/mL mPEG-L-CGGG-(GA)10, and 7 

mg/mL mPEG-D-CGGG-(GA)10 immediately after incubation began and after 14 days of incubation.  In the 

buffer treatment group, small aggregates of (GA)10 are observed coming together to form larger aggregates 

at the beginning of the experiment, while at the end of the experiment much larger aggregates are observed.  

For both conjugate conditions, small (GA)10 aggregates are observed at the beginning and end of the 

experiment, but the conjugate treatment prevents them from forming large-scale aggregates as observed 

for (GA)10 incubated in buffer alone.  

4.2.5. Disaggregation of (GA)10 in the presence of conjugates is concentration-

dependent 

To test the effects of conjugate concentration on (GA)10 aggregation prevention, we 

repeated the previous turbidity experiment with three different concentrations of mPEG-
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L-CGGG-(GA)10: 7 mg/mL (same as previous experiment), 0.35 mg/mL (5x lower 

concentration, ~0.2 mM conjugate and ~0.05 mM peptide content), and 35 mg/mL (5x 

higher concentration, ~5 mM conjugate and ~1.2 mM peptide content) (Figure 4.7).  For 

this experiment, we decided to take turbidity data at earlier timepoints (t = 3 h, t = 6 h, 

and t = 12 h) to capture some data points during the sharp drop in turbidity we observed 

over the first 24 h for 7 mg/mL mPEG-L-CGGG-(GA)10 in the last experiment.  We chose 

to use mPEG-L-CGGG-(GA)10 here because it broke up the (GA)10 aggregates in the 

previous turbidity experiment faster than the mPEG-D-CGGG-(GA)10.  We found that the 

turbidity of (GA)10 in buffer alone again increases over time and becomes more 

heterogeneous with time.  For 35 mg/mL mPEG-L-CGGG-(GA)10, the turbidity starts low 

and stays low.  By comparing the initial t = 0 h turbidity of 35 mg/mL mPEG-L-CGGG-

(GA)10 to the buffer alone, we can see that the 35 mg/mL treatment group prevented initial 

aggregation of (GA)10 to a significant degree (p < 0.005).  On the other hand, the initial 

turbidity of the (GA)10 incubated with 7 mg/mL mPEG-L-CGGG-(GA)10 is similar to the 

initial turbidity of the (GA)10 incubated with buffer alone and then decreases with time to 

a final turbidity similar to the final turbidity of the 35 mg/mL treatment group.  Finally, the 

turbidity of (GA)10 in the 0.35 mg/mL mPEG-L-CGGG-(GA)10 treatment group is initially 

higher than all the other treatment groups, then experiences a small increase after 3 h, 

and stays at the same turbidity for the duration of the study.  These data indicate a 

concentration-dependent response of (GA)10 aggregation to mPEG-L-CGGG-(GA)10, 

where at a higher concentration (35 mg/mL) with similar peptide content on the conjugate 

to free (GA)10 in solution, the conjugate prevents most of the aggregation of (GA)10 from 

happening at all.  At a middle concentration (7 mg/mL) with an order of magnitude lower 
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concentration of conjugate peptide content compared to free (GA)10, the conjugate does 

not prevent initial aggregation, but does break up the aggregates that form.  At a lower 

concentration (0.35 mg/mL) with two orders of magnitude lower conjugate peptide content 

concentration compared to free (GA)10, the conjugate neither prevents initial aggregation 

nor breaks up the aggregates that are present, but it does prevent the aggregates from 

growing like what is observed for (GA)10 in buffer alone. 

Figure 4.7.  Turbidity over time for (GA)10 treated with buffer or three different concentrations of mPEG-L-

CGGG-(GA)10.  As previously observed, the turbidity of the (GA)10 incubated in buffer alone continually 

increases over time.  The (GA)10 treated with 35 mg/mL mPEG-L-CGGG-(GA)10 has low turbidity initially 

and remains low, indicating that it prevents most aggregation from occurring at all.  The 7 mg/mL mPEG-L-

CGGG-(GA)10 treatment condition has an initially higher turbidity that drops over time, indicating that some 

aggregates formed and were subsequently broken up by the conjugate.  Finally, the (GA)10 treated with 

0.35 mg/mL mPEG-L-CGGG-(GA)10 starts with a higher turbidity than the other conditions, has an increase 
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over the first 3 h, but then remains stable for the next 14 days, suggesting that aggregates form and are 

not broken up, but the conjugate also does not allow them to grow. 

4.2.6. Incubation of mPEG-CGGG-(GA)10 conjugates with pre-aggregated (GA)10 

To better reflect the disease state in ALS, we designed an experiment where (GA)10 

was allowed to freely aggregate before application of the treatment groups.  (GA)10 was 

incubated in 10 mM phosphate buffer for 7 days before either PEG-ME, mPEG-L-CGGG-

(GA)10, or mPEG-D-CGGG-(GA)10 were added to the sample in powder form.  Similar to 

previous experiments, the polymer or conjugates were added at a concentration of 7 

mg/mL and a control was run where nothing further was added to the buffer.  The turbidity 

of the solutions was monitored over a period of 28 days after adding PEG-ME or 

conjugate to observe the continued aggregation behavior of (GA)10 (Figure 4.8).  As 

expected, the (GA)10 incubated in buffer alone or with PEG-ME alone continued to 

aggregate over time, as evidenced by the continual increase in turbidity over time in this 

experiment.  For the two conjugate treatment groups, we observed a sharp increase in 

turbidity over the first 2 days, after which the turbidity consistently decreased.  

Interestingly, whereas for the co-incubation experiment we observed a difference in the 

aggregation behavior of (GA)10 for treatment with mPEG-L-CGGG-(GA)10 compared to 

mPEG-D-CGGG-(GA)10, for this experiment the two conjugate treatments lead to very 

similar responses in (GA)10 aggregation behavior.  We note that the starting turbidities for 

the buffer and PEG-ME treatment groups were significantly different from the starting 

turbidities for the mPEG-L-CGGG-(GA)10 and mPEG-D-CGGG-(GA)10 treatment groups, 

even though for the first week they were all just (GA)10 incubating in buffer.  We attribute 

this to the use of differently shaped stir bars between the first two treatment groups and 
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the second two treatment groups.  Despite the different starting turbidities, it is clear that 

the (GA)10 in buffer and PEG-ME aggregates unchecked, while the conjugate-treated 

(GA)10 aggregation initially accelerates but is then stopped and reversed.  This is 

supported by calculating a percent change from t = 0 days after pre-aggregation to t = 28 

days after pre-aggregation.  The (GA)10 treated with buffer experienced a 141% increase 

in turbidity over this time period, the (GA)10 treated with PEG-ME experienced a 99% 

increase in turbidity, the (GA)10 treated with mPEG-L-CGGG-(GA)10 experienced a 49% 

decrease in turbidity, and the (GA)10 treated with mPEG-D-CGGG-(GA)10 experienced a 

37% decrease in turbidity. 

 

Figure 4.8.  Turbidity over time for (GA)10 aggregated for 7 days, then treated with no further additives, 7 

mg/mL PEG-ME, 7 mg/mL mPEG-L-CGGG-(GA)10, or 7 mg/mL mPEG-D-CGGG-(GA)10.  The time indicates 

the days since treatment was added, rather than total days of aggregation.  The (GA)10 incubated with buffer 

or PEG-ME continually increase in turbidity over time.  However, the (GA)10 incubated with mPEG-L-CGGG-

(GA)10 or mPEG-D-CGGG-(GA)10 see an initial increase in turbidity for the first two days, then the turbidity 

decreases over time, indicative of the conjugates breaking up the aggregates that formed. 
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4.2.7. Morphological behavior of pre-aggregated (GA)10 upon addition of PEG-ME 

and mPEG-CGGG-(GA)10 conjugates 

In an analogous manner to the first co-incubation turbidity study, we acquired TEM 

images of the (GA)10 solutions with different treatment groups at the end of the experiment 

(28 days), as well as the end of the pre-aggregation period (Figure 4.9, Figures C21-

C25).  We observed that small (GA)10 aggregates were coming together into larger 

aggregates after the pre-aggregation period but were not yet the large-scale aggregates 

that we observed 28 days after the pre-aggregation period.  The (GA)10 that was treated 

with PEG-ME had a similar morphology to the (GA)10 that was incubated in buffer alone, 

with large-scale aggregates similar in size to those observed in buffer alone.  For the two 

conjugate-treated conditions, there again is no evidence of the large-scale (GA)10 

aggregates observed for the (GA)10 incubated in PEG-ME or buffer.  However, there are 

some smaller aggregates observed that are still present after 28 days, which may still be 

broken up by the conjugates over time, considering that the turbidity was still steadily 

decreasing and had not leveled off at the end of the experiment. 

 

Figure 4.9.  TEM images of (GA)10 incubated in buffer alone, with PEG-ME, with mPEG-L-CGGG-(GA)10, 

and with mPEG-D-CGGG-(GA)10 28 days after a 7 day pre-aggregation period, compared to (GA)10 at the 
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end of the 7 day pre-aggregation period.  Matching the trends in the turbidity data, (GA)10 incubated in 

buffer or PEG-ME forms large-scale aggregates, while (GA)10 incubated in mPEG-L-CGGG-(GA)10 or 

mPEG-D-CGGG-(GA)10 show no evidence of similar large-scale aggregates.  Scale bars are 500 nm. 

4.2.8. Incubation of mPEG-L-CGGG-(GA)10 and mPEG-D-CGGG-(GA)10 conjugates 

with (GA)20 

In the disease state, (GA)n is expected to be tens to thousands of repeats in length.20,37  

As such, it will be important to understand the relationship between the length of the 

peptide that is a component of the conjugate and the length of the (GA)n that it is targeting.  

To this end, we synthesized (GA)20, which is double the length of the peptide component 

of the conjugates.  As 40 amino acids is pushing the limits of the maximum peptide length 

achievable via automated, microwave-assisted peptide synthesis, we used mass 

spectrometry to check the mass of the (GA)20 we synthesized (Figure C26).  We found 

that the mass we observed in mass spectrometry corresponds to (GA)20 with four alanine 

deletions and three glycine additions, so the (GA)20 peptide is really (GA)16G.  For the 

purposes of this experiment, this is not a problem as we simply want to test our mPEG-

CGGG-(GA)10 conjugates against a (GA)n longer in length than ten repeats.   

We studied the effects of coincubation of PEG-ME and mPEG-L-CGGG-(GA)10 on 

(GA)20 aggregation compared to aggregation in buffer alone (Figure 4.10) and the effects 

on (GA)20 aggregation of adding mPEG-L-CGGG-(GA)10 or mPEG-D-CGGG-(GA)10 to 

(GA)20 that was pre-aggregated for one week (Figure 10).  For (GA)20 incubated in buffer 

alone, there is an increase in turbidity over the first day, then there isn’t much change until 

Day 15, after which there is a drop in turbidity on Days 30 and 44 that are similar to the 

starting turbidity (Figure 4.10).  When (GA)20 is preaggregated for 7 days before turbidity 



97 
 

is measured, there is little difference in the turbidities observed over time (Figure 4.11).  

These data taken together may indicate that (GA)20 aggregates very quickly over 1 day 

to form stable aggregates in solution that don’t grow any larger.  When (GA)20 is co-

incubated with PEG-ME, the same trends are observed: there is an increase in turbidity 

over the first day of co-incubation and there are little changes in turbidity with time until a 

drop in turbidity back to the starting value is observed after 30 days (Figure 4.10).  For 

the co-incubation of (GA)20 with mPEG-L-CGGG-(GA)10, a nearly identical trend is 

observed, with a notable difference being that after 30 days, there is a larger drop in 

turbidity that is less turbid than the starting solution (Figure 4.10).  Further 

experimentation would be required to confirm that the conjugate is having a significant 

impact on aggregation at these late time points.  When mPEG-L-CGGG-(GA)10 is 

incubated with pre-aggregated (GA)20, however, no changes in turbidity are observed, 

very similar to the (GA)20 incubated in buffer, so there are no indications that mPEG-L-

CGGG-(GA)10 is effective at dispersing pre-formed aggregates (Figure 4.11).  Finally, 

incubation of mPEG-D-CGGG-(GA)10 with pre-aggregated (GA)20 also does not affect the 

turbidity of the solutions over time, leading to the same conclusion that mPEG-D-CGGG-

(GA)10 is not effective at dispersing (GA)20 aggregates. 

As the mPEG-CGGG-(GA)10 conjugates seem to be less effective against (GA)20 

compared to (GA)10, we sought design changes that might increase the effectiveness of 

the conjugates in preventing and dispersing longer aggregates.  As a potential method to 

mediate this loss of effectiveness, we next explored increase the valency of the peptide 

presentation on the conjugates. 
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Figure 4.10.  Turbidity over time for (GA)20 treated with buffer, 7 mg/mL PEG-ME, or 7 mg/mL mPEG-L-

CGGG-(GA)10.  There is little difference in turbidity over time between the three treatment conditions, 

indicating that mPEG-L-CGGG-(GA)10 did not affect the aggregation of (GA)20 over this time period.

 

Figure 4.11.  Turbidity over time for (GA)20 aggregated for 7 days, then treated with no further additives, 7 

mg/mL mPEG-L-CGGG-(GA)10, or 7 mg/mL mPEG-D-CGGG-(GA)10.  The time indicates the days since 

treatment was added, rather than total days of aggregation.  There is little difference in turbidity between 
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the three treatment conditions, indicating that mPEG-L-CGGG-(GA)10 and mPEG-D-CGGG-(GA)10 did not 

affect the aggregation of (GA)20 over this time period. 

4.2.9. Multivalent presentation of peptide content on star-shaped conjugates 

Changing the architecture of the polymer-peptide conjugate is expected to change the 

presentation of the peptide component to the environment, and therefore may change the 

efficiency of the conjugate’s interaction with (GA)n in solution.  We prepared conjugates 

on 4-arm PEG-maleimide (20k) and 4-arm PEG-maleimide (10k) to alter both the 

presentation style and the ratio of polymer to peptide in the conjugate.  If full conversion 

is achieved for these conjugations (all 4 arms of the polymer react with one peptide each), 

then the 20k polymer would have the same polymer: peptide ratio as the linear conjugate 

(20k: 4 peptides compared to 5k: 1 peptide).  Meanwhile, the density of peptide on the 

conjugate would be twice as high for full conversion of the 10k polymer.  Conjugates with 

both 4-arm polymers were prepared using the same reaction conditions as the linear 

conjugates (1 mM each of peptide and polymer in 7 M urea, 2: 1 volume ratio of peptide: 

polymer, 1 h reaction at room temperature) and purified by dialysis in a 3.5 kDa dialysis 

membrane against deionized water.  However, after purification, we found that each of 

these conjugates was insoluble in aqueous solution even at concentrations as low as 0.5 

mg/mL (Figure C27).  Changing the peptide presentation had a significant effect on the 

aggregation behavior of the conjugates themselves, regardless of whether the polymer: 

peptide ratio of the 4-arm conjugate was the same as the polymer: peptide ratio of the 

linear conjugate.  We hypothesize that the dramatic decrease in solubility for the 4-arm 

conjugates is due to a lack of flexibility required for the hydrophilic PEG component to 

fully wrap the hydrophobic peptide and form a hydrophilic shell.  The linear conjugate, 
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despite having the same polymer: peptide ratio as the conjugates of the 20k 4-arm PEG, 

has a more flexible PEG component that likely more easily forms a hydrophilic shell 

around the peptide, giving it the cylindrical micelle shape observed in TEM.  Without the 

hydrophilic shell to solubilize the 4-arm conjugates, they aggregate in aqueous solution 

at much lower concentrations than the linear conjugates.  To make multivalent conjugates 

that are effective as therapeutics, a balance will need to be struck where a more 

hydrophobic peptide component will drive stronger interactions with (GA)n but lead to a 

greater propensity for the conjugate to aggregate.  Finding a different polymer 

component, whether that be a longer PEG chain or a different, more hydrophilic polymer 

(perhaps a zwitterion, for example poly(sulfobetaine methacrylate)), will be an important 

piece of this balance.   

4.3 Conclusions 

This work demonstrates a synthetic system designed to target toxic, aggregating 

(GA)n DPRs that are implicated in amyotrophic lateral sclerosis.  Polymer-peptide 

conjugates with a hydrophilic PEG polymer component and a hydrophobic (GA)10 peptide 

component not only stop the aggregation of a model DPR, (GA)10, but are also capable 

of breaking up aggregates that have already formed.  This is supported by decreases in 

the turbidity of (GA)10 solutions incubated with D- or L-conjugates over time, whereas the 

turbidity of (GA)10 solutions incubated with polymer alone or buffer alone increase over 

time.  Additionally, TEM images reveal significant morphological differences, with a much 

more advanced aggregation state for (GA)10 incubated in buffer or with polymer alone 

compared to (GA)10 incubated with conjugates.  While we expected that using conjugates 
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with D-peptides might be more effective than conjugates with L-peptides due to previous 

reports of β-sheet peptides that form stronger interactions between D and L, we saw little 

difference in the effectiveness of our D- and L-conjugates in preventing and dispersing 

aggregation, leaving open questions about the design rules of stereochemistry-directed 

interactions.  These data represent a unique middle ground where the D-peptides in the 

conjugate clearly interact with the L-(GA)10, but don’t interact more strongly than L-

conjugates.  In previous examples with other peptide systems, heterochiral interactions 

were either stronger than homochiral or did not occur at all; the unique interaction 

between D- and L-(GA)10 deserves further investigation to further elucidate the design 

rules for stereochemistry-directed interactions.  While both conjugates were effective 

against (GA)10, they were less effective in breaking up aggregates of a longer model DPR, 

(GA)20.  Since native toxic (GA)n DPRs are hundreds to thousands of repeats in length, 

further investigation into a method that allows shorter length peptide components to 

effectively disaggregate longer (GA)n is critical.  Going forward, focus should be turned to 

finding conjugate components that will allow for multivalent conjugates, whether as 4-arm 

star-shaped, comb-shaped, or another form of conjugate to expand knowledge of the 

relationship between polymer architecture and (GA)n targeting.  The design of a synthetic 

therapeutic that is effective at both preventing and disrupting aggregation is a crucial step 

toward optimizing therapeutics that are less difficult/expensive to produce and less cold 

chain-dependent than current biologics, and this work represents an important foundation 

building toward that goal. 
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4.4 Materials and methods 

4.4.1. Materials 

Potassium phosphate dibasic (≥98%), potassium phosphate monobasic (≥99.0%),  

sodium hydroxide (NaOH, 97%) pellets, acetonitrile (HPLC grade), trifluoracetic acid 

(TFA, 99%), hydrochloric acid (37 wt%), dimethylformamide (DMF, ≥99.8%), diethyl ether 

(≥99.0%, contains butylated hydroxytoluene as inhibitor), triisopropylsilane (98%), 

piperidine (≥99%), 2,2′-(ethylenedioxy)diethanethiol (95%), diisopropyl carbodiimde 

(99%), methoxypolyethylene glycol maleimide 5,000 (≥90%), 4arm-PEG20K-Maleimide, 

and 4arm-PEG10K-Maleimide  were purchased from Sigma-Aldrich.  Urea (99.0-100.5%) 

was purchased from Avantor.  Fmoc-Gly-OH, Fmoc-Ala-OH, and Fmoc-Cys(Trt) were 

purchased from Advanced ChemTech.  Water purified by reverse osmosis (RO water) 

was obtained from an in-house supply and ultrapure water (18.2 MΩ cm) was obtained 

from a Thermo Scientific Smart2Pure water purification system.  All chemicals were used 

without further purification.   

4.4.2. Peptide synthesis 

(GA)10, (GA)20, L-CGGG-(GA)10, and D-CGGG-(GA)10 were synthesized on a CEM 

Corporation Liberty Blue automated, microwave-assisted peptide synthesizer.  Synthesis 

was performed using standard Fmoc methods on a Rink amide resin SS (0.5 mmol/g 

substitution, 100-200 mesh, 1% divinylbenzene, Advanced ChemTech).  First, the resin 

was swelled in DMF for 5 minutes, then two “dummy coupling” steps were performed, 

designed to add DMF to the reaction vessel and heat to 90 °C like a normal coupling 
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method.  These dummy couplings ensure that the instrument is fully warmed up and 

consistently hitting the target temperature before the actual coupling methods begin.  To 

grow the chain, Fmoc-protected amino acids are added to the reaction vessel and the 

Fmoc protecting group is removed using 20% (v/v) piperidine in DMF.  The coupling 

reaction is then performed by adding diisopropyl carbodiimide (1 M in DMF) and Oxyma 

Pure (1 M in DMF) to the reaction vessel and heating to 90 °C for 2 min.  The same steps 

for Fmoc removal and coupling are repeated until the peptide is built from C-terminus to 

N-terminus. 

The peptides were cleaved from the resin and Trt side chain protecting groups were 

removed from the Cys residues via a 3 h, room temperature reaction in a solution of 

92.5% TFA, 2.5% triisopropylsilane, 2.5% 2,2′-(ethylenedioxy)diethanethiol, and 2.5% 

deionized water.  Following the reaction, the mixture was precipitated in cold ether and 

centrifuged (4816 x g for 5 min at 4 °C) to obtain a peptide pellet.  This pellet was 

suspended once more in cold ether and centrifuged under the same conditions, before 

being dried under vacuum for 45 minutes.  Dried peptides were dissolved in RO water, 

frozen in liquid nitrogen, lyophilized, and stored as powders at -20 °C. 

4.4.3. Nuclear magnetic resonance (NMR) spectroscopy 

Peptides or conjugates were dissolved at 5-7 mg/mL in deuterium oxide (D2O) or 

deuterated dimethyl sulfoxide (DMSO-d6).  1H NMR spectroscopy was conducted on a 

600 MHz Bruker Avance III spectrometer equipped with a 5 mm HCN Zpfg probe.  

Chemical shifts were referenced to the solvent residual peak (either 2.50 or 4.79 ppm for 

DMSO-d6 or D2O, respectively).  
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4.4.4. Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass 

spectrometry 

 MALDI-TOF samples were prepared in RO water at a concentration of ~1 mg/mL.  

Samples were mixed 1:1 with a 5 mg/mL solution of cyano-4-hydroxycinnamic acid 

(CHCA) matrix prepared in 70% (v/v) acetonitrile in water + 0.1% TFA by pipetting up and 

down 6 times (2 μL of sample + 2 μL of CHCA matrix).  A 2 μL aliquot of this solution was 

pipetted onto a FlexiMass SR48 target plate (Shimadzu) and dried at room temperature.  

The dried sample was loaded into a Shimadzu 8030 MALDI-TOF instrument, which was 

calibrated using MALDI TOFMix (LaserBio Labs) calibrant before every use. 

4.4.5. Analytical-scale high performance liquid chromatography (HPLC) 

(GA)10 was dissolved at 0.5 mg/mL in HPLC solvent (95% ultrapure water + 0.1% TFA, 

5% acetonitrile + 0.1% TFA) and double filtered (0.45 μm polytetrafluoroethylene 

membranes, 13 mm, VWR) to obtain a clear solution and remove aggregates.  D- and L-

CGGG-(GA)10 were dissolved at 1 mg/mL in HPLC solvent and double filtered to obtain a 

clear solution.  Samples were loaded into 2 mL vials and HPLC was performed on a 

Waters Alliance e2695 HPLC system with a 2998 photodiode array detector with 

separation achieved using an XBridge C18 reverse-phase column (4.6 x 75 mm, 3.5 μm 

particle size).  Peptides were eluted using a 1 mL/min linear gradient from 5-95% (v/v) 

acetonitrile + 0.1% TFA in water + 0.1% TFA over 9 min with the column operating at 35 

°C.  Elution was monitored by absorbance at 214 nm. 
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4.4.6. Conjugation of CGGG-(GA)10 peptides to poly(ethylene glycol) 

Thiol-maleimide chemistry was used to conjugate D- or L-CGGG-(GA)10 to 

poly(ethylene glycol) (PEG).  The same reaction conditions were used for linear methoxy 

poly(ethylene glycol) (5,000), 4-arm poly(ethylene glycol) (20,000), and 4-arm 

poly(ethylene glycol) (10,000).  Both peptide and polymer were dissolved at a 

concentration of 1 mM in 7 M urea dissolved in ultrapure water.  Each sample was 

vortexed for 30 s and sonicated in a sonication bath for 15 s to fully dissolve the peptide 

or polymer.  The pH was then adjusted to 6.5-6.9 for both solutions using 1-5 μL of 1 M 

NaOH or 1 M HCl.  The pH was kept in this range to favor the thiol-maleimide reaction 

over an amine-maleimide reaction that becomes more favorable at higher pH.  Peptide 

and polymer solutions were mixed at a volume ratio of 2:1 peptide: polymer (6.6 mL of 

peptide solution to 3.3 mL of polymer solution) to drive the reaction to completion (see 

Appendix C4.1).  The mixture was stirred for 30 s on a Heidolph Hei-plate magnetic stir 

plate before the pH was checked again to ensure it remained between 6.5-6.9.  The 

reaction mixture was allowed to stir for 1 h at room temperature before purification.  For 

the 4-arm conjugates, purification was achieved by dialysis using a 3.5 kDa dialysis 

membrane dialyzed against RO water.  For the linear conjugates, purification was 

achieved using preparative-scale HPLC.  Preparative-scale HPLC was not used for 4-

arm conjugates due to low yields (~5%). 

4.4.7. mPEG-CGGG-(GA)10 conjugate purification by preparative-scale HPLC 

After 1 h of reaction, the reaction mixture described above was double filtered and 

directly loaded into the injection loop of a Waters 2545 HPLC system with an attached 
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2489 photodiode array detector and Waters Fraction Collector III collection system.  The 

mixture was separated on an XBridge C18 reverse-phase column (30 x 150 mm, 5 μm 

particle size) using a gradient from 5% to 30% acetonitrile in water + 0.1% TFA from 2.22 

to 4 min and 30% to 60% acetonitrile in water + 0.1% TFA from 4 min to 18 min.  Fractions 

of eluent were collected in glass culture tubes (13 x 100 mm, VWR) and fractions that 

eluted from the desired peak were combined and lyophilized.  The powders obtained from 

lyophilization were stored at -20 °C. 

4.4.8. Turbidity experiments: co-incubation 

For turbidity experiments, 3.6 mg of peptide powder was added to 7 mL vials.  

Separately, solutions of polymer or conjugate were prepared at concentrations of 35, 7, 

or 0.35 mg/mL and vortexed to dissolve.  To start the experiment, 1.2 mL of buffer, 

polymer, or conjugate solution was added to the vials containing peptide.  A stir bar (either 

4.3x9.4 mm egg-shaped or 3.1x12.7 mm cylindrical) was added and solutions were stirred 

at 300 rpm on a Heidolph Hei-plate magnetic stir plate at room temperature.  At the 

designated time points, 3 aliquots of 200 μL were added to a 96 well plate from each vial.  

Absorbance at 550 nm was measured on a Tecan Infinite M Plex plate reader.  After the 

absorbance measurement, the 200 μL aliquots were returned to stirring in their original 

vials until the next time point.  The values reported are the average of three 200 μL 

aliquots per vial subtracted by the average absorbance of three 200 μL aliquots of 10 mM 

phosphate buffer. 
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4.4.9. Turbidity experiments: pre-aggregation 

The turbidity experiments probing pre-aggregation were conducted in the same way 

as the co-incubation experiments, with the exception that 1.2 mL of buffer was added to 

all vials of peptide.  From that time, the solutions were stirred under the same conditions 

for 7 days to allow (GA)10 or (GA)20 to aggregate naturally without any added polymer or 

conjugate.  After 7 days of incubation in buffer, the proper amount of polymer or conjugate 

was added directly to the vials in powder form.  The values reported are the average of 

three 200 μL aliquots per vial subtracted by the average absorbance of three 200 μL 

aliquots of 10 mM phosphate buffer. 

4.4.10. Thioflavin T fluorescence 

For (GA)10 thioflavin T fluorescence, we prepared (GA)10 solutions at 3, 1.5, 0.75, 0.35, 

0.15, and 0.04 mg/mL in 10 mM phosphate buffer.  Each solution was prepared separately 

rather than by dilution because (GA)10 is not fully soluble at all of these concentrations, 

so a dilution would not be reliable.  We then prepared a 10 mM stock solution of thioflavin 

T and diluted the stock solution into each (GA)10 solution to yield a final concentration of 

10 μM thioflavin T in each vial.  The vials were stirred for 75 min, then fluorescence was 

measured on a Tecan Infinite M Plex plate reader with an excitation wavelength of 450 

nm and an emission wavelength of 482 nm. 

For thioflavin T fluorescence measured during the turbidity study, we prepared a fresh 

stock solution of thioflavin T at 1 mM for each day a measurement was taken and then 

diluted this stock to 100 μM.  After absorbance at 550 nm was measured for turbidity, 20 

μL of the 100 μM stock solution was added to each 200 μL well in the 96 well plate, for a 
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final concentration of 10 μM thioflavin T in each well.  Fluorescence was measured at the 

same time points as the turbidity experiment on a Tecan Infinite M Plex plate reader with 

an excitation wavelength of 450 nm and an emission wavelength of 482 nm. 

4.4.11. TEM imaging 

To monitor morphological changes during the turbidity experiment, 10 μL aliquots were 

taken from one vial from each condition at the same time points as the turbidity 

experiments and frozen at -20 °C until sample grids were ready to be prepared.  Samples 

were prepared on carbon-coated copper grids (300 mesh, Electron Microscopy 

Sciences), which were pretreated in a plasma cleaner with 20% v/v O2(g) and 80% v/v 

Ar(g) for 30 s.  To apply the samples to the grids, 3 μL of sample were pipetted onto the 

grids and left for 1 min, blotted with filter paper by placing the filter paper at the edge of 

the grid to wick away excess solution, and washed three times by dabbing and blotting 

off 10 μL of RO water.  Washed grids were dried for 1 min before adding 3 μL of 2% 

aqueous uranyl acetate staining solution for 1 min.  Excess uranyl acetate solution was 

blotted with filter paper and the samples were air dried.  Samples were imaged on an FEI 

Titan instrument operating at an accelerating voltage of 120 kV at magnifications ranging 

from 8,100x to 34,000x. 
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Chapter 5. Investigating peptide candidates to target toxic charged proteins 

implicated in amyotrophic lateral sclerosis 

5.1  Introduction 

In this chapter, we rationally design peptides to target charged proteins that are 

implicated in ALS and investigate their thermodynamic properties by isothermal titration 

calorimetry to inform future studies into polymer-peptide conjugate therapeutics. 

Amyotrophic lateral sclerosis (ALS) is a deadly neurodegenerative disease without 

effective treatment strategies.1–3  A genetic mutation of the C9orf72 gene causes one of 

the most prevalent forms of the disease,1,4,5 which manifests in accumulation of repeating 

hexanucleotide RNA foci,4 loss of the C9orf72 protein,6 and the production of five 

dipeptide repeat proteins (DPRs): glycine-alanine (GA)n, glycine-arginine (GR)n, proline-

arginine (PR)n, glycine-proline (GP)n, and proline-alanine (PA)n.7,8  In Chapter 4 we 

focused on the (GA)n DPR, but that is not the only DPR produced that is toxic to cells.  In 

particular, the highly cationic (GR)n and (PR)n DPRs are highly toxic to neuronal cells 

when added to cells in culture or expressed in model systems, including fly, mouse, yeast, 

and worm models.9–11  (GR)n and (PR)n exhibit toxicity through a wide variety of 

mechanisms.  For example, (GR)n and (PR)n accumulate in the nucleus (even when 

externally applied in cultured cells), where they interact with nucleoli and cause defects 

in RNA processing, ultimately leading to cell death.12  (GR)n and (PR)n also bind to 

proteins in the nuclear pores, which prevents transport of macromolecules in and out of 
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the nucleus and leads to cell death.13,14  A variety of intercellular proteins interact with 

(GR)n and (PR)n, such as RNA-binding proteins and proteins that are important to the 

assembly of membraneless organelles.  These interactions change the way the proteins 

function and alter their phase separation, resulting in impaired protein function and 

contributing to cell death.15  Given these widespread toxic mechanisms, targeting (GR)n 

and (PR)n for therapeutic intervention would likely have a positive effect across multiple 

areas of the cell and contribute to improved neuronal health.   

Multiple recent reports demonstrate the utility of using antisense oligonucleotides, 

targeting the mutated region of the C9orf72 gene, to reduce the levels of (GR)n and/or 

(PR)n.16,17  In cell culture, antisense oligonucleotides reduced the concentration of (GR)n 

present in neuronal cells in a mouse model.  The reduction of (GR)n corresponded to a 

reduction in neurodegeneration for treated mice.17  Similarly, treatment of mice with the 

C9orf72 genetic mutation with antisense oligonucleotides led to decreased levels of all 

DPRs, including (GR)n and (PR)n, and treated mice recovered from behavioral deficits.16  

From this evidence, it is clear that reducing the levels of free (GR)n and (PR)n DPRs in 

cells is an effective measure to ameliorate their toxicity to neuronal cells.  

As discussed in Chapter 4, while these treatments are promising for ALS therapy, 

there are several key challenges for the use of biologics as therapeutics.  These include 

time- and cost-intensive production processes, susceptibility to physicochemical 

alterations during manufacture and transport,18 enzymatic degradation,18 undesirable 

immunogenic effects,19 and the need for extensive use of cold-chain to deploy these 

treatments in developing countries.20   
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To address these limitations associated with biological therapeutics, we sought to 

develop a synthetic therapeutic to sequester (GR)n and (PR)n DPRs to prevent their toxic 

interactions in cells.  In a similar manner to the polymer-peptide conjugate materials we 

developed to target (GA)n DPRs, we envision polymer-peptide conjugates including a 

hydrophilic, biocompatible polymer to prevent aggregation of the therapeutic and a 

(GR)n/(PR)n-binding peptide.  In this chapter, we developed a set of peptides and utilized 

isothermal titration calorimetry (ITC) to determine the strongest binders to (GR)n and 

(PR)n.  We reasoned that taking advantage of electrostatics would be a way to drive 

interactions with cationic (GR)n and (PR)n, so we designed and tested three anionic 

peptides: (GE)10, (PE)10, and E10.  (GE)10 and (PE)10 were designed to match the 

sequence structure of (GR)n and (PR)n while substituting the cationic R amino acids for 

anionic glutamic acids, while E10 is anionic with a greater charge density but the same 

number of charged groups.   

This set of peptides is designed to answer several questions.  First, do (GR)n and 

(PR)n bind preferentially to peptides that match their alternating sequence structure (i.e. 

does (GR)n bind mostly strongly to (GE)10 and (PR)n bind most strongly to (PE)10)?  (PR)12 

has been reported to form small aggregates with a parallel double-helix structure despite 

a combination of hydrophilic and electrostatically-repulsive interactions contributed by the 

R residues, so it may be expected that the (PR)n DPRs would preferentially assemble 

with (PE)10, driven by helix-helix assembly and leading to stronger binding for (PE)10 

compared to the other E peptides.21  No such stable aggregates were observed for (GR)12-

, so (GR)n might not be expected to have a similar preference for an E peptide of the 

same sequence structure.21   
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This set of E peptides will also answer questions about the role of charge density in 

complexation.  E10 contains the same number of charged amino acids as (GE)10 and 

(PE)10, but the charged amino acids are not separated by neutral amino acids.  Charge 

patterning can have a profound effect on charge-based interactions, as evidenced by 

differences observed in the complex coacervation of E50 and different sequence patterns 

of GK peptides, where charged K residues are grouped in blocks of 2, 4, 8, or 16 residues 

(i.e. (GK)25, G(KKGG)12K, G(K4G4)6K, and G(K8G8)3K).22  Complexes between E50 and 

GK peptides with larger groups of charged residues (more charge dense) are more stable 

than peptides having less charge density in both simulations and experiments.  This 

sequence effect was attributed to a larger entropic driving force for complexation for more 

charge dense peptides, due to a more favorable entropy gain from the release of 

counterions from the surfaces of more charge dense peptides compared to peptides that 

are less charge dense.  These results suggest that there may be a stronger driving force 

for (GR)n and (PR)n to complex with E10 compared to the less charge dense (GE)10 and 

(PE)10, but the effects of the sequence structure and charge density may compete against 

each other, leaving both questions open for this system. 

This work will inform the design rules for targeted biomolecular interactions between 

charged peptides.  With these design rules in hand, we can develop an effective polymer-

peptide conjugate therapeutic to sequester toxic (GR)n and (PR)n DPRs similar to the 

polymer-peptide conjugates designed to sequester (GA)n DPRs in Chapter 4.  Toward 

this goal, we report here the thermodynamic characterization of the interactions of (GE)10, 

(PE)10, and E10 with (GR)10 and (PR)10. 
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5.2  Results and discussion 

We synthesized (GE)10, (PE)10, E10, (GR)10 and (PR)10 in-house and assessed their 

purity by analytical-scale HPLC (Figure D1).  (GE)10, (PE)10, (GR)10, and (PR)10 were 

purified by preparative-scale HPLC (Figure D2) and mass spectrometry was used to 

confirm the expected product after purification (Figure D3).  E10 was used with no further 

purification and the expected product was confirmed using mass spectrometry (Figure 

D3).   

5.2.1. Complexation of (GE)10, (PE)10, and E10 with (GR)10 

We used isothermal titration calorimetry (ITC) to compare the thermodynamics of 

complexation for the anionic (GE)10, (PE)10, and E10 peptides with cationic (GR)10.  

Titrations were all performed in 10 mM phosphate buffer (pH 7.4) with a 2.5 mM solution 

of E peptide titrated into a 0.25 mM solution of (GR)10.  These concentrations were 

selected as they were found to provide a strong signal to noise ratio for data collected 

with our ITC.  Each solution was pH corrected to pH 7.40 ± 0.05 to ensure that the heat 

rate observed in the thermogram is a result of peptide interaction and heats of dilution, 

without contributions from the heats of mixing solutions at different pH.  For each titration, 

the heats of dilution associated with diluting E peptide into buffer and buffer into (GR)10 

were subtracted from the total heats obtained for the interaction.   

The titration of (GE)10 into (GR)10 resulted in little to no interaction, as the binding that 

was observed was nearly entirely accounted for by the dilution of (GE)10 into buffer, 

indicating that (GE)10 only weakly interacts with (GR)10 or does not interact at all (Figure 

5.1A).  On the other hand, a strong interaction was observed for the titration of (PE)10 into 
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(GR)10 (Figure 5.1B).  Large endothermic heats of interaction are observed, which are 

counteracted by large exothermic heats of dilution for (PE)10 diluted in buffer.  After 

subtracting the heats of dilution from the heats of interaction observed, the final binding 

heats for the (PE)10: (GR)10 complex have a maximum of 18 kJ/mol, compared to a 

maximum of -1.9 kJ/mol for the (GE)10: (GR)10 interaction.  For the interaction between 

E10 and (GR)10, both small endothermic and exothermic heats are observed (Figure 

5.1C).  For the first several injections, until a molar ratio of ~0.7 E10: (GR)10, there is an 

endothermic domain.  In the thermogram, small peaks can be observed that go both 

above and below the baseline for these injections, indicating a balance of both 

endothermic and exothermic interactions.  When accounting for the heat of dilution of E10 

into buffer, however, it is clear that these initial interactions are endothermic.  At a molar 

ratio of ~0.7, the interaction becomes exothermic and slightly stronger than the heat of 

dilution, before matching the heat of dilution at higher molar ratio, indicating that no further 

interaction is occurring.  Ultimately, when it comes to comparing the strength of this E10: 

(GR)10 complex to the (PE)10: (GR)10 complex, the (PE)10: (GR)10 complex is stronger as 

measured by binding heats (maximum endothermic binding heat of 6.5 kJ/mol and 

maximum exothermic binding heat of -3.0 kJ/mol for E10: (GR)10, compared to 18 kJ/mol 

for (PE)10: (GR)10).  While it would be ideal to compare a thermodynamic parameter such 

as dissociation constant between groups to determine the strongest binders, none of 

these data fit well to existing binding models, so we use the relative magnitude of the 

binding heats to compare peptide-peptide interactions.  These data indicate that (PE)10 is 

the strongest binder of (GR)10 and therefore would make the best peptide component of 
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a polymer-peptide conjugate therapeutic designed to sequester (GR)10 among the 

peptides studied here. 

 

Figure 5.1.  Baseline-subtracted thermograms and integrated binding heats of 2.5 mM A) (GE)10, B) (PE)10, 

and C) E10 titrated into 0.25 mM (GR)10 in 10 mM phosphate buffer.  Each titration results in a different 

binding profile.   

5.2.2. Complexation of (GE)10, (PE)10, and E10 with (PR)10 

We used isothermal titration calorimetry (ITC) to compare the thermodynamics of 

complexation for the anionic (GE)10, (PE)10, and E10 peptides with cationic (PR)10.  

Experiments were conducted similarly to titrations with (GR)10: 2.5 mM E peptide was 

titrated into 0.25 mM (PR)10, pH of each solution was corrected to pH 7.40 ± 0.05, and 

the heats of dilution of E peptide into buffer and buffer into (PR)10 were subtracted from 

the total heats of the interaction. 

For these titrations into (PR)10, all interactions were observed to be endothermic 

whereas some were endothermic, some were exothermic, and some were both 

exothermic and endothermic for the titrations into (GR)10 (Figure 5.2).  The titration of 
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(GE)10 into (PR)10 resulted in small endothermic heats of interaction, with a maximum of 

7 kJ/mol (Figure 5.2A).  This suggests a relatively weak interaction between (GE)10 and 

(PR)10.  On the other hand, a much larger endothermic interaction was observed for (PE)10 

and (PR)10 (Figure 5.2B).  After subtraction of the large exothermic heats of dilution of 

(PE)10 in buffer, the (PE)10: (PR)10 interaction has maximum binding heat of 16 kJ/mol, 

which is similar to the largest binding heat we observed for the interactions with (GR)10.  

In contrast to the mixture of exothermic and endothermic binding domains observed for 

the interaction of E10 with (GR)10, the interaction of E10 with (PR)10 is entirely endothermic, 

with a maximum binding heat of 11 kJ/mol (Figure 5.2C).  We again used the magnitudes 

of the binding heats produced to compare the interactions of (GE)10, (PE)10, and E10 with 

(PR)10 as these data do not fit well to existing binding models.  From the maximum binding 

heats, we observe that (PE)10 is the strongest binder of (PR)10, with E10 being the second 

strongest and (GE)10 having the weakest interaction.   

 

Figure 5.2.  Baseline-subtracted thermograms and integrated binding heats of 2.5 mM A) (GE)10, B) (PE)10, 

and C) E10 titrated into 0.25 mM (GR)10 in 10 mM phosphate buffer.  These titrations all result in endothermic 

interactions with different magnitudes, where the endothermic binding heats for the interaction between 

(PE)10 and (PR)10 are the largest in magnitude. 
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5.3  Conclusions 

These data demonstrate that (PE)10 is the strongest binder to both (GR)10 and (PR)10 

among the peptides tested here, answering questions about peptide structure and charge 

density.  We expected that (PE)10 might bind (PR)10 most strongly as it has been shown 

to self-assemble into double helices even without an electrostatic driving force,21 but it 

was less expected that the (PE)10 would also bind (GR)10 the most strongly.  Matching 

sequence structure was clearly not a factor in the strongest binder to (GR)10, as (GE)10 

interacted with it very weakly.  Perhaps the (PE)10 bound (GR)10 strongly in part due to 

the large number of assembly-prone proline residues in the sequence.  Future studies 

should investigate whether (PE)10 forms stable structures in solution both alone and in 

the presence of (GR)10 and (PR)10, as such assembly may be entropically favorable to 

allow the release of structured water and ordered counterions from the surface of each 

peptide.  Further understanding of these phenomena surrounding (PE)10 will help inform 

the design rules for these interactions.  

Charge density in these interactions seems to play less of a role than the peptide 

structure.  E10, having a higher charge density than (GE)10 and (PE)10 was expected to 

interact more strongly with (GR)10 and (PR)10.  While E10 did interact with (GR)10 and 

(PR)10 more strongly than (GE)10 interacted with either peptide, E10 did not bind either as 

strongly as (PE)10.  By the comparison between E10 and (GE)10, it seems that the idea of 

higher charge density leading to stronger interactions holds true, but the effect of (PE)10, 

whether it be structure-forming or something else, is a larger driver of peptide interaction 

than charge density. 
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Moving forward, it will be important to test the efficacy of these E peptides for 

sequestering (GR)10 and (PR)10 to corroborate the binding data presented here.  E 

peptides can be conjugated to linear or multivalent polymers to yield conjugates that will 

remain soluble even if assemblies are formed, similar to the conjugates developed in 

Chapter 4.  The potential to sequester toxic (GR)10 and (PR)10 DPRs is a promising 

therapeutic opportunity for ALS and could even be used in conjunction with the antisense 

oligonucleotide gene therapies that are currently being developed.  The design rules 

explored here contribute to the understanding of how peptides bind to toxic DPRs to aid 

in the development of such therapeutics. 

5.4  Materials and methods 

5.4.1 Materials 

Potassium phosphate dibasic (≥98%), potassium phosphate monobasic (≥99.0%),  

sodium hydroxide (NaOH, 97%) pellets, acetonitrile (HPLC grade), trifluoracetic acid 

(TFA, 99%), hydrochloric acid (37 wt%), dimethylformamide (DMF, ≥99.8%), diethyl ether 

(≥99.0%, contains butylated hydroxytoluene as inhibitor), triisopropylsilane (98%), 

piperidine (≥99%), 2,2′-(ethylenedioxy)diethanethiol (95%), and diisopropyl carbodiimde 

(99%) were purchased from Sigma-Aldrich.  Fmoc-Gly-OH, Fmoc-Pro-OH, Fmoc-

Arg(Pbf), and Fmoc-Glu(OBut)-OH were purchased from Advanced ChemTech.  Water 

purified by reverse osmosis (RO water) was obtained from an in-house supply and 

ultrapure water (18.2 MΩ cm) was obtained from a Thermo Scientific Smart2Pure water 

purification system.  All chemicals were used without further purification.   
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5.4.2 Peptide synthesis 

(GE)10, (PE)10, E10, (GR)10, and (PR)10 were synthesized on a CEM Corporation Liberty 

Blue automated, microwave-assisted peptide synthesizer.  Synthesis was performed 

using standard Fmoc methods on a Rink amide resin SS (0.5 mmol/g substitution, 100-

200 mesh, 1% divinylbenzene, Advanced ChemTech).  First, the resin was swelled in 

DMF for 5 minutes, then two “dummy coupling” steps were performed, designed to add 

DMF to the reaction vessel and heat to 90 °C like a normal coupling method.  These 

dummy couplings ensure that the instrument is fully warmed up and consistently hitting 

the target temperature before the actual coupling methods begin.  To grow the chain, 

Fmoc-protected amino acids are added to the reaction vessel and the Fmoc protecting 

group is removed using 20% (v/v) piperidine in DMF.  The coupling reaction is then 

performed by adding diisopropyl carbodiimide (1 M in DMF) and Oxyma Pure (1 M in 

DMF) to the reaction vessel and heating to 90 °C for 2 min.  The same steps for Fmoc 

removal and coupling are repeated until the peptide is built from C-terminus to N-

terminus. 

The peptides were cleaved from the resin and Trt side chain protecting groups were 

removed from the Cys residues via a 3 h, room temperature reaction in a solution of 

92.5% TFA, 2.5% triisopropylsilane, 2.5% 2,2′-(ethylenedioxy)diethanethiol, and 2.5% 

deionized water.  Following the reaction, the mixture was precipitated in cold ether and 

centrifuged (4816 x g for 5 min at 4 °C) to obtain a peptide pellet.  This pellet was 

suspended once more in cold ether and centrifuged under the same conditions, before 

being dried under vacuum for 45 minutes.  Dried peptides were dissolved in RO water, 

frozen in liquid nitrogen, lyophilized, and stored as powders at -20 °C. 
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5.4.3 Matrix-assisted laser desorption ionization – time of flight mass 

spectrometry 

MALDI-TOF samples were prepared in RO water at a concentration of ~1 mg/mL.  

Samples were mixed 1:1 with a 5 mg/mL solution of cyano-4-hydroxycinnamic acid 

(CHCA) matrix prepared in 70% (v/v) acetonitrile in water + 0.1% TFA by pipetting up and 

down 6 times (2 μL of sample + 2 μL of CHCA matrix).  A 2 μL aliquot of this solution was 

pipetted onto a FlexiMass SR48 target plate (Shimadzu) and dried at room temperature.  

The dried sample was loaded into a Shimadzu 8030 MALDI-TOF instrument, which was 

calibrated using MALDI TOFMix (LaserBio Labs) calibrant on each plate. 

5.4.4 Analytical-scale high performance liquid chromatography (HPLC) 

Peptides were dissolved at 1 mg/mL in HPLC solvent (95% ultrapure water + 0.1% TFA, 

5% acetonitrile + 0.1% TFA) and filtered (0.45 μm polytetrafluoroethylene membranes, 

13 mm, VWR) to obtain a clear solution.  Samples were loaded into 2 mL vials and HPLC 

was performed on a Waters Alliance e2695 HPLC system with a 2998 photodiode array 

detector with separation achieved using an XBridge C18 reverse-phase column (4.6 x 75 

mm, 3.5 μm particle size).  Peptides were eluted using 1 mL/min gradients that are listed 

with the characterization. 

5.4.5 Peptide purification by preparative-scale HPLC 

To purify peptides, 20-40 mg of peptide was dissolved in 10 mL HPLC solvent (95% 

ultrapure water + 0.1% TFA, 5% acetonitrile + 0.1% TFA) and twice filtered through 25 

mm syringe filters with 0.45 μm polytetrafluoroethylene membranes.  The filtered solution 



131 
 

was loaded into the injection loop of a Waters 2545 HPLC system with an attached 2489 

photodiode array detector and Waters Fraction Collector III collection system.  The 

sample was separated on an XBridge C18 reverse-phase column (30 x 150 mm, 5 μm 

particle size).  The gradients used to achieve separation are listed in Table D1.  Eluent 

was collected in 13 x 100 mm glass culture tubes (VWR) and the fractions of eluent that 

eluted from the desired product peak were combined and lyophilized.  The lyophilized 

powders were used to obtain HPLC chromatograms and mass spectra of purified 

peptides and then were stored as powders at -20 °C. 

5.4.6 Isothermal titration calorimetry (ITC) 

ITC experiments were performed on a standard volume Affinity ITC (TA Instruments).  All 

peptide solutions were prepared at 2.5 mM or 0.25 mM in 10 mM phosphate buffer, pH 

corrected to 7.40 ± 0.05 by adding 1-10 μL of 1 M NaOH, and degassed for 5-10 min 

using a TA Instruments degassing station at 400 mm Hg.  The titrant and titrand pH were 

always checked to ensure they were with pH 7.40 ± 0.05 immediately prior to experiments 

to avoid substantial heat contributions from the heat of mixing of solutions with different 

pH.  Titrations consisted of an initial 2 μL injection followed by 24 10 μL injections of 2.5 

mM titrant solution injected into 1.3 mL of 0.25 mM titrand solution.  Following an initial 

delay of 200 s, injections were separated by 300 s.  Experiments were performed at 25 

°C with a stirring rate of 125 rpm.  The reference cell was filled with 1.3 mL of degassed, 

deionized water that is exchanged weekly.  The resulting thermograms were baseline-

subtracted and heats of binding were obtained by integrating the area under each 

injection peak using NanoAnalyze (TA Instruments).  The obtained heats of binding were 
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then divided by moles of injectant.  Heats of dilution (titrations of titrant into buffer and 

buffer into titrand) were analyzed similarly, and the molar heats of dilution were subtracted 

from the molar heats of binding to yield the final plots of kJ/mol of injectant vs. mole ratio 

for each titration. 
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Chapter 6. Conclusions and outlook 

Tuning biomaterials using specific biomolecular interactions represents a promising 

avenue to develop next-generation biomaterials with the increased complexity required 

to recapitulate the complex, dynamic nature of native tissues and develop effective 

therapeutics.1  In this thesis, we explored the specific interactions of several peptides as 

therapeutics and components of biomaterials.  In Chapter 2, we harnessed the specific, 

displaceable interactions between coiled coil peptides to develop biomaterials with 

spatiotemporal control over the presentation of biomolecules on the surface.  We 

connected the specific coiled coil interactions to stereochemistry-directed interactions in 

Chapter 3 by redesigning coiled coils to make them amenable to undergoing 

stereochemistry-directed interactions.  We observed that employing stereochemistry-

directed interactions in coiled coils combined the strong, specific interactions between 

coiled coils with the enhanced stability and tunable interaction strength of 

stereochemistry-directed interactions.  With these design rules established, we designed 

a polymer-peptide conjugate biomaterial using to prevent aggregates of toxic proteins 

implicated in amyotrophic lateral sclerosis (ALS) in Chapter 4, where we also leveraged 

stereochemistry-directed interactions to develop design rules for a different peptide 

system.  Both D- and L-conjugates dispersed aggregates with similar efficacy, raising 

questions about the stereochemistry-directed interactions between these peptides that 

warrant future exploration.  Towards the goal of developing polymer-peptide conjugates 

to target a set of highly charged toxic proteins that are also implicated in ALS, we 

characterized the interactions between these toxic proteins and a set of peptides 
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designed to interact with them electrostatically in Chapter 5.  From this study, we selected 

candidates for future conjugation to polymers to prepare therapeutics. 

A key takeaway from this work is the utility of coiled coil peptides in biomaterials, as 

the specific and displaceable interactions of coiled coils enabled the facile patterning and 

changing of biomolecule display on biomaterial surfaces.  Additionally, we showed that 

the benefits reported for stereochemistry-directed interactions can be combined with the 

desirable features of coiled coil interactions through informed design.  While initial 

attempts to access stereochemistry-directed interactions in coiled coils caused a 

disruption of coiled coil complexation, we demonstrated here that we can use peptide 

sequence design to prepare coiled coils with the same features that lead to specificity 

and strong complexation while also making them amenable to stereochemistry-directed 

interactions.  As the design rules for stereochemistry-directed interactions are not well-

established, such sequence design modifications may play an important role in adapting 

a wide variety of peptides to harness the enhanced stability and wider range of binding 

strengths afforded by stereochemistry-directed interactions.   

From the polymer-peptide conjugate design work, we provided further evidence that 

the general design of a hydrophilic polymer combined with a peptide designed to bind a 

target protein is generalizable.  We achieved comparable results for dispersal and 

prevention of aggregation to previous work using polymer-peptide conjugates to target 

Aβ40, suggesting that this polymer-peptide approach may extend to other systems.  Within 

this system, we further explored the stereochemistry-directed interaction design space by 

using both D- and L-peptides in our conjugates, where we expected the D-conjugates to 

be more effective at dispersing aggregates due to stronger binding afforded by 
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stereochemistry-directed interactions.  However, we observed little difference between 

the D- and L-conjugates, suggesting that such a driving force did not exist in this case.  

Further study of these peptides will provide important insight into the design rules for 

stereochemistry-directed interactions, as there are currently opposing examples that 

demonstrate that stereochemistry-directed interactions drive stronger binding2–6 or don’t 

drive binding at all,7,8 but no examples as far as we know that establish no difference in 

interaction strength.  Contingent upon further study to confirm that the peptides alone, 

when the polymer is not a factor, do not experience a difference in binding due to 

stereochemistry-directed interactions, the connection of peptide sequence features to the 

effect of stereochemistry-directed interactions will be a large part in the advancement of 

design rules. 

The study of highly charged peptide interactions also highlighted the importance of 

peptide sequence and its connection to structure.  We varied both charge density and 

sequence/structure in our peptides designed to target (GR)n and (PR)n, two charged 

proteins implicated in ALS).  The role of sequence and structure in (GR)n/(PR)n binding 

strength was highlighted in our results, as the proline-based (PE)10 had the strongest 

heats of interaction with both target peptides, even relative to the more charge-dense E10 

peptide.  This emphasized the importance of peptide assembly and sequence design 

when choosing a protein-targeting peptide for polymer-peptide conjugate biomaterials, 

especially since our other results indicate that the polymer-peptide conjugate design may 

become more generalized for protein-targeting therapeutics. 

The results presented in this thesis showcase the potential of coiled coils and polymer-

peptide conjugates and provide groundwork for future studies that will further expand their 
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molecular design space and functionality.  To expand the range of complexation strengths 

and stabilities of heterochiral coiled coils, future studies will optimize the newly designed 

peptide sequences to better balance charge and deliver the most favorable hydrophobic 

interactions.  For polymer-peptide conjugates, there is a wide design space in terms of 

polymer composition and architecture.  Future studies will probe alternative architectures 

that provide multivalent peptide presentation and consider the polymer composition to 

better balance the hydrophilicity of the conjugate while changing peptide presentation.    

Taken together, in this thesis we have enhanced the tunability and functionality of 

materials by altering the tunability of specific peptide interactions using stereochemistry-

directed interactions and conjugation to polymers.  The findings presented here expand 

on the design rules for stereochemistry-directed interactions and polymer-peptide 

conjugates and can be used to inform the future design of next-generation biomaterials. 
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A1. Peptide characterization 

A1.1. Mass spectrometry of coiled coil peptides 

Mass spectrometry was used to confirm the successful synthesis of the peptides used 

in this study.  The observed m/z for each peptide corresponds to the [M+H]+ ionization of 

the peptide (Figure A1). 



145 
 

 

Figure A1.  Electrospray ionization mass spectrometry of coiled coil peptides used in this study.  Each 

observed m/z corresponds to the [M+H]+ ionization of the peptide. 

A1.2. Analytical scale high performance liquid chromatography: purity of coiled 

coil peptides 

To assess the purity of the peptides used in this study, we used high performance 

liquid chromatography (HPLC).  The HPLC chromatograms indicate some presence of 
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side products, but taken together with the mass spectrometry data confirming the 

expected molecular weight, we decided to use these peptides without further purification 

(Figure A2). 

 

Figure A2. Analytical HPLC chromatograms of coiled coil peptides.  The peptides were detected by 

absorbance at 214 nm and FAM absorbance on the A-peptide was detected by absorbance at 444 nm.  

The second peak in the A-peptide chromatogram that does not correspond to the FAM absorbance is likely 

A-peptide that is unlabeled.  The peptide was eluted on a linear AB gradient from 5% to 95% B (v/v) over 

10 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% TFA. 

A1.3. Secondary structure characterization of coiled coil peptides 

Peptide secondary structure was determined by circular dichroism (CD) spectroscopy 

(Figure A3).  The spectrum of the T-peptide (EIAALEK)3G7CG shows the peptide adopts 

a random coil structure.  As the T-peptide behaved how we expected it to in forming 
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coiled-coil complexes with release being dependent on the addition of the competing D-

peptide, we hypothesize that the 7- glycine spacer added to provide physical space 

between the hydrogel/fiber substrates and the coiled domains might also consequently 

limit the overall helical nature of the peptide. However, the T-peptide still allowed for stable 

coiled-coil complexes to form on hydrogel/hydrogel fiber substrates that could easily be 

disrupted via the user-defined addition of the complementary D-peptide. This was 

unsurprising as randomly coiled peptides have been previously shown to adopt the helical 

secondary structure as they assemble into coiled-coil complexes – specifically when the 

sequence contains the necessary amino acid motifs to complex with the complementary 

strand as they do here (E/K complementary heptads).1 

The spectrum of the Coiled RGD peptide GYGRGDSPG-(KIAALKE)4 shows a modest 

helical structure based on the CD spectrum, with the addition of the bioactive RGD 

domain likely limiting the formation of the α-helix, as (KIAALKE)4 itself has been 

previously shown to be α-helical.2 

The spectra of the A-peptide FAM-(KIAALKE)4 and the D-peptide (EIAALEK)4 best 

match the CD signature of an α-helical structure.  Overall, despite the peptides exhibiting 

varying degrees of α-helicity, they demonstrated the ability to form coiled coil complexes 

with their complements throughout this chapter. 



148 
 

 

Figure A3. CD spectra of coiled coil peptides at 0.1 mg/mL in 10 mM PBS (pH 7.4).  CD measurements 

were taken at 25 °C, with a data pitch of 0.1 nm and scanning speed of 50 nm/min. The spectra are shown 

as the average of 3 scans per sample. 
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A2. Additional ITC data 

A2.1. Replicates of titration of T-peptide into coiled-RGD peptide in NIH 3T3 

fibroblast medium 

 

Figure A4. Thermogram and integrated binding heats from the titration of 200 μM T-peptide into 20 μM 

coiled-RGD peptide in fibroblast medium.  The binding heats were fit to a two-site binding model (red line) 

and the associated KD values calculated from that model are shown on the plot.  **Indicates that plot was 

included in Figure 2.2. 

A2.2. Replicates of titration of coiled-RGD peptide into D-peptide in NIH 3T3 

fibroblast medium 

For the titration of coiled-RGD peptide into D-peptide, both exothermic and 

endothermic peaks are observed as discussed in Chapter 2 (Figure A5).  We attempted 
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to fit these integrated heats to a two-site binding model (red lines), but the fit clearly does 

not match the data at early molar ratios, indicating that the parameters obtained from the 

model would not reliably represent the data. 

 

Figure A5. Thermogram and integrated binding heats from the titration of 200 μM coiled-RGD peptide into 

20 μM D-peptide in fibroblast medium.  The binding heats were attempted to be fit to a two-site binding 

model (red lines) but the model does not fit the data well.  **Indicates that plot was included in Figure 2.2. 
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A2.3. Replicates of titration of T-peptide into D-peptide in NIH 3T3 fibroblast 

medium 

 

Figure A6. Thermogram and integrated binding heats from the titration of 200 μM T-peptide into 20 μM D-

peptide in fibroblast medium.  **Indicates that plot was included in Figure 2.2. 
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A2.4. Titrations of T-peptide into A-peptide in 1X PBS 

 

Figure A7. Thermogram and integrated binding heats from the titration of 200 μM T-peptide into 20 μM A-

peptide in 1X PBS, with the exception of the bottom right titration which was performed with 200 μM T-
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peptide and 10 μM A-peptide.  The top left titration was performed with 50 total injections, compared to 25 

injections for the other titrations.  The binding heats were fit to a single-site binding model and the 

associated KD values calculated from that model are shown on the plot. 

A2.5. Titrations of T-peptide into coiled-RGD peptide in 1X PBS 

 

Figure A8.  Thermogram and integrated binding heats from the titration of 200 μM T-peptide into 20 μM 

coiled-RGD peptide in 1X PBS.  The binding heats were fit to a two-site binding model and the associated 

KD values calculated from that model are shown on the plot. 
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A2.6. Titrations of A-peptide into D-peptide in 1X PBS 
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Figure A9.  Thermogram and integrated binding heats from the titration of 200 μM A-peptide into 20 μM D-

peptide in 1X PBS.  The binding heats were attempted to be fit to a two-site binding model (red lines) but 

the model does not fit the data well.   

A2.7. Titrations of coiled RGD-peptide into D-peptide in 1X PBS 

 

Figure A10.  Thermogram and integrated binding heats from the titration of 200 μM coiled-RGD peptide 

into 20 μM D-peptide in 1X PBS.  The binding heats were attempted to be fit to a two-site binding model 

(red lines) but the model does not fit the data well.  
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 A2.8. Titrations of coiled T-peptide into D-peptide in 1X PBS 

 

Figure A11.  Thermogram and integrated binding heats from the titration of 200 μM T-peptide into 20 μM 

D-peptide in 1X PBS.   
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B1. Peptide Characterization 

The coiled coil peptides used in this study were purified by preparative-scale HPLC using 

the binary gradients listed in Table S1 below.  The following figures show chromatograms 

of crude and purified peptides, as well as MALDI-TOF mass spectra of each purified 

peptide. 

Table B1. List of elution conditions for preparative-scale HPLC purification of coiled coils. 

Peptide 
Binary gradient (Solvent A = water + 0.1% TFA, Solvent B = 

acetonitrile + 0.1% TFA) 

L-K4
7
 5 to 30% B from 2.22 to 4 min, 30 to 45% B from 4 to 32 min 

D-K4
7
 5 to 30% B from 2.22 to 4 min, 30 to 45% B from 4 to 32 min 

L-E4
7
 5 to 95% B from 4 to 32 min 
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L-K3
11

 5 to 30% B from 2.22 to 4 min, 30 to 60% B from 4 to 25 min 

D-K3
11

 5 to 30% B from 2.22 to 4 min, 30 to 60% B from 4 to 25 min 

L-E3
11

 5 to 30% B by 2.22 min, 30 to 95% B from 2.22 to 22 min 

D-E4
7
 5 to 95% B from 4 to 32 min 
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B1.1 L-K4
7  

 

Figure B1. Analytical HPLC chromatogram of crude L-K4
7
.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 

 

Figure B2. Analytical HPLC chromatogram of purified L-K4
7
.  The primary peak corresponding to the purified 

peptide accounts for >96% of the total peak area.  The peptide was eluted on a linear AB gradient from 5% 

to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% TFA. 
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Figure B3. MALDI-TOF mass spectrum of purified L-K4
7
. 
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B1.2 D-K4
7  

 

Figure B4. Analytical HPLC chromatogram of crude D-K4
7
.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 

 

Figure B5. Analytical HPLC chromatogram of purified D-K4
7
.  The primary peak corresponding to the purified 

peptide accounts for >99% of the total peak area.  The peptide was eluted on a linear AB gradient from 5% 

to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% TFA. 
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Figure B6. MALDI-TOF mass spectrum of purified D-K4
7
. 

We note that the MALDI mass spectrum shows a Lys deletion.  However, we see only 

one peak for D-K4
7
 in the analytical HPLC chromatogram for the purified peptide.  Either 

the deletion is such a minor product that it is not detected on HPLC (which, despite the 

size of the peak in the mass spectrum, is possible because MALDI-TOF does not always 

convey relative abundance), or the deletion is not resolved from the main peptide peak 

under these HPLC conditions.  Regardless, we used unpurified peptides to perform a 

titration of D-K4
7
 into L-E4

7
 (Figure B7), which yielded a thermogram and integrated heats 

of interaction that are very similar to the same titration performed with purified peptides 

(Figure 3.2 and Figure B21).  Therefore, even if the deletion is present in the purified D-

K4
7
, it is unlikely to have affected the conclusions drawn from titrations using this peptide. 
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Figure B7. Thermogram and integrated binding heat from the titration of unpurified D-K4
7
 into L-E4

7
 at pH 7.4 

in 1X PBS. 
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B1.3 L-E4
7  

 

Figure B8. Analytical HPLC chromatogram of crude L-E4
7
.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 

 

Figure B9. Analytical HPLC chromatogram of purified L-E4
7
.  The primary peak corresponding to the purified 

peptide accounts for >93% of the total peak area.  The peptide was eluted on a linear AB gradient from 5% 

to 62% B (v/v) over 17 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% TFA. 
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Figure B10. MALDI-TOF mass spectrum of purified L-E4
7
. 
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B1.4 L-K3
11

 

 

Figure B11. Analytical HPLC chromatogram of crude L-K3
11

.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 

 

Figure B12. Analytical HPLC chromatogram of purified L-K3
11

.  The primary peak corresponding to the 

purified peptide accounts for >99% of the total peak area.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 
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Figure B13. MALDI-TOF mass spectrum of purified L-K3
11

. 
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B1.5 D-K3
11

 

 

Figure B14. Analytical HPLC chromatogram of crude D-K3
11

.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 

 

Figure B15. Analytical HPLC chromatogram of purified D-K3
11

.  The primary peak corresponding to the 

purified peptide accounts for >99% of the total peak area.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 
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Figure B16. MALDI-TOF mass spectrum of purified D-K3
11

. 
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B1.6 L-E3
11

 

 

Figure B17. Analytical HPLC chromatogram of crude L-E3
11

.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 

 

Figure B18. Analytical HPLC chromatogram of purified L-E3
11

.  The primary peak corresponding to the 

purified peptide accounts for >97% of the total peak area.  The peptide was eluted on a linear AB gradient 

from 5% to 95% B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% 

TFA. 
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Figure B19. MALDI-TOF mass spectrum of purified L-E3
11

. 
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B1.7 MALDI of CHCA matrix 

Figure B20. MALDI-TOF mass spectrum of CHCA matrix. 

B2. Additional ITC thermograms 

B2.1 Replicate of L-K4
7
 titrated into L-E4

7
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Figure B21. Thermogram and integrated binding heat from the titration of L-K4
7
 into L-E4

7
 at pH 7.4 in 1X 

PBS. 

B2.2 Replicate of D-K4
7
 titrated into L-E4

7
 

 

Figure B22. Thermograms and integrated binding heats from the titration of D-K4
7
 into L-E4

7
 at pH 7.4 in 1X 

PBS. 
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B2.3 Replicate of L-K3
11

 titrated into L-E3
11 

 

Figure B23. Thermograms and integrated binding heats from the titration of L-K3
11

 into L-E3
11

 at pH 7.4 in 1X 

PBS. 

B2.4 Replicate of D-K3
11

 titrated into L-E3
11 
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Figure B24. Thermogram and integrated binding heats from the titration of D-K3
11

 into L-E3
11

 at pH 7.4 in 1X 

PBS with 600 s spacing between injections. 

 

B3. CD spectra of coiled coils 

B3.1 Determination of CD spectroscopy conditions 

The experimental parameters of cuvette path length, buffer concentration, and 

wavelength range were all varied to find the best experimental conditions for this system.  

There are three characteristic features of the CD spectrum of an α-helix, including (for an 

L-peptide), negative peaks at 222 nm and 208 nm as well as a positive peak at 193 nm.  

Therefore, we initially decided to collect data from 190 nm – 250 nm, choosing path length 

and buffer concentration based on obtaining quality data in this range.  To this end, we 
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observed the CD and high tension (HT) voltage signals for data collected in 1 mm and 

0.1 mm cuvettes for 1X and 0.1X PBS.  HT voltage is used to control the gain of the 

detector to obtain an ideal signal to noise ratio.  When a sample absorbs too much light, 

the HT increases rapidly, and when HT is ≥ 700, the photons reaching the detector are 

not sufficient to provide reliable CD data.  We found that, when using a path length of 1 

mm and 1X PBS, the HT increased rapidly below 200 nm, leading to unreliable CD data, 

but for 0.1X PBS in a 1 mm cuvette or 1X PBS in a 0.1 mm cuvette, there were no 

problems with data reliability (Figure B25).  Based on this data and in an attempt to keep 

the buffer concentration consistent with other experiments in this manuscript, we initially 

decided to use 1X PBS in a 0.1 mm cuvette to take CD measurements.  However, we 

were surprised to find that under these conditions for a 25 μM solution of L-K4
7
, the CD 

spectrum displayed none of the characteristic peaks for an α-helix (Figure B26, red).  For 

comparison, we also obtained a CD spectrum of 25 μM L-K4
7
 in 1X PBS in a 1 mm cuvette 

and observed the characteristic peaks at 222 nm and 208 nm (Figure B26, black).  We 

also obtained CD spectra of L-K4
7
 in 0.1X PBS in both 1 mm and 0.1 mm cuvettes (Figure 

B26, green and blue) and found that characteristic α-helical peaks were only observed 

in the 1 mm cuvette.  These data indicate that CD signal depends on path length.  For 

this reason, and to keep the buffer concentration consistent with other experiments, we 

decided to move forward using the 1 mm cuvette and 1X PBS for wavelengths from 200 

nm – 250 nm, relying on the two characteristic α-helical peaks at 222 nm and 208 nm to 

demonstrate helicity despite not having reliable data for the characteristic peak at 193 

nm.  
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Figure B25. CD and HT voltage of A) 1X PBS in a 1 mm cuvette, B) 0.1X PBS in a 1 mm cuvette, and C) 

1X PBS in a 0.1 mm cuvette.  The HT voltage for the 1X PBS in a 1 mm cuvette increases rapidly between 

200 nm – 190 nm, resulting in unreliable data.  The HT voltage remains below 700 V for the other conditions, 

indicating that the data is reliable for the full range of 190 nm – 250 nm.  
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Figure B26. CD spectra of 25 μM L-K4
7
 in 1X PBS or 0.1X PBS measured in a 1 mm or 0.1 mm cuvette.  

Characteristic peaks for α-helices at 222 nm and 208 nm were only observed in samples measured in a 1 

mm cuvette. 

B3.2 CD spectroscopy of L-K4
7
, L-E4

7
, D-K4

7
, L-K3

11
, L-E3

11
, and D-K3

11
 

CD spectroscopy was used to confirm the secondary structure and stereochemistry of the 

coiled coils used in this study.  All coiled coils were helical at 100 μM in 1X PBS (evidenced 

by peaks at 222 nm and 208 nm), while D-coils exhibit mean residue ellipticities > 0 and 

L-coils exhibit mean residues ellipticities < 0, consistent with the expected stereochemistry 

(Figure B27). 

 

Figure B27. CD spectra of A) L-K4
7
, L-E4

7
, and D-K4

7
 and B) L-K3

11
, L-E3

11
, and D-K3

11
.  All coils were helical and 

exhibited the expected stereochemistry. 

B3.3 CD spectroscopy of blended coiled coils 

Upon mixing homochiral or heterochiral blends of heptads and hendecads, we used CD 

spectroscopy to compare the secondary structure of the blended coiled coils to the 

individual coiled coils (Figure B28).  For homochiral blends, the coiled coils with a heptad 

repeating sequence were found to have a slightly greater mean residue ellipticity at 208 

nm and 222 nm, the wavelengths most associated with α-helicity.  The hendecad coiled 
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coils similarly exhibited greater mean residue ellipticities at 208 nm and 222 nm for 

homochiral blends.  On the other hand, heterochiral blends of both heptad and hendecad 

coiled coils resulted in signals close to zero across the wavelength tested, due to the 

opposing stereochemistries of the blended peptides. 

 

Figure B28. CD spectra of A) L-K4
7
, L-E4

7
, and 1:1 L-K4

7
: L-E4

7
, B) L-K3

11
, L-E3

11
, and 1:1 L-K3

11
: L-E3

11
, C) D-K4

7
, L-

E4
7
, and 1:1 D-K4

7
: L-E4

7
, and D) D-K3

11
, L-E3

11
, and 1:1 D-K3

11
: L-E3

11
.  All individual coils were helical as evidenced 

by peaks present at 208 nm and 222 nm.  For the homochiral coiled coils, blending the heptad coiled coils 

(A) or hendecad coiled coils (B) resulted in a mixture with stronger helicity, as the mean residue ellipticity 

at these wavelengths was greater.  Blending the heterochiral coiled coils (C and D) resulted in effectively 

no CD signal as the destructive interference of the equimolar peptides of opposing stereochemistry 

eliminates the signal. 
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B3.4 Thermal stability of L-K4
7
: L-E4

7
, D-K4

7
: L-E4

7
, L-K3

11
: L-E3

11
, and D-K3

11
: L-E3

11
 as 

measured by CD spectroscopy as a function of temperature 

Temperature-dependent CD spectroscopy was used to assess the stability of homochiral 

and heterochiral heptad complexes.  Solutions of 200 μM L-K4
7
, L-E4

7
, D-K4

7
, L-K3

11
, L-E3

11
, 

and D-K3
11

 were prepared in 1X PBS, then equal volumes of L-K4
7
 and L-E4

7
, D-K4

7
 and L-E4

7
, 

L-K3
11

 and L-E3
11

, or D-K3
11

 and L-E3
11

 were stirred together overnight to form an equimolar 

complex.  CD spectra were taken of the complex solutions the next day from 5 °C to 90 

°C in 5 °C increments.  The homochiral heptads (Figure B29 A) and homochiral 

hendecads (Figure B30 A) maintained a helical conformation even at 90 °C, as 

evidenced by the retention of characteristic peaks at 222 nm and 208 nm, although the 

helical character of both complexes was reduced as measured by the increase in mean 

residue ellipticity at 222 nm (Figure B29 A and Figure B30 A, bottom panel).  

Unsurprisingly, the competing positive and negative CD signals of the D- and L-hendecad 

coils led to a lack of signal for both heterochiral heptads and heterochiral hendecads 

(Figure B29 B and Figure B30 B). 
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Figure B29. CD spectra as a function of temperature for A) L-K4
7
: L-E4

7
 and B) D-K4

7
: L-E4

7
.  The top panel 

shows all CD spectra from 5 °C to 90 °C in intervals of 5 °C and the bottom panel shows just the mean 

residue ellipticity of the complex at 222 nm as a measure of helicity. 
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Figure B30. CD spectra of A) L-K3
11

: L-E3
11

 and B) D-K3
11

: L-E3
11

.  The top panel shows all CD spectra from 5 

°C to 90 °C in intervals of 5 °C and the bottom panel shows just the mean residue ellipticity of the complex 

at 222 nm as a measure of helicity. 

 

B4. Additional degradation data 

B4.1 Degradation of coiled coils in the absence of Proteinase K 

As a control experiment, coiled coil complexes were incubated in 1X PBS following the 

same procedure as the degradation experiment without adding Proteinase K to test their 

stability in buffer.  For heptad complexes (L-K4
7
: L-E4

7
 and D-K4

7
: L-E4

7
) and hendecad 

complexes (L-K3
11

: L-E3
11

 and D-K3
11

: L-E3
11

), the complexes remained stable out to 24 or 30 

h (Figure B31 and Figure B32). 
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Figure B31. Stability of A) L-K4
7
: L-E4

7
 and B) D-K4

7
: L-E4

7
 upon incubation in 1X PBS. 

 

Figure B32. Stability of A) L-K3
11

: L-E3
11

 and B) D-K3
11

: L-E3
11

 upon incubation in 1X PBS. 
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4.2 Extended degradation of D-K3
11

: L-E3
11

 upon incubation with Proteinase K 

 

 

 

 

 

 

 

 

Figure B33. Proteolytic stability of D-K3
11

: L-E3
11

 in the presence of 5 μg/mL Proteinase K.  HPLC 

chromatograms and percent intact K3
11

 and E3
11

 by peak area immediately after addition of and upon 

incubation for 1, 3, 6, 12, 30, 48, 72, 120, and 168 h with Proteinase K. 

B5. MATLAB script to normalize elution time for degradation data 

clear all 
clc 
 
% This code is intended to "normalize" HPLC data by lining up a peak in the plot at the 
same x value for the entire set of data.  For example, I am 
% creating this because I have degradation data, but the peaks shift slightly in elution 
time for each time point run.  I want to align all of 
% them so that the peak associated with one peptide always elutes at the same time. 
 
% We start by reading in the data from a text file. 
T = readtable('hplcdata.txt'); 
x(1,:) = transpose(table2array(T(1:height(T), 1))); 
y(1,:) = transpose(table2array(T(1:height(T), 2))); 
for i = 1:width(T)-1 
    x(i,:) = x(1,:); 
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end 
for j = 2:width(T) 
    y(j-1,:) = transpose(table2array(T(1:height(T), j))); 
end  
 
% earlytime and latetime set the bounds for where the code will search for a peak in the 
data to align.  For example, I have a peak that elutes at 
% ~5.8 min in every run, so I have the code search for the max value between the times 
of 5.5 min and 6.5 min. 
earlytime = 5.5; 
latetime = 6.5; 
 
% Here, we crop the datasets to work with only the data between earlytime and latetime.  
However, often the xdata (Time) from HPLC does not include 
% whole numbers, so I search for any value that is without 0.001 of earlytime and latetime 
in the xdata and crop the datasets to that. 
croppedx = x(1,find(x(1,:)>earlytime-0.001 & x(1,:)<earlytime+0.001):find(x(1,:)>latetime-
0.001 & x(1,:)<latetime+0.001)); 
for k = 1:width(T)-1 
    croppedy(k,:) = y(k,find(x(1,:)>earlytime-0.001 & 
x(1,:)<earlytime+0.001):find(x(1,:)>latetime-0.001 & x(1,:)<latetime+0.001)); 
end 
 
% This code only cares about the index, or position, of the max value and doesn't need 
the actual value, so we use the ~ operator to discard the 
% actual value, and I0-I# to store the index.  For cases where a dataset doesn't have a 
peak in the region of interest (bewteen earlytime and 
% latetime), we just set the index to I(1) (giving it the same index as the first dataset, 
meaning we won't shift the data). This is because we don't  
% want to shift the data based on random noise in the baseline.  The noise value can be 
set based on your data. 
noise = 0.09; 
for l = 1:width(T)-1 
    if max(croppedy(l,:)) > noise 
        [~,I(l)] = max(croppedy(l,:)); 
    else 
        I(l) = I(1); 
    end 
end 
 
% This is the code block that actually shifts the data.  We know the index of the peak in 
the first dataset that we want to align the others to 
% (I0), so we take that x value and subtract the x value of the peak in the next dataset.  If 
the peaks elute at the same time, this value is 0.  If 
% they elute at slightly different times, the value of (croppedx(I0)-croppedx(I#)) will be the 
value in x that the dataset needs 
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% to move.  We change the values of the x data for each dataset individually. 
for m = 2:width(T)-1 
    x(m,:) = x(m,:) + (croppedx(I(1))-croppedx(I(m))); 
end 
 
% To stack the data vertically, I am simply adding value to each subsequent dataset. y0 
is plotted as is, y1 is plotted 1.5 y units above that, and 
% so on. 
for n = 2:height(y) 
    y(n,:) = y(n,:) + 1.5*(n-1); 
end 
 
% Plot the data! 
cmap = gray(height(y)+1); 
for t = 1:height(y) 
    plot(x(t,:),y(t,:), 'LineWidth', 1.75); axis([2.5 10 -3 9]) 
    hold on 
end 
% Modify the plot to make it look nicer 
ax = gca; 
ax.TickLength = [0,0]; 
ax.LineWidth = 2; 
ax.FontName = 'Arial'; 
ax.FontSize = 16; 
yticks([]); 
xlabel('\bf Time (min)', 'Fontsize', 18); 
w = 8; 
h = 4; 
set(gcf,'units','inches','position',[4,4,w,h]); 
%legend('t = 0 h', 't = 1 h', 't = 3 h', 't = 6 h', 't = 12 h', 't = 30 h', 't = 48 h', 't = 72 h', 't = 
120 h', 't = 168 h', 't = 240 h', 'Location', 'North', 'Orientation','horizontal', 'FontSize', 11); 
%legend boxoff 
colororder(cmap); 
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C1. (GA)10 characterization 

C1.1 (GA)10 structure and purity 

The structure of (GA)10 was confirmed by NMR spectroscopy performed in deuterated 

dimethyl sulfoxide and MALDI-TOF mass spectrometry, while the purity was determined 

by HPLC.  The expected peaks are present in the expected abundance in NMR and the 

mass is as expected by MALDI, so we conclude that (GA)10 was successfully 

synthesized.  By HPLC, we do observe two peaks, with the primary peak accounting for 

>91% of the total peak area.  Due to the low solubility of the (GA)10 peptide, we did not 

attempt to purify by preparative-scale HPLC and instead used the peptide as 

synthesized. 

 

Figure C1.  Structural and purity characterization of (GA)10.  A) NMR spectrum of (GA)10, with expected 

peaks labeled.  B) MALDI-TOF mass spectrum of (GA)10 with [M+H]+ and [M+Na]+ peaks labeled.  C) 

Analytical HPLC chromatogram of (GA)10.  The primary peak accounts for >91% of the total peak area.  

The peptide was eluted on a linear AB gradient from 5% to 95% B (v/v) over 9 minutes, where A is 

ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% TFA. 



194 
 

C1.2 (GA)10 secondary structure 

IR spectroscopy was used to determine the secondary structure of (GA)10 in both the 

powder form (Figure C2) and in 10 mM phosphate buffer (Figure 2).  In both forms, a 

peak at 1624 cm-1 characteristic of β-sheet formation is present, indicating that (GA)10 is 

rich in β-sheet. 

 

Figure C2.  IR spectrum of powder (GA)10.  The characteristic β-sheet peak at 1624 cm-1 confirms the 

secondary structure of the peptide. 

C1.3 (GA)10 forms turbid solutions at 3 mg/mL in 10 mM phosphate buffer 

Upon addition of (GA)10 to 10 mM phosphate buffer at a concentration of 3 mg/mL, 

(GA)10 immediately forms a turbid solution.  The photos in Figure C3 were taken within 

minutes of mixing (GA)10 in the buffer. 
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Figure C3.  Photos of (GA)10 at 3 mg/mL in 10 mM phosphate buffer taken minutes after initial mixing. 

C2. TEM images of 10 mM phosphate buffer 

Images taken of 10 mM phosphate buffer indicate no structure formation, so none of the 

features observed in any of the TEM images of samples can be attributed to the buffer 

(Figure C4). 
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Figure C4.  TEM images of 10 mM phosphate buffer show no signs of structure formation. 

C3. Additional TEM images of GA)10 

All TEM images here are taken after overnight incubation of (GA)10 in 10 mM phosphate 

buffer. 
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Figure C5.  TEM images of (GA)10 incubated in 10 mM phosphate buffer overnight.  Aggregates of 

various sizes are observed, with smaller aggregates seemingly coming together to form larger 

aggregates. 
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Figure C6.  TEM images of (GA)10 incubated in 10 mM phosphate buffer overnight.  Aggregates of 

various sizes are observed, with smaller aggregates seemingly coming together to form larger 

aggregates. 
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C4. Characterization of mPEG-CGGG-(GA)10 conjugates 

C4.1 Mole ratio required for full conversion of thiol-maleimide conjugation 

reaction 

The thiol-maleimide conjugation reaction proceeds quickly under these reaction 

conditions, but it does require a high molar ratio of peptide: polymer.  By HPLC, we see 

four peaks in our reaction mixtures: one that corresponds to the peptide, one that 

corresponds to the polymer, one that corresponds to the newly formed conjugate, and 

another broad peak that elutes later than the polymer (Figure C7).  We hypothesize that 

this broad peak is the result of conjugate that is targeting CGGG-(GA)10 peptides in the 

reaction mixture before they react with the polymer.  Since some amount of peptide 

reactant is consumed by this interaction, more peptide must be added to push the 

reaction to completion.  Even at a molar ratio of 1.25:1 peptide: polymer, a large amount 

of unreacted polymer remains.  However, when pushed to 2:1 peptide: polymer, we see 

nearly complete disappearance of the mPEG-mal polymer peak, indicating that we 

pushed the reaction to completion.  We note that the L-CGGG-(GA)10 peak doesn’t 

seem to change across these conditions.  This may be because all of the peptide is 

either reacted or interacting with the conjugate, or it could be that the hydrophobic 

peptide component of the reaction mixture is mostly filtered out before running HPLC.  

Additionally, there is a small peak that elutes just after the main polymer peak that does 

not change throughout the reaction.  This is present in the chromatogram of the polymer 

alone as well.  Likely, this is a small amount of polymer that does not have an active 

maleimide group (the supplied mPEG-maleimide from Aldrich has a purity of >90%). 
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Figure C7.  HPLC chromatograms of L-CGGG-(GA)10 + mPEG-maleimide reaction mixtures at different 

peptide: polymer ratios.  The peaks corresponding to the peptide, polymer, and newly formed conjugate 

are labeled.  Only when reacted with a 2:1 excess of peptide: polymer is all of the polymer consumed.  

This may be due to the conjugate interacting with free peptide as it is formed, leading to the formation of 

the broad peak starting at ~7.3 min. 

C4.2 Structure and purity of mPEG-CGGG-(GA)10 conjugates 

The conjugates purified by preparative-scale HPLC were analyzed by NMR 

spectroscopy to confirm the successful synthesis and SEC and HPLC to confirm purity.  

The expected peaks are present in the expected relative abundance, confirming the 

synthesis (Figure C8A).  By SEC, only one peak corresponding to the conjugate is 

present, indicating that preparative-scale HPLC successfully separated the conjugate 

from any unreacted peptide or polymer (Figure C8B).  Finally, HPLC confirms this purity 

as only one peak is observed (Figure C8C). 



201 
 

 

Figure C8.  Characterization of mPEG-CGGG-(GA)10 conjugates.  A) NMR spectrum of D- and L-CGGG-

(GA)10 with peaks labeled.  B)  SEC chromatogram of D- and L-CGGG-(GA)10 eluting as a single peak 

with no unreacted polymer or peptide impurities.  C) HPLC chromatogram of D- and L-CGGG-(GA)10 

eluting as a single peak with no unreacted polymer or peptide impurities. 

C4.3 Additional TEM images of mPEG-L-CGGG-(GA)10 

All TEM images here are taken after overnight incubation in 10 mM phosphate buffer. 
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Figure C9.  TEM images of mPEG-L-CGGG-(GA)10 incubated overnight in 10 mM phosphate buffer.  The 

most prevalent morphology is rod-like, leading to the proposed cylindrical micelle structure of the 

conjugates. 

C4.4 Additional TEM images of mPEG-D-CGGG-(GA)10 

All TEM images here are taken after overnight incubation in 10 mM phosphate buffer. 
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Figure C10.  TEM images of mPEG-D-CGGG-(GA)10 incubated overnight in 10 mM phosphate buffer.  

The most prevalent morphology is rod-like, leading to the proposed cylindrical micelle structure of the 

conjugates. 
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C5. Turbidity of mPEG-L-CGGG-(GA)10 and mPEG-D-CGGG-(GA)10 in 10 mM 

phosphate buffer 

While the conjugates appear to fully dissolve by eye, we measured the turbidity of 7 

mg/mL mPEG-L-CGGG-(GA)10 and mPEG-D-CGGG-(GA)10 dissolved in 10 mM 

phosphate buffer (Figure C11).  Turbidity measurements were taken minutes after 

dissolution.  The turbidity of the conjugate solutions was on the same order of 

magnitude as the buffer alone, which is two or more orders of magnitude lower than the 

turbidities we are measuring in the experiment.  Therefore, the turbidity of the 

conjugates alone does not significantly contribute to the data collected in any of the 

turbidity studies conducted. 

 

Figure C11.  Turbidities of buffer, 7 mg/mL mPEG-L-CGGG-(GA)10, and 7 mg/mL mPEG-D-CGGG-(GA)10 

in 10 mM phosphate buffer.  These turbidities are multiple orders of magnitude lower than what is 

measured in the turbidity experiments. 



205 
 

C6. Turbidity of 10 mM phosphate buffer over 28 days 

To test whether the turbidity of buffer solutions changes with time over the course of this 

experiment (due to, for example, the growth of bacteria/microbes in aqueous solution), 

we monitored the turbidity of a 10 mM phosphate buffer solution over 28 days (Figure 

C12).  We observed little change over the 28 days of the experiment, indicating that 

turbidity is not artificially increased by changes to the solution over time rather than the 

aggregation of (GA)10. 

 

Figure C12.  Turbidity of 10 mM phosphate buffer over 28 days.  Little change is observed, indicating that 

changes in the buffer solution itself does not contribute to results observed in the turbidity experiments. 

C7. Turbidity of (GA)10 incubated with mPEG-mal and PEG-ME 

To test whether the control over (GA)10 aggregation observed for mPEG-mal was due to 

the maleimide functional group or the PEG itself, we compared the turbidity of (GA)10 

incubated with mPEG-mal 5,000 to the turbidity of (GA)10 incubated with PEG-ME 
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5,000, which does not have a reactive functional group (Figure C13).  We found that, 

similar to the (GA)10 incubated with mPEG-mal in the first turbidity experiment, (GA)10 

incubated with mPEG-mal in this experiment initially experienced an increase in 

turbidity, then remained level for the rest of the experiment.  On the other hand, (GA)10 

incubated with PEG-ME continually increased in turbidity similar to what was observed 

for (GA)10 incubated in buffer alone, indicating that the maleimide reactive group 

contributes to preventing (GA)10 aggregation.  As the conjugates we have designed do 

not have any reactive groups available, we decided to use PEG-ME as the polymer 

control moving forward, as it better represents the conjugate without peptide present. 

 

Figure C13.  Turbidity of (GA)10 incubated with mPEG-mal or PEG-ME.  The (GA)10 incubated with 

mPEG-mal initially increases in turbidity but then does not aggregate further, while the (GA)10 incubated 

with PEG-ME continually increases in turbidity.  This indicates that the maleimide reactive group 

contributes to preventing aggregation, not the PEG itself. 
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C8. Thioflavin T fluorescence of (GA)10 incubated with buffer, mPEG-mal, mPEG-L-

CGGG-(GA)10, or mPEG-D-CGGG-(GA)10 

Concurrently with the turbidity experiment, thioflavin T fluorescence was also measured 

for each vial (Figure C14).  We observed little change in thioflavin T fluorescence with 

time after 2 days.  Taken together with the turbidity data, this indicates that the thioflavin 

T either is able to diffuse into the conjugates and stain (GA)10 present both there and in 

the bulk solution, or that the (GA)10 remains in the outside solution at the same 

concentration at each time point but isn’t able to come together to aggregate. 

 

Figure C14.  Thioflavin T fluorescence of (GA)10 incubated with buffer, mPEG-mal, mPEG-L-CGGG-

(GA)10, or mPEG-D-CGGG-(GA)10 in 10 mM phosphate buffer. 
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C9. Additional TEM images of coincubation study of (GA)10 with buffer, mPEG-L-

CGGG-(GA)10, and mPEG-D-CGGG-(GA)10 

C9.1 Additional TEM images of (GA)10 incubated in buffer at t = 0 days 
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Figure C15.  TEM images of (GA)10 incubated in buffer for several minutes.  Small aggregates are 

observed, some of which are coming together to form larger aggregates. 

C9.2 Additional TEM images of (GA)10 incubated in buffer at t = 14 days 

Much larger aggregates are observed after 14 days.  A couple examples were found of 

much larger, irregularly shaped objects such as the one in the center of the bottom right 

image.  Further testing would be needed to confirm that this larger object is the result of 

(GA)10 aggregation. 
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Figure C16.  TEM images of (GA)10 incubated in buffer for 14 days.  Large aggregates are observed. 
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C9.3 Additional TEM images of (GA)10 incubated with mPEG-L-CGGG-(GA)10 at t = 

0 days 

 

Figure C17.  TEM images of (GA)10 incubated in mPEG-L-CGGG-(GA)10 for several minutes.  A mixture 

of small aggregates and rod-like conjugates are observed. 
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C9.4 Additional TEM images of (GA)10 incubated with mPEG-L-CGGG-(GA)10 at t = 

14 days 

 

Figure C18.  TEM images of (GA)10 incubated in mPEG-L-CGGG-(GA)10 for 14 days.  A mixture of small 

aggregates and rod-like conjugates are still observed, but no large aggregates on the scale of what is 

seen when (GA)10 is incubated in buffer alone. 
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C9.5 Additional TEM images of (GA)10 incubated with mPEG-D-CGGG-(GA)10 at t = 

0 days 

 

Figure C19.  TEM images of (GA)10 incubated in mPEG-D-CGGG-(GA)10 for several minutes.  A mixture 

of small aggregates and rod-like conjugates are observed. 
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C9.6 Additional TEM images of (GA)10 incubated with mPEG-D-CGGG-(GA)10 at t = 

14 days 

 

Figure C20.  TEM images of (GA)10 incubated in mPEG-D-CGGG-(GA)10 for 14 days.  A mixture of small 

aggregates and rod-like conjugates are still observed, but no large aggregates on the scale of what is 

seen when (GA)10 is incubated in buffer alone. 
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C10. Additional TEM images of preaggregation study of (GA)10 with buffer, PEG-

ME, mPEG-L-CGGG-(GA)10, and mPEG-D-CGGG-(GA)10 

C10.1 Additional TEM images of (GA)10 preaggregated in buffer for 7 days 
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Figure C21.  TEM images of (GA)10 after 7 days of incubation in 10 mM phosphate buffer.  A combination 

of small, medium, and large aggregates are observed, somewhere in between what was previously 

observed for (GA)10 incubated in buffer for a few minutes and 14 days. 
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C10.2 Additional TEM images of preaggregated (GA)10 treated with buffer for 28 

days 

 

Figure C22.  TEM images of preaggregated (GA)10 incubated with buffer for 28 days.  Large aggregates 

are observed. 
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C10.3 Additional TEM images of preaggregated (GA)10 treated with PEG-ME for 28 

days 

 

Figure C23.  TEM images of preaggregated (GA)10 incubated with PEG-ME for 28 days.  Large 

aggregates are observed, similar in size to the aggregates observed for the preaggregated (GA)10 treated 

with buffer.  
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C10.4 Additional TEM images of preaggregated (GA)10 treated with mPEG-L-

CGGG-(GA)10 for 28 days 

 

Figure C24.  TEM images of preaggregated (GA)10 incubated with mPEG-L-CGGG-(GA)10 for 28 days.  

While the morphology is primarily rod-like micelles corresponding to the conjugate and some small 

aggregates, there are still areas with some larger aggregates present. 
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C10.5 Additional TEM images of preaggregated (GA)10 treated with mPEG-D-

CGGG-(GA)10 for 28 days 

 

Figure C25.  TEM images of preaggregated (GA)10 incubated with mPEG-D-CGGG-(GA)10 for 28 days.  

While the morphology is primarily rod-like micelles corresponding to the conjugate and some small 

aggregates, there are still areas with some larger aggregates present. 
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C11. (GA)20 structural characterization 

MALDI-TOF mass spectrometry was used to assess the synthesis of (GA)20.  The 

expected mass of 2578.2 was not observed, but a mass of 2150.0 was observed.  We 

determined that this corresponded to the deletion of 4 A residues and 3 G residues, plus 

a sodium.  Therefore, the (GA)20 that we attempted to synthesize is actually (GA)16G. 

 

Figure C26.  MALDI-TOF mass spectrum of (GA)20.  The expected mass of 2578.2 was not observed, 

rather a mass of 2150.0 was observed.  We determined that this corresponded to the mass of (GA)16G. 

C12. 4-arm PEG-CGGG-(GA)10 conjugate solubility 

After synthesis and purification of 4-arm conjugates, we tested solubility in 10 mM 

phosphate buffer.  Surprisingly, the 4-arm conjugates were insoluble at concentrations 

as low as 0.5 mg/mL.  The 20k 4arm PEG-L-CGGG-(GA)10 did not dissolve at all 

(Figure C27, left, insoluble aggregates circled in red), whereas the 10k 4arm PEG-L-

CGGG-(GA)10 resulted in a turbid solution (Figure C27, right).  The same observations 

held true for the D-versions of these conjugates as well. 
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Figure C27.  Insolubility of 4arm PEG conjugates in 10 mM phosphate buffer at 0.5 mg/mL.  The 20k 

conjugate did not dissolve at all, resulting in an insoluble aggregate (red circle) whereas the 10k 

conjugate forms a very turbid solution. 
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Figure D1.  Analytical HPLC chromatograms of (GR)10, (PR)10, (GE)10, (PE)10, and E10. (GR)10, (PR)10, 

(GE)10, and (PE)10 were purified further.  E10 was used as is, and the main peak in that chromatogram 

accounts for >90% of the total peak area.  Peptides were eluted on a linear AB gradient from 5% to 95% 

B (v/v) over 9 minutes, where A is ultrapure water + 0.1% TFA and B is acetonitrile + 0.1% TFA. 
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D2. Peptide purification by preparative-scale HPLC 

The peptides used in this study were purified by preparative-scale HPLC using the 

binary gradients listed in Table D1 below.   

Table D1. List of elution conditions for preparative-scale HPLC purification of peptides. 

Peptide 
Binary gradient (Solvent A = water + 0.1% TFA, 

Solvent B = acetonitrile + 0.1% TFA) 

(GR)10 5 to 15% B from 2.22 to 4 min, 15 to 35% B from 4 to 18 min 

(PR)10 5 to 20% B from 2.22 to 4 min, 20 to 40% B from 4 to 25 min 

(GE)10 5 to 15% B from 2.22 to 16 min 

(PE)10 5 to 20% B from 2.22 to 4 min, 20 to 40% B from 4 to 25 min 

 

The purified peptides obtained from this purification were analyzed by analytical-scale 

HPLC to determine their purity (Figure D2). 
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Figure D2.  Analytical HPLC chromatograms of purified (GR)10, (PR)10, (GE)10, and (PE)10.  The main 

peak in the (GR)10 chromatogram accounts for >98% of the total peak area, the main peak in the (PR)10 

chromatogram accounts for >99% of the total peak area, the main peak in the (GE)10 chromatogram 

accounts for >99% of the total peak area, and the main peak in the (PE)10 chromatogram accounts for 

>99% of the total peak area.  Peptides were eluted on a linear AB gradients, where A is ultrapure water + 

0.1% TFA and B is acetonitrile + 0.1% TFA.  (GR)10 was eluted on a gradient from 5% to 25% B over 18 

min, (PR)10 and (GE)10 were eluted on a gradient from 5% to 95% B over 9 min, and (PE)10 was eluted on 

a gradient from 5% to 95% B over 18 min. 
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D3. Peptide mass spectrometry 

Mass spectra were acquired for purified (GR)10, (PR)10, (GE)10, and (PE)10, and crude 

E10 to confirm their successful synthesis. 

   

Figure D3.  MALDI-TOF mass spectra of (GR)10, (PR)10, (GE)10, (PE)10, and E10, with expected peaks 

labeled. 
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