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Abstract 

Magnetic resonance imaging (MRI) of the lung is challenging due to the low proton density of 

lung parenchymal tissue relative to that of other soft tissue structures within the body, the high 

concentration of air-tissue interfaces and associated short transverse relaxation time following 

radiofrequency (RF) excitation within lung parenchyma, and the need to avoid or mitigate 

motion-related effects associated with breathing. This thesis aims to produce advancements to a 

number of MRI-based approaches for assessing lung structure and function.  

The first work shown in this thesis demonstrates a method for performing 3D multi-phase MRI 

of grid-tagged hyperpolarized 3He gas in the lungs during exhalation. This technique is 

promising for direct measurement of volume change during the breathing cycle on both a global 

and regional basis, for quantification of lung biomechanical quantities related to pulmonary 

compliance, such as regional strain values, and for visualization and assessment of global and 

regional biomechanical abnormalities. The approach described herein takes advantage of the 

predictable distribution of k-space energy imposed by using an RF pulse train to apply a tag 

pattern to inhaled hyperpolarized 3He. Dynamic images of tagged 3He were collected during 

exhalation using this technique, and multiple-time-point displacement and strain maps and lobar 

strain profiles were calculated from tagged 3He images collected as described. 

The second work shown in this thesis seeks to improve dissolved-phase 129Xe MRI of the lung, a 

technique for visualization and quantification of pulmonary gas exchange efficacy, by 

characterizing dependence of quantitative gas-exchange metrics derived from dissolved-phase 

129Xe MRI on lung volume during imaging in healthy individuals and in individuals with chronic 

obstructive pulmonary disease (COPD). Linear relative-difference relationships between gas-

exchange metrics and lung volume were observed and characterized in healthy and diseased 

subject samples. Significant differences in some of these metrics between healthy individuals and 

individuals with COPD were observed, but were largely eliminated upon correcting for lung-

volume contribution by projecting signal ratios to expected values at reference volumes specific 

to each target inflation level. This result demonstrates the need for careful consideration of 

volume-related effects when comparing results in individuals with COPD, who frequently 

present with chronic lung hyperinflation, with those in healthy individuals. 
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The third work shown in this thesis seeks to demonstrate an optimized proton lung MRI 

approach, in which an ultrashort echo time, balanced steady-state free precession pulse sequence 

designed to maximize sampled signal in lung tissue is combined with temporally-constrained 

compressed sensing reconstruction, permitting generation of motion-resolved, high-resolution, 

high-quality 3D image frames at a range of positions in the breathing cycle. This approach 

produces high-signal, high-resolution lung images at end-of-exhalation collected during free 

breathing, with work ongoing to improve image quality in non-end-of-exhalation frames by 

reducing blurring of moving features at these respiratory phases. 
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Chapter 1: Introduction 

1.1. Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is a medical imaging technique that can be used to image 

and characterize anatomical structures and physiological processes in humans. Among the 

advantages of MRI are its flexible methods and tunable parameters that permit high-contrast 

imaging of a wide variety of tissue types and physiological processes, its sensitivity to a diverse 

set of diseases and physical ailments, and its safety and potential for serial imaging given its lack 

of ionizing radiation. Novel MRI acquisition and image reconstruction methods have been 

developed at a rapid rate since the technique’s invention and continue to be developed in the 

present day. This thesis seeks specifically to continue this development process for various types 

of MRI of the human lung. 

The description of basic MRI principles given in the ensuing sections is drawn heavily from 

Magnetic Resonance Imaging: Physical Principles and Sequence Design by Brown et al (1). 

1.1.1. Polarization of spin-½ nuclei 

The signal detected in nuclear magnetic resonance (NMR) and MRI techniques originates from 

the magnetic moments of nuclei contained in an external magnetic field B0. The magnetic 

moment of a nucleus �⃗� is related to its spin angular momentum 𝑆 as follows: 

 �⃗� = 𝛾𝑆 (1.1) 

 

where γ is the gyromagnetic ratio of the nucleus. 

For a spin-½ particle such as a hydrogen-1, helium-3, or xenon-129 nucleus in a field B0, the 

wave functions ψ+ of the spin component operator Sz have the following eigenvalues: 

 𝑚𝑠ℏ = ±
1

2
ℏ (1.2) 

 

such that: 
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 𝑆𝑧𝜓± = ±
1

2
ℏ𝜓± (1.3) 

 

where ℏ = h/(2π) is the reduced Planck constant. These eigenvalues correspond with alignment 

and anti-alignment of the spin to the field B0. The energy levels of the spin in these two states are 

as follows: 

 𝜖± = −�⃗� ∙ �⃗⃗� = −𝛾𝑆 ∙ �⃗⃗� = −𝛾𝑚𝑠ℏ𝐵0 = ±
ℏ𝜔0
2

 (1.4) 

 

where ω0 = γB0 is the precession frequency, or Larmor frequency, of the spins in the magnetic 

field B0. The energy difference of the two states is therefore as follows: 

 Δ𝜖 = 𝜖+ − 𝜖− = ℏ𝜔0 (1.5) 

 

The Boltzmann factor relating the probability and number of anti-aligned spins N↓ to aligned 

spins N↑ at thermal equilibrium is calculated from the energy difference of the respective states 

as follows: 

 
𝑁↓
𝑁↑
= 𝑒−

Δ𝜖
𝑘𝑇 = 𝑒−

ℏ𝜔0
𝑘𝑇  (1.6) 

 

where k is the Boltzmann constant and T is the temperature of the sample in Kelvin. The 

polarization of the sample can then be written as follows using the above ratio: 

 𝑃 =
𝑁↑ − 𝑁↓
𝑁↑ + 𝑁↓

=
1 −

𝑁↓
𝑁↑

1 +
𝑁↓
𝑁↑

=
1 − 𝑒−

ℏ𝜔0
𝑘𝑇

1 + 𝑒−
ℏ𝜔0
𝑘𝑇

= tanh (
ℏ𝜔0
2𝑘𝑇

) = tanh (
𝛾ℎ𝐵0
4𝜋𝑘𝑇

) (1.7) 

 

For tanh(x) where x << 1 (in this case, where kT >> γhB0), we have that tanh(x) ≈ x, and so the 

polarization P can be approximated as follows: 

 𝑃 = tanh (
𝛾ℎ𝐵0
4𝜋𝑘𝑇

) ≈
𝛾ℎ𝐵0
4𝜋𝑘𝑇

 (1.8) 

 

The magnetization per unit volume of a sample in a magnetic field is defined as the sum of the 
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individual magnetic moments in the sample divided by the volume. Understanding that the net 

number of spins aligned with the field is equivalent to the number of spins in the sample times 

the polarization and magnetic moment of spins in the sample, the net magnetization per unit 

volume of the sample is expressed as follows for a spin population at thermal equilibrium in a 

field �⃗⃗� = 𝐵0�̂�: 

 �⃗⃗⃗�0 =
1

𝑉
∑�⃗�𝑖

𝑁

𝑖=1

=
𝑁𝑃�⃗�

𝑉
≈
𝑁

𝑉
∙
𝛾ℎ𝐵0
4𝜋𝑘𝑇

∙ 𝛾𝑚𝑠ℏ�̂� = 𝑛
𝛾2ℏ2𝐵0
4𝑘𝑇

�̂� (1.9) 

 

where n = N/V is the number density of spins per volume. For a large volume with spatially 

varying number density, the magnetization is given as follows as a function of position: 

 |�⃗⃗⃗�0(𝑟)| = 𝑛(𝑟)
𝛾2ℏ2𝐵0
4𝑘𝑇

 (1.10) 

 

For a thermally polarized sample of 1H-dense media, the polarization P of the 1H is 

approximately 5 ppm at body temperature in a static 1.5 T magnetic field (Table 1.1). However, 

the high 1H spin density per unit volume of aqueous tissue (~1019 molecules per cubic 

millimeter) results in a high enough magnetization to produce detectible signal within such a 

field at thermal polarization. 

Nucleus 
γ/(2π) 

(MHz/T) 
f0 (MHz) 

Ptherm 

(ppm) 
1H 42.6 63.9 4.94 

3He -32.4 -48.7 3.76 

129Xe -11.8 -17.7 1.37 

 

Table 1.1: Gyromagnetic ratio γ/(2π), frequency f0 in a 1.5 T magnetic field, and thermal polarization in a 1.5 T 

magnetic field at body temperature for hydrogen-1, helium-3, and xenon-129. 

The thermal polarization and gyromagnetic ratios of spin-½ noble gases 3He and 129Xe are each 

of a similar order of magnitude to those of 1H (Table 1.1). However, because helium and xenon 

occupy a gaseous state at physiologically relevant temperatures, the spin density per unit volume 

(and therefore the magnetization per unit volume) of 3He and 129Xe is far lower than that of 1H in 
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aqueous tissue. In order to increase magnetization of 3He and 129Xe and facilitate MRI using 

these agents, hyperpolarization techniques such as spin-exchange optical pumping (SEOP) can 

be used to polarize samples of 3He and 129Xe to several orders of magnitude above thermal 

polarization. SEOP hyperpolarizers available at research institutions can polarize 3He to 

approximately 60% (i.e., 600,000 ppm) and 129Xe to approximately 40% (i.e., 400,000 ppm) (2–

4). The 3He and 129Xe polarization tends toward its thermal equilibrium over time, however, and 

the hyperpolarized state is therefore transient. 

1.1.2. Spin dynamics and the Bloch equation 

The fundamental equation of motion for a single magnetic moment contained in a magnetic field 

is as follows: 

 
𝑑�⃗�𝑖
𝑑𝑡

= 𝛾�⃗�𝑖 × 𝐵 (1.11) 

 

The above equation describes Larmor precession, or the precession of a magnetic moment about 

an external magnetic field. The magnitude of the Larmor frequency in units of radians/second is 

equal to γB. 

Considering an ensemble of spins with the same phase and experiencing the same magnetic field 

B (hereafter referred to as an isochromat), and plugging in the relationship between the net 

magnetization per unit volume and individual magnetic moments described earlier, we can 

produce an expression describing the motion of the isochromat magnetization as follows: 

 

1

𝑉
∑

𝑑�⃗�𝑖
𝑑𝑡

=
𝛾

𝑉
∑�⃗�𝑖 × 𝐵

𝑁

𝑖=1

𝑁

𝑖=1

 

𝑑�⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗� × �⃗⃗� 

(1.12) 

 

That is, the isochromat as a whole exhibits Larmor precession behavior, neglecting spin 

interactions with each other and with their surroundings.  

For an isochromat not oriented along the axis of the magnetic field (considered here to be 

oriented along the z-axis), thermal interactions of the spins with the lattice of nearby atoms will 



5 

 

tend to drive the magnetization toward its minimum energy state of orientation along the axis of 

the field. The rate of change of the magnetization component oriented along the axis of the field 

(hereafter called the longitudinal magnetization) is proportional to the difference between the 

equilibrium longitudinal magnetization and the current longitudinal magnetization, as follows: 

 
𝑑�⃗⃗⃗�

𝑑𝑡
=
𝑀0 −𝑀𝑧

𝑇1
�̂� (1.13) 

 

The empirically-determined time constant T1 describes the rate of longitudinal relaxation, and 

varies across nuclei and for different tissues and magnetic field strengths. 

Spins also experience small magnetic fields associated with neighboring spins, and thus exhibit 

slightly varying precessional frequencies. This leads to loss of coherent magnetization normal to 

the axis of the magnetic field (hereafter called the transverse magnetization) separate from the 

loss due to longitudinal relaxation. Considering the isochromat in a reference frame rotating 

about the z-axis at the Larmor frequency γ and thereby ignoring Larmor precession of the 

isochromat, this loss of coherent transverse magnetization can be described as follows: 

 
𝑑�⃗⃗⃗�𝑥𝑦

𝑑𝑡
= −

𝑀𝑥𝑦

𝑇2
 (1.14) 

 

As with T1, T2 is determined empirically and varies across imaged media and magnetic field 

strengths. 

Combining the three described motion components (Larmor precession, longitudinal relaxation, 

and transverse relaxation) yields the following expression for the motion of the isochromat 

magnetization: 

 
𝑑�⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗� × �⃗⃗� +

𝑀0 −𝑀𝑧

𝑇1
�̂� −

𝑀𝑥𝑦

𝑇2
 (1.15) 

 

This motion equation, called the Bloch equation, has the following solution for magnetization 

over time along each of the three dimensions in a constant magnetic field B0: 

 𝑀𝑥(𝑡) = 𝑒−𝑡/𝑇2(𝑀𝑥(0) cos𝜔0𝑡 + 𝑀𝑦(0) sin𝜔0𝑡) (1.16) 
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𝑀𝑦(𝑡) = 𝑒
−𝑡/𝑇2(𝑀𝑦(0) cos𝜔0𝑡 − 𝑀𝑥(0) sin𝜔0𝑡) 

𝑀𝑧(𝑡) = 𝑀𝑧(0)𝑒
−𝑡/𝑇1 +𝑀0(1 − 𝑒

−𝑡/𝑇1) 

 

where ω0 = γB0 is the Larmor frequency. The steady-state solution at t → ∞ is Mx = My = 0, Mz = 

M0, corresponding to the minimum-energy situation in which the isochromat magnetization is 

oriented along the axis of the magnetic field. Evolution of the magnetization over time from a 

starting orientation normal to the magnetic field axis is depicted in Fig. 1.1. 

 

Figure 1.1: Schematic of the motion of the trajectory of the tip of a magnetization vector M in an external magnetic 

field B0 oriented along the z-axis, starting from the position Mx = Mz = 0, My = M0. The magnetization precesses 

about the axis of the magnetic field, decays in the transverse (x-y) plane, and regrows along the longitudinal (z-) 

axis. The equilibrium magnetization is equal to Mx = My = 0, Mz = M0. Reproduced from Brown et al (1). 

The steady state toward which the magnetization inevitably evolves is independent of the initial 

state of the system. Notably, this means that for hyperpolarized media imaged using MRI, the 

magnetization will evolve toward thermal equilibrium over time, rather than toward the initial 

starting longitudinal magnetization of the hyperpolarized substance (which is much higher than 

the longitudinal magnetization at thermal equilibrium). 

Inhomogeneities in the external magnetic field can also drive dephasing and loss of coherent 

magnetization in the sample. The time constant used to describe this behavior is called T2′. The 

time constant T2
* describing combined loss of coherent transverse magnetization due to spin-spin 

interactions and magnetic field inhomogeneities can be expressed as follows: 
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1

𝑇2
∗ =

1

𝑇2
+
1

𝑇2′
 (1.17) 

 

1.1.3. Excitation of spins using a radiofrequency field 

Detectible MR signal is generated by induction of an electromotive force in a coil of wire, via 

Larmor precession of nearby spins. In order to produce detectible MR signal, the spins must 

therefore be “excited,” or perturbed from their equilibrium state of alignment with the magnetic 

field. Excitation is performed using a radiofrequency (RF) field. 

In order to describe more easily the action of the RF field on the spins, a reference frame rotating 

about the z-axis at the Larmor frequency can be denoted using axis labels x′, y′, and z′ (where z 

and z′ are identical). A circularly-polarized RF field B1 rotating at the Larmor frequency can then 

be described as follows: 

 �⃗⃗�1 = 𝐵1�̂�′ (1.18) 

 

and the total external magnetic field experienced by the spins as a result of B0 and B1 in the 

rotating frame (rotating at angular frequency ω) is: 

 �⃗⃗�′ = (𝐵0 −
𝜔

𝛾
) �̂� + 𝐵1�̂�′ (1.19) 

 

Plugging this expression into the Bloch equation (Eq. 1.15), assuming that ω = ω0, and 

neglecting T1 and T2 behavior, we obtain the following expressions for motion of the 

magnetization in the rotating frame for a circularly-polarized RF field B1: 

 

(
𝑑𝑀𝑥′

𝑑𝑡
)
′

= 0 

(
𝑑𝑀𝑦′

𝑑𝑡
)

′

= 𝜔1𝑀𝑧 

(
𝑑𝑀𝑧

𝑑𝑡
)
′

= −𝜔1𝑀𝑦′ 

(1.20) 
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where the spin frequency due to the RF field is given as ω1 = γB1. In other words, the 

magnetization precesses about the x′-axis along which the B1 field is applied, tipping away from 

the z axis and producing transverse magnetization that will generate detectible MR signal via 

Larmor precession. The solutions to the above equations of motion are as follows: 

 

𝑀𝑥′(𝑡) = 𝑀𝑥′(0) 

𝑀𝑦′(𝑡) = 𝑀𝑦′(0) cos 𝜃 +𝑀𝑧(0) sin 𝜃 

𝑀𝑧(𝑡) = −𝑀𝑦′(0) sin 𝜃 +𝑀𝑧(0) cos 𝜃 

(1.21) 

where 

 𝜃 = ∫ 𝜔1(𝑠) 𝑑𝑠
𝑡

0

 (1.22) 

 

is given by the duration and shape of the RF pulse and is hereafter called the flip angle of the 

excitation. The evolution of the magnetization following an RF pulse can be described using the 

Bloch equation for magnetization subject only to a B0 field, using the magnetization components 

immediately following RF excitation as the magnetization components at time t = 0. 

The above assumes that all spins in the sample of interest experience the RF field and are excited 

equally. In practice, it is often preferred to excite only some of the spins in the sample. 

Commonly, a 3D volume that is relatively thin along one of the three dimensions (commonly 

called a slice) is excited for imaging. Slice-selective excitation (demonstrated here for a slice 

plane normal to the z-axis) is performed by applying a linear magnetic field gradient Gz to 

modulate the spin frequencies as a function of position: 

 𝑓(𝑧) = 𝑓0 +
𝛾

2𝜋
𝐺𝑧𝑧 (1.23) 

 

and then applying an RF pulse with bandwidth equivalent to the range of frequencies Δf 

corresponding to the range of spatial positions (or slice thickness) Δz: 

 𝐵𝑊𝑟𝑓 = Δ𝑓 =
𝛾

2𝜋
𝐺𝑧Δ𝑧 (1.24) 
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The slice thickness Δz can then be expressed as a function of the RF pulse bandwidth and the 

gradient Gz as follows: 

 Δ𝑧 =
𝐵𝑊𝑟𝑓

𝛾
2𝜋 𝐺𝑧

 (1.25) 

 

The desired RF excitation profile is equivalent to the rect function rect(f/Δf) in the frequency 

domain. The corresponding temporal envelope is the inverse Fourier transform of the desired 

frequency profile, which is the following sinc function: 

 𝐵1(𝑡) ∝ 𝑠𝑖𝑛𝑐(𝜋Δ𝑓𝑡) (1.26) 

 

1.1.4. Position encoding in MRI 

The complex MR signal as a function of time can be expressed as proportional to the 

electromotive force induced in nearby radiofrequency receiver coils, which is equal to the 

negative of the time derivative of the flux through the coil, as follows: 

 

𝑠(𝑡) ∝ 𝑒𝑚𝑓 = −
𝑑

𝑑𝑡
Φ𝑀(𝑡) = −

𝑑

𝑑𝑡
∫𝑑3𝑟 �⃗⃗⃗�(𝑟, 𝑡) ∙ ℬ⃗⃗⃗𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟)

= −
𝑑

𝑑𝑡
∫𝑑3𝑟 [𝑀𝑥(𝑟, 𝑡) ∙ ℬ𝑥

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟) + 𝑀𝑦(𝑟, 𝑡)

∙ ℬ𝑦
𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟) + 𝑀𝑧(𝑟, 𝑡) ∙ ℬ𝑧

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟)] 

(1.27) 

 

where Φ is the flux through the coil and ℬ⃗⃗⃗𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟) is the magnetic field per unit current, called 

the “receive field,” of the coil. 

Plugging in the following for the transverse magnetization vector components as a function of 

position and time given by the Bloch equation: 

 
𝑀+(𝑟, 𝑡) = 𝑒−𝑡 𝑇2(𝑟)⁄ 𝑒𝑖(−𝜔(𝑟)𝑡+𝜙0(𝑟))𝑀⊥(𝑟, 0) 

𝑀𝑥 = 𝑅𝑒(𝑀+); 𝑀𝑦 = 𝐼𝑚(𝑀+);  

 
(1.28) 
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we can obtain the following for s(t) by evaluating the time derivative in Eq. 1.27 and neglecting 

the contribution of the Mz component due to the several-order-of-magnitude difference between 

ω and 1/T1 for typical nuclei imaged using MRI at typical MR field strengths: 

 

𝑠(𝑡) ∝ 𝜔(𝑟)∫𝑑3𝑟𝑒−𝑡 𝑇2(𝑟)⁄ [𝑅𝑒(𝑖𝑀+(𝑟, 0)𝑒
−𝑖𝜔(𝑟)𝑡) ∙ ℬ𝑥

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟)

+ 𝐼𝑚(𝑖𝑀+(𝑟, 0)𝑒
−𝑖𝜔(𝑟)𝑡) ∙ ℬ𝑦

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟)]

=𝜔0∫𝑑
3𝑟𝑒−𝑡 𝑇2(𝑟)⁄ 𝑀⊥(𝑟, 0)[sin(𝜔(𝑟)𝑡 − 𝜙0(𝑟))

∙ ℬ𝑥
𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟) + cos(𝜔(𝑟)𝑡 − 𝜙0(𝑟)) ∙ ℬ𝑦

𝑟𝑒𝑐𝑒𝑖𝑣𝑒(𝑟)] 

(1.29) 

 

By representing ℬ𝑥
𝑟𝑒𝑐𝑒𝑖𝑣𝑒 and ℬ𝑦

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 in terms of the position-dependent magnitude ℬ⊥(𝑟) and 

angle 𝜃ℬ(𝑟): 

 ℬ𝑥
𝑟𝑒𝑐𝑒𝑖𝑣𝑒 = ℬ⊥(𝑟) cos 𝜃ℬ(𝑟); ℬ𝑦

𝑟𝑒𝑐𝑒𝑖𝑣𝑒 = ℬ⊥(𝑟) sin 𝜃ℬ(𝑟) (1.30) 

 

and using the trigonometric identity sin(a+b) = sin(a)cos(b) + cos(a)sin(b), we obtain: 

 
𝑠(𝑡) ∝ 𝜔(𝑟)∫𝑑3𝑟𝑒−𝑡 𝑇2(𝑟)⁄ 𝑀⊥(𝑟, 0)ℬ⊥(𝑟) sin(𝜔(𝑟)𝑡 + 𝜃ℬ(𝑟)

− 𝜙0(𝑟)) 

(1.31) 

 

Demodulation, or multiplication of the signal with a sinusoid with frequency equal to the Larmor 

frequency ω0, yields the following: 

 𝑠(𝑡) ∝ 𝜔(𝑟)∫𝑑3𝑟𝑒−𝑡 𝑇2(𝑟)⁄ 𝑀⊥(𝑟, 0)ℬ⊥(𝑟)𝑒
𝑖((𝜔0−𝜔(𝑟))𝑡−𝜃ℬ(𝑟)+𝜙0(𝑟)) (1.32) 

 

Assuming that the initial magnetization phase ϕ0 and the amplitude and phase of the receive field 

are independent of position, neglecting T2, generalizing the signal to include time-dependent 

precession frequency 𝜔(𝑟, 𝑡), and introducing the constant Λ that absorbs these factors and the 

gain factors for the receive electronics, we can write 
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 𝑠(𝑡) = 𝜔(𝑟)Λℬ⊥∫𝑑
3𝑟𝑀⊥(𝑟, 0)𝑒

𝑖(𝜔0𝑡+𝜙(𝑟,𝑡)) (1.33) 

 

where ϕ is accumulated phase defined as follows: 

 𝜙(𝑟, 𝑡) = −∫ 𝑑𝑡′𝜔(𝑟, 𝑡′)
𝑡

0

 (1.34) 

 

Assuming the initial transverse magnetization to simply equal M0, and introducing the effective 

spin density ρ that combines the true spin density and the characteristics of the receive 

electronics: 

 𝜌(𝑟) = 𝜔(𝑟)Λℬ⊥𝑀0(𝑟) (1.35) 

 

we can write: 

 𝑠(𝑡) = ∫𝑑3𝑟 𝜌(𝑟)𝑒𝑖(𝜔0𝑡+𝜙(𝑟,𝑡)) (1.36) 

 

The signal s(t) can be represented for simplicity of the following as a function of only one spatial 

dimension, chosen here to be z, as follows: 

 𝑠(𝑡) = ∫𝑑𝑧 𝜌(𝑧)𝑒𝑖(𝜔0𝑡+𝜙(𝑧,𝑡)) (1.37) 

 

by expressing ρ as a function of z as follows: 

 𝜌(𝑧) = ∬𝑑𝑥 𝑑𝑦 𝜌(𝑟) (1.38) 

 

Application of a linear magnetic field gradient Gz along the z-direction 

 𝐺𝑧 = 𝛿𝐵𝑧/𝛿𝑧 (1.39) 

 

produces the following magnetic field B as a function of position and time: 
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 𝐵𝑧(𝑧, 𝑡) = 𝐵0 + 𝑧𝐺(𝑡) (1.40) 

 

and an associated distribution of spin angular frequencies: 

 𝜔(𝑧, 𝑡) = 𝜔0 + 𝛾𝑧𝐺(𝑡) = 𝜔0 + 𝜔𝐺(𝑧, 𝑡) (1.41) 

 

The phase accumulated due to the applied gradient as a function of time t and position z can then 

be expressed as follows: 

 𝜙𝐺(𝑧, 𝑡) = −∫ 𝑑𝑡′𝜔𝐺(𝑧, 𝑡′) = −𝛾𝑧∫ 𝑑𝑡′𝐺(𝑡′)
𝑡

0

𝑡

0

 (1.42) 

 

The phase of the spin population at a given time t under a linear gradient G(t) can thus be 

expressed as a linear function of position z. Eq. 1.37 can be modified to express s(t) as a function 

of the gradient G(t) as follows: 

 𝑠(𝑡) = ∫𝑑𝑧 𝜌(𝑧)𝑒𝑖𝜙𝐺(𝑧,𝑡) = ∫𝑑𝑧 𝜌(𝑧)𝑒−𝑖𝛾𝑧 ∫ 𝑑𝑡′𝐺(𝑡′)
𝑡
0  (1.43) 

 

Defining the spatial frequency quantity k(t), in units of cycles per spatial length, as follows: 

 𝑘(𝑡) =
𝛾

2𝜋
∫ 𝑑𝑡′𝐺(𝑡′)
𝑡

0

 (1.44) 

 

yields the following expression for s as a function of k: 

 𝑠(𝑘) = ∫𝑑𝑧 𝜌(𝑧)𝑒−𝑖2𝜋𝑘𝑧 (1.45) 

 

In other words, the signal as a function of spatial frequency s(k) forms a Fourier transform pair 

with the spin density as a function of spatial position ρ(z) when linear gradients are implemented. 

The spin density can accordingly be obtained by taking an inverse Fourier transform of the signal 

s(k) as follows: 

 𝜌(𝑧) = ∫𝑑𝑘 𝑠(𝑘)𝑒𝑖2𝜋𝑘𝑧 (1.46) 
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A 1D “image” along the z-axis can therefore be obtained by using linear gradients to traverse k-

space, sampling the signal s(k) at a collection of sampling points. This formalism can be 

extended to 3D imaging as follows: 

 

𝑠(�⃗⃗�) = ∫𝑑3𝑟 𝜌(𝑟)𝑒−𝑖2𝜋�⃗⃗�∙𝑟 

𝜌(𝑟) = ∫𝑑3𝑘 𝑠(�⃗⃗�)𝑒𝑖2𝜋�⃗⃗�∙𝑟 

(1.47) 

 

A single MRI measurement can be summarized as follows: use RF excitation to excite all, or a 

subset, of spins in a sample contained in the magnetic field B0; use a magnetic field gradient Gr 

to traverse k-space; and sample the detected signal in one or more RF receiver coils while the 

gradient Gr is carried out. For any given MR measurement type, a pulse sequence describes the 

particular amplitudes and timings of RF pulses and gradients that constitute the measurement. 

A typical set of MRI measurements leading to the formation of an image consists of numerous 

iterations of the pulse sequence each carried out with differing gradients and/or RF pulses in 

order to sample a collection of k-space points sufficient for image reconstruction. For the 

example Cartesian coverage of 2D k-space where z is a slice-select dimension (Fig. 1.2), it is 

common to perform a gradient along Gy prior to readout to “phase-encode” a particular y-

dependent phase contribution, then sample during execution of a “frequency-encode” gradient 

along Gx such that a line is traced through kx-ky space and samples are collected along that line. 

The process is repeated with different amplitudes of the phase-encode gradient Gy until the 

entirety of the necessary k-space has been sampled.  
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Figure 1.2: Example of a simple two-dimensional slice-selective MR pulse sequence. A slice-select gradient along 

Gz and a sinc-shaped RF pulse are used to excite a slice of spins normal to the z-axis. A phase-encode gradient along 

Gy is used to move to a point in ky, and the y-dependent phase contribution to the sample remains unchanged 

throughout sampling. Finally, a frequency-encode gradient Gx is used to traverse a line in k-space at the position ky 

for varying kx, and sampling is performed throughout the traversal of k-space by Gx. Reproduced from Brown et al 

(1). 

The pulse sequence shown in Fig. 1.2 samples k-space lines in a Cartesian raster fashion. Various 

other options exist for traversal of k-space for MR sampling. Of particular interest in this work is 

radial sampling, in which k-space lines begin at the k-space origin and are traced outward 

radially toward the k-space periphery. Fig. 1.3 depicts a 2D slice-selective radial sequence.  
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Figure 1.3: Example of a two-dimensional slice-selective radial MR pulse sequence (left) and a resulting radial k-

space sampling matrix (right). A slice-select gradient along Gz and a sinc-shaped RF pulse are used to excite a slice 

of spins normal to the z-axis. Frequency-encode gradients Gx and Gy are used to traverse a radial line in k-space, and 

sampling is performed throughout the traversal of k-space by Gx and Gy. Adapted from Brown et al (1). 

Both the Cartesian sequence depicted in Fig. 1.2 and the radial sequence depicted in Fig. 1.3 can 

be performed without slice selection, permitting isotropic coverage of k-space in all three 

dimensions and allowing shorter, rectangular RF excitations to be used. For Cartesian sampling, 

the dimension used as the slice-select direction for 2D imaging (typically kz) can be reformulated 

as a second phase-encode dimension. For radial sampling, kz can be reformulated as a third 

frequency-encode direction (as kx and ky both already act as frequency-encode dimensions). 

1.2. MR sampling and image reconstruction 

1.2.1. MR sampling 

The Fourier relationship between s(k) and ρ(r) indicates that ρ(r) can be known precisely at all 

spatial locations with precise knowledge of s(k) at all spatial frequency locations. In practice, it is 

only possible to sample a limited extent of k-space with a finite sampling period, rather than an 

infinite extent of k-space with an infinitely small sampling period. For a constant frequency-
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encoding gradient executed along the x-axis, the sampling period in k-space Δk as a function of 

the sampling period in time Δt can be written as follows: 

 Δ𝑘 =
𝛾

2𝜋
𝐺𝑥Δ𝑡 (1.48) 

 

Sampling in k-space can then be described as multiplication of the k-space representation of the 

sampled object s(k) by a sampling function u(k) consisting of a Dirac comb function with infinite 

support and period Δk and a sampling envelope function v(k) consisting of a rect function with 

support covering a finite region of sampling centered at the center of k-space and with width W = 

2nΔk, where 2n is the number of sampled k-space points: 

 

𝑠𝑚(𝑘) = 𝑠(𝑘) ∙ 𝑢(𝑘) ∙ 𝑣(𝑘)

= 𝑠(𝑘) ∙ (Δ𝑘 ∑ 𝛿(𝑘 − 𝑝Δ𝑘)

∞

𝑝=−∞

) ∙ 𝑟𝑒𝑐𝑡 (
𝑘 +

1
2Δ𝑘

𝑊
)

=  Δ𝑘 ∑ 𝑠(𝑝Δ𝑘)𝛿(𝑘 − 𝑝Δ𝑘)

𝑛−1

𝑝=−𝑛

 

(1.49) 

 

The reconstructed spin density after sampling is obtained by taking the inverse Fourier transform 

of sm(k) as follows: 

 

�̂�(𝑥) = ∫ 𝑑𝑘 𝑠𝑚(𝑘)𝑒
𝑖2𝜋𝑘𝑥

∞

−∞

= ∫ 𝑑𝑘 (𝑠(𝑘) ∙ 𝑢(𝑘) ∙ 𝑣(𝑘))𝑒𝑖2𝜋𝑘𝑥
∞

−∞

= 𝜌(𝑥) ∗ 𝑈(𝑥) ∗ 𝑉(𝑥)

= 𝜌(𝑥) ∗ ∑ 𝛿 (𝑥 −
𝑞

Δ𝑘
)

∞

𝑞=−∞

∗ (𝑊𝑠𝑖𝑛𝑐(𝜋𝑊𝑥)𝑒−𝑖𝜋𝑥Δ𝑘) 

(1.50) 

 

In other words, the reconstructed spin density after sampling is the true spin density convolved 

with a comb function of period L = 1/Δk (i.e., the imaged object is replicated in image-space with 

center-to-center spacing of the copies equal to L) and convolved with a sinc function (i.e., the 

object is blurred). An example for a simple 1D object is shown in Fig. 1.4. It is apparent that if 

the extent A of the object exceeds the field-of-view L, coherent “copies” of the object due to 
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sampling will overlap the true object. The requirement that L = 1/Δk > A in order to avoid 

coherent aliasing for uniformly-spaced samples is called the Nyquist criterion. 

 

Figure 1.4: Demonstration of convolution of an object ρ(x) with the Fourier transforms of the sampling function u(k) 

and rect function v(k). For this object, the field-of-view L has been chosen such that L > A, the extent of the object in 

image-space, so no overlap of the aliased copies occurs. Convolution with the sinc function due to finite sampling 

leads to slight blurring of image features and slight ringing near object boundaries. Reproduced from Brown et al 

(1). 

For Cartesian sampling, it is trivial to sample densely enough in the frequency-encode direction 

to avoid aliasing, as no time penalty is imposed by doing so. However, the total imaging time 

scales linearly with the number of phase-encode lines that are read, and so there exists a trade-off 

between minimizing Δk along the phase-encode direction(s) and minimizing imaging time. 
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1.2.2. Under-sampling effects 

Under-sampling an image, or acquiring a smaller number of lines than those required by the 

Nyquist criterion for the k-space matrix being covered, results in under-sampling artifacts. These 

artifacts can take various forms, as the creation of perfect, coherent copies in the imaging field-

of-view only occurs when k-space is uniformly under-sampled (i.e., a constant Δk is still used, 

but is chosen such that 1/Δk < A). 

Fig. 1.5 depicts a simulation of various types of under-sampling artifacts that can occur for 2D 

imaging of an object with under-sampling in the phase-encode direction. Uniform under-

sampling leads to uniform aliased copies of the object (Fig. 1.5b). Random under-sampling leads 

to the stacking of a large number of incoherent, shifted, low-signal-intensity copies of the object 

(Fig. 1.5c). Variable-density under-sampling with preferential sampling of lines near the k-space 

center results in decrease of image degradation due to copies, but slight blurring and ringing 

(Fig. 1.5d), reflecting convolution with the sinc function V(x) described above. Sampling of only 

the central half of k-space, omitting the top and bottom quarters of k-space, eliminates the object 

copies entirely but introduces yet more severe blurring and ringing than seen for variable-density 

under-sampling (Fig. 1.5e). In all cases, the object is under-sampled by a factor of 2 (i.e., half of 

the necessary k-space lines to avoid under-sampling artifacts are sampled), but the resulting 

under-sampling artifact properties vary drastically from case to case. 
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Figure 1.5: Simulated image (left column), simulated sampled k-space data (middle column), and binary sampling 

matrix (right column) for cases of a) full sampling, b) uniformly-spaced under-sampling, c) random under-sampling, 

d) variable-density under-sampling with preferential sampling of central k-space, and e) sampling of the central half 

of k-space. In all cases shown in b-e), half of the total necessary k-space lines according to the Nyquist criterion are 

sampled. 

It can be qualitatively observed that the under-sampling artifacts produced by variable-density 

under-sampling with preferential sampling of the k-space center are more “noise-like” than those 

for other sampling schemes. This forms a key aspect of compressed sensing MRI, as discussed 

below. 

The Nyquist criterion is less well-defined for a collection of radial MR readouts of k-space, but 

avoidance of under-sampling artifacts can be assured by designing a radial trajectory such that 

the outermost points on two adjacent rays are no more than L = 1/Δkr apart, where Δkr is the 

circumferential distance between the two points. The minimum number of spoke-radial rays 

required to satisfy this condition equals π times the number of Cartesian phase-encode lines that 

would be required to satisfy the Nyquist criterion for the same intended FOV. Under-sampling 

using a radial trajectory leads to under-sampling artifacts that commonly manifest as streaking 

throughout the image (5). However, as these artifacts are generally not as coherent as the under-
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sampling artifacts produced by uniform under-sampling for Cartesian imaging, they can often be 

removed as well via compressed sensing reconstruction. 

1.2.3. Reconstruction of under-sampled MR images using compressed sensing 

Compressed sensing (CS) approaches propose to reconstruct MR images sampled at only a 

fraction of the points required to satisfy the Nyquist criterion, without manifestation of severe 

under-sampling artifacts in the final reconstructed image (6,7). Given that MR imaging time 

scales essentially linearly with the number of k-space lines collected during the acquisition, CS 

methods offer significant potential reduction of MR imaging time without significant loss of 

image quality or accuracy, if carefully designed and implemented.  

The following conditions are generally held to be necessary in order to produce a high-quality 

CS-based image reconstruction of an under-sampled MR image: 

• The image must have a sparse representation in one or more known transform domains. 

• The aliasing artifacts due to k-space under-sampling must be noise-like. 

• The reconstruction must be performed using a method that enforces both sparse 

representation of the image in its known sparse transform domain(s) and consistency of 

the reconstructed image with the original k-space data. 

The first condition is generally satisfied for MR images, as known transforms such as finite-

differences and the wavelet transform are generally observed to produce sparse representation of 

MR images and other natural images (8). The second condition can often be satisfied by 

sampling in a pseudo-random fashion with higher sampling density near the k-space center and 

lower sampling density near the k-space periphery, as shown in Fig. 1.5d.  

The third condition is satisfied by expressing the problem as a constrained under-sampling 

problem: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖Ψ𝑚‖1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝐹𝑢𝑚− 𝑦‖2
2 ≤ 𝜖 (1.51) 

 

where Ψ is a sparsifying transform on the image m, Fu is the under-sampled Fourier transform, y 

is the measured under-sampled k-space data, and ϵ is an error term that controls the extent to 
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which the solution can differ from the measured k-space data. The L1 norm is used for the 

sparsifying transform term in order to enforce sparsity in the transform space. 

A simple algorithm that can be used to solve the minimization shown above is projection onto 

convex sets (POCS), which can be formulated as follows: 

• Set y0 equal to y, the original under-sampled k-space data. 

• Perform the following set of operations iteratively: 

o Perform an inverse Fourier transform on the current yi to generate an image: 

 𝑚𝑗 = 𝐹
−1𝑦𝑗 (1.52) 

o Apply the chosen sparsifying transform to the image to generate a representation 

of the image in the sparse domain: 

 𝜓𝑗 = Ψ𝑚𝑗 (1.53) 

o Apply soft thresholding to each element of the image representation in the sparse 

domain: 

 𝜓𝑗(�̅�, 𝜆) = {   

0 𝑖𝑓 |𝜓𝑗(�̅�)| ≤ 𝜆

(|𝜓𝑗(�̅�)| − 𝜆)

|𝜓𝑗(�̅�)|
𝜓𝑗(�̅�) 𝑖𝑓 |𝜓𝑗(�̅�)| > 𝜆

 (1.54) 

where �̅� is the coordinates of a given pixel or voxel in the sparsifying transform 

domain and λ is a user-chosen weighting parameter. 

o Perform the inverse of the sparsifying transform on ψj to obtain a new image 

estimate mj, and perform a Fourier transform on mj to generate a k-space estimate 

yj. 

o Enforce hard data consistency in the frequency domain by setting all values of yj 

that were originally sampled in y0 to their original values in y0: 

 𝑦𝑗+1(�̅�) = {   
𝑦0(�̅�) 𝑖𝑓 𝑦0(�̅�) > 0
𝑦𝑗(�̅�) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.55) 

• Repeat the above steps until one of the following two conditions is satisfied: 
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o A preset number of iterations have been performed. 

o The optimization converges to a solution as assessed below, where ϵm is a user-

defined error term:  

 ‖𝑚𝑗+1 −𝑚𝑗‖ < 𝜖𝑚 (1.56) 

The final image estimate m is then the inverse Fourier transform of the final estimate of the k-

space data yend. The above iterative process can be thought of as producing a solution of Eq. 1.51 

such that ϵ is chosen to equal zero (as it is enforced in every iteration that Fum = y). 

Fig. 1.6 shows the result of performing the POCS procedure above for each of the under-sampled 

2D image cases shown in Fig. 1.5, using a 2D Haar wavelet transform as the sparsifying 

transformation Ψ, setting λ = 0.01, and performing 200 iterations. Variable-density under-

sampling with preferential sampling of the k-space center displays the lowest root-mean-square 

error with respect to the original image.  
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Figure 1.6: Simulated image (top row), projection onto convex sets-based compressed sensing reconstruction 

(middle row), and error with respect to original fully-sampled image as shown in Fig. 1.5a (bottom row) for cases of 

a) uniformly-spaced under-sampling (as shown in Fig. 1.5b), b) random under-sampling (as shown in Fig. 1.5c), c) 

variable-density under-sampling with preferential sampling of central k-space (as shown in Fig. 1.5d), and d) 

sampling of the central half of k-space (as shown in Fig. 1.5e). Root-mean-square (RMS) error with respect to the 

original image is shown at the bottom of the figure for each under-sampling type. 

In practice for under-sampled image reconstruction, the optimization problem described in Eq. 

1.51 is usually formulated as an unconstrained optimization problem in Lagrangian form, as 

follows: 

 �̃� = argmin
𝑚
‖𝐹𝑢𝑚 − 𝑦‖2

2 + 𝜆‖Ψ𝑚‖1 (1.57) 

 

where λ is a weighting parameter that balances sparsification in the sparse transform domain with 

data consistency. More than one sparsifying term can potentially be used in the image 

reconstruction, and reconstruction of image series using a sparsifying term assessed across a 
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temporal or pseudo-temporal dimension (such as temporal finite-differences) is well 

characterized (9,10).  

Common solution methods for compressed-sensing problems of the form above include 

nonlinear conjugate gradient descent (11,12) and alternating direction method of multipliers (13). 

The following algorithm describes an implementation of nonlinear conjugate gradient descent to 

solve the optimization problem described in Eq. 1.57 for an image m: 

• Compute a gradient descent direction for the objective function. For the first iteration, 

this direction is the negative of the objective function gradient: 

 𝑝0 = −𝑔0 = −∇𝑓(𝑚0) (1.58) 

For subsequent iterations, identify a conjugate gradient direction as follows:  

o Calculate the new steepest-ascent gradient direction: 

 𝑔𝑗 = ∇𝑓(𝑚𝑗) (1.59) 

o Choose a descent direction based on the current steepest-descent direction and the 

previous descent direction as follows: 

 𝑝𝑗 = −𝑔𝑗 + 𝛽𝑗𝑝𝑗−1 (1.60) 

where the scalar factor βj can be calculated using a variety of methods, including 

the following (11): 

 𝛽𝑗 =
𝑔𝑗
𝑇𝑔𝑗

𝑔𝑗−1
𝑇 𝑔𝑗−1

 (1.61) 

• Perform backtracking line search as follows: 

o Start with a chosen step size t and evaluate the value of the objective function for 

a step of size t and for a step of size 0 along the current gradient direction pj. 

o Check whether the Armijo rule (14) is satisfied:  

 𝑓(𝑚𝑗 + 𝑡𝑝𝑗) ≤ 𝑓(𝑚𝑗) − 𝛼𝑡∇𝑓(𝑚𝑗)
𝑇
𝑝𝑗 (1.62) 

where α is a small pre-set factor. 

o If the above inequality is satisfied, accept the current step size t and proceed. If 

not, multiply the step size by a set factor greater than 0 and less than 1 and repeat 

the above. 
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• Perform the gradient step using the gradient pj and the step size t:  

 𝑚𝑗+1 = 𝑚𝑗 + 𝑡𝑝𝑗 (1.63) 

• Check whether the maximum number of iterations has been reached or whether another 

stopping criterion (such as the norm of the gradient descent direction falling below a set 

tolerance) has been satisfied. Perform another iteration if neither of these have occurred. 

1.3. Lung anatomy and physiology 

1.3.1. Lung gross anatomy and motion during breathing 

The lungs are situated in separate pleural sacs within the thoracic cavity, with their apices in the 

root of the neck and their bases resting on the diaphragm. Each lung is divided into lobes by one 

or more fissures (Fig. 1.7). The left lung is divided by an oblique fissure into superior and 

inferior lobes, while the right lung is divided by an oblique fissure and a horizontal fissure into 

superior, middle, and inferior lobes. There is significant variation between individuals in the 

completeness and orientation of the fissures (15,16). In particular, the right horizontal fissure is 

commonly reported to be incomplete or absent in as many as 80% of individuals.  

 

Figure 1.7: Sagittal views looking from the midline of the body of the left and right lungs, with typical lobe and 

fissure structure highlighted. Reproduced from the following website: 

https://teachmeanatomy.info/thorax/organs/lungs/  

https://teachmeanatomy.info/thorax/organs/lungs/
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The volume of the thoracic cavity is increased to trigger inspiration, and decreased to trigger 

expiration. During quiet respiration, the volume of the thoracic cavity is primarily modulated by 

the diaphragm, a dome-shaped sheet of muscle surrounding a central tendon located at the base 

of the thoracic cavity. When the diaphragm contracts, the dome of the diaphragm flattens and 

descends within the thorax, increasing the volume of the thoracic cavity and drawing air into the 

lungs. When the diaphragm relaxes, the dome becomes rounded again, decreasing the volume of 

the thoracic cavity and pushing out air from the lungs.  

Motion of the lungs during respiration is nonlinear both in space and in time. The amplitude of 

motion is generally higher in the inferior regions of the lungs, which lie in close proximity to the 

diaphragm, than in the superior regions. Significant discontinuities can be observed at lobar 

fissures, at which the adjacent lung lobes may exhibit sliding behavior (17). Lung deformation 

during the breathing cycle also exhibits significant hysteresis, as a higher magnitude of pressure 

is required to increase lung volume than to decrease it (18,19). 

1.3.2. Airway anatomy and gas exchange in the lungs 

The tracheobronchial tree is a branching network of airways that transports air between the 

interior of the body and the surroundings (Fig. 1.8). The trachea divides into left and right main 

bronchi, which each divide into lobar bronchi. The lobar bronchi divide into segmental bronchi, 

and these divide into conducting bronchioles. Progressive subdivisions of the conducting 

bronchioles continue for approximately 16 branching generations after the segmental bronchi. 

The last generation of conducting bronchioles, called the terminal bronchioles, further branches 

into several generations of respiratory bronchioles. Each respiratory bronchiole divides into 

several alveolar ducts, which are each made up of several alveoli, thin-walled pouches that lie at 

the end of the branched respiratory bronchioles. 
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Figure 1.8: Diagram of the branching structure of the airways. Reproduced from West and Luks (20). 

The pulmonary vasculature follows a similar pattern of branching to that of the airways, with 

each alveolus located in close proximity to several pulmonary capillaries. Gas exchange between 

the airways and the blood occurs at the alveoli via passive diffusion across the blood-air barrier 

between the alveoli and the capillaries, which is extremely thin (~0.2-2 μm in healthy 

individuals). During normal respiration, the partial pressure of oxygen is higher in inspired 

airthan in the pulmonary capillaries, and the partial pressure of carbon dioxide is higher in the 

capillaries than in inspired air. Pressure gradients drive oxygen across the alveolar membrane and 

into the blood, and carbon dioxide across the membrane and into the alveolar airspaces. The 

highly branched structure of the airways creates a large alveolar surface area over which gas 

exchange can occur (~100 m2 in a typical healthy adult). 
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Various pulmonary pathologies impede the pulmonary gas exchange process. Emphysema is 

characterized by destruction and enlargement of alveoli that results in decreased alveolar surface 

area available for gas exchange. Fibrotic disorders such as idiopathic pulmonary fibrosis feature 

scarring and tissue buildup in the alveolar membrane that increases resistance of the membrane 

to passive gas diffusion. Acute respiratory distress syndrome is characterized by fluid buildup in 

the alveoli due to increased fluid permeability of the alveolar membrane, resulting in impaired 

gas exchange. 

 

1.4. Lung MRI challenges and existing techniques 

1.4.1. Proton MRI 

The lung is a uniquely challenging environment for traditional 1H MRI. The water density of 

functional tissue in the lung sits below 25%, far lower than in most other tissues in the body 

(21,22). Additionally, the high prevalence of air-tissue interfaces in the lung results in a T2* of 

approximately 1-2 ms at 1.5 T, far lower than most other tissues in the body. Finally, the motion 

of the lungs during breathing and of the heart during the cardiac cycle threatens to induce 

significant motion artifacts in lung MR images. These issues have led to a nearly universal 

preference in the clinic for computed tomography (CT) imaging of the lung over lung MRI. 

However, the high radiation exposure inherent in CT imaging has motivated the development of 

lung MRI techniques that address one or more of the above issues. 

Pulse sequences that utilize brief, non-selective RF pulses and minimal delays between RF 

excitation and readout of the k-space center can be used to maximize the acquired MR signal in 

the lungs, mitigating the low signal level and short T2* by performing the readout of the k-space 

center prior to significant decay and/or dephasing of the transverse magnetization following 

excitation. For each readout, gradients are then used to trace spoke-radial lines to the k-space 

periphery, filling in the remainder of the k-space matrix. This approach, called ultrashort echo 

time (UTE) MRI, has been demonstrated using both spoiled UTE (23–26) and steady-state UTE 

approaches (22,27) for MRI of the lung, and has the added advantage of minimizing streaking 

artifacts due to motion as a result of the frequent sampling of low-frequency k-space regions 

(28,29). 
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Motion of the lungs during breathing can be managed by acquiring imaging data only during a 

single phase of the breathing cycle. This can be accomplished by imaging during a single breath-

hold, or by using a prospective navigator (Fig. 1.9) to trigger image acquisition segments at a 

specific point in the breathing cycle during free breathing (22). While these approaches can 

produce useful results, the required speed of single-breath-hold imaging can necessitate 

significant compromises on image resolution, signal-to-noise ratio, and sampling density, while 

prospective triggering results in low sampling efficiency per time and therefore undesirably high 

scan times. 

 

Figure 1.9: Coronal views from 3D ultra-short echo time proton lung MRI performed in an individual with cystic 

fibrosis, using a free-breathing acquisition with no motion compensation (top row) and a respiratory-triggered free 

breathing acquisition with acquisition segments triggered at end-of-exhalation (bottom row). Blurring due to motion 

apparent in free-breathing images is eliminated in the respiratory-triggered images. Yellow arrows indicate thickened 

airways characteristic of cystic fibrosis. Reproduced from Miller et al (22). 

An alternative approach to prospective motion management is the use of postprocessing 

techniques designed to alleviate motion and/or under-sampling artifacts in data collected during 
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free breathing (30). Commonly, these techniques use a retrospective navigator derived from the 

free-breathing image data to sort data into motion states, and then employ compressed sensing 

reconstruction algorithms to produce artifact-free images with high signal-to-noise ratio. These 

compressed sensing algorithms may include one or more regularizer terms that enforce 

minimization of differences between adjacent temporal pseudo-frames (26,31,32). Alternatively, 

highly under-sampled temporal frames can be maintained in their original temporal order and 

reconstructed using the aforementioned compressed sensing approaches, minimizing differences 

across actual temporal frames rather than motion-sorted pseudo-temporal frames (33–36). These 

reconstruction algorithms require significant computing power and time, but offer the important 

advantage of permitting constant data collection during free breathing. 

1.4.2. Hyperpolarized gas MRI 

MRI of hyperpolarized gas (HPG) is an alternative complement to proton lung MRI that permits 

assessment of various aspects of pulmonary structure and function (37–39). HPG MRI is 

performed using a radiofrequency coil tuned to the Larmor frequency of the gas of interest 

(either 3He or 129Xe), following inhalation of a prepared dose of the gas by the individual being 

imaged. Pulse sequences and reconstruction approaches similar to those used in anatomical 

proton MRI yield images of inhaled HPG in the lungs. The resulting images permit visualization 

of non-ventilated lung regions and region-resolved quantification of ventilation distribution (Fig. 

1.10), and can be used to characterize burden of obstructive lung diseases such as asthma and 

chronic obstructive pulmonary disease (40–42). 
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Figure 1.10: 2D coronal slices from hyperpolarized xenon-129 ventilation MRI (left) and proton anatomical images 

in three individuals with COPD. Regions of impaired ventilation, indicated by lack of xenon-129 signal in lung 

regions, are evident in all three individuals. Reproduced from Virgincar et al (42). 

HPG MRI can also be used to directly quantify motion of the lungs during the breathing cycle by 

performing grid-tagged excitation of the inhaled HPG at end-of-inspiration breath-hold and 

imaging the tagged HPG during expiration (43,44), as shown in Fig. 1.11. HPG tagging MRI has 

been demonstrated for two-phase 3D imaging (43) and multi-phase 2D imaging (45) during 

expiration and has been used to generate maps of lung kinematic quantities in healthy individuals 

and those with asthma and pulmonary fibrosis (46). This method is of interest for characterizing 

biomechanical differences between healthy and diseased individuals, as well as for validating 4D 

deformable image registration (DIR) models of lung deformation during breathing used to guide 

radiation therapy of thoracic tumors (47). 
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Figure 1.11: 2D coronal slices from hyperpolarized helium-3 tagging MRI in a healthy individual at a-e) end-of-

inhalation and f-j) end-of-exhalation. Irregular motion is detected near a fissure in the right lung (dashed circle), and 

signal was lost in some peripheral regions due to motion of the lung tissue and helium-3 out of the imaging slice 

(arrows). Reproduced from Cai et al (44). 

The alveolar gas exchange process can also be visualized and quantified using HPG MRI (Fig. 

1.12). 129Xe, one of the two noble gas isotopes commonly used for HPG MRI, is soluble in 

alveolar tissue and binds to hemoglobin in red blood cells, following an uptake pathway akin to 

that of inhaled oxygen (48,49). 129Xe displays distinct spectral peaks as a free gas, dissolved in 

alveolar tissue and blood plasma, and bound to hemoglobin (50). Spectroscopic MR techniques 

can therefore be used to quantify gas-exchange efficacy between alveoli and pulmonary 

capillaries, and readouts derived from these techniques display sensitivity to changes to the lung 

microstructure associated with fibrotic and other pulmonary disorders (51–55). 
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Figure 1.12: Coronal gas, tissue, and RBC images (left), as well as corresponding tissue/gas, RBC/gas, and 

RBC/tissue maps (right) from a healthy individual. Reproduced from Qing et al (55). 

1.5. Scope of the dissertation 

This dissertation will describe technical advances and considerations relevant to various types of 

lung MRI. The specific aims of the dissertation are [1] to develop and demonstrate a method for 

performing 3D multi-phase hyperpolarized-gas tagging MRI of the lung during a single 

breathing maneuver; [2] to characterize repeatability and lung volume dependence of 3D 

dissolved-phase 129Xe MRI of the lung in both health and smoking-related disease; and [3] to 

develop and demonstrate a method for performing 4D ultrashort echo time (UTE) balanced 

steady-state free precession (bSSFP) MRI of the lung during free breathing. 

Chapter 2 presents a compressed-sensing based method to accelerate acquisition of 3D HPG 

tagging MR images (Aim 1), permitting collection of several 3D image frames within one 

breathing maneuver and thus facilitating more complete characterization of pulmonary 

biomechanics from HPG tagging MRI. This method takes advantage of the distinct and 

predictable distribution of k-space energy in the HPG tagging context in order to under-sample k-

space heavily during image acquisition without sacrificing image quality. 3D multi-frame 

tagging MR image sets were collected in a small number of healthy subjects and used to generate 

time-resolved displacement, strain, and volumetric change maps for a single exhalation in each 

subject. 
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Chapter 3 presents a comprehensive study of the effect of lung volume differences on gas-uptake 

metrics derived from dissolved-phase 129Xe MRI, in healthy individuals and in COPD patients, 

both within and across individuals (Aim 2). This study follows preliminary work suggesting that 

these metrics are sensitive to lung volume during measurement (56,57). The study 

comprehensively characterizes the effects of lung volume on gas-uptake metrics, compares and 

contrasts the observed lung volume dependence with models of similar quantitative imaging 

readouts of lung function in the literature, and assesses the effect of scan-to-scan lung volume 

differences on gas-uptake metrics derived from repeated measurements within individuals. 

Chapter 4 presents a combined 4D UTE bSSFP spoke-radial pulse sequence with a GRASP-Pro-

based reconstruction algorithm for high-resolution, high-signal, respiratory-phase-resolved MRI 

of the lung (Aim 3). This approach takes advantage of the high signal (even for short TR) 

inherent in bSSFP techniques and the natural sparsity of the sorted respiratory phase-binned 

image series in the respiratory-phase domain. Images collected using this sequence and 

reconstruction method are compared with images collected using a 4D UTE spoiled spoke-radial 

sequence, as well as respiratory-triggered 3D images collected using the UTE bSSFP readout. 
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Chapter 2: 3D multi-phase hyperpolarized-gas tagging lung 

MRI 

2.1. Introduction 

Image-based quantification of lung deformation during the breathing cycle is of potential use for 

time-resolved and region-resolved characterization of lung biomechanics. Pulmonary 

compliance, a measure of the lung’s tendency to expand and contract in response to changes in 

intrapleural pressure, is observed to be elevated in emphysema (1) and chronic asthma (2), and 

lessened in pulmonary fibrosis (3), acute respiratory distress syndrome (4), and pneumococcal 

pneumonia (5). It has been suggested that image-based characterization of mechanical 

abnormalities associated with these pulmonary diseases might improve disease diagnosis and, in 

some cases, predict likelihood of treatment efficacy (6,7). 

Hyperpolarized gas (HPG) tagging MRI has been demonstrated as a non-invasive imaging 

technique for directly assessing lung deformation during the breathing cycle (7–12). This 

technique is promising as a method for directly measuring volume change during the breathing 

cycle (a component of pulmonary compliance) on both a global and regional basis, for 

quantifying other lung biomechanical quantities related to compliance, such as regional strain 

values, and for visualizing and assessing global and regional biomechanical abnormalities. HPG 

tagging MRI has also been investigated as a method for validating 4D deformable image 

registration (DIR) models of lung motion during the breathing cycle that are used to guide 4D 

radiation therapy for lung tumors (11).  

To date, this technique has been limited by constraints on imaging time imposed by 

depolarization of the gas in vivo (T1 ≈ 20 s), diffusion and dissolution of the tag elements, and 

the finite amount of time over which a normal exhalation can occur in a human subject (13–17). 

Due to these limitations, prior HPG tagging MRI has only been used to collect two 3D frames 

(7,11,12), or several 2D frames (10), within a single exhalation. The purpose of the work 

presented in this chapter was to develop a compressed-sensing based method to accelerate 

acquisition of 3D HPG tagging MR images, permitting collection of several 3D image frames 

within one breathing maneuver and thus facilitating a more complete characterization of 
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pulmonary biomechanics from HPG tagging MRI. The proposed approach takes advantage of the 

distinct and predictable distribution of k-space energy in the HPG tagging context in order to 

under-sample k-space heavily during image acquisition without sacrificing image quality (18,19). 

2.2. Methods 

2.2.1. k-space layout and corresponding under-sampling approach 

Applying tagging radiofrequency (RF) pulses to inhaled hyperpolarized gas results in predictably 

and sparsely distributed signal intensity, both in image space and in k-space. Tag width and 

center-to-center distance are directly determined by parameters of the tagging pulse sequence, as 

described in the Appendix, and virtually all image signal is confined to a region defined by the 

boundary of the lung. The image-space representation of the tagged HPG gas image can 

therefore be roughly approximated as the convolution of a small rect function (corresponding to 

an individual tag) with a comb function (corresponding to the tag spacing), multiplied by a large 

rect function (corresponding to the spatial extent of the lungs as a whole). This approximation 

can be written as follows: 

 

𝐼(𝑥, 𝑦, 𝑧) = 𝐴 ∙⊓ (
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(2.1) 

 

where I is the image; wtag,x, wtag,y, and wtag,z are the user-specified tag widths along the x-, y-, and 

z-axes, respectively; Δxtag, Δytag, and Δztag are the user-specified tag spacings along the x-, y-, and 

z-axes, respectively; wlung,x, wlung,y, and wlung,z are the approximate size of the ventilated regions of 

the lungs along the x-, y-, and z-axes, respectively; and A is an arbitrary scale factor. 

The corresponding k-space data can then be approximated as the Fourier transform of the 

approximate image, as follows: 

 

𝐼(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = �̂� ∙ 𝑠𝑖𝑛𝑐(𝑤𝑡𝑎𝑔,𝑥𝑘𝑥 , 𝑤𝑡𝑎𝑔,𝑦𝑘𝑦, 𝑤𝑡𝑎𝑔,𝑧𝑘𝑧)

∙ 𝐼𝐼𝐼(Δ𝑥𝑡𝑎𝑔𝑘𝑥, Δ𝑦𝑡𝑎𝑔𝑘𝑦, Δ𝑧𝑡𝑎𝑔𝑘𝑧)

∗ 𝑠𝑖𝑛𝑐(𝑤𝑙𝑢𝑛𝑔,𝑥𝑘𝑥, 𝑤𝑙𝑢𝑛𝑔,𝑦𝑘𝑦, 𝑤𝑙𝑢𝑛𝑔,𝑧𝑘𝑧) 

(2.2) 
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This a priori insight into k-space energy distribution can be exploited to generate a pseudo-

random, variable-density under-sampling pattern that significantly reduces scan time, while still 

sampling the large majority of signal present in k-space. Based on the expected distribution 

above, the following likelihood function is used to determine whether a given phase-encode line 

is sampled (Cartesian readout lines are fully sampled along kx, the readout direction): 

 

𝑝(𝑘𝑦, 𝑘𝑧) = 𝑠𝑖𝑛𝑐(𝑤𝑡𝑎𝑔,𝑦𝑘𝑦, 𝑤𝑡𝑎𝑔,𝑧𝑘𝑧) ∙ 𝐼𝐼𝐼(Δ𝑦𝑡𝑎𝑔𝑘𝑦, Δ𝑧𝑡𝑎𝑔𝑘𝑧)

∗ exp (−
𝑘𝑦
2

2𝜎𝑘𝑦
2 −

𝑘𝑧
2

2𝜎𝑘𝑧
2 ) 

(2.3) 

 

where σky and σkz are the Gaussian root mean square (RMS) widths of the Gaussian function 

described by the exponential term along the ky- and kz-axes, respectively. A Gaussian function 

was chosen for this part of the sampling likelihood function (rather than a sinc function) in order 

to maintain relatively even and dense sampling at each k-space peak.  

The Gaussian RMS widths were the primary floating parameter used to adjust the area under the 

sampling likelihood function (and thus the total number of collected samples), as the other 

parameters in the function were dictated by the tag width and spacing. The area under the 

Gaussian function was modified by changing the RMS widths, rather than the amplitude, in order 

to ensure that k-space peaks near the center of k-space were always densely sampled. For this 

study, these parameters were chosen such that the total number of lines sampled would equal 

approximately one-seventh of the entire k-space matrix. 

An example tagging image, k-space data corresponding to the image, the sampling likelihood 

function described above, and an example sampling pattern generated using the sampling 

likelihood function are depicted in Fig. 2.1.  
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Figure 2.1: a) Axial slice taken from a 3D hyperpolarized gas (HPG) tagging image collected in the manner 

described in this text. b) Central 2D plane extracted from 3D k-space data corresponding to the HPG tagging image 

in a). c) Two-dimensional sampling likelihood function described in Eq. 2.3. The color scale corresponds to the 

likelihood of sampling a given Cartesian line (which is orthogonal to the plane shown) during a particular 3D 

acquisition. Lines equal to one are always sampled, and lines equal to zero are never sampled. d) Example sampling 

pattern generated using the sampling likelihood function shown in b). In panels b-d), the through-plane direction is 

the kx direction, which is fully sampled along each sampled (ky, kz) coordinate. 
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2.2.2. Pulse sequence 

Prior to the start of the imaging pulse sequence, 3D square tagging grids were created by 

applying sinc-modulated RF pulse trains, each followed by a large spoiler gradient consecutively 

along each of the three principal axes, with a composite flip angle of 90° specified for each pulse 

train (8,20). The theory of the sinc-modulated RF tagging pulse sequence is described more fully 

in Appendix 2.5.1. Tag width and center-to-center spacing were 12 and 26 mm, respectively, in 

each principal direction.  

It has been observed previously that the 3He RF coil used in the study did not produce a uniform 

flip angle across the entire field of view (8,21). The tagging RF pulse train produces incomplete 

cancellation of magnetization in the tag troughs, and therefore less distinct separation between 

tags, for flip angles less than the specified 90°. This problem can be prospectively addressed by 

repeating the tagging RF pulse train, resulting in fuller cancellation of magnetization within the 

tag troughs (Fig. 2.2). The longitudinal magnetization M|| in the tag troughs after Ng repetitions 

for an effective flip angle θeff and starting magnetization M0 is as follows: 

 𝑀|| = 𝑀0(cos 𝜃𝑒𝑓𝑓)
𝑁𝑔

 (2.4) 

 

In this work, the tagging pulse train was repeated a total of Ng = 5 times along each of the three 

axes. 
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Figure 2.2: Remaining longitudinal magnetization in the tag troughs vs. number of repetitions of the tagging RF 

pulse train for different effective flip angles. 

Imaging was performed using a balanced steady-state free precession (bSSFP) pulse sequence to 

maximize the limited and transient signal of the inhaled hyperpolarized 3He gas (22). This 

sequence avoids spoiling transverse magnetization and thus preserves polarization for as long as 

possible, an important consideration in the HPG tagging context. A 3D Cartesian readout scheme 

was chosen in light of the Cartesian arrangement of energy peaks in k-space described above. 

Fig. 2.3 depicts the tagging and imaging pulse sequences. 
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Figure 2.3: Diagram of the pulse sequence used to perform 3D grid tagging and balanced SSFP (bSSFP) imaging. 

The grid-tagging portion of the sequence was performed Ng = 5 times before the start of imaging, to ensure full 

signal cancellation in the tag troughs. Approximately Nus = 800 lines per frame were read using the bSSFP readout 

sequence, and Nt = 8 temporal frames were collected per breathing maneuver. 

 

2.2.3. Multi-phase 3He tagging MRI 

This study complied with the Health Insurance Portability and Accountability Act and was 

approved by the University of Virginia Institutional Review Board, and all subjects provided 

written, informed consent. MRI was performed in three healthy individuals using a 1.5T whole-

body scanner (Avanto; Siemens; Erlangen, DE). Subjects were positioned feet-first supine inside 

the scanner, and standard proton localizer imaging was performed once subjects were positioned 

to guide selection of a field-of-view that would fully encompass the lungs.  

3He gas was polarized via spin-exchange optical pumping to approximately 60% using a home-

built system (23–25). For each 3He tagging scan, a Tedlar bag (Jensen Inert Products; Coral 

Springs, FL) was filled with about 600 ml of hyperpolarized 3He. When ready to begin the 3He 

tagging scan, subjects were instructed to exhale as far as comfortable. After exhalation, subjects 
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inhaled the contents of the bag, then additionally inhaled room air to total lung capacity. 

Following inhalation, subjects were instructed to hold their breath, and 3D tagging grids were 

created using the tagging pulse sequence described above. Tag width and center-to-center 

spacing were 12 and 26 mm, respectively, in each principal direction. After creation of the 

tagging grids, subjects exhaled to residual volume during the imaging procedure. Images were 

collected at Nt = 8 timepoints from end-of-inhalation to end-of-exhalation, using the bSSFP pulse 

sequence described above. Sequence parameters included: resolution = 3.3 mm isotropic, flip 

angle = 6°, TR = 1.84 ms, TE = 0.92 ms, readout bandwidth = 1440 Hz/pixel, matrix size = 90 × 

112 × 60, time per image = 1.3 s, and total imaging series time = 10.4 s. Subjects were coached 

to exhale slowly, so that exhalation would begin after the first tagging frame was collected and 

would last for as close to the total imaging time as possible. 

 

2.2.4. Compressed sensing reconstruction of under-sampled data 

Under-sampled images were reconstructed by minimizing the following objective function: 

 Φ(𝑥) = ‖𝐹𝑢𝑥 − 𝑦‖2 + 𝜆1‖Ψ𝑥‖1 + 𝜆2𝑇𝑉(𝑥) (2.5) 

 

where x is the reconstructed image-space image, y is the collected k-space data, Fu is the under-

sampled Fourier transform, Ψ is the chosen wavelet transform, TV is the total variation computed 

via first-order finite differences, and λ1 and λ2 are weights that determine the relative importance 

of the three terms that comprise the objective function (26,27). Nonlinear conjugate gradient 

with backtracking line search was used as the optimization method (28). The fully-sampled 

readout direction was taken as the slice direction, and the optimization was performed 

independently for each 2D slice. A 2D Cohen–Daubechies–Feauveau 9/7 wavelet was used as the 

sparsifying wavelet transform (29). Weighting coefficient values were λ1 = 0.003 and λ2 = 0.001. 

 

2.2.5. Displacement map generation from tagged 3He images 

To determine tag locations in the first 3D tagged image frame from each subject, a search grid 

was generated by performing a peak-finding operation on 1D projections of the image data along 

all three principal dimensions, as shown in Fig. 2.4. The summed signal intensity within the 
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7×7×7 box of voxels centered at each grid point (corresponding to a region slightly smaller than 

the center-to-center initial tag spacing) was then calculated. The distribution of these intensities 

was bimodal, characterized by a high, sharp peak centered only slightly above zero 

(corresponding to boxes without tags) and a low, wide peak centered far from zero 

(corresponding to boxes with tags). The rightmost edge of the first peak was identified manually 

and taken to be the threshold indicating tag presence or absence, and boxes with total intensity 

above this threshold were judged to contain a tag. The centroid of each high-intensity box was 

then found and taken to be the initial location of each tag.  
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Figure 2.4: a) Coronal plane from the first frame of a tagged hyperpolarized gas lung image acquired in Subject 1 

using the methods described herein, with 1D projections taken along the two in-plane axes depicted. Red lines 

indicate locations of peaks of the 1D projections. b) Peaks of the 1D projections generated in a) are used to create a 

grid, and intersection points in the grid are used as initial search points for tags. Locations with sufficient summed 

intensity to be considered to hold tags are marked with cyan circles, and locations without sufficient intensity are 

marked with red circles. The centroid of each location holding a tag is then found, and these centroids are taken as 

the initial tag central locations. Centroids are indicated with cyan crosses. All above-described operations are also 
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performed along the depicted through-plane axis. c) Example histogram of intensities at each prospective tag 

location in the 3D image frame. The rightmost edge of the first peak (corresponding to locations without tags) is 

identified manually and used as a threshold, with this value indicated by the dashed red line, and all prospective tag 

locations with summed intensity above this threshold are judged to contain tags. 

The following process was then used to identify tag locations in subsequent frames. First, the 

rectangular cuboid enclosing all of the tags in each frame was found by using a morphological 

closing operation to fill gaps between tags in each frame, performing a grayscale thresholding 

operation using Otsu’s method (30) to produce binary lung masks, and identifying the smallest 

rectangular cuboid that would completely enclose each lung mask. These cuboids were then used 

to produce an approximate bulk motion of the lungs between consecutive frames, by identifying 

the affine transformation (consisting of a scaling operation and a translation operation) that 

would warp the cuboid from the earlier frame to that of the later frame, and applying this affine 

transformation to the tag centroid locations in the earlier frame. The process of producing these 

cuboids is depicted in Fig. 2.5. 
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Figure 2.5: Coronal slice from a tagging image (first column from left), the image after performing morphological 

closing (second column from left), the closed image after binarization (third column from left), and the rectangular 

cuboid enclosing the binarized image, in a) a tagging frame at end-of-inspiration and b) a tagging frame at an 

intermediate point in the breathing cycle from the same scan. Once these rectangular cuboids were identified for 

each frame, an affine transformation relating the cuboids corresponding to consecutive frames was used to produce 

starting search locations for each tag in the later frame, by applying the deformation field defined by the affine 

transformation to each of the tag centroids from the previous frame. 

After this operation was complete, the tag centroid locations after affine transformation were 

used as seeds to search for the true tag locations in the next frame. For each tag, the true location 

of the centroid was found by identifying the center of mass of the image patch consisting of all 

voxels that were less than a distance of three voxels away from the associated tag centroid seed 

produced as described above. The differences in tag locations from one frame to the next were 

calculated and taken to be the tag displacements between the two frames.  

Calculated displacement maps were assessed visually, and occasional manual intervention was 

applied to rectify visually obvious errors in the tag locations found by the algorithm. Possible 

interventions included manually specifying tag search locations for one or more tags in a row or 

column or manually removing tags that had degraded beyond the point of remaining clearly 
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identifiable in the current and subsequent frames. 

 

2.2.6. Lobar segmentation from tag displacement maps 

Lobar segmentation was performed by first manually separating the tag population into left and 

right lungs, and then performing a two-cluster k-means clustering separately on the tag 

populations within each lung, using the squared Euclidean distance metric and the k-means++ 

algorithm for initialization of cluster centers (31,32). The input to the k-means clustering was the 

set of displacement profiles of each tag from frame to frame, rather than the positions of the tags. 

Typically, the left lung consists of an upper and a lower lobe, while the right lung consists of an 

upper, a middle, and a lower lobe. In the left lung, the lobes are divided by an oblique fissure, 

while in the right lung, the upper and middle lobes are divided by a horizontal fissure, and the 

upper/middle and lower lobes are divided by an oblique fissure. Initially, a three-cluster k-means 

lobar segmentation was attempted for segmentation of the three lobes typically comprising the 

right lung. However, this segmentation did not produce robust or anatomically plausible 

segmentations, possibly due to incomplete or nonexistent horizontal fissures in imaged subjects 

(33). In light of this, a two-cluster segmentation was used in the right lung, similar to that used in 

the left lung. This segmentation can be understood to divide the right lung at the oblique fissure, 

separating it into a combined upper/middle “lobe” and a lower lobe. 

 

2.2.7. Strain and fractional volume change calculation from tag displacement maps 

Regional normal strains, shear strains, and fractional volume change were calculated from tag 

displacement fields using a finite element model, using tag centers-of-mass as finite element 

nodes. Tetrahedral elements were defined throughout the lung using sets of four neighboring 

nodes (i.e., tags), with the shape of each element at the start of the exhalation maneuver 

corresponding approximately to a trirectangular tetrahedron. Each node was used as a component 

of every tetrahedral element to which it could belong, meaning that tetrahedral elements often 

partially overlapped. 
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Regional normal strains 𝜀x, 𝜀y and 𝜀z, which represent the fractional change in distance between 

elements along the left–right axis, anterior–posterior axis and superior–inferior axis, respectively, 

and shear strains 𝛾yz, 𝛾zx and 𝛾xy, which represent the fractional change in shape of strain 

elements within the plane normal to the left–right axis, anterior–posterior axis, and the superior–

inferior axis, respectively, were computed from each pair of consecutive frames, and over the 

entire breathing maneuver (i.e., between the first frame and the final frame) for each subject. 

Details of strain calculation are provided in Appendix 2.5.2.  

Fractional volume change with respect to volume at full inspiration was calculated as follows: 

 Δ𝑉 =
𝑉1 − 𝑉𝑗

𝑉1
 (2.6) 

 

where V1 is the volume of a given tetrahedral element at full inspiration (during the first frame), 

and Vj is the volume of the same element at temporal frame j (2 ≤ j ≤ Nt, where Nt is the total 

number of temporal frames collected during the acquisition). Volumes were calculated using the 

expression given in Appendix 2.5.2 for volume of an irregular tetrahedron. 

Average frame-to-frame strains and fractional volume changes within each segmented lobe were 

calculated by averaging the strains and fractional volume changes measured within all tetrahedral 

elements contained entirely within a given lobe, and average strains over the entire lung were 

calculated by averaging the strains measured within all such elements contained entirely within 

any one of the four lobes. Elements spanning a lobar boundary were not used for regional 

average strain and fractional volume change quantification. 

 

2.3. Results 

2.3.1. Reconstructed HPG tagging images from under-sampled data 

Figs. 2.6 and 2.7 depict coronal and sagittal slices from dynamic 3D grid-tagged lung images 

obtained in Subject 1, respectively. Figs. 2.8 and 2.9 depict coronal and sagittal slices from 

dynamic 3D grid-tagged lung images obtained in Subject 2, respectively. Figs. 2.10 and 2.11 
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depict coronal and sagittal slices from dynamic 3D grid-tagged lung images obtained in Subject 

3, respectively. 

In all subjects, an easily discernible grid pattern is maintained for several time points, despite the 

expected loss in tag definition due to signal decay and gas diffusion over the course of the 

imaging procedure. No distinct coherent artifacts were observed in reconstructed images, but 

SNR decreased over the course of the breathing maneuver for all subjects, and this decrease was 

most pronounced in the apices of the lungs. Additionally, SNR was noticeably lower in the lung 

apices than in the rest of the lung in Subjects 1 and 3 (Figs. 2.7 and 2.11, respectively), likely due 

to reduced flip angle in these locations as a result of the uneven coil sensitivity mentioned in 

Section 2.2.2. Sliding motion between upper and lower lung lobes was readily apparent in 

Subject 1 (Fig. 2.7), but not in Subjects 2 and 3. 
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Figure 2.6: Coronal slices of serial tagged HPG images from Subject 1 at timepoints 1-3 (top row, left to right) and 

timepoints 4-6 (bottom row, left to right). 
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Figure 2.7: Sagittal slices of serial tagged HPG images from Subject 1 at timepoints 1-3 (top row, left to right) and 

timepoints 4-6 (bottom row, left to right). Apparent SNR in the lung apices was lower than in other regions of the 

lung in this subject, as indicated by the red circle at timepoint 4. Apparent lobar shearing can be seen in the final 

three frames, at the location indicated by the yellow arrow at timepoint 5. 
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Figure 2.8: Coronal slices of serial tagged HPG images from Subject 2 at timepoints 1-4 (top row, left to right) and 

timepoints 5-8 (bottom row, left to right). The rapid exhalation in this subject resulting in decreased SNR and 

reduced ability to resolve individual tags at later timepoints, as well as a high degree of blurring in the second 

timepoint, during which most motion due to exhalation apparently occurred. 
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Figure 2.9: Sagittal slices of serial tagged HPG images from Subject 2 at timepoints 1-4 (top row, left to right) and 

timepoints 5-8 (bottom row, left to right). As with the coronal slices shown in Fig. 2.8, blurring due to rapid 

exhalation is apparent at the second timepoint. Apparent posterior-to-anterior motion of the superior regions of the 

lung is also evident in this subject, as illustrated by the yellow lines at timepoints 1 and 4. 
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Figure 2.10: Coronal slices of serial tagged HPG images from Subject 3 at timepoints 1-4 (top row, left to right) and 

timepoints 5-8 (bottom row, left to right). Loss of tag definition at later timepoints in this subject appeared to be 

driven primarily by gas depolarization and diffusion, as exhalation appeared to be relatively slow throughout the 

imaging procedure. 
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Figure 2.11: Sagittal slices of serial tagged HPG images from Subject 3 at timepoints 1-4 (top row, left to right) and 

timepoints 5-8 (bottom row, left to right). As with Subject 1, apparent SNR in the lung apices was lower than in 

other regions of the lung in this subject, as indicated by the red circle at timepoint 3. 
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2.3.2. Displacement maps 

Two- and three-dimensional displacement maps are shown for Subject 1 in Fig. 2.12, and two-

dimensional coronal and sagittal displacement maps are shown for Subjects 2 and 3 in Fig. 2.13. 

Tags remained distinct enough for semi-automated tracking for six 3D frames in Subject 1, four 

frames in Subject 2, and five frames in Subject 3, as judged visually during image analysis. In 

Subject 1, motion trajectories of the tags displayed significant temporal and spatial nonlinearity. 

Motion appeared to be straighter and faster at an earlier stage during the breathing maneuver, 

similar to behavior observed in previous work (10). Spatial nonlinearities are particularly evident 

at the apices of the lung, with tags located near the front of the lung moving primarily along the 

anterior-posterior axis, and tags located near the back of the lung moving primarily along the 

superior-inferior axis. In Subject 2, motion occurred almost entirely between the first and third 

image frame, while in Subject 3, motion was more evenly distributed temporally across all 

frames. However, because only five frames were collected in Subject 3 before tags became were 

judged too indistinct to track, full exhalation may not have been characterized. Both Subject 2 

and Subject 3 displayed similar spatial nonlinearity patterns to Subject 1. In all subjects, motion 

in the anterior-posterior direction occurred primarily at the anterior edges of the lungs, motion in 

the left-right direction occurred primarily at the lateral edges of the lungs, and motion in the 

superior-inferior direction was greater in the inferior regions of the lungs than the superior 

regions, and greater in the posterior regions of the lungs than in the anterior regions. 
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Figure 2.12: 2D displacement maps corresponding to the a) coronal and b) sagittal slices shown for Subject 1 in 

Figs. 2.6 and 2.7, and c) 3D displacement map for Subject 1. Six frames were used to form displacement maps. 
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Figure 2.13: 2D coronal (left column) and sagittal (right column) displacement maps produced from HPG tagging 

images in a) Subject 2 and b) Subject 3. Four tagging frames were used to produce displacement maps in Subject 2, 

and five tagging frames were used to produce displacement maps in Subject 3. 
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2.3.3. Strain and fractional volume change 

Maps of cumulative normal strain in the superior-inferior direction and shear strain normal to the 

anterior-posterior axis in Subject 1 are shown in a sagittal plane through the right lung in Fig. 

2.14. As might be expected, virtually all normal strain components are compressive, and normal 

strain is most prevalent in the superior-inferior direction. Anomalously large apparent strain 

values are seen at the expected location of a lobar boundary, indicating likely sliding and/or 

shearing behavior occurring at this boundary. Fractional volume change maps through this same 

slice in Subject 1 are also shown in Fig. 2.14. Fractional volume change appears relatively 

homogenous, except for elements spanning the lobar boundary.  
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Figure 2.14: Maps of a) cumulative normal strain along the superior-inferior axis, b) cumulative shear strain normal 

to the anterior-posterior axis, and c) cumulative fractional volume change, during exhalation in a sagittal slice 

through the right lung in Subject 1. Positive numbers correspond to compressive strain in normal strain maps. An 

apparent lobar boundary can be seen in a) and c), characterized by regions of anomalously high normal strain and 

fractional volume change. 
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2.3.4. Lobar segmentation and average regional strains and volume changes 

Results of lobar segmentation of tag data and lobar and whole-lung frame-to-frame average 

regional strains for Subject 3 are shown in Fig. 2.15. The segmented locations of the oblique 

fissures in the lungs match typical anatomy. The regional strain plots demonstrate that in this 

subject, motion and normal strain in the superior-inferior direction are predominant early in the 

exhalation maneuver, while motion and normal strain in the other two principal directions 

predominate later. Shear strains were of smaller magnitude than normal strains in this subject, 

and generally hovered near zero, except in the case of shear strain normal to the left-right axis 

(i.e. coplanar to the sagittal plane).  
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Figure 2.15: a) Dynamic displacement maps of selected tag planes, depicting results of regional (lobar) 

segmentation in Subject 3. From left to right, the panel depicts: a coronal plane through both lungs, a sagittal plane 

through the right lung, and a sagittal plane through the left lung. b-g) Plots depicting average frame-by-frame 

normal and shear strains within each of the four segmented lung lobes in Subject 3, as well as average strains across 

all four segmented lung lobes. Positive numbers correspond to compressive strain for all normal strain plots. 

Subscripts x, y, and z refer to the left-right direction, the anterior-posterior direction, and the superior-inferior 

direction, respectively. 
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Lobar cumulative fractional volume change is shown for all three subjects in Fig. 2.16. Strong 

bilateral symmetry is evident in all three subjects. In Subject 1, there is no apparent vertical 

gradient, while in Subjects 2 and 3, the two lower lobes exhibit higher fractional volume change 

over the span of the breathing maneuver than the two upper lobes. Fractional volume change is 

relatively linear across the breathing maneuver in Subjects 1 and 3, but undergoes a rapid 

increase between the second and third temporal frames in Subject 2, consistent with the 

appearance of the corresponding tagged gas images. 

 

Figure 2.16: Plots depicting average cumulative fractional volume change within each of the four segmented lung 

lobes in a) Subject 1, b) Subject 2, and c) Subject 3. 

 

2.4. Discussion 

Our results demonstrate that tagged HPG MRI of the lung is a promising method for studying 

pulmonary kinematics and for characterizing complex deformation during the breathing cycle. 

Previously, time constraints imposed by k-space sampling requirements, tag diffusion, and gas 

signal decay had limited the use of HPG tagging to collecting either two 3D images or multiple 

2D images within a single breathing cycle. We present a technique that allows collection of serial 

3D tagged hyperpolarized gas lung images within a single breathing cycle, using variable-density 

k-space under-sampling – matched to the predicted layout of signal within k-space – and 

compressed-sensing reconstruction of the under-sampled data. We additionally demonstrate 

calculation of time-resolved 3D strain and specific ventilation maps and regional strain and 

specific ventilation profiles using these tagged images. 
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These data provide initial insight into the number of 3D tagged frames that might be acquired in 

a single breathing maneuver. In these individuals, 4–6 frames, acquired over a span of 

approximately 6–8 s, were successfully acquired before tags were judged too indistinct to permit 

successful tag registration for subsequent frames. At this acquisition speed, the technical focus of 

the basic hyperpolarized-gas tagging technique shifts from simply acquiring two 3D frames (at 

end-of-inhalation and end-of-exhalation) within a single breath-hold maneuver to acquiring as 

many intermediate 3D frames as practical in order to create the fullest characterization of 

pulmonary kinematics possible. The increased acquisition speed could also offer the opportunity 

to use finer tag spacing and imaging resolution, allowing higher-detail displacement maps to be 

calculated and potentially facilitating robust detection of lobar fissures.   

These scans were performed in healthy individuals, with strain and fractional volume-change 

results generally matching those shown in previous imaging studies in healthy individuals using 

CT (34,35). It should be straightforward to apply the same techniques in individuals with lung 

diseases known to cause heterogeneities in regional pulmonary compliance, such as idiopathic 

pulmonary fibrosis (3), or individuals with neuromuscular disease affecting respiratory muscle 

strength and lung biomechanics (36–38). Should such work demonstrate the ability of tagged 

HPG MRI to resolve disease-related regional disturbances in lung biomechanics, it would serve 

as powerful validation of the technique's efficacy and potential as a tool for pulmonary disease 

research. 

Prior HPG tagging workflows have been investigated as a method for validating 4D deformable 

image registration (DIR) models of lung motion during the breathing cycle that are used to guide 

4D radiation therapy for lung tumors (8,10–12). While promising, this technique has previously 

been limited in its ability to directly compare with 4D DIR models, due to the lack of tagging 

data at intermediate points in the breathing cycle. The ability to serially collect 3D images within 

a single breathing cycle significantly advances the applicability of tagged HPG imaging of the 

lung for this purpose, by allowing the tagging-based validation of DIR models to be performed at 

intermediate points in the breathing cycle in addition to the two extremes. 

Loss of tag integrity in later frames can be largely attributed to tag diffusion and gas signal 

decay. Tag diffusion is driven by the long-range diffusivity (i.e., diffusion beyond the bounds of 

individual acinar airways) of the hyperpolarized gas, which drives signal-rich hyperpolarized gas 
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into regions of low signal between tags, causing boundaries between tags to become less distinct 

and eventually causing tags to bleed together entirely. This behavior has been characterized using 

techniques designed to measure long-time-scale 3He diffusion in vivo, with long-time-scale 

apparent diffusion coefficient (ADC) values of roughly 0.02 cm2/s observed for 3He in healthy 

individuals (13–15,39). In individuals with lung pathologies such as emphysema, the ADC of 

3He is generally higher than in healthy individuals (14,15,39). Acceleration of the tagging 

sequence will thus only become more important in these contexts, as tags would be expected to 

diffuse and dissolve even more rapidly.  

The effect of tag diffusion might be drastically mitigated by using 129Xe as an inhaled 

hyperpolarized gas instead of 3He, as the diffusivity of 129Xe is several-fold smaller than that of 

3He. Moreover, the abundant natural supply of 129Xe relative to 3He means that any future 

clinical (or research) applications of HPG tagging MRI will almost certainly use 129Xe. Two-

phase 3D grid tagging has been successfully demonstrated using 129Xe (11,12) and the 

developments presented here should be equally applicable to 129Xe. 

One drawback of the technique presented here is that the energy peaks in k-space move further 

apart and become slightly wider over the course of the imaging procedure as a result of the 

decreasing separation between tags during exhalation, while the peaks of the sampling likelihood 

function were not adjusted to account for this. This limitation could potentially be mitigated in 

the future by increasing the width of the peaks of the sampling density function (and by doing so, 

increasing the total number of sampled lines per frame) over the course of the breathing 

maneuver. This approach would ensure that peaks are sampled densely in all frames, and would 

also mitigate the decrease in SNR over the course of the breathing maneuver due to gas 

depolarization. Alternatively, prior to the start of each 3D tagging frame, 1D navigators could be 

applied along each of the three principal directions and used to estimate current locations of k-

space energy centers. The sampling pattern for the corresponding frame would then be adjusted 

in real time in order to account for the new distribution of k-space energy. 

An undersampled Cartesian readout scheme was chosen for this study in order to take advantage 

of the initial Cartesian layout of k-space energy peaks in the tagging context. An alternative 

approach might be to design a 3D radial readout scheme with preferential sampling of radial 

lines oriented through the expected locations of k-space energy peaks. Such an approach could 
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mitigate the aforementioned issue posed by motion of the peaks in k-space during breathing, as 

this motion occurs principally along a radial path with respect to the k-space center. The 

traditional advantages offered by a radial sampling scheme relative to Cartesian sampling – 

higher k-space sampling rate per unit time, shorter TR and TE, and naturally noise-like 

undersampling artifacts – would all potentially improve HPG tagging MRI. Previous work has 

demonstrated 2D radial sampling in dynamic HPG tagging MRI (10), and this approach would 

be straightforward to adapt to 3D. 

A limitation of all HPG tagging implementations to date, including the one described here, is that 

imaging occurs only during exhalation. An interesting direction for future work would be 

development of a combined inhalation/exhalation acquisition, with an eye toward directly 

calculating regional lung hysteresis and fractional volume change. Successful implementation 

would require the tags to remain distinct throughout both exhalation and inhalation, but the 

imaging acceleration techniques demonstrated here could help in this regard. Using 129Xe instead 

of 3He would also likely facilitate longer tag preservation due to the lower diffusivity of 129Xe 

compared with 3He, as mentioned previously.  

Another interesting future direction would be the use of a fully automated tag tracking algorithm, 

as this work used a semi-automated tracking and registration approach that required an operator 

to assess displacement map fidelity and occasionally intervene manually in instances of apparent 

tag misregistration. Previous work has demonstrated automated tag tracking in two-phase 3D 

HPG tagging MRI (7), and such a method could be tested in the multi-phase context as well. 

Alternatively, novel reconstruction approaches for under-sampled 4D MR image data that 

include estimations of frame-to-frame motion as part of the reconstruction might be of 

significant interest in the tagging MRI context (40,41). 

In this study, we described a CS-based method for multiframe 3D MRI of grid-tagged HPG in 

the lung during exhalation, taking advantage of the predictable distribution of k-space energy 

imposed by using an RF pulse train to apply a grid pattern to inhaled hyperpolarized 3He. We 

collected high-quality dynamic images of grid-tagged 3He during exhalation using the described 

technique. Finally, we demonstrated calculation of multiple-time-point displacement and strain 

maps and lobar strain profiles from resulting images of grid-tagged 3He. These maps readily 

capture and demonstrate the 4D nature of lung motion during the breathing cycle, and highlight a 
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potential role for HPG-tagging MRI data as an accurate biomarker of spatially resolved 

pulmonary biomechanics. 

2.5. Appendix 

2.5.1. Tagging grid creation using a sinc-modulated RF pulse train 

The excitation k-space description of the creation of a tagging grid using a sinc-modulated RF 

pulse train is given below. The given description is for tagging along a single dimension, but a 

tag pattern can be applied along any direction by altering the direction of the gradient, or along 

several dimensions for one scan by repeating the tagging pulse sequence with the gradient 

oriented along each of the desired dimensions. This description draws heavily from Wu et al 

(20), Pauly et al (42), and chapter 16 of Magnetic Resonance Imaging: Physical Principles and 

Sequence Design by Brown et al (43). 

The Bloch equation (Eq. 1.15) with T1 and T2 neglected is as follows: 

 
𝑑�⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗� × �⃗⃗� (2.7) 

 

During application of a circularly-polarized RF field �⃗⃗�1 and a gradient �⃗�, the total magnetic field 

applied to the sample is as follows: 

 �⃗⃗� = 𝐵0�̂� + �⃗⃗�1 + (�⃗� ∙ 𝑟)�̂� (2.8) 

 

When the sample is considered in the rotating frame, the B0 term can be eliminated. Assuming 

that the B1 field is zero along the z-axis (i.e., B1,z = 0), Eq. 2.8 can be written in terms of the 

magnetization components as follows: 

 (

𝑑𝑀𝑥/𝑑𝑡
𝑑𝑀𝑦/𝑑𝑡

𝑑𝑀𝑧/𝑑𝑡

) = 𝛾(

0 �⃗� ∙ 𝑟 −𝐵1,𝑦

−�⃗� ∙ 𝑟 0 𝐵1,𝑥
𝐵1,𝑦 −𝐵1,𝑥 0

)(

𝑀𝑥

𝑀𝑦

𝑀𝑧

) (2.9) 

 

By using the small-tip-angle approximation, combining Mx and My into a complex transverse 

magnetization component: 
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 𝑀+ = 𝑀𝑥 + 𝑖𝑀𝑦 (2.10) 

 

and doing likewise with B1,x and B1,y: 

 𝐵1+ = 𝐵1,𝑥 + 𝑖𝐵1,𝑦 (2.11) 

 

the equation of motion can be reduced to the following: 

 
𝑑𝑀+

𝑑𝑡
= −𝑖𝛾(�⃗� ∙ 𝑟)𝑀+ + 𝑖𝛾𝐵1+𝑀0 (2.12) 

 

Solving Eq. 2.12 yields the following expression for the transverse magnetization at the end of 

the RF pulse sequence as a function of position 𝑟 and RF pulse profile B1+(t): 

 𝑀+(𝑟, 𝜏𝑟𝑓/2) = 𝑖𝛾𝑀0∫ 𝐵1+(𝑡)𝑒
−𝑖2𝜋�⃗⃗�(𝑡)∙𝑟𝑑𝑡

𝜏𝑟𝑓 2⁄

−𝜏𝑟𝑓/2

 (2.13) 

 

where k is defined as a function of the gradient G as follows: 

 �⃗⃗�(𝑡) =
𝛾

2𝜋
∫ �⃗�(𝑠)𝑑𝑠
𝜏𝑟𝑓/2

𝑡

 (2.14) 

 

for an RF pulse or series of pulses defined over a time interval of length τrf centered at t = 0. 

For a gradient of constant amplitude G throughout the RF window, oriented along the x-axis, the 

expression simplifies as follows: 

 
𝑀+(𝑥, 𝜏𝑟𝑓/2) = 𝑖𝛾𝑀0𝑒

−𝑖𝛾𝐺𝑥𝜏𝑟𝑓 2⁄ ∫ 𝐵1+(𝑡)𝑒
𝑖𝛾𝐺𝑥𝑡𝑑𝑡

𝜏𝑟𝑓 2⁄

−𝜏𝑟𝑓 2⁄

= 𝑖𝛾𝑀0𝑒
−𝑖𝛾𝐺𝑥𝜏𝑟𝑓 2⁄ ℱ−1(𝐵1+(𝑡)) 

(2.15) 

 

In words, this indicates that the transverse magnetization as a function of space can be 

approximated as the inverse Fourier transform of the RF pulse as a function of time, assuming 

that the RF pulse occurs during application of a constant gradient. 
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We can use this relationship to identify that a sinc-modulated RF pulse train is approximately 

suitable for grid tagging. Such a pulse train can be described by the following functional form: 

 𝐵1+(𝑡) = 𝑠𝑖𝑛𝑐 (
𝜋𝑡

Δ𝑡1
) × 𝑐𝑜𝑚𝑏(𝑡, Δ𝑡2) (2.16) 

 

where Δt1 is the time of the first zero crossing of the sinc function, and Δt2 is the spacing of the 

comb function. 

The desired transverse magnetization following RF excitation can then be described using the 

following function: 

 𝑀+(𝑥, 𝜏𝑟𝑓/2) = 𝑟𝑒𝑐𝑡 (
𝛾

2𝜋
𝐺Δ𝑡1𝑥) ⨂ 𝑐𝑜𝑚𝑏 (𝑥,

1
𝛾
2𝜋 𝐺Δ𝑡2

) (2.17) 

 

where ⨂ denotes convolution. In practice, it is not possible to perform RF pulses of infinitesimal 

width as described above. Assuming that each individual RF pulse will take a time Δt3 to occur, 

the true expression for the sinc-modulated RF pulse train is as follows: 

 𝐵1+(𝑡) = (𝑠𝑖𝑛𝑐 (
𝜋𝑡

Δ𝑡1
) × 𝑐𝑜𝑚𝑏(𝑡, Δ𝑡2))⨂ 𝑟𝑒𝑐𝑡 (

𝑡

Δ𝑡3
) (2.18) 

 

and the transverse magnetization profile will then be as follows: 

 
𝑀+(𝑥, 𝜏𝑟𝑓/2) = (𝑟𝑒𝑐𝑡(𝛾𝐺Δ𝑡1𝑥) ⨂ 𝑐𝑜𝑚𝑏 (𝑥,

1

𝛾𝐺Δ𝑡2
))

× 𝑠𝑖𝑛𝑐(𝜋𝛾𝐺Δ𝑡3𝑥) 

(2.19) 

 

The extra sinc term represents shading that is particularly evident far from the center of the field 

of view. This behavior can be eliminated by replacing the constant gradient G with a series of 

“blipped” gradients of the same amplitude as the original constant gradient, but played only 

during gaps between individual RF pulses. In order to understand this approach, it is necessary to 

perform a change of variable in the original expression for transverse magnetization such that the 
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gradient and RF terms are represented as functions of position in excitation k-space rather than 

functions of time, as follows: 

 

𝑀+(𝑥, 𝜏𝑟𝑓/2) = 𝑖𝛾𝑀0∫ 𝐵1+(𝑡)𝑒
−𝑖2𝜋𝑘(𝑡)∙𝑥𝑑𝑡

𝜏𝑟𝑓 2⁄

−𝜏𝑟𝑓/2

= 𝑖𝛾𝑀0∫
𝐵1+(𝑘(𝑡))

|
𝛾
2𝜋 𝐺(𝑘

(𝑡))|
𝑒−𝑖2𝜋𝑘(𝑡)∙𝑥𝑑𝑘

𝑘(𝜏𝑟𝑓 2)⁄

𝑘(−𝜏𝑟𝑓 2)⁄

 

(2.20) 

 

Using this formalism, we see that the spatial profile of the transverse magnetization is the Fourier 

transform of the RF pulse as a function of excitation k-space position, divided by the gradient as 

a function of excitation k-space position. 

The sinc-modulated rectangular RF pulse train played in the intervals between blipped gradients 

can be expressed as a function of k as follows: 

 𝐵1+(𝑘(𝑡)) = 𝑠𝑖𝑛𝑐 (
𝜋𝑘(𝑡)

Δ𝑘𝑠
) × 𝑐𝑜𝑚𝑏(𝑘(𝑡), ∆𝑘𝑐) (2.21) 

 

where the pulse spacing Δkc is given by: 

 ∆𝑘𝑐 =
𝛾

2𝜋
𝐺(∆𝑡2 − ∆𝑡3) (2.22) 

 

and the sinc width parameter Δks is given by: 

 ∆𝑘𝑠 =
𝛾

2𝜋
𝐺∆𝑡1 (1 −

∆𝑡3
∆𝑡2

) (2.23) 

 

The individual pulses comprising the pulse train are impulses with respect to k, as no gradients 

are executed during the individual pulses and therefore k does not advance while the individual 

pulses occur. 

The blipped gradient pulses can still be understood to be constant with respect to k, such that: 

 𝐺(𝑘(𝑡)) = 𝐺 (2.24) 
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The above expressions for B1+(k(t)) and G(k(t)) have been simplified by omitting the rect 

function enclosing each of them in k(t), as this rect function is identical for both B1+(k(t)) and 

G(k(t)) and thus disappears once the two quantities are divided below. 

The transverse magnetization can then be determined by evaluating the above Fourier transform, 

as follows: 

 

𝑀+(𝑥, 𝜏𝑟𝑓/2) = 𝑖𝛾𝑀0∫
𝐵1+(𝑘(𝑡))

|
𝛾
2𝜋 𝐺(𝑘

(𝑡))|
𝑒−𝑖2𝜋𝑘(𝑡)∙𝑥𝑑𝑘

𝑘(𝜏𝑟𝑓 2)⁄

𝑘(−𝜏𝑟𝑓 2)⁄

= 𝑖𝛾𝑀0∫
𝑠𝑖𝑛𝑐 (

𝜋𝑘(𝑡)
Δ𝑘𝑠

) × 𝑐𝑜𝑚𝑏(𝑘(𝑡), ∆𝑘𝑐)

|
𝛾
2𝜋 𝐺|

𝑒−𝑖2𝜋𝑘(𝑡)∙𝑥𝑑𝑘
𝑘(𝜏𝑟𝑓 2)⁄

𝑘(−𝜏𝑟𝑓 2)⁄

=
1
𝛾
2𝜋 𝐺

∙ 𝑟𝑒𝑐𝑡 ((
𝛾

2𝜋
𝐺∆𝑡1 (1 −

∆𝑡3
∆𝑡2

)) 𝑥)

∗ 𝑐𝑜𝑚𝑏(𝑥,
1

𝛾
2𝜋 𝐺

(∆𝑡2 − ∆𝑡3)
) 

(2.25) 

 

This magnetization profile – a rect function convolved with a comb function – matches the 

desired result in the tagging MRI context. In this expression, the tag width wtag is given by:  

 𝑤𝑡𝑎𝑔 = 2𝜋 (𝛾𝐺∆𝑡1 (1 −
∆𝑡3
∆𝑡2

))⁄  (2.26) 

 

and the center-to-center tag spacing Δxtag is given by: 

 ∆𝑥𝑡𝑎𝑔 = 2𝜋 (𝛾𝐺[∆𝑡2 − ∆𝑡3])⁄  (2.27) 

 

Recall that Δt1 represents the first zero-crossing time of the sinc-modulated RF pulse train, Δt2 

represents the center-to-center spacing of the rectangular RF pulses, and Δt3 represents the width 

of each RF pulse. Since the gradient is only turned on during the time between RF pulses, which 

is equal to Δt2 – Δt3, the tag spacing can be expressed more generally as: 
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 ∆𝑥𝑡𝑎𝑔 = 2𝜋 (𝛾𝐺𝑀𝑜𝑚𝑒𝑛𝑡)⁄  (2.28) 

 

where GMoment represents the zeroth moment of each blipped gradient pulse.    

The form for B1+ as a function of k(t) shown above holds not only for sinc-modulated RF pulses 

of equal length, but for RF pulses of identical amplitude and different lengths, such that the area 

under each sequential RF pulse matches the area under its equivalent pulse in the case of sinc-

modulated amplitude. This observation offers the opportunity to shorten the tagging MRI pulse 

sequence by using shorter, higher-amplitude RF pulses over the course of the sequence (Fig. 

2.17). 

 

 

Figure 2.17: Sinc-modulated RF pulse trains with a) a constant gradient, b) blipped gradients, and c) blipped 

gradients combined with shorter, wider RF pulses to reduce peak power requirement, as well as d) a pulse train 

composed of constant-amplitude RF pulses of equivalent area to those in a-c). Reproduced from Wu et al (20). 
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2.5.2. Finite-element-based strain calculation 

The process of deriving element-wise strains and volumes for an individual four-node tetrahedral 

element is described below. This description largely recapitulates that given in chapter 10.1 of 

Finite Element Analysis by Moaveni (44). 

Start by approximating the displacement field (u, v, w) from one time point to another time point 

within a three-dimensional coordinate system (X, Y, Z) as a linear function of position, as 

follows: 

 

𝑢(𝑋, 𝑌, 𝑍) = 𝐶11 + 𝐶12𝑋 + 𝐶13𝑌 + 𝐶14𝑍 

𝑣(𝑋, 𝑌, 𝑍) = 𝐶21 + 𝐶22𝑋 + 𝐶23𝑌 + 𝐶24𝑍 

𝑤(𝑋, 𝑌, 𝑍) = 𝐶31 + 𝐶32𝑋 + 𝐶33𝑌 + 𝐶34𝑍 

(2.29) 

 

where the constants Cmn relate the positional coordinates (X, Y, Z) to the displacement field (u, v, 

w). For instance, C13 relates the amplitude of the displacement along the X-axis to a given Y 

coordinate in space. 

The known displacement values at the initial locations of the four nodes of the tetrahedron (I, J, 

K, L) can be taken as boundary conditions for the above equations, as follows: 

 

𝑢 = 𝑢𝐼  𝑎𝑡 (𝑋, 𝑌, 𝑍) =  (𝑋𝐼, 𝑌𝐼 , 𝑍𝐼)  

𝑢 = 𝑢𝐽 𝑎𝑡 (𝑋, 𝑌, 𝑍) =  (𝑋𝐽, 𝑌𝐽, 𝑍𝐽) 

⋮ 

𝑤 = 𝑤𝐿 𝑎𝑡 (𝑋, 𝑌, 𝑍) =  (𝑋𝐿 , 𝑌𝐿 , 𝑍𝐿) 

(2.30) 

 

A four-node tetrahedron is depicted in Fig. 2.18. In the tagging MRI context, the coordinates X, 

Y, and Z correspond to the location of a tag in the earlier of a pair of tagging images, and the 

displacements u, v, and w correspond to the difference in locations of the tag in question between 

the earlier and later images in the pair of tagging images along the X, Y, and Z directions, 

respectively. For instance, let vertex I of a tetrahedral element be defined by a given tag. The 

initial location of the tag along the X, Y, and Z directions can be denoted as XI, YI, and ZI, 

respectively. The difference in locations between the initial and final position of the tag along the 

X, Y, and Z directions can be denoted as uI, vI, and wI, respectively. 
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Figure 2.18: Four-node tetrahedral element, characterized by nodes I, J, K, and L. Each node has a starting position 

and a displacement, each defined in three dimensions. For instance, node I has initial position XI, YI, and ZI, and 

displacement uI, vI, and wI. Reproduced from Moaveni (44). 

Substituting each of the nodal displacement values into the displacement field equation yields a 

system of twelve equations and twelve unknowns (the twelve Cmn values):  

 

𝑢𝐼 = 𝐶11 + 𝐶12𝑋𝐼 + 𝐶13𝑌𝐼 + 𝐶14𝑍𝐼 

𝑢𝐽 = 𝐶11 + 𝐶12𝑋𝐽 + 𝐶13𝑌𝐽 + 𝐶14𝑍𝐽 

⋮ 

𝑤𝐿 = 𝐶31 + 𝐶32𝑋𝐿 + 𝐶33𝑌𝐿 + 𝐶34𝑍𝐿 

(2.31) 

 

Solving for these unknowns and regrouping the parameters yields the following expressions for 

the overall displacement field as a function of the nodal displacements: 

 

𝑢 = 𝑆𝐼𝑢𝐼 + 𝑆𝐽𝑢𝐽 + 𝑆𝐾𝑢𝐾 + 𝑆𝐿𝑢𝐿 

𝑣 = 𝑆𝐼𝑣𝐼 + 𝑆𝐽𝑣𝐽 + 𝑆𝐾𝑣𝐾 + 𝑆𝐿𝑣𝐿 

𝑤 = 𝑆𝐼𝑤𝐼 + 𝑆𝐽𝑤𝐽 + 𝑆𝐾𝑤𝐾 + 𝑆𝐿𝑤𝐿 

(2.32) 
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The above relationship between the displacement field, shape functions, and nodal displacements 

can be expressed in matrix form as follows: 

 

{𝐮}𝑇 = {𝑢 𝑣 𝑤} 

[𝐒] = [

𝑆𝐼 0 0 𝑆𝐽 0 0 𝑆𝐾 0 0 𝑆𝐿 0 0

0 𝑆𝐼 0 0 𝑆𝐽 0 0 𝑆𝐾 0 0 𝑆𝐿 0

0 0 𝑆𝐼 0 0 𝑆𝐽 0 0 𝑆𝐾 0 0 𝑆𝐿

] 

{𝐔}𝑇 = {𝑢𝐼 𝑣𝐼 𝑤𝐼 𝑢𝐽 𝑣𝐽 𝑤𝐽 𝑢𝐾 𝑣𝐾 𝑤𝐾 𝑢𝐿 𝑣𝐿 𝑤𝐿} 

{𝐮} = [𝐒]{𝐔} 

(2.33) 

 

The nodal shape functions (SI, SJ, SK, SL) are: 

 

𝑆𝐼 =
1

6𝑉
(𝑎𝐼 + 𝑏𝐼𝑋 + 𝑐𝐼𝑌 + 𝑑𝐼𝑍) 

⋮ 

𝑆𝐿 =
1

6𝑉
(𝑎𝐿 + 𝑏𝐿𝑋 + 𝑐𝐿𝑌 + 𝑑𝐿𝑍) 

(2.34) 

 

The volume of the tetrahedron (V) is calculated as follows: 

 𝑉 =
1

6
det |

1 𝑋𝐼 𝑌𝐼 𝑍𝐼
1 𝑋𝐽 𝑌𝐽 𝑍𝐽
1 𝑋𝐾 𝑌𝐾 𝑍𝐾
1 𝑋𝐿 𝑌𝐿 𝑍𝐿

| (2.35) 

 

and the a, b, c, and d terms are calculated as follows: 

 

𝑎𝐼 = det |

𝑋𝐽 𝑌𝐽 𝑍𝐽
𝑋𝐾 𝑌𝐾 𝑍𝐾
𝑋𝐿 𝑌𝐿 𝑍𝐿

| 𝑏𝐼 = −det |

1 𝑌𝐽 𝑍𝐽
1 𝑌𝐾 𝑍𝐾
1 𝑌𝐿 𝑍𝐿

| 

𝑐𝐼 = det |

𝑋𝐽 1 𝑍𝐽
𝑋𝐾 1 𝑍𝐾
𝑋𝐿 1 𝑍𝐿

| 𝑑𝐼 = −det |

𝑋𝐽 𝑌𝐽 1

𝑋𝐾 𝑌𝐾 1
𝑋𝐿 𝑌𝐿 1

| 

 

(2.36) 

 

The examples shown above for node I can be adapted to nodes J, K, and L by rotating subscripts 

using the right-hand rule, as shown below for aJ:  
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 𝑎𝐽 = det |
𝑋𝐾 𝑌𝐾 𝑍𝐾
𝑋𝐿 𝑌𝐿 𝑍𝐿
𝑋𝐼 𝑌𝐼 𝑍𝐼

| (2.37) 

 

The state of strain of the element is characterized by three normal strains and three shear strains, 

as follows: 

 {𝛆}𝑇 = {𝜀𝑥 𝜀𝑦 𝜀𝑧 𝛾𝑥𝑦 𝛾𝑦𝑧 𝛾𝑧𝑥} (2.38) 

 

where the respective strain components are defined as follows: 

 

𝜀𝑥 =
𝛿𝑢

𝛿𝑥
 𝜀𝑦 =

𝛿𝑣

𝛿𝑦
 𝜀𝑧 =

𝛿𝑤

𝛿𝑧
 

𝛾𝑥𝑦 =
𝛿𝑢

𝛿𝑦
+
𝛿𝑣

𝛿𝑥
 𝛾𝑦𝑧 =

𝛿𝑣

𝛿𝑧
+
𝛿𝑤

𝛿𝑦
 𝛾𝑧𝑥 =

𝛿𝑤

𝛿𝑥
+
𝛿𝑢

𝛿𝑧
 

 

(2.39) 

 

Normal strains represent the fractional change in distance between strain elements along each of 

the three principal axes, while shear strains represent the fractional change in shape of strain 

elements within the planes normal to each of the three principal axes. 

The relationships between strain components and displacement field components above can be 

used to express the strain components in terms of the shape functions and nodal displacements, 

as follows: 

 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑧𝑥}
 
 

 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛿𝑆𝐼
𝛿𝑥

0 0
𝛿𝑆𝐽

𝛿𝑥
0 0

𝛿𝑆𝐾
𝛿𝑥

0 0
𝛿𝑆𝐿
𝛿𝑥

0 0

0
𝛿𝑆𝐼
𝛿𝑦

0 0
𝛿𝑆𝐽

𝛿𝑦
0 0

𝛿𝑆𝐾
𝛿𝑦

0 0
𝛿𝑆𝐿
𝛿𝑦

0

0 0
𝛿𝑆𝐼
𝛿𝑧

0 0
𝛿𝑆𝐽

𝛿𝑧
0 0

𝛿𝑆𝐾
𝛿𝑧

0 0
𝛿𝑆𝐿
𝛿𝑧

𝛿𝑆𝐼
𝛿𝑦

𝛿𝑆𝐼
𝛿𝑥

0
𝛿𝑆𝐽

𝛿𝑦

𝛿𝑆𝐽

𝛿𝑥
0

𝛿𝑆𝐾
𝛿𝑦

𝛿𝑆𝐾
𝛿𝑥

0
𝛿𝑆𝐿
𝛿𝑦

𝛿𝑆𝐿
𝛿𝑥

0

0
𝛿𝑆𝐼
𝛿𝑧

𝛿𝑆𝐼
𝛿𝑦

0
𝛿𝑆𝐽

𝛿𝑧

𝛿𝑆𝐽

𝛿𝑦
0

𝛿𝑆𝐾
𝛿𝑧

𝛿𝑆𝐾
𝛿𝑦

0
𝛿𝑆𝐿
𝛿𝑧

𝛿𝑆𝐿
𝛿𝑦

𝛿𝑆𝐼
𝛿𝑧

0
𝛿𝑆𝐼
𝛿𝑥

𝛿𝑆𝐽

𝛿𝑧
0

𝛿𝑆𝐽

𝛿𝑥

𝛿𝑆𝐾
𝛿𝑧

0
𝛿𝑆𝐾
𝛿𝑥

𝛿𝑆𝐿
𝛿𝑧

0
𝛿𝑆𝐿
𝛿𝑥 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 
𝑢𝐼
𝑣𝐼
𝑤𝐼
𝑢𝐽
𝑣𝐽
𝑤𝐽
𝑢𝐾
𝑣𝐾
𝑤𝐾
𝑢𝐿
𝑣𝐿
𝑤𝐿}
 
 
 
 
 

 
 
 
 
 

 (2.40) 

 

Assessing each of the shape function derivatives yields the following set of equations for the 

strain components in terms of the nodal displacements and a, b, c, and d values: 
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 {𝛆} = [𝐁]{𝐔} (2.41) 

 

where 

 [𝐁] =
1

6𝑉

[
 
 
 
 
 
 
𝑏𝐼 0 0 𝑏𝐽 0 0 𝑏𝑘 0 0 𝑏𝐿 0 0

0 𝑐𝐼 0 0 𝑐𝐽 0 0 𝑐𝐾 0 0 𝑐𝐿 0

0 0 𝑑𝐼 0 0 𝑑𝐽 0 0 𝑑𝐾 0 0 𝑑𝐿
𝑐𝐼 𝑏𝐼 0 𝑐𝐽 𝑏𝐽 0 𝑐𝐾 𝑏𝐾 0 𝑐𝐿 𝑏𝐿 0

0 𝑑𝐼 𝑐𝐼 0 𝑑𝐽 𝑐𝐽 0 𝑑𝐾 𝑐𝐾 0 𝑑𝐿 𝑐𝐿
𝑑𝐼 0 𝑏𝐼 𝑑𝐽 0 𝑏𝐽 𝑑𝐾 0 𝑏𝐾 𝑑𝐿 0 𝑏𝐿]

 
 
 
 
 
 

 (2.42) 

 

and {U} is the 12-element vector of nodal displacements defined in Eq. 2.33. In a practical sense, 

given the nodal positions and displacements, the strain components can be found by calculating 

a, b, c, and d for each node, calculating the initial tetrahedral volume V, and using these to 

construct the matrix B, without needing to directly calculate the shape functions. 
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Chapter 3: Repeatability and lung volume dependence of 3D 

dissolved-phase 129Xe lung MRI 

3.1. Introduction 

MRI of inhaled hyperpolarized xenon-129 (129Xe) is a quantitative method for evaluating lung 

structure and function and characterizing pulmonary pathology (1–4). Upon inhalation, a 

measurable fraction of inhaled 129Xe gas diffuses into and across the alveolar membrane and into 

the blood, identical to the uptake pathway followed by inhaled oxygen. This behavior can be 

observed and characterized using MRI due to the resulting chemical shifts of 129Xe in two 

distinct compartments: 1) dissolved in the alveolar membrane and blood plasma (Mbr; shifted 

~198 ppm from gas phase; also called “tissue/plasma,” “TP,” or “barrier” in previous studies) 

and 2) bound to hemoglobin in red blood cells (RBC; ~218 ppm) (5,6). The associated MRI 

technique, known as dissolved-phase 129Xe MRI, can thus be used to derive spatially-resolved 

metrics characterizing gas uptake by the lung that cannot be obtained using CT or conventional 

MRI (6–8). Techniques including chemical shift saturation recovery (CSSR) spectroscopy (9,10), 

chemical-shift imaging (11), single-point Dixon imaging (8,12,13), and the multi-point Dixon-

based hierarchical iterative decomposition of water and fat with echo asymmetry and least-

squares estimation (IDEAL) (14–16) permit direct, simultaneous measurement of relative 

concentrations of 129Xe in each compartment.  

Quantitative signal ratios derived from such techniques, including Mbr/Gas, RBC/Gas, and 

RBC/Mbr, constitute self-normalized measures of gas uptake, and have been reported to display 

concordance with quantitative readouts of lung function derived from pulmonary function tests 

(17,18). These ratios demonstrate sensitivity to changes in lung function associated with 

disorders such as chronic obstructive pulmonary disease (COPD) (9,19–21) and idiopathic 

pulmonary fibrosis (IPF) (11,17,22–24). They are of clinical interest due to their ability to 

characterize particular aspects of pulmonary pathophysiology including emphysematous tissue 

destruction and perfusion limitation in COPD (19,20) and provide spatially-resolved assessments 

of disease-related deficits in lung function related to remodeling of the lung microstructure. 
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To be clinically useful, gas uptake metrics derived from dissolved-phase 129Xe MRI must be 

reliable, repeatable, and reproducible. It has previously been observed that lung volume during 

measurement substantially impacts gas uptake metrics across and within healthy individuals 

(9,22,25,26). These results implicate lung-volume variability as an important contributor to gas 

uptake metric variability and potential confounder when separate measurements are compared. A 

comprehensive characterization of lung-volume dependence in both healthy and diseased 

individuals, including the impact of lung-volume variability on measurement repeatability, is 

therefore necessary to optimize the use and reliability of gas uptake metrics derived from 

dissolved-phase 129Xe MRI. Prior work has examined reproducibility of Dixon-based Mbr/Gas, 

RBC/Gas, and RBC/Mbr image ratios in healthy volunteers (22,26,27) and patients with IPF 

(23), as well as reproducibility of these ratios and related metrics derived from CSSR 

spectroscopy in patients with COPD (27,28). However, relatively little work exists directly 

evaluating the impact of lung-volume variability on gas uptake reproducibility, and such work 

has been reported only in healthy individuals (26).  

To address this knowledge gap, the purpose of the work presented in this chapter was therefore 

to characterize relationships between lung volume and Mbr/Gas, RBC/Gas, and RBC/Mbr ratios 

derived from IDEAL-based dissolved-phase 129Xe MRI, assess and compare same-session 

repeatability of these measurements in participants with COPD versus healthy participants, and 

assess the impact of scan-to-scan volume differences on measurement variability. 

3.2. Methods 

3.2.1. Study participants 

This prospective study complied with the Health Insurance Portability and Accountability Act 

and was approved by the University of Virginia institutional review board. All study participants 

provided written informed consent. Volunteers were solicited from the University of Virginia 

geographical area. Candidates were screened for respiratory infection within the prior two weeks 

and for history of congenital cardiac disease and were not invited for an in-person screening visit 

if either of these factors were present. Spirometry was performed at screening visit to determine 

forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). Inclusion 

criteria for healthy participants included FEV1/FVC greater than 0.70, and inclusion criteria for 
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participants with COPD included age greater than 45 years and FEV1/FVC less than 0.70. 

Healthy candidates were further screened for history of diagnosed pulmonary disease and 

for >10% increase in FEV1 30-50 minutes after bronchodilator administration (in order to rule 

out undiagnosed asthma); candidates were not enrolled if either of these factors were present. 

A total of 52 participants (21 with COPD and 31 healthy) were enrolled and underwent 129Xe 

MRI for this study between March 2014 and December 2015 (Fig. 3.1, Table 3.1). After 

exclusion of three enrolled participants due to various study failures (Fig. 3.1), 49 participants 

(19 with COPD and 30 healthy) were included in the final analysis. Healthy participants were 

divided into older (≥44 years, 25 participants approximating inclusion criteria for participants 

with COPD) and young (≤27 years, five participants) categories.  

 

Figure 3.1: Study flowchart details exclusion criteria. Among 52 participants who entered the study protocol, one 

participant did not undergo imaging due to an adverse reaction to xenon test dose administration, one participant did 

not undergo full imaging due to xenon polarization failure, and data from one participant was excluded from 

analysis due to failure to perform breath-hold as instructed. COPD = chronic obstructive pulmonary disease, FVC = 

forced vital capacity, RV = residual volume, TLC = total lung capacity. 
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Table 3.1: Demographics and pulmonary metrics for dissolved-phase 129Xe MRI study participants. Values are 

medians with interquartile ranges in parentheses, except for participants, which are numbers of participants with 

percentages of the total participant sample in parentheses. All participants with COPD were former or current 

smokers. Four of the older healthy participants were current smokers, and five of the older healthy participants were 

former smokers. Pack-years = number of cigarette packs smoked per day multiplied by years of smoking, %-pred = 

percent predicted. 

3.2.2. Lung inflation levels during imaging 

Thirty-two total participants (14 with COPD and 18 older healthy) received repeated dissolved-

phase xenon scans at a target inflation level of residual volume plus one-third FVC 

(RV+FVC/3), with 29 of these participants (14 with COPD and 15 older healthy) also receiving 

one scan at a target inflation level of total lung capacity (TLC) and one of the remaining three 

participants receiving a third scan at a target inflation level of RV+FVC/3. The remaining 17 

participants (five with COPD, seven older healthy, and five young healthy) received single 

dissolved-phase xenon scans at each of three target inflation levels: TLC, RV+FVC/3, and 

residual volume (RV). For the 32 participants that received repeated scans at RV+FVC/3, 

hereafter referred to as repeatability participants, the order of the three scans was typically as 

follows: (1) first RV+FVC/3, (2) TLC, (3) second RV+FVC/3. For the 17 participants that 

received scans at all three target inflation levels, hereafter referred to as multiple-inflation-level 

participants, the order of the three scans was varied to reduce potential bias. Table 3.2 provides 

the exact distribution of scan ordering across all imaging sessions.  

Parameter Young Healthy Older Healthy COPD 

Participants 5 (10.2%) 25 (51.0%) 19 (38.8%) 

Sex    

   Male 0 5 10 

   Female 5 20 9 

Mean age (y) 23 (20−25) 58 (52−64) 65 (60−74) 

Mean pack-years 0 (0−0) 0 (0−22) 35 (26−80) 

FEV1 (%-pred.) 103 (95−106) 103 (93−110) 67 (43−86) 

FEV1/FVC (%) 83 (82−86) 77 (74−80) 60 (52−64) 

FVC (L) 4.0 (3.8−4.2) 3.4 (3.2−4.0) 3.8 (2.8−4.4) 

TLC (L) 5.4 (5.1−5.6) 5.6 (5.1−6.5) 6.9 (5.1−8.3) 



91 

 

Order # Scan 1 Scan 2 Scan 3 # of participants 

1 RV RV+FVC/3 TLC 3 

2 RV TLC RV+FVC/3 6 

3 RV+FVC/3 RV TLC 3 

4 RV+FVC/3 TLC RV 1 

5 TLC RV RV+FVC/3 0 

6 TLC RV+FVC/3 RV 4 

7 RV+FVC/3 RV+FVC/3 None 2 

8 RV+FVC/3 RV+FVC/3 RV+FVC/3 1 

9 RV+FVC/3 RV+FVC/3 TLC 1 

10 RV+FVC/3 TLC RV+FVC/3 26 

11 TLC RV+FVC/3 RV+FVC/3 2 

 

Table 3.2: Chronological order of dissolved-phase 129Xe MR scans within individual imaging sessions. Rows 1-6 

correspond to multiple-inflation-level participants, while rows 7-11 correspond to repeatability participants. 

Repeatability participants in row 7 received only two dissolved-phase 129Xe scans, while all others received three 

dissolved-phase 129Xe scans. The third RV+FVC/3 scan of the participant in row 8 was used for lung volume 

analysis, but not repeatability analysis. FVC = forced vital capacity, RV = residual volume, TLC = total lung 

capacity. 

3.2.3. 129Xe polarization and delivery 

Isotopically enriched xenon gas (87% 129Xe) was polarized to approximately 40% via spin-

exchange optical pumping using a prototype commercial system (XeBox-E10, Xemed, LLC, 

Durham, NH) (29,30). For each dissolved-phase scan, 1.0 L of hyperpolarized 129Xe was 

dispensed into a plastic bag for inhalation (Tedlar plastic bag; Jensen Inert Products, Coral 

Springs, FL). 

All breathing maneuvers were practiced without 129Xe administration while participants were 

inside the scanner bore prior to 129Xe MRI in order to familiarize participants with study 

procedures. During 129Xe MRI, participants were instructed to take a large, deep breath in until 

reaching full lung capacity, exhale as far as possible to minimum lung capacity, repeat this 

inhalation/exhalation procedure once, and then inhale the administered gas dose from residual 

volume. Dose inhalation procedures were specific to each target inflation level as follows: 
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• RV: Participants inhaled the full contents of a bag containing 1 L of 129Xe, followed by a 

small “sip” of room air to ensure as much 129Xe as possible made its way into the lungs. 

Participants then exhaled back to RV. 

• RV+FVC/3: Participants simultaneously inhaled the full contents of two bags: one 

containing 1 L of 129Xe, and another containing medical-grade nitrogen. The volume of 

nitrogen was chosen based on participant spirometry, such that the total volume of the 

bag contents would match one-third of FVC volume for each participant. 

• TLC: Participants inhaled the full contents of a bag containing 1 L of 129Xe and then 

inhaled room air to maximum capacity. 

After completing the above procedure for the corresponding target inflation level, participants 

then held their breath for the duration of image acquisition, spanning up to 15 seconds. 

Participants were monitored by study coordinators during this procedure to verify compliance. 

All 129Xe doses administered during the study were spaced apart by at least two minutes. 

Participants were monitored for transient central nervous system symptoms (primarily 

lightheadedness and dizziness), and additional time between doses was given when necessary to 

ensure participants returned to baseline prior to the next dose. 

Participants’ O2 saturation was taken at baseline prior to the start of xenon dosing, and was 

monitored continuously throughout the study. No participants recorded O2 saturation lower than 

80% at any point during the study. Medical-grade O2 was readily available in the MRI scanner 

room, and administered if deemed necessary by study coordinators. Out of the 49 participants 

studied, one participant (a 66-year-old healthy female volunteer) received supplemental doses of 

2–4 L of pure O2 between each 129Xe dose. 

3.2.4. 129Xe and proton MRI 

MRI studies were performed using a 1.5T commercial whole-body MRI scanner (Avanto; 

Siemens Medical Solutions, Malvern, PA) and a flexible, proton-blocked, vest-shaped 129Xe 

quadrature transmit/receive radiofrequency coil (Clinical MR Solutions, Brookfield, WI). A 

129Xe calibration scan was performed for each participant using an inhaled gas mixture 

containing ~200 mL of hyperpolarized 129Xe to determine optimal transmitter voltage and 129Xe 

central frequency. 
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Simultaneous dissolved-phase and gas-phase xenon MRIs were acquired using a multi-echo 

three-dimensional (3D) radial pulse sequence described previously (15). Same-breath-hold 

proton MRIs were acquired immediately after each 129Xe scan, using a three-fold under-sampled 

spoiled gradient-echo 3D Cartesian pulse sequence. Separate fully-sampled proton images were 

acquired at TLC in all participants. Table 3.3 lists pulse sequence parameters and scan 

resolutions for 129Xe and proton MRI. 

 129Xe 

Proton 
 

Repeatability 

(RV+FVC/3) 

Repeatability 

(TLC) 

Multiple-

inflation-level 

Resolution (mm3) 7.6×7.6×17 10.9×10.9×17 15.2×15.2×17.6 5.2×3.9×6.0 

Flip angle 
23° (dissolved-phase) 

0.4° (gas-phase) 
10° 

TE (ms) 
0.74/2.36/3.98 (dissolved-phase) 

0.74/2.36 (gas-phase) 
0.78 

TR (ms) 19 1.8 

 

Table 3.3: Pulse sequence parameters for 129Xe and proton MRI. For 129Xe scans, two different excitation/readout 

cycles were interleaved. The first row of flip angle and TE corresponds to the dissolved-phase excitation and 

readout, while the second row of flip angle and TE corresponds to the gas-phase excitation and readout. 

3.2.5. Image analysis 

Under-sampled dissolved-phase xenon MR images were reconstructed using the quadratic 

penalized weighted-least-squares via preconditioned conjugate gradients algorithm (31), and the 

Mbr and RBC dissolved-phase signal components were separated using the hierarchical IDEAL 

method (9,14,15). Reconstructed xenon images were used to calculate Mbr/Gas, RBC/Gas, and 

RBC/Mbr signal ratios at each ventilated pixel location, and whole-lung mean values for each 

ratio were calculated for each dissolved-phase scan.  

Under-sampled proton MR images were reconstructed using a compressed sensing algorithm 

solved via non-linear conjugate gradients (15,32). Lung volumes were determined by segmenting 

proton images using a deep learning-based method from the ANTsPyNet toolbox, with manual 

intervention applied in selected cases when necessary (33). 
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Preliminary analysis of lung volume and gas uptake data suggested an inverse relationship 

between lung volume and each of Mbr/Gas and RBC/Gas. The following relationship was 

initially theorized for each of these two ratios: 

 𝑅 = 𝐶 ∙ 𝑉−𝛼 (3.1) 

 

where R is the ratio in question for a given measurement, V is the lung volume during 

measurement, and C and α are arbitrary constants to be determined via fitting of the equation 

above to subject data. This formulation was developed with an eye toward using the V-α term as a 

proxy for alveolar surface-to-volume ratio, with α allowed to float in order to represent different 

models of alveolar expansion and shape change with lung volume change (34). (For instance, α = 

⅔ would correspond to balloon-like inflation and deflation, and α = 1 would correspond to 

recruitment of alveoli upon inflation and derecruitment and collapse of alveoli upon deflation.) 

For the final analysis used in this study, Eq. 3.1 was modified to a relative-difference formulation 

by differentiating each side of the equation and assuming C = 1. This formulation quantified the 

effect of scan-to-scan lung-volume changes on measured signal ratios by performing pairwise 

comparisons of different scans within each participant. The following linear relationship was 

therefore assumed between the relative signal-ratio difference and relative volume difference 

between any two such scans:  

 
𝑅2 − 𝑅1

(𝑅1 + 𝑅2)/2
= −𝛼 ∙

𝑉2 − 𝑉1
(𝑉1 + 𝑉2)/2

 (3.2) 

 

where 𝑅1 (𝑅2) and 𝑉1 (𝑉2) represent the mean signal ratio and lung volume, respectively, from 

the chronologically earlier (later) of the two scans, and 𝛼 represents the slope of the linear 

correlation. A differential relationship of this form was previously used by Hahn et al. in a study 

of inter-visit reproducibility in healthy volunteers (26). Because three different scans of each 

participant were performed in this study, three scan pairings per participant were possible for 

each signal ratio, except in the two repeatability participants that only received two RV+FVC/3 

scans, for which only one scan pairing was possible. A total of 143 scan pairings were generated 

from the 49 participants. The slope 𝛼 was determined for each signal ratio within each 

participant group by performing a least-squares fit of all such pairwise comparisons to Eq. 3.2. 
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The resulting groupwise values of α were finally used to correct for volume contributions to 

signal ratios measured in COPD and older healthy groups. For each of the three nominal inflation 

levels, the mean of all volume measurements made at a given inflation level across all COPD 

and older healthy participants was calculated. This volume was then used as a reference volume 

for the corresponding inflation level, and all mean ratio measurements taken at the corresponding 

inflation level were projected to that volume using the corresponding value of α determined from 

the differential volume analysis described above. This was done for each scan by setting V1 equal 

to the actual scan volume for a given scan, V2 equal to the reference volume for that inflation 

level, R1 equal to one of the three signal ratios for that scan, and solving for R2 in Eq. 3.2. 

3.2.6. Statistical analysis 

Two-way random, single-measure, absolute-agreement intraclass correlation coefficient (ICC) 

(34) and coefficient of variation (CV) were used to quantify repeatability of lung volumes and 

signal ratios. ICC values were classified as excellent (>0.9), good (0.75-0.9), moderate (0.5-

0.75), or poor (<0.5) (35). Bland-Altman plots were also used to assess repeatability of volumes 

and ratios, and traditional Bland-Altman measures of agreement – mean inter-measurement 

discrepancy, lower and upper limits of agreement (LoAs) for measurements, and 95% confidence 

intervals (CIs) of these quantities – were calculated, with p < 0.05 indicating a statistically 

significant difference between mean discrepancy and zero. Spearman correlation coefficients 

were calculated for (ΔR)/Ravg and (ΔV)/Vavg for each of the three signal ratios, and statistical 

significance was established at the p = 0.05 level, with p values determined using an F test. 

Wilcoxon rank-sum tests were performed to assess differences in volume, signal ratios, and 

projected ratios at reference volumes between COPD and older healthy groups. Bonferroni 

correction for multiple comparisons was applied to the 24 Wilcoxon rank-sum tests performed 

on these quantities, with p < 0.05/24 ≈ 0.0021 thus taken to indicate a statistically significant 

difference between the two groups. Further description of the individual statistical methods used 

in the study is provided in the Appendix. 
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3.3. Results 

3.3.1. 129Xe and proton MRI 

Representative proton images and xenon uptake ratio maps are shown in Fig. 3.2. Mean ratio 

values varied by less than 10% in representative repeatability scans in which lung volume was 

tightly repeated between scans (Fig. 3.2a). Scans at three different target inflation levels (Fig. 

3.2b) showed increased ratios with decreased lung volume, particularly for Mbr/Gas and 

RBC/Gas.  
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Figure 3.2: a) Representative repeated proton, Mbr/Gas, RBC/Gas, and RBC/Mbr 129Xe images from a 57-year-old 

male with COPD. Both scans were performed at a target inflation level of RV+FVC/3. All three ratios differed by 

less than 10% across the two repeated scans. b) Representative multiple-inflation-level proton, Mbr/Gas, RBC/Gas, 

and RBC/Mbr 129Xe images from a healthy 52-year-old female. Scans were performed at target inflation levels of 

RV, RV+FVC/3, and TLC, respectively, from left to right. Ratios increased with decreasing lung volume across the 

three scans, particularly Mbr/Gas and RBC/Gas. 

3.3.2. Statistical analysis of repeatability 

Fig. 3.3 shows Bland-Altman plots of whole-lung mean Mbr/Gas, RBC/Gas, and RBC/Mbr 

ratios in each participant that received repeated RV+FVC/3 scans. None of the three ratios 

displayed a significant non-zero mean discrepancy between repeated scans (Fig. 3.3, Table 3.4). 

As shown in Table 3.5, Mbr/Gas and RBC/Mbr displayed good repeatability across all 

participants, while RBC/Gas displayed moderate repeatability (ICC=0.88, 95% CI: [0.76, 0.94] 
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for Mbr/Gas; 0.71 [0.48, 0.84] for RBC/Gas; and 0.88 [0.76, 0.94] for RBC/Mbr). RBC/Mbr 

appeared to display the smallest CV of the three ratios (CV=11.4% [8.7, 14.0] for Mbr/Gas, 

13.0% [10.0, 16.0] for RBC/Gas, 7.2% [5.5, 8.9] for RBC/Mbr). CVs for the three measures 

were generally similar between older healthy participants (CV≤14.1%) and participants with 

COPD (CV≤11.4%). 
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Figure 3.3: Bland-Altman plots for repeatability analysis of a) Mbr/Gas, b) RBC/Gas, and c) RBC/Mbr, in healthy 

participants and in participants with COPD that received repeated dissolved-phase 129Xe scans at RV+FVC/3 (n = 

32). Solid black lines indicate mean discrepancies, dashed black lines indicate 95% confidence intervals of mean 

discrepancies, solid purple lines indicate lower 2.5% and upper 97.5% limits of agreement, and dashed purple lines 

indicate 95% confidence intervals for limits of agreement. 
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 Mean Discrepancy Lower LoA Upper LoA p 

Mbr/Gas × 103 0.12 [-0.35, 0.60] -2.51 [-3.38, -1.99] 2.76 [2.23, 3.62] 0.60 

RBC/Gas × 103 -0.01 [-0.16, 0.15] -0.85 [-1.13, -0.68] 0.84 [0.67, 1.11] 0.93 

RBC/Mbr -0.01 [-0.02, 0.00] -0.06 [-0.08, -0.05] 0.05 [0.03, 0.06] 0.07 

Volume (RV+FVC/3, L) 0.00 [-0.18, 0.18] -0.98 [-1.30, -0.78] 0.98 [0.78, 1.30] 0.99 

Volume (TLC, L) -0.04 [-0.15, 0.07] -0.63 [-0.83, -0.51] 0.54 [0.42, 0.75] 0.45 

 

Table 3.4: Mean discrepancies and 95% LoAs for lung volumes and gas uptake ratios. Data in brackets represent 

95% confidence intervals. 

 

Table 3.5: Repeatability measures for paired measurements of 129Xe gas uptake at target lung volume of RV+FVC/3. 

Data in brackets represent 95% confidence intervals. 

Within-participant repeatability of RBC/Mbr did not improve when lung volume differences 

(ΔV) larger than 4% were excluded, and was good in both cases (ICC=0.88 [0.70, 0.95] when 

ΔV<4% vs. 0.86 [0.65, 0.95] when ΔV>4%). By contrast, within-participant repeatability of 

Mbr/Gas was excellent in participants whose lung volume was better repeated, but only good in 

participants whose lung volume was repeated less well (ICC=0.95 [0.87, 0.98] when ΔV<4% vs. 

0.83 [0.57, 0.94] when ΔV>4%). 

Lung volumes achieved during each of the RV+FVC/3 repeatability scans (Fig. 3.4, Table 3.6) 

displayed excellent within-participant repeatability (ICC=0.90 [0.81, 0.95]), as did lung volumes 

measured in separate TLC scans of each repeatability participant (ICC=1.00 [0.99, 1.00]). 

 

 n 
Mbr/Gas RBC/Gas RBC/Mbr 

ICC CV (%) ICC CV (%) ICC CV (%) 

All scan 

pairs 

All 32 0.88 [0.76, 0.94] 11.4 [8.7, 14.0] 0.71 [0.48, 0.84] 13.0 [10.0, 16.0] 0.88 [0.76, 0.94] 7.2 [5.5, 8.9] 

Healthy  18 0.78 [0.52, 0.91] 11.7 [8.1, 15.3] 0.37 [-0.12, 0.71] 14.1 [9.8, 18.4] 0.88 [0.70, 0.95] 6.8 [4.7, 8.9] 

COPD 14 0.92 [0.77, 0.97] 11.0 [7.1, 14.8] 0.81 [0.50, 0.94] 11.4 [7.4, 15.4] 0.88 [0.67, 0.96] 7.6 [4.9, 10.3] 

Scan pairs 

with volume 

difference 

>4% 

All 15 0.83 [0.57, 0.94] 15.4 [10.3, 20.5] 0.70 [0.30, 0.89] 15.7 [10.5, 21.0] 0.86 [0.65, 0.95] 7.2 [4.7, 9.7] 

Healthy 9 0.70 [0.16, 0.92] 15.7 [9.0, 22.5] 0.31 [-0.37, 0.78] 17.8 [10.2, 25.3] 0.87 [0.57, 0.97] 6.1 [3.3, 8.8] 

COPD 6 0.90 [0.53, 0.99] 14.9 [7.0, 22.8] 0.90 [0.51, 0.98] 12.3 [5.7, 18.8] 0.87 [0.40, 0.98] 8.7 [4.0, 13.5] 

Scan pairs 

with volume 

difference 

<4% 

All 17 0.95 [0.87, 0.98] 6.3 [4.2, 8.3] 0.73 [0.40, 0.89] 10.0 [6.8, 13.3] 0.88 [0.70, 0.95] 7.1 [4.8, 9.4] 

Healthy 9 0.92 [0.72, 0.98] 5.6 [3.1, 8.1] 0.58 [-0.04, 0.88] 9.5 [5.3, 13.7] 0.87 [0.56, 0.97] 7.5 [4.1, 10.8] 

COPD 8 0.96 [0.82, 0.99] 7.0 [3.7, 10.3] 0.69 [0.09, 0.93] 10.7 [5.7, 15.6] 0.89 [0.60, 0.98] 6.7 [3.5, 9.8] 
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Neither lung volume displayed a significant non-zero mean discrepancy between repeated scans 

(Fig. 3.4, Table 3.4). CV appeared to be lower for scans at TLC than at RV+FVC/3 across all 

repeatability participants (CV=4.1 [3.1, 5.1] at TLC vs. =7.4 [5.6, 9.1] at RV+FVC/3) and also 

within the COPD group (CV=3.5 [2.2, 4.7] at TLC vs. 7.8 [5.0, 10.6] at RV+FVC/3). 

 

Figure 3.4: a) Bland-Altman plot of lung volume differences between repeated dissolved-phase 129Xe MRI scans at 

RV+FVC/3, in healthy repeatability participants (n = 18) and repeatability participants with COPD (n = 14). b) 

Bland-Altman plot of lung volume differences between dissolved-phase 129Xe MRI scan at TLC and scan at TLC 

without xenon inhalation, in healthy repeatability participants (n = 15) and repeatability participants with COPD (n 

= 14). The same participants shown in a) are shown in b), except for three healthy participants that did not receive a 

dissolved-phase scan at TLC. Solid black lines indicate mean discrepancies, dashed black lines indicate 95% 

confidence intervals of mean discrepancies, solid purple lines indicate lower 2.5% and upper 97.5% limits of 

agreement, and dashed purple lines indicate 95% confidence intervals for limits of agreement.  

  n ICC CV (%) 

RV+FVC/3 

All 32 0.90 [0.81, 0.95] 7.4 [5.6, 9.1] 

Healthy  18 0.84 [0.64, 0.94] 7.0 [4.8, 9.3] 

COPD 14 0.89 [0.70, 0.96] 7.8 [5.0, 10.6] 

TLC 

All 29 1.00 [0.99, 1.00] 4.1 [3.1, 5.1] 

Healthy 15 1.00 [0.99, 1.00] 4.6 [3.0, 6.2] 

COPD 14 1.00 [0.99, 1.00] 3.5 [2.2, 4.7] 

 

Table 3.6: Repeatability measures for lung volumes at RV+FVC/3 and TLC. Data in brackets represent 95% 

confidence intervals. 
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3.3.3. Statistical analysis of lung volume dependence 

Gas uptake measurements performed at target volumes of RV, RV+FVC/3, and TLC revealed a 

clear dependence on lung volume (Fig. 3.5, Table 3.7). Across all participants, Mbr/Gas and 

RBC/Gas ratios increased as lung volume decreased (Fig. 3.5a,b), with the slope of dependence 

highest at lower lung volumes. Comparatively little dependence on lung volume is observed in 

the plot of RBC/Mbr ratios (Fig. 3.5c). Fits of paired data within individuals to Eq. 3.2 revealed a 

strong linear correlation between relative ratio difference and relative volume difference for 

Mbr/Gas (r = −0.97, Fig. 3.5d) and RBC/Gas (r = −0.93, Fig. 3.5e), with RBC/Gas exhibiting a 

slightly greater dependence on volume change (α = 1.74) than Mbr/Gas (α = 1.38). Relative 

volume change was also correlated with relative ratio change for RBC/Mbr, but less strongly (r = 

−0.68, Fig. 3.5f) and with a much weaker dependence on volume change (α = 0.44). The slopes 

of all three volume dependencies, represented by α in Eq. 3.2, were consistent across participant 

subgroups spanning a wide range of ages and presence of disease (Table 3.7). The slope of the 

RBC/Mbr volume dependence was approximately equal to the difference between the slopes for 

the other two ratios, which was expected since the three ratio combinations are interdependent.  

 n 
Mbr/Gas RBC/Gas RBC/Mbr 

α r α r α r 

All (49) 143 
1.38  

[1.32, 1.44] 

-0.97  

[-0.97, -0.95] 

1.74  

[1.62, 1.85] 

-0.93  

[-0.95, -0.90] 

0.44  

[0.36, 0.52] 

-0.68  

[-0.76, -0.58] 

Young 

healthy (5) 
15 

1.33  

[1.27, 1.40] 

-1.00  

[-1.00, -0.99] 

1.71  

[1.58, 1.85] 

-0.99  

[-1.00, -0.96] 

0.50  

[0.38, 0.63] 

-0.91  

[-0.97, -0.76] 

Older 

healthy (25) 
71 

1.42  

[1.34, 1.50] 

-0.98  

[-0.99, -0.96] 

1.76  

[1.59, 1.92] 

-0.93  

[-0.96, -0.89] 

0.40  

[0.29, 0.52] 

-0.66  

[-0.77, -0.51] 

COPD (19) 57 
1.37  

[1.21, 1.53] 

-0.92  

[-0.95, -0.86] 

1.72  

[1.41, 2.04] 

-0.83  

[-0.89, -0.72] 

0.40  

[0.18, 0.62] 

-0.46  

[-0.64, -0.23] 

Table 3.7: Fitted linear slopes and Spearman correlation coefficients of relative difference relationships between 

129Xe gas uptake metrics and lung volume. Data in brackets represent 95% confidence intervals. Slopes are 

represented by α, while Spearman correlation coefficients are represented by r. All linear fits in all participant 

categories were significant (p < 0.001). n represents the total number of within-participant scan pairs analyzed in 

each category, with each participant contributing either one or three scan pairs to the total, depending on how many 

scans were performed in each individual. 



103 

 

 

Figure 3.5: a) Mbr/Gas, b) RBC/Gas, and c) RBC/Mbr vs. lung volume. Thin lines connect scans from the same 

participant. d) Relative Mbr/Gas differences, e) relative RBC/Gas differences, and f) relative RBC/Mbr differences 

vs. relative volume differences (ΔV/Vavg). Each data point in d), e), and f) corresponds to a pair of points from the 

same participant in a), b), and c), respectively. Lines in d), e), and f) are linear fits to Eq. 3.2, with corresponding 

slopes and linear correlation coefficients shown in the first row of Table 3.7. 

Lung volumes achieved during dissolved-phase 129Xe MRI scans (Fig. 3.6a, Tables 3.8 and 3.9) 

were higher for participants with COPD than older healthy participants at 1/3 FVC (p=0.001), 

consistent with emphysema-related hyperinflation. This trend persisted when lung volumes 

measured at RV+FVC/3 were normalized to TLC (p<0.001; Fig. 3.6b). Mean lung volumes 

across all participants with COPD and older healthy participants were 3.2 L at RV, 4.3 L at 

RV+FVC/3, and 5.4 L at TLC. 



104 

 

Compared with the older healthy group, the COPD group had lower mean Mbr/Gas (p=0.001) 

and RBC/Gas (p<0.001) ratios at RV+FVC/3 (Fig. 3.6, Tables 3.8 and 3.9). However, after 

correcting for volume contribution to measured ratio values in each participant, neither of these 

differences remained significant (p=0.23 for Mbr/Gas, 0.09 for RBC/Gas). No evidence of 

groupwise differences in RBC/Mbr ratios was found at any of the three inflation levels, with or 

without lung volume correction. 
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Figure 3.6: Boxplots of a) lung volumes, b) lung volumes normalized to total lung capacity (TLC), c) Mbr/Gas, e) 

RBC/Gas, and g) RBC/Mbr, separated by inflation level, in participants with chronic obstructive pulmonary disease 

(COPD, red) and older healthy participants (blue). d) Mbr/Gas, f) RBC/Gas, and h) RBC/Mbr corrected for lung 

volume contribution by estimating measurement at a reference lung volume for each inflation level using Eq. 3.2, 

separated by disease state and inflation level. * indicates a significant difference between groups after Bonferroni 

correction. 

 
Number of scans Volume (L) Mbr/Gas RBC/Gas RBC/Mbr 

Healthy COPD Healthy COPD Healthy COPD Healthy COPD Healthy COPD 

RV 7 5 2.4 4.3 0.0178 0.0103 0.0048 0.0025 0.24 0.24 

RV+FVC/3 25 19 3.8 5.0 0.0100 0.0077 0.0026 0.0020 0.27 0.26 

TLC 22 19 5.0 5.8 0.0065 0.0061 0.0015 0.0014 0.23 0.22 

 

Table 3.8: Mean volumes and gas uptake ratios for all participants in either the older healthy or COPD groups.  
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 Vol. (L) Vol./TLC Mbr/Gas Mbr/Gas† RBC/Gas RBC/Gas† RBC/Mbr RBC/Mbr† 

RV 0.02 0.15 0.03 0.15 0.15 0.15 0.76 0.27 

RV+FVC/3 0.001* <0.001* 0.001* 0.23 <0.001* 0.09 0.85 0.30 

TLC 0.15 0.89 0.35 0.28 0.23 0.21 0.80 0.80 

 

Table 3.9: Wilcoxon rank-sum test p-values for comparison of volumes and gas uptake ratios between older healthy 

and COPD groups. * indicates coefficients less than the significance threshold after Bonferroni correction (p = 

0.05/24 ≈ 0.0021). † indicates ratios projected to reference lung volumes. 

3.4. Discussion 

Results from the lung volume dependence portion of the study implicate volume differences as 

an important source of variability for Mbr/Gas and RBC/Gas ratios in both healthy and diseased 

participants. This finding, while intuitive, holds important implications for the field of dissolved-

phase 129Xe MRI. These results echo those from a recent investigation by Hahn et al. (26) of 

xenon-uptake ratios in healthy volunteers using the single-point Dixon method, which examined 

the lung-volume dependence of repeated measurements at a target lung volume of functional 

residual capacity plus 1 L. The authors found significant correlations between relative ratio 

differences and relative volume differences for Mbr/Gas and RBC/Gas, with a linear slope near 

1.0 for both, but no significant correlation for RBC/Mbr.  

Examining these relationships over a much wider range of volume differences, this study 

identified larger and significantly different slopes for Mbr/Gas (α = 1.38 ± 0.06) and RBC/Gas (α 

= 1.74 ± 0.12), and a significantly nonzero slope for RBC/Mbr (α = 0.44 ± 0.08). The values of α 

above 1 for Mbr/Gas and RBC/Gas suggest that surface-to-volume ratio changes driven by 

alveolar recruitment and/or inflation do not by themselves account for the volume dependencies 

of these ratios, and thus either shape change of the alveoli during inflation or other factors 

driving the ability of inhaled gas to access and transit the alveolar membrane must therefore play 

a role. The nonzero volume dependence of RBC/Mbr is implied by the unequal dependencies of 

the other two ratios, and further reinforces the notion that alveolar shape change across inflation 

levels does not explain the observed lung volume dependence of these ratios alone. 

These relationships were found to be consistent across age range and presence of disease, and are 

reminiscent of a similar observation that had previously been made comparing CT-based 
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measurements of lung density performed at disparate lung volumes across individuals with 

widely varying ages and disease states (36). These previous results, as well as those described 

here, suggest that volume-related ratio differences were primarily driven by basic lung 

physiology, rather than COPD- or age-related processes, and imply that corrections for volume-

related ratio differences based on such empirical relationships, which have been suggested 

previously (25), should be implemented. The current work presents an initial demonstration of 

concept for how such a correction might be performed, but further work is necessary to establish 

and validate a more authoritative approach. 

Although the differential volume dependencies appeared linear across the achievable range of 

lung volumes, the absolute volume dependence was strongest at smaller lung volumes, again 

echoing CT-based lung density measurements made at disparate volumes (36). Strong volume 

dependence was entirely expected for Mbr/Gas and RBC/Gas since changing the inflation level 

will affect the denominator much more than the numerator for these two ratios.  The origin of the 

RBC/Mbr volume dependence is less obvious, however, as the gas signal does not appear in this 

ratio. As suggested in previous work, the observed decrease in RBC/Mbr with increasing 

inflation level is consistent with decreased blood volume at higher inflation levels, possibly due 

to greater alveolar pressure (9,26). 

All three signal ratios were repeatable in participants with COPD, but RBC/Mbr was more 

repeatable than RBC/Gas, in general agreement with previous results (26,27). The better 

repeatability of RBC/Mbr compared with RBC/Gas likely reflects strong covariance of the 

membrane and RBC components in response to volume changes and correspondingly lower 

sensitivity of RBC/Mbr to small lung volume perturbations between repeated scans. RBC/Mbr 

also displayed the smallest volume dependence and RBC/Gas the greatest, as indicated by the fit 

values of α, supporting the notion that covariance of the membrane and RBC components 

suppresses volume-driven changes in RBC/Mbr. Lung volumes were also generally repeatable 

but were better repeated when the target volume was TLC rather than RV+FVC/3; this finding 

likely corresponds with the greater number of variables in the RV+FVC/3 inhalation procedure 

compared with that for TLC.  

The better volume repeatability at TLC, together with the weaker absolute volume dependence in 

this regime for all signal ratios, suggest that TLC may be the optimal inflation level for signal-
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ratio measurements to maximize repeatability and minimize sensitivity to scan-to-scan and 

person-to-person lung volume differences. However, dose volume during experiments is also an 

important concern, as discussed in a recent position paper from the 129Xe MRI Clinical Trials 

Consortium (4). Performing these studies at TLC, rather than the lower inflation levels (one-sixth 

of TLC, or one-fifth of FVC) recommended by the Consortium, results in diluted 129Xe 

concentration and therefore lower signal-to-noise ratio. Moreover, increasing the volume of 

129Xe and anoxic buffer gas delivered per dose in order to achieve an inflation level near TLC is 

likely to increase the frequency and severity of temporary physiological effects associated with 

129Xe inhalation. High inflation levels also may not provide optimal sensitivity to disease, as seen 

in the current work, in which no significant groupwise differences between any gas-uptake 

measurements were detected at TLC.  

That said, the results shown here also suggest that at lower inflation levels, gas uptake 

measurements are sensitive to hyperinflation, a key aspect of emphysema pathophysiology. 

Groupwise Mbr/Gas and RBC/gas differences in the study sample diminished when lung-volume 

corrections were applied, demonstrating that care must be taken when comparing these 

measurements at lower inflation levels in COPD to those in health. It is evident that further 

discussion and experimentation is likely necessary in order to identify practices for dissolved-

phase 129Xe MRI in the COPD context that will best support disease characterization. 

A limitation of the study is that although eligibility criteria for the older healthy and COPD 

participant groups covered the same age range, the mean ages of the two groups were 

significantly different. Further, the older healthy group was predominantly female, whereas the 

COPD group was almost evenly split. This sex mismatch might partially explain the higher lung 

volumes measured in the COPD group. Another limitation is the disparate imaging resolutions 

used within and across participants, which may confound results by producing differences in 

partial volume effects between measurements. Additionally, while it is expected that the 

observed lung-volume dependencies would generally hold true for 129Xe gas uptake metrics 

measured using single-point Dixon MRI or CSSR spectroscopy, only the IDEAL-based method 

was specifically examined in the study. The data set also lacks repeated dissolved-phase 129Xe 

MRI scans at TLC. The results presented here suggest that ratio measurements may be more 

repeatable at TLC than at lower inflation levels, given the lower sensitivity of measured ratios to 
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lung volume perturbations and higher repeatability of lung volumes themselves between scans. 

That said, future work is necessary to validate this hypothesis and to fully evaluate the diagnostic 

sensitivity of scans at TLC relative to those at lower inflation levels. 

In conclusion, gas uptake metrics based on dissolved-phase 129Xe lung MRI showed high 

repeatability in both healthy participants and participants with COPD, with variations in lung 

volume as an important driver of metric variability. Linear relative-difference relationships 

between signal ratios and lung volume that were consistent across study groups were observed 

and characterized. Finally, significant differences found in Mbr/Gas and RBC/Gas between 

healthy participants and participants with COPD were largely eliminated upon correcting for 

lung-volume contribution by projecting signal ratios to expected values at reference volumes 

specific to each target inflation level, demonstrating the need for careful consideration of 

volume-related effects when comparing results in patients with COPD with those in healthy 

individuals. 

3.5. Appendix 

3.5.1. Intraclass correlation coefficient 

The intraclass correlation coefficient (ICC) is a descriptive statistic that can be used to infer test-

retest and rater-to-rater measurement reliability for a given test from a study of the test in a 

representative sample (35,37,38). Selection of the appropriate ICC expression depends upon the 

nature and number of the measurement system(s) (or “rater(s)”) used in the study, the nature and 

number of the measurement system(s) to be used in actual application of the studied 

measurement technique, and whether absolute agreement or relative consistency is desired 

between measurement system(s). For the study described here, the measurement system can be 

understood to include (but perhaps not be limited to) the MR scanner, the pulse sequences used 

to collect dissolved-phase and lung volume data, and the described analysis procedure. The 

appropriate ICC characteristics for this study are as follows: 

• Model selection: a two-way random-effects model should be used, as the single 

measurement system used on all subjects in the study is a representative example of 
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measurement systems used at other institutions, and the study results are intended to 

generalize to these similar measurement systems. 

• Type selection: a single-measure type should be used, because in general practice only a 

single measurement system would be used to perform these measurements in a given 

subject. 

• Definition selection: absolute-agreement should be used, as different measurement 

systems should be expected to measure the same or similar values if used in the same 

subject.  

The expression for two-way random, single-measure, absolute-agreement ICC is as follows: 

 

 𝐼𝐶𝐶 =  
𝑀𝑆𝑅 −𝑀𝑆𝐸

𝑀𝑆𝑅 + (𝑘 − 1)𝑀𝑆𝐸 +
𝑘
𝑛
(𝑀𝑆𝐶 −𝑀𝑆𝐸)

 (3.3) 

 

where MSR is the mean square for rows (i.e., subjects), MSC is the mean square for columns (i.e., 

individual measurements), MSE is the mean square error, k is the number of measurements per 

subject, and n is the number of subjects. 

3.5.2. Coefficient of variation 

The coefficient of variation is a normalized measure of the extent of data variability for data 

measured on a ratio scale. In general, the coefficient of variation of a set of measurements can be 

calculated by dividing the standard deviation of the measured values by the mean of the 

measured values. 

A modification of the standard coefficient of variation can be made to assess within-subject 

variability (39,40). This within-subject coefficient of variation can be calculated for repeated 

measurement vectors X and Y each consisting of n measurements using a logarithmic method 

described by Bland and Altman (40), as follows: 

 𝐶𝑉 = exp(√
1

𝑛
∑

1

2
(log(𝑋𝑖) − log (𝑌𝑖))2

𝑛

𝑖=1

)− 1 (3.4) 
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The 95% confidence intervals of the within-subject coefficient of variation can be found for 

paired measurements as follows: 

 𝐶𝐼𝐶𝑉 = 𝐶𝑉 ± 1.96 ∗ √
1

2𝑛2
∑

1

2
(log(𝑋𝑖) − log (𝑌𝑖))2

𝑛

𝑖=1

 (3.5) 

 

3.5.3. Bland-Altman analysis 

Bland-Altman analysis and plots quantify and visualize agreement between two quantitative, 

paired sets of measurements (41–43). Data in Bland-Altman plots are plotted as the difference 

between paired measurements vs. the mean of the corresponding measurements. Typically, the 

horizontal line indicating the measurement mean discrepancy (i.e., the mean of the paired 

measurement differences) is plotted, as well as horizontal lines indicating the 95% limits of 

agreement (i.e., the mean of the paired measurement differences plus/minus ~1.96 times the 

standard deviation of the paired measurement differences, assuming that the paired measurement 

differences can be considered to follow an approximately Gaussian distribution). For repeated 

measures of the same quantity, the mean discrepancy indicates any systemic difference between 

results of the earlier and later of the two measurements, while the 95% limits of agreement 

provide an estimate of typical measurement-to-measurement variability. 

3.5.4. Spearman rank correlation 

The Spearman rank correlation coefficient measures rank correlation between two variables, 

assessing whether the relationship between the two variables of interest can be described by a 

monotonic function (44,45). Spearman correlation can be interpreted as the Pearson linear 

correlation of the rankings of the respective variables. Spearman correlation is non-parametric; 

i.e., no specific functional relationship is assumed between the values of the two variables (in 

contrast to Pearson linear correlation, which assumes a linear relationship between the variables). 

The Spearman correlation r between two variables x and y having ranks R(x) and R(y) is defined 

as follows: 
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 𝑟𝑠 =
𝑐𝑜𝑣(𝑅(𝑥), 𝑅(𝑦))

𝜎𝑅(𝑥)𝜎𝑅(𝑦)
 (3.6) 

 

where cov(R(x) and R(y)) denotes the covariance of the rank variables, and σR(x)
 and σR(y) denote 

the standard deviations of the rank variables R(x) and R(y), respectively.  

For the case where all ranks are distinct integers, the following equation can be used: 

 𝑟𝑠 = 1 −
6∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 (3.7) 

 

where di = R(xi) – R(yi) is the difference between the two ranks corresponding to a given 

measurement and n is the number of measurements. 

3.5.5. Wilcoxon rank-sum test 

The Wilcoxon rank-sum test is a nonparametric test of median equality of populations 

represented by two independent samples X and Y (46,47). The null hypothesis of the Wilcoxon 

rank-sum test is that the probability of X being greater than Y is equal to the probability of Y 

being greater than X. Calculation of the z-score in the Wilcoxon rank-sum test incorporates the U 

statistic, which describes  

The U statistic for each of the two compared groups is calculated as follows: 

• Assign numeric ranks to all measurements from the combined groups, from smallest to 

largest. (For purposes of this study in which each measurement was expressed to several 

decimal places and ties did not occur, tied measurements are not considered.) 

• Add all rank values for the measurements in sample X (Y). Denote this quantity as RX 

(RY).  

• Calculate UX (UY) as follows, where nX (nY) is the sample size of X (Y): 

 

𝑈𝑋 = 𝑅𝑋 −
𝑛𝑋(𝑛𝑋 + 1)

2
 

𝑈𝑌 = 𝑅𝑌 −
𝑛𝑌(𝑛𝑌 + 1)

2
 

(3.8) 

• Take the smaller value of UX and UY as the U statistic. 
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For large samples, a z statistic can be calculated from the U statistic using the following 

expression: 

 𝑧 =
𝑈 −

𝑛𝑋𝑛𝑌
2

√𝑛𝑋𝑛𝑌(𝑛𝑋 + 𝑛𝑌 + 1)
12

 (3.9) 

 

The U or z statistic can then be used to determine the significance value of the test, and the 

significance value can be compared with the chosen threshold for rejection of the null hypothesis 

(chosen to be 0.05 before Bonferroni correction in this study) to determine whether the null 

hypothesis is rejected for the given two samples. 
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Chapter 4: Free-breathing 4D ultrashort echo time balanced 

steady-state free precession 1H lung MRI 

4.1. Introduction 

Obtaining strong signal from lung parenchyma using MRI is a significant technical challenge, 

due to its short T2* and low proton density. One approach to address this challenge is the use of 

an ultrashort echo time (UTE) radial pulse sequence (1–4). This technique samples the center of 

k-space immediately following excitation and before significant inhomogenity-driven dephasing 

of the transverse magnetization can occur, maximizing the signal that can be obtained from short 

T2* species.  

Balanced steady-state free precession (bSSFP) techniques facilitate higher steady-state signal at 

shorter TRs than spoiled techniques, and have been demonstrated in the context of lung MRI (5–

7). However, large B0 disturbances in and about the lung often cause noticeable banding artifacts 

in bSSFP lung images, even for short TRs. Furthermore, for typical bSSFP techniques, TE does 

not occur immediately after excitation, but after a pre-phasing gradient that sets up a Cartesian k-

space readout that is symmetric about the phase-encode axis. This results in the low-frequency 

parenchyma signal being sampled at the middle of the TR window, rather than at its maximum 

value immediately following excitation.  

Motion of the lungs during breathing is also a significant barrier to high-quality lung MRI. 

Imaging during a breath-hold constrains available scan time to less than 30 seconds, limiting 

achievable resolution and signal-to-noise ratio (SNR). Imaging continuously during free 

breathing and reconstructing images from all sampled data can produce high-SNR, fine-

resolution images, but at the cost of significant blurring in moving structures such as the 

pulmonary vasculature, diaphragm, and liver. Prospective respiratory triggering based on an 

imaging navigator centered on the diaphragm (1,8) can freeze motion to a reasonable extent, but 

lengthens scan times considerably over continuous imaging and restricts imaging of the lung to a 

single respiratory phase. 

Compressed sensing approaches have been developed that apply a penalty term assessed along a 

temporal dimension that facilitates reconstruction of heavily under-sampled temporal frames (9–
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11), and such approaches can be applied to the free-breathing lung MRI context in order to 

reconstruct high-quality images from under-sampled frames at a range of respiratory phases (12–

14). In particular, the golden-angle radial sparse parallel (GRASP) family of techniques (15–18) 

reconstructs under-sampled image series produced from radial MR readouts using a total 

variation term applied along either a temporal or pseudo-temporal dimension, taking advantage 

of the high degree of mutual information contained in repeated images of the same field-of-view 

and the incoherence of under-sampling-related aliasing artifacts in radial MRI in order to 

reconstruct highly under-sampled image frames with relatively little visible under-sampling 

artifact. 

A recent innovation to GRASP, entitled GRASP-Pro, takes yet further advantage of the temporal 

sparsity inherent in the 4D MRI image context (19,20). Rather than directly solving for a k-space 

image series using a compressed-sensing-based optimization, GRASP-Pro-based techniques start 

by solving for a low-rank temporal basis for a low-resolution image series reconstruction that is 

intended to effectively represent the true signal evolution of the collection of voxels in the image 

series. Compressed-sensing-based optimization is then applied to the matrix of subspace 

coefficients that is multiplied by the low-rank temporal basis in order to obtain a final image 

series. 

The purpose of the work presented in this chapter was therefore to develop and demonstrate a 

combined 4D UTE bSSFP spoke-radial pulse sequence with a GRASP-Pro-based reconstruction 

algorithm for high-resolution, high-signal, respiratory-phase-resolved MRI of the lung. This 

pulse sequence takes advantage of the high signal even for short TR inherent in bSSFP 

techniques, as well as the ability to read out at low-frequency k-space locations immediately after 

excitation inherent in radial UTE techniques. The reconstruction approach exploits the natural 

sparsity of the sorted respiratory phase-binned image series in the respiratory-phase domain to 

de-noise highly under-sampled images at each phase. 
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4.2. Simulation of bSSFP vs. spoiled signal 

4.2.1. Methods 

To gain insight into expected signal behavior for UTE bSSFP and UTE spoiled pulse sequences, 

temporal signal evolution was modelled using Bloch equation solutions applied to an ensemble 

of S = 5001 simulated spins. T2*-driven dephasing was simulated by modelling off-resonance 

frequencies of the spins using a Lorentzian distribution (Fig. 4.1), as follows: 

 Δ𝑓𝑗 = 𝑏𝐵0 tan (𝜋 ∙ (
𝑗

𝑆 + 1
− 0.5)) , 1 ≤ 𝑗 ≤ 𝑆 (4.1) 

 

where Δfj is the frequency offset from the Larmor frequency of the jth spin in the ensemble and b 

is an empirically-determined constant chosen to achieve a desired modelled T2* in simulated 

precession of a spin ensemble modelled using a given T2 and at a particular field strength B0. To 

simulate different degrees of global off-resonance for a given isochromat, an additional 

precession angle β was applied equally to all spins in the simulated isochromat over the course of 

each TR window. β is related to the global off-resonance frequency Δf = factual − f0 as follows:  

 𝛽 = 𝑇𝑅 ∙ 2𝜋Δ𝑓 (4.2) 
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Figure 4.1: a) Simulated distribution of spin offset frequencies within an isochromat to achieve a T2* of ~1.2 ms for 

the material properties listed in Table 4.1 for lung parenchyma at 1.5 T. b) Simulated coherent transverse 

magnetization magnitude following excitation with a 30° RF pulse (blue line), fitted to a simple model of T2*-driven 

dephasing and T2-driven magnetization decay (orange line). 

Signal was plotted over the course of a single TR window occurring after a steady state was 

reached, with simulation carried out for a total of 2000 TR windows prior to the plotted window 

to ensure that a steady state was reached. Phase cycling of 180° was applied between sequential 

simulated RF pulses. Diffusion and other possible confounding effects were neglected in the 

simulation. For simulation of spoiled sequences, perfect spoiling was assumed, and the analytical 

Ernst angle θE was used for the simulated TR and T1: 

 𝜃𝐸 = arccos (𝑒
−𝑇𝑅

𝑇1
⁄ ) (4.3) 

 

Estimated material properties for pulmonary blood vessels and lung parenchyma that were used 

for signal simulation (21–23) are given in Table 4.1. A field strength of B0 = 1.5 T was used for 

all simulations. 
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 T1 (ms) T2 (ms) T2* (ms) b (Hz/T) 

Vasculature 2000 160 100 0.45 

Parenchyma 1375 65 
1.2 (TLC) 89 (TLC) 

2.0 (RV) 51 (RV) 

 

Table 4.1: Simulated material properties for pulmonary blood vessels and lung parenchyma. A field strength of 1.5 T 

is assumed, and constants b associated with the T2, T2*, and magnetic field strength combination for a given material 

are additionally given. T2* of parenchyma was assumed to differ at end-of-inhalation (total lung capacity, TLC) and 

end-of-exhalation (residual volume, RV) based on observations in the literature (21). 

4.2.2. Results 

Results of Bloch simulations are shown in Figs. 4.2, 4.3, and 4.4 for the pulse sequence 

parameters described in section 4.2.2 using the simulated material properties for vasculature and 

lung parenchyma given in Table 4.1. For vasculature (Fig. 4.2), the signal availability remains 

essentially constant throughout the TR window at steady-state, because T2* is much longer than 

TR, resulting in relatively small off-resonance frequency spread about the global frequency. 

Global off-resonance heavily affects available signal for bSSFP imaging, however, with 

particular β values leading to near-disappearance of the signal, corresponding to the band-shaped 

signal voids characteristic of off-resonance image regions in bSSFP. The simulated signal 

intensity for bSSFP imaging (aside from regions in the signal voids) was several times higher 

than that for spoiled imaging throughout the TR window. 
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Figure 4.2: Simulated available signal at steady-state for vasculature (parameters given in Table 4.1) throughout a 

TR window at field strength B = 1.5 T for TR = 1.42 ms for bSSFP (solid lines, global offset angle β labeled in 

caption for each line, flip angle = 25°) and spoiled (dashed line, Ernst angle ≈ 2.6°) imaging. 

For lung parenchyma at total lung capacity (TLC, Fig. 4.3), the signal availability displays a 

“saddle” shape over the course of the TR window at steady-state for bSSFP imaging, with 

maximum signal at t = 0 and t = TR and minimum signal at t = TR/2. As with vasculature, global 

off-resonance affects the available signal, but unlike vasculature, at least some signal availability 

is maintained at the beginning and end of the TR window for all values of β, suggesting that 

susceptibility of lung parenchyma and other short-T2* species to SSFP banding artifacts is 
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somewhat mitigated for echo times TE ≈ 0 (i.e., echoes immediately after excitation, as in spoke-

radial readouts) and TE ≈ TR (i.e., refocused echoes that occur immediately prior to the next 

excitation). As with vasculature, the simulated signal intensity for SSFP imaging (aside from 

regions in the signal voids that were read out near the center of the TR window) was several 

times higher than that for spoiled imaging.  

The behavior observed for lung parenchyma at residual volume (RV, Fig. 4.4) was generally 

similar to that of lung parenchyma at TLC (Fig. 4.3). Slightly higher signal, and smaller signal 

decrease toward the center of the TR window, was observed for β < 150° at RV than at TLC. 

However, slightly lower signal was observed at RV than at TLC for offset angles β = 150° and 

180°, suggesting that the potential for visible banding artifacts would be slightly higher at RV 

than at TLC. 
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Figure 4.3: Simulated available signal at steady-state for lung parenchyma at total lung capacity (parameters given in 

Table 4.1) throughout a TR window at field strength B = 1.5 T for TR = 1.42 ms for bSSFP (solid lines, global offset 

angle β labeled in caption for each line, flip angle = 25°) and spoiled (dashed line, Ernst angle ≈ 2.6°) imaging. 
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Figure 4.4: Simulated available signal at steady-state for lung parenchyma at residual volume (parameters given in 

Table 4.1) throughout a TR window at field strength B = 1.5 T for TR = 1.42 ms for bSSFP (solid lines, global offset 

angle β labeled in caption for each line, flip angle = 25°) and spoiled (dashed line, Ernst angle ≈ 2.6°) imaging. 
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4.3. Respiratory-triggered 3D lung MRI 

4.3.1. Methods 

A diagram of the 3D radial UTE bSSFP pulse sequence used for the imaging studies described 

herein is shown in Fig. 4.5a. Precise pulse sequence parameters varied from subject to subject, 

but typical values were as follows: TR = 1.42 ms, TE = 0.13 ms, flip angle = 25° (with 

alternating 0°-180° phase from one readout to the next) matrix size = 256×256×256, resolution = 

1.5 mm isotropic, maximum readout gradient amplitude = 22.65 mT/m. 

Imaging was also performed in some subjects using a 3D radial UTE spoiled pulse sequence 

(Fig. 4.5b) for comparison. The smaller flip angle used for spoiled imaging permitted a shorter 

hard RF pulse and a shorter echo time, while the spoiler gradient applied after each readout 

lengthened the repetition time. Precise pulse sequence parameters varied from subject to subject, 

but typical values were as follows: TR = 2.93 ms, TE = 0.06 ms, flip angle = 5°, matrix size = 

256×256×256, resolution = 1.5 mm isotropic, maximum readout gradient amplitude = 22.65 

mT/m.

 

Figure 4.5: Pulse sequence diagrams for a) ultrashort echo time (UTE) balanced steady-state free precession MRI 

and b) UTE spoiled MRI. Adapted from Miller et al (1). 

Respiratory triggering was performed using prospective acquisition correction (PACE) (8), in 

which the position of the diaphragm is monitored continuously via repeated acquisition of low-
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resolution 2D images of a small user-defined field of view (FOV) centered on the diaphragm, 

and crossing of a certain positional threshold by the diaphragm triggers acquisition of a segment 

of the pre-defined 3D radial k-space trajectory. The k-space trajectory was organized as depicted 

in Fig. 4.6. 

 

Figure 4.6: A k-space sphere depicting the endpoints of 3D radial k-space readout spokes corresponding to a fully-

sampled 25×25×25 Cartesian k-space matrix. In practice, k-space is sampled far more densely than this, as the 

matrix size used in this study was 256×256×256. However, the general pattern (ray endpoints arranged in rings 

around the kz poles) is maintained for any k-space sampling density. Reproduced from Miller et al (1). 

All human studies complied with the Health Insurance Portability and Accountability Act and 

were approved by the University of Virginia Institutional Review Board, and all study subjects 

provided written, informed consent. 3D respiratory-triggered spoke-radial UTE bSSFP MRI was 

performed in 19 healthy individuals using a 1.5T whole-body scanner (Avanto; Siemens; 

Erlangen, DE). 3D respiratory-triggered spoke-radial UTE spoiled MRI was performed in 6/19 

subjects for comparison. 

Subjects were fitted with a vest-shaped array coil and positioned head-first supine inside the 

scanner. Standard localizer imaging was performed once subjects were positioned, to guide 

selection of an FOV that would fully encompass the lungs and to identify a diaphragm navigator 

window for PACE triggering (8). Subjects were instructed to breathe gently and comfortably 
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throughout the scan. Images were reconstructed on the scanner computer using a standard 

gridding-based procedure (24). 

Signal properties of the bSSFP and spoiled UTE sequences were compared to one another by 

measuring mean signals in parenchyma, vessel, and noise regions in manually-defined regions-

of-interest from triggered 3D images collected in the subset of six subjects that were imaged 

using both bSSFP and spoiled triggered sequences. Mean parenchyma (vasculature) signal 

divided by mean noise signal was used to approximate SNR of parenchyma (vasculature). A 

paired-sample t-test was used to compare approximate SNR of parenchyma and vasculature 

between bSSFP and spoiled images. 

4.3.2. Results 

Comparisons of approximate SNR in parenchyma and vasculature are shown in Fig. 4.7a-b for 

the six subjects in which both triggered 3D UTE bSSFP and triggered 3D UTE spoiled imaging 

was performed. Approximate SNR was higher for bSSFP than for spoiled imaging, both 

individually and groupwise (p<0.001 for both tissue types using a paired-samples t-test). Fig. 

4.7c-d depicts a paired set of triggered bSSFP and spoiled images, in which qualitative 

vasculature and parenchyma contrast is higher for bSSFP than for spoiled imaging. 
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Figure 4.7: Approximate signal-to-noise ratio (SNR) of triggered bSSFP UTE and spoiled UTE images in a) lung 

parenchyma and b) vasculature, where individual subjects are represented by different colors, and each line in a 

subplot connects the bSSFP and spoiled SNR values for an individual subject. c) Coronal frame from a triggered 

bSSFP UTE image. d) Corresponding coronal frame from a triggered spoiled UTE image taken in the same 

individual as in c). 
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4.4. Free-breathing 4D lung MRI 

4.4.1. Acquisition methods 

Free-breathing 4D radial UTE bSSFP and spoiled MR data sets were acquired using identical 

pulse sequences and parameters to those shown in Fig. 4.5 and described in section 4.3.1.  

In order to facilitate randomized, yet relatively even, coverage of k-space for each 

retrospectively-binned respiratory-phase image, spoke-radial k-space readouts were organized 

into passes using a spiral phyllotaxis-based approach (25,26). Construction of the spiral 

phyllotaxis passes was performed as follows: 

Let the entire trajectory consist of N×R radial spokes, where N is the number of spiraling passes 

to use and R is the number of spokes assigned to each pass. Construct an ordered vector of polar 

angles θ of length equal to N×R as follows: 

 𝜃𝑚  =  

𝜋

√2
∙ √

𝑚 − 1

𝑁𝑅 − 1
   𝑓𝑜𝑟 1 ≤  𝑚 <

𝑁𝑅

2
 

 

𝜋 −
𝜋

√2
∙ √
𝑁𝑅 −𝑚

𝑁𝑅 − 1
   𝑓𝑜𝑟 

𝑁𝑅

2
≤ 𝑚 ≤ 𝑁𝑅

 (4.4) 

 

such that θNR = π (i.e., setting the final spoke to lie on the negative kz-axis).  

Construct a corresponding vector of azimuthal angles φ of length equal to N×R by starting with 

φ1 = 0 and incrementing each sequential azimuthal angle φm by a golden angle: 

 Δ𝜑 = 180° ∙ (3 − √5) ≈ 137.51° (4.5) 

 

relative to the previous angle φm-1.  

Once θ and φ have been constructed, assign pairs of angles to each pass as follows, where n is a 

pass number between 1 and N: 

 𝜽(𝒏) = {𝜽𝑗𝑁+𝑛 | 𝑗 ∈ ℤ0
+, 𝑗 < 𝑅} (4.6) 
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𝝋(𝒏) = {𝝋𝑗𝑁+𝑛 | 𝑗 ∈ ℤ0
+, 𝑗 < 𝑅} 

 

That is, for the first pass in a trajectory consisting of N = 898 passes, assign the 1st, 899th, 1797th, 

etc., entries in θ and φ to θ(1) and φ(1), respectively. For large pass and ray numbers, this 

organization of ray angles into passes will create a series of passes incremented by an azimuthal 

angle Δφ ≈ 137.51° and by a very slight polar angle. The number of passes N = 898 was chosen 

to ensure that a steady state was maintained within passes (i.e., ray-to-ray angle jumps within a 

pass were small), while still spiraling slightly throughout the pass in order to ensure that a 

diverse set of k-space regions was sampled within each pass. Fig. 4.8 illustrates passes resulting 

from this ray organization scheme, as well as from a number of passes N nearly equal to 898 that 

resulted in poor maintenance of a steady state. 376 k-space samples were taken along each radial 

ray. 



134 

 

 

Figure 4.8: a) k-space spokes composing the first spiral phyllotaxis pass in a trajectory that uses 304 spokes per pass 

and 898 passes. b) k-space spokes composing the first (black), second (red), and third (blue) spiral phyllotaxis pass 

in the same trajectory as in a). c) k-space spokes composing the first spiral phyllotaxis pass in a trajectory that uses 

304 spokes per pass and 895 passes. Jumps between individual k-space spokes for this set of trajectory parameters 

are much larger than for those for the set of parameters used to generate the trajectory shown in a). 

This study complied with the Health Insurance Portability and Accountability Act and was 

approved by the University of Virginia Institutional Review Board, and all subjects provided 

written, informed consent. MRI was performed in 27 healthy individuals using a 1.5T whole-

body scanner (Avanto; Siemens; Erlangen, DE). Free-breathing 4D spoke-radial UTE bSSFP 

MRI was performed in all subjects. Free-breathing 4D spoke-radial UTE spoiled MRI was 

performed for comparison in 11/27 subjects. 
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As in section 4.3.1, subjects were fitted with a vest-shaped array coil and positioned head-first 

supine inside the scanner, and localizer imaging was performed once subjects were positioned to 

guide FOV. Subjects were instructed to breathe gently and comfortably throughout the scan. 

4.4.2. Reconstruction methods 

MR k-space readouts collected during free breathing were retrospectively binned into respiratory 

phases in order to perform respiratory phase-resolved reconstruction. Two approaches were used 

for respiratory binning: one in which passes were binned using a k0-based navigator derived from 

data collected during the 3D passes, and one in which passes were binned using 2D navigator 

images collected prior to each 3D pass. Both methods are described below: 

• k0-based navigator: All data taken at k0 for a given pass and a given coil was averaged 

into a single k0 number for each pass and coil. A median filter was then applied to the 

passwise k0 timecourse for each coil to remove k0 drift. The filtered k0 signal timecourses 

for each coil were then correlated with one another to form a correlation matrix. The 

timecourses corresponding to the coil that had the most correlation coefficients above a 

chosen threshold (usually 0.85), as well as all of the coils that shared a correlation 

coefficient above the threshold with that coil, were normalized and then averaged into a 

single timecourse that was considered to contain the respiratory signal. Principal 

component analysis (PCA) was then performed on this timecourse, and the most 

dominant principal component was extracted and considered to represent the respiratory 

signal. The highest and lowest ~2% of values in the timecourse were excluded, and the 

remaining timepoints were ordered and assigned respiratory phase labels. Optionally, 

prior to binning, the local derivative of the timecourse at each point was used to 

determine whether a particular timepoint occurred during inhalation or exhalation, and 

timepoints were divided into inhalation and exhalation bins prior to more granular 

binning into inhalation- and exhalation-specific respiratory phases. 

• 2D navigator images: Initial 2D coronal navigator images were reconstructed for each 

pass by defining and executing a non-uniform fast Fourier transform (NUFFT) for each 

navigator image (27). These images were denoised by performing a GRASP 

reconstruction (15) with a temporal total variation penalty term to minimize temporal 

variations due to radial under-sampling artifacts. PCA was then performed on the N-by-M 
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time series composed of the vectorized denoised images, where N was the number of 

timepoints (passes) and M was the number of voxels in each image, and the 6 strongest 

components were used to define a compressed subspace in which to represent the 

denoised images. A spatial region of interest (ROI) that included the entire range of 

positions of the diaphragm during breathing was identified. The image portions of the 

subspace-represented navigator images corresponding to the ROI were then vectorized to 

produce an N-by-MROI time series, where MROI is the number of voxels in the ROI. Initial 

clustering of the vectorized ROI images into P respiratory phases was performed using k-

means (28,29), producing a P-by-MROI initial cluster centers. To group the vectorized 

images into equally-sized clusters, the initial cluster centers were replicated N/P times in 

order to produce a cluster center matrix of identical size to the N-by-MROI ROI time 

series. ROI images were then matched with cluster centers by solving the linear 

assignment problem (30) using a squared-Euclidean distance metric, producing final 

respiratory phase labels for the navigator image series. 

To generate coil sensitivity maps for multi-coil acquisitions, an NUFFT with uniform coil 

sensitivity weighting was defined and used to reconstruct individual coil images from the full, 

non-respiratory binned k-space data for each coil. Complex coil sensitivity maps were then 

calculated using an iterative adaptive-combination-based approach (31) and included in the 

NUFFT objects defined for subsequent steps. 

Respiratory-phase-resolved image frames were reconstructed as a series using an adaptation of 

the XD-GRASP-Pro approach (19,20). To obtain a temporal basis to be used in the final 

optimization, an initial XD-GRASP (16) reconstruction was performed using the low-resolution 

k-space readouts (defined as all readouts taken at 0 ≤ |k| ≤ |k|max/4) contained in each respiratory 

phase bin. An optimal solution for the low-resolution image series mL was found by solving the 

following minimization problem: 

 �̃�𝐿 = argmin
𝑚𝐿

1

2
‖𝐸𝐿𝑚𝐿 − 𝑦𝐿‖2

2 + 𝜆𝑇𝑉𝑡,1‖𝑇𝑉𝑡(𝑚𝐿)‖1 (4.7) 

 

where EL is a multi-coil NUFFT operator defined for the low-resolution sampled k-space points 

that incorporates coil sensitivities and radial density compensation, yL is the sampled low-
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resolution k-space data, λTVt,1 is a weighting coefficient applied to the L1 penalty term, and TVt 

represents a temporal total variation operator applied to the low-resolution image series mL. 

Following optimization, the optimal low-resolution image series mL was organized into a 2D 

matrix of size N-by-M, where N is the number of respiratory phase bins and M is the number of 

voxels per image frame. PCA was then performed on mL in order to identify a temporal basis 

corresponding to the low-resolution image series: 

 𝑚𝐿 = 𝑈𝑉𝐿 (4.8) 

 

where U is the N-by-N temporal basis and VL is the N-by-M set of coefficients that represent the 

image mL under U. The small number of significantly nonzero singular values indicates that the 

image can be reasonably approximated using only the first K dominant basis components, where 

K << N (most commonly for this work, K = 6 and N = 25): 

 𝑚𝐿 = 𝑈𝑉𝐿 ≈ 𝑈𝐾𝑉𝐿𝐾 (4.9) 

 

where UK is the N-by-K temporal basis and VLK is the K-by-M set of coefficients that best 

approximate the image mL under UK. 

After the low-rank basis UK is then estimated, the full-resolution image series m is reconstructed 

by setting m = UKVK, where VK is the matrix of subspace coefficients that best represent the 

image series m under UK, and by then solving an XD-GRASP-based minimization of VK, as 

follows: 

 
�̃�𝐾 = argmin

𝑉𝐾

1

2
‖𝐸(𝑈𝐾𝑉𝐾) − 𝑦‖2

2 + 𝜆𝑇𝑉𝑡,2‖𝑇𝑉𝑡(𝑈𝐾𝑉𝐾)‖1

+ 𝜆𝑇𝑉𝑠‖𝑇𝑉𝑠(𝑉𝐾)‖1 

(4.10) 

 

where E is a multi-coil NUFFT operator defined for the entire set of sampled k-space points that 

incorporates coil sensitivities and radial density compensation, y is the sampled k-space data, 

λTVt,2 is a weighting coefficient applied to the L1 temporal total variation penalty term, TVt 

represents a temporal total variation operator applied to UKVK (m as best approximated in the 
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subspace defined by UK), λTVs is a weighting coefficient applied to the L1 spatial total variation 

penalty term, and TVs represents a spatial total variation operator applied to VK.  

Both optimizations were solved using the nonlinear conjugate gradient method (32,33). For the 

low-resolution optimization, a total of eight iterations was used. For the full-resolution 

optimization, a total of 24 iterations (three outer loops each consisting of eight iterations) was 

used, with the optimization procedure reset upon completing each instance of the outer loop. 

4D image series reconstructed using XD-GRASP-Pro were compared with series reconstructed 

using standard XD-GRASP and with triggered 3D images collected in the same individual using 

the same pulse sequence parameters. 

4.4.3. Results 

Coronal and sagittal views from a reconstructed 4D bSSFP image frame at end-of-exhalation are 

shown alongside a 3D triggered frame taken at end-of-exhalation from the same individual in 

Fig. 4.9. Under-sampling artifacts are highly reduced in image frames from the 4D image set 

reconstructed using XD-GRASP-Pro, and appearance of the end-of-exhalation frame closely 

matches that of the triggered image. Freezing of diaphragm motion appears slightly more 

effective in the XD-GRASP-Pro 4D reconstruction than in the triggered image, possibly due to 

small variance in the motion states captured during the acquisition windows of the triggered 

scan. 
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Figure 4.9: a) Coronal (top) and sagittal (bottom) frames reconstructed at end-of-exhalation from free-breathing 4D 

ultrashort echo time (UTE) balanced steady-state free precession (bSSFP) MRI using XD-GRASP-Pro. b) Coronal 

(top) and sagittal (bottom) end-of-exhalation frames from respiratory-triggered 3D UTE bSSFP MRI. 

Fig. 4.10 depicts reconstructed image frames from all respiratory phases from the 4D bSSFP 

image series shown in Fig. 4.9. Blurring of the diaphragm and large blood vessels is still 

apparent in the image frames from the 4D image set that were taken at end-of-inhalation and at 

intermediate points in the breathing cycle. 
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Figure 4.10: a) Coronal and b) sagittal frames reconstructed at different respiratory phases from free-breathing 4D 

ultrashort echo time (UTE) balanced steady-state free precession (bSSFP) MRI using XD-GRASP-Pro. Significant 

diaphragm blurring (red circles) is seen in the intermediate and end-of-inhalation frames, while diaphragm sharpness 

is maintained in the end-of-exhalation frame (blue circles). Vessel blurring is also apparent in the non-end-of-

exhalation frames (yellow arrow). c) Under-sampled sagittal frames shown in b) prior to XD-GRASP-Pro 

reconstruction. Widespread streaking artifacts apparent in c) are essentially eliminated in the reconstructions 

depicted in a) and b). 
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Image series reconstructed using both XD-GRASP-Pro and standard XD-GRASP are shown in 

Fig. 4.11. Similar image quality was observed between the two reconstruction approaches. 

Slightly better vasculature definition at end-of-exhalation can be seen in XD-GRASP-Pro-

reconstructed images, while slightly lower blurring of the vasculature and diaphragm at non-end-

of-exhalation images is apparent in XD-GRASP-reconstructed images. 

Figure 4.11: a) Under-sampled sagittal frames from free-breathing 4D ultrashort echo time (UTE) balanced steady-

state free precession (bSSFP) MRI prior to constrained reconstruction. b) Sagittal frames shown in a) after being 

reconstructed using XD-GRASP. c) Sagittal frames shown in a) after being reconstructed using XD-GRASP-Pro. 

Fig. 4.12 depicts coronal and sagittal views from reconstructed 4D UTE bSSFP and UTE spoiled 

images collected in the same individual. Higher vessel and parenchyma visibility is observed for 

the UTE bSSFP than the UTE spoiled images, with vessel definition particularly improved in the 

UTE bSSFP images as seen in the maximum intensity projections shown in Fig. 4.12a-b. 
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Figure 4.12: Coronal maximum intensity projections (MIPs) from a) ultrashort echo time (UTE) balanced steady-

state free precession (bSSFP) MRI and b) UTE spoiled MRI, as well as sagittal frames from c) UTE bSSFP MRI 

and d) UTE spoiled MRI, reconstructed at end-of-exhalation from free-breathing data. 

4.5. Discussion 

The UTE bSSFP pulse sequence displayed higher signal and feature contrast than the UTE 

spoiled sequence, particularly for pulmonary blood vessels, in general agreement with 

simulations of the pulse sequences used in this work. Banding artifacts characteristic of bSSFP 

are heavily mitigated by the short TR and by the phase dispersion of parenchyma spins during 

the TR window, avoiding one of the key downsides of bSSFP. 
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MRI of the lung using prospective respiratory triggering is generally effective at freezing lung 

motion, but prolongs scan times significantly and only permits visualization of the lung at one 

respiratory phase. Images reconstructed from free-breathing data using a method that takes 

advantage of temporal sparsity can closely replicate fully-sampled images collected using 

respiratory triggering, as demonstrated here, permitting shorter scan times at the cost of 

significant computational time relative to the scanner-computer reconstructions of triggered 3D 

images. Continuously-acquired free-breathing data can also potentially be used to reconstruct 

high-quality images at several respiratory phases, although the techniques used in this work were 

only somewhat effective and significant blurring was noted in non-end-of-exhalation frames. 

While all images shown in this work were reconstructed using only data sampled during the first 

lobe of the readout gradient (i.e., traversing k-space from center to periphery), it is clearly 

possible to sample k-space during the rewound portion of the readout gradient (i.e., retracing k-

space from periphery to center). Future work might seek to incorporate data sampled during the 

retracing of each ray from the k-space periphery to the center. Doing so would require careful 

measurement of the executed k-space trajectory, as outbound lines would likely not exactly 

match corresponding inbound lines, and would require that the differing phase of the two readout 

sets be incorporated into the reconstruction (34). 

Residual blurring was still evident after XD-GRASP-Pro reconstruction in frames not taken at 

end-of-exhalation. Improved respiratory binning would likely improve image sharpness, as the 

methods used in this work often struggled to precisely bin readouts taken at non-end-of-

exhalation respiratory phases. That said, the length of time taken to execute each spiralling pass 

(roughly one second) likely results in a non-trivial degree of motion captured even within 

individual passes. Future work might seek to optimize the number of rays sampled per pass, 

weighting the need to minimize time taken per pass to minimize within-pass motion against the 

need to maintain a steady state by minimizing the distance between sequential rays in each pass. 

Additionally, it can be observed that, for image regions of minimal motion, the temporal finite-

difference from frame to frame is low, and the temporal finite-difference operator is an effective 

sparsifying transform; but for image regions that display significant motion through the breathing 

cycle, the temporal finite-difference operator enforces sparsity less effectively. Residual blurring 

from respiratory motion within bins, as well as possible reconstruction-induced blurring, could 
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therefore be better mitigated via adaptive weighting of temporal vs. spatial finite-differences 

such that temporal differences take stronger weight for regions of minimal motion, and spatial 

differences take stronger weight for regions of significant motion (35,36). Alternative sparsifying 

transforms on the image or on the subspace coefficient matrix could be tested and used as well. 

An early version of the XD-GRASP-Pro implementation shown in this work examined a 

temporal Fourier transform to enforce temporal sparsity in the image series, with results 

generally similar to those shown above using temporal finite-differences. 

Another potential solution to blurring in reconstructed image frames would be the incorporation 

of motion fields relating the high-quality end-of-exhalation image to the other frames, a motif 

seen in other 4D MRI reconstruction approaches (12,36–38). The desired 4D image could be 

taken to be the registration of the end-of-exhalation image to all respiratory phases. Alternatively, 

if continuing to use an XD-GRASP-Pro-based approach, the temporal subspace could be 

generated from a time series composed of deformed copies of an end-of-exhalation frame 

matched to each of the pseudo-temporal frames, and this alternative subspace could then be used 

for a typical XD-GRASP-Pro reconstruction of the original pseudo-temporal frames.  

The work shown here was performed in a 1.5 T magnet, which was chosen over a 3 T magnet 

because of the higher T2* of lung parenchyma at a lower field strength and to further mitigate 

banding artifacts due to field inhomogeneities for bSSFP imaging. Interest has recently 

developed in performing lung MRI at yet lower field strengths, and an increasing body of 

literature is being produced on lung MRI at 0.55 T (39–41). The bSSFP sequence described in 

this work could be adapted in straightforward fashion to MRI at 0.55 T, improving the robustness 

to banding artifacts that is already increased using this spoke-radial bSSFP method due to its 

short TR.  

In this work, we demonstrated a free-breathing proton lung MRI approach that maximizes 

parenchyma and vessel signal in the lungs, combining a 3D UTE bSSFP pulse sequence with a 

GRASP-Pro-based reconstruction algorithm applied to respiratory phase-binned data. This 

approach produced high-signal, high-resolution lung images at end-of-exhalation collected 

during free breathing. While non-end-of-exhalation reconstruction was less effective using the 

methods investigated here, a similar reconstruction algorithm that additionally incorporates 
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motion fields or improved sparsifying transforms could improve results at these respiratory 

phases. 

4.6. References 

1. Miller GW, Mugler III JP, Sá RC, Altes TA, Prisk GK, Hopkins SR. Advances in functional 

and structural imaging of the human lung using proton MRI. NMR in Biomedicine. 

2014;27(12):1542–56.  

2. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction 

to ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 2003;27(6):825–46.  

3. Dournes G, Grodzki D, Macey J, Girodet PO, Fayon M, Chateil JF, et al. Quiet 

Submillimeter MR Imaging of the Lung Is Feasible with a PETRA Sequence at 1.5 T. 

Radiology. 2015 Jul;276(1):258–65.  

4. Wu C, Krishnamoorthy G, Yu V, Subashi E, Rimner A, Otazo R. 4D lung MRI with high-

isotropic-resolution using half-spoke (UTE) and full-spoke 3D radial acquisition and 

temporal compressed sensing reconstruction. Phys Med Biol. 2023 Jan 27;68(3).  

5. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur 

Radiol. 2003 Nov;13(11):2409–18.  

6. Bieri O. Ultra-fast steady state free precession and its application to in vivo 1H 

morphological and functional lung imaging at 1.5 tesla. Magnetic Resonance in Medicine. 

2013;70(3):657–63.  

7. Failo R, Wielopolski PA, Tiddens HAWM, Hop WCJ, Mucelli RP, Lequin MH. Lung 

morphology assessment using MRI: a robust ultra-short TR/TE 2D steady state free 

precession sequence used in cystic fibrosis patients. Magn Reson Med. 2009 

Feb;61(2):299–306.  

8. Klessen C, Asbach P, Kroencke TJ, Fischer T, Warmuth C, Stemmer A, et al. Magnetic 

resonance imaging of the upper abdomen using a free-breathing T2-weighted turbo spin 

echo sequence with navigator triggered prospective acquisition correction. J Magn Reson 

Imaging. 2005 May;21(5):576–82.  

9. Lustig M, Santos JM, Donoho DL, Pauly JM. k-T SPARSE: High Frame Rate Dynamic 

MRI Exploiting Spatio-Temporal Sparsity.  

10. Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, et al. Highly accelerated real-

time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med. 2013 Jul;70(1):64–

74.  

11. Paul J, Divkovic E, Wundrak S, Bernhardt P, Rottbauer W, Neumann H, et al. High-

resolution respiratory self-gated golden angle cardiac MRI: Comparison of self-gating 



146 

 

methods in combination with k-t SPARSE SENSE. Magn Reson Med. 2015 Jan;73(1):292–

8.  

12. Zhu X, Chan M, Lustig M, Johnson K, Larson P. Iterative Motion Compensation 

reconstruction ultra-short TE(iMoCo UTE) for high resolution free breathing pulmonary 

MRI. Magn Reson Med. 2020 Apr;83(4):1208–21.  

13. Arai TJ, Nofiele J, Madhuranthakam AJ, Yuan Q, Pedrosa I, Chopra R, et al. Characterizing 

spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring 

respiration-induced tumor motion in radiotherapy. Med Phys. 2016 Jun;43(6):2807–20.  

14. Feng L, Delacoste J, Smith D, Weissbrot J, Flagg E, Moore WH, et al. Simultaneous 

Evaluation of Lung Anatomy and Ventilation Using 4D Respiratory-Motion-Resolved UTE 

Sparse MRI. J Magn Reson Imaging. 2019 Feb;49(2):411–22.  

15. Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, et al. Golden-angle radial sparse 

parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle 

radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med. 2014 

Sep;72(3):707–17.  

16. Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: Golden-

angle radial MRI with reconstruction of extra motion-state dimensions using compressed 

sensing. Magnetic Resonance in Medicine. 2016;75(2):775–88.  

17. Chen L, Liu D, Zhang J, Xie B, Zhou X, Grimm R, et al. Free-Breathing Dynamic 

Contrast-Enhanced MRI for Assessment of Pulmonary Lesions Using Golden-Angle Radial 

Sparse Parallel Imaging. J Magn Reson Imaging. 2018 Aug;48(2):459–68.  

18. Chandarana H, Feng L, Ream J, Wang A, Babb JS, Block KT, et al. Respiratory Motion-

Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for 

Dynamic Liver Magnetic Resonance Imaging. Invest Radiol. 2015 Nov;50(11):749–56.  

19. Feng L, Wen Q, Huang C, Tong A, Liu F, Chandarana H. GRASP-Pro: imProving GRASP 

DCE‐MRI through self-calibrating subspace-modeling and contrast phase automation. 

Magn Reson Med. 2020 Jan;83(1):94–108.  

20. Feng L, Liu F. High spatiotemporal resolution motion-resolved MRI using XD-GRASP-

Pro. In: Proc Intl Soc Mag Reson Med 28. 2020. p. 597.  

21. Theilmann RJ, Arai TJ, Samiee A, Dubowitz DJ, Hopkins SR, Buxton RB, et al. 

Quantitative MRI measurement of lung density must account for the change in T with lung 

inflation. Journal of Magnetic Resonance Imaging. 2009;30(3):527–34.  

22. Bauman G, Santini F, Pusterla O, Bieri O. Pulmonary relaxometry with inversion recovery 

ultra-fast steady-state free precession at 1.5T. Magnetic Resonance in Medicine. 

2017;77(1):74–82.  



147 

 

23. Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJH. Water proton MR properties of 

human blood at 1.5 Tesla: Magnetic susceptibility, T1, T2, T, and non-Lorentzian signal 

behavior. Magnetic Resonance in Medicine. 2001;45(4):533–42.  

24. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for 

Fourier inversion using gridding [computerised tomography application]. IEEE Trans Med 

Imaging. 1991;10(3):473–8.  

25. Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Spiral phyllotaxis: The natural way 

to construct a 3D radial trajectory in MRI. Magnetic Resonance in Medicine. 

2011;66(4):1049–56.  

26. Delacoste J, Chaptinel J, Beigelman-Aubry C, Piccini D, Sauty A, Stuber M. A double echo 

ultra short echo time (UTE) acquisition for respiratory motion-suppressed high resolution 

imaging of the lung. Magn Reson Med. 2018 Apr;79(4):2297–305.  

27. Fessler JA, Sutton BP. Nonuniform fast fourier transforms using min-max interpolation. 

IEEE Trans Signal Process. 2003 Feb;51(2):560–74.  

28. Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information Theory. 

1982 Mar;28(2):129–37.  

29. Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. In: Proceedings of 

the eighteenth annual ACM-SIAM symposium on Discrete algorithms. USA: Society for 

Industrial and Applied Mathematics; 2007. p. 1027–35. (SODA ’07).  

30. Duff IS, Koster J. On Algorithms For Permuting Large Entries to the Diagonal of a Sparse 

Matrix. SIAM J Matrix Anal Appl. 2001 Jan;22(4):973–96.  

31. Inati SJ, Hansen MS, Kellman P. A fast optimal method for coil sensitivity estimation and 

adaptive coil combination for complex images. In: Proc Intl Soc Mag Reson Med 22. 2014. 

p. 4407.  

32. Fletcher R, Reeves CM. Function minimization by conjugate gradients. The Computer 

Journal. 1964 Jan 1;7(2):149–54.  

33. Dai YH, Yuan Y. A Nonlinear Conjugate Gradient Method with a Strong Global 

Convergence Property. SIAM J Optim. 1999 Jan;10(1):177–82.  

34. Jung Y, Samsonov AA, Bydder M, Block WF. Self-calibrated multiple-echo acquisition 

with radial trajectories using the conjugate gradient method (SMART-CG). Journal of 

Magnetic Resonance Imaging. 2011;33(4):980–7.  

35. Ritschl L, Sawall S, Knaup M, Hess A, Kachelrieß M. Iterative 4D cardiac micro-CT image 

reconstruction using an adaptive spatio-temporal sparsity prior. Phys Med Biol. 2012 

Mar;57(6):1517.  



148 

 

36. Rank CM, Heußer T, Buzan MTA, Wetscherek A, Freitag MT, Dinkel J, et al. 4D 

respiratory motion-compensated image reconstruction of free-breathing radial MR data 

with very high undersampling. Magnetic Resonance in Medicine. 2017;77(3):1170–83.  

37. Huttinga NRF, Bruijnen T, van den Berg CAT, Sbrizzi A. Nonrigid 3D motion estimation at 

high temporal resolution from prospectively undersampled k-space data using low-rank 

MR-MOTUS. Magnetic Resonance in Medicine. 2021;85(4):2309–26.  

38. Miller Z, Johnson KM. Motion compensated self supervised deep learning for highly 

accelerated 3D ultrashort Echo time pulmonary MRI. Magn Reson Med. 2023 

Jun;89(6):2361–75.  

39. Bhattacharya I, Ramasawmy R, Javed A, Lowery M, Henry J, Mancini C, et al. Assessment 

of lung structure and regional function using 0.55T MRI in patients with 

lymphangioleiomyomatosis. Invest Radiol. 2022 Mar 1;57(3):178–86.  

40. Campbell-Washburn AE, Malayeri AA, Jones EC, Moss J, Fennelly KP, Olivier KN, et al. 

T2-weighted Lung Imaging Using a 0.55-T MRI System. Radiol Cardiothorac Imaging. 

2021 Jun 10;3(3):e200611.  

41. Azour L, Condos R, Keerthivasan MB, Bruno M, Sood TP, Landini N, et al. Low-field 0.55 

T MRI for assessment of pulmonary groundglass and fibrosis-like opacities: Inter-reader 

and inter-modality concordance. Eur J Radiol. 2022 Nov;156:110515.  

 

  



149 

 

Chapter 5: Conclusion and future work 

5.1. Conclusion 

This dissertation describes methodological advancements for three types of dynamic magnetic 

resonance imaging (MRI) of the human lung – multi-frame 3D hyperpolarized-gas (HPG) 

tagging MRI, 3D dissolved-phase 129Xe MRI, and 4D free-breathing 1H MRI. 

Chapter 2 of this work demonstrates a method for performing 3D multi-phase MRI of grid-

tagged hyperpolarized 3He gas in the lungs during exhalation, as well as calculation of 

displacement and strain maps from resulting image series. The predictable distribution of k-space 

energy in the tagging MRI context is used to design a highly under-sampled 3D Cartesian matrix 

of k-space readouts, and a relatively simple compressed sensing (CS) approach is used to 

reconstruct under-sampled 3D image frames. This work represents the first extension of HPG 

tagging lung MRI to multi-frame 3D imaging, opening up increased possibilities for research and 

clinical applications. 

Chapter 3 of this work characterizes the repeatability and lung volume dependence of dissolved-

phase 129Xe MRI of the lung, a technique for visualization and quantification of pulmonary gas 

exchange efficacy. Scan-to-scan repeatability of the three 129Xe MRI-derived gas-uptake metrics 

is strong in general, but better when scan-to-scan lung volumes were tightly repeated. Strong 

lung volume dependence is observed for two of the three metrics, with these metrics closely 

following a linear relative-difference relationship for both healthy individuals and individuals 

with chronic obstructive pulmonary disease (COPD). A preliminary method for lung volume 

correction using this relative-difference relationship is theorized and demonstrated, and 

groupwise differences in these metrics between healthy individuals and those with COPD 

lessened upon accounting for lung volume contributions using this correction. This result 

highlights the importance of careful consideration of lung-volume effects on 129Xe-derived gas 

uptake metrics, particularly in diseased populations that frequency present with hyperinflation 

such as COPD. 

Chapter 4 of this work demonstrates a combined acquisition and reconstruction approach for 

performing free-breathing 4D 1H MRI of the lung. Data is acquired using a 3D ultrashort echo 
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time (UTE) balanced steady-state free precession (bSSFP) spoke-radial pulse sequence, which 

displays higher signal-to-noise ratio in lung parenchyma and vasculature than a 3D UTE spoiled 

spoke-radial sequence. Spoke-radial readouts are organized into interleaved passes based on a 

spiral phyllotaxis trajectory, and data sorting into respiratory phases is performed using either a 

navigator based on the sampled signal near the k-space center or using a 2D image-based 

navigator interspersed between 3D spiral passes. Respiratory-phase-resolved image 

reconstruction is performed using two golden-angle radial sparse parallel (GRASP)-based CS 

techniques, XD-GRASP and XD-GRASP-Pro, which both take advantage of the temporal 

sparsity inherent in respiratory-resolved lung image series. High-quality end-of-exhalation 

reconstructions are produced using both reconstruction methods, with other respiratory phases 

displaying diaphragm and vasculature blurring. XD-GRASP displays slightly improved image 

sharpness at these frames, while XD-GRASP-Pro displays better denoising and removing of 

radial under-sampling artifacts for all respiratory phases. This approach is promising for high-

signal free-breathing MRI of pulmonary structures, and is particularly interesting for 

characterization of lung parenchymal density and for serial imaging and characterization of lung 

tumor burden. 

5.2. Future work 

5.2.1. 3D multi-phase hyperpolarized-gas tagging lung MRI 

Continued development of the image acquisition and analysis methods for HPG tagging MRI 

described in Chapter 2 would be a useful area of future work. Image acquisition could be 

hastened by using equal-amplitude instead of equal-time-width radiofrequency (RF) pulses (1), 

and signal-to-noise ratio (SNR) could be improved by using an array of small receive RF coils. 

Any further increases in acquisition speed per image frame could potentially be leveraged to 

image serially throughout both exhalation and an ensuing inhalation, rather than only during 

exhalation as demonstrated here. With regard to sampling and CS reconstruction design, under-

sampling artifacts prior to CS might be further mitigated by implementing data-driven learning 

of sampling patterns (2), and image reconstruction accuracy could be improved by optimizing 

hyperparameters in the CS reconstruction, such as the weighting factor λ for the L1 term. Tag 

tracking through the image series could also be improved, and ideally an automated or semi-
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automated approach (3) might be implemented to facilitate more robust and accurate tag tracking 

and associated displacement map generation. 

In addition to methodological improvements, testing in diseased populations and for specific 

applications is an important goal. Initial work in healthy individuals has evaluated lung 

displacement fields generated using two-phase HPG tagging MRI alongside those generated 

using two-phase 1H MR images collected during the same breathing maneuver as the HPG 

tagging MR images and co-registered to one another using deformable image registration (DIR) 

algorithms (4). These results indicated that displacement fields generated using DIR of 1H MR 

images varied significantly depending on the particular DIR algorithm used, and that all DIR-

based displacement fields differed from displacement fields generated from HPG tagging MR 

images collected in the same breathing maneuver. Similar work evaluating the 3D multi-phase 

tagging methods demonstrated in Chapter 2 as a readout of DIR-based lung displacement field 

accuracy, in both healthy individuals and those with lung cancer, represents a possible next step 

for this work.  

5.2.2. Dissolved-phase 129Xe lung MRI 

The results shown in this work indicate that lung-volume differences between scans and between 

individuals must be considered when developing comparisons of 129Xe-derived gas uptake 

metrics between individuals and between groups. While there is some limited ability for 

clinicians and researchers to control lung volume during studies by providing breathing 

instructions to the subjects and by providing specific gas volumes for inhalation, these results 

demonstrate that actual inflation levels during scans may differ significantly from the intended 

inflation level, particularly for intermediate inflation levels such as one-third of forced vital 

capacity.  

Given the above, it is important that robust retrospective correction can be applied to account for 

lung volume contributions to 129Xe MRI-derived gas uptake metrics. While the lung-volume 

correction approach suggested in this work is a useful start, it would be ideal to develop a more 

detailed model with specific underpinnings in pulmonary physiology and/or a more 

sophisticated, distribution-driven approach (5). It is theorized in this and in prior work (6) that 

lung volume differences between individuals, and between inflation levels within individuals, are 
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driven by differences in alveolar size. An implication of this theory is that larger and/or more 

inflated lungs would correspond to lower alveolar surface-to-volume ratio, which could be a key 

contributor to the apparent decrease in gas-exchange efficacy in larger and/or more inflated 

lungs. A natural direction for future study would be comparison of dissolved-phase 129Xe MRI 

results at various lung volumes and inflation levels with those from diffusion-weighted 129Xe 

MRI techniques designed to characterize voxel-wise mean alveolar size. Recent work has 

demonstrated single-breath-hold acquisition of both diffusion-weighted and dissolved-phase 

129Xe MR scans (7,8), and such techniques could be used to investigate and establish direct links 

between alveolar size and surface-to-volume ratio, lung volume, and 129Xe MRI-derived gas 

uptake metrics. An ideal result of such work would be a model for lung volume correction of 

129Xe-derived gas uptake metrics incorporating alveolar geometry. 

5.2.3. Free-breathing 4D 1H lung MRI 

This work is ripe for continued methodological development and improvement. One interesting 

avenue for improvement is the use of k-space samples collected both while moving away from 

the k-space center and while moving back toward the center, either reconstructing a single image 

with improved signal-to-noise ratio or reconstructing and comparing two separate images with 

slightly differing contrasts. As with the work shown in Chapter 2, image reconstruction accuracy 

might be improved by optimizing CS hyperparameters, particularly as ideal hyperparameters for 

bSSFP images likely differ from those for spoiled images. Improved reconstruction of non-end-

of-exhalation image frames is of key importance, and various aspects of the reconstruction 

workflow might be altered in order to improve these frames. Improved respiratory phase binning 

would likely improve reconstruction of these frames by minimizing motion blurring present in 

respiratory frames prior to reconstruction. Direct incorporation of motion estimates into the 

reconstruction could also improve reconstruction performance, by allowing the high-fidelity 

reconstruction of end-of-exhalation frames to more directly inform reconstruction of frames at 

other respiratory phases (9,10). 

A key potential application area for this technique is radiotherapy treatment planning and serial 

monitoring of lung and abdominal tumors and surrounding tissue areas during a course of 

radiation therapy. 4D computed tomography is an established method for planning and 

monitoring in this context (11,12), but suffers from disadvantages that include low soft-tissue 
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contrast relative to MR, susceptibility to motion artifacts (13), and high radiation dose (14). 4D-

MRI techniques are therefore of significant established interest for this purpose (15), and the 

specific bSSFP techniques presented in this work could be particularly suited to tumor 

monitoring and treatment given the high observed SNR in vasculature. It was originally intended 

that individuals with lung tumors would be enrolled in the 4D-MRI study described in this work, 

but difficulties with patient availability and enrollment have precluded this to date. 

Additionally, it is important to investigate and establish the potential utility of these techniques 

for evaluation of disease type and burden in diseases that impact lung parenchymal density. 

Pediatric lung conditions that affect parenchymal density and that CT imaging is commonly used 

to diagnose and/or monitor are of particular interest, as serial disease monitoring using MRI is 

potentially more appealing than using CT due to the high effective risk of stacked CT radiation 

doses in younger individuals relative to that in older individuals (16,17). An example condition 

of interest is pulmonary alveolar proteinosis (PAP), which is characterized by filling of alveoli 

with lipoproteinaceous material and which has a characteristic presentation in CT images 

(18,19). High-signal, high-resolution MR imaging with strong signal in parenchyma and 

vasculature serve as a useful tool for diagnosis and characterization of treatment response in PAP, 

and potentially as a tool to assist interventional planning as well (20). 
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