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Abstract

The goal of this thesis is to provide a gentle introduction to the concept of automatic

groups, uniting techniques from formal language theory and geometric group theory. We

review relevant notions and tools from theoretical computer science and geometric group

theory, then survey the basic definitions, properties, and variants of automatic groups.

Finally, we discuss examples and non-examples to illustrate when and why a group admits

an automatic structure.
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List of Notation

A A finite alphabet or set of generators. In language theory contexts, A is the set of symbols

used to form words. In group-theoretic contexts, A is the finite set generating the

group.

a ∈ A A letter in the alphabet A.

w Generic words (strings) over the alphabet A. Often written as w = a1a2 . . . am.

|w| The length of a word w. Defined by counting the number of letters in w.

ε The empty word (nullstring), which is a string of length 0.

A∗ The set of all finite words over the alphabet A. Under concatenation, A∗ is a free

monoid on A.

L A language over the alphabet A. Typically a subset of A∗.

M A finite state machine.

L(M) The language recognized by a machine (e.g., a finite state automaton M).

L∗ (Kleene Star) The star closure of L, i.e. the set of all finite concatenations of strings

from L.

$ A special padding symbol.

¬,∧,∨, ∃,∀ Logical connectives and quantifiers used when extending first-order predicates

over languages.

G = ⟨A|R⟩ A group presentation with finite generating set A and set of defining relators

R ⊆ F (A).
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w The group element of G represented by a word w ∈ A∗. Formally, π(w) under the

projection π : F (A) → G.

ℓ(g) The word length of the group element g ∈ G, i.e. the minimal number of generators

(and their inverses) needed to write g.

Area(w) Combinatorial area of w.

δ⟨A|R⟩ The Dehn function of a given group presentation G = ⟨A|R⟩.

Ω A Van Kampen diagram.

∂Ω The boundary of the Van Kampen diagram Ω.

L(∂Ω) The boundary label of the Van Kampen diagram Ω.

C A cell in the Van Kampen diagram Ω.

L(∂C) The boundary label of a cell C in the Van Kampen diagram.

Γ(G,A) The Cayley graph of G with respect to the generating set A. Vertices are elements

of G, edges labeled by generators a ∈ A.

ŵ A path of the word w in the Cayley graph Γ(G,A).

dA The word metric induced by A in Γ(G,A).

dunif The uniform metric on the set of maps from a set X to a metric space Y .

A+ϵ The closed ϵ-neighborhood of a subset A in a metric space (X, d).

dist The Hausdorff distance between two subsets of a metric space.

length(p) The length of a path p in a metric space (X, d).

[x, y] A chosen geodesic from x to y in a geodesic metric space (X, d).

Mx A multiplier automaton.

Mε The equality recognizer.

(A,W,L,Mx) An automatic structure.
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Chapter 1

Introduction and Roadmap

1.1 Overview and Motivation

The study of automatic groups lies at the intersection of theoretical computer science and

geometric group theory. On one hand, core questions in group theory such as the word prob-

lem and isoperimetric inequalities naturally involve algorithms, computability, and language

theory. On the other hand, tools from geometry and topology like Cayley graphs and Van

Kampen diagrams provide a powerful framework for examining properties of groups.

Roughly speaking, a group is automatic if there is a finite state automaton that recog-

nizes well-behaved normal forms for all elements of the group, with additional automata

controlling how those normal forms respond to multiplication by generators. Intuitively,

this makes core group-theoretic problems (e.g., testing whether two words represent the

same element) solvable via uniform, finite-state computational procedures. As a result,

automatic groups:

• Admit quadratic isoperimetric inequalities. They satisfy strong bounds on how

“difficult” it can be to prove a word is trivial.

• Have a quadratic-time word problem. One can algorithmically decide if two

words represent the same element within time proportional to the product of their

lengths.

• Exhibit rich geometric structures. Well-known families of groups such as hyper-

bolic groups and Euclidean groups are automatic.
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Nonetheless, many interesting groups (e.g., certain nilpotent or Baumslag–Solitar groups)

fail to be automatic. Understanding precisely which groups are automatic remains an active

area of research, with open questions on algorithmic, geometric, and algebraic fronts.

1.2 Outline of the Thesis

The thesis is organized into four main technical chapters, structured to give a comprehensive

view of automatic groups from foundational definitions and properties to applications and

examples:

• Chapter 2: Theory of Computation Background.

Lays out key concepts in formal language theory—alphabets, words, regular languages,

finite state automata, closure properties, and the pumping lemma. These form the

backbone for defining when a group’s normal forms can be recognized by a finite

automaton.

• Chapter 3: Geometric Group Theory Background.

Introduces relative fundamental notions in group theory (group presentations, Dehn

functions, word problems) and further relative geometric group theory ideas (Cayley

graphs, Van Kampen diagrams, hyperbolicity).

• Chapter 4: Automatic Group Theory.

Defines synchronous automatic groups, details their main properties (quadratic isoperi-

metric inequalities, Lipschitz conditions, biautomatic variants), and presents key algo-

rithms (Todd–Coxeter, Knuth–Bendix) for constructing or verifying automatic struc-

tures. Variants such as ShortLex-automatic, geodesic automatic, and prefix-closed

structures are highlighted.

• Chapter 5: Applications of Automatic Groups.

Explores examples of classes of groups do (or do not) admit automatic structures.

Focuses on hyperbolic groups, Euclidean groups, nilpotent groups, and Baumslag–

Solitar groups, illustrating how theoretical definitions from Chapter 4 manifest in

practice.
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With these components in place, the thesis aims to be a largely self-contained account of

automatic group theory, bridging the essential computational and geometric group theoretic

viewpoints.

1.3 Guidance of Reading

Here we provide a gentle guideline for readers from different areas and with different pur-

poses to read this introduction.

• Readers with a theoretical computer science background may wish to focus on Chap-

ter 2 in detail for the formal definitions of regular languages and automata used in

this thesis. Chapter 3’s treatment of group theory (particularly Cayley graphs and

word problems) will then clarify how computational machinery interfaces with group

presentations. Chapters 4 and 5 complete the link between finite automata, geometric

group theory, and examples.

• Readers from a geometric group theory background might skim Chapter 2 to ensure

familiarity with automata theory and relevant definitions. Chapter 3 will feel more

natural, discussing Cayley graphs, Dehn functions, and hyperbolicity. Chapter 4 then

formalizes automatic groups, connecting their geometric and algebraic properties to

finite state automata recognition. Chapter 5’s concrete examples reveal why certain

groups are automatic (or not).
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Chapter 2

Theory of Computation
Background

2.1 Languages

In mathematics, an alphabet is typically treated as a finite set of abstract symbols, and a

word is a finite sequence of these symbols. While this framework may differ from common

usage in natural languages or programming contexts, it provides the precision needed for

formal language theory.

One of the central notions in this theory, and a focal point of this thesis, is the finite state

automaton—a computational model capable of recognizing certain classes of languages. As

we will see, such automata also play an important role in group-theoretic settings: by

representing words in a group’s generators, one can employ automata-based techniques to

develop efficient algorithms for a variety of group-computational tasks.

Definition 2.1.1 (Alphabet, Letter, and Word). An alphabet A is a finite set, sometimes

we use the terminology word alphabet. A letter is an element of the set A, and a word or a

string over the alphabet A is a finite sequence of letters.

We can think of the word as given an integer m ≥ 0 and a mapping {1, ...,m} → A.

Definition 2.1.2 (Word Length). With such mapping in mind, if w : {1, ...,m} → A is a

word, we call m the word length of w, denoted by |w|.

Definition 2.1.3 (Empty Word). If |w| = 0, that is m = 0, the domain will be the nullset

and there is a unique such mapping, we call it the empty word, or nullstring, denoted by ε.
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Sometimes in addition we denote it by εA to indicate the alphabet A.

Note that besides the obscure mapping, the word of length m can also be identified

with the Cartesian product Am = A×A× · · · ×A︸ ︷︷ ︸
m copies

, but the difference here is that the

elements in this Cartesian product are written out as strings rather than usual parenthesis

and commas. With such identification, we can define the set A∗ and the binary operation

called concatenation as follows:

Definition 2.1.4 (String over A, Concatenation). We denote the set of strings over the

alphabet A by A∗, if w1 = a1 · · · am and w2 = b1 · · · bn ∈ A∗, we define the concatenation

w1w2 = a1 · · · amb1 · · · bn, which gives a word of length |w1|+ |w2| = m+ n.

Proposition 2.1.5. Suppose we have an alphabet A and the set A∗ of strings over A. Then

the concatenation gives a binary operation on A∗ and A∗ is a monoid.

Definition 2.1.6 (Subword, Prefix, Suffix). If w is a word over an alphabet A, a subword

u ∈ A∗ is a word such that w = puq for some p, q ∈ A∗. We say that p is a prefix of w,

that q is a suffix of w. If t ≥ 0 is an integer, by w(t) we mean the prefix of length t of w.

If t ≥ |w|, it means w itself.

Definition 2.1.7 (Language). A language L with alphabet A is a subset of A∗.

Naturally, we want to extend the operation of concatenation of words to languages as

follows:

Definition 2.1.8 (Concatenation of Languages). Let L1 and L2 be languages over the same

alphabet A, we define the concatenation of languages L1L2 to be the set of stings w such

that w = w1w2 ∈ A∗, with w1 ∈ L1 and w2 ∈ L2.

Definition 2.1.9 (Star Closure). Given a language L, we define the star closure of L as

L∗ :=
⋃
n≥0

Ln

where L0 = {ε} and Ln := Ln−1L is defined inductively for n > 0. It is also called the

Kleene closure.
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Remark 2.1.10. Remark that if L = ∅, then its star closure is L∗ = {ε}, a language with

only one element: the empty word. However, if L = A, the alphabet, we will have two

definitions of A∗, they are the same object.

In some cases, we may wish to interpret n-tuples of strings as strings of n-tuples. How-

ever, the individual strings may have different lengths. To ensure that the lengths are

consistent so that the strings are easier to work with, we introduce the following definition:

Definition 2.1.11 (Padded Alphabet). Let $ denote the end-of-string padding symbol, let

A be an alphabet that does not contain $. We define the padded alphabet associated with A

to be the set B := A ∪ {$}. For alphabets A1, ..., An with corresponding padded alphabets

B1, ..., Bn and padding symbols $1, ..., $n, we define the padded alphabet associated with

(A1, ..., An) to be the set

B := B1 × · · · ×Bn\{($1, ..., $n)}

Next, we introduce some commonly used orderings on alphabets, which will be referenced

in later discussions. Given an alphabet A, we consider the orderings between two strings

v, w ∈ A∗:

1. Lexicographic order. In the lexicographic order, with a fixed ordering on the alphabet

A, for two words v = a1a2 · · · am and w = b1b2 · · · bn in A∗, v < w if and only if there

exists an index k ≤ min{m,n} such that ai = bi for all 1 ≤ i < k and ak < bk, or v is

a proper prefix of w.

2. Length order. In the length order, v < w if and only if v is shorter than w. This is a

partial order.

3. ShortLex order. In the ShortLex order, v < w if and only if v is shorter than w, or

they have the same length and v comes before w in lexicographical order.

4. Dictionary order. In the dictionary order, v < w if and only if v is a proper prefix of

w, or v and w have prefixes v′ and w′ of the same length such that v′ comes before

w′ in lexicographical order.
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Next, we introduce a fundamental concept in both mathematics and computer science:

recursive functions. As the name suggests, they are defined recursively as follows:

Definition 2.1.12 (Basic Primitive Recursive Function). The basic primitive recursive

functions are given by the following axioms:

1. Constant function. For each natural number n ∈ N and every k, the k-ary constant

function Ck
n is primitive recursive, which is defined by Ck

n(x1, ..., xk) := n.

2. Successor function. The 1-ary successor function S which returns the successor of

its argument according to the Peano axioms, is primitive recursive and is defined by

S(x) := x+ 1.

3. Projection function. For all natural numbers i, k ∈ N such that 1 ≤ i ≤ k, the k-ary

projective function P k
i is primitive recursive and it is defined by P k

i (x1, ..., xk) := xi.

Starting from these three basic primitive recursive functions, we can obtain more com-

plex primitive recursive functions by applying the operations given by the following defini-

tion:

Definition 2.1.13 (Primitive Recursive Function Operations). We define two operations

of primitive recursive functions:

1. Composition operator. Given any m-ary function h(x1, ..., xm) and m k-ary func-

tions g1(x1, ..., xk), ..., gm(x1, ..., xk), we define the composition operator ◦ by h ◦

(g1, ..., gm) := f , where f is defined by

f(x1, ..., xk) = h(g1(x1, ..., xk), ..., gm(x1, ..., xk))

2. Primitive recursion operator. Given any k-ary function g(x1, ..., xk) and (k + 2)-ary

function h(y, z, x1, ..., xk), we define the primitive recursion operator ρ by ρ(g, h) := f ,

where f is defined recursively by:

f(0, x1, ..., xk) := g(x1, ..., xk)

f(S(y), x1, ..., xk) := h(y, f(x1, ..., xk), x1, ..., xk)
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Finally, we can define the primitive recursive functions:

Definition 2.1.14 (Primitive Recursive Function). The primitive recursive functions con-

sist of the basic primitive recursive functions and all functions obtained from them by

applying the two defining operations a finite number of times.

Definition 2.1.15 (Recursively Enumerable Set). A subset X ⊆ N is said to be recursively

enumerable if there exists a recursive function f : N → N such that the range of f is exactly

X. More generally, a subset X ⊆ A∗, where A is a finite alphabet, is recursively enumerable

if there exists a recursive function f : N → A∗ such that every element of X appears as

some output of f .

2.2 Machines

In language and automata theory, it is common to classify languages based on the types

of machines capable of recognizing them. In this context, we are particularly interested

in regular languages, which are precisely the class of languages recognized by finite state

automata.

Definition 2.2.1 (Finite State Automaton). A finite state automaton is a 5-tuple M =

(Q,A, δ, q0, F ), where

1. The finite set Q is the set of states.

2. The finite set A is the alphabet.

3. The function δ : Q×A → Q is the set of transition functions.

4. The state q0 ∈ Q is the start state.

5. The set F ⊆ Q is the set of accept states.

Based on such definition of finite state automaton, we define the notion of computation

of the machine M :

Definition 2.2.2 (Computation of Finite State Automaton). Let M = (Q,A, δ, q0, F ) be

a finite state automaton, then a computation of M is a sequence q0, a1, q1, a2, q2, ..., an, qn
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such that n ≥ 0 and for each 1 ≤ i ≤ n, we have a transition function δi ∈ δ such that

δi : (qi−1, ai) → qi. We call the word a1 · · · an the label on such computation, and the

computation is called successful if qn ∈ F .

As mentioned earlier, languages are classified according to the types of machines capable

of recognizing them. Here we clarify the notion of recognition. Since our focus is solely on

regular languages and finite state automata, there is no ambiguity regarding the type of

machine throughout this article. Accordingly, we now present the formal definition of a

regular language.

Definition 2.2.3 (Regular Language). LetM = (Q,A, δ, q0, F ) be a finite state automaton,

then the language L(M) recognized by M is

L(M) := {w ∈ A∗ | w is accepted by M}

and we call such L(M) a regular language.

It is worth noting that regular languages can also be defined using regular expressions,

which are symbolic notations used to describe patterns in strings. A regular expression

consists of characters and operators that define sets of strings in a formal language. Fur-

thermore, there are two primary types of finite state automata: deterministic finite state

automata (DFSA) and non-deterministic finite state automata (NFSA), both of which play

important roles in the theory of computation. However, since discussing these models and

their associated results is not the primary focus of this article, we simply state the classical

equivalence theorem due to Kleene, Rabin, and Scott:

Theorem 2.2.4. Let A be a finite alphabet, then the following three conditions on a language

L over A are equivalent:

1. The language L is recognized by a deterministic finite state automaton.

2. The language L is recognized by a non-deterministic finite state automaton.

3. The language L is defined by a regular expression.
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Example 2.2.5. Drawing diagram is one important way to study finite state automata,

here we see one example of finite state automaton and the associated diagram. Consider

the finite state automaton M = (Q,A, δ, q0, F ) defined by

1. The set of states are: Q = {q0, q1, q2}.

2. The alphabet is: A = {0, 1}.

3. The set of transition functions δ contains the functions:

(a) For the state q0: δ0,0 : (q0, 0) → q0, δ0,1 : (q0, 1) → q1.

(b) For the state q1: δ1,0 : (q1, 0) → q2, δ0,1 : (q1, 1) → q1.

(c) For the state q2: δ2,0 : (q2, 0) → q1, δ2,1 : (q2, 1) → q1.

4. The starting state is q0.

5. The accept state set is: F = {q1}.

Then the diagram will be:

q0 q1 q2

1

0

0

1

0, 1

Remark 2.2.6. Unless explicitly stated otherwise, we assume that all finite automata under

consideration have been normalized, meaning that all inaccessible states have been removed

and all dead states have been combined into a single failure state. A finite state automaton

modified in this way is referred to as a normalized finite state automaton.

We now state some classical results of regular languages and finite state automata, which

will be useful later.

Theorem 2.2.7 (Reversal is Regular). Let A be an alphabet, suppose L is a regular language

over A. Then the language consisting of the strings of L written in the reverse order is also

a regular language over A.
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Proof. LetM be a non-deterministic finite state automaton that accepts the language L. We

construct a new automatonM ′ by reversing the direction of all transitions inM , designating

the original accepting states as a single initial state in M ′, and taking the original initial

state of M as the sole accepting state in M ′. The resulting automaton M ′ accepts the

reverse of L. Hence, the class of regular languages is closed under reversal.

Definition 2.2.8 (Prefix Closure). If L is a language over an alphabet A, the prefix closure

of L is the set of all prefixes of strings in L. A prefix-closed language is one that equals its

prefix closure.

Theorem 2.2.9 (Prefixes). Let L be a regular language. Then the prefix closure of L and

the largest prefix-closed sublanguage of L are regular languages.

Proof. Let M be a deterministic finite state automaton accepting the regular language L.

If we turn every non-failure state of the machine M into an accept state, the language

accepted by the new automaton will be the prefix closure of L. If instead of changing all

non-failure states, we remove all of the non-accept together with all the arrows pointing to

and from such states from the machine M , we get an automaton that accepts the largest

prefix-closed subset of L.

Lemma 2.2.10 (Effect of Regularity of Map). Let A and B be alphabets, LA be a regular

language over A, and LB be a regular language over B. Then for any map f : A → B or

f : A → B∗, the image f(LA) and the inverse image f−1(LB) are regular languages over B

and A respectively.

More generally, if f is a map from an alphabet A to the set of regular expressions over

another alphabet B, we say that f is a substitution. One can verify that the set of all

languages over A forms a semigroup under concatenation, and the set of regular languages

over A forms a subsemigroup. In this context, we define the image f(LA) of a language

LA ⊆ A∗ as follows: we first extend f to a semigroup homomorphism from A∗ to the

semigroup of regular languages over B, and then define

f(LA) :=
⋃

w∈LA

f(w)

11



Corollary 2.2.11. Let A and B be alphabets, for any substitution f between A and B, the

image f(LA) is a regular language over B.

We now introduce the operators of first-order predicate calculus on the class of regular

languages, with the goal of showing that, when regular languages are represented via finite

state automata, these logical operators correspond to concrete operations on the automata.

Firstly we have to define the notion of predicate:

Definition 2.2.12 (Predicate). Let A be an alphabet, a predicate P over A is a boolean-

valued function on A∗.

Note that there is a one-to-one correspondence between the predicates and the languages

over a given alphabet A, in which a predicate P : A∗ → {0, 1} corresponds to the language

P−1(1). So naturally we have the definition of regular predicates:

Definition 2.2.13 (Regular Predicate). Let A be an alphabet and let P be a predicate

over A. We say P is predicate if the corresponding language of it is regular.

The operators of first-order predicate calculus are logical ¬, ∧, ∨, ∃, and ∀. We can

define ¬, ∧, ∨ to languages via the following way, let A be an alphabet, and let L1, L2 be

languages over A, then:

1. We realize ¬L1 by A∗ \ L1.

2. We realize L1 ∧ L2 by L1 ∩ L2.

3. We realize L1 ∨ L2 by L1 ∪ L2.

Furthermore, the three newly realized languages are actually regular:

Lemma 2.2.14. Let A be an alphabet and let L1, L2 be regular languages over A. Then

A∗ \ L1, L1 ∩ L2, and L1 ∪ L2 are regular languages over A.

To realize the two remaining logical operators ∃ and ∀, we require some additional setup.

Firstly we have to define the notion for languages with many variables.
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Definition 2.2.15 (Many-Variable Language). Let A1, ..., An be alphabets, then the lan-

guage over (A1, ..., An) is a set of n-tuples of strings (w1, ..., wn), where wi ∈ A∗
i for each i.

A language over an n-tuple of alphabets is called an n-variable language.

Based on such many-variable language definition, we can extend our predicate’s defini-

tion to be:

Definition 2.2.16 (Predicate of Multi-Variable Language). Let A1, ..., An be alphabets,

then a predicate over (A1, ..., An) is a boolean valued function on A∗
1 × · · · ×A∗

n.

Now we can realize ∃ and ∀, we quantify over the last variable of the n-tuples in

(A1, ..., An):

1. The language ∃(L) is the language over (A1, ..., An−1) consisting of n − 1-tuples

(a1, ..., an−1) such that (a1, ..., an−1, an) ∈ L for some an ∈ An.

2. Similarly, the language ∀(L) is the language over (A1, ..., An−1) consisting of n − 1-

tuples (a1, ..., an−1) such that (a1, ..., an−1, an) ∈ L for all an ∈ An.

Recall the padded alphabet we defined in Definition 2.1.11, for any language L over (A1, ..., An),

the padded extension L$ is of L is a padded language over the corresponding padded alpha-

bet B. To be more specific, for each n-tuple (w1, ..., wn) ∈ L, let m = max{|w1|, ..., |wn|},

and we pad each wi with $i’s at the end to make sure that each entry of the padded n-tuple

(w′
1, ..., w

′
n) ∈ L$ is of length m.

Now, we are ready to perform predicate calculus on multi-variable regular languages:

Theorem 2.2.17 (Predicate Calculus). Let A1, ..., An be alphabets, and let L1, L2 be regular

languages over (A1, ..., An). Then the following hold:

1. The languages ¬L1, L1 ∧ L2, L1 ∨ L2 are regular languages over (A1, ..., An).

2. The languages ∃(L1) and ∀(L1) are regular languages over (A1, ..., An−1).

3. For any alphabet An+1, the language

{(w1, ..., wn, wn+1) | (w1, ..., wn) ∈ L1}

is a regular language over (A1, ..., An+1).
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4. For any permutation σ ∈ Sn of {1, ..., n}, the language

Lσ := {(w1, ..., wn) | (wσ(1), ..., wσ(n)) ∈ L}

is a regular language over (A1, ..., An+1).

Corollary 2.2.18 (Predicates Closed). The class of regular predicates is closed under the

operators ¬, ∧, ∨, ∃, ∀, ⇒, ⇔.

We conclude this introductory chapter with a central theorem in the theory of regular

languages—a fundamental tool for determining whether a given language is regular, the

proof can be found in [Sip96].

Theorem 2.2.19 (Pumping Lemma). Let A be an alphabet, suppose L is a regular language

over A. There exists a number p such that if s is any word in L of length |s| ≥ p, then it

can be divided into three pieces s = xyz and the following hold:

1. For each number i ≥ 0, xyiz ∈ L.

2. The length of the subword y should satisfy |y| > 0.

3. The length of the subword xy should satisfy |xy| ≤ p.
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Chapter 3

Geometric Group Theory
Background

3.1 Treating Groups as Languages

Definition 3.1.1 (Generating Set of a Group). A is a generating set for a group G if and

only if for all g ∈ G, it can be written as a factorization

g = a±1
1 · · · a±1

k (3.1)

for some a1, ..., ak ∈ A. Such a±1
1 · · · a±1

k is called a word.

Definition 3.1.2 (Word Length in Group). The word length of G with respect to the

generating set A, denoted by ℓ(g) is the smallest k for which such factorization (3.1) exists.

Since we are using machines, especially finite state automata to study group theoretic

problems, it is crucial to be able to speak of groups as languages, that is we have to consider

the relationship between groups with generators and languages over alphabets.

Definition 3.1.3 (Group Language Representation). Let G be a group and let A ⊂ G be

a finite set of elements of G, We interpret concatenation in language as multiplication in

the group G, we define a semigroup homomorphism π : A∗ → G. If w is a string over A,

we say that π(w) is the element of G represented by w, denoted by w.

Definition 3.1.4 (Semigroup Generator). If the semigroup homomorphism π defined above

is surjective, which means every element of G is represented by one or more string over the

set A, we say that A is a set of semigroup generators for G, or equivalently we say that A
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generates G as a semigroup. At the same time, we say A generates G as a group if A∪A−1

generates G as a semigroup.

Example 3.1.5. For example, the set {1} ⊂ Z generates Z as a group, not a semigroup.

But {2,−3} ⊂ Z generates Z as a semigroup, not a group.

Now, consider a group G and an alphabet A, we provide a more general definition

regarding the generators:

Definition 3.1.6 (Generators). Let G be a group, A be an alphabet, and p : A → G be a

map that need not be injective. We extend p to a semigroup homomorphism π : A∗ → G.

If this ho morphism is surjective, which is equivalent to saying that π(A) generates G as a

semigroup, we say that A is a set of semigroup generators for G. If π(A) generates G as a

group, we say that A is a set of group generators for G.

Remark 3.1.7. If the alphabet A has a total order, then we talk about an ordered set of

semigroup or group generators. Notation wise, if x ∈ A and g ∈ G, generally we write

gx instead of gp(x), x−1g instead of (p(x))−1g. Note that if we adjoin the end-of-string

symbol $ to the alphabet A, then we can also extend the homomorphism p so that p($) is

the identity element in G.

From now on, by the abuse of notation, by a set of semigroup or group generators, we

really mean a set together with the map p : A → G. Given an alphabet A, with the set

A∗ of all the strings over it, we care about some given language L ⊆ A∗, together with the

restricted map π|L : A∗ → G, again by the abuse of notation, we write it as π : L → G. The

case that we are most interested in is when π is surjective, when every group element g ∈ G

can be represented by at least one string in the language L over A. Among these desirable

situations, there is one that is the best, that is when π : L → G is one-to-one. In this

case we say that the language L has the uniqueness property. Even though the situation is

so tantalizing, a lot of languages associated to groups that we work on will not have such

property.

Remark 3.1.8. In order to be easier to be studies with groups, we often want the alphabet

A of semigroup generators to be closed under inversion, theoretically which means that
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there exists an involution ι : A → A such that p(ι(x)) = p(x)−1 for all generators x ∈ A.

We call ι(x) the formal inverse of generator x ∈ A, denoted x−1.

Now we are ready to see our first familiar example, which illustrates the idea of speaking

of groups in languages.

Example 3.1.9 (Free Group on Two Generators). Let F2 be the free group on two gener-

ators x and y, we choose the alphabet A = {x, y, x−1, y−1}, which is closed under inversion.

We let L ⊆ A∗ be the language of all reduced strings. Note that this language is regular, as

it can be accepted by the following finite state automaton. Furthermore, the map π : L → G

is a bijection.

S

y

y−1

x−1

xx−1

y

x

y−1

x−1

x

y

y−1

y

x

x−1

y−1

Example 3.1.10 (Free Abelian Group on Three Generators). Let G3 be the free abelian

group on three group generators x, y, z. We have the alphabet A = {x, y, z, x−1, y−1, z−1}

and consider the regular language L defined by the regular expression:

(x∗ ∨ (x−1)∗)(y∗ ∨ (y−1)∗)(z∗ ∨ (z−1)∗)

the map π : L → G will be bijective.

3.2 Group Presentations, the Dehn Function, and the Word
Problem

There has long been a deep connection between formal language theory and group theory.

One of the earliest and most significant is a decision problem known as the word problem
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for groups. Before stating this fundamental question, we first introduce one of the most

important notational tools in geometric group theory: the notion of a group presentation:

Definition 3.2.1 (Group Presentation). A group presentation is a pair (A,R), where A

is finite and R ⊆ F (A) which is the free group on A. We say (A,R) is finite if R is also

finite. The group defined by a presentation (A,R) is denoted by ⟨A|R⟩ = F (A)/N , where

N = ⟨⟨R⟩⟩, means the normal closure of R in F (A), that is the smallest normal subgroup

of F (A) that contains R. Elements of R are called the defining relators, while the elements

of N are called the relators.

Remark 3.2.2. Note that R is possibly infinite. We are interested in the case that a group

G = ⟨A|R⟩ is finitely presented.

Proposition 3.2.3. Let G be a finitely presented group with a presentation ⟨A|R⟩. Then

any word w ∈ F (A) is equivalent to the identity if and only if it can be written in the form:

w =
n∏

i=1

vir
±1
i v−1

i (3.2)

with ri ∈ R and vi ∈ F (A) for all i.

Then we can state the word problem for groups:

Definition 3.2.4 (Word Problem for Groups). Let G = ⟨A|R⟩ be a finitely presented group.

The word problem for G is the decision problem of determining, given a word w ∈ F (A),

whether there exists an algorithm that decides whether w represents the identity element

in G.

To make the connection between group theory and formal language theory more con-

crete, we introduce the following definition and result:

Definition 3.2.5 (Regularly Generated Group). Let G = ⟨A|R⟩ be a finitely presented

group and let L be a regular language over A. Then we say G is regularly generated if the

map π : L → G is surjective and the inverse image π−1(idG) ⊆ L is also regular.

Theorem 3.2.6 (Regularly Generated). Let G be a finitely presented group. Suppose G is

regularly generated, then G has a solvable word problem.
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Proof. Let G = ⟨A|R⟩ be a finitely presented and regularly generated group, and let w be

a word over the generating set A. We want to determine whether w represents the identity

element in G. By the definition of being regularly generated, there exists a regular language

L ⊆ A∗ such that:

1. Every element of G is represented by at least one string in L.

2. The subset L0 = {u ∈ L | u = idG} is also regular.

Now let π : F (A) → G be the natural projection from the free group F (A) onto G, and let

K = Ker(π) be its kernel. Then K consists of precisely those reduced words in F (A) that

represent the identity in G. Since G is finitely presented, K is recursively enumerable: we

can systematically list all finite products of relators (and their conjugates/inverses) in the

normal closure of R to generate every element of K.

We must decide whether w ∈ K. Although K might not be a decidable set, it is

recursively enumerable. We consider the set

A′ := π−1(w) = {u ∈ F (A) | π(u) = w}

Each word u ∈ A′ differs from w by a finite product of conjugates of the defining relators

in R or their inverses; equivalently, uw−1 ∈ K. Since K is recursively enumerable and R is

finite, we can enumerate all such finite insertions of subwords representing the identity in

all possible positions of w. This process systematically lists every u ∈ A′. Thus A′ is also

recursively enumerable.

Now we use the fact that L is regular, so L is at least recursively enumerable. Hence

their intersection A′∩L is recursively enumerable because the intersection of two recursively

enumerable sets is recursively enumerable. Moreover, because G is regularly generated,

A′ ∩ L is nonempty: there must be some word w′ ∈ L with w′ = w. An algorithm that

enumerates elements of A′∩L will eventually produce such a w′. At that point, we can check

whether w′ ∈ L0, i.e. if w′ = idG, by a simple membership test in the regular language L0.

This completes the decision procedure, proving that G has a solvable word problem.

This naturally leads to a more general question: how can we determine whether the
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word problem is solvable for a given finitely presented group G? To address this question,

we require additional setup and background.

Definition 3.2.7 (Combinatorial Area). Given a group presentation G = ⟨A|R⟩, let N be

the normal closure of R in F (A). Then the combinatorial area for w ∈ N is the smallest n

for which the factorization (3.2) exists.

Now we introduce a geometric notion: the Van Kampen diagrams. What’s the point of

studying such diagrams? Van Kampen diagrams provide a geometric way to illustrate and

construct factorization of the form (3.2)

Definition 3.2.8 (Van Kampen Diagram). Let A be a finite alphabet and let Ω be a finite

connected plane graph whose edges are oriented and labeled by elements of A. We call Ω a

Van Kampen diagram.

Definition 3.2.9 (Cell in Van Kampen Diagram). A bounded component C of R2\Ω is

called a cell.

Definition 3.2.10 (Boundary Label). Given a cell C, let e1, ..., ek be edges listed as we

traverse along ∂C in some direction starting from some vertex, then we define the boundary

label L(∂C) of the cell C as follows:

L(∂C) =
k∏

i=1

L(ei)
ϵi

where

ϵi =

{
1 if ei is traversed in positive direction

−1 if ei is traversed in negative direction

Remark 3.2.11. We should not think of L(∂C) as an element of F (A), but as an element

of W (A), the set of all finite words over the alphabet A ∪A−1, not necessarily reduced.

Definition 3.2.12 (Boundary of Van Kampen Diagram). By abuse of notation, we define

the boundary of the Van Kampen Diagram by ∂Ω = ∂U , where U is the unique unbounded

connected component of R2\Ω. We also define the Van Kampen Diagram boundary label

L(∂Ω) in the same way.
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With all these settings, we are ready to define the Van Kampen diagram over a group

presentation G = ⟨A|R⟩:

Definition 3.2.13 (Van Kampen Diagram over Group Presentation). Given a group pre-

sentation G = ⟨A|R⟩, we will say that Ω is a Van Kampen diagram over the presentation

⟨A|R⟩ if for any cell C of Ω, L(∂F ) ∈ R up to inverses or cyclic shifts.

Definition 3.2.14 (Disk Diagram). A Van Kampen Diagram Ω is called a disk-diagram if

R2\U is homeomorphic to a closed disk.

Theorem 3.2.15 (Van Kampen Lemma). Let G = ⟨A|R⟩ be a finitely generated group and

let w ∈ F (A). Then w = idG if and only if there exists a Van Kampen diagram Ω over

⟨A|R⟩ such that its boundary label satisfies L(∂Ω) = w.

Proof. Suppose w ∈ F (A) and w = idG. We want to show that there exists a Van Kampen

diagram Ω such that L(∂Ω) = w in W (A) and Area(Ω) ≤ Area(w). Let n = Area(w), so

by definition we will have w =
∏n

i=1 vir
±1v−1

i (Form (3.2)), note that this is an equality in

F (A). For each i, let Ωi be the lollipop diagram. Now let Ω be the union of all Ωi with

based points identified. Then we have Area(Ω) = n and L(∂Ω) =
∏n

i=1 vir
±1
i v−1

i . Now it

remains to do the cancellations in ∂Ω to make L(∂Ω) reduced and thus equal to w in F (A).

Conversely, suppose that w = L(∂Ω) for some Ω, the Van Kampen diagram over ⟨A,R⟩.

We want to show w = idG and Area(w) ≤ Area(Ω). We’ll do the case when Ω is a disk

diagram. We proceed by induction on Area(Ω). Firstly we claim that there exists a cell C

such that ∂C∩∂Ω is non-empty and connected. We fix such cell C and let z = L(∂C∩∂Ω).

Then if ∂C ∩ ∂Ω is traversed clockwise, we will have L(∂C) = zv for some v ∈ W (A)

and L(∂Ω) = zu = w for some u ∈ W (A). Let D be the original Van Kampen diagram:

D = R2\U for U to be the unique unbounded component of R2 \ Ω. Then D \ C is also

a disk Van Kampen diagram with Area(D \ C) = Area(D) − 1 and ℓ(∂(D\C)) = v−1u.

By the induction hypothesis, we have v−1u = idG and Area(v−1u) ≤ Area(D) − 1. Now

we have w = zu = zv(zv)−1zu = zv · (v−1u). Note that zv is a conjugate of an element of

R ∪R−1, hence zv = idG, therefore w = (zv) · v−1u = idG. Also we have

Area(w) ≤ Area(zv) +Area(v−1u) ≤ 1 + (Area(D)− 1) = Area(D)
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Note that same strategy also applies to the general case of Ω.

Definition 3.2.16 (Dehn Function). Let G = ⟨A|R⟩ be finitely presented. The Dehn

function of the presentation ⟨A|R⟩ is a function δ⟨A|R⟩ : N → Z≥0 defined as follows:

δ⟨A|R⟩(n) := max{Area(w) | w = idG and ℓ(w) ≤ n}

Note that by the Van Kampen Lemma (Theorem 3.2.15), Area(w) is also equal to

Area(w) = min{Area(Ω) | Ω is a Van Kampen Diagram with L(∂Ω) = w}

Definition 3.2.17 (Type of Van Kampen Diagram). A Van Kampen diagram Ω has type

(k, n) if Ω has k cells and ℓ(L(∂Ω)) = n.

Proposition 3.2.18. Let G = ⟨A|R⟩ be a fixed finitely presented group and let k, n ∈ N be

two fixed natural numbers. Then exists only finitely many Van Kampen diagrams of type

(k, n) over the fixed finite group presentation ⟨A|R⟩. Moreover, there exists an algorithm

listing all such diagrams for all k, n.

Definition 3.2.19 (Isoperimetric Inequality). If the group G has a finite presentation which

in turn has Dehn function that is bounded above by a function that is linear, quadratic,

etc., we say that G satisfies a linear, quadratic, etc., isoperimetric inequality.

Remark 3.2.20 (Group Invariance of Isoperimetric Inequality). Although the Dehn func-

tion depends on the group presentation, if ϕ1 and ϕ2 are Dehn functions for different pre-

sentations of the same group G, it is not hard to verify that given any n ∈ N, the following

inequality holds:

ϕ2(n) ≤ N1ϕ(N2n)

where N1 is the maximum area of an old relator in terms of new ones, while N2 is the

maximum length of a new generator in terms of old ones. This inequality tells us that the

isoperimetric inequality is group-invariant.

Theorem 3.2.21 (Solvable Word Problem for Group). Let G = ⟨A|R⟩ be a finitely pre-

sented group and let δ⟨A|R⟩ be the Dehn function of this presentation. Then the followings

are equivalent:
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1. The Dehn function δ⟨A|R⟩ is a recursive function.

2. There exists a recursive function f such that δ(n) ≤ f(n) for all n ∈ N.

3. The group G has a solvable word problem.

Proof. Note that the implication (1) ⇒ (2) is clear. For (2) ⇒ (3), we let w ∈ F (A) and

we need to determine whether w = idG or not. We let n = ℓ(w), recall that δ(n) ≤ f(n)

for all n ∈ N for some recursive function f . Hence there exists 0 ≤ k = δ(n) ≤ f(n) and a

Van Kampen diagram Ω over ⟨A|R⟩ of type (k, n) such that L(∂Ω) = w. So we have the

algorithm:

1. Compute f(n).

2. List all Van Kampen diagrams Ω of type (k, n) with 0 ≤ k = δ(n) ≤ f(n). If one of

these diagrams has L(∂Ω) = w, then w = idG, otherwise we will have w ̸= idG.

Finally, for (3) ⇒ (1), suppose the group G has a solvable word problem. Then for ann

n ∈ N, we need to compute δ(n). Firstly we can compute Wn := {w ∈ F (A) | ℓ(w) ≤

n and w = idG} since G has a solvable word problem. Then we compute δ(n) as follows:

for any w ∈ Wn, there exists some Van Kampen diagram Ω with L(∂Ω) = w. Since

for any k ∈ N, there exists finitely many diagrams of type (k, n), such diagrams can be

algorithmically enumerated. We can just list all such diagrams for k = 1, k = 2, and so on.

Until we find one with L(∂Ω) = w, now we set k(w) to be the smallest k that works for w.

By setting δ⟨A|R⟩(n) = max{k(w) | w ∈ Wn}, we are done.

3.3 Cayley Graphs and Hyperbolic Groups

Now, given a finitely presented group G = ⟨A|R⟩, the choice of a set of generators A for a

group G gives us a notion of distance in G, two distinct elements are at distance one if they

can be obtained from one another by right multiplication of a generator. By connecting such

neighboring elements with an edge labeled with the corresponding generator, we obtain the

Cayley graph of the group G with respect to the generator set A:
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Definition 3.3.1 (Cayley Graph). Let G be a group and let A ⊆ G be a generating set for

G, not necessarily symmetric and not necessarily excluding the identity. The Cayley graph

Γ(G,A) is the directed, edge-labeled graph defined as follows:

1. The vertex set of Γ(G,A) is G, each group element g ∈ G is a vertex in the graph.

2. For each g ∈ G and a ∈ A, there is a directed edge from g to ga, labeled by a ∈ A.

If A is symmetric, then Γ(G,A) can be viewed as an undirected graph.

Remark 3.3.2. Throughout, we assume that the generating set S is symmetric, meaning

that if s ∈ S, then s−1 ∈ S as well. This ensures that the corresponding Cayley graph is

undirected.

Recall that we mentioned before that two distinct elements are at distance one if they

can be obtained from one another by right multiplication of a generator, this gives us the

word metric on the Cayley graph Γ(G,A), denoted by dA. Clearly, the distance between

two elements g1, g2 ∈ G in the group metric is ℓ(g−1
1 g2), which is the word length of g−1

1 g2.

Definition 3.3.3 (Path in Cayley Graph). Given a word w over a set of semigroup gen-

erators A, we define a path ŵ : [0,∞) → Γ(G,A) in the Cayley graph as: if t ∈ [0,∞) is

an integer, the value ŵ(t) := w(t) is the image of the prefix of w of length t in the group

G. Then if t is not an integer, we move along the respective edges with unit speed, thus ŵ

travels at unit speed for parameter values in the interval [0, |w|], then stops.

We also introduce additional metrics that will be used throughout this thesis:

Definition 3.3.4 (Uniform Metric). Let X be any set and Y be a metric space with metric

dY , the uniform metric on the set of maps from X to Y is the metric defined by

dunif (f, g) := sup
x∈X

dY (f(x), g(x))

where f, g : X → Y are maps from X to Y .

Remark 3.3.5. Note that such uniform metric might be infinite if Y is not a bounded

metric space.

24



Definition 3.3.6 (Closed ϵ-Neighborhood). Let (X, d) be a metric space and let A be a

subset of a metric space (X, d). For ϵ ∈ R≥0, we define:

A+ϵ := {x ∈ X | d(x, a) ≤ ϵ for some a ∈ A}

to be the closed ϵ-neighborhood of A.

Definition 3.3.7 (Hausdorff Distance). Let (X, d) be a metric space and let A,B be subsets

of X. Then we define the Hausdorff distance between A and B to be:

dist(A,B) := inf{ϵ ≥ 0 | B ⊆ A+ϵ and A ⊆ B+ϵ}

We conclude this brief review of the fundamentals of geometric group theory by intro-

ducing the notion of word hyperbolic groups, which serves as one of the main motivations for

studying the central concept of this thesis: automatic groups. As a key class of examples

of automatic groups, hyperbolic groups play a crucial role in modern research in geometric

group theory.

To state the precise definition of a word hyperbolic group, we must first introduce the

notions of a geodesic space and a hyperbolic geodesic space.

Let (X, d) be a metric space, and consider a continuous path p : [a, b] → X. The length

of the path p, denoted length(p), is defined by

length(p) := sup
a≤t0≤t1≤···≤tn=b

n−1∑
i=0

d(p(ti), p(ti+1))

Based on such definition, we can define the notion of a geodesic in a metric space:

Definition 3.3.8 (Geodesic). Let (X, d) be a metric space, and let p : [a, b] → X be a

path. Then the path p is called a geodesic if its length length(p) is equal to the distance

between the two endpoints:

length(p) = d(p(a), p(b))

Thus, we can upgrade the normal metric space to a geodesic metric space:

Definition 3.3.9 (Geodesic Metric Space). A metric space (X, d) is a geodesic metric

space if for all x, y ∈ X, there exists a geodesic path p from x to y. If (X, d) is geodesic and

x, y ∈ X, by [x, y] we will denote a chosen geodesic from x to y.
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Remark 3.3.10. Note that a geodesic path is not necessarily unique.

We are now only a few steps away from defining the notion of a word hyperbolic group,

but a few more preparatory definitions are still required.

Definition 3.3.11 (Geodesic Triangle). Let (X, d) be a geodesic metric space, and let

x, y, z ∈ X. A geodesic triangle with vertices x, y, z is the union of any geodesics [x, y],

[x, z], and [y, z]. This triangle will be denoted by T = [x, y, z].

Based on such notion of geodesic triangle, we can define one condition for a geodesic

metric space to have hyperbolicity:

Definition 3.3.12 (δ-Slim Condition). Let (X, d) be a geodesic metric space, and let

T = [x, y, z] be a geodesic triangle in X. We say that T is δ-slim if for every point p on one

side of the triangle, say e1, there exists a point q on the union of the other two sides e2 ∪ e3

such that

d(p, q) ≤ δ.

We say that the geodesic space X satisfies the HypS(δ) condition if every geodesic triangle

in X is δ-slim.

There exist several equivalent formulations of hyperbolicity in geodesic spaces, including

the HypT (δ) condition for δ-thin triangles, the HypI(δ) condition for δ-insize (or δ-small),

and the HypG(δ) condition based on Gromov’s four-point criterion. These definitions are

equivalent up to scaling of the constant δ. However, introducing and verifying these equiv-

alences requires additional technical development that lies beyond the central scope of this

thesis. For this reason, we adopt the δ-slim triangle condition as our working definition of

hyperbolicity:

Definition 3.3.13 (Hyperbolic Geodesic Metric Space). Let (X, d) be a geodesic metric

space. We say that X is hyperbolic if it satisfies the HypS(δ) condition for some δ ≥ 0.

Finally, we can state the precise definition of word hyperbolic group:

Definition 3.3.14 (Word Hyperbolic Group). Let G be a finitely generated group and let

A be a finite generating set of G. Then G is word hyperbolic if its Cayley graph Γ(G,A) is

a hyperbolic geodesic metric space.
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The definition of a word hyperbolic group is independent of the choice of finite generating

set A, though this is not immediately obvious. This invariance can be established using

the notion of quasi-isometries. While a full treatment of hyperbolic metric spaces and

hyperbolic groups lies beyond the scope of this thesis, we introduce several key notions

below that will be used in the subsequent exposition.

Firstly we see the notion of quasi-geodesics, which will be revisited in Section 5.1.

Definition 3.3.15 (Pseudomap). Let (X, dX) and (Y, dY ) be metric spaces, a pseudomap

is a relation f : X → Y such that for every x ∈ X, there exists y ∈ Y that is f -related to

x, namely y = f(x).

A pseudomap can be thought of as a generalized function that may assign multiple

values to a single input. Although this notion is somewhat imprecise, it provides a useful

foundation for defining more refined concepts. We now introduce a sequence of definitions,

each building on the last, which will ultimately lead to the notion of quasi-geodesics.

Definition 3.3.16 ((k, ϵ)-Pseudomap). Let k ≥ 1 and ϵ ≥ 0 be real numbers, then a

(k, ϵ)-pseudomap f : X → Y is a pseudomap such that

dY (f(x1), f(x2)) ≤ k · dX(x1, x2) + ϵ

for all x1, x2 ∈ X and their corresponding choices f(x1), f(x2) ∈ Y .

If the (k, ϵ)-pseudomap satisfies one further condition, it will leads us to the (k, ϵ)-

pseudoisometric embedding :

Definition 3.3.17 ((k, ϵ)-Pseudoisometric Embedding). Let k ≥ 1 and ϵ ≥ 0 be real

numbers, then a (k, ϵ)-pseudoisometric embedding f is a (k, ϵ)-pseudomap f such that

dX(x1, x2) ≤ k · dY (f(x1), f(x2)) + ϵ

for all x1, x2 ∈ X.

Finally, we can define the (k, ϵ)-quasi-geodesic:

Definition 3.3.18 ((k, ϵ)-Quasi-Geodesic). Let k ≥ 1 and ϵ ≥ 0 be real numbers, then a

(k, ϵ)-quasi-geodesic in the metric Y is a (k, ϵ)-pseudoisometric embedding of an interval in

Y .
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Remark 3.3.19. While some mathematicians define a (k, ϵ)-quasi-geodesic as a function

from an interval into a metric space satisfying coarse distance bounds, our definition via

pseudoisometric embeddings allows greater generality, such as set-valued maps or partial

correspondences. When the pseudomap is single-valued and defined on the entire interval,

the two notions are equivalent up to reparameterization.

Definition 3.3.20 (Geodesic String). Let G be a group with a set of semigroup generators

A. A string w ∈ A∗ is called a geodesic if it has minimal length among all strings representing

the element w ∈ G.

Definition 3.3.21 (ShortLex-Geodesic String). Let G be a group with a set of semigroup

generators A. A string w ∈ A∗ is called a ShortLex-geodesic if it is the minimum with

respect to the ShortLex order among all strings representing the element w ∈ G.

Given the definition of geodesic string, we have the following result involving the uniform

metric and Hausdorff distance we defined earlier:

Lemma 3.3.22 (Hausdorff Implies Uniform). Let G be a group with a finite set A of

semigroup generators that is closed under inversion, and let L be a prefix-closed regular

language over A. Suppose that for any two geodesic strings u, v ∈ L whose images under

π : A∗ → G have distance at most 1, there exists a constant k > 1 such that the Hausdorff

distance between the corresponding paths û and v̂ in the Cayley graph Γ(G,A) is bounded

by k. Then, for any two elements α, β ∈ L giving rise to geodesics α̂ and β̂ ∈ Γ(G,A),

both starting at the basepoint and ending at a distance of at most one apart, the Hausdorff

distance between α̂ and β̂ is uniformly bounded by 2k.

Proof. Let |α| ≥ t ≥ 0, by hypothesis, there exists an s with |β| ≥ s ≥ 0 such that

d(α̂(t), β̂(s)) ≤ k. Now we claim |s− t| ≤ k, otherwise either α̂ or β̂ will fail to be geodesic.

Hence we conclude that for any t, we will have d(α̂(t), β̂(t)) ≤ 2k.
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Chapter 4

Automatic Group Theory

Throughout this thesis, we restrict our attention to synchronous automatic groups. Al-

though asynchronous automatic groups are also of significant interest and value, they fall

outside the scope of our present discussion. In synchronous automatic groups, the two

strings are read at the same speed by the multiplier automata (which will be defined later).

In contrast, for asynchronous ones, the two strings may be read at very different speeds.

4.1 Automatic Groups: Basic Definitions and Properties

String length is a fundamental concept in computation theory. It allows us to estimate the

computational cost of running a program on a given input. Sometimes, we want to estimate

how long it takes to rewrite a string and how the length of the resulting string compares to

the original.

In this section, we are working with group presentations and finite state automata to

define the notion of automatic groups, the main theme of this thesis. Recall from Proposition

3.2.3 that for a finitely presented group G = ⟨A|R⟩, any word w ∈ F (A) represents the

identity element in G if and only if it can be written in the conjugate product form (3.2).

Based on this decomposition, we introduced the notions of combinatorial area (Definition

3.2.7) and the Van Kampen diagram (Definition 3.2.8).

It turns out that when a reduced word representing the identity is written in the conju-

gate product form (3.2), one can often rewrite this product into a longer one while main-

taining control over its structure. Estimating the cost of such rewriting processes requires

additional tools. To that end, we briefly introduce the notion of a dual Van Kampen dia-
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gram, which plays a central role in the analysis that follows.

Briefly speaking, given a finitely presented group G = ⟨A|R⟩ and a reduced word w ∈

F (A) that represents the identity in G and is expressed in the conjugate product form

(3.2), we can begin constructing a lollipop diagram. This diagram is drawn by placing the

conjugates of the relators vir
±1
i v−1

i around a central basepoint (representing the identity

element), arranged clockwise.

Each conjugate vir
±1
i v−1

i can be visualized as a path: starting at the basepoint, one

follows a directed path labeled by vi, which ends at a vertex where a loop labeled by the

relator r±1
i is attached. After traversing the loop, one returns to the basepoint by retracing

the inverse path v−1
i . In this way, the entire term vir

±1
i v−1

i is represented geometrically as

a “lollipop” consisting of a stick (the path) and a head (the loop).

Starting from the lollipop diagram, we construct the dual Van Kampen diagram by

folding together adjacent edges that have the same label but opposite orientations. In the

setting of a free group, this corresponds to pairing off adjacent edges labeled by inverse gen-

erators. In the diagram, each such pairing is indicated by an arc connecting the midpoints

of the corresponding edges, visually representing their cancellation.

After performing a finite number of such pairings and replacements, we enclose the

entire diagram within a large outer circle. The remaining unmatched edges of the lollipop

diagram are then connected to the boundary circle, preserving both label and orientation.

The resulting structure is the dual Van Kampen diagram.

This diagram consists of several regions or “holes”, whose number is equal to the combi-

natorial area of the word w. The diagram also contains internal edges connecting the holes

to one another, as well as edges connecting the holes to the boundary circle. These struc-

tural features will play a key role in the estimates and arguments that follow. The detailed

construction and its viewpoint from differential topology can be found on [ECH+92, Page

42].

Lemma 4.1.1 (Bounding Lengths). Let G = ⟨A|R⟩ be a finitely presented group and let

w ∈ F (A) be a reduced word that is equivalent to the identity element of the group. Suppose

w is expressed as a product of n conjugates of relators of the form (3.2). Let k be the
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maximal length of a relator ri ∈ R. Then we can rewrite the product so that each vi has

length at most (|w|+ 2k)2n.

Proof. Given a word w which is equivalent to the identity element of the group G and

is written in the conjugate form (3.2), we can construct a dual Van Kampen diagram as

described above. Since the decomposition of the conjugate form is assumed to have n terms,

the dual Van Kampen diagram will have n holes. We let p be the basepoint of the word

w in the diagram. We start by cutting the diagram along all arcs that begin or end at a

hole. After such cutting, we will have multiple connected components, and we pay special

attention to the connected component P that contains p. Now, since we have cut out all

the arcs originated from or ended at the holes, the only remaining arcs are those running

from the boundary of the diagram to itself note that there are at most 1
2 |w| of them. Now,

we want to connect the basepoint p to the basepoint of one of the loops in the diagram by a

path u, in order to construct such path we have to cross at most 1
2 |w| of such arcs, and it is

also possible that once we touch the hole we want to connect, we have to travel additional

1
2 |k| distance to get to the basepoint of the hole, thus we have to travel the length at most

1
2(|w|+ k) along the constructed path u.

Now, we cut the diagram open along the constructed path u, which will give us a diagram

with one fewer holes. Note that the new boundary of the diagram will be w′ = wuru−1,

assuming u is connecting the basepoint of the original w to the basepoint of the relator

r. By assumption r has length at most k, and from the computation above we know that

|w′| is bounded by |w| + 1
2(|w| + k) + k + 1

2(|w| + k) = 2(|w| + k). Observe that w′ now

can be written as the product of n− 1 conjugates of relators and we have w = w′ur−1u−1,

by continuing such fashion, we can show by induction on n such that the upper bound

(|w|+ 2k)2n follows.

Remark 4.1.2. The bound from lemma 4.1.1 can be used to show the bounds of the

recursive function f(n) used in Theorem 3.2.21.

Definition 4.1.3 (Automatic Group). Let G be a group and A be a semigroup generator of

G. We define the word acceptor W , which is a finite state automaton over A, that satisfies:

any group element g ∈ G can be represented as a string in the language L(W ). For any
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x ∈ A∪{ε}, we define the multiplier automaton Mx such that (w1, w2) ∈ L(Mx) if and only

if w1, w2 ∈ L(W ) and w1x = w2. Then an automatic structure on G consists of the data

(A,W,L,Mx), and the group G is an automatic group if it admits an automatic structure.

For ε, we call Mε the equality recognizer.

Note that an automatic structure is sometimes called an automation.

Remark 4.1.4. Although the full notation of an automatic structure of a finitely presented

group G = ⟨A|R⟩ should be (A,W,L,Mx), sometimes by the abuse of notation we simply

write (A,W ) or (A,Mx) to show the information for certain usage. We will also use the

notation (A,L), where L is a language from the finite state automaton W , to represent such

automatic structure.

In some cases, the language L associated with an automatic structure of a group G can

be large and structurally intricate. The following corollary establishes that it is sufficient

to analyze certain restricted languages instead.

Proposition 4.1.5 (Restriction is Automatic). Let (A,L) be an automatic structure for

a group G. Suppose L′ ⊂ L is a regular language over the alphabet A that maps onto G.

Then (A,L′) also gives us an automatic structure for the group G.

In an automatic structure, the accepted pairs (w1, w2) in the automaton Mx encode

controlled relationships between elements of the group. This not only provides a com-

putational framework for understanding word representations but also imposes geometric

constraints on the word metric. In particular, words related by the same automaton exhibit

a form of metric control, meaning their corresponding elements in the group remain within

a uniformly bounded distance. Intuitively, this ensures that words w1 and w2 recognized

by Mx cannot drift too far apart in the Cayley graph. The following lemma formalizes this

property by establishing an explicit bound.

Lemma 4.1.6 (Lipschitz Property). Let G be an automatic group with automatic structure

(A,Mx). Then there exists a constant k such that if (w1, w2) is accepted by Mx for one

x ∈ A ∪ {ε}, the distance between w1(t) and w2(t) in the word metric will be bounded by

such k for any integer t ≥ 0.
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Proof. Without loss of generality we assume all automata are normalized, and let the con-

stant c be the maximum number of states in the automata Mx for any x ∈ A ∪ {ε}. Now

given any integer t ≥ 0, suppose the multiplier automaton Mx has read the prefixes w1(t)

of w1 and w2(t) of w2, and the automaton is now in the state S. We consider the shortest

path representation (u1 × u2) ∈ A∗ ×A∗ of arrows to an accept state of Mx, then we know

that both u1 and u2 should have length less than c, and the pair (w1(t)u1, w2(t)u2) should

be accepted by the automaton Mx. By acceptance we get w1(t)u1x = w2(t)u2, and the

distance between w1(t) and w2(t) in the Cayley graph of the group G is at most 2c − 1,

hence such Lipschitz constant k exists.

Remark 4.1.7. The constant k depends on the automatic structure, thus it is called

a Lipschitz constant for the automatic structure, the name of such property comes from

analysis. By the definition of uniform metric (Definition 3.3.4), the Lipschitz property tells

us that if w1 and w2 are at a distance at most one from each other, the paths ŵ1 and ŵ2 are

at distance at most k from each other in the uniform metric on paths in the Cayley graph.

Lemma 4.1.8 (Bounded Length Difference). Let G be an automatic group with an au-

tomatic structure (A,L). Then there exists a constant N with the property that for any

accepted word w ∈ L and for any g ∈ G of distance at most 1 from w, the following hold:

1. The vertex g has some representative of length at most |w|+N in L.

2. If some representative of g in L has length greater than |w| + N , the number of

representatives of g in L will be infinite.

Proof. Firstly let the constant N be greater than the number of states in any of the auto-

matic structure’s automata, let w ∈ L be accepted and g ∈ G be a vertex in the Cayley

graph with distance at most one from w as stated in the assumption, we let w′ be any repre-

sentative of g in the language L, by assumption, one of (w,w′) or (w′, w) should be accepted

by some multiplier automaton Mx for some x ∈ A ∪ {ε}. Now note that if |w′| > |w|+N ,

then after reading all of w, Mx will undergo more than N transitions, recall that N is

greater than the number of states in any of the automata, which indicates Mx should visit

the same state twice. Now we consider two operations: firstly, if we eliminate the loop
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between two visits to the repeated state, we can shorten w′ but still get an accepted word

that represents the same group element g, thus 1 follows. Then, if we take arbitrarily more

traverse around the loop, we will lengthen w′ and still get an accepted word that represents

g, hence 2 follows.

Theorem 4.1.9 (Quadratic Isoperimetric Inequality). Let G be an automatic group. Then

the followings hold:

1. The group G = ⟨A|R⟩ is finitely presented.

2. The group G satisfies a quadratic isoperimetric inequality.

Proof. We let L be the language of accepted words of an automatic structure of the group

G over A. For any word w, the prefixes w(t) have representatives ut ∈ L of length at

most N |w| + n0 with constants N and n0 given by Lemma 4.1.8. Now for each fixed t,

the representatives ut and ut+1 are one generator apart, denoted by xt. We know that

the uniform distance ût and ût+1 is bounded by the Lipschitz constant k of L by Lipschitz

property (Lemma 4.1.6), so the loop utxtu
−1
t+1 can be decomposed into at most N |w| + n0

loops of length at most 2k + 2. If w is a loop, then it can be decomposed into at most

N |w|2+n0|w| loops of length at most 2k+2 as well. Now we can get a finite set of relators

for G by taking all loops up to the length of 2k+2, and we see that in terms of such group

presentation ⟨A|R⟩, G satisfies a quadratic isoperimetric inequality.

In other words, any word w representing the identity can be written in the form (3.2)

with n = O(|w|2) time complexity. By Remark 3.2.20, the following result holds:

Corollary 4.1.10. Let G be an automatic group, then it satisfies a quadratic isoperimetric

inequality with respect to any group presentation.

Theorem 4.1.11 (Quadratic Algorithm). Let G be an automatic group and (A,L) an auto-

matic structure for G. Then for any word w over A, we can find a string in L representing

the same element of G as w in time proportional to |w|2.

Proof. Without loss of generality we assume the multiplier automata Mx for any x ∈ A are

normalized. Suppose we have an accepted string u and a generator x, the problem is we

34



want to find a representative v of ux that can be accepted. We let S0 be the set containing

only the initial state s0 of Mx. Then for i > 0, we inductively define Ti as the set of arrows

with source in Si−1 together with label (xi, yi). For xi, if i ≤ |u|, it equals the ith character

in u, and of i > |u|, it simply equals $, and yi ∈ A ∪ {$} is arbitrary. We define Si as the

set of targets of arrows in Ti. We define the number n to be the smallest number such that

n ≥ |u| and Sn includes an accept state of Mx. Now we have the labels y1, ..., yn, by reading

off these labels we will get a path of arrows joining the initial state to an accept state,

forming the string v′ = y1 · · · yn representing ux. Finally we get v by simply discarding the

trailing $’s.

Observe that the time taken by each step in such inductive construction is guaranteed

to be bounded by a constant, because there are only finitely many arrows and states. Thus

the overall time is proportional to the number n defined above, from Lemma 4.1.8 we know

that such n can only exceed |u| by a bounded amount N , otherwise it will no longer be

minimal. This implies that given an accepted string u, we can find a representative for ux

in O(|u|) time, and the found representative’s length is bounded from above by |u| + N .

Now if we replace the pair (xi, yi) by the reserved one in the previous construction, we will

have similar estimates when we multiply u by x−1.

By repeating this process, we can find a representative of w of length at most N |w|+nid,

note that nid is the length of a representative of the identity. The time takes is calculated

by:

O(

|w|∑
i=1

(N · i+ nid)) = O(|w|2)

Finally, we note that the entire process is constructive, we can find an accepted representa-

tive of the identity element from the automatic structure. We start with arbitrary accepted

string x1 · · ·xn and we use the procedure above to multiply successively by x−1
n , ..., x−1

1 .

Corollary 4.1.12. Let G be an automatic group and let (A,L) be an automatic structure

for G. Suppose we know some word e over A representing the identity element of the group

G. Then we can solve the word problem for the group G in quadratic time.

Proof. For a desired word w, we can solve the word problem by finding a representative in

L for this desired word, then feeding it and e together to the equality recognizer Mε.
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Sometimes instead of studying the identity directly, we can study the neighborhood

around the identity, and such intuition gives us the definition of so-called standard automata,

as defined below.

Definition 4.1.13 (Standard Automata). Let G be a group and let A be a set of semigroup

generators of G. LetW be a deterministic finite state automaton over A and letN be a fixed

finite neighborhood of the identity in G. Suppose N contains A, then for each x ∈ A∪{ε},

we define a finite state automaton Mx over (A,A), called the standard automaton Mx based

on (W,N ), constructed precisely as the following:

Let W ′ be a finite state automaton over A ∪ {$} with the accepted language L(W )$∗,

and let S be the state set of W ′. The automaton Mx has S × S × N as its set of states.

The initial state is (s0, s0, e), where s0 is the initial state of W ′ and e is the identity of

G, We treat all states of the form (s1, s2, g) as a single failure state, where s1 or s2 is a

failure state of W ′. For the transition function, if Mx is in the state (s1, s2, g) and it reads

a letter (y1, y2) ∈ B for the padded alphabet B associated to (A,A), it goes to the state

(s1y1, s2y2, h), where h = y−1
1 gy2. But if h /∈ N , Mx will directly go to the failure state.

The accept states of Mx are the states of the form (s1, s2, x), where s1 and s2 are accept

states of W ′.

Remark 4.1.14. The basic idea for such standard automata is that Mx will keep track on

the action of the deterministic finite state automaton W on the input strings and the word

difference between the prefixes so far.

Example 4.1.15. For example, we can take the set of elements of G with word length at

most k as a fixed finite neighborhood N of the identity in G.

Now, by Theorem 4.1.11, if a group G has an automatic structure, we can solve the

word problem and thus know the neighborhood N . However, we often want to build the

standard automata without knowing any prior knowledge of an automatic structure of G,

instead we want to find one. In this situation, sometimes we can obtain information from

other sources about what a neighborhood N of the identity looks like, then this gives us

the possibility to bootstrap the procedure from such restricted but useful knowledge, as

indicated by the following standard automata theorem:
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Theorem 4.1.16 (Standard Automata Theorem). Let G be an automatic group with au-

tomatic structure (A,W ). Suppose N is a sufficiently large but finite neighborhood of the

identity. Then the standard automata based on (W,N ), together with the alphabet A will

also give an automatic structure of the group G.

Proof. By the Lipschitz property (Lemma 4.1.6), there is a constant k > 0 such that if

(w1, w2) is accepted by any of the original automata, the uniform distance between the

paths ŵ1 and ŵ2 : [0,∞) → Γ should be less than k. We let the neighborhood N contain

the ball of radius k about the identity element in the Cayley graph, and we let Mx be the

corresponding standard automata for x ∈ A ∪ {ε}. Now it suffices to check the definition

of being an automatic structure (Definition 4.1.3). Note that the first condition is trivially

satisfied, while the second condition is satisfied by the following: the forward direction is

trivial to check. Conversely, we let (w1, w2) be a string over (A,A), if w1 and w2 are accepted

by W and w1x = w2 for some x ∈ A, the pair (w1, w2) will be accepted by the original

multiplier automaton, and therefore the distance between w1(t) and w2(t) in the Cayley

graph should never exceed the chosen fixed value k. By definition of the neighborhood N ,

this implies that w1(t)
−1

w2(t) ∈ N for all t ≥ 0, thus (w1, w2) is accepted by Mx, meaning

(w1, w2) ∈ L(Mx).

Now, with the existence of standard automata, we have the following characterization

of an automatic structure:

Theorem 4.1.17 (Characterizing Synchronous). Let G be a group with a finite semigroup

generator A and let W be a finite state automaton over A. Suppose the map π : L(W ) → G

is surjective. Then A and W are part of an automatic structure on G if and only if there

exists a number k with the following property: for any two strings w1 and w2 accepted by

W which are one generator apart, the corresponding paths ŵ1 and ŵ2 are less than k apart

with respect to the uniform distance.

With this theorem in mind, we can see some examples of automatic groups. Recall that

the groups in Example 3.1.9 and 3.1.10 we have seen before are clearly automatic.
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Example 4.1.18 (Finite Group). Any finite group G is automatic. We take the alphabet

A equal to G and for the word acceptor W , we simply take an automaton which accepts

any string over A.

Remark 4.1.19. The example of finite group tells us that given an automatic structure,

it is possible that the map π : L(W ) → G is far from being bijective.

Open Question 4.1.20 (Isomorphism Problem for Automatic Group). Is the isomorphism

problem solvable for automatic groups? In other words, is there an algorithm that takes two

automatic groups as inputs and decides whether they are isomorphic or not? The current

conjecture is that there is no such algorithm, how to prove the non-existence?

Next, we aim to show that the property of being automatic is independent of the choice

of generators. This independence is a fundamental feature that distinguishes automaticity

from many earlier approaches to combinatorial group theory, where the specific presentation

of a group plays a crucial role.

Theorem 4.1.21 (Automaticity is Generator Invariant). Let G be a finitely presented

group with an automatic structure (A1,W1), and let A2 be another finite set of semigroup

generators of G. Then there exists another finite state automaton W2 over A2 such that

(A2,W2) also gives an automatic structure on G.

Proof. We first claim that adding or removing a generator equal to the identity element does

not affect the automatic structure of the group. Let A2 = A1 ∪ {e}, by abuse of notation

we mean e maps to the identity of the group G. We can simply take W2 = W1, except we

change the underlying alphabet from A1 to A2. Since the word metric does not change, by

Theorem 4.1.17 we know that (A2,W2) is also an automatic structure on G. Now we have

proved the case of adding, we also want to show the case of deleting: we let A1 = A2 ∪ {e}.

If A2 is empty, we know that A1 = {e}, indicating that G is trivial. By Theorem 4.1.17,

the language {ε} over the empty alphabet gives an automatic structure on G trivially.

Next, we consider the situation when A2 is nonempty. Note that when e appears in a

string in the language L(W1), we cannot simply delete it to obtain a corresponding string in

L(W2), this is because Theorem 4.1.17 requires that a pair ŵ1, ŵ2 of accepted strings should
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be uniformly near to each other when their endpoints are within distance 1 in the Cayley

graph. Deletion of e’s in the string might cause these paths to stop keeping pace with each

other. Instead of simply deleting all e, we find a string z over A2 with the properties that

it has nonzero length |z| = m and it also maps to the identity. We then define the new

language L2 of accepted strings by the following way: for each accepted string of L(W1),

we replace every m-th occurrence of e by z, then we delete all the remaining e in the string.

Now we want to show the newly constructed L2 is regular, we prove by constructing a

generalized non-deterministic finite state automaton over A2 that accepts L2, recall that

non-deterministic finite state automaton is equivalent to deterministic finite state automa-

ton by Theorem 2.2.4. A state of this automaton is of the form (s, i), where s is a state of

the automaton W1 and i is an integer such that 0 ≤ i < m, which is an indicator of how

much the modified string is out of the phase with respect to the original one. The start

state will be (s0, 0), where s0 is the start state of the automaton W1, and the accept states

are (s, i), where s is an accept of W1. For the transition function, each arrow (s, x, t) of W1

gives rise to m arrows in the new automaton by the following way: if x ̸= e, the new arrows

are ((s, i), x, (t, i)) for 0 ≤ i < m. If x = e, the new arrows will be ((s, 0), z, (t,m− 1)) and

((s, i), ε, (t, i− 1)) for 1 ≤ i < m. We see that a string in L2 that leaves the new automaton

in the accept state (s, i) is i characters longer than some corresponding string accepted by

W1, and they represent the same element in G. Note that i is bounded by m, thus such

automaton is valid by Theorem 4.1.17.

Now we proved simple cases, we want to tackle the case when A2 is arbitrary. Without

loss of generality we assume A1 and A2 contain an identity element. We choose a number

c > 0 such that any element of A1 can be written as a string of length of at most c over A2,

and a number c′ such that any element of A2 can be written as a string of length at most c′

over A1. Such c and c′ exist because both A1 and A2 are sets of generators for G. For each

x ∈ A1, we take a string ux ∈ A2 of length c representing x, we use the trivial generator to

pad the length if necessary. From this we define the new language L(W2) by replacing x by

ux in the strings of L(W1). Firstly note that by Lemma 2.2.10 this language is regular. It

is clear that the map from L(W2) to G is surjective, we let the number k given by applying

Theorem 4.1.17 to the automatic structure (A1, L1). Finally, we claim that Theorem 4.1.17
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is satisfied for the automatic structure (A2, L2) with the bound c+ kcc′.

To see why this claim holds, recall that we have two sets of generators: A1 and A2.

They give rise to corresponding Cayley graphs Γ1 and Γ2. Consider two accepted strings in

Γ2 representing elements u and v in G such that u and v differ by right multiplication by

a generator x ∈ A2. By substitution of strings over A1, we get these two strings. We let x

and y be paths in Γ2 corresponding to prefixes of equal length, we want to show that their

distance in Γ2 should be bounded. We start by finding c and d in Γ1 also corresponding to

prefixes of equal length, and the distances d(x, c), d(y, d) are at most c/2. We also express

the generator x ∈ A2 as a product of at most c′ generators in A1 by assumption, here

suppose we have x = yz for generators y, z ∈ A1.

Next we bridge the gap between u and v in Γ1 by a sequence of at most c′ − 1 adjacent

points, using the expression of x in terms of generators in A1. We draw auxiliary paths from

the basepoint of these adjacent points, and mark off points corresponding to the prefixes

of the same length as c and d. By assumption the distance in Γ1 between each of these

auxiliary points and the next is bounded by k, so we know that the distance in Γ1 between

c and d is at most kc′. Thus the distance between c and d in Γ2 is bounded by kcc′. Hence,

by adding all the bounds, we get the bound c+ kcc′, which concludes the proof.

By Theorem 4.1.21, we observe that while a finitely presented group G may admit an

automatic structure that is well-behaved with respect to one generating set, it may also

possess a more complex and less practical automatic structure under a different choice of

generators. The theorem assures us that we can work with the more convenient structure

without loss of generality, as the property of being automatic is invariant under a change

of generators.

4.2 Automatic Groups: Further Properties and Variants

Recalling Example 4.1.18 along with Remark 4.1.19, we observe that the language of ac-

cepted strings in the automaton for a finite group may provide little to no meaningful

information about the group itself. In the following, we examine several interesting proper-
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ties that such languages may exhibit. The first generally desirable property is the following:

Definition 4.2.1 (Uniqueness Property of Group Language). The language of accepted

strings of an automatic group is said to satisfy the uniqueness property if each group element

has a unique representative in the language.

Next we want to combine the notion of geodesic string (Definition 3.3.20) and automatic

group. We see an example here first, which is a generalization of Example 3.1.9.

Example 4.2.2. Example 3.1.9 can be generalized to any group G with any set A of

semigroup generators. We set L equal to the set of strings over A which are shortest

representatives for elements of G. Then the map π : L → G is usually not bijective, but it

is certainly surjective and finite-to-one because for any g ∈ G, all elements of π−1(g) ∩ L

must have the same length, and therefore they are finite in number.

From this example we see that the languages of all geodesic strings maps finite-to-one

onto G, but in general such language does not have to be regular, even not to be recursively

enumerable.

Definition 4.2.3 (Geodesically Automatic Group). Let G be a group with a set A of

semigroup generators. Then G is strongly geodesically automatic if the language of all

geodesics over A forms the whole language part of an automatic structure for G. On the

other hand, if there exists some language consisting only of geodesics that is part of the

language of an automatic structure for G, we say that G is weakly geodesically automatic.

In other words, a group is said to be weakly geodesically automatic if it admits an

automatic structure in which every accepted string is geodesic. In contrast, a group is

strongly geodesically automatic if the language of all geodesics forms the language of an

automatic structure for the group.

It should be noted that, in general, the language of all geodesics is not even a regular

language. If it were, the group would have a solvable word problem by Theorem 3.2.6.

In fact, the concept of automatic groups originated from Cannon’s study of the lan-

guages of geodesics in discrete groups of hyperbolic transformations [Can84]. In his paper,
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Cannon examined a particularly well-behaved class of geodesic languages: they remain reg-

ular regardless of the choice of generators. He implicitly provided a criterion for a group to

satisfy this property. Here, we present a more general criterion due to Epstein.

Theorem 4.2.4 (Geodesic Automaton). Let G be a group with a finite set A of semigroup

generators that is closed under inversion. Let L be a prefix-closed regular language over

A and let L0 be the language of geodesic strings in L, suppose L0 maps onto G under

π : A∗ → G. Then for any two geodesic strings u, v ∈ L whose images under π are of

distance at most one from each other, if there exists a number k > 1 such that the Hausdorff

distance between the paths û and v̂ in the Cayley graph Γ(G,A) is bounded by such k, the

pair (A,L0) will give an automatic structure for G.

Proof. Note that it suffices to show L0 is a regular language by Theorem 4.1.17, we have to

ensure that each prefix is a geodesic. Let V be a finite state automaton accepting L, and

let N be a ball of radius 2k in G around the identity element. We want to construct the

standard automata Mx for all x ∈ A ∪ {ε} based on (V,N). Firstly we claim the following

language Lx is regular by Corollary 2.2.18:

Lx := {w ∈ L | (w,w′) ∈ L(Mx) ⇒ |w| < |w′|}

Likewise, the language L′ :=
(⋃

x∈A Lxx ∪ {ε}
)
∩L is also regular. We let L′′ be the largest

prefix-closed subset of L′, note that L′′ is regular by Theorem 2.2.9. Now, we claim that

L′′ = L0.

Since L is prefix-closed, the nullstring ε is geodesic and is indeed contained in L, therefore

ε ∈ L0 and ε ∈ L′′. Now we take any nontrivial string w ∈ L′′ and suppose w = ux for

some x ∈ A. We want to show w is a geodesic. Let v ∈ L be a geodesic string with v = ux,

by Lemma 3.3.22, v and u are uniformly bounded by 2k apart. Since v and u are both in

L, (u, v) will be accepted by Mx. By the construction of L′′, we have ux ∈ L′ and u ∈ Lx,

which implies that |v| > |u| strictly. Thus w = ux is also a geodesic, hence w ∈ L0, this

concludes L′′ ⊆ L0.

Conversely we take any w ∈ L0, we want to show w ∈ L′′. We claim that any prefix

u of w is in L′, and we show this by induction on the length of |w|. The base case of
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the null prefix is trivial, we assume u = vx for some x ∈ A. Since L is prefix-closed by

assumption, we have v ∈ L. We have to show v ∈ Lx, which is equivalent to show for

any (v, v′) ∈ L(Mx), |v′| > |v|. This follows by the fact that u is a geodesic string and

u = v′ ∈ G, hence |v′| ≥ |u| > |v|. Hence L0 ⊆ L′′ and we conclude the proof.

The requirement that an automatic structure (A,L) be strongly geodesic is indeed quite

restrictive. If the generating set A is closed under inversion, then the automatic structure is

said to be symmetric, meaning that L = L−1. A weaker notion of symmetry is introduced

in the following definition:

Definition 4.2.5 (Biautomatic Group). Let G be an automatic group with automatic

structure (A,L) and assume that A is closed under inversion. Then the automatic structure

(A,L) is biautomatic if (A,L−1) also gives an automatic structure for G, and the group G

is called a biautomatic group if it admits a biautomatic structure.

Similar to Theorem 4.1.17, which is used to characterize the automatic structure, we

also want to have a way to characterize biautomatic structure:

Theorem 4.2.6 (Characterizing Biautomatic). Let G be a group and let A be a finite set

of generators closed under inversion. Let (A,L) be an automatic structure such that L

maps onto G. Then (A,L) is biautomatic if and only if for each w ∈ L and each pair of

generators x, y ∈ A, the uniform distance between the path x̂wy and the path corresponding

to any element of L representing xwy is bounded by a fixed constant k > 1.

Proof. The language L−1 is regular by Theorem 2.2.7, thus the result follows simply from

Theorem 4.1.17.

As one may have noticed, this result is indeed very similar to Theorem 4.1.17, with

the key difference that we additionally allow multiplication by generators on both the left

and the right. This result also implies that any automatic structure on an abelian group is

biautomatic. However, the reverse direction is still an open question:

Open Question 4.2.7. Does there exist an automatic group that does not admit any

biautomatic structure?
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As one might expect, biautomaticity is also independent of the choice of generators. We

state this result here without proof, as its justification closely parallels that of Theorem

4.1.21.

Proposition 4.2.8. The property of a group being biautomatic is independent of the choice

of generators.

As a group theoretic problem, the conjugacy problem is also heavily studied as the

isomorphism problem. It is still unknown that whether the conjugacy problem is solvable

for automatic groups. But a certain conclusion can be provided for biautomatic groups.

Definition 4.2.9 (Conjugacy Problem). Suppose we are given a group G with a finite

generating set and two elements g, h ∈ G. The conjugacy problem asks whether there exists

an element x ∈ G such that xgx−1 = h. A group G is said to have a solvable conjugacy

problem if there exists an algorithm that, given any two elements g, h ∈ G, decides whether

they are conjugate.

Theorem 4.2.10 (Biautomatic Implies Solvable Conjugacy Problem). If a group G has a

biautomatic structure, then it has a solvable conjugacy problem.

Proof. Let A be the set of generators and let L be the language of accepted words over

A. Given a word p over A, we claim that we can construct a finite state automaton Mp

such that a pair of strings (u, v) over A is accepted if and only if up = v and u, v ∈ L. We

proceed by induction, if p = p′x with x ∈ A, then the following two languages are equal to

each other:

{(u, v) | u ∈ L ∧ v ∈ L ∧ up = v}

and

{(u, v) | (∃w)((u,w) ∈ L(Mp′) ∧ (w, v) ∈ L(Mx))}

where Mx is a multiplier automaton and we assume that Mp′ has already been constructed.

By predicate calculus (Theorem 2.2.17), the latter language is regular, thus the induction

holds. Note that G is biautomatic, we can also construct in a similar way a finite state

automaton M q that accepts a pair (u, v) if and only if u, v ∈ L and u = qv. Combining the
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two finite state automata Mp and Mq, we get a finite state automaton M q
p that accepts a

pair (u, v) if and only if u, v ∈ L and up = qv. Hence we see that the conjugacy problem is

solved by simply asking whether the finite state automaton M q
p accepts some string of the

form (u, u).

Open Question 4.2.11. Is the conjugacy problem solvable for automatic groups?

Besides the ordering by word length, another ordering that proves to be both useful and

crucial in this context is the ShortLex ordering.

Definition 4.2.12 (ShortLex-Automatic Group). Let G be a group with a set A of semi-

group generators. Then G is ShortLex-automatic if the language of all ShortLex-geodesics

over A forms part of an automatic structure for G.

Why is ShortLex-automaticity interesting? Recall that we previously defined the

uniqueness property of the language of an automatic group, which is a highly desirable

feature. It turns out that being ShortLex-automatic serves as an indicator of the unique-

ness property, as stated in the following theorem.

Theorem 4.2.13 (Uniqueness Property). Let G be an automatic group with an automatic

structure (A,L). Let L′ ⊂ L be the set of strings w ∈ L such that w is ShortLex-minimal

in L ∩ π−1(w). Then (A,L′) is an automatic structure for G. In particular, G admits an

automatic structure over A with the uniqueness property.

Proof. Let Mε be the equality recognizer for the given automatic structure (A,L). Consider

the following language:

L′ = {w ∈ L | (∀v)((w, v) ∈ L(Mε) ⇒ w ≤ v with respect to ShortLex)}

Since the predicate w ≤ v with respect to ShortLex can be checked by a finite state au-

tomaton, by Corollary 2.2.18 we know that L′ is also regular. Recall that restriction is

also automatic by Proposition 4.1.5, thus (A,L′) is also part of an automatic structure for

G. In particular, the uniqueness property follows from the ShortLex minimality of any

w ∈ L′.
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We see an corollary of such uniqueness property, which has been noted independently

by a number of researchers:

Corollary 4.2.14 (Infinite Torsion). Let G be an infinite group. Suppose every element

g ∈ G has finite order. Then G cannot be automatic.

Proof. We proceed by contradiction. Suppose such infinite group G is automatic, then it

admits an automatic structure with the uniqueness property by Theorem 4.2.13. Let (A,L)

be such automatic structure with the uniqueness property, then by the pumping lemma

(Theorem 2.2.19), there exists some integer p such that any string in L having length

greater than p is of the form uvw, with |v| > 0 and uviw ∈ L for all i. However, this is

impossible, because v has finite order and L has the uniqueness property. Hence no strings

in L should have length that exceeds p, and L is thus finite.

Note that the existence of a finitely generated infinite torsion group is highly nontrivial.

The famous group-theoretic study of torsion groups and the conditions under which they

can be infinite is known as the Burnside problem. This problem is fundamental and has

been extensively researched in group theory; however, it has little connection to automatic

groups and thus falls outside the scope of this discussion.

What is the relationship between being strongly geodesically automatic, weakly geodesi-

cally automatic, and the newly introduced ShortLex-automaticity? The following corollary

summarizes this result:

Corollary 4.2.15 (Geodesic Hierarchy). Let G1 be a strongly geodesically automatic group.

Then it is ShortLex-automatic for any ordering of the generators. Let G2 be a ShortLex-

automatic group. Then for some ordering of generators it is weakly geodesically automatic.

Clearly, ordering plays a crucial role when discussing the relationship between Short-

Lex-automaticity and weakly geodesically automaticity. This observation leads to the fol-

lowing open question:

Open Question 4.2.16. Does there exist a group that is weakly geodesically automatic

but not ShortLex-automatic for any choice of ordering on the generators?
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We now examine the final useful property of languages and explore its relationship with

the properties discussed thus far.

Theorem 4.2.17 (Prefix Closure of Automatic Groups). Let G be an automatic group with

an automatic structure (A,L), and let L′ be the prefix closure of L. Then (A,L′) also gives

an automatic structure for G. Furthermore, let c be the number of states of a finite state

automaton accepting L and suppose the number of representatives of any element of G in

L is bounded by a number n > 0. Then the number of representatives of any element of G

in L will be bounded by nc.

Proof. Firstly by Theorem 2.2.9 we know that L′ is regular. Given the finite state automaton

W for the language L, we can obtain the automaton W ′ that accepts the language L′ by

simply making every live state of W into an accept state. We let the c be the number of

states in W .

Then we want to show (A,L′) actually forms an automatic structure on G by Theorem

4.1.17. Let w1 and w2 be prefixes of strings in L representing elements of G with a distance

at most one apart in the Cayley graph. Let u1 and u2 be strings whose lengths are less

than c and w1u1, w2u2 are in L. When we apply Theorem 4.1.17 to L, we get a constant

k, since w1u1 and w2u2 are at most 2c+1 apart, their corresponding paths ŵ1u1 and ŵ2u2

are at a uniform distance at most k(2c + 1) apart. Thus it follows that ŵ1 and ŵ2 are a

uniform distance at most k(2c+ 1) + 2c apart.

Now it remains to show the last statement, we let Cg = L′ ∩ π−1(g) for g ∈ G. We

partition Cg into sets Cg,s, where w ∈ Cg,s of the automaton W is in the state s after

reading w. For each state s, we take a string uS leading from s to an accept state. Then

we observe that the strings wus for w ∈ Cg,s lie in the language L and represent the same

element of G. By assumption the number of such strings is bounded by n, hence Cg has at

most cn elements, which concludes the proof.

Having introduced the uniqueness and prefix-closed properties, we now present the fol-

lowing proposition, which shows that a group containing a ShortLex-automatic structure

necessarily satisfies both properties simultaneously.
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Proposition 4.2.18 (Geodesic Automaton ShortLex). Let G be an automatic group with

an automatic structure (A,L), and suppose L contains the ShortLex language L′ as being

given in Theorem 4.2.13. Then G admits an automatic structure that is prefix-closed and

has the uniqueness property simultaneously.

Proof. By Theorem 4.2.13 we know that (A,L′) gives an automatic structure for G having

the uniqueness property. It suffices to show L′ is prefix-closed, this follows easily from the

fact that ShortLex order is preserved under left and right multiplication by any element

of A∗.

We have shown that every automatic structure can be made to have either the uniqueness

property or to be prefix-closed. Naturally, we seek to generalize this simultaneity result to

all automatic groups, leading to the following open question:

Open Question 4.2.19. Given an automatic group G with a generating set A, does there

exist an automatic structure of G over A whose language is both prefix-closed and satisfies

the uniqueness property? If we relax this requirement slightly, what if we allow a change of

the generating set?

It is a general fact that the automaticity of a group G is invariant under a change

of generators, as stated in Theorem 4.1.21. However, this invariance does not necessarily

extend to ShortLex-automatic structures. It is possible for a group to be ShortLex-

automatic with respect to one generating set but not with respect to another.

We present an example of this phenomenon here, without proof. Before introducing the

example, we first state an algebraic fact that will serve as a key ingredient in our discussion.

Theorem 4.2.20 (Direct Product of Automatic Groups is Automatic). The direct product

of two automatic groups is automatic, and the direct product of two biautomatic groups is

biautomatic.

Proof. LetG1 andG2 be automatic groups with corresponding automatic structures (A1, L1)

and (A2, L2). We can assume L1 consists of unique representatives for the elements of G1 by

Theorem 4.2.13, and we claim (A1 ∪A2, L1L2) is an automatic structure for G = G1 ×G2.
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It is clear that L1L2 maps onto the group G, we let u1, v1 ∈ L1, u2, v2 ∈ L2, and we let

u1u2 and v1v2 represent elements of the group G within one distance from each other in the

Cayley graph Γ(G). Then we know that u1 and v1 are within one distance apart in Γ(G1),

likewise u2 and v2 are within one distance apart in Γ(G2). By Theorem 4.1.17, there exists

a constant c1 that bounds the uniform distance between the paths û1 and v̂1 in Γ(G1), and

a constant c2 that bounds the uniform distance between the paths û2 and v̂2 in Γ(G2), we

let the constant c := max{c1, c2}. By the uniqueness property of L1 and Lemma 4.1.8, there

is a constant k that bounds the difference in lengths between u1 and v1. Thus the uniform

distance between û1u2 and v̂1v2 is bounded by the constant c+ k.

The proof of the statement about biautomaticity follows in the same way.

Example 4.2.21 (Surfeit). We consider the group P = ⟨a, b⟩× ⟨c, d⟩, the direct product of

two free groups. The automaticity of free groups is guaranteed by Theorem 4.2.4, and by

Theorem 4.2.20, we know that P , as a direct product of automatic groups, is itself automatic.

Since free groups admit unique geodesic representatives for their elements, it follows that

P is ShortLex-automatic with respect to the generating set {a, b, c, d}. However, we claim

that P is not ShortLex-automatic with respect to the following generating set:

{a, b, c, d, add, bbc, a−1, b−1, c−1, d−1, (add)−1, (bbc)−1}

The fundamental reason why the group P fails to be ShortLex-automatic with respect

to the second generating set is that strings are efficiently abbreviated by grouping b and c

together, as well as by grouping a and d together. However, these two types of groupings

typically interfere with one another.

We focus on group elements where both types of abbreviation can be applied multiple

times, but not simultaneously. If we choose a representative containing many occurrences

of add but no occurrences of bbc, then, due to the constraints of a finite-state machine, we

can identify a substring where relatively few occurrences of add appear. In such cases, we

can demonstrate that the string could be rewritten more economically using bbc, thereby

contradicting the assumption of ShortLex-automaticity.

In fact, our understanding of automatic groups remains limited. Given that the di-

rect product of automatic groups is itself automatic, one can naturally pose the following
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question:

Open Question 4.2.22. Are factors of automatic groups automatic? More generally, is a

retract of an automatic group automatic?

Although questions about factors and retractions of automatic groups remain unre-

solved, it is fortunate that the answer concerning finite index subgroup relationships is

known:

Theorem 4.2.23 (Finite Index Subgroup of Automatic Group is Automatic). Let G be a

group and let H be a subgroup of finite index. Then G is automatic if and only if H is, and

if G is biautomatic, so is H.

Note that automaticity is preserved by an if and only if statement. However, in the case

of biautomaticity, only one direction is known, while the other remains an open problem:

Open Question 4.2.24. Let G be a group and let H be a subgroup of finite index. If H

is biautomatic, does it follow that G is biautomatic?

4.3 Finding Automatic Structures

Having introduced various definitions and theories related to automatic groups, we now

turn to the following fundamental question: given a finite state automaton, does it define

an automatic structure for some automatic group? Moreover, can we establish axioms

or algorithms to determine this? We will address these questions both theoretically and

practically in the following sections.

The starting point is to list all axioms for an automatic group that are checkable,

as they are expressed in regular predicates. We then present an algorithm by Epstein,

Holt, and Thurston, which, while theoretically feasible, is impractical due to its excessive

computational time in practice.

4.3.1 Axioms

Suppose we have an alphabet A and a finite state automaton W over A that accepts the

language L. For each x ∈ A ∪ {ε}, we also have finite-state automata Mx over (A,A)
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with languages Lx. Recalling that any automatic group must admit an automatic structure

(A,W,L,Mx) by Definition 4.1.3, it is natural to ask the converse: suppose we are given

these data first, do they define an automatic structure for some group?

We now present a set of axioms due to Thurston, Epstein, Holt, Uri Zwick, and Chuya

Hayashi, which provide necessary and sufficient conditions for these data to form an auto-

matic structure for some group. With these axioms in mind, given finite state automata

with associated languages and alphabets, we can theoretically verify whether they define an

automatic structure through an algorithmic process. Here we simply list all the axioms and

results. Readers interested in further details are encouraged to consult the original articles,

there are 13 axioms in total.

Axiom 1. (∃w)(w ∈ L)

Axiom 2. For each x ∈ A ∪ {ε},

(∀w1, w2)((w1, w2) ∈ L(Mx) ⇒ (w1 ∈ L ∧ w2 ∈ L))

Axiom 3. (∀w)(w ∈ L ⇒ (w,w) ∈ L(Mε))

Axiom 4. (∀w1, w2)((w1, w2) ∈ L(Mε) ⇒ (w2, w1) ∈ L(Mε))

Axiom 5. (∀w1, w2, w3)(((w1, w2) ∈ L(Mε) ∧ (w2, w3) ∈ L(Mε)) ⇒ (w1, w3) ∈ L(Mε))

Axioms 3–5 indicate that we can construct X, the set of equivalence classes under the

equivalence relation defined by Mε. We denote the equivalence class of a word w by [w].

Axiom 6. For each x ∈ A,

(∀w1)(w1 ∈ L ⇒ (∃w2)((w1, w2) ∈ L(Mx)))

Axiom 7. For each x ∈ A,

(∀w1, w2, w3)(((w1, w2) ∈ L(Mx) ∧ (w1, w3) ∈ L(Mx)) ⇒ (w2, w3) ∈ L(Mx))

Axiom 8. For each x ∈ A,

(∀w1, w2, w3)(((w1, w2) ∈ L(Mε) ∧ (w1, w3) ∈ L(Mx)) ⇒ (w2, w3) ∈ L(Mx))
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Axiom 8 implies that the map L → X defined in this way factors through X, thereby

inducing a map σx : X → X.

Axiom 9. For each x ∈ A,

(∀w2)(w2 ∈ L ⇒ (∃w1)((w1, w2) ∈ L(Mx)))

Axiom 10. For each x ∈ A,

(∀w1, w2, w3)(((w1, w2) ∈ L(Mx) ∧ (w3, w2) ∈ L(Mx)) ⇒ (w1, w3) ∈ L(Mϵ))

Axiom 11. For each x ∈ A,

(∀w1, w2, w3)(((w1, w2) ∈ L(Mε) ∧ (w3, w1) ∈ L(Mx)) ⇒ (w3, w2) ∈ L(Mx))

Axiom 12. Let W be the given finite state automaton and let k be the number of states

in W . Then for each w,w′ ∈ A∗ such that |w|, |w′| ≤ k,

(∀u)((uw ∈ L ∧ uw′ ∈ L) ⇒ ([uw]σ−1
w = [uw′]σ−1

w′ ))

Axiom 13. Let W be the given finite state automaton and let k be the number of states

in W . Let k′ > k and be greater than the length of some accepted string representing the

identity. Then for each string w over A with length |w| ≤ 4k′:

(∃u ∈ L)(([u]σw = [u]) ⇒ ((∀u ∈ L)([u]σw = [u])))

Remark 4.3.1. Note that the above axioms should be considered as conjunctions of several

statements, one of each x ∈ A∪ {ε}, because we are not allowed to quantify over the set of

generators.

Given all these 13 axioms, we state the following main result:

Theorem 4.3.2. Let A be a finite alphabet, let W be a finite state automaton over A with

corresponding accepted language L, and for x ∈ A ∪ {ε}, let Mx be finite state automata

over (A,A). Then (A,W,L,Mx) forms an automatic structure for a group G if and only if

Axioms 1− 13 are satisfied.
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4.3.2 A Naive Algorithm

We present a procedure for constructing an automatic structure from a finite group presen-

tation. This procedure will terminate if the group admits an automatic structure; otherwise,

it will run indefinitely.

Note that it is impossible to develop an algorithm that definitively answers Yes or No to

the question of whether a given group is automatic, as the problem of determining whether

a group presentation defines the trivial group is undecidable.

Before presenting the procedure, we first introduce some key ingredients.

Definition 4.3.3 (Partial Cayley Graph). Let G = ⟨A|R⟩ be a finitely presented group. A

partial Cayley graph over A ∪A−1 is a finite, connected, directed graph T whose edges are

labeled by elements of A ∪ A−1. If there is an edge labeled x from a vertex v1 to a vertex

v2, then there must also be an edge labeled x−1 from v2 to v1.

Furthermore, a partial Cayley graph is said to be unambiguous if no two directed edges

originating from the same vertex have the same label. Let v be a vertex of an unambiguous

partial Cayley graph T , and let w be a string over A∪A−1. The string w may define a path

α(w, v) in T starting at v, but it is possible that at some point the next letter in w is not

defined for the current vertex. Under this condition, if the entire path α(w, v) is defined in

T , we set p(w, v) to be the vertex at which the path terminates. Otherwise, α(w, v) and

p(w, v) remain undefined.

A path α(w, v) is called a loop if p(w, v) = v, and it is further called a simple loop if

no other vertex in α(w, v) is repeated. An unambiguous partial Cayley graph T is said to

be partially homogeneous if for any simple loop α(w, v) and any vertex v′ in T , the path

α(w, v′) is either undefined or also a loop.

Proposition 4.3.4. Any partial Cayley graph T can be made unambiguous and partially

homogeneous in a finite number of steps of two types: scissor moves and loop closings.

As their names suggest, we briefly describe the two types of moves:

1. A scissor move consists of identifying two distinct edges that share the same label

and the same source vertex, while also identifying their respective target vertices.
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2. A loop closing occurs when there exist vertices v and v′ and a word w such that

α(w, v) forms a simple loop, but α(w, v′) does not. In this case, we identify p(w, v′)

with v′.

Since there are only finitely many vertices, T becomes unambiguous after sufficiently many

scissor moves. Then, by performing a finite number of loop-closing steps, we make T

partially homogeneous. However, this process may introduce ambiguity in T once again,

which we resolve by applying additional scissor moves. Thus, after a finite sequence of scissor

moves and loop closings, T can be made both partially homogeneous and unambiguous.

Algorithm 4.3.5 (Todd-Coxeter Algorithm). Let G = ⟨A|R⟩ be a finitely presented group.

The Todd-Coxeter algorithm constructs a sequence of unambiguous, partially homogeneous

partial Cayley graphs Ti for each i ≥ 0 inductively as follows:

1. Initialize with a basepoint ∗ and attach a loop for each relator in R. Each loop starts

and ends at ∗, with successive edges encoding the corresponding word in R. Using

Proposition 4.3.4, make the resulting graph unambiguous and partially homogeneous.

Denote the resulting graph as T0.

2. Assume Ti has been constructed. If all arrows are defined, then G is finite, and Ti

is the complete Cayley graph of G. Otherwise, define all missing arrows on vertices

of Ti, directing them toward newly created vertices. Then, make the resulting graph

unambiguous and partially homogeneous, and denote it as Ti+1.

Theorem 4.3.6. Let G = ⟨A|R⟩ be a finitely presented group, and let W be a finite-state

automaton over A. Then the following procedure terminates if and only if G is an automatic

group; otherwise, it runs indefinitely:

1. Use the Todd-Coxeter algorithm (Algorithm 4.3.5) to construct the partial Cayley

graph Ti for each i ≥ 0.

2. Construct the associated standard automata Mx(W,Ti) for each x ∈ A∪{ε} using the

partial Cayley graphs Ti.
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3. Verify whether W and Mx(W,Ti) define an automatic structure for G by checking

Axioms 1–13 and testing the equality [ε]σw = [ε] for each w ∈ R. Terminate the

procedure once a positive result is obtained.

4.3.3 The Knuth-Bendix Procedure

We previously introduced the theoretical Todd-Coxeter Algorithm (Algorithm 4.3.5); how-

ever, this approach is highly impractical.

Recall that we discussed the desirable ShortLex-automatic structure, which possesses

the properties of prefix-closedness and uniqueness. In this section, we trade generality for

efficiency by introducing a practical algorithm for finding ShortLex-automatic structures:

the Knuth-Bendix completion procedure.

The input to the Knuth-Bendix procedure is a finite group presentation, and the output

is a ShortLex-automatic structure that provides a well-defined normal form for words in

the group, ensuring both uniqueness and efficient computation. Rather than demonstrating

the full procedure, we summarize its key concepts and steps. In addition to the finite group

presentation, the Knuth-Bendix procedure relies on several fundamental principles:

1. A rewriting system consists of a set of directed rules that allow words in the group to

be rewritten into simpler forms. Given a relation s = t, we orient it as a rewrite rule

s → t, ensuring a consistent reduction strategy. The goal of rewriting is to transform

words into a unique normal form by repeatedly applying rewrite rules until no further

reductions are possible.

2. The choice of an appropriate ordering is crucial for ensuring termination. Here, we

use the ShortLex ordering.

3. A rewriting system is said to be confluent if, whenever a word can be rewritten in mul-

tiple ways, all reduction paths eventually lead to the same unique normal form. This

property ensures that every element of the group has a well-defined representative.

4. If two rewrite rules apply to overlapping parts of a word, they may produce different

results, forming a critical pair. The procedure detects and resolves such conflicts by

introducing new rules and iterating until confluence is achieved.
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5. The rewriting process must terminate, meaning no infinite sequences of reductions

occur. This is guaranteed by choosing a well-founded ordering that prevents infinite

descent.

Next, we briefly discuss the algorithmic process, which proceeds as follows:

1. Orientation of Relations: Relations are transformed into rewrite rules. Given a

relation s = t, we determine a direction s → t based on the ShortLex ordering.

2. Normalization: Words are systematically replaced using rewrite rules to obtain

simpler forms.

3. Critical Pair Resolution: Overlapping rewrite rules are examined, and new rules

are introduced to ensure that different rewrite sequences lead to a common normal

form.

4. Iteration Until Confluence: The procedure iterates by adding rules and resolving

conflicts until the system becomes both confluent and terminating.

The resulting ShortLex-automatic structure provides an efficient mechanism for group

computations, enabling fast word reduction and membership checking. Unlike the Todd-

Coxeter algorithm, which relies on explicit coset enumeration, the Knuth-Bendix procedure

constructs a structured and minimal representation of group elements. Several optimizations

that enhance the efficiency of the process can be found in [EHR91, Section 3-6], while more

general discussions on the topic are available in [ES00].

4.4 The Growth Function

In addition to studying automatic groups through the lens of the Dehn function, we intro-

duce another tool for analyzing automatic groups and broader group-theoretic problems:

the growth function.

Definition 4.4.1 (Growth Function of Languages). The growth function of a language

L over A is a function gL : N → N which counts the elements of L of different lengths:

gL(n) := #(L ∩An).
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Sometimes it is most convenient to encode this information as a formal power series fL,

which is called the generating function for gL:

fL(t) =

∞∑
n=0

gL(n)t
n

Note that if L = A∗, then gL(n) = |A|n, indicating that |A|n is the upper bound for every

language.

Definition 4.4.2 (Growth Function of Groups). Let G be a finitely generated group and

let A be a finite generating set that is closed under inversion. Then the growth function of

the group G over A is a function gG,A(n) : N → N that counts the number of elements of G

that can be expressed in terms of words of length at most n over A.

By using the growth function, we can form power series BG,A(z) =
∑∞

n=0 gG,A(n)z
n,

which is called the growth series of G over A. Let fG,A(n) be the number of elements of

G whose shortest representative in A∗ has exactly length n, we can form another power

series CG,A(z) =
∑∞

n=0 fG,A(n)z
n. As stated in [EIFZ96, Section 1], by the definitions and

relation between gG,A and fG,A, we have

CG,A(z) = BG,A(z)(1− z)

thus studying one of these functions is equivalent to studying the other.

We speak of one growth function or growth series as being bounded by other if the bound

holds for every n ∈ N.

Definition 4.4.3 (Growth Class). We say a group G has polynomial growth if its growth

function is bounded above by some polynomial function of n, and exponential growth if its

growth function is bounded below by an exponential function of the form λn with λ > 1.

We also say G has rational growth if its growth series is the power series for a rational

function of z.

As stated in [ECH+92, Page 19 and Proposition 1.3.8], the following fundamental prop-

erty of regular languages holds, which leads to an important result about automatic groups.

Proposition 4.4.4. Every regular language exhibits either polynomial or exponential growth,

and every regular language has rational growth.
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However, while the regular language L(W ) in an automatic structure of an automatic

group has rational growth, this does not necessarily imply that every automatic group

exhibits rational growth. Although most automatic groups do have rational growth, the

existence of a unique representative for each element of G in A∗, accepted by the associated

word acceptor W , does not guarantee this property.

Recall that the growth function for G with respect to A is defined using the shortest

representatives of elements in G, whereas representatives accepted by the word acceptor

need not be the shortest. To establish a uniform conclusion relating these two types of

growth functions, we refer to [EIFZ96, Proposition 7.5] and conclude the following result

for automatic groups:

Corollary 4.4.5. If G admits a geodesic automatic structure, then the growth function of

G is rational.
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Chapter 5

Applications of Automatic Groups

5.1 Hyperbolic Groups

In this section, we survey fundamental results and concepts related to hyperbolic groups,

which is a class of groups introduced by Gromov [Gro87]. Our central goal is to demonstrate

that word hyperbolicity implies automaticity.

Recall that the notion of a (k, ϵ)-quasi-geodesic was introduced in Definition 3.3.18. To

motivate this section, we now present a connection between quasi-geodesics and automatic

groups.

Theorem 5.1.1 (Accepted Implies Quasi-Geodesic). Let G be an automatic group with

an automatic structure (A,L). Suppose for every element g ∈ G, the number of accepted

representatives g ∈ L is bounded. Then there exists a constant number N such that any path

in the Cayley graph Γ(G,A) corresponding to an accepted string is an (N,N)-quasi-geodesic.

Proof. Firstly, we replace L by its prefix closure and we observe that it still satisfies the

finiteness condition by Theorem 4.2.17. We let w = ruv be an accepted string and let u′

be a geodesic path in the Cayley graph Γ(G,A) from r to ru, we have to show that |u′|

is within a bounded difference from |u|. For 0 ≤ i ≤ |u′|, we let ri be an accepted word

representing ru′(i), since L is prefix closed, we can take r0 = r and r|u′| = ru. Now note

that Lemma 4.1.8 provides us a constant N such that the difference in length between r0

and r|u′| is at most N ·max{1, |u′|}, Therefore, we have

|r|+ |u| = |ru| ≤ |r|+N(|u′|+ 1)
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which further implies

|u′| ≤ |u| ≤ N(|u′|+ 1)

hence the result follows.

Definition 5.1.2 (Riemannian Metric). Let M be a smooth manifold. A Riemannian

metric on M is a smoothly chosen inner product g : TpM × TpM → R on each of the

tangent spaces TpM of M .

Definition 5.1.3 (Riemannian Manifold). A Riemannian manifold is a pair (M, g), where

M is a smooth manifold and g is a Riemannian metric on M .

Next, we see one lemma due to Morse, which is implicit in [Mor24] as part of the proof

of Mostow’s Rigidity Theorem, the proof can be found in [Thu22]:

Lemma 5.1.4. Let M be a compact manifold with strictly negative sectional curvature.

Then there exists a constant c = c(k) such that any finite (k, ϵ)-quasi-geodesic α in the

universal cover M̃ of M lies within the c-neighborhood of the geodesic segment joining the

endpoints of α.

Remark 5.1.5. Note that this result does not extend to spaces that are not negatively

curved.

By using this Lemma, we can prove the following theorem:

Theorem 5.1.6 (Negative Curvature). Let M be a compact manifold with strictly negative

sectional curvatures ane let S be a generating set for the fundamental group G = π1(M).

Then the set of geodesic words in the Cayley graph Γ(G,S) is a regular language, and it is

part of an automatic structure for G. In particular, the fundamental group G is automatic.

The modified proof due to Farb can be found in [Far92, Theorem 3], while the original

proof by Cannon appears in [Can84]. The original proof introduced the notion of cone type,

based on the idea that geodesics in a hyperbolic group exhibit only finitely many asymptotic

behaviors—namely, finitely many cone types.

Let G be the fundamental group of a compact Riemannian manifold M , and let S be

a generating set for G. Then there is a natural copy of the Cayley Graph Γ(G,S) in the
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universal cover M̃ of M . To be more specific, we choose a basepoint m ∈ M and a lift m̃ of

m0 in the universal covering space M̃ , then we construct a graph whose vertices and edges

correspond to the Cayley graph Γ(G,S), but embedded into M̃ as follows:

1. For each deck transformation g ∈ G, we place a vertex at the point g(m̃) in M̃ .

2. If g and g · s are connected by an edge in the Cayley graph Γ(G,S), then in M̃ , we

connect the points g(m̃) and gs(m̃) with a geodesic segment.

It is a fundamental fact that the geodesic paths in the Cayley graph Γ(G,S) are actually

quasi-geodesics in the universal cover M̃ . Thus Theorem 5.1.6 is actually a particular case

of a more general result involving the word hyperbolic groups.

Theorem 5.1.7 (Word Hyperbolicity Implies Automaticity). Let G be a word hyperbolic

group with a finite set of semigroup generators A that is closed under inversion. Then the

set of geodesics over A forms a regular language, which constitutes part of an automatic

structure for G.

Proof. Given two geodesic strings u and v such that d(u, v) = 1, we obtain a geodesic

triangle where the three side lengths are |u|, |v|, and either 1 or 0. Since the Cayley graph

of G is a hyperbolic space, it follows that the paths û and v̂ are within a Hausdorff distance

of at most (δ + 1) from each other. Hence, the automaticity of G follows from Theorem

4.2.4.

Recall the definition of strongly geodesically automatic groups (Definition 4.2.3). The

following is a stronger result due to Cannon and Papasoglu [Pap95, Theorem 1, 2]:

Theorem 5.1.8. A group G is hyperbolic if and only if it is strongly geodesically automatic.

In summary, the automatic structure of a word hyperbolic group follows from the fact

that any two geodesic words are separated by a uniformly bounded distance.

5.2 Euclidean Groups

In this section, we examine a class of groups distinct from word hyperbolic groups—namely,

the Euclidean groups. These are discrete cocompact subgroups of the isometry group of

Euclidean space in any dimension.

61



With further analysis, we can show that Euclidean groups admit a biautomatic struc-

ture that simultaneously satisfies prefix-closedness, representation by geodesics, and the

uniqueness property, making them particularly well-behaved.

Recall that Theorem 4.2.20 states that the direct product of two automatic groups is

automatic. It follows immediately that every finitely generated abelian group is automatic,

since any such group can be expressed as the product of a finite group and finitely many

copies of Z by the Fundamental Theorem of Finitely Generated Abelian Groups.

In fact, we can conclude the following statement from either Theorem 4.2.20 or Theorem

4.2.6:

Proposition 5.2.1. Finitely generated abelian groups are biautomatic.

Thus, we can narrow the problem: it suffices to study the automatic structure of Z. The

simplest automatic structure for Z is given by the regular expression (x)∗ ∨ (x−1)∗, where

x is a generator of Z.

What about the free abelian group on two generators, x and y? We consider the following

example:

Example 5.2.2. For the free abelian group generated by x and y, its automatic structure

can be given by the regular expression ((x)∗∨(x−1)∗)((y)∗∨(y−1)∗), which coincides with the

ShortLex language on the ordered alphabet {x, x−1, y, y−1}. If we use the same generators

but in different order: {x, y, y−1, x−1}, the corresponding ShortLex language is symmetric,

given by the regular expression

((x)∗(y)∗) ∨ ((x)∗(y−1)∗) ∨ ((y)∗(x−1)∗) ∨ ((y−1)∗(x−1)∗)

Using this idea, we can generalize the automatic structure to any finitely generated

abelian groups:

Theorem 5.2.3 (Abelian Symmetric Automation). Let G be a finitely generated abelian

group, then it admits a automatic structure.

Proof. We decompose G into the product of a finite group H and a free abelian group F on

generators x1, ..., xk. We consider the ordered alphabet A = {x1, ..., xk, x−1
k , ..., x−1

1 }. Then

62



the language L = ShortLex(F,A) will give us a symmetric automation for F , and we get

the automatic structure for G from the language HLH over the alphabet H ∪A.

One might ask whether abelianness implies ShortLex-automaticity. The answer is

yes—Holt [ECH+92, Theorem 4.3.1] proved the following result:

Theorem 5.2.4. Let G be a finitely generated abelian group. Then G is ShortLex-

automatic with respect to any ordered set of semigroup generators.

Bieberbach [Bie12] proved that virtually abelian groups can be realized as discrete groups

of isometries of Euclidean spaces Rn for some n, the proof can be obtained from [Cha86], thus

we call virtually abelian groups Euclidean groups. Now, applying Theorem 5.2.3 together

with Theorem 4.2.23, we conclude the following result:

Corollary 5.2.5. Euclidean groups are automatic.

Even more, Thurston, Epstein, and Levy [ECH+92, Corollary 4.2.4] demonstrated that

Euclidean groups are biautomatic:

Theorem 5.2.6. Any Euclidean group admits a prefix-closed biautomatic structure consist-

ing of unique geodesic representatives.

We conclude this section by presenting an example of a Euclidean group that is Short-

Lex-automatic with respect to a certain set of generators but far from being strongly

geodesically automatic. Moreover, by reversing the order of the same generators, the group

ceases to be ShortLex-automatic. This example is due to John Sullivan and Cannon.

Example 5.2.7. Let G be the wreath product of Z with Z2. This group is generated by

translations and the diagonal flip in Z× Z. A group presentation for G is given by

G = ⟨x, y, z|x2, zyz−1y−1, yxz−1x−1⟩,

where x represents the flip, while y and z correspond to unit translations along two coor-

dinate axes in Z2. We observe that G is biautomatic since it contains Z× Z as a subgroup

of index 2. Moreover, one can show that G is ShortLex-automatic with respect to the

ordered set of generators

A = {z−1, z, y−1, y, x}
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but it ceases to be ShortLex-automatic when the order of the generators is reversed, i.e.,

when considering

A′ = {x, y, y−1, z, z−1}

Furthermore, if we extend the generating set by adding y2 and yz, the set of geodesic strings

over

A′′ = {x, y, y−1, z, z−1, y2, y−2, yz, z−1y−1}

is no longer a regular language.

5.3 Nilpotent Groups

So far, we have focused on the theory of automatic groups and key examples of impor-

tant groups that exhibit automaticity. However, it is equally important to examine non-

examples. In particular, we demonstrate here that nilpotent groups are not, in general,

automatic. However, every nilpotent group has a decidable word problem, which further

demonstrates that automaticity is not a reliable indicator of whether a group has a solvable

word problem.

We start by example of the three-dimensional Heisenberg group, which is the simplest

non-abelian nilpotent group, and it is not automatic.

Example 5.3.1 (Three Dimensional Heisenberg Group). Consider the three-dimensional

Heisenberg group H3, which has presentation

H3 = ⟨a, b, c | [a, b]c−1, [a, c], [b, c]⟩

as stated in [Far92, Page 13] and proved in [ECH+92, Example 8.1.1], H3 has a cubic

isoperimetric function, indicating that it does not have a quadratic isoperimetric inequality,

and therefore, by Theorem 4.1.9 the three-dimensional Heisenberg group is not automatic.

Recall that Theorem 4.1.9 establishes that automatic groups satisfy a quadratic isoperi-

metric inequality. Thus by Theorem 4.1.9 and from the example of the three-dimensional

Heisenberg group discussed above, we observe that a group failing to satisfy a quadratic

isoperimetric inequality cannot be automatic.
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This naturally leads to the question: is automaticity equivalent to satisfying a quadratic

isoperimetric inequality? The answer is negative, as Thurston proved that the nilpotent

groups

⟨a1, b1, ..., an, bn, c | [ai, bi]c−1, [ai, c], [bi, c], [ui, uj ]⟩

where ui and uj represent ai or bi and i ̸= j, have quadratic isoperimetric inequalities if

n ≥ 2.

The nilpotent groups are generally not automatic, as proved by Holt and stated on

[Far92, Page 13], the following result holds:

Theorem 5.3.2. Let G be a finitely generated nilpotent group. Suppose G is automatic.

Then it is has a finite index subgroup that is abelian.

Speaking of growth function of nilpotent groups, we have the well known following result.

For a proof, see [ECH+92, Lemma 8.2.6]. The following result was also used as part in the

proof of Theorem 5.3.2.

Lemma 5.3.3. A finitely generated nilpotent group G has polynomial growth.

5.4 Baumslag–Solitar Groups

In this section, we examine another class of non-examples of automatic groups—namely,

the Baumslag-Solitar groups, as observed by Thurston.

Theorem 5.4.1. Let Gp,q denote the Baumslag-Solitar group with the presentation

Gp,q = ⟨x, y | yxpy−1x−q⟩

Then Gp,q is automatic if and only if p = q; otherwise, it is not automatic.

The case p = q is established by bounding the uniform distances of paths in the cor-

responding Cayley graph of the Baumslag-Solitar groups. By applying the Knuth-Bendix

procedure, we obtain a normal form for Gp,p. Combining these results, we observe that the

language of normal forms of elements of Gp,p constitutes part of an automatic structure.

On the other hand, the non-automaticity of Gp,q for p ̸= q follows from Theorem 4.1.9.

Specifically, we show that Gp,q does not satisfy a quadratic isoperimetric inequality by
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constructing a sequence of loops whose lengths grow linearly while their combinatorial

areas increase exponentially.

Additionally, Gersten proved the following result regarding the class of isoperimetric

inequalities satisfied by Baumslag-Solitar groups [Ger92]:

Proposition 5.4.2. The Baumslag-Solitar groups Gp,q satisfy an exponential isoperimetric

inequality fir p ̸= q.
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