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ABSTRACT

The management of the bridge system encloses a pipeline of condition data collection (i.e. in-

spections), condition assessment, and deterioration prediction. Visual inspections are performed

periodically, submitting ratings of bridge conditions to the National Bridge Inventory (NBI) and the

element-level rating data to support deterioration prediction. While the current experience-driven

inspection and assessment has been practiced for decades, today’s bridge infrastructure system in

the U.S. faces critical preservation challenges in its sheer volume of aging and deteriorating bridges

with limited funding and resources. Improving the efficiency of the bridge infrastructure manage-

ment in the face of critical preservation challenges calls for the integration of automation concepts

through the process of inspection, condition assessment, and deterioration prediction.

The current experience-driven condition rating process requires extensive effort in training and

quality control to ensure the consistency of the assigned ratings. Additionally, bridge conditions are

recorded by rating scores, which lose the local condition details and the opportunity for supporting

well-informed maintenance decisions. The lack of details in the currently available bridge condi-

tion database limits the performance of the data-driven models that extract knowledge from past

experience to guide decision-making in future maintenance.

Meanwhile, the bridge infrastructure system is historically rich in not only structured tabular

data such as the NBI, but also unstructured descriptive data such as inspection reports and main-

tenance records. The inspection reports generated through the current infrastructure management

practices only serve as records of activities, leaving the condition details and domain expertise

buried in the reports without being fully exploited for further analysis. To that end, this study

identifies visual and textual data from bridge inspection reports as an untapped resource of bridge

condition information and mines domain knowledge from a large number of historical inspection

reports for automatic condition rating and information extraction.

First, to improve the accuracy and consistency of bridge condition rating, a data-driven au-

tomatic condition rating model is proposed that maps natural language descriptions from bridge

inspection reports to quantitative condition ratings. A highly interpretable hierarchical attention

network employing word and sentence-level recurrent neural network encoders with an attention

mechanism was developed to fully exploit the semantics and context of the heterogeneous textual

data from the inspection reports. The proposed system was developed using a large collection of
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inspection reports collected from the Virginia Department of Transportation database. The devel-

oped model outperformed a variety of baseline systems in terms of accuracy and mean error metrics,

while a diagnostic investigation of error cases revealed a number of inconsistency issues in the input

data. Visualization of the resulting attention patterns demonstrated interpretable insights regarding

the mapping of local descriptions to global condition ratings, which can also assist in the rating

assignment by highlighting important indicators that may have been overlooked. The application of

the proposed system to improve the consistency of bridge condition assessment was demonstrated

via two use cases: automated rating recommendation that produces a rating for a given inspection

narrative, and data-driven quality control that screens inspector-assigned ratings based on the cor-

responding narrative descriptions. The quality control application was examined against a series

of assumed rating scenarios to illustrate how the proposed framework can reliably detect inconsis-

tent ratings. The proposed framework can serve as a supportive tool for rating recommendation as

well as quality control and error case analysis, which can proactively increase the statewide and

nationwide consistency of condition rating practices.

Next, to fully exploit the multi-modal data from bridge inspection reports, a deep learning-based

fusion approach is proposed for automated bridge condition rating using the visual and textual data

from bridge inspection reports. Considering the structure of inspection reports that each contains

a collection of images and a sequence of sentences that document local bridge conditions, the pro-

posed fusion approach constructs visual and textual representations from images and sentences

separately, and adopts a sequence encoder followed by an attention mechanism to fuse multi-modal

representations to support condition rating. While the image-based defect recognition and condi-

tion assessment models have been extensively studied in the existing literature, results from this

study show that the visual modality alone did not yield satisfactory condition rating performance.

Condition rating using textual data from the inspection reports significantly outperformed the visual

modality, and the proposed fusion approach introduced further improvements over the uni-modal

baselines. This study further investigated the uncertainty of rating predictions under random dis-

turbance introduced by data augmentation and dropout training strategy. The uncertainty analysis

showed that 95% of the rating predictions for the testing data vary within 0.535, and referring the

uncertain predictions to human investigations can further improve the rating performance. The pro-

posed model can be used to process the bridge condition data collected from the current visual

inspection practices to improve rating consistency, and discussions of this study points to the poten-

iv



tial improvement in future inspection data collection that can further facilitate automated condition

assessment.

Lastly, an information extraction framework is developed to extract bridge conditions from the

inspection reports at a high level of detail. A natural language processing approach was developed

to formalize the condition extraction problem by modeling inspection narratives as a combination

of words representing defects, their severity and location, and formulating a sequence labeling task

that accounts for the context of each word. The proposed framework employs a deep-learning-based

approach and incorporates context-aware components including a bi-directional Long Short Term

Memory (LSTM) neural network architecture and a Conditional Random Field (CRF) classifier to

account for the context of words when assigning labels. Dependency-based word embeddings were

also used to represent the raw text while incorporating both semantic and contextual information.

The sequence labeling model was trained using bridge inspection reports collected from the Virginia

Department of Transportation bridge inspection database and achieved an F1 score of 94.12% dur-

ing testing. The proposed model also demonstrated improvements compared with baseline sequence

labeling models, and was further used to demonstrate the capability of detecting condition changes

concerning previous inspection records. Results of this study show that the proposed method can

be used to extract and create a condition information database that can further assist in develop-

ing data-driven bridge management and condition forecasting models, as well as automated bridge

inspection systems.

This dissertation is a collection of three manuscripts that describes the aforementioned research

works. Through the presented research outcomes, this dissertation highlights the value of unstruc-

tured bridge inspection documentation in supporting automated condition assessment and informa-

tion extraction for the smart bridge infrastructure system.
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Chapter 1

Introduction

1.1 Background

The management of the bridge infrastructure system encloses a pipeline of condition data collection

(i.e. inspections), condition assessment, and deterioration prediction. As presented in Figure 1.1, the

current bridge management system relies on experience-driven inspection and condition assessment

processes, which have been carefully designed and regulated by domain guidelines and standards, to

support deterioration prediction. The National Bridge Inventory Standard (NBIS) requires a routine

inspection for most bridges and culverts to be performed at regular intervals not to exceed 24 months

[1]. During each inspection, bridge inspection reports are filled out by the inspectors according to

the Bridge Inspectors’ Reference Manual [2]. Conditions are evaluated by the inspection personnel

based on their domain expertise and experience gained from training and practices. Maintenance

and management decisions are made based on deterioration models [5–7] and predictive analytics

[8–10] that are supported by the condition evaluation results.

The condition ratings obtained from bridge inspections, together with other relative information

such as lane closure, performed maintenance actions, are submitted to the National Bridge Inven-

tory (NBI) database [1]. The NBI database is a comprehensive database containing information

for more than 617,000 bridges that are longer than 20 feet in the United States [1]. This informa-

tion includes bridge characteristics (e.g. geometry, structural systems, materials, location, etc.), as

well as component-level condition ratings assigned through visual inspections that were updated

through the years. These ratings are provided for components of a bridge (e.g. deck, superstructure,

substructure) on a zero to nine deterioration severity scale (zero and nine denote failed bridge and

1



Figure 1.1: The pipeline of current bridge infrastructure management system.

excellent condition, respectively). Having been maintained since 1992, the NBI database provides

the basis for resource allocation decisions to ensure the safety and functionality of the nation’s

bridge infrastructure system.

The Federal Highway Administration (FHWA) and state Departments of Transportation (DOTs)

have made substantial procedural efforts to ensure that the condition ratings are properly and con-

sistently assigned by the inspectors. For an inspection team with a typical size of 2-3, most states

require more than 5-years of experience as well as prerequisite inspection training programs and

state-administered proficiency tests for the lead inspector [11]. Periodic refresher training is also

required by the National Bridge Inspection Standard (NBIS) [12] to improve the quality of bridge

inspections and maintain consistency throughout the network of inspection programs. Some states

also adopt a variety of carefully designed quality control and assurance (QC/QA) procedures to

ensure the quality of inspection reports such as the office review process, independent field re-

inspection program, an occasional Professional Engineer (PE) ride-along as well as field review

[11], and programs that identify inconsistency in infrastructure management data [13–15].

In addition to the component-level ratings in NBI, FHWA also introduced the element-level

ratings, which provide a more fine-grained subdivision of bridge members together with quantitative

information about the extent of observed deterioration [16]. This standardized system has provided

a more comprehensive and objective basis for the documentation, management, and deterioration

modeling of assets [17, 18].
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While the current experience-driven inspection, assessment, and prediction pipeline have been

practices for decades, today’s bridge infrastructure system in the U.S. faces critical preservation

challenges in the sheer volume of aging and deteriorating bridges with limited funding and re-

sources. For more than 617,000 bridges across the states [19], 42% have reached or passed the

design life of 50 years; 7.5% are classified as structurally deficient (in ”poor” condition); and over

10% have weight limit posting to restrict heavy traffic loads due to deterioration [20]. One out of

every three U.S. bridges has been identified as needing structural repair, rehabilitation, or replace-

ment [21]. The most recent estimation of repair backlog for existing bridges is at $125 billion.

At the current rate of investment ($14.4 billion annually), it will take until 2071 to complete all

repairs that are currently necessary, and the additional deterioration until then will become over-

whelming as the rate of deterioration exceeds the rate of repair [22]. Improving the efficiency of

the bridge infrastructure system in the face of critical preservation challenges calls for the integra-

tion of efficient automation concepts through the process of inspection, condition assessment, and

deterioration prediction.

1.2 Identified Limiting Factors

While the efforts by FHWA and state DOTs have established sound inspection and condition as-

sessment procedures, this study identifies two factors in the current experience-driven practices that

are limiting the efficiency of bridge management system: First, assigning a condition rating based

on experience is a challenging task that requires extensive effort in training and quality control

to ensure rating consistency. Second, the current NBI and NBE data simplifies bridge conditions

into ratings, which loses the local condition details and the opportunity for supporting detail-driven

well-informed maintenance decisions.

1.2.1 Condition Rating Challenge

Assigning condition ratings properly and consistently is a challenging task mainly for the following

two reasons. First, the rating guidelines need to be properly interpreted by individual inspectors

in order to assign a rating. Second, the component ratings are an overall representation of local

deficiencies, which requires bridge inspection expertise to aggregate local conditions to a holistic

component-level rating. Regarding the individual interpretation, Table 1.1 presents the descrip-
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Table 1.1: Condition rating for the evaluation of bridge components (e.g. deck, superstructure, and

substructure) [1].

Rating Guideline

9 EXCELLENT CONDITION

8 VERY GOOD CONDITION - no problems noted.

7 GOOD CONDITION - some minor problems.

6 SATISFACTORY CONDITION - structural elements show some minor deterio-

ration.

5 FAIR CONDITION - all primary structural elements are sound but may have mi-

nor section loss, cracking, spalling, or scour.

4 POOR CONDITION - advanced section loss, deterioration, spalling, or scour.

3 SERIOUS CONDITION - loss of section, deterioration, spalling, or scour have

seriously affected primary structural components. Local failures are possible. Fa-

tigue cracks in steel or shear cracks in concrete may be present.

2 CRITICAL CONDITION - advanced deterioration of primary structural elements.

Fatigue cracks in steel or shear cracks in concrete may be present or scour may

have removed substructure support. Unless closely monitored it may be necessary

to close the bridge until corrective action is taken.

1 “IMMINENT” FAILURE CONDITION - major deterioration or section loss

present in critical structural components, or obvious vertical or horizontal move-

ment affecting structure stability. Bridge is closed to traffic but corrective action

may put bridge back in light service.

0 FAILED CONDITION - out of service; beyond corrective action.
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tive guidelines of fine-grained condition ratings on the scale of 0-9 defined by the FHWA Coding

Guideline [1]. As can be seen from the guidelines for each rating, the transition between condition

ratings does not involve a crisp boundary and depends on inspectors’ knowledge and experience.

The Inspectors’ Reference Manual [23] also outlines the procedure for determining the proper com-

ponent condition ratings following the guideline, which requires that the inspector read through

the descriptions in their notes taken from field inspection and carefully examine the rating scales

from condition 9 to condition 0 until encountering a condition rating whose guideline description

is more severe than those in their notes. The proper condition rating resulting from this process

should be one level higher than the identified more severe condition rating. The state Departments

of Transportation (DOTs) have also developed supplemental component condition rating guidelines

[24, 25] to lay out their specific procedure in compliance with these guidelines and further aid the

inspectors in assigning the ratings. Concerning the overall representation of local deficiencies, the

FHWA Coding Guideline states that the component condition ratings should reflect the overall con-

ditions of the component rather than localized conditions [1]. This also makes the assignment of

an overall condition rating based on individual member conditions challenging. The inspectors rely

on their bridge engineering expertise to determine the impact of local deficiencies on the overall

component condition when assigning component condition ratings. Given the above-mentioned

reasons, assigning condition ratings consistently and accurately is a challenging task, and innova-

tion is required in the development of intelligent methods of rating estimation and quality control.

To the above regards, it requires significant time, budget, and human efforts for inspector training

and additional caution to ensure the quality of the condition rating data.

1.2.2 Limited Supporting Data

In addition to the challenge for assigning the ratings, the sparse condition data in NBI and NBE

presents a limitation in supporting system-level infrastructure analytics and smart management

decision-making. While the NBI database provides the basis for resource allocation decisions,

the coarse rating system in NBI has major shortcomings from the following aspects: spatial res-

olution, defect categorization, and defect quantification. Condition ratings in NBI are evaluated

and assigned only for bridge components such as decks, superstructures and substructures, rather

than individual structural elements (girders, piers, etc.). The ratings include a single number that

is an aggregate of the overall condition of the component and thus indicate no information about
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the specific defect types detected (e.g. cracks, corrosion, spalling, etc.). This system provides no

information about the extent or size of specific defects (e.g. crack width, corrosion area, etc.), and

no information is provided on the location of the defects on the structural members, which makes it

impossible to track the progression of specific defects over the life cycle of the structure. While the

element-level ratings in NBE provide important improvements in terms of spatial resolution, defect

categorization, and quantification, a more detailed level of condition information such as measure-

ments and location of individual defect features is still not captured. Such information is essential

in tracking the evolution of a specific damage feature between multiple consecutive inspections and

in modeling the time history evolution of damage with the aim of damage prognosis and remaining

life estimation [26, 27].

1.3 Motivation

The bridge infrastructure system is historically rich in not only structured tabular data such as the

NBI and NBE, but also unstructured descriptive data such as inspection reports and maintenance

records. These descriptive data are historically consistent, rich in details, and encoded with engi-

neering expertise. For the example of bridge inspection reports, having been maintained by the state

Departments of Transportation (DOTs) for decades, bridge inspection reports record the condition

evolution of the entire bridge population. During each inspection, bridge inspection reports are

filled out by the inspectors according to the guidelines provided by Bridge Inspectors’ Reference

Manual [2]. The inspection reports contain narrative descriptions as well as illustrative images of

local deficiencies as discovered during an inspection (as presented in Figure 1.2). The descriptions

are in the format of natural language, where each sentence describes a finding by the inspector that

typically contains the name of local deficiency, its locations, and its severity and extent. Following

each inspection, condition ratings were assigned by the inspection personnel for bridge components

such as deck, superstructure, and substructure on a scale of 0-9.

On the one hand, these condition ratings collected over the years, together with the visual and

textual data from the inspection reports, represent a knowledge base that aggregates individual in-

spectors’ expertise of bridge condition assessment, and can shed light on how local deficiencies

map to global condition ratings. This motivates the development of an automated condition rating

model that learns from the collective expertise and knowledge embedded in massive historical re-

ports to promote a unified and consistent approach for assigning condition ratings. Central to this
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Figure 1.2: Example sentences of condition descriptions and the corresponding image illustrations.

hypothesis is the assumption that the raw narrative descriptions and images are more objective and

subject to less variability from an inspector’s experience-driven judgment as opposed to the ratings.

Unlike the condition ratings which require substantial training and experience to be properly and

consistently assigned, describing and taking images of bridge condition observations as seen during

an inspection is expected to involve less subjectivity and variability.

On the other hand, the descriptions in the inspection reports contain information regarding local

deficiency details and their evolutionary history. Information at such a detail level is not currently

available in the NBI and NBE data. The lack of automation in information extraction at such lev-

els of detail is a barrier to developing high-accuracy deterioration modeling systems and effective

maintenance planning and resource allocation decisions. For instance, a maintenance manager’s ac-

cess to such automation solutions can provide timely answers to maintenance planning queries such

as ”How many and which bridges have experienced major crack growth since the last inspection?”

and ”What is the projected rate of deterioration for those bridges in the next 10 years?”. These

capabilities will translate into more informed decisions and more effective maintenance of bridge

inventories.

The inspection reports generated through the current infrastructure management practices only

serve as records of activities, leaving the condition details and domain expertise buried in the re-

ports without not fully exploited for further analysis. This untapped resource of bridge condition

information is valuable in its large-scale, rich details and unique domain expertise, and offers the

opportunity for supporting automated condition rating and information extraction models.

Besides the visual data from bridge inspection reports, a significant number of robotic inspection

systems developed recently are also producing an increasing volume of data that can potentially
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support the automatic condition rating models. Robotic inspection systems adopt unmanned aerial

or ground vehicles (UAV/UGV) [28, 29] to navigate around bridges and collect visual data [30–

33]. As of 2018, the Department of Transportation (DOT) in 15 states are actively conducting

research in the use of UAVs in field inspections; 20 states have incorporated UAVs into their daily

operations [34]. The robotic inspection systems demonstrate great potential in alleviating labor cost

and safety concerns in visual inspection, and more importantly, it produces increasing data support

for automation in the subsequent condition assessment process.

1.4 Dissertation Outline and Contribution

The overarching goal of this dissertation is to mine domain knowledge from unstructured multi-

modal data from bridge inspection reports to advance automation in smart bridge infrastructure

management. This dissertation identifies visual and textual data from bridge inspection reports as

an untapped resource for bridge condition information and mines domain knowledge from a large

number of historical inspection reports using deep learning-based natural language processing as

well as visual and textual fusion techniques. Automated condition rating models are developed

using textual and visual data from the inspection report. A quality control tool is developed based

on the rating model to proactively improve the consistency of inspector-assigned ratings. Uncer-

tainty of the condition rating model is also evaluated using an approximate Bayesian neural network

setting. Local condition information is extracted from the unstructured textual description in the in-

spection reports via a context-aware sequence labeling task that segments and structures sentences

into categorized chunks of defects, locations, and severity. To the above regards, three research ef-

forts were carried out, and the outcomes will be presented in the following chapters in the format of

a collection of three manuscripts currently in different stages of the peer review process in research

journals.

Chapters 3 and 4 focus on the research question of automated condition rating. A data-driven

framework is proposed in chapter 3 to map natural language descriptions to quantitative ratings in

order to improve the accuracy and consistency of these ratings. A hierarchical architecture employ-

ing recurrent neural network encoders with an attention mechanism was developed that progres-

sively summarizes from the word-level to the sentence-level and ultimately to the document-level

representations to support automatic condition rating. Visualization of the resulting attention pat-

terns was shown to provide interpretable insights which highlight potentially overlooked indicators.
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Application of the system via two use cases further showed the potential of the system as a sup-

portive tool for automated rating recommendation as well as quality control, which can proactively

increase the consistency of condition rating practices. This study contributes to the knowledge of

infrastructure management in the following aspects:

• This study is the first to collect textual data from a large amount of historical bridge inspection

reports and construct a data-driven approach that maps narrative descriptions to condition

ratings. The textual data contains rich details of historical bridge conditions in terms of local

deficiencies as well as their severity and locations. The large number of reports and their

associated ratings represent a knowledge base that aggregates the expertise of various bridge

inspectors, and hence can be used to support a data-driven approach to produce consistent

condition ratings.

• The proposed framework develops a deep-learning-based approach to fully exploit the seman-

tics and context of the highly heterogeneous textual data from bridge inspection reports, and

studies the problem of assigning a rating score instead of a typical categorization of content

types. The model is shown to outperform a variety of existing baseline approaches in the civil

infrastructure domain literature.

• The hierarchical attention architecture used in the proposed framework is highly interpretable.

By identifying the words and phrases that received stronger attention scores, the proposed

model can help reveal the latent trends and logic of how the bridges were rated by the in-

spectors. The resulting attention maps can help inspectors identify features that drive the

model-based rating recommendations which may have been overlooked by the inspector, thus

contributing to rating quality improvement.

• The proposed framework develops a quality control process that evaluates the condition rat-

ings assigned by inspectors during inspections based on the narrative descriptions in their in-

spection notes and issues alerts when the assigned rating is inconsistent with the data-driven

model output. Such a supportive tool allows for quality control and error case analysis, which

can proactively increase the statewide and nationwide consistency of condition rating prac-

tices.

Aiming to construct an automated condition rating model that exploits domain expertise in the
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multi-modal data from bridge inspection reports, Chapter 4 contributes to the knowledge of smart

infrastructure management in the following aspects:

• While the bridge inspection reports contain both visual and textual data, the sufficiency of

each modality in supporting automated condition rating has not been compared. This study

constructs uni-modal baselines using visual and textual data separately to evaluate and com-

pare their performance.

• Given the structure of inspection reports that each contains a collection of images and a

sequence of sentences, where each image or sentence corresponds to a local bridge con-

dition but without explicit one-to-one alignment, this study proposes a deep learning-based

fusion approach that extracts the visual and textual representations separately, and adopts a bi-

directional RNN sequence encoder followed by an attention mechanism to fuse multi-modal

representations.

• This study further develops an evaluation of the model uncertainty incorporated by random

image data augmentation transforms and the dropout strategy using repeated testing experi-

ments. The standard deviation of the resulting distribution of model predictions was used as

the quantification of uncertainty, and demonstrated reliable rating predictions with relatively

small variations.

• Analysis of the resulting predictions revealed the rating behavior under disturbance, and

pointed to an use case of model uncertainty, where high uncertainty model predictions can

be referred to human inspectors for further investigation. Filtering the model predictions with

uncertainty was shown to improve the rating performance, and provides a viable approach for

reliably adopting automated condition assessment tools via cyber-human collaboration.

Lastly, Chapter 5 focuses on the Information Extraction (IE) problem and builds a model to

extract structural condition information from bridge inspection reports in order to assist data-driven

bridge maintenance and management. This chapter models inspection narratives as a combination

of defect names (N), their location (L), and severity (S) that are arranged in the heterogeneous and

complex patterns of natural language to describe an infinite variety of real-life inspection scenar-

ios. This study adopts deep-learning-based information extraction framework in the field of bridge

infrastructure maintenance and management to perform context-aware information extraction. The

proposed approach presents contributions in primarily the following aspects:
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• This research identifies textual data in the bridge inspection reports as an untapped resource

for bridge condition information and introduces a natural language processing framework to

extract condition information. The extracted information forms a bridge condition inventory

that can further support data-driven maintenance analytics and decisions.

• Information extraction was formulated as a context-aware sequence labeling task, where the

label of a word is assigned based not only on the current word, but also its semantic and con-

textual relations in the sentence. This is especially important in the field of bridge inspections

because many technical details such as measurements and structural member names can be

interpreted differently based on their context. For example, the words ”12 inch” describe a

defect location in phrase ”12 inches above pier 2”, but ”(a crack) 12 inches long” describes

the severity of the defect. The method proposed in this paper is capable of accounting for

context and semantic relations, which is essential for efficient information extraction from

bridge inspection reports.

• The context-aware sequence labeling model also provides the capability to output chunks of

condition-related information instead of broken pieces of individually labeled words. The

labels generated by the proposed method are designed to be more continuous so as to chunk

the sentences into condition-related phrases. This continuity is enforced through the adoption

of context-aware components including the Conditional Random Fields classifier, as well as

the sequence-driven formulation of bi-directional Long Short-Term Memory neural network,

and is motivated by the desired use case of information extraction from historical inspection

reports with the aim of assisting big bridge data analytics.

• Finally, this study puts the formalized engineering knowledge into the context of bridge main-

tenance and management by providing example use cases of how the proposed method can be

used to support maintenance planning queries and tracking the changes in consecutive inspec-

tion reports. The success of the proposed research is expected to provide a feasible approach

to extract meaningful information from textual bridge condition records, and can potentially

be applied to across the 50 states to form a knowledge base for detailed bridge condition

history. This condition inventory can support bridge owners and management agencies in

their large-scale maintenance planning and decision-making by providing targeted insights

and historical condition comparison.
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1.5 Research Challenges

This section lists the research challenges and shortcomings highlighted by the extensive review

of existing visual and textual information extraction works in infrastructure management system

literature. The detailed literature review will be presented in the next chapter.

Challenge 1 Textual data from bridge inspection reports are heterogeneous and complex since it

comes from various inspectors and contains a mixture of technical and non-technical words. Being

able to exploit the context and semantics behind the words is essential for successful condition

rating and information extraction from bridge inspection reports. Unlike other domain textual data

such as building codes and energy conservation codes that are regulatory documents in formal

written language composed by a group of experts, bridge inspection reports are created by various

professional inspectors from across the states to document their findings during field inspections,

with no standard requirements on the type of language and wording to use in the narratives, and

hence can contain higher variance in word usage.

The existing rule-based and ML-based NLP applications [35–38] in the domain of civil in-

frastructure management have limitations in addressing the challenges associated with the hetero-

geneous nature of textual data from bridge inspection reports. While the existing rule-based ap-

proaches can be tuned to achieve satisfactory performance for a very specific task, it is difficult to

define a set of all-encompassing rules that cover every variant scenario. The ML-based models usu-

ally leverage syntactical features [39, 40] or word frequency as features [38, 41, 42], which limits

the model’s ability to exploit the semantics contained in the textual data. Ontology-based semantic

features [39, 43] have been adopted for information extraction from bridge inspection reports, but

the ontology is able to cover only a selection of words, and the quality of the semantic features

relies heavily on the design of the categories and the comprehensiveness of the ontology. The use

of context-aware deep-learning-based methods is scarce in the field of infrastructure management

and maintenance, while the complexity of the textual data from infrastructure inspection reports

demands such a model to capture the various usages of words and extract correct information.

Challenge 2 Bridge inspection reports contain document-level textual data that consists of sen-

tences of words. Depending on the number of local deficiencies that were identified by the in-

spection personnel and the length of the description provided for each deficiency, the length of an
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inspection report varies and a long report can contain even 4-5 thousand words. To capture the

nuances of context and semantics in such long documents, and summarize these into an overall

condition assessment is a challenging task.

The frequency-based features such as Bag of Words (BoW) and Term Frequency-Inverse Doc-

ument Frequency (TF-IDF) vectorize a document by calculating and weight the frequency of each

word. Although such features reveal the selection and distribution of words and hence provide the

basis for the categorization of sentences or documents, the sequences of words were reduced to a

sparse matrix of frequencies, without capturing the nuances in the order of words and their seman-

tics. Transformer-based models have demonstrated good transferability with large-scale multi-task

model pre-training and light fine-tuning for state-of-the-art performance in downstream tasks. How-

ever, the significant computation resources required by the Transformer-based model limit its capa-

bility in processing long text sequences, and the performance of transferring model pre-trained on

general texts (e.g. Wikipedia) to domain-specific texts such as inspection reports is still unknown.

Challenge 3 The existing automatic condition assessment works, mostly image-based [44–48],

are focused on the detection of local deficiencies such as crack [49, 50], delamination [51], and

spalling [52] from various surface materials such as steel [53], and asphalt and concrete [54–56].

However, it requires further research efforts to progress towards damage quantification, aggregating

local deficiencies to global condition ratings, and linking these assessment results to subsequent

maintenance decision-making.

Challenge 4 While visual and textual bridge condition data have become increasingly available,

the problem of fusing both modalities for automated condition assessment has not been extensively

researched. A large amount of research has developed models for visual and textual fusion using

large-scale, general-content data [57–60], while their applicability to the domain of bridge con-

dition assessment remains unknown due to the unique content and structure of bridge inspection

report data. The descriptive sentences state in detail every local defect identified during inspections,

while the images serve as supplementary information that illustrates zoomed views of selected local

defects. Each image and sentence correspond to one or more inspection findings, typically local de-

fect conditions, without direct alignment as image-sentence pairs. The existing fusion approaches

were developed for input modalities that have perfect alignment and contain complementary infor-

mation [59]; however, fusing such loosely-aligned modalities with supplementary information such
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as the visual and textual data from the inspection reports is still challenging and warrants further

study.

Challenge 5 Typical information of interest when evaluating the condition of a bridge includes the

local deficiency (type), its measurements (severity), and where it is located (location). Each piece

of information functions only when put into the proper context. The Bridge Inspector’s Reference

Manual [2] requires that when documenting a deficiency encountered during inspections, the exact

location, severity, and extent of deficiencies should be specified to determine the bridge condition.

Such information comes in chunks instead of single words when quantifying or localizing bridge

deficiency conditions. Therefore, extracting chunks of information instead of individual words is

especially important for bridge inspection. For example, instead of extracting the word ‘2’ as a

number followed by the word ‘feet’ as a unit, it is important to know when ‘2 feet’ is used to

describe the location of spall and when it is used to describe the size of a spall, since the two

situations raise different levels of concerns in bridge inspection.

In the sequence labeling task to extract chunks of information, the labels should be assigned

based on their context such that the same word can be assigned different labels when in different

contexts that refer to different categories of condition information. In other words, the desired se-

quence labeling model should not memorize every word and assign a label in a dictionary-lookup

manner, but should predict the label based on the meaning of the word and its context in the sen-

tence. This is not only because building an all-encompassing dictionary to look up labels is obvi-

ously cumbersome, but the benefits of a context-aware labeling system also lie in the flexibility of

allowing the same word to be labeled differently in different contexts. To that end, the same word

should be allowed to have different labels in different contexts, and the desired labels help group

the words in a sentence into chunks of conditions (e.g. name, location or severity), instead of trying

to classify each word independently into an entity category. This arrangement is rooted in both the

way that bridge inspection information is documented, and the desired use case of the extracted

information from the inspection reports. While the existing sequence labeling model considers a

context window of only one [39], the desired feature of target information requires a sequence la-

beling model that can recognize the semantics and dependencies within the context among the input

sequence of words.
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Challenge 6 Current routine bridge inspection is performed annually or biannually, and the con-

dition assessment from the bridge inspection is used to support maintenance decisions. Although

this condition assessment is critical to bridge maintenance, rarely is there an opportunity to inves-

tigate the reliability of the bridge inspection practice and quantify the uncertainty in the condition

assessment, as the basis for comparing the assessment (i.e. the bridge condition) varies from year

to year.

Considering the significance of the current bridge inspection and condition rating practices,

Federal Highway Administration (FHWA) has conducted a reliability study of visual inspection and

condition assessment in collaboration with the nondestructive evaluation validation center (NDEVC)

in the year 2001. In the study, seven of the NDEVC test bridges were used to define 10 discrete

inspection tasks. Inspectors from 25 states participated in this study, which can be considered as

sampled from the entire practicing bridge inspectors. This study identified various factors that can

influence the accuracy and comprehensiveness of visual inspections, including subject factors (e.g.

visual acuity, color vision, experience), physical and environmental factors (e.g. lighting, viewing

aids, background noise), task factors (e.g. inspection time, the spatial distribution of items) and or-

ganization factors (e.g. training, standards). Results from the reliability study show that 58% of the

individual ratings were assigned incorrectly by the participating inspectors when compared with the

rating of the NDEVC reference. Using the sample from this study, it is estimated that 95% of the

condition ratings for the entire bridge population vary within approximately two rating points from

average; 68% of the ratings vary within one rating points. Also, “better” condition elements tend to

be rated lower, and “poorer” condition elements were rated higher than reference ratings; more er-

rors were found in rating “poorer” condition elements, which is undesired for a rating system since

“poorer” condition elements are the ones that play critical roles in maintenance decision making. It

should also be noted that in the reliability study, participants of practicing bridge inspectors were

tasked with inspection procedures that were slightly different from their daily practices, such as

unfamiliar bridges and smaller or no inspection team. The current bridge inspection and condition

assessment is considered as sound practices, evidenced by years of safe operations of the bridge in-

frastructure and the regulatory efforts made by the bridge management agencies and practitioners to

ensure the quality of the condition ratings. Nevertheless, the results of the reliability study showed

significant variability in the visual inspection and condition ratings, which calls for the develop-

ment of mechanisms that reveal and reduce the uncertainty of the ratings for more reliable bridge
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condition assessment that supports maintenance decision-making. This challenge also applies to the

automatic models developed for defect detection [61, 62], defect quantification [45, 63], and robotic

inspection [30–33]. Reliability is usually the major concern of bridge management agencies when

considering adopting automatic models in their daily practices, which calls for the consideration of

model uncertainty in developing automatic approaches.
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Chapter 2

Literature Review

2.1 Natural Language Processing

Natural language processing (NLP) develops models and techniques that automatically analyze data

in the form of natural languages such as text and speech. Major applications of NLP include in-

formation extraction, sentiment analysis, machine translation, and question answering. The NLP

models developed for these applications can be categorized into two main groups: rule-based meth-

ods [64, 65] and machine learning-based (ML-based) models [66, 67]. The rule-based models

require extensive human efforts in designing rules of syntactical pattern matching for successful

information extraction [68]. Machine learning models learn the rules and recurring patterns from

large datasets using features extracted from raw textual inputs. Features that have been exploited

by machine learning-based approaches include spelling features such as word cases, prefixes or

suffixes; contextual features such as context words, part-of-speech labels; ontology-based features

(semantic word relations extracted from pre-defined dictionaries); and dense vector representations

of words. The dense vector representation (word embeddings) is mainly used to support deep learn-

ing models and has proven to excel in multiple benchmark tasks without engineered task-specific

features [69], and hence has received extensive research attention during the past decade [70, 71].

Sequence labeling Many NLP applications can be formulated as sequence labeling problems,

where sentences are processed so that each word is assigned a pre-defined label. Sequence label-

ing models can achieve different goals depending on how the labels are defined. Toutanova et al.

[72] trained a maximum entropy classifier that assigned part-of-speech tags such as tense, number

(plural/singular), or case using a rich set of features. Kudoh and Matsumoto [73] developed a se-
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quence labeling model using Support Vector Machines that assign labels to segment the sentence

into syntactically-related phrases (e.g. noun phrase, verb phrase). Collobert et al. [69] proposed

to avoid task-specific feature engineering by starting from randomly initialized dense word embed-

dings and optimizing the embeddings during the training of deep learning models. This approach

has proven to excel in multiple NLP benchmark tasks. Learning word embeddings from a large cor-

pus and building deep learning models upon these pre-trained word embeddings has demonstrated

state-of-the-art performance in sequential labeling benchmark tasks [74, 75]. Recent studies pro-

posed incorporating character-level embedding representations to further improve the performance

[76–78]. Deep-learning-based models have shown promising results in sequence tagging tasks us-

ing both convolutional neural network models [79, 80] as well as recurrent neural networks [81–

83]. Recurrent Neural Network (RNN) and its cell-mechanism variants, Long-Short-Term Memory

(LSTM) [84] and Gated Recurrent Unit (GRU) [85], has been widely adopted to process sequential

inputs [86, 87].

Text Classification Text classification processes textual data (sentences or documents) and cate-

gorizes them into labels of interest. A body of Machine Learning (ML) models has been developed

for text classification such as Logistic Regression (LR) [88] and Support Vector Machine (SVM)

[89, 90]. Frequency-based features such as Bag of Words (BoW) and Term Frequency-Inverse

Document Frequency (TF-IDF) were developed to support the ML models, where the sentence

of documents is vectorized by calculating and weight the frequency of each word. Although the

frequency-based features reveal the selection and distribution of words and hence provide the basis

for the categorization of sentences or documents, the sequences of words were reduced to a sparse

matrix of frequencies, without capturing the nuances in the order of words and their semantics. To

that end, various dense vector representations have been developed to better represent contextual

and semantic information. Such dense vector representations, e.g. Word2Vec [70], GloVe [71],

and fastText embeddings [91], were usually trained using large text corpora to be encoded with

general word co-occurrence statistics, which links to the semantics of words based on the linguistic

theory that the meaning of each word lies in its context and co-occurrence with neighboring words

[92]. Building on the idea of representing words with dense vectors, Deep Learning (DL) models

have been developed for classifying textual inputs, including Convolutional Neural Network (CNN)

[93–95], Recurrent Neural Network (RNN) [96, 97], and Transformer-based models [98, 99]. The

CNN take sequences of dense word vectors as input, and model the dependencies among input se-
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quences using convolution over neighboring words; while the RNN process sequential input vectors

one-by-one and model both neighboring and longer-term dependencies with recurrent connections

among RNN cells. Transformer-based models take sequences of dense word vectors and the cor-

responding sequences of word order indices as input, and adopt multi-head self-attention modules

to model the complex relationships between each pair of input words. Transformer-based models

are more suitable for parallel computation than RNN, and have demonstrated good transferability

with large-scale multi-task model pre-training and light fine-tuning for state-of-the-art performance

in downstream tasks. However, the significant computation resources required by the Transformer-

based model limit its capability in processing long text sequences, and the performance of transfer-

ring model pre-trained on general texts (e.g. Wikipedia) to domain-specific texts such as inspection

reports is still unknown.

2.2 NLP Applications in Infrastructure Management

2.2.1 Information Extraction

In the field of infrastructure maintenance and management, NLP applications have been developed

to extract engineering information from domain-specific textual data. While these methods have

been developed for various applications and topics of textual data in the general domain of infras-

tructure maintenance and management, they can be broadly categorized into rule-based, machine-

learning-based (ML-based), and deep-learning-based (DL-based). Table 2.1 summarizes these ap-

plications in terms of methods, tasks, and the topic of their textual data. The rule-based methods

rely on human efforts in designing rules of syntactical pattern matching for successful information

extraction. Abuzir and Abuzir [68] developed a system that relied on human-defined syntactical pat-

terns to identify civil engineering terms and the relations among them using text from web pages.

The extracted terms and relations were used to construct a thesaurus in the field of civil engineer-

ing for supporting automatic information retrieval systems. Al Qady and Kandil [100] applied a

rule-based shallow parser to identify concepts and their relations from construction contract docu-

ments to assist efficient project management and contract administration. El-Gohary and El-Diraby

[101] proposed to construct a domain-specific ontology for domain-wide integrated construction

and infrastructure development using experts’ knowledge of domain-specific concepts and relation

structures. Zhang and El-Gohary [35] built a rule-based pattern matching system that uses syntactic
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Table 2.1: Summary of existing information extraction applications in infrastructure maintenance

and management in terms of methods, tasks, and topics.

Method Task Reference Topic

Rule-based

Ontology Construction [68] Civil Engineering

Entity and Relation Extraction [100] Construction

Ontology construction [101] Construction

Entity Extraction [35] Construction

Ontology construction [43] Bridge

Rule- &

ML-based

Concept & Relation Extraction [36] Construction

Concept Extraction [37] Transportation

ML-based

Knowledge Discovery [38] Marine Structure

Entity Extraction [39] Bridge

Dependency relation extraction [40] Bridge

Named Entity Normalization [42] Bridge

DL-based
Concept & Relation Extraction [102] Transportation

Sequence Labeling this work Bridge

features and ontology to extract information from construction regulatory documents such as build-

ing codes and energy conservation codes. Liu and El-Gohary [43] proposed a bridge data analytics

framework and presented an ontology of bridge deterioration knowledge. The taxonomies were

manually constructed based on a review of relevant manuals and guidelines.

ML-based applications learn the rules and patterns from large datasets using features extracted

from raw textual inputs to extract targeted information. Lee et al. [38] proposed a knowledge dis-

covery system from the inspection reports of marine structures. The system integrated components

including a keyword-based document retrieval, document clustering and classification, and trend

pattern analysis. Liu and El-Gohary [39] proposed a machine learning-based sequence labeling

model that extracts categorized entities from bridge inspection reports using a domain ontology.

The ontology contained 11 categories of concepts and terms extracted from relevant manuals and

guidelines such as bridge elements, deficiencies, and so on. As such, the resulting semantic fea-

tures for a certain word were 11-dimensional binary features demonstrating whether the word be-

longs to each category in the ontology. Liu and El-Gohary [40] developed a dependency parsing
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method to extract relations among entities from bridge inspection reports and the preliminary study

achieved an accuracy of 78.0%. Liu and El-Gohary [42] proposed an unsupervised Named En-

tity Normalization method to reduce the discrepancy in the extracted terms from bridge inspection

reports. Integrated systems that combine rule-based methods with machine learning models have

also been proposed in the literature. Kim and Chi [37] constructed an information retrieval system

that extracts construction accident cases from accident records using both rule-based and ML-based

method and compared their performances. Zhang and El-Gohary [36] proposed an integrated plat-

form that used a rule-based model to extract Building Information Modeling (BIM) concepts from

compliance regulatory documents and a ML-based method to classify their relationships.

A few DL-based NLP models have been developed for infrastructure maintenance and man-

agement applications, which further exploit the semantics of textual data via word embeddings

and deep neural networks. Le and Jeong [102] developed a semantic classification framework that

identifies domain-specific entities and terminologies from heterogeneous transportation asset docu-

ments and determines the semantic relations among the terms. Noun phrases were extracted from

highway guidelines and manuals, from which domain-specific entities and terminologies were se-

lected. Neural Network models were trained to generate word vector representations of the selected

terminologies and semantic relations such as similar-to (synonymy), is-a (hyponymy), and part-of

(meronymy) were classified based on the vector representations.

2.2.2 Text Classification

Text classification applications have been developed to categorize raw domain textual data. Ta-

ble 2.2 summarizes these applications in terms of the text contents, features, and methods. A rich

body of research is available in the literature constructing text classification models using word-

frequency-based features and ML-based models for domain-specific tasks. For example, Caldas

et al. [103] developed classification models to categorize construction project documents such as

specifications, meeting minutes, and field reports into 13 pre-defined categories (e.g. schedule,

HVAC, fire protection). Using TF-IDF as features, different ML-based models were tested and com-

pared including Naı̈ve Bayes (NB), Decision Trees (DT), k-Nearest Neighbors algorithm (k-NN),

and Support Vector Machine (SVM), and achieved accuracies ranging from 49.11% to 91.12%.

Al Qady and Kandil [104] adopted an unsupervised clustering approach to categorize seventy-seven

construction project documents based on their textual similarity. The documents were first clustered
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Table 2.2: Summary of existing text classification applications in infrastructure maintenance and

management in terms of text content, features, and methods.

Group Content Feature Method Reference

ML-based

Construction project documents

TF-IDF

Multiple [103]

Construction project documents Clustering [104]

Construction hazard scenarios SVM [105]

Construction project documents NB, k-NN [106]

Construction contracts Multiple [107]

Environmental regulations Multiple [108]

Construction accident records Ensemble [109]

BIM case documents SVM [110]

DL-based

Power grid malfunction reports One-hot embedding LSTM [111]

Citizen request sentences Word embedding CNN [112]

Construction hazard sentences Word embedding BERT [113]

based on their TF-IDF features, and the clusters were then refined by thresholding the cosine simi-

larity between each document and the cluster centroid. Chi et al. [105] used the TF-IDF features and

an SVM classifier to categorize descriptions of construction work scenarios into different activity

and hazard types to assist Job Hazard Analysis (JHA), which identifies potential task-related hazards

and provides safety solutions. Al Qady and Kandil [106] tested different ML-based methods such as

NB and k-NN built upon TF-IDF features to categorize construction project documents that provide

the factual background of each construction claim into eight corresponding claims. Salama and

El-Gohary [107] utilized TF-IDF features and ML models including NB, Maximum Entropy (ME),

and SVM to classify 330 clauses (each contains several words) obtained from construction contracts

into 14 pre-defined categories such as environmental, safety, health, etc. To select the most informa-

tive TF-IDF features, several feature scoring methods were tested including Information Gain (IG),

Mutual information (MI), and Chi-squared (χ2). Zhou and El-Gohary [108] developed a hierarchy

of topics for environmental regulatory documents and performed text classification on clauses from

the documents to assist environmental compliance checking. Different word-frequency-based fea-

tures were tested including TF-IDF as well as its supervised variants TFRF and T FmaxRF , where

the RF stands for relevance frequency that measures term relevance to the label categories. Various
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ML-based methods such as NB, SVM, and k-NN were compared and the best-performance model

achieved 97% recall and 84% precision. Zhang et al. [109] developed an ensemble model based on

voting among five different ML-based methods built upon TF-IDF features and achieved 68% F1

score to categorize records of construction site accidents into pre-defined accident causes. Jung and

Lee [110] compared an unsupervised similarity-based approach with a supervised SVM classifier

and achieved 80.75% F1 score for categorizing Building Information Modeling (BIM) case doc-

umentation by their types of BIM usage. For unsupervised categorization, the similarity between

each document and the definition of a particular BIM use were computed based on their word fre-

quency features, and documents with similarity above a threshold were categorized as the type of

BIM use.

Deep-learning-based text classification systems have also been developed for the infrastructure

domain. Wei et al. [111] constructed a Long Short-Term Memory (LSTM) Model that classifies

the fault categories for power grid malfunction reports. The LSTM model was built using a sparse

word vector representation of one-hot embedding and the optimal hyper-parameter setting achieved

64.59% accuracy in fault categorization. Kim and Hong [112] adopted a CNN-based sentence clas-

sification method to categorize short paragraphs of transportation-related citizen requests into 14

pre-defined categories. Fang et al. [113] adopted a Bidirectional Transformers for Language Under-

standing (BERT) model to classify single-sentence descriptions of potential hazards in construction

sites into 170 hazard categories and achieved an accuracy of 86.91% during testing.

While these applications contributed to the advancement of automation in construction and in-

frastructure management, the gaps in the current applied models can be summarized into the follow-

ing three aspects. First, the majority of the reviewed studies used word-frequency-based features

such as TF-IDF, TFRF, and T FmaxRF to support text classification models, which capture limited

semantic information from the textual data. Given the linguistic theory that semantic information

lies in the co-occurrence of words [92], the frequency-based features capture a global word co-

occurrence pattern in the sentence or document to be classified, and hence contain a certain level of

semantic information. However, transforming a sentence or document into word frequencies results

in the loss of the local contextual information of each word. Few studies, except [112, 113], used

dense word embeddings that are encoded semantic and contextual information. Second, the use of

context-aware deep-learning-based methods is scarce in the field of infrastructure management and

maintenance, even though the complexity of the textual data from infrastructure inspection reports
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demands such models to capture the various usages of words and extract correct information. This

need is highlighted by the highly heterogeneous nature of the inspection reports. Infrastructure in-

spection reports are created by various professional inspectors with no standard requirements on

the type of language and wording to use in the narratives, and contain a mixture of technical and

non-technical words. Being able to model the semantics and contexts of the words is essential for

supporting the successful analysis of complicated inspection reports. Third, existing classification

applications focus on categorizing textual data from dissimilar types, e.g. Caldas et al. [103] cate-

gorized construction project documents into types such as scheduling, HVAC, and fire protection.

However, the existing applications did not focus on the problem of assigning a rating score to texts

of the same type. Textual data with contents of different types tend to have different sets of words

commonly used in each type, which can be leveraged in training a classification model. However,

narrative descriptions from bridge inspection reports contain a somewhat similar set of words de-

scribing bridges and their conditions. Assigning a rating score requires a model to have a better

understanding of the semantics of the textual inputs in order to support the inference of a rating

score. Whether a classification model can differentiate between descriptions of different severity of

bridge deficiencies to support automatic rating is still unknown and warrants investigation.

Among the applications reviewed above, five ML systems and two DL alternatives were selected

to be used as baselines for performance comparison. The ML baselines include Naı̈ve Bayes (NB),

Decision Trees (DT), k-Nearest Neighbors (k-NN), logistic regression (LR), and Support Vector

Machines (SVM), which use TF-IDF as features. Furthermore, the LSTM-based work by Wei et al.

[111] focuses on document classification and is therefore comparable to the work presented in this

paper. As a result, it was selected as a DL-based baseline in addition to a GRU-based alternative

[114]. In the absence of prior work on classifying bridge inspection reports, these models were

implemented and trained on the dataset collected herein to allow for comparison with the results in

the present study.

2.3 Visual and Textual Fusion

2.3.1 Visual Representations

Convolutional Neural Networks (CNNs) represent the state of art in image classification tasks that

categorize each image with a pre-defined label. The convolution operation is powerful in extracting
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local visual feature representation, and the deep layers of CNN contribute by integrating visual

features from different levels of abstraction [115]. CNN-based image classification models [116–

118] have been developed using the large-scale ImageNet dataset [119] and achieved state-of-art

performance in the past decade. The intermediate visual representations learned by a pre-trained

CNN model are shown in recent works to be transferable to other visual recognition tasks [120–

122]. Considering that a bridge inspection report has a collection of images corresponding to one

condition rating, this multi-to-one correspondence relates to the problem of collection-based image

classification. Examples of collection-based image data include 3D shapes and fingerprints [123,

124], RGB-D objects [125], and citizen-science-enabled real-world dataset of plants [126], car

models [127], and insects [128]. In these datasets, each item is associated with multiple images

that depict different views or perspectives of the same object, e.g. front view and side view in 3D

shapes; flower and stem of one plant species. Visual representations are extracted from the images

using pre-trained CNN models and combined for classification via operations such as concatenation

[124, 129–131], maximum [127], weighted sum [123], or a Recurrent Neural Network (RNN) layer

[132]. Another approach to combine views for classification is performing standard classification on

each image using pre-trained CNN models and combine the softmax scores via summation [133] or

multiplication [134]. Seeland and Mäder [135] conducted a systematic review of collection-based

image classification approaches and highlighted the benefits of integrating visual representations

rather than post-processing the softmax scores.

2.3.2 Multi-modal fusion

Multimodal systems process inputs from more than one modality such as visual, audio, and text that

describe the same concept. Multi-modal analysis has attracted increasing attention in recent years

with the growing availability of multi-modal data [136–138]. Survey studies have been conducted

in the field of multimodal analysis [139–141], and most of the collected works suggested the superi-

ority of multimodal over unimodal approaches. Specifically for the fusion of visual and textual data,

a large amount of research and applications have been developed including image annotation [142],

image captioning [143], visual question answering [144, 145], as well as grounding textual repre-

sentations with the visual world [146, 147]. A major body of multi-modal fusion works can be cat-

egorized as operation-based fusion, where operations such as concatenation [148–151], averaging

[152], weighted summation with scalar weights [153] were used to combine uni-modal represen-
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tations for multi-modal tasks. Operation-based fusion introduces few or no additional parameters

and is applicable to almost any backbone uni-modal feature extractors. Although these methods are

simple and straightforward for implementation, the correlations between different modalities were

not considered. Model-based fusion has also been studied where model architecture was designed

for fusion. The Multiple Kernel Learning (MKL) extends from kernel Support Vector Machine

(SVM) and adopts different kernel functions for different modalities to better fuse heterogeneous

inputs [154]. Attention mechanisms built upon neural networks have also been developed for multi-

modal fusion tasks such as Visual Question Answering (VQA) or image-text matching that requires

attending to the objects in images and words in texts strategically in order to obtain the target output.

Attention mechanisms typically consist of operations such as multiplication, dot product, and linear

neural network layers that introduce additional trainable parameters manage the multi-modal fea-

tures for fusion [155–158]. While originally developed for textual data, the self-attention modules

have also been adopted for multi-modal fusion, in both single-stream (one module to learn intra-

modality representations [159]) and two-stream (modality-specific attention modules followed by

a cross-modality module) [160, 161]) manners. Model-based fusion usually requires a data point

having one input from each modality, which limits the applicability of existing models for fusing

visual and textual data from bridge inspection reports that each has multiple images and sentences

with no explicit alignment. The existing attention and self-attention mechanisms focus on mod-

eling the complex relationship among objects from images and words from sentences, while this

study focuses on the aggregating of images and sentence representations to support the task of the

automatic condition rating.

2.3.3 Domain applications

In the domain of bridge infrastructure management, vision-based condition assessment models have

been extensively studied in recent years [44–48]. These vision-based models are focused on the

recognition of local deficiencies such as crack [49, 50], delamination [51], and spalling [52] from

various surface materials such as steel [53], and asphalt and concrete [54–56]. The condition assess-

ment tasks were formulated as classification at the image/patch level, detection at the object level, or

segmentation at the pixel level. The pixel-level defect segmentation models improve the resolution

of defect recognition to each pixel within the images, but the pixel scale in real-world coordinates

is still unknown unless a scale reference is provided in the images. While the vision-based defect
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models recognize local deficiencies at different levels, these outcomes have not yet been aggregated

to provide an overall assessment of bridges and support maintenance decision-making. The textual

data from bridge inspection reports have also been used to support automated condition assessment.

Local condition information (e.g. defects, their locations and severity) and their dependency rela-

tions have been extracted from bridge inspection reports [39, 40, 162]. The extracted mentions of

the same bridge components or defects with various languages have been normalized, and the ex-

tracted measures of the same defect type have been fused to support bridge deterioration prediction

[163]. Deep learning-based automated condition rating and quality control models have been con-

structed that summarizes and maps information from descriptive sentences from bridge inspection

reports to the overall condition rating [164]. Regarding the fusion of multi-modal data for bridge

condition assessment and management, Sun et al. [165] proposed to align the 3D laser scanning

data and the textual data from bridge inspection reports to assist bridge inspection and the tracking

of bridge defect changes. While an increasing volume of multi-modal data is available from both

robotic inspections [30–33] and historical documentation to support bridge infrastructure condi-

tion assessment, the fusion of multiple modalities has not been extensively studied in this research

community.
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Chapter 3

Mapping Textual Descriptions to Condition

Ratings to Assist Bridge Inspection and

Condition Assessment Using Hierarchical

Attention

Li, T., M. Alipour, and D.K. Harris, Mapping Textual Descriptions to Condition Ratings to Assist

Bridge Inspection and Condition Assessment Using Hierarchical Attention. Automation in Con-

struction (in review), 2020.

3.1 Abstract

Effective upkeep of aging infrastructure with limited resources requires intelligent management

systems supported by accurate condition evaluations. Current bridge management strategies rely on

experience-driven manually-assigned condition ratings. To improve the accuracy and consistency

of these ratings, this study identifies narrative descriptions from bridge inspection reports as an un-

tapped data source and proposes a data-driven framework to map natural language descriptions to

quantitative ratings. A hierarchical architecture employing recurrent neural network encoders with

an attention mechanism was developed using a collection of reports from the Virginia Department of

Transportation, which outperformed a variety of baseline systems. Visualization of the resulting at-

tention patterns was shown to provide interpretable insights which highlight potentially-overlooked
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indicators. Application of the system via two use cases further showed the potential of the system as

a supportive tool for automated rating recommendation as well as real-time quality control, which

can proactively increase the consistency of condition rating practices.

3.2 Introduction

The U.S. bridge infrastructure system is in critical need of maintenance, rehabilitation, and repair

(MR&R) operations due to the challenges characterized by aging and deterioration. Based on the

latest National Bridge Inventory (NBI) database, nearly forty percent of the U.S. bridge population

have approached or passed their design life of 50 years, and over 10% have weight limit posting due

to deterioration that restricts heavy traffic loads [20]. One out of every three U.S. bridges has been

identified as in need of structural repair, rehabilitation, or replacement and the total cost of these im-

provements has been estimated at nearly $164 billion [166]. Effective upkeep of such an aging and

deteriorating bridge network with limited funding and resources calls for smart bridge management

systems that can accurately capture the deterioration condition of bridges and effectively prioritize

the maintenance needs based on the conditions.

Assigning condition ratings properly and consistently is a challenging task mainly for the fol-

lowing two reasons. First, the rating guidelines need to be properly interpreted by individual inspec-

tors in order to assign a rating. Second, the component ratings are an overall representation of local

deficiencies, which requires bridge inspection expertise to aggregate local conditions to a holistic

component-level rating. Regarding the individual interpretation, the transition between condition

ratings does not involve a crisp boundary and depends on inspectors’ knowledge and experience. In-

spectors refer to national and state-developed supplemental component condition rating guidelines

[24, 25] for guidelines and specific procedures in assigning the ratings. With respect to the overall

representation of local deficiencies, the FHWA Coding Guideline states that the component condi-

tion ratings should reflect the overall conditions of the component rather than localized conditions

[1]. This makes the assignment of an overall condition rating based on individual member condi-

tions challenging. The inspectors rely on their bridge engineering expertise to determine the impact

of local deficiencies on the overall component condition when assigning component condition rat-

ings. Assigning condition ratings consistently and accurately is a challenging task and innovation

is required in the development of intelligent methods of rating estimation and quality control.

Since assigning proper condition ratings relies heavily on the inspectors’ bridge engineering ex-
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pertise and experience, it requires significant time, budget, and human efforts for inspector training

and additional caution throughout the QC/QA procedures. While the efforts and investments by

the DOTs have established sound inspection practices and procedures, because of the experience-

guided nature of the overall condition rating process, it is difficult to evaluate the reliability and

consistency of ratings derived without considering the root of their derivation (i.e. the descriptions

used to inform the ratings) in aggregate. Research efforts have also been made to perform anomaly

detection on the condition rating data, in order to reveal potential spatial or temporal inconsistencies

[15, 167, 168] or incompatibilities in attribute properties [169]. However, the majority of the ex-

isting research approaches are based on manipulating the inspector-driven condition ratings, rather

than directly examining the condition of the infrastructure that derived the ratings.

Although challenges exist in both condition rating and quality control to ensure consistent and

reliable bridge condition assessment, the carefully-maintained, massive historical bridge inspection

reports contain an untapped source of raw data (i.e. narrative natural language descriptions) that can

be exploited to support data-driven approaches that map the narrative descriptions of bridge condi-

tion to condition ratings. The narrative descriptions from bridge inspection reports contain valuable

information for supporting bridge condition assessment in their massive volume, rich details, and

the embedded collective inspector domain knowledge and expertise. Bridge inspection reports have

been maintained by many state Departments of Transportation (DOTs) for decades, documenting

first-hand local condition details in the form of narrative descriptions of bridges as well as condition

ratings assigned by experienced inspectors. These inspection reports and the associated ratings col-

lected over the years represent a knowledge base that aggregates individual inspectors’ expertise,

and can shed light on how narrative descriptions of local deficiencies map to condition ratings. Re-

cent developments in Natural Language Processing (NLP) techniques enable approaches to process

textual data, extract information from raw textual data, as well as to summarize and draw conclu-

sions based on the extracted information. However, the application of NLP techniques to bridge

inspection and management has been limited [39, 42, 170, 171], creating a demand and an op-

portunity to utilize these techniques to automatically interpret the untapped narrative descriptions

embedded in bridge inspection reports and translate these descriptions into consistent and reliable

ratings.

To bridge the gap, this study proposes a data-driven framework that establishes a mapping be-

tween the inspection report texts and the condition ratings using deep neural networks. The frame-
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work is envisioned to support two application scenarios: 1) mapping the narrative descriptions of

bridge condition to condition ratings, and 2) detecting possible inconsistent ratings in a quality

control pipeline. In this framework, the model learns from the collective expertise and knowledge

embedded in massive historical reports, and hence promotes a unified and consistent approach for

assigning condition ratings. Central to this hypothesis is the assumption that the raw narrative de-

scriptions are more objective and subject to less variability from an inspector’s experience-driven

judgment as opposed to the ratings derived from these descriptions. Unlike the condition ratings

which require substantial training and experience to be properly and consistently assigned, de-

scribing observations of bridge conditions as seen during an inspection is expected to involve less

subjectivity and variability. During field inspection and evaluation, inspectors can utilize the model-

recommended rating to help reach a more objective and data-driven decision. Ratings provided by

the inspectors can also be run through the proposed quality control pipeline and suspicious can-

didate ratings will be screened and filtered. This application provides a complementary tool for

quality assurance and control (QA/QC) of condition assessment process and hence can proactively

increase the consistency of condition rating practices. As an additional insight, the proposed frame-

work can also identify the sentences, phrases and keywords that were paid stronger attention by

the model during the NLP process. These indicators can help inspectors understand the logic of a

model-generated rating and act as pointers and reminders that may be of value in the rating process.

A potential future application of the proposed system is envisioned to be in the development of smart

voice-controlled inspection assistants, which can help inspectors perform hands-free documentation

of their observation, perform voice queries and information look-up through the database during an

inspection. Such an assistant can facilitate the collection of inspection data, assign or recommend

condition ratings, and improve the safety of inspection operations which are often performed at

heights or in dangerous environments.

Quality Assurance and Control of Civil Infrastructure Data The accuracy and uniformity of

the recorded infrastructure conditions are vital for supporting appropriate infrastructure manage-

ment decisions for preservation, retrofit, replacement, and public safety. Studies show that both

systematic and random errors in condition data can highly distort management system outputs such

as projected budgetary needs and planned maintenance activities [172]. Besides the regulatory

QC/QA procedures such as the required qualifications of the inspection team, periodic refresher

training, report reviews, and field review processes [11, 12], extensive research efforts have been
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made to assess and improve the quality of the collected infrastructure condition data. A major

line of such research involves identifying inconsistency or abnormality in the collected data and

improving the quality of the data by addressing the inconsistent or abnormal data points. Buch-

heit et al. [13] adopted different data quality assessment methods including statistical methods,

clustering, pattern-based detection in a voting scheme to improve the quality of civil infrastructure

condition data. Outlier and error detection methods were also developed for roadway and pavement

infrastructure condition data using spatial and temporal attributes of the condition data [167, 168].

Specific to the National Bridge Inventory, Din and Tang [15] developed logical tests to reveal the

temporal and spatial anomalies in the NBI data, where temporal anomalies were revealed by com-

paring data from different years to check for logical errors, and spatial anomalies were identified

by geospatial mapping to identify spatial conflicts. Chen et al. [169] developed a Web-based tool

that identifies anomalies using a set of pre-defined rules and provides feedback about the detected

anomalies. The tool was then applied to the Pennsylvania Department of Transportation (PennDOT)

bride management dataset, which has similar data items as those in the NBI data, and was able to

detect incompatibilities with the requirements or codes. Management practices and protocols have

also been proposed to improve the quality of infrastructure condition data. Migliaccio et al. [14]

proposed a condition data collection procedure that adopts Agreement Between Evaluators (ABE)

and Consistency Over Time (COV) assessments to reduce the variance among individual condition

ratings and to prevent inconsistent conditions before and after maintenance actions.

The efforts reviewed in the previous sections, both regulatory and in research, have contributed

to improvements in quality assurance and control of civil infrastructure data. However, the existing

approaches still have limitations in the following two aspects. First, most of the studies (except

[14]) are retrospectively designed for an already-established condition database instead of quality

control in real-time as the condition data was collected in an ongoing inspection. Anomaly or data

outliers were detected to be excluded from future maintenance planning analysis, without offering

the opportunity to refer back to the cause of each specific error, or to improve the condition eval-

uation practice by learning from the detected errors. Second, the majority of existing approaches

took an anomaly detection viewpoint by looking at the assigned condition scores itself (together

with related spatial or temporal features), instead of looking directly at the underlying condition of

the infrastructure evaluated. This might be partially attributed to the fact that, although the NBI

database provides bridge characteristics and condition ratings, it does not keep track of the details
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of bridge conditions such as local defects and their severity. Therefore, the NBI database provides

limited support for developing an automated QC/QA program. In this regard, the rich and detailed

information from bridge inspection reports introduces an opportunity to improve the quality of con-

dition evaluation. Another advantage of using the inspection reports is that these reports are already

required in the current bridge inspection practice and have already been collected for years for other

purposes. The massive amount of ‘report narratives + condition ratings’ pairs represent a knowledge

base that is embedded with the expertise of different inspectors regarding how a condition rating

is assigned based on their past training and experience. Nevertheless, this valuable information

has remained untapped as it relates to the application of automated condition evaluation due to the

challenges in extracting condition-related information from the natural language narrative form of

the reports that were composed by individual inspectors with various narration preferences. This

warrants further studies on how to exploit the untapped narrative description from bridge inspection

reports to improve the quality of bridge infrastructure condition data and ultimately infrastructure

management decisions.

3.3 Proposed Research

This study proposes to exploit bridge inspection reports for automated condition rating and qual-

ity control considering the following advantages: 1) the inspection reports are already required in

the current bridge inspection practice and have already been collected for years for other purposes;

2) narrative descriptions in these reports documents the details of bridge local deficiencies; 3) the

massive amount of ‘report narratives + condition ratings’ pairs represent a knowledge base that is

embedded with the expertise of different inspectors regarding how a condition rating is assigned

based on their past training and experience. Given the rich condition details and the domain ex-

pertise contained in the inspection reports, this study proposes a data-driven framework capable of

learning the mapping from the narrative descriptions within historical inspection reports to bridge

condition ratings. A large corpus of bridge inspection reports were collected from the Virginia

Department of Transportation (VDOT) to develop the proposed framework, which includes over

8,000 reports from 9 districts in the Commonwealth of Virginia. Other state DOTs also maintain

similar report records that can offer potential extension of this work to a national scale. The pro-

posed framework leverages the individual narratives from the entire population of bridges within

the VDOT inspection inventory and their associated condition ratings to formulate a model capa-
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ble of translating unused descriptive narratives into numerical condition ratings. The fundamental

premise of this work is that although assigning a condition rating properly and consistently is a

challenging task that depends on the inspector’s knowledge and experience, generating descriptions

of the conditions as seen during an inspection is much easier and less sensitive to subjectivity. Fur-

thermore, patterns between the descriptions and ratings extracted from the collective decisions by

many inspectors can provide valuable insights into consistent condition rating.

The review of text classification applications in the domain of civil infrastructure management

showed that the valuable information from bridge inspection reports has not been used to sup-

port automated condition evaluation. One possible challenge for such application lies in extracting

condition-related information from the natural language narrative form of the reports that were com-

posed by individual inspectors with various narration preferences. This warrants further studies on

how to exploit the untapped narrative description from bridge inspection reports to improve the

quality of bridge infrastructure condition data and ultimately infrastructure management decisions.

While the domain text classification applications contributed to the advancement of automation in

construction and infrastructure management, the gaps in the existing applied models can be sum-

marized into the following three aspects.

• First, the majority of the reviewed studies used word-frequency-based features such as TF-

IDF, TFRF, and T FmaxRF to support text classification models, which capture limited seman-

tic information from the textual data. Given the linguistic theory that semantic information

lies in the co-occurrence of words [92], the frequency-based features capture a global word

co-occurrence pattern in the sentence or document to be classified, and hence contain a cer-

tain level of semantic information. However, transforming a sentence or document into word

frequencies results in the loss of the local contextual information of each word. Few studies,

except [112, 113], used dense word embeddings that are encoded with semantic and contex-

tual information.

• Second, the use of context-aware deep-learning-based methods is scarce in the field of infras-

tructure management and maintenance, even though the complexity of the textual data from

infrastructure inspection reports demands such models to capture the various usages of words

and extract correct information. This need is highlighted by the highly heterogeneous nature

of the inspection reports. Infrastructure inspection reports are created by various professional

inspectors with no standard requirements on the type of language and wording to use in the
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narratives, and contain a mixture of technical and non-technical words. Being able to model

the semantics and contexts of the words is essential for supporting the successful analysis of

complicated inspection reports.

• Third, existing classification applications focus on categorizing textual data from dissimilar

types, e.g. Caldas et al. [103] categorized construction project documents into types such as

scheduling, HVAC, and fire protection. However, the existing applications did not focus on

the problem of assigning a rating score to texts of the same type. Textual data with contents

of different types tend to have different sets of words commonly used in each type, which

can be leveraged in training a classification model. However, narrative descriptions from

bridge inspection reports contain a somewhat similar set of words describing bridges and

their conditions. Assigning a rating score requires a model to have a better understanding in

the semantics of the textual inputs in order to support the inference of a rating score. Whether

a classification model can differentiate between descriptions of different severity of bridge

deficiencies to support automatic rating is still unknown and warrants investigation.

Motivated by these gaps, this study proposes a deep neural network building upon dense word

embedding features to fully exploit the semantics and context of the heterogeneous narrative de-

scriptions from bridge inspection reports. As illustrated in Figure 3.1, the narrative descriptions

from one report can be viewed as a document that contains L sentences (sentencei, i ∈ [1,L]), where

sentencei contains Ti words, denoted by wordit , t ∈ [1,Ti]. Each sentence describes an item of the

inspector’s findings during a field inspection, as illustrated in Figure 1.2 with the corresponding

local conditions. Motivated by the hierarchical structure of document-sentences-words, the pro-

posed framework develops a hierarchical attention network that progressively summarizes from the

word-level to the sentence-level and ultimately to a document-level representation, which can then

be used for mapping to the condition ratings. The hierarchical attention mechanism offers inter-

pretability as to which sentences and words were emphasized while assigning a condition rating.

Taking the narrative description from one bridge inspection report as inputs, the hierarchical atten-

tion network outputs a series of softmax probability scores, one for each condition rating category.

Two applications are developed using these scores: 1) a condition rating tool that recommends the

rating with the maximum score and 2) a quality control tool that takes an inspector-provided rating

as an additional input, computes a log-likelihood ratio, and compares the ratio with a data-driven

decision threshold Θ to generate the decision of whether to accept or reject the provided rating. The
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Figure 3.1: The proposed framework for automatic condition rating and quality control.
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condition rating tool directly translates the narrative descriptions into recommended condition rat-

ings, while the quality control tool compares inspector-assigned ratings to historical practice learned

by a data-driven model to promote consistency in the rating practice. The quality control applica-

tion links the data-driven model directly to decision-making while keeping the human inspector in

the decision loop, which is critical in the field of civil infrastructure management considering the

importance of structural safety and the potential impact of infrastructure failure.

3.4 Research Methodology

This section is organized to present the proposed framework as follows: first, the Gated Recurrent

Unit (GRU) sequence encoder, which is adopted in the proposed HAN model, is presented; then

the architecture of the HAN model is discussed, followed by a description of the two proposed

applications: recommending a condition rating and quality control via accepting or rejecting an

inspector-provided condition rating.

3.4.1 GRU-based Sequence Encoder

The learning module of the proposed framework utilizes a hierarchical attention network to estab-

lish document-level representations progressively from the word-level and sentence-level. Before

being fed through the attention mechanism, the sequences of word-level and sentence-level rep-

resentations are first encoded with contextual information using a sequence encoder. The Gated

Recurrent Unit (GRU) [114] is a special type of Recurrent Neural Network (RNN) that enables

the encoding process by introducing recurrent connections between the nodes in the hidden layers

to model the dependencies among sequential inputs. The GRU node uses a gating mechanism to

control the flow of information among a sequence of inputs. Two types of gates exist in the gating

mechanism including the reset gate rt and the update gate ut . Denoting the input at time step t as xt

and the output of a GRU node at time step t−1 as ht−1, the reset gate is computed by Equation 3.1

rt = σ(Wrhht−1 +Wrxxt +br) (3.1)

where σ is the element-wise logistic sigmoid function σ(x) = 1
1+e−x , and the Wrh, Wrx, and br are

the corresponding weight matrices and bias for the reset gate, respectively. Similarly, the update

gate is computed by Equation 3.2

ut = σ(Wuhht−1 +Wuxxt +bu) (3.2)

37



where Wuh, Wux, and bu denote the weight matrices and bias for the update gate. The formulation of

the GRU gating mechanism is presented in Equation 3.3,

ht = (1−ut)�ht−1 +ut� tanh(Whh(rt�ht−1)+Whxxt +bh) (3.3)

where ht is the output of a GRU node at time step t, Whh, Whx and bh denote the corresponding weight

matrices and bias, and � represents element-wise multiplication. Figure 3.2 presents the gating

mechanism inside a GRU node. The reset gate is formulated to control how much information from

the previous hidden state ht−1 contributes to the current ht . The update gate ut controls how much

information from the previous output is kept and how much is added after the reset gate.

Figure 3.2: The gating mechanism inside a GRU node.

3.4.2 Hierarchical Attention

Since the narrative descriptions from each bridge inspection report can be treated as a document

that contains sentences composed of words, this study develops a hierarchical attention network

that progressively summarizes information from word-level vector representation to the sentence-

level and ultimately to the document-level representation, which can then be used to form the map-

ping from the narrative descriptions to the condition ratings. The hierarchical attention mechanism

also offers interpretability as to which sentences and words were emphasized while assigning a

condition rating. Each component of the hierarchical attention architecture is introduced in the fol-

lowing subsections including the word-level encoder, word-level attention, sentence-level encoder,

and sentence-level attention.

Word Encoder For the narrative descriptions from each inspection report, assume it contains L

sentences si, i ∈ [1,L] and each sentence contains Ti words. The words from sentence si, denoted
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by wit , t ∈ [1,Ti], are first embeded into a vector representation using an embedding matrix We,

where each row is a vector for a word from the textual data. The embedding matrix can either

be randomly initialized, or can use embeddings previously developed using large corpora [70, 71].

Each word wit is then represented by a vector, which is the corresponding row vector taken from

the embedding matrix We. Given a sequence of word representations wit , t ∈ [1,Ti], a bidirectional

GRU [114] encoding layer is used to exploit the dependencies within the sequence and encode

contextual information from both directions to a new sequence of summarized representations. The

bidirectional GRU contains a forward pass
−−→
GRU that reads the sentence si from wi1 to wiTi , and a

backward pass
←−−
GRU that reads the sentence si from wiTi to wi1 (as presented in Equation 3.4, 3.5).

The bidirectionality ensures that contextual information from both before and after each word is

encoded.
−→
hit =

−−→
GRU(wit), t ∈ [1,Ti] (3.4)

←−
hit =

←−−
GRU(wit), t ∈ [Ti,1] (3.5)

The encoded vector, denoted by hit for word wit is obtained by concatenating the outputs from both

forward and backward passes hit = [
−→
hit ;
−→
hit ].

Word Attention Since the words from a sentence are not equally important in conveying the

meaning of the sentence, different levels of attention should be paid to each word when summarizing

and aggregating the word representations to form a sentence representation. To that end, word

attention introduces a mechanism formulated as

uit = tanh(Wwhit +bw) (3.6)

αit =
exp(uT

it uw)

∑t exp(uT
it uw)

(3.7)

where uit denotes a hidden representation of hit obtained by feeding hit through a simple fully con-

nected layer (Ww and bw denote the corresponding weight and bias parameters, respectively.) The

importance of a word wit is measured by the similarity between uit and a word-level context vector

uw, and is then used to compute a normalized word attention weight αit using a softmax function as

presented in Equation 3.7. In this attention formulation, uw is designed as the representation of an

overall informative word, where the attention weight for each word is computed based on the word’s

similarity with uw. The context vector uw is a randomly initialized vector and is learned during the
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training process together with other parameters incorporated in the attention mechanism. The sen-

tence vector si is computed by a weighted sum of the encoded word representations as presented in

Equation 3.8.

si =
Ti

∑
t=1

αithit (3.8)

Sentence Encoder Given a sequence of sentence vectors si, i ∈ [1,L] resulting from the word

attention step, the sentence encoder encodes each vector with contextual information from both

before and after each sentence using a bidirectional GRU in a similar fashion as the word encoder:

−→
hi =

−−→
GRU(si), i ∈ [1,L] (3.9)

←−
hi =

←−−
GRU(si), i ∈ [L,1] (3.10)

The encoded representation hi is then obtained by concatenating
−→
hi and

←−
hi : hi = [

−→
hi ;
←−
hi ].

Sentence Attention The sentence attention further summarizes and aggregates the encoded sen-

tence representations hi, i ∈ [i,L] into a document level representation by assigning different atten-

tion weight to each sentences, as presented in Equation 3.11 and 3.12.

ui = tanh(Wshi +bs) (3.11)

αi =
exp(uT

i us)

∑i exp(uT
i us)

(3.12)

where ui denotes a hidden representation of hi obtained by feeding hi through a fully connected

layer (Ws and bs denotes the corresponding weight and bias parameters, respectively.) The sentence

attention weight αi computes normalized sentence importance, which is measured by the similarity

between ui and a sentence-level context vector us. The context vector us is also a randomly initial-

ized vector that is learned during the training process. At last, the document vector d is computed

by a weighted sum of the encoded sentence representations as presented in Equation 3.13.

d =
L

∑
i=1

αihi (3.13)

3.4.3 Condition Rating

The document-level vector d provides a high-level representation of extracted information from the

bridge inspection reports, and is used as features for mapping to the condition ratings, as presented
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in Equation 3.14 and 3.15.

q = Wdd +bd (3.14)

pk =
exp(qk)

∑
K
k′=1 exp(qk′)

,∀1≤ k ≤ K (3.15)

where the document vector v is fed through a fully connected layer (Wd and bd denote the corre-

sponding weight and bias parameters), q ∈ RK where qk represents the kth element in q, and K is

the total number of condition rating categories. The vector p ∈ RK consists of pk, which computes

the probability of the condition being rated as k. Given the target condition rating y ∈ {1,2, · · · ,K},

the cross entropy loss used for model training is presented in Equation 3.16.

L(p,y) =−log(py) (3.16)

To assign a condition rating, the model computes the predicted rating ŷ as presented in Equation

3.17.

ŷ = argmax
k

pk (3.17)

Considering the ordinal nature of the condition ratings (Table 1.1), mis-predicting a rating on the

order of a single condition state (e.g. predicting of 4 instead of 5) should cause a different level of

concerns as compared to mis-predicting across multiple condition states (e.g. predicting of 4 instead

of 9). Therefore, for evaluating the condition rating performance, metrics that are commonly used

for evaluating ordinal outputs were used, including Accuracy (ACC0 and ACC1), Mean Squared

Error (MSE), and Mean Absolute Error (MAE) [173], as computed in Equation 3.18, 3.19, 3.20,

and 3.21, respectively.

ACC0 =
1
N

N

∑
j=1

1(ŷ j,y j) (3.18)

ACC1 =
1
N

N

∑
j=1

[1(ŷ j,y j)+1(ŷ j,y j +1)+1(ŷ j,y j−1)] (3.19)

MSE =
1
N

N

∑
j=1

(ŷ j− y j)
2 (3.20)

MAE =
1
N

N

∑
j=1
|ŷ j− y j| (3.21)

where 1(·, ·) is the indicator function, yd and ŷd denote the target condition rating and the predicted

rating of document d respectively, and N denotes the total number of data items to be evaluated. In
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addition to the ACC0 that evaluates the exact rating accuracy, ACC1 was used to compute accuracy

within 1 level of the true condition ratings, and the MSE and MAE evaluate an averaged error of

the predicted ratings.

3.4.4 Quality Control

This section proposes a quality control process that evaluates the inspector-provided rating based

on its narrative descriptions and generates a decision of whether to accept or reject the provided

rating. With an inspector-provided rating ỹ and a model-predicted rating ŷ as computed in Equation

3.17, the direct way for quality control is to accept the candidate rating when ŷ = ỹ and to reject

it when ŷ 6= ỹ. However, this direct way does not take into consideration the probability scores

pk,∀1≤ k ≤ K that led to the model prediction of ŷ.

Table 3.1 presents two example cases of probability scores. In both cases, the model predicted

that the rating ŷ should be condition 6 (maximum class probability in each case). Suppose in both

cases the inspector assigned a condition rating of 5, the direct way of quality control would reject

the provided rating in both cases but with very different certainty. In case 1, p6 is only slightly

larger than p5 which indicates that the model is less certain of predicting condition 6 compared with

case 2, where p6 is much higher than p5. To ensure that the acceptance or rejection decision of each

provided condition rating ỹ is generated with the same level of certainty, a Likelihood Ratio Λ is

computed as presented in Equation 3.22.

Λ(p, ỹ) = log
(

pỹ

1− pỹ

)
(3.22)

Table 3.1: Two example cases of model-generated probability scores with the inspector-assigned

rating of 5.

Condition Rating 4 5 6 7 8 9

pk
Case 1 0.10 0.34 0.36 0.10 0.10 0.00

Case 2 0.00 0.01 0.90 0.09 0.00 0.00

This likelihood ratio estimates the relative confidence of the model in the inspector-provided

rating compared with other ratings. Assuming the threshold is denoted as Θ, the model accepts

the provided rating ỹ when Λ ≥ Θ and rejects the provided rating ỹ when Λ ≤ Θ. In other words,

the decision is not solely based on the class with the highest probability, but instead based on
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achieving a desired level of relative confidence. For the two example cases in Table 3.1, with a

decision threshold Θ =−2, Λcase1 = log
( 0.34

1−0.34

)
> Θ and hence the inspector-assigned rating can

be accepted; however, Λcase2 = log
( 0.01

1−0.01

)
< Θ and hence the inspector-assigned rating is still

rejected. The threshold Θ is a data-driven hyper-parameter that can be tuned before application.

For a bridge management agency intending to adopt this tool for quality control of their ratings,

a small portion of its bridges can be used as a validation set to tune the hyper-parameter Θ. For

this validation set, ground-truth condition ratings should be provided by experienced inspectors,

and the candidate ratings assigned by in-training inspectors together with the underlying narrative

descriptions are fed through the system to obtain a decision of ”accepted/rejected”. The optimal Θ

value can be tuned using this validation set by finding the threshold at which the performance is

maximized in alignment with the ground-truth ratings from experienced inspectors. For evaluating

the quality control performance, metrics including Precision (PRE), Recall (REC), and F1 score

can be used, as presented in Equation 3.23, 3.24, and 3.25.

PRE =
TP

TP +FP
(3.23)

REC =
TP

TP +FN
(3.24)

F1 =
2×PRE×REC

PRE +REC
(3.25)

where TP denotes the number of provided ratings correctly accepted by the model, FP denotes the

number of provided ratings falsely accepted by the model, and FN denotes the number of provided

ratings falsely rejected by the model. Precision computes of all the provided ratings accepted by the

models, how many were actually correct; and recall computes of all the correct provided ratings,

how many were accepted by the model. The F1 score is the harmonic mean of precision and

recall, which evaluates the overall performance of accepting or rejecting the provided ratings. Once

the hyper-parameter Θ is tuned based on these metrics evaluated on the validation set, incoming

condition ratings together with the underlying narrative descriptions can be fed into the system and

a recommendation is made by the system as to whether or not the assigned rating is in alignment

with the data.
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3.5 Data Collection and Preparation

Bridge inspection reports were collected from the Virginia Department of Transportation (VDOT)

database. The reports on the first layer of the VDOT database were downloaded in bulk in June

2018, which mostly contain the most recent inspection reports for all bridges across the state of

Virginia. While historical versions of the inspection reports were also available through the database

in deeper layers, their collection involves a manual process of individual downloading rendering the

collection process prohibitively cumbersome.

Each report was organized by sections detailing different bridge components such as ”Deck”,

”Superstructure”, and ”Substructure”, and each bridge component was associated with a condition

rating of 0-9 assigned by the inspection personnel. The general condition of bridges can also be

categorized as good, fair, and poor, which denotes condition ratings greater than 6, equal to 5

or 6, and less than 5, respectively [174]. Although the inspection reports typically include the

assigned condition ratings on the first page, it is hard to directly extract the condition ratings from

the collected reports since a large portion of the collected reports use a photo-format cover page to

include the condition rating. Therefore, of all the collected reports, this study used the reports of

NBI bridges (bridges more than 20 feet long used for vehicular traffic [1]), whose condition ratings

can be obtained from the NBI database [1]. The federal bridge ID and the date of inspection were

extracted from the inspection reports, usually in the first sentence of the report text, using regular-

expression matching. The extracted federal bridge ID and date of inspection were then used to

match the inspection report with the associated condition rating from the NBI data.

Since each inspection report contains a large table of all its contents, the narrative descriptions

were extracted from the inspection report files using the python-docx package [175], where irrel-

evant details such as table frames, document headers and footers, images and their captions were

excluded. The python-docx package supports reading the tables row by row from the Word docu-

ment of inspection reports and extracting the narrative descriptions from each cell in the table. This

allows keeping the extracted narrative descriptions in the same organization as originally in the ta-

bles of the report files. The section of bridge deck condition description and a corresponding deck

condition rating were used to construct the rating model in this study. Similar models can also be

trained for other bridge components (such as superstructure or substructure) to learn the mapping

from narrative descriptions to their condition ratings using the proposed method. Considering that

44



only 1.64% of the bridge decks in Virginia were in poor condition as of the year 2018, reports of

200 bridges that have historically been rated as condition 4 were manually downloaded from the

VDOT database and added to the collected data.

For the 10,521 NBI bridges in Virginia [176], the above process resulted in the collection of

narrative descriptions of 7,766 unique bridges and a total of 8,028 bridge inspection reports (246

of these bridges had more than one version of reports that were historical reports containing dif-

ferent text and rating scores). The collection process also resulted in 2,755 bridges not included

in the collection of this study for reasons including reports in a PDF format; not uploaded to the

VDOT database, not listing the date of inspection at the beginning of the report; or not organized

by bridge components of ”Deck”, ”Superstructure”, ”Substructure”, etc.. Figure 3.3 (top) illustrates

the distribution of the collected bridges from nine VDOT regional offices. Each district office adopts

several different inspection teams and personnel, and therefore the collected reports incorporate an

aggregated knowledge base of inspectors’ expertise on how bridge conditions should be mapped to

the rating scores. Figure 3.3 (bottom) presents the characteristics of the collected bridges including

material, design, and structural deficiency. It can be seen from this figure that roughly half of the col-

lected bridges were steel bridges, while the other half were concrete or pre-cast concrete bridges.

Over 60% of the collected bridges were multi-girder bridges, and the rest of the bridges were of

Figure 3.3: Top: Distribution of bridges from nine VDOT regional offices [3]. Bottom: Character-

istics of the collected reports including material, design, and structural deficiency (SD: Structurally

Deficient).
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design types including slab, T-beam, or box-beam bridges. Less than 10% of the bridges were des-

ignated as structurally deficient, which is a classification given to bridges with condition ratings of

4 or less for any major bridge components including the deck, superstructure, or substructure [174].

To obtain a clean inspection report corpus, the raw description texts were tokenized into indi-

vidual words (tokens) using the Natural Language Toolkit (NLTK) [177] tokenizer, which splits the

words based on whitespace, standard contractions, and punctuation. Raw tokens were reduced to

their lower-case form, and special characters were removed. Engineering conventions of measure-

ments (e.g. 1-1/2 inch) were reduced to decimal numbers and floored down to the nearest integer.

The cleaned tokens were then joined by a white-space and grouped into sentences using the NLTK

sentence tokenizer [177], which was pre-trained using a large corpus to be able to identify the

boundaries of the sentences. In the end, each document of bridge deck descriptions was organized

in a hierarchical structure that contains sentences of tokens.

3.6 Results and Discussions

Among all the text-rating pairs of bridge deck descriptions, 90% were randomly selected as the

training set, while the rest were used for testing. Table 3.2 presents the statistics of the splits. Two

principles were followed when creating the training-testing splits for holdout evaluation. First, the

training-testing split followed a stratified random sampling regime resulting in a uniform ratio of

training and testing samples from each condition category. Second, to achieve full independence

between the training and testing sets and ensure realistic evaluation, reports of the same bridge were

assigned to either training or testing set. This process resulted in 6,988 bridges in the training set

and 788 different bridges in a mutually exclusive testing set. The training data was used for the

development of the proposed model, while the testing data was held unseen during the training

Table 3.2: Statistics of the training and testing sets.

Dataset # Bridges # 4 # 5 # 6 # 7 # 8 # 9
Average

# Sentences

Average

# Words

per Sentence

Training 6,988 323 1,011 2,156 2,950 667 118 18.4 14.1

Testing 778 36 112 240 328 74 13 18.1 13.7
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process to ensure objective evaluation of the final model performance. It should also be noted that

bridges with a condition rating of 3 or lower are closed to traffic due to severe structural deficiencies

and safety concerns; hence, they do not represent bridges in realistic operational conditions and are

not included in the target condition ratings.

The network was trained and optimized using the mini-batch stochastic gradient descent (SGD)

approach, which minimizes the loss as defined in Equation 3.16 by descending the parameters along

their gradients. The hyper-parameters of training were selected by performing a 5-fold cross valida-

tion (CV) grid-search to optimize performance. As a result, a batch size of 64 with a learning rate of

0.05 were selected for this study. A momentum of 0.9 with 1e−6 weight decay (L2 regularization)

was used, which keeps a portion of the previous parameter update to stabilize the learning process

[178]. To alleviate over-fitting, dropout training [179] was applied to the embedding layer that ran-

domly drops the embeddings with a probability of 0.5, which is a well-established regularization

technique to prevent complex co-adaptation of weights [180]. The dimensions of the word-level

and sentence-level GRU were set to be 50. The CV grid-search for hyper-parameter selection was

performed over the parameter space discretization of learning rate [0.001, 0.01, 0.05, 0.1], momen-

tum [0, 0.9], weight decay [1e−6, 1e−4, 1e−2], dropout [0, 0.3, 0.5], and GRU dimension [50,

100]. The embedding matrix We was initialized using the Global Vectors (GloVe) [71], which learn

semantic information from the global word co-occurrence matrix and generate embeddings with

meaningful linear substructures. Parameters in the embedding matrix We were allowed to be fine-

tuned during the training process to be further adjusted to the task of mapping narrative descriptions

to condition ratings. The network was implemented using the PyTorch [181] package which sup-

ports tensor computations with GPU acceleration and neural network optimization with automated

differentiation. The model training process was deployed using NVIDIA Tesla P100 GPU nodes

provided by the University of Virginia’s High-Performance Computing (HPC) servers.

3.6.1 Condition Rating Performance

Figure 3.4 (a) presents the training and validation curves. The validation ACC0 gradually increased

and converged after around 35 epochs, while the training curve is increasing throughout the epochs

as expected. Figure 3.4 (b) presents the confusion matrix of the testing predictions. The confusion

matrix demonstrated a clear trend of diagonal concentration where the model rarely mistakes by

more than one level. This is also evidenced by the fact that the percentage of ”missing-by-2”
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(a) Training and validation curves on validation sets. (b) Testing confusion matrix.

Figure 3.4: Condition rating performance of the proposed hierarchical attention framework.

error (e.g., ground truth condition 9 but predicted as 7) is 1.25%. Similarly, the overall average

difference between the ground truth and estimated ratings is 0.339 and 0.315 as measured by the

MSE and MAE, respectively (also listed in Table 3.3). This corresponds to ACC0 and ACC1 values

of 69.74% and 98.75%, respectively. An examination of some of the error cases will be presented

in the next section (together with the corresponding attention maps) to shed light on some of the

potential sources of mis-classifications.

It should be noted that while performance evaluation on the testing set (as shown by the con-

fusion matrix in Figure 3.4) demonstrates relatively small MAE and MSE values and high overall

ACC0 and ACC1, a closer examination of the confusion matrix indicates increasing difficulties to-

ward the ends of the condition spectrum. A potential explanation for this behavior is the existence

of severe imbalance among the size of the classes as seen in Table 3.2, where about 3/4 of the in-

spection reports belong to the condition categories of 6 and 7, and that categories 9 and 4 have only

1.7% and 4.6% of the data, respectively. Class imbalance is widely known in the machine learning

literature to skew the classification performance among the different classes [182–186]. Two major

approaches to combat class imbalance include cost-sensitive re-weighting of the mis-classifications

[187, 188], and re-sampling the training data (e.g., under-sampling the majority or over-sampling

the minority with synthetic samples) [189]. While re-sampling was not practical due to the nature

and limited size of the data, the use of re-weighting (median class frequency balancing [190]) did

not result in improved accuracy distribution among the classes. This can be attributed to the lim-

ited size of the data with only a few hundred data points in the minority classes making it hard

to learn the underlying trends even with proper re-balancing. Future work is required to combine
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inspection data from multiple states which is expected to allow for effective re-weighting and/or

under-sampling of the majority classes.

Table 3.3 presents the performance of the proposed model compared with representative base-

line systems from the literature. Based on the review of the existing literature presented before, five

most widely used ML baselines that have been consistently used in the literature of civil infrastruc-

ture inspection and management [105, 106, 108, 109] were selected, namely Naı̈ve Bayes (NB),

Decision Tree (DT), k-Nearest Neighbors (k-NN), Logistic Regression (LR), and Support Vector

Machine (SVM). The classifiers in the ML baselines used the term frequency (TF) multiplied by

the inverse document frequency (IDF) as features. In this context, TF is the frequency of each term

in each inspection report document. The document frequency (DF) of a term is the number of re-

ports that contain the term divided by the total number of documents, and the IDF is the logarithm

of the inverse DF. Together, the TF-IDF captures the frequent words that help reveal the gist of each

report document while limiting the effect of words that are common to all report documents. In ad-

dition to the ML baselines, two deep learning (DL) baselines were also identified from the literature

[95, 111], namely LSTM and GRU. The DL baselines used regular recurrent neural networks with

LSTM or GRU cells with the same GloVe [71] pre-trained embeddings as the developed system, but

did not include the hierarchical architecture or attention mechanisms proposed herein. To ensure

a fair comparison, the hyper-parameters of the DL baselines were optimized via grid-search on a

grid discretization similar to the proposed method. In this case, the resulting optimal parameter

Table 3.3: Condition rating performance of the proposed framework compared with baseline sys-

tems.

Method ACC0 (%) ACC1 (%) MSE MAE

ML Baselines

(TF-IDF)

NB 53.92 91.03 0.786 0.562

DT 56.66 92.15 0.681 0.514

k-NN 57.04 95.39 0.580 0.478

LR 62.52 96.51 0.504 0.415

SVM 64.88 97.51 0.426 0.376

DL Baselines

(GloVe)

LSTM 67.37 98.26 0.379 0.344

GRU 67.75 97.76 0.390 0.345

Proposed HAN 69.74 98.75 0.339 0.315
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configuration for LSTM was a learning rate of 0.05,momentum of 0.9, and weight decay of 1e−6 ,

as well as a dropout of 0.6 and cell dimension of 100. The grid search for GRU baseline resulted in

the same parameter configuration except for a dropout of 0.3 and weight decay of 1e−4.

As presented in Table 3.3, the proposed hierarchical attention network (HAN) outperformed

the ML and DL baselines across all four metrics. As can be seen in this table, both DL baselines

achieved higher performance than the ML baselines across the board, and the developed hierarchi-

cal attention network (HAN) further outperformed LSTM and GRU in terms of accuracy metrics.

It should also be noted that while the reported values of MAE (and MSE) show that the predictions

are on average off only by a fraction of a rating level for all of the methods, the value of MAE

for HAN shows relative reductions of 8.7% and 16.3% over the next best DL and ML baselines,

respectively (GRU and SVM). In addition to the modeling capabilities of recurrent neural networks,

the improvement produced by the proposed model (and the DL baselines) over ML baselines can be

attributed to the fact that unlike TFIDF which is based on the frequency features of the text (and thus

does not fully incorporate the context and semantics of the documents), the DL solutions leverage

embeddings that have been optimized for the specific problem at hand through end-to-end training.

It can also be seen that the advantage of the developed HAN model over the GRU baseline is not

substantial. This is because both methods use deep learning with the same GRU nodes and embed-

dings within different architectures. However, a major advantage of the proposed model remains in

the additional transparency and interpretability arising from the attention weights which can help

inspectors see which words and sentences contributed more to a certain rating recommendation by

the model.

Impact of word embeddings Table 3.4 presents the testing performance of the proposed HAN

model trained using two pre-trained embeddings: Word2Vec and GloVe. The Word2Vec embed-

dings were developed using a neural network that encodes a word’s dependency with its surrounding

words into its embedding, and was trained using the Google News dataset with around 100 billion

words [70]. The GloVe embeddings were developed using a global word co-occurrence matrix and

were trained using the Wikipedia dataset with 6 billion tokens [71]. As presented in Table 3.4, using

GloVe embeddings slightly improved the testing performance in terms of the four metrics compared

to using Word2Vec.
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Table 3.4: Condition rating performance of the proposed HAN model with different word embed-

dings.

Embedding ACC0 (%) ACC1 (%) MSE MAE

Word2Vec 67.37 98.13 0.382 0.345

GloVe 69.74 98.75 0.339 0.315

Impact of dropout To examine the effect of dropout training, the proposed HAN model was

trained using different dropout probabilities. Figure 3.5 depicts the training and validation curves

for different dropout probabilities. As presented in the figure, using dropout (training with a proba-

bility of either 0.3 and 0.5) alleviated over-fitting, where the gap between the training and validation

curves is much smaller compared to the case with no dropout. Furthermore, as the dropout probabil-

ity increases, the validation ACC0 was able to converge to a higher value compared to dropping out

with a probability of 0.3, which overall demonstrates the benefit of dropout in terms of improved

learning and reduced over-fitting.

Figure 3.5: Training and validation curves with different dropout probabilities.

Impact of level of details To examine how the different levels of details from bridge inspection

reports can impact the condition rating performance, this section first defines a measure of level

of details (LoD). Considering that 1) each sentence in the inspection reports typically describes a

local condition detail as identified during field inspections and 2) bridges with poorer conditions

typically correspond with more sentences of narrative descriptions, the LoD is computed using the

scaled number of sentences in each inspection report. To compute the scaled number of sentences,

the median mk and Interquartile Range IQRk for the number of sentences were first computed for
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each condition category, where the IQRk is calculated as the distance between the third and first

quantiles (Q3−Q1). The number of sentences L j from an inspection report with condition rating k

is then scaled using Equation 3.26 to compute the LoD measure.

LoD =
L j−mk

IQRk
(3.26)

Figure 3.6 illustrates the histogram of the obtained measure of detail levels for the testing data.

Sorting the testing data by ascending level of detail and dividing them into five bins with equal

numbers of testing data points, Table 3.5 presents the condition rating performance of the testing

data in the five resulting bins. An improvement of condition rating performance can be identified for

detail levels around zero ([-0.167, 0.167]), which correspond to inspection reports with the number

of sentences around the median of its condition category. The condition rating performance drops

at both the high and low ends of detail levels, which indicates that anomalies in the level of detail

in the form of unusual length (either too much or too little) both harm the rating performance. It

should also be noted that, while the distribution of detail levels has a long tail towards the high end,

the condition rating performance did not drop as significantly as compared to the low end. This

demonstrates that missing details introduce more harm to the rating performance than unusually

excessive details.

Figure 3.6: Histogram of the level of detail (LoD) measure for the testing data.

3.6.2 Interpretation of Attention Weights

For a closer examination of the hierarchical attention mechanism, this section visualizes the heat

map of word attention weights and sentence attention weights using example paragraphs of bridge
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Table 3.5: Condition rating performance with different levels of details in the inspection reports.

Detail Level
ACC0 (%) ACC1 (%) MSE MAE

Min Max

-1.107 -0.435 63.75 98.13 0.419 0.381

-0.435 -0.167 71.25 98.75 0.325 0.300

-0.167 0.167 75.00 99.38 0.269 0.256

0.167 0.833 70.63 98.13 0.350 0.313

0.833 5.5 67.50 99.38 0.344 0.331

deck condition descriptions (Figures 3.7, 3.8, 3.9). Each row displays a sentence (some long sen-

tences may wrap around the next row). The blue color in the left column represents the sentence’s

attention weight. The orange color of each word represents a normalized word attention weight.

The deeper color indicates higher attention weight. As outlined before, the word attention weights

in each sentence and the sentence attention weights in each document were computed separately as

presented in Equation 3.7, 3.12. To enable the comparison of word attention weights across sen-

tences, the normalized word attention is computed as
√

αsαw, where αw and αs denote word and

sentence attention weights, respectively. Normalizing αw by the square root of αs ensures that the

high-weight words in high-weight sentences are correspondingly emphasized in the visualization,

and the high-weight words in low-weight sentences are still not completely weighted out.

Figure 3.7 presents two examples of bridge deck descriptions from the testing set that were

correctly assigned a condition rating by the proposed model. Figure 3.7 (a) shows an example de-

scription of a “Good” bridge deck with a condition rating of 7. The model paid higher attention

to the words such as “good condition”, “light”, “minor”, “moderate”, and “satisfactory condition”,

which all indicate good conditions of the bridge deck. The model also highlighted the word “joint”,

“expansion joint”, which demonstrated an interesting insight as joint deterioration and leakage is

usually an early cause of more advanced defects. The presence of minor joint problems in the ab-

sence of other major defects can be an indication of earlier stages of overall bridge deterioration

consistent with a rating of 7 [176]. The sentences describing pier edge spalling are also highlighted,

which describes the prominent defect in this example bridge deck. By aggregating the weighted in-

formation of the words and sentences, the model assigned a condition rating of 7, which is defined

as “good condition with some minor problems” by the FHWA Coding Guideline [1]. Figure 3.7
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(a) Example descriptions of a “Good” bridge deck with the condition rating correctly predicted as

7.

(b) Example descriptions of a “Poor” bridge deck with the condition rating correctly predicted as

4.

Figure 3.7: Example descriptions from the testing set that were correctly assigned a condition rating

by the proposed model.
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(b) shows an example description of a “Poor” bridge deck with a condition rating of 4. The model

highlighted words such as “broken”, “deteriorated”, “failing (failed)”, and “decay”, which are in-

dicators of poor conditions. As shown in the blue column of sentence attention weights, the model

emphasized in sentences that describe “pothole”, “timbers deteriorated”, “moisture on timbers”,

“deck bolts loose”, and “extensive deterioration such as splitting and decay”, which all describe

prominent deterioration of the described timber bridge deck. The non-structural elements such as

curbs, guardrails, and railings described towards the end of this example were not emphasized by

the model.

As for mispredicted cases, as presented in the previous section, only 1.25% of deck descriptions

in the testing set were mispredicted by more than one level. Examination of these cases revealed

that a number of these errors can be attributed to inadequately short description of some bridge

decks with Poor or Fair condition ratings. Figure 3.8 presents two examples of short descriptions

of bridge decks of condition ratings 4 and 5 that were mispredicted by the model as conditions 6

and 7, respectively. Although both examples have sentences describing some severe damages such

as “heavy corrosion” and “pothole along centerline”, it is hard to judge based on the descriptions

that the bridge deck is in condition 4 or 5 even via human examination. Although both the federal

and state inspection guidelines [2, 24, 25] recommend documenting every detail of local conditions

especially for bridges with Poor or Fair condition, it is anticipated that further standardization of

inspection note-taking procedures, e.g. documenting each individual local deficiencies with one

sentence, would further improve the performance of the automatic condition rating model. Figure

3.9 shows another off-by-2 error case, which is part of a long description of a bridge deck with

condition 6 that is mispredicted as condition 4.

(a) Example bridge deck condition descriptions with a condition rating of 4 mis-predicted as 6.

(b) Example bridge deck condition descriptions with a condition rating of 5 mis-predicted as 7.

Figure 3.8: Example incomprehensive descriptions mis-predicted as two levels higher.
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Figure 3.9: Example bridge deck condition descriptions with a condition rating of 6 but mis-

predicted as 4.

Focusing beyond individual attention examples, Table 3.6 analyzes the most frequent top-weighted

words for descriptions of different condition ratings. The table presents a column of top-weighted

words and the next column of the words’ frequencies divided by the number of documents for

each condition. Since the word attention weights are the probability scores computed separately

within each sentence, the values of these word attention weights cannot be directly compared across

sentences; similarly, the sentence attention weights cannot be directly compared across inspection

documents. Therefore, the top-weighted words were generated by selecting two top-weighted sen-

tences from each bridge deck description, and then selecting three top-weighted words from each

of the two sentences. As presented in Table 3.6, the top-weighted words in conditions 4 and 5 were

mostly words of deficiencies such as “delaminated”, “decay”, “spalled”, and “scale”. The word

“loss” was also among the top-weighted words for conditions 4 and 5, which is commonly used

to describe the severity of reinforcement corrosion in section loss. The word “joint” tends to be

emphasized in condition 6, 7, and 8, which suggest that defects associated with bridge joints might

be prominent in these three condition levels. Condition 7 and 8 contain top-weighted words such

as “hairline”, “scattered”. “random”, and “isolated”, which indicate the emerging phase of local

deficiencies such as hairline cracks and scattered spalling. The top words in condition 8 and con-

dition 9 were mostly words describing good conditions such as “good”, “no significant problems”,

“no deficiencies noted”. On the other hand, the top defects in conditions 4 and 5 are “delamina-
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Table 3.6: List of 20 top-weighted words for different condition ratings.

Condition 4 Condition 5 Condition 6 Condition 7 Condition 8 Condition 9

Word Freq Word Freq Word Freq Word Freq Word Freq Word Freq

delaminated 0.318 delaminated 0.327 concrete 0.204 cracking 0.217 no 0.389 good 0.71

decay 0.265 concrete 0.241 cracking 0.193 hairline 0.204 problems 0.325 no 0.618

spalled 0.203 delamination 0.212 delaminated 0.159 good 0.154 significant 0.26 problems 0.42

concrete 0.189 spalled 0.17 hairline 0.129 concrete 0.1 concrete 0.209 significant 0.374

delamination 0.178 cracking 0.137 delamination 0.109 light 0.089 good 0.194 deficiencies 0.145

loss 0.12 scale 0.13 fair 0.106 epoxy 0.088 asphalt 0.186 noted 0.099

scale 0.106 decay 0.114 light 0.103 stay 0.078 cracking 0.115 concrete 0.076

deterioration 0.095 light 0.09 scale 0.088 joint 0.064 scattered 0.094 sip 0.069

cracking 0.092 fair 0.089 epoxy 0.086 scattered 0.061 deficiencies 0.085 not 0.069

decayed 0.072 loss 0.089 spalled 0.079 asphalt 0.058 hairline 0.067 asphalt 0.069

severe 0.058 areas 0.078 good 0.069 random 0.054 light 0.062 condition 0.069

timbers 0.053 due 0.069 due 0.068 transverse 0.054 thick 0.059 slab 0.061

spall 0.053 spall 0.064 joint 0.067 isolated 0.053 except 0.051 notes 0.061

heavy 0.047 heavy 0.051 long 0.061 joints 0.052 wearing 0.046 slabs 0.053

due 0.047 scattered 0.046 stay 0.059 long 0.051 joint 0.043 forms 0.053

moisture 0.045 efflorescence 0.045 isolated 0.058 no 0.049 planks 0.042 found 0.046

areas 0.045 spalling 0.045 decay 0.057 problems 0.044 prestressed 0.042 hairline 0.038

soft 0.042 long 0.045 overlay 0.056 spall 0.042 joints 0.042 superstructure 0.038

spalling 0.042 linear 0.045 areas 0.047 overlay 0.042 epoxy 0.04 noteworthy 0.038

floor 0.042 epoxy 0.042 linear 0.047 efflorescence 0.04 stay 0.04 except 0.031

tion” and “spalling” which usually occur in the later stages of deterioration after hairline cracks

grow into larger separations and discontinuities in material resulting in area or volume defects.

Accordingly, the position of delamination and spalling moves toward the end of the list in condi-

tion 6 and 7, replacing with cracking (especially hairline) as the top defect word in condition 7

and 6. This is in agreement with the progression of minor cracks into more serious deficiencies

in bridges having worse condition. Another notable observation is the position of adjectives of

different strengths among the different conditions. Specifically, higher intensity adjectives such as

”severe” and ”heavy” were among the top-weighted words in conditions of 4 and 5. The medium

intensity adjective ”fair” were emphasized in conditions 6 and 5, while ”scattered” peaks at 7 and

8 and ”light” appears in the top-weighted words across conditions 5 to 8. The adjective ”hairline”

that is usually used to describe the onset of cracking, is most frequently emphasized in condition 7

and with a diminishing frequency in the condition states immediately next to 7. It should be noted

that the adjective ”significant” that appears at the top of conditions 8 and 9 is a part of the phrase
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”no significant problems”.

3.6.3 Quality Control Performance

In addition to the application of automatic condition rating, the proposed framework also supports

quality control of ratings assigned by in-training and potentially less experienced inspectors. The

quality control tool processes the narrative descriptions together with the inspector-assigned rat-

ing and generate a recommendation of whether the assigned rating is in alignment with the data.

The recommendation is generated by computing a Likelihood Ratio (Equation 3.22) and comparing

it with a data-driven threshold Θ. As explained in Section 3.4.4, while a direct quality control ap-

proach can screen the inspector-assigned ratings by directly comparing with the automatic condition

rating model outputs, the proposed quality control process develops a data-driven threshold that rec-

ommends to accept/reject the inspector-assigned ratings with a unified level of certainty. The tuning

of the accept/reject threshold helps generate more accurate quality control recommendations. This

section presents the performance of the proposed quality control compared to the direct method in

terms of the evaluation metrics as defined in Equations 3.23, 3.24, and 3.25. For this evaluation, a

synthetic set of “inspector-assigned” ratings were generated , where 50% of the condition ratings

were correctly assigned (the same as the condition rating ground truth) while the other 50% were

randomly sampled from a binomial distribution of {r,r ∈ [4,9] and r 6= ground truth rating}. The

hyper-parameter Θ was selected based on the performance of the F1 score computed in a 5-fold

cross validation using the training data. Table 3.7 presents the performance of the proposed qual-

ity control using the likelihood ratio presented in Section 3.4.4 and the direct quality control. In

the direct quality control, the system accepts the provided rating when it equals the model output

prediction and rejects otherwise. Based on this table, the proposed quality control demonstrated

significant improvement in overall accuracy and F1 score of the “accept/reject” recommendations.

Although HAN achieved a high precision of 92.56%, the recall of HAN is below 70%; the proposed

method achieved above 90% recall with 86.2% precision.

Table 3.7: Quality control performance compared with the baseline system.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Direct Comparison 81.57 92.56 69.59 79.44

Likelihood Ratio 88.67 86.20 92.70 89.33
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To examine the number of data points needed for tuning the hyper-parameter Θ, Figure 3.10

presents the quality control performance when different numbers of data points were used for tuning

Θ. Different sets of data with varying sizes were randomly sampled from the entire validation set

for the tuning of Θ, and in each sample, the Θ value with the optimal F1 score was selected for

performance evaluation using the testing set. The experiment with each sample size was repeated

50 times, producing a distribution of quality control performance in terms of precision, recall, and

F1 score. Figure 3.10 then plots the mean performance together with the range of mean± standard

deviation performance for the three metrics at each number of data points. It can be seen from the

figure that the quality control performance improves as the sample size increases, and meanwhile,

the variance of performance also decreases, indicating a more reliable performance. Given the stable

convergence of the F1 score above 88% after 200 data points, this sample size was considered

an appropriate number required for this specific dataset for tuning the hyper-parameter Θ for a

relatively reliable quality control performance.

Figure 3.10: Quality control performance with different number of data points used for tuning

parameter Θ

3.6.4 Analysis of Quality Control Scenarios

This section discusses how different types of errors and bias in the inspector-provided ratings can

affect the model’s quality control performance. Although in reality the inspector-provided condition

ratings might contain a combination of different types of errors, to study how well the model can
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detect each of type of error, this study generated five assumed error scenarios. Table 3.8 presents

the five error scenarios studied and the generation approach for the wrong ratings of each error type.

For all five scenarios, 50% of the condition ratings were incorrect ratings generated based on the

selected scenario, and the other 50% were correctly assigned (the same as the ground truth) to allow

for the evaluation of both negative and positive decisions. The effect of the percentage of wrong

ratings is also examined and discussed later in this section.

Table 3.8: Five assumed error scenarios and the approach for generating the incorrect ratings of

each error type.

Scenario Name Generation of the Error Ratings

Rand Randomly sampled from binomial

distribution: {r,r ∈ [4,9] and r 6=

ground truth rating}

UpOne One level higher than the ground truth

UpTwo Two levels higher than the ground truth

DownOne One level lower than the ground truth

DownTwo Two levels lower than the ground truth

Figure 3.11 presents the quality control performance of accepting or rejecting the provided rat-

ings in the five error scenarios. As can be seen in this figure, the model achieved the highest per-

formance in the UpTwo and DownTwo scenarios, with all four evaluation metrics over 90% (except

UpTwo precision which is slightly below 90%). The UpOne and DownOne scenarios are relatively

Figure 3.11: Quality control performance in five error scenarios.
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harder for the model to decide, and the lower precision and higher recall in these two scenarios

indicates that the false decisions include more false positives (failing to identify wrong provided

ratings) than false negatives (failing to identify correct provided ratings), which highlights the dif-

ficulty in differentiating between adjacent categories. The random scenario (Rand) demonstrated

better performance than the two off-by-one cases but is not as strong as the two off-by-two cases.

The hyper-parameter Θ plays an important role in the decision of accepting or rejecting the pro-

vided ratings. For each assumed rating scenario, the effect of the hyper-parameter Θ on the quality

control performance was studied and presented in Figures 3.12 and 3.13. It should be noted that

in each case Θ was tuned using cross validation and the quality control performance was reported

using the testing set. The following analysis presents a summary of the factors influencing Θ, and

provides insights for tuning Θ based on engineering knowledge and the application scenario:

1. The value of Θ can be affected by the type of errors in the provided ratings. Figure 3.12 illus-

trates the variation of F1 score with the value of Θ in the five error scenarios. For parameter

tuning in each error scenario, five-fold cross validation was performed where the training data

were split into five folds, four of which were used to train the model, and the remainder was

used to compute the F1 scores as Θ varies. Figure 3.12 shows that each scenario has a slightly

different optimal Θ (denoted by the peak of the curves), and that the two off-by-two scenar-

ios (UpTwo and DownTwo) performed better than the two off-by-one scenarios (UpOne and

DownOne) indicating that adjacent categories are relatively harder to differentiate. Accord-

ingly, in the off-by-two scenarios, the optimal value for Θ is smaller than the off-by-one

scenarios, representing a lower threshold to accept and higher trust in the model-generated

Figure 3.12: Variation of F1 scores with the value of Θ in the five error scenarios.
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probability scores.

2. The choice of Θ value also depends on which type of error (false positive or false negative)

is deemed less desirable in the specific quality control application. False-positive predictions

fail to identify incorrectly-assigned ratings, while false negative predictions fail to accept

correct ratings. Considering the Rand scenario as an example, Figure 3.13 illustrates the

trade-off between the two types of errors in selecting an optimal value for Θ. As the value of

Θ increases, the percentage of type I error (false positive) decreases while the percentage of

type II error (false negative) increases. Accordingly, similar trends appear in the variation of

recall and precision with changes in Θ. Although the value of Θ can be selected based on F1

score to include the simultaneous effect of recall and precision, bridge managers can choose

to prioritize a certain error type at the cost of the other based on the owner’s priorities and

expected outcomes.

Figure 3.13: Trade-off between precision and recall (left), and trade-off between the false positive

or false negative errors (right) in selecting an optimal value for Θ. (*Figure generated in Rand

scenario.)

3. Prior knowledge regarding the confidence in the provided ratings can also affect the value of

Θ. Figure 3.14 illustrates the optimal Θ values and the associated quality control accuracy

with different percentages of incorrect ratings in each error scenario. It can be seen that, all

five error scenarios demonstrated an increasing trend in the optimal Θ value as the percentage

of incorrect rating increases. Therefore, a higher Θ would be more appropriate if higher levels

of error were anticipated in the provided condition ratings (e.g., inexperienced inspectors
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Figure 3.14: The optimal Θ values (left) and model accuracy (right) for different percentages of

wrong ratings. (*UpTwo and DownTwo cases do not include 0.9 datapoints because not enough

ratings can be shifted up or down by two levels. )

under training). It can also be seen in Figure 3.14(right) that the model achieved higher

accuracy at both high and low percentages of incorrect ratings than the middle of the range

(40%-60% of the ratings). This is because the model can rely on a lower threshold (tend

to accept) in the case of low percentage of incorrect ratings and a higher threshold (tend

to reject) in the case of high percentage of incorrect ratings, but the model relies more on

accurate model-generated probability scores in deciding to accept or reject when the number

of correct and incorrect provided ratings are close.
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Chapter 4

Fusing Visual and Textual Representations

from Bridge Inspection Reports for Reliable

Automated Condition Assessment

Li, T., and D.K. Harris, Fusing Visual and Textual Representations for Automated Condition As-

sessment. To be submitted to Journal of Civil Structural Health Monitoring, 2021.

4.1 Abstract

This study identifies bridge inspection reports and the associated historical condition ratings as

a collective knowledge base of bridge condition assessment, and proposes a deep learning-based

fusion approach for automated bridge condition rating using the visual and textual data from bridge

inspection reports. Considering the structure of inspection reports that each contains a collection

of images and a sequence of sentences that document local bridge conditions, the proposed fusion

approach constructs visual and textual representations from images and sentences separately, and

adopts a sequence encoder followed by an attention mechanism to fuse multi-modal representations

to support condition rating. While the image-based defect recognition and condition assessment

models have been extensively studied in the existing literature, results from this study show that

the visual modality alone did not yield satisfactory condition rating performance. Condition rating

using textual data from the inspection reports significantly outperformed the visual modality, and

the proposed fusion approach introduced further improvements over the uni-modal baselines. This
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study further investigated the uncertainty of rating predictions under random disturbance introduced

by data augmentation and dropout training strategy. The uncertainty analysis showed that 95% of

the rating predictions for the testing data vary within 0.535, and referring the uncertain predictions

to human investigations can further improve the rating performance. The proposed model can be

used to process the bridge condition data collected from the current visual inspection practices to

improve rating consistency, and discussions of this study points to the potential improvement in

future inspection data collection that can further facilitate automated condition assessment.

4.2 Introduction

Towards addressing the critical preservation challenges of bridge infrastructure and the challenges in

obtaining consistent and reliable condition assessment, the increasing volume of multi-modal bridge

condition data offers a viable approach that supports the integration of efficient automation concepts.

As visual field inspection remains the predominant approach to collect the conditions of bridges, a

significant number of recent works have developed robotic systems using unmanned aerial or ground

vehicles (UAV/UGV) [28, 29] that navigate around bridges and collect visual data [30–33]. As of

2018, the Department of Transportation (DOT) in 15 states are actively conducting researches on the

use of UAVs in inspection, 20 states have incorporated UAVs into their daily operations [34]. The

robotic inspection systems demonstrate great potential in alleviating labor cost and safety concerns

in visual inspection, and more importantly, it produces an increasing volume of data for supporting

the automation in the subsequent condition assessment process. Extensive research efforts have

been made in vision-based automated condition assessment. The scale of assessment ranges from

image/patch-level defect classification [61, 62], object-level defect detection [191], as well as pixel-

level defect segmentation [45, 63]. However, it requires further research efforts in order to progress

towards quantifying local deficiencies and aggregating them to global condition ratings.

Besides collecting automated inspection data using robotic systems, the bridge infrastructure

system is also historically rich in both structured tabular data such as the National Bridge Inventory

(NBI) [1] and unstructured descriptive data such as inspection reports and maintenance records. The

NBI contains characteristics (e.g. geometry, structural systems, materials, etc.), as well as condition

rating scores assigned through visual inspections, for more than 616,000 bridges in the United States

(US) since 1992. Besides, bridge inspection reports document the condition evolution of the entire

bridge population in richer details to the extent of every defect identified in field inspection, the
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expert condition assessment (rating scores and recommendations), as well as the follow-up mainte-

nance activities. These inspection reports and the associated condition rating scores collected over

the years represent a knowledge base that aggregates individual inspectors’ expertise, and can shed

light on how local conditions should be mapped to the rating scores. Automated information ex-

traction approaches have been developed to extract condition-related information from unstructured

textual descriptions from the inspection reports [39, 40, 162]. An automated condition rating model

has also been developed that map the textual descriptions from inspection reports to the condition

ratings [164]. The extracted condition descriptions, together with the NBI data, have been used for

enhanced deterioration prediction [163].

While visual and textual bridge condition data and automated condition assessment tools have

become increasingly available, the problem of fusing both modalities for automated condition as-

sessment has not been extensively researched. Survey studies have been conducted in the field of

multi-modal analysis [59, 141], and most of the collected works suggested the superiority of multi-

modal over uni-modal approaches. A large amount of research has developed models for visual and

textual fusion using large-scale data with general contents [136–138], while their applicability to

the domain of bridge condition assessment remains unknown due to the unique content and struc-

ture of bridge inspection report data. Table 4.1 illustrates the visual data (images) and textual data

(descriptive sentences) for bridge deck from a typical inspection report. The descriptive sentences

state in detail every local defect identified during inspections, while the images serve as supplemen-

tary information that illustrates zoomed views of selected local defects. Each image and sentence

correspond to one inspection finding, typically a local defect condition without the direct align-

ment between each image-sentence pair. The color-coding of the sentences and images indicates

the alignment between the two modalities. One image may correspond to the content of multiple

sentences (Image 1 - sentence 1,2; Image 2 - sentence 7-9), or the other way around (Sentence 12 -

image 3-5). Sentences may also not correspond to any images, as shown in black in Table 4.1. While

the existing fusion approaches were developed for input modalities that have perfect alignment and

contain complementary information [59], fusing such loosely-aligned modalities with supplemen-

tary information in this practical use case of visual and textual data from the inspection reports is

still challenging and warrants further study.

To that end, this study constructs visual and textual representations for images and sentences

separately, and proposes a Recurrent Neural Network (RNN) sequence encoder and an attention

66



Table 4.1: Visual data (images) and textual data (descriptive sentences) for bridge deck from a
typical inspection report.

1 Asphalt overlay typically has several transverse cracks at
expansion joints, up to 1” wide x full joint length.

2 Pier 1: Northbound lane wearing surface is breaking up
over 1’ width over joint, with 2 SF full depth pothole.

3 Pier 6: Southbound lane wearing surface is breaking up 6”
wide over joint.

4 Not visible below wearing surface except at the concrete-
armored expansion joints over each abutment where mod-
erate spalling and cracking is evident.

5 Edge spalling along deck joints typically 12” long x 3”
wide x 1” deep.

6 Several edge spalls have been patched with asphalt in the
past.

7 Span A NBL adjacent to Abutment A joint: Spall, 4’ long
x 1’ wide x up to 4” deep with exposed reinforcing.

8 Spall has been filled with asphalt in the past.

9 Span A NBL, both lanes adjacent to Abutment A joint:
Spalling, 10’ long total x up to 4” wide x 2” deep.

10 Map cracking, moisture seepage, efflorescence (typical
throughout approximately 10% of deck area) and smoke
staining (over tracks).

11 Underside of deck has isolated areas of longitudinal and
transverse cracking up to 1/16” wide on approximately
10% of deck area.

12 Numerous areas of spalling and delamination throughout
underside of deck, totaling 5761 SF of delamination and
256 SF of spalling up to 2” deep with exposed reinforcing.

13 Cover spalls throughout with exposed reinforcing chairs
spaced approximately 6” on center, typically up to 1” di-
ameter x 1/4” deep with exposed reinforcing.

Image 1

Image 2

Image 3

Image 4

Image 5
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mechanism to fuse and summarize the multi-modal representations for predicting an overall condi-

tion rating. To evaluate the uncertainty of model predictions, test-time augmentation and dropout is

adopted that incorporates randomness during testing and generates a distribution of model predic-

tions whose standard deviation can be used as the measure of model uncertainty. The evaluation of

condition rating performance demonstrated the capability of each modality (visual and textual) in

supporting condition assessment, and promoted the fusion of the two modalities for enhanced rating

performance. Results of the uncertainty analysis showed that the rating performance is relatively re-

liable compared with the variance estimated in the human-assigned ratings; and referring uncertain

rating predictions to human investigation can further improve the rating performance. Discussions

of this study also point to potential improvements in future condition data collection process that

may further facilitate better automated condition rating models.

4.3 Proposed Multi-modal Rating Model

Given a bridge inspection report that contains a collection of images Vk,k ∈ [K] and a sequence of

sentences S j, j ∈ [J] ([x] denotes the set of non-negative integers smaller than x; K and J denote

the numbers of images and sentences, respectively), this study extracts visual and textual repre-

sentations from images and sentences, and fuses the two modalities to predict the condition rating.

Figure 4.1 provides an overview of the model architecture that includes an image module and a

word module to extract visual and textual representations from the inspection reports, respectively,

and a fusion module to combine the extracted representations for condition rating.

The visual representation is extracted from each image using the convolutional dense blocks

from the DenseNet [118], which is a well-known convolutional neural network that has been pre-

trained using the ImageNet data [119]. Each image Vk is then represented by a vector rk ∈ R2208

rk = DenseNet(Vk) (4.1)

The vectors rk,k ∈ [K] are then condensed to a dimension m, which is the selected common dimen-

sion for the visual and textual representation, using a Linear layer,

vk =WV rk +bV (4.2)

where WV ∈ Rm×2208, and bV ∈ Rm are the corresponding weight matrix and bias parameters.

The textual representation is constructed using a word embedding layer and a word module

as in Hierarchical Attention Network (HAN) [164, 192]. The word embedding layer contains the
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Figure 4.1: Model architecture for the extraction and fusion of the visual and textual representations.

pre-trained Global Vectors (GloVe) [71] that were developed using the general-content Wikipedia

data and cover a vocabulary of 84M words. Words from the inspection reports are embedded in a

vocabulary look-up manner into their embeddings, and words that are out of the vocabulary of the

pre-trained GloVe were embedded with randomly initialized word embeddings using the He Initial-

ization [193]. For a sentence S j that contains Tj words, each word W jtt ∈ [Tj] is then represented

by a word vector w jt

w jt = WordEmbedding(W jt) (4.3)

The word module contains a sequence encoder followed by an attention mechanism to aggregate

the word vectors w jt , t ∈ [Tj] into a sentence vector s j. The sequence encoder contains the bi-

directional Gated Recurrent Units (GRUs) [114] that encodes the contextual information from both

before and after each word vector into its hidden representation hW
jt .

hW
jt = [

−→
GRU(w jt);

←−
GRU(w jt)] (4.4)

where hW
jt ∈ Rm. The attention mechanism first feeds hW

jt through a Linear layer

ν
W
jt = tanh(WW hW

jt +bW ) (4.5)
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and then calculates the attention weight for each word w jt is via a softmax function

α
W
jt =

exp(νW
jt

T uW )

∑
Tj−1
t ′=0 exp(νW

jt ′
T uW )

(4.6)

where the vector uW represents an overall informative word, and νW
jt

T uW computes the similarity

between νW
jt and uW as a measurement of word importance. The vector uW is the parameters in

the attention mechanism that is learned through model training. The sentence vector s j is then

computed as a weighted sum of the encoded word representations

s j =
Tj−1

∑
t=0

α
W
jt hW

jt (4.7)

where where s j ∈ Rm. The word embedding layer with GloVe as well as the word module are

obtained from the pre-trained HAN model that also includes a sentence model that summarizes the

sentence vectors into a document-level representation for condition rating. The HAN model is also

used as the uni-model (textual) baseline for the proposed fusion models in section 4.5.

The image vectors vk,k ∈ [K] and the sentence vectors s j, j ∈ [J] are then combined and fed

through the fusion module that starts with the layer normalization [194, 195]

F = LayerNorm([v0, · · · ,vK−1,s0, · · · ,sJ−1]) (4.8)

where LayerNorm(X) = X−E(X)√
Var(X)+e−5

. The fused matrix F ∈ Rm×(K+J) contains both visual and

textual representations from an inspection report. Each column of F was further re-indexed as

fl, l ∈ [L], where L = J+K.

The fusion module also contains a bi-directional GRU sequence encoder that fuses fl, l ∈ [L]

into a hidden representation hF
l via the recurrent connections among the GRUs

hF
l = [

−→
GRU( fl);

←−
GRU( fl)] (4.9)

The attention mechanism in the fusion module then computes a fusion weight for each hidden

representation of the images and sentences

ν
F
l = tanh(WF hF

l +bF ) (4.10)

α
F
l =

exp(νF
l

T uF )

∑
L−1
l′=0 exp(νW

l′
T uF )

(4.11)

where WF and bF are the weight matrix and bias in the fusion module; uF is a parameter vector

optimized during model training as a representation of an overall informative fused vector (image

70



or sentence). The fused document vector d is then computed as the weighted sum of hF
l

d =
L−1

∑
l=0

α
F
l hF

l (4.12)

The document vector is processed by two sequential Linear layers with ReLU as activation

functions (denoted as function g) followed by a softmax classifier to be mapped to the a condition

rating

q = WPg(d)+bP (4.13)

pc =
exp(qc)

∑
C−1
c′=0 exp(qc′)

∀c ∈ [C] (4.14)

where WP and bP denote the corresponding weight and bias parameters; q ∈ RC where qc rep-

resents the cth element in q, and C is the total number of condition rating categories. The vector

p ∈ RC consists of pc scores, which computes the probability of the condition being rated as c.

Given the target condition rating y ∈ {1,2, · · · ,C}, the cross entropy loss used for model training is

L(p,y) = −log(py) (4.15)

To assign a condition rating, the model computes the predicted rating ŷ as

ŷ = argmax
c

pc (4.16)

4.4 Data Collection and Preparation

Bridge inspection reports used in this study were collected from the inspection report database

maintained by the Virginia Department of Transportation (VDOT). The most recent reports for

all bridges in the state of Virginia were downloaded from the database in June 2018. Accessing

historical inspection reports of previous inspections from the database requires a manual process that

navigates to each bridge and downloads by the year, and therefore, the historical inspection reports

were not extensively collected (i.e. report history before 2018) in this study due to labor cost. Each

inspection report contains separate sections for bridge components such as Deck, Superstructure,

and Substructure that document the inspection findings as well as a condition rating of 0-9 assigned

by the inspector for each component. This study was constrained to the development of a condition

rating model for the deck component; however, similar models could also be constructed for the

other bridge components (i.e. Superstructure and Substructure). Considering that only 1.64% of the
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bridge decks in Virginia were in condition 4 or below as of 2018, 245 additional reports of bridges

from other inspection cycles (prior to 2018) that were historically rated as condition 4 or below

were manually downloaded from the VDOT database to support this study. Figure 4.2 illustrates

the composition of the collected reports in terms of the corresponding VDOT districts, number of

spans, structural designs, and materials. The collected inspection reports were submitted by the nine

VDOT district offices (as illustrated in Figure 4.2 top), where each district office adopts different

teams and personnel for routine bridge inspection, and therefore the collected reports aggregate a

wide coverage of inspector’s expertise that can guide the automated condition rating model. Over

90% of the collected reports associate with bridges that contain less than 5 spans. The majority

of the bridges (68.5%) were multi-girder bridges, and the next popular structural design was slab,

T-beam, and Box-beam, sequentially. Concrete and steel are the two main materials identified in

the collected bridges, the rest of other materials (e.g. timber, masonry) contributed to 0.5% of the

collection.

Figure 4.2: Composition of the collected reports in terms of VDOT districts, number of spans,

structural designs, and materials.

Although the condition ratings are documented in each inspection report, these ratings can

hardly be directly extracted from the reports since they were recorded in various formats such as

photo-format cover pages or tables. In this regard, from the pool of all the collected inspection

reports, this study used the reports of the National Bridge Inventory (NBI) [1] bridges (bridges that

are more than 20 feet long and used for vehicular traffic), whose condition ratings can be obtained

from the NBI database. The federal bridge ID and inspection year were extracted from the inspec-

tion reports, usually from the first sentence of the report texts, via regular expression matching.

The bridge ID and inspection year were then used to match an inspection report with the associated
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condition rating in the NBI database.

Images were extracted from the inspection reports using the Zipfile python package [196] that di-

rectly accesses the images from the metadata of the reports in the Microsoft Word document format.

Irrelevant images such as icons and logos were removed manually while sorting images by sizes to

reveal the icons and logos that were mostly smaller than 20 Megabytes; structural drawings were

removed manually while sorting by the percentage of white pixels in an image. As images from a

report are not readily organized by bridge components of Deck, Superstructure, and Substructure,

this study trains an identification tool that separates the images regarding local deficiencies of bridge

deck (deck images) from the rest (non-deck images). Figure 4.3 and 4.4 presents example deck and

non-deck images from the manually labeled dataset, respectively. The identification tool was de-

veloped by fine-tuning a pre-trained DenseNet [118] image classification model using a manually

labeled dataset with 1214 images. The deck images were manually identified from 400 reports that

were randomly sampled from the collected inspection reports, resulting in 607 deck images. The

rest of the images from these reports were non-deck images that illustrate bridge components other

than the decks, from which the same number (607) were sampled to form the dataset for developing

the identification tool. 90% of the dataset was used for training the identification tool, while the

rest 10% were used for hold-out evaluation. Model training used the Adam optimizer [197] with

(a) Cracks and raveling (b) Surface patches (c) Deck bottom efflorescence

(d) Deck bottem spall (e) Deck edge deterioration (f) Deck bottom rebar

Figure 4.3: Example deck images illustrating local conditions of bridge decks.
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(a) Approach View (b) Side View (c) Abutment

(d) Pier cap (e) Beam bearing seat (f) Pier column

Figure 4.4: Example non-deck images.

a learning rate of 3e−5 that was selected by searching in the range of [1e−5, 3e−5, 5e−5, 1e−4].

This identification tool achieved 88.43% accuracy during testing, and was then used to identify deck

images from all the collected inspection reports. The identified deck images from each report were

organized in a folder named by a unique index, which is then used to associate the images with the

textual data from each inspection report.

Sentences were extracted from the inspection reports using the python-docx package [175] that

supports reading table contents from Word document cell by cell and extracting textual content

from each cell of the table. Since each inspection report maintains a large table of all its contents,

sentences were extracted from the table while keeping the original organization in the table. The

sentences describing bridge deck conditions were used in this study to construct the condition rating

model. The raw descriptive sentences were tokenized into individual words based on whitespace,

standard contractions, and punctuation using the Natural Language Toolkit(NLTK) [177] tokenizer.

Tokens were reduced to lower cases and special characters were removed. Measurements in engi-

neering conventions such as 1-3/4 were converged to integers; units in punctuation forms such as ’

(feet) and ” (inch) were changed to the textual forms. The cleaned tokens were joined by whites-

paces and grouped into sentences using the NLTK sentence grouper that was pre-trained on large

corpora for identifying the boundaries of sentences. The sentences of cleaned tokens from each
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report were organized by the report’s index to be combined with the images.

The above data collection and preparation process resulted in a collection of 6670 unique bridges

and 6881 reports (211 bridges had more than one corresponding reports from previous inspections).

For the 10,521 NBI bridges in Virginia, 3640 bridges were not included in this collection due to

the causes including reports in a PDF format; not containing deck images; not listing the inspec-

tion year in the beginning; or not organized by bridge components of Deck, Superstructure and

Substructure. It is anticipated that a unified representation of the inspection results (images and

descriptive sentences) may allow a wider coverage of bridges for constructing automated condition

rating models.

4.5 Results and Discussion

The collected reports were randomly split into the training and testing sets with a ratio of 9:1.

Table 4.2 presents the statistics of the splits. The training and testing sets were ensured to have a

similar distribution of condition categories by stratified random sampling. The reports of the same

bridge obtained from different years of inspections were assigned to either training or testing set

to achieve full independence between the training and testing sets. This resulted in 6004 bridges

(6195 reports) for training and another 666 bridges (686 reports) for testing. The training data was

used for model development, while the testing data was held unseen during training for objective

evaluation of model performance. It should be noted that bridges with a condition rating of 3 or

lower are closed to traffic due to severe structural deficiencies that raise safety concerns; bridges

Table 4.2: Statistics of the training and testing datasets (Top row: training; Bottom row: testing).

Condition 4 5 6 7 8

#Reports
313 991 2,019 2,502 370

33 110 224 278 41

Avg #Images
5.67 5.20 4.63 3.76 2.44

4.79 5.86 4.70 3.90 2.78

Avg #Sentences
33.52 27.36 21.76 15.81 7.62

31.97 36.02 22.38 15.05 8.55
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with a condition rating of 9 are newly constructed or renovated without local deficiencies. These

condition categories do not represent operational bridge conditions and therefore are not included

in the target condition ratings.

4.5.1 Multi-modal Rating Performance

The proposed multi-modal rating model was trained using mini-batch stochastic gradient descent

(SGD) optimization, which descends the parameters along their gradients to minimize the loss as de-

fined in Equation 4.15. The batch size were set as 64. A momentum of 0.9 were used, which keeps a

portion of previous parameter updates in order to stabilize the training process [178]. Dropout train-

ing was applied to the embedding layer that randomly drops the embeddings, which is a regulariza-

tion technique to alleviate over-fitting [179]. The hyper-parameters of model training including the

learning rate, weight decay (L2 regularization), the dimension m of the image vector vk (Equation

4.2) and the sentence vector s j (Equation 4.7), as well as the dropout probability, were selected

by performing a 5-fold cross validation (CV) grid-search over the following hyper-parameter space

discretization: learning rate [5e−3, 1e−2, 3e−2]; weight decay [0, 1e−6, 1e−4]; vector dimen-

sion [100, 150, 200]; and dropout probability [0, 0.3, 0.5] (selected values were underlined). To

enhance the variability of the image data during training, the images were resized to 256 × 256 and

randomly cropped to the input size of the DenseNet (224 × 224). Other augmentation transforms

[117, 118] such as horizontal or vertical flip (with a probability of 0.5), and random rotation (max-

imum 120 degrees) were also applied to the cropped patches. The random parameters of the crop,

flip, and rotation transforms were generated from Uniform distributions. The model were imple-

mented using the PyTorch [181] package that supports GPU-accelerated tensor computations and

automated differentiation for optimization in neural networks. The training process was supported

by NVIDIA Tesla P100 GPU nodes provided by the University of Virginia’s High-Performance

Computing (HPC) servers.

Figure 4.5 presents the training and validation curves of the proposed multi-modal rating model.

While the training curve increases through the epochs, the validation ACC0 gradually converges af-

ter around 30 epochs. Figure 4.6 presents the confusion matrix of the testing predictions. The

confusion matrix demonstrated a clear diagonal concentration where the model rarely mis-predict

by more than one rating level. The percentage of “off-by-2” mis-predictions (e.g. ground truth

condition rating 5 mis-predicted as 7) is 2.19%. Also, the average difference between the predicted
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Figure 4.5: Training and validation curves of the proposed multi-modal rating model.

Figure 4.6: Confusion matrix of the testing predictions

ratings and the ground truth is 0.386 and 0.343 as measured by the MSE and MAE metrics, respec-

tively. This performance of the proposed multi-modal rating model is also presented in Table 4.3,

with the ACC0 and ACC1 values of 67.93% and 97.81%, respectively.

While the proposed model achieved a relatively small MSE and MAE as well as high ACC0 and

ACC1 values during testing, a closer examination of the confusion matrix reveals increasing rating

difficulties towards the ends of the condition rating spectrum. A potential cause for this behavior can

be the severe imbalance of the sizes of the condition categories. As seen in Table 4.2, over 72% of

the inspection reports belong to the condition categories of 6 and 7, and the condition categories of

4 and 8 only take 5% and 6% of the data, respectively. In fact, the U.S. bridge population naturally

concentrates on the middle of the condition rating spectrum as the majority of the bridges were con-

structed over 50 years ago and extensive efforts have been made by the bridge management agencies
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to reduce the severely deteriorated bridges in condition 4 and 5 [176]. The lack of regulations in im-

age data collection further added to the imbalance issue. The inspection personnel takes a selective

collection of site images, usually of the pressing issues identified during bridge inspections. The

minor local deficiencies in the condition 8 bridges were not often documented by images, which

further reduced the available multi-modal data at the end of the condition rating spectrum. The

class imbalance is known to affect the classification performance of especially the minority classes

[182, 184–186]. Tow major strategies to combat class imbalance include re-weighting the cost of

mis-classification [187, 188] and re-sampling the training data [189] (over-sampling the minority

class or under-sampling the majority class). The use of the re-weighting (median class frequency

balancing [190]) and re-sampling strategies did not yield improvement in the distribution of accu-

racy, which may be attributed to the fact that the minority condition categories only contain around

300 data that are limited in revealing the underlying trends even with balancing strategies. Future

work may collect inspection reports from multiple states to populate the minority classes, which

may allow for effective re-weighing or re-sampling strategies.

The proposed model is compared with two uni-modal baselines (image-based and text-based)

and two multi-modal variations that perform fusion at the score level and the document level, re-

spectively.

Image The Image baseline extracts image vectors the same way as the proposed fusion model

(Equation 4.1, 4.2), and combines the extracted image vectors for condition rating. The hyper-

parameters of the learning rate, weight decay, the dimension m of the image vectors vk,k ∈ [K], and

the method for combining the image vectors were selected by performing a 5-fold cross validation

(CV) grid-search over the following hyper-parameter space discretization: learning rate [5e−3,

1e−2, 5e−2]; weight decay [0, 1e−6, 1e−4]; vector dimension [100, 150, 200]; combining method

[averaging, max pooling] (selected values were underlined).

Text The Text baseline adopts the HAN model [164] that constructs the sentence vectors the

same way as the proposed model (Equation 4.7), and has another encoder-attention module to com-

bine the sentence vectors into a document-level representation for condition rating. The hyper-

parameters for the Text baseline were selected from the same hyper-parameter space discretization

as the proposed model, resulting in selecting a learning rate of 0.01 and a vector dimension of 100

with a weight decay of 1e−6.
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Score The Score fusion model takes the softmax scores (as computed by Equation 4.14) from

the two uni-modal baselines (Image and Text), and calculates a weighted sum of the scores to fuse

the two modalities. The weights of the Image and Text scores, denoted as wi and wt , were selected

as 0.1 and 0.9, respectively, by searching from wi = [0.1,0.2, · · ·0.9],wt = 1−wi.

Doc While the proposed fusion model directly combines the image and sentence vectors for fu-

sion, the Doc fusion model first combines the image vectors and the sentence vectors separately,

using the same method as in the uni-modal baselines, and then concatenate the combined visual

and textual representations for fusion. The hyper-parameters were selected from the same hyper-

parameter space discretization as the proposed model, resulting in selecting a learning rate of 0.005

and a vector dimension of 100 with a weight decay of 1e−6.

Table 4.3 presents the performance of the proposed fusion model compared with the uni-modal

baselines and multi-modal variations. The image modality alone achieved 49.42% ACC0 in classi-

fying condition ratings of four through eight. Although the majority of existing defect recognition

models are imaged-based, the image data from bridge inspection reports alone does demonstrate

sufficiency in supporting automatic condition rating using the image baseline model. The Text

baseline significantly improved the condition rating performance in all metrics compared with the

image baseline, which confirmed the hypothesis that the textual data from bridge inspection reports

contain more comprehensive information regarding bridge conditions as compared with the visual

data, and the visual modality is supplemental modality compared with the textual modality. By di-

Table 4.3: Performance of the proposed fusion model compared with the uni-modal baselines and

multi-modal variations.

Model
ACC0

(%)

ACC1

(%)
MSE MAE

Uni-

modal

Image 49.42 91.11 0.802 0.601

Text 64.43 98.10 0.413 0.375

Fusion

Score 65.16 97.96 0.410 0.369

Doc 67.20 98.25 0.380 0.345

Proposed 67.93 97.81 0.386 0.343
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rectly fusing the softmax scores from the Image and Text baselines via the Score fusion, the fused

ACC0 demonstrated minor improvement of 0.73%, while the ACC1 slightly reduced by 0.14%.

The weight assigned to the image and text scores were 0.1 and 0.9, respectively, indicating that the

Score fusion model only fused in a small portion of the image information. Further increasing the

weight on image scores decreased the ACC0. The minor improvement of the Score fusion over

the text baseline showed that the direct Score fusion method adds limited benefits in fusing sup-

plemental modality like the visual data in bridge inspection reports. Both the Doc fusion and the

proposed fusion models both significantly improved over the Text baseline in terms of ACC0, and

the mean error metrics. The difference between the Doc fusion and the proposed fusion is whether

to summarize within modality first before combining the multi-modal representations. With similar

modules (in different orders) and the number of parameters, the Doc fusion and the proposed fu-

sion models achieved similar performance. Allowing the image vectors and sentence vectors to be

jointly encoded by the fusion encoder and attention mechanism as in the proposed model slightly

outperformed the Doc fusion in terms of ACC0. It should be noted that the Score and proposed

fusion did not outperform the Text baseline in terms of the ACC1 metric, which might be attribute

to the fact that all fusion models and the Text baseline achieved relatively high ACC1 ( 98%) with

only small fluctuations in the scores.

Impact of model components The proposed model adopts a fusion module that contains compo-

nents including layer normalization, sequence encoder, and the attention mechanism. To examine

the impact of each component, Table 4.4 presents the performance of the proposed model while

removing each component. The attention mechanism is replaced with averaging or maximization

to combine the encoded representations of images and sentences. As revealed by the ACC0, MSE,

and MAE metrics, removing each component in the proposed model caused reductions in the rating

performance. Base on the reduction caused by removing each component, the sequence encoder is

the most important component in the model architecture, followed by the attention mechanism and

the Layer Norm. The removal of each model component caused fluctuate performance in the ACC1

metric instead of the trend as revealed by the other three metrics, removing the layer normalization

and replacing the attention mechanism with maximization did not reduce the rating performance

compared with the proposed model. This might be attributed to the fact that all the model variants

achieved similar performance as evaluated by ACC1. Considering that one mis-prediction in the

testing set causes 0.15% reduction in ACC1, the fluctuations in ACC1 are not as strong support for
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the analysis of performance changes as compared with the other three metrics.

Table 4.4: Impact of the components in the proposed architecture.

Model
ACC0

(%)

ACC1

(%)
MSE MAE

Proposed 67.93 97.81 0.386 0.343

w/o LN -2.04 0.29 0.012 0.017

w/o Encoder -4.08 -0.14 0.053 0.043

w/o Attn (Max) -2.62 0.00 0.027 0.026

w/o Attn (Ave) -7.58 -1.16 0.111 0.087

Impact of visual feature extractors To examine the impact of different visual feature extrac-

tors on the multi-model rating model, Table 4.5 presents the performance of the proposed model

with different architectures used for visual feature extraction. While The proposed model adopts

DenseNet (161 layers) to extract vector representations from the images, two variants of the well-

known Resnet were also examined, the medium size Resnet50 with 50 layers, and the large size

Resnet152 with 152 layers. The Resnet introduces residual connections to the deep convolu-

tional neural network to improve optimization, and the DenseNet further adds dense connections

among layers to encourage feature reuse and strengthen feature propagation. Regarding the hyper-

parameter setting, both Resnet variants were trained using the same vector dimension and dropout

probability as the proposed model, while the learning rate and weight decay were tuned for each

Resnet variant, resulting in a learning rate of 0.01 with no weight decay for Resnet50 and a learn-

ing rate of 0.03 and a weight decay of 1e−6 for Resnet151. As shown in the table, the Resnet50

and the Resnet152 obtained similar condition rating performance, while the Resnet50 slightly out-

performed the Resnet152. Both Resnet variants did not reach the performance of the proposed

model with Densenet161 as visual feature extractor, which demonstrated the strength of the dense

connections in the pre-trained DenseNet architecture in extracting informative visual features. All

three models demonstrated improvements over the uni-modal baselines as presented in Table 4.3,

indicating the strength of fusion despite different visual feature extractors.
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Table 4.5: Impact of visual feature extractors.

Model
ACC0

(%)

ACC1

(%)
MSE MAE

Resnet50 66.91 97.81 0.397 0.353

Resnet152 66.47 97.38 0.414 0.362

DenseNet161 67.93 97.81 0.386 0.343

Impact of dropout To examine the effect of dropout training, Figure 4.7 depicts the training and

validation curves for the proposed multi-modal rating model with different dropout probabilities. As

shown in the figure, dropout training (with a probability of either 0.3 or 0.5) alleviated over-fitting,

which obtained smaller gap between the training and validation curves compared with no dropout

training. Besides, the validation ACC0 was able to converge to a higher value when increasing the

dropout probability from 0.3 to 0.5, which demonstrates the benefit of dropout training for improved

learning and reduced over-fitting.

Figure 4.7: Training and validation curves with different dropout probabilities.

4.5.2 Uncertainty Analysis

The training of the proposed model introduced variability via data augmentation and dropout in

order to alleviate over-fitting and promote the learning of robust mappings that are generalizable to

unseen testing data. As discussed in Section 4.5.1, the images were augmented via random crop, flip

(horizontal and vertical), and rotation, where the corresponding random parameters were sampled

from uniform distributions. Dropout training was applied to the embedding layer with a probability
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of 0.5 that randomly set the embedding of the input words to zero. To quantify the uncertainty

introduced by such training strategies, this section applies data augmentation and dropout during

testing and performs repeated testing experiments to analyze the distribution of model predictions.

The mean of this distribution is used as the predicted rating, while the standard deviation of this

distribution is used as the measure of model uncertainty. As the data augmentation can be consid-

ered as having input images from variant directions and angles, and the dropout training over the

embedding layer is equivalent to randomly omitting words in the input sentences, the uncertainty

obtained from this analysis can be interpreted as model uncertainty given these variations in the

input images and sentences.

The testing experiments were repeated for T = 100. The maximum uncertainty of the testing

predictions is 0.817, while 95% of the testing predictions resulted in uncertainty within 0.535. It

should be noted that, based on the reliability study conducted by the Federal Highway Administra-

tion (FHWA), where a sample of bridge inspectors across the states was tasked to assigned condition

ratings for the same bridges, it was estimated that 95% percent of the condition rating for the entire

bridge population vary within approximately two rating points from average. The reliability study

can be considered as an estimation of rating uncertainty introduced by multiple factors including

inspector variance, state variance, and environment variance (e.g. lighting, traffic, etc.). The pro-

posed model learns from the aggregated knowledge base of how bridge condition has been assessed

by the inspectors across the states, and mapped the multi-modal data from inspection reports to the

condition ratings. While the computed uncertainty of predictions is only introduced by disturbance

of data augmentation and dropout, this uncertainty is significantly smaller compared with the esti-

mated variance from the reliability study, which demonstrated that learning from large aggregated

historical condition ratings can be a viable approach in alleviating the inevitable inconsistency issue

associated with the human condition rating process.

Figure 4.8 presents the histogram of model uncertainty given correct or incorrect predictions. As

seen from the figure, the correct predictions distribute more over smaller uncertainty values (below

0.3) compared with incorrect predictions. Accordingly, the incorrect predictions distribute more

over larger uncertainty values (above 0.3). Motivated by such property of the model uncertainty,

Figure 4.9 illustrates that incorporating the consideration of uncertainty can practically improve the

condition rating performance. As illustrated in 4.9, the rating accuracy increases as the threshold

of allowable uncertainty decreases (more strict with uncertainty). The ACC0 reaches 77.16% when
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Figure 4.8: Histogram of model uncertainty given correct/incorrect predictions.

the maximum allowed uncertainty is 0.327, which corresponds to 47.5% of the testing data. When

applying the condition rating model with the consideration of model uncertainty, the most uncertain

rating data points may be referred to human inspectors for further investigation, and the remaining

more certain predictions can achieve improved performance.

Figure 4.9: Accuracy gain while considering model uncertainty.

Figure 4.10 presents the model uncertainty in different condition rating categories. The mean

uncertainty decreases as the condition category increases from 4 to 7, which indicates an increasing

difficulty in rating bridges in poorer conditions. The mean uncertainty of condition 8 was higher

than condition 7, which may be attributed to the fact that a limited number of condition 8 data is

available in this study.

The uncertainty evaluation disturbed the model with image augmentation transforms and dropout,

and generated T = 100 predictions for each testing data point. Each prediction corresponds to 5
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Figure 4.10: Model prediction uncertainty in different condition categories.

softmax scores, one for each condition category, as computed in Equation 4.14. To investigate the

rating behavior among different condition categories, the correlation matrix of the 5×100 softmax

scores was computed and Figure 4.11 presents the average correlation over the testing data, where

the green cells illustrate positive correlation, and the yellow and red cells illustrate negative correla-

tion. The positive correlations demonstrated difficulty in distinguishing the neighboring condition

categories, e.g. the condition 5 scores are correlated with the scores of condition 4 (0.34) and 6

(0.3). Along with the same trend, the condition 8 scores are correlated with the condition 7 scores

(0.39). In contrast, the negative correlations indicate the rating model’s capability in distinguishing

between non-neighboring conditions. For example, the condition 5 scores have a strong negative

Figure 4.11: Correlation among predicted softmax scores of different condition categories.
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correlation with conditions 7 (-0.52) and 8 (-0.72), which shows that while considering the un-

certainty of model predictions, having high softmax scores in condition 5 leads to low scores in

condition 7 and 8. In other words, the model is not likely to mis-predict outside the neighboring

condition categories of the ground truth.
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Chapter 5

Context-aware Sequence Labeling for

Condition Information Extraction from

Historical Bridge Inspection Reports

Li, T., M. Alipour, and D.K. Harris, Context-aware sequence labeling for condition information

extraction from historical bridge inspection reports. Advanced Engineering Informatics (in review),

2020.

5.1 Abstract

Effective upkeep of aging infrastructure systems with limited funding and resources calls for effi-

cient bridge management systems. Although data-driven models have been extensively studied in

the last decade for extracting knowledge from past experience to guide future maintenance decision

making, their performance and usefulness have been limited by the level of detail and accuracy of

currently available bridge condition databases. This paper leverages an untapped resource for bridge

condition data and proposes a new method to extract condition information from it at a high level

of detail. To that end, a natural language processing approach was developed to formalize structural

condition knowledge by formulating as a sequence labeling task and modeling inspection narra-

tives as a combination of words representing defects, their severity and location, while accounting

for the context of each word. The proposed framework employs a deep-learning-based approach

and incorporates context-aware components including a bi-directional Long Short Term Memory
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(LSTM) neural network architecture and a Conditional Random Field (CRF) classifier to account

for the context of words when assigning labels. A dependency-based word embedding model was

also used to represent the raw text while incorporating both semantic and contextual information.

The sequence labeling model was trained using bridge inspection reports collected from the Vir-

ginia Department of Transportation bridge inspection database and achieved an F1 score of 94.12%

during testing. The proposed model also demonstrated improvements compared with baseline se-

quence labeling models, and was further used to demonstrate the capability of detecting condition

changes with respect to previous inspection records. Results of this study show that the proposed

method can be used to extract and create a condition information database that can further assist in

developing data-driven bridge management and condition forecasting models, as well as automated

bridge inspection systems.

5.2 Introduction

Bridge infrastructure systems face significant preservation challenges characterized by aging and

deterioration as well as the shortage of funding required for maintenance, rehabilitation and repair

(MR&R) operations. Analysis of the 2019 National Bridge Inventory (NBI) database reveals that

nearly forty percent of the bridges in NBI are 50 years or older, 8.4% are designated structurally

deficient, and over 11.3% have posted weight limits restricting the flow of traffic. Federal High-

way Administration (FHWA) estimates that the backlog of national bridges’ rehabilitation projects

reaches as high as $123.1 billion. An annual investment of $24.6 billion is needed to clear this

backlog in the twenty year period (2012-2032), while in 2012, only $16.4 billion were spent on the

maintenance of all bridges [20].

Effective upkeep of such an aging and deteriorating bridge network in the face of limited funding

and resources calls for the integration of efficient automation concepts into bridge management

systems. In this regard, data-driven methods have recently attracted significant attention in the

research community. The success of these approaches relies extensively on the existence of accurate

and detailed databases of bridge conditions. The methods proposed in this paper are envisioned to

bridge the information gap caused by the existing global and coarse condition characterizations

through the extraction and incorporation of fine-grained local condition information in addition to

component-level and element-level ratings. This, in return, will enable the bridge management

agencies to identify and respond to the maintenance needs in a more accurate and timely fashion,
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thus contributing to improvements in the state of infrastructure.

Considering the importance of condition data in infrastructure monitoring, deterioration mod-

eling and forecasting, and maintenance decision making, the research community has focused on

different sources and methods of automated condition information extraction. As visual inspection

remains the predominant approach for assessing the condition of bridge components and elements

[198], recent literature in this field shows a significant number of publications on image-based in-

spection automation methods. These works aim to extract structural condition information from

image data obtained using a variety of ways ranging from robotic inspection [29, 30, 33] to crowd-

sourced monitoring [199–201], and different levels of detail ranging from images and image patches

[47, 48] to pixel-level defect detection [44–46]. While structural imagery presents a powerful re-

source for condition assessment and subsequent maintenance decision-making, this paper identifies

and focuses on textual data as another rich source of condition data that can be integrated into au-

tomated infrastructure inspection and management systems. Such textual data can contain a high

level of detail describing the structure and its components, the types of detected defects, and their

location, severity (qualitative), and size measurements (quantitative) as described in the form of

natural language narratives by observers or professional inspectors.

To access and leverage this high level of detail, this paper introduces an untapped resource for

bridge condition data and an innovative method to extract condition information. Bridge inspec-

tion reports have been maintained by state Departments of Transportation (DOT) through years,

documenting first-hand condition information, and can greatly benefit bridge management decision

making if fully exploited. The National Bridge Inventory Standard (NBIS) requires routine inspec-

tion for most bridges and culverts biennially [1]. With each inspection, bridge inspection reports are

filled out by the inspectors according to the Bridge Inspector’s Reference Manual [2]. These reports

are rich in details that record and document local deficiencies at a specific point in time, and are

used by inspectors to track the progression of defects compared with the previous inspections. This

valuable information is, however, buried in the inspection reports in the raw natural language format

and cannot be directly used to support bridge deterioration analytics. Existing rule-based Natural

Language Processing (NLP) applications in civil infrastructure management have contributed to the

successful information extraction from other textual data in the domain. However, considering the

heterogeneous nature of the inspection reports composed by various professional inspectors, it can

be difficult to define a set of all-encompassing rules to cover variant scenarios. Existing machine-
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learning-based (ML-based) applications usually leverage syntactical features [39, 40] or word fre-

quency features [38, 41, 42], which limits the model’s ability to exploit the semantics contained in

the inspection reports texts. While the use of context-aware deep-learning-based methods is scarce

in the field of infrastructure management, the complexity of inspection report texts demands such a

model to capture the various use of words and extract accurate information.

Figure 5.1 shows a framework for infrastructure maintenance information retrieval from bridge

inspection reports. This framework aims to extract context-aware condition information, standard-

ize it based on standard element and defect definitions, and uses it for bridge maintenance analytics.

This paper focuses on the context-aware condition information extraction task by developing a nat-

ural language processing approach that analyzes the textual descriptions from bridge inspection

reports and extracts condition-related chunks. This information extraction task is formulated as a

sequence labeling scheme that analyzes each sentence and assigns a condition category label to

each word based on its context to indicate the typical information of interest when evaluating the

condition of a bridge such as the local deficiency (type), its measurements (severity), and where it

is located (location). The sequence labeling model integrates context-aware components to enforce

the consideration of contexts when assigning the label for each word. The assigned labels naturally

group the sentence into chunks belonging to different categories. The extracted chunks are then

Figure 5.1: Framework for infrastructure maintenance information retrieval.
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standardized according to standard bridge element and defect definitions (e.g. those in AASHTO’s

Manual for Bridge Element Inspection [16]) to form a condition inventory that can provide features

for deterioration prediction and other system-level bridge data analysis, as presented in Figure 5.1.

Such a condition inventory can be used to support future research efforts in data-driven bridge con-

dition modeling and maintenance decision making. Detailed bridge deterioration models can also

be constructed based on the information extracted from the proposed model with its rich, historical,

and localized condition details.

5.3 Research Motivation

5.3.1 Identified Limitations and Knowledge Gaps

Among the reviewed literature, the proposed model is most related to [39] in the extraction of

information from bridge inspection reports by assigning sequential labels. In their work, a semi-

supervised Conditional Random Fields model was constructed based on a set of syntactical and

ontology look-up features. Eleven labels were defined including bridge element, deficiency, cause,

material, numerical measurements, as well as an ’Other’ category for words that do not belong

to any of the designed categories. The model was trained on the 2006 I-35W Mississippi River

Bridge inspection report and was tested on 11 other bridge inspection reports. While their model

achieved a relatively high level of labeling accuracy (90.7% F1 score), a number of limitations exist

in the following aspects. First, the dependency on ontology features necessitates the creation of an

ontology for each specific domain of interest. The labels were designed based solely on their mean-

ings and regardless of their roles with respect to bridge conditions, and thus do not link directly

to bridge condition interpretation such as the location and severity of a certain damage condition.

Additionally, the labeling model only considers a context window of size one, i.e. each word is

assigned a label based on features of the words right before and after it, and did not fully exploit the

long range dependencies between words. Finally, more than half of the words fell into the ’Other’

category which might lead to the loss of condition information such as negation or positional in-

formation. Conversely, this study develops a context-aware sequence labeling model, where the

labels help group each sentence into chunks of information that are typically of interest to main-

tenance decisions such as type, location and severity. Extracting chunks of information instead of

individual words is especially important for bridge inspection. For example, instead of extracting
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the word ‘2’ as number followed by the word ‘feet’ as unit, it is important to know when ‘2 feet’

is used to describe location of a spall and when it is used to describe the size of a spall, since the

two situation raise different levels of concerns in bridge inspection. In the sequence labeling task

to extract chunks of information, the labels should be assigned based on their context such that the

same word can be assigned different labels when in different contexts that refer to different cate-

gories of condition information. It is therefore hypothesized that accounting for the dependencies

between the neighboring words that build up the context of each word can improve the quality of

the assigned labels. To that end, this study formalizes structural condition as the central topic of in-

spection and maintenance by modeling inspection narratives as a combination of defect names (N),

their location (L), and severity (S) arranged in the heterogeneous and complex patterns of natural

language to describe an infinite variety of real-life inspection scenarios. Multiple mechanisms were

designed and implemented to enforce these dependencies and contextual relationships, resulting in

a context-aware condition mapping. The context-awareness mechanisms employed herein include

the use of dependency-based word embeddings, bidirectional Long Short-Term Memory (LSTM)

architecture, and the use of a Conditional Random Field (CRF) model. Specifically, this paper goes

beyond the existing literature in this domain by increasing the length of the context window from

one to include longer-range dependencies among the words while performing the sequence labeling

task.

This paper aims to be a part of the growing body of literature that focuses on formalizing engi-

neering knowledge through the use of automated text mining from digital engineering documents

(e.g., patents [202, 203], accident reports [109], design documentation [204, 205]). Given the ever-

increasing proliferation of such data in the domain of construction and infrastructure, this field of

research has been identified as a vibrant area that is positioned to affect the current discourse in the

field of advanced engineering informatics (AEI) [206]. While this paper belongs to this body of

work, it aims to bridge the gap that exists due to the lack of studies on bridge inspection reports as

the source of information extraction. In other words, this research identifies textual bridge inspec-

tion narratives as an untapped resource for bridge condition information. In the absence of formal

knowledge representation such as the framework proposed in this paper, such raw data has not been

used to support bridge management analytics.
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5.3.2 Need for Context-aware Information Extraction

A fundamental requirement for an intelligent information extraction system is its ability to consider

semantics and the context of a word in its predictions. In other words, the desired sequence label-

ing model should not memorize every word and assign a label in a dictionary-lookup fashion, but

should predict the label based on the meaning of the word and its context in the sentence. This is not

only because building an all-encompassing dictionary to look up labels is obviously cumbersome,

but the benefits of a context-aware labeling system also lie in the flexibility of allowing the same

word to be labeled differently in different contexts. The desired labels help group the words in a

sentence into chunks of conditions (e.g. name, location or severity), instead of trying to classify

each word independently into an entity category. This arrangement is rooted in both the way that

bridge inspection information is documented, and the desired use case of the extracted informa-

tion from the inspection reports. Typical information of interest when evaluating the condition of a

bridge include the local deficiency (type), its measurements (severity), and where it is located (lo-

cation), and each piece of information functions only when put into the proper context. The Bridge

Inspector’s Reference Manual [2] requires that when documenting a deficiency encountered during

inspection, the exact location, severity and extent of deficiencies should be specified to determine

the bridge condition. A number of examples provided in this manual that guide the documentation

of deficiency quantification and location are shown in Table 5.1.

Table 5.1: Example condition documentation from Bridge Inspector’s Reference Manual [2].

Category Example Description

Deficiency

Quantification

2 feet × 3 feet × 2 inches deep

4 feet high by full abutment width

1 foot × 6 inches

Deficiency

Location

Left side of web, top half, 3 feet from north bearing

Top of top flange, from 3 feet to 6 feet west of Pier 2

7 feet-3 inches from fixed bearing on beam 3 at abutment 1

3 feet-1inch from west corner of abutment 2

As seen in these examples, a typical practice when documenting bridge conditions in the in-

spection reports is using the bridge element as reference for deficiency size or location. Therefore,
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words representing measurement units (e.g. feet) and bridge members (e.g. abutment) are two ex-

amples where the same word should belong to different condition categories in different contexts

(see words in bold in Table 5.1). Additionally, the information comes in chunks instead of single

words when quantifying or localizing bridge deficiency conditions. To that end, the same word

should be allowed to have different labels in different contexts, and the desired labels should nat-

urally segment the sentences into pieces of condition information. This desired feature requires

a sequence labeling model that can recognize the semantics and dependencies within the context

among the input sequence of words. To that end, this study used a context-aware sequence labeling

model that enforces the consideration of context in the following aspects:

1. the dependency-based word embeddings that account for the context of words in their em-

bedding representations;

2. the Long Short-Term Memory (LSTM) cells in the Recurrent Neural Network (RNN) model

that emphasize long-term dependencies between words;

3. the bi-directionality of the network that exploits information from the words both before and

after the word of interest;

4. the Conditional Random Fields classifier that infers each label based on its neighboring labels.

The details of these model components are discussed in the following sections.

5.4 Research Approach

This study builds an NLP-based information extraction system to characterize bridge condition in-

formation from the textual data in bridge inspection reports. The goal of this system was to dissect

each sentence in an inspection report into segments of predefined categories (e.g. condition name,

location, and severity). This problem is formulated as a sequence labeling task that reads each sen-

tence and assigns a category label to each word. The category labels include condition Name (N),

Severity (S), Location (L) and Other (O), where the ’Other’ category contains words connecting

the name, location or severity chunks that are not relevant to bridge conditions. To further catego-

rize the severity descriptions, qualitative severity descriptions and numerical severity descriptions

were labeled as two separate categories, S(Q) and S(N), respectively. Figure 5.2 presents the pro-

posed processing pipeline using an example sentence from bridge inspection reports. The original
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Figure 5.2: The proposed processing pipeline with an example sentence from bridge inspection

reports. (N: Name, L: Location, S(Q): Qualitative Severity, S(N): Numerical Severity, O: Other)

input sentence is prepared into a sequence of individual words (tokens) and is then represented by

word embeddings that contain semantics and context information. The word embeddings are then

fed through the sequence labeling model that consists of Bi-directional Long-Short Term Memory

(LSTM) layers and the Conditional Random Field (CRF) classifier. To assign a label for each

input token, the bi-directional LSTM layers help encode information before and after the token into

a hidden representation, and the CRF classifier further enhances the consideration of neighboring

words while assigning a label for the token. The Bi-LSTM-CRF sequence labeling model assigns

a label for each token in the input sentence that indicates the condition category of the token. The

obtained labels are then used to chunk the input sentence into segments of condition information.

The subsections will introduce the details of word embedding and each context-aware component

in the sequence labeling model.

5.4.1 Word Embedding

Raw text from the inspection reports needs to be represented by numerical vectors before it could

be passed through the sequence labeling model. Traditional representations include one-hot vectors

(one element at the index of the word in the vocabulary is set to 1 and all the other elements are
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set to 0) and engineered word features such as capitalization, prefix/postfix, or other manually-

assigned features. The one-hot vectors suffer from sparsity issues with a dimension as large as the

entire vocabulary. The engineered word features require domain- or task-specific efforts. Another

representation option, which demonstrated strong performance especially with deep learning-based

language models [69] , is the dense word embeddings. With dense embeddings, each word is

represented by a vector of the same dimension, typically of size 50-300 [207], which is much

smaller than the vocabulary size. The word embeddings are initialized and optimized during the

training of the deep learning model, which allows the embeddings to learn the internal relationships

among the training corpus. The most widely adopted way of obtaining such word embeddings is via

a skip-gram model [70], which is developed to encode semantic information into the embeddings.

The intuition behind a skip-gram model is that, a word’s meaning is given by its context, therefore

neighboring words that share the same context should be represented by similar word vectors.

To that end, the skip-gram model trains a simple three-layered neural network that predicts the

target context word based on the current word. Figure 5.3 presents the architecture of a skip-gram

model. The model uses the input word wt to predict its neighboring words wt−2, wt−1, and wt+1.

Consider the input-neighboring word pair (wt , wt−1), denote their indices in the vocabulary as i and

j, respectively. The input layer takes in the input word wt , which is represented by a V-dimensional

Figure 5.3: Skip-gram model architecture redrawn based on [4]. (wt : input word; wt−2, wt−1, wt+1:

neighboring words; V: vocabulary size; N: word embedding dimension.)
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one-hot vector that has 1 for the ith dimension and 0 otherwise (V is the size of the vocabulary). The

output layer is a V-dimensional vector that contains softmax scores (probability) of the neighboring

word. WV×N and W ′N×V are the weight matrices that will be optimized during the training process,

where N denotes the desired size of dimension for the word embeddings. The hidden layer has no

activation functions (operations within each node of a neural network) but simply copies the ith row

of WV×N . Considering all of the neighboring words of the same input word, the training process

will force the corresponding row vector of the input word to capture the contextual information

in order to support the prediction of all its neighboring words. Therefore the row vectors in the

weight matrix WV×N are then rendered as word embeddings. The word embeddings obtained this

way are proven to contain semantic information such that word with similar meanings are closer in

the embedding vector space [70]. Textual data from the inspection reports were first fed through

the word embeddings before being processed by the sequence labeling model. The output from the

word embedding process provided a representation that contains semantic and context information

of the input textual data, which can be further exploited by the sequence labeling model.

5.4.2 Bi-directional LSTM

In addition to the connections in simple feed-forward neural networks, Recurrent Neural Network

(RNN) introduces recurrent connections between the RNN nodes in hidden layers to model the

dependency between sequential inputs. To ensure that each label is assigned with the consideration

of the longer-range context of the word, Long-Short-Term Memory (LSTM) cells were used in the

hidden layer of the RNN. LSTM cells are a type of RNN node that have gate structures especially

designed to manage long-term and short-term dependencies. An LSTM cell is designed to contain

different operations to organize the long-range context among the input sequence. The operations

are carried out through the input gate it , output gate ot , forget gate ft and the memory cell ct [208].

Each LSTM block takes xt as input and produces an output ht at time step t, where xt denotes the

embedding vector of the input word wt , which is a corresponding row vector from the embedding

matrix Wv×N that was pre-trained using a skip-gram model as presented in Section 5.4.1. The LSTM

block carefully organizes the information through the gate and cell operations, which prevents the

forgetting of important long-term knowledge. While a regular RNN processes an input sequence

one by one and computes the hidden state ht of the current input xt based on the hidden state of

the previous input ht−1, which only makes use of the previous context for a given word, to label
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a word based on its context, obviously both previous and future context should be exploited. To

capture this bi-directional information (past and future words in a word sequence), each sentence is

passed through the network twice, once forward and once backward. Outputs from the two passes

are concatenated together using ht = [
−→
ht ;
←−
ht ], where

−→
ht and

←−
ht denote the output from forward and

backward pass respectively and ht is the final output from the bi-directional network.

5.4.3 Conditional Random Field

Conditional Random Fields (CRF) are a class of models that considers contextual information when

making predictions. A CRF classifier was used as the last layer of the network to jointly model the

label sequence such that the prediction of each label depends on its contextual labels instead of

decoding each label independently [209]. For an input sequence X = (x1,x2, . . . ,xn), xt denotes

the vector for the tth word. The output ht from the bi-directional LSTM layers were first mapped

to the labels’ space using a feed-forward neural network layer. Pθ denote the mapped predictions

from the bi-directional LSTM network where θ is used to represent all network parameters for

simplicity purposes. [Pθ ]t,k corresponds to the prediction of assigning the kth label to the tth word

in a sequence. The CRF layer maintains a transition score matrix as parameters, which records the

likeliness of transitioning from one label to another for two consecutive input words. Combining the

CRF transition scores with the predictions from the bi-directional LSTM network, the final score

for a sequence of labels y = (y1,y2, . . . ,yn) is computed using Equation 5.1.

s(X ,y, θ̃) =
n

∑
t=0

Ayt ,yt+1 +
n

∑
t=1

[Pθ ]t,yt (5.1)

where θ̃ = θ ∪{[A]i j∀i, j} represents the new model parameters and A is the matrix of transition

scores where [A]i j represents the transition score from label i to label j. The probability of a label

sequence over all possible label sequences is computed using a softmax function [178] as presented

in Equation 5.2.

p(y|X , θ̃) =
exp(s(X ,y, θ̃))

∑y′∈YX exp(s(X ,y′, θ̃))
(5.2)

where YX denotes the set of all possible label sequences and y’ denotes one possible label sequence

in that set. The training process maximizes the log-likelihood of the correct label sequence as

presented in Equation 5.3.

L(θ̃) = log(p(y|X , θ̃)) (5.3)
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5.4.4 Bi-directional-LSTM-CRF

The sequence labeling model is ultimately constructed by feeding the output vectors from bi-

directional LSTM network into the CRF layer. The output from word embedding for each sentence

from the inspection reports were first fed into the bi-directional LSTM network. The output vectors

were then passed to the CRF layer to be jointly decoded into a sequence of labels. In this way, the

sequence labeling model assigns each sentence from the inspection reports with a sequence of la-

bels. In each sentence, the consecutive words with the same label were then extracted as a connected

chunk of bridge condition.

5.5 Data Collection and Preparation

5.5.1 Inspection Report Corpus

A collection of bridge inspection reports were obtained from the Virginia Department of Trans-

portation (VDOT) database. These reports documented bridge conditions as assessed by the VDOT

inspection personnel during bridge field inspections in the form of natural language descriptions.

Figure 5.4 illustrates the number of words for the three components (deck, substructure, and super-

Figure 5.4: Boxplot of number of words documenting the deck, superstructure and substructure

components for over 21,000 bridge inspection reports collected from Virginia Department of Trans-

portation (VDOT).

99



structure) of over 21,000 bridge inspection reports with different general condition ratings (good,

fair, and poor denote condition rating values greater than 6, equal to 5 or 6, and less than 5, respec-

tively). As shown in Figure 5.4, inspection reports for bridges in worse condition tend to include

more words (sometimes on the order of a few thousand words to describe a component), which

indicates the level of detail for the information buried in the inspection reports. Furthermore, it can

be seen that the average number of words used to describe each of the three components in an in-

spection report is close in each condition category, showing the relatively consistent documentation

of the conditions of all components.

The inspection reports used in this study were originally in raw document format, organized by

the section headers of ‘Deck’, ‘Superstructure’, ‘Substructure’, etc. To obtain a clean inspection

report corpus, the textual descriptions were first extracted from the inspection report documents,

and irrelevant details were excluded such as table frames, document headers and footers, images

and their captions. The textual descriptions were then tokenized into individual tokens, which are

contiguous characters between two spaces, usually words. The tokenization was performed using

the word tokenizer from the Natural language Toolkit (NLTK) [177], which also splits standard

contractions and separates most punctuation characters as separate tokens. The tokens were then

jointed by a white-space and fed through the sentence tokenizer from NLTK to be organized into

sentences. The sentence tokenizer from NLTK was pre-trained using a large corpus to identify

the boundaries of the sentences [177]. Tokens from all sentences were reduced to lowercase to be

further used for information extraction tasks.

5.5.2 Ground Truth Labeling Categories

Manually annotated ground truth of labeling categories were needed for both training and evaluating

the sequence labeling model. For the manual annotation, thirty inspection reports (approximately

12,000 tokens (individual words)) were randomly sampled from the pool of inspection reports for

this study from nine different VDOT district offices creating a considerable variety in the training,

validation, and testing data. It should be noted that determining the required amount of annotated

textual data for a desired level of performance requires further investigation and sensitivity analysis

that requires appropriate resources for manual annotation and should be addressed in future works.

Labels of the categories were manually assigned, which helped describe the state of bridge damage

conditions. The labeling categories include condition Name (N), Severity (S), Location (L) and
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Other (O). The ’Other’ category contains words connecting the name, location or severity chunks

that are not relevant to bridge conditions. To further categorize the severity descriptions, qualitative

severity descriptions and numerical severity descriptions were labeled as two separate categories

(S(Q) and S(N), respectively). The preprocessed sentences and their tokens were saved using plain

text files, where each line contains a token and its label, separated by a white space, and an empty

line is used between each two sentences.

5.5.3 Word Embedding

This study used the pre-trained word embeddings developed by [210] as initial word representa-

tions, which were then fine-tuned to the inspection domain-specific data during training. These

embeddings were developed by training a variant of the skip-gram model on the English Wikipedia

August 2015 collection of 2 billion words. The skip-gram model used neighboring and grammat-

ically closer words to predict a target word, and has been proven to encode both semantic and

grammatical information in the embeddings [211] that results in a better performance in sequen-

tial tasks [210], and therefore was selected as the initial word representations in this study. These

embeddings were 300-dimensional (N = 300) with a vocabulary size V = 222,310 words.

To examine how efficiently these embeddings represent the semantic meanings and contexts of

words, word distances between a few selected words and every other word in the vocabulary were

computed in the space of embedding vectors using the cosine similarity as presented in Equation

5.4.

cosine similarity =
A ·B
‖A‖‖B‖

(5.4)

Figure 5.5 presents the T-distributed Stochastic Neighbor Embedding (t-SNE) [212] visualiza-

tion of the selected words and the words that were most similar to them based on cosine similarity of

the word embeddings. T-SNE is a method for dimensionality reduction to reduce multi-dimensional

data to a few dimensions suitable for human observation [212]. This method maps the data into a

low-dimensional space by minimizing the differences between the probabilities of similarity of

points in the two spaces [212]. As shown in Figure 5.5, the words computed as the most similar to

the selected words do have similar semantic meanings and context, for example, the most similar

words to ‘rebar’ were steel, I-beams, rivets, girders, wire and etc.; the most similar words to ‘cor-

rosion’ were abrasion, breakage, embrittlement, passivation, spalling and etc. It was also shown in

Figure 5.5 that the clusters of similar selected words were closer to each other such as clusters repre-
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Figure 5.5: T-SNE plot of the selected words and the words that were most similar based the word

embeddings.

senting defect types (e.g. ‘corrosion’ and ‘deterioration’), those representing severity (e.g. ‘minor’

and ‘significant’), and those indicating extent (e.g. ‘long’ and ‘deep’). This outcome reinforces the

premise that the dependency-based embeddings used are able to encode the semantic and contextual

information of the words often used to describe structural deficiencies in the inspection reports.

While the pre-trained embeddings were trained using large Wikipedia corpus and contain a

large vocabulary, some words from the inspection report corpus might still not be included in the

vocabulary of the pre-trained embeddings. In the case of words that were out-of-vocabulary (OOV)

of the pre-trained embeddings, the following procedure was implemented: the numeric characters

in an OOV token were first replaced by a special NUMBER token for a re-check. If the token

was still not in the vocabulary, it was then added to the vocabulary with randomly-initialized word

embeddings if the following two criterion were satisfied: the token appeared at least 5 times in the

training data and it contains only letter or number characters. If either one of these criterion was

not satisfied, the token was then replaced by a special UNKNOWN token. The two criterion were

decided based on a manual examination of all the OOV words (395 tokens in total). The majority of

such words appeared less than 5 times in the training corpus (typically only once), and were usually

associated with a mix of numbers and special characters for measurement descriptions such as 1

102



1/4”, and 1’0”, missing space between words that led to two words being tokenized as one token,

and data entry errors such as misspelled words. The first situation is rooted in the fact that bridge

inspection reports are free-form textual data that contain rich technical details. For example, it is

typical to use ’ for feet and ” for inch in bridge inspection reports. In consideration of keeping

these technical details, no harsh punctuation was performed when preparing the text data before

model training. While it is a difficult task to define regular expression matching rules to address the

punctuation and special character usage, it is believed that this sequence labeling model will help

alleviate the complexity of normalization by dividing the tokens into condition categories. Nine

OOV words matched the two criteria explained above, which were not a part of the embedding

vocabulary but were somewhat frequent in the inspection report corpus. These words were added

into the embedding vocabulary with randomly-initialized embedding weights. These words include

: breastwall, spalls, wingwall, backwall, delaminated, wingwalls, spalled, midspan, and fullheight.

These words are very unique to the field of bridge engineering and thus did not appear in the

vocabulary of general pre-trained embeddings. The fact that only nine frequent words were OOV

demonstrates the comprehensiveness of the embedding vocabulary. The pre-trained embeddings

were allowed to be further fine-tuned during the gradient updating of the neural network, which

adjusts the embeddings to the application of labeling the inspection reports. The effectiveness of

this approach has been explored in previous sequential labeling tasks [69, 77].

5.6 Results and Discussions

The inspection report corpus was randomly split into training, validation and testing sets with a ratio

of 8:1:1 in terms of number of sentences. Ten times of random split was performed, which generated

ten combinations of training, validation, and testing sets, to support comprehensive evaluation of

the proposed model and the baseline models using the mean and standard deviation of performance

metrics. Table 5.2 presents the statistics of one split of the inspection report corpus into training,

validation, and testing sets. For each split, the training set was used for model training iterations,

while the validation set was used to evaluate the performance of the model after each training itera-

tion. The evaluation of the model on the validation set guides the decisions on model development,

such as hyper-parameter settings. The testing set was held unseen during model development to

allow for an objective evaluation of the performance of the model once finalized.

The neural network model was implemented using Keras with Tensorflow [213] as the backend.
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Table 5.2: Statistics of one split of the inspection report corpus into training, validation, and testing

sets.

Corpus # Sentences # Tokens %

Name

(N)

% Lo-

cation

(L)

% Quali-

tative

Severity

(S(Q))

%

Numerical

Severity

(S(N))

%

Other

(O)

Training 917 9,356 15.81 31.49 5.39 28.36 18.97

Validation 115 1,281 16.63 32.16 5.39 26.93 18.89

Testing 115 1,165 15.11 31.85 6.52 27.64 18.88

The network was trained using the mini-batch stochastic gradient descent (SGD) approach, which

minimizes the negative log-probability (Equation 5.3) by iteratively updating the model parameters

by one step along the parameters’ gradients based on small subsets of training data (mini-batches).

Nesterov-accelerated adaptive moment estimation (Nadam) was used to regulate the training pro-

cess as recommended by [214] for faster and improved convergence. The batch size was set as 8

and a learning rate of 0.001 was experimentally selected by tuning this parameter. Further trial and

error with these parameters did not provide significant performance improvements. To alleviate the

exploding gradient issue (gradients with extremely large values) [215] during the training of LSTM

networks, gradient normalization [216] was adopted with a threshold τ=1.0 that re-scales the gra-

dient g by a factor τ/‖g‖ when the norm ‖g‖ exceeds the threshold. Early stopping strategy [217]

with a patience parameter of 5 was used to avoid overfitting while training the neural network, where

training iterations were terminated once no improvement was observed for 5 consecutive epochs on

the validation set. Two layers of stacked LSTM were used, each with a size of 100 recurrent units,

as recommended in [214]. Further tuning the number and size of the LSTM layer did not result in

significant changes in model performance. The model developed from this study is available online
1. Table 5.3 presents the summary of hyper-parameter selection.

Model predictions were compared with the ground truth labeling categories for the evaluation

of model performance. Precision, recall and F1 score were selected as the evaluation metrics, as

1https://github.com/tl6kk/bridge-report-tagging
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Table 5.3: Hyper-parameter settings for the modeling pipeline used in this study.

Parameter Name Parameter Value

LSTM layers 2

LSTM size 100

Batch size 8

Learning rate 0.001

Gradient normalization 1.0

Early stopping 5

presented in Equations 5.5, 5.6, 5.7.

Precisioni =
Nii

∑ j N ji
(5.5)

Recalli =
Nii

∑ j Ni j
(5.6)

F1i = 2× Precisioni×Recalli
Precisioni +Recalli

(5.7)

where Ni j denotes the number of tokens that belong to class i but were predicted as class j. Precision

evaluates the percentage of correctly assigned labels in all labels assigned, while recall evaluates the

percentage of each category that were correctly identified. Precision and Recall help demonstrate

the full scope of the performance as one focuses on how pure the predictions of each class are

(precision), and the other shows how successful the model is in finding all instances of a class

(recall). F1 score summarizes the performance in the form of an overall metric and is especially

critical when the classes are imbalanced.

The above performance computations measure the performance of the model at the level of the

tokens by calculating the metrics based on the number of correctly and incorrectly predicted tokens.

The token-level metrics evaluate the model’s ability to capture each word’s context while assigning

a condition category to that word. It should also be noted that Precision, Recall, and F1 score can

also be evaluated at the chunk level, where the Ni j in the chunk-level metrics denotes the number of

chunks that belong to class i but were predicted as class j. Denoting a chunk as a group of tokens

with the same condition category, a chunk is considered correctly labeled only if every token in the

chunk as well as the boundary of the chunk are correctly predicted. Chunk-level evaluation links

directly to engineering practice as it reveals the quality of the extracted condition chunks. A similar
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evaluation can be conducted at the sentence level, where a sentence is considered correct only if

every token in the sentence is labeled the same as in the ground truth. In this regard, sentence-

level accuracy can be calculated as the number of correctly predicted sentences divided by the total

number of sentences. It should be noted that Precision, Recall, and F1 score cannot be evaluated

at the sentence level since the mis-predicted tokens in one sentence can belong to different types,

e.g., some Location tokens may be predicted as Condition Name or Severity in the same sentence.

Additionally, the sentence-level metric is particularly strict as it counts a sentence as incorrect even

if the majority of the token have been correctly predicted. As sentences are not used as a unit of

information extraction in the proposed application, this metric is calculated and reported herein

solely for sensitivity analysis and comparison purposes.

5.6.1 Model Performance

The performance of the proposed Bi-LSTM-CRF model on the training, validation and testing sets

is presented in Table 5.4. The proposed model achieved an F1 score of 94.12% when examined on

testing sets, which demonstrated that the model can successfully categorize inspection report text

that are unseen during the training process. The training and testing performance did not demon-

strate significant gap (5.26%) which shows proper training with limited overfitting.

Table 5.4: Training, validation and testing F1 score for the proposed Bi-LSTM-CRF model.

Bi-LSTM-CRF

(Proposed)

Training Validation Testing

Mean Stdev Mean Stdev Mean Stdev

99.38 00.77 94.13 1.99 94.12 0.52

To further analyze the performance of the proposed Bi-LSTM-CRF model, Table 5.5 presents

the confusion matrix for all tokens in the ten randomly-split testing sets, where the presented num-

bers are the summation of the ten testing sets. Each column of the confusion matrix represents the

number of tokens in a predicted class while each row represents the number of tokens in the actual

class. As shown in Table 5.5, the model is very accurate in identifying qualitative severity S(Q)

descriptions, which is likely due to the fact that the qualitative severity category contains mostly

words unique to this class such as ’significantly’ and ’light’. The model made the most mistakes in

identifying the ’other’ category, which is associated to the fact that the ’Other’ class is a highly non-

homogeneous set that contains all the words that do not belong to the other four defined categories

106



Table 5.5: Confusion matrix for all tokens in the ten randomly-split testing sets. (N: Name, L:

Location, S(Q): Qualitative severity, S(N): Numerical Severity, O: Other)

Testing Set Predicted:

N

Predicted:

L

Predicted:

S(Q)

Predicted:

S(N)

Predicted:

O

True: N 1528 60 2 52 38

True: L 86 3023 4 83 71

True: S(Q) 3 1 575 3 7

True: S(N) 56 72 1 2718 22

True: O 84 89 4 58 1943

and therefore might have less unique features for the model to capture.

Figure 5.6 presents a closer examination of sample sentences with mispredicted categories. The

sentences are shown with color-coded categories, where yellow, purple, cyan, and white represent

condition name, location, severity (numerical) and other categories, respectively. For each example,

the sentence with ground truth condition categories is presented first, with the predicted categories

presented in the row below. Overall, it can be seen that although the textual data from bridge

inspection reports is in the natural free form resulting from the inspectors taking notes during field

inspections, the model was able to capture the information from the context and correctly assign a

category to most of the words except for a few error cases. Both Examples 1 and 2 resulted from the

confusion between location and numerical severity. In Example 1, approximately 50’-0” describes

an exact location using a numerical measurement in the form of a relative location that was confused

with numerical severity. Example 2 demonstrates a relatively harder example for category labeling

since several severity descriptions (2-1/8”, 1-3/8”, 1/8”) and location descriptions (left wing, at the

top, at the bottom) were coupled together. Examples 3 and 4 present the error cases regarding the

confusion between condition name and numerical severity. In Example 3, the word up is mis-labeled

as a numerical severity, which may be attributed to the frequent use of the preposition ”up” together

with measurements as a numerical severity indicator (e.g. up to 6’-0”h in Example 1). Example

4 illustrates a miss by the model in recognizing numerical severity. Example 5 and 6 demonstrate

error cases regarding the confusion between condition name and location. The misprediction of in

contraction as location is likely due to the preposition in usually being a strong indicator of location

descriptions. The sentence in Example 6 includes multiple types of mispredictions. This error can
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Figure 5.6: Examples sentences with mispredicted categories.

be attributed to the fact that the sentence has a rare and complicated usage of other damages as the

reference of location. The mention of 1st vertical hairline crack is used to describe the location

of the crack described in the beginning of this sentence, but the model failed to recognize such

nuanced usage and mispredicted the labels of the last four words. This examination of the error

cases highlights that the textual data from bridge inspection reports are highly heterogeneous in the

form of natural language, and the fact that the model achieved an average 94.12% F1 score during

testing with limited errors on complex sentences proves the feasibility of the proposed approach.

5.6.2 Effect of Context Awareness

This study focuses on automated information extraction from bridge inspection reports using deep-

learning-based (DL-based) approach. The proposed system enforces the context-awareness required

for effective bridge management information extraction by incorporating context-aware compo-

nents including dependency-based word embeddings, bi-directional LSTM cells, and Conditional

Random Fields classifier on top of a regular RNN network. Table 5.6 presents the effect of the

incorporated context-aware components in the proposed system compared with baseline models.

Each model was trained and evaluated using the same ten combinations of training, validation, and

testing set. Performance of the models is presented using means and standard deviations computed

using the metrics defined in Equation 5.5, 5.6, 5.7.

As presented in Table 5.6, mainly two families of models were compared: baseline models with-
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Table 5.6: Performance of different model architecture variants compared with baseline models

(token leve).

Model Family Model
Precision Recall F1 score

Mean Stdev Mean Stdev Mean Stdev

Non-context

Baselines

SVM (feat) 86.57 1.18 51.14 3.25 55.55 3.91

SVM (w2v) 82.54 1.75 80.57 2.33 81.32 2.16

RNN (w2v) 89.46 1.35 88.68 1.47 89.07 1.35

Context-aware

Models

RNN (dep) 91.28 1.55 90.45 1.50 90.86 1.50

LSTM (dep) 92.40 1.11 92.05 1.02 92.22 1.02

Bi-LSTM (dep) 94.04 0.74 93.66 0.78 93.85 0.70

Bi-LSTM-CRF (dep) 94.31 0.55 93.94 0.57 94.12 0.52

out the context-aware components (Non-context baselines) and the proposed model with context-

aware considerations (Context-aware models). The non-context model family includes two ML

baselines and a DL baseline model. Both ML baseline systems, SVM (feat) and SVM (w2v), used

Support Vector Machine (SVM) [218] models. The two SVM baseline systems were set up as fol-

lows: both systems tag a current word using features from its previous word, following word, and the

current word itself (similar to [39]). The SVM (feat) was trained using twelve-dimensional features.

Four features were generated for each word: is digit, is letter, the Part-of-Speech tag (grammatical

categories such as noun, verb, etc.). To predict the condition category of a current word, the four

features from its previous word, itself and the word after it were concatenated together. The SVM

(w2v) used word embeddings previously trained using the skip-gram model [70], denoted as w2v.

The embeddings for the previous word, the current word and the word after were concatenated to-

gether for the prediction of the current condition category. As seen in Table 5.6, the proposed model

significantly outperformed the two SVM baseline systems across all three metrics. The poor perfor-

mance of the SVM-feat can be attributed to the fact that neither the model nor the features exploited

the dependencies and contexts of word sequences. SVM-embed achieved improvements compared

to SVM-feat because the word embedding encoded a certain level of contextual information. The

DL baseline, RNN (w2v) significantly improved the performance in terms of precision, recall, and

F1 score comparing with the ML baselines as presented in Table 5.6, which illustrated the capability

of DL-based methods in integrating dependencies among sequential inputs. The RNN (w2v) model
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was initialized using word embeddings previously trained using the skip-gram model [70], which

are the same embeddings as used in SVM (w2v).

The model performance of the context-aware family further revealed the effectiveness of each

context-aware component in the proposed model. The context-aware model family includes the pro-

posed model as well as three of its variants: Recurrent Neural Network (RNN), Long Short-Term

Memory (LSTM) [84], and bi-directional LSTM (Bi-LSTM). The effectiveness of each component

of the proposed model are illustrated by the incremental improvements between each two consec-

utive rows in Table 5.6. All the context-aware models were trained using dependency-based word

embeddings [210] fined-tuned to the existing dataset (denoted by (dep) in Table 5.6), and the hyper-

parameters were set according to Table 5.3. Compared with RNN (w2v), RNN (dep) demonstrated

improvements in all three metrics, which shows the benefit of dependency-based embedding in

encoding both grammatical and semantic information into word embeddings for sequence label-

ing tasks. The comparison between RNN (dep) and LSTM (dep) indicates that using LSTM cells

slightly improves the performance of RNN across all metrics. Comparing Bi-LSTM (dep) with

LSTM (dep) shows that incorporating bi-directional information further improved the performance

of the sequence labeling task. Ultimately, the proposed method (Bi-LSTM-CRF) achieved the high-

est scores across all metrics with all the proposed context-aware components combined.

Figure 5.7 presents examples segments from bridge inspection reports where the same word

belongs to different condition categories based on different contexts, and the categorization results

from baseline SVM (w2v), RNN (w2v), as well as the proposed system. As shown in Figure 5.7:

• The first set of examples focus on different contexts regarding the word ‘hole’, which is

commonly used when describing a defect or a bridge element (e.g. weep hole). The word

‘hole’ should be categorized as Condition Name in example 1-4, and as Location in example

5-6. The SVM (w2v) failed to distinguish the word ‘hole’ from its direct neighboring words

in example 1, 2, and 5, and mispredicted it as Other in example 4. The RNN (w2v) correctly

categorized the word ‘hole’ in all six examples, but failed in categorizing some of its contexts.

All three systems failed in example 6, which describes a relatively rare bridge condition of

tree root overgrown. The SVM (w2v) and RNN (w2v) obtained broken pieces instead of

continuous chunks, while the proposed system mis-labeled the entire chunk as Numerical

Severity.

• The second set of examples were related to different contexts of the words ‘girder’ and ‘sur-
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Figure 5.7: Comparison of model prediction examples between non-context and context-aware

models.

face’. In example 7, all three systems correctly identified ‘girder’ as Location; similarly, in

example 9 and 10, all three systems correctly identified ‘surface’ as Numerical Severity and

Condition Name, respectively. However, in example 8, ‘girder surface area’ together was

used as the unit of measurement, but the SVM (w2v) and RNN (w2v) failed to categorize

some words from this context.

• The third set of examples present the word 3’ which is commonly used in descriptions of

Location and Numerical Severity. In example 12, the SVM (w2v) did not correctly identify

‘totaling 3” as Numerical Severity; while in example 14, all three systems have mispredicted

cases. The SVM (w2v) mispredicted ‘3’ from’ as Numerical Severity, and failed to recognize

the connection among ‘from upstream end’. The RNN (w2v) also failed to recognize 3’ but

mispredicted it as Other category. It should be noted that the proposed model also mispre-

dicted the word ‘end’ as Numerical Severity, which might be attributed to the fact that the

description of Numerical Severity is commonly in the form of ‘3’ wide x 3’ long’ (using 3 to

represent any measurement number).

Comparing the example predictions from all three systems, both baseline methods failed to capture
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the contexts of some example cases, and mispredicted the category of the word when affected by

the word’s direct neighboring words, or the word’s commonly-used category in other contexts.

Successful context-aware information extraction from bridge inspection reports requires a model

to produce continuous chunks of the same category, and meanwhile also correctly break a chunk

when there should be a transition of category. The proposed system can successfully capture most

of the contextual information and produce predictions that segment sentences into continuous and

meaningful chunks. Table 5.7 presents chunk-level and sentence-level performance of the proposed

model compared with the two baselines: SVM(w2v) and RNN(w2v). The metrics in this table were

calculated as discussed in Section 6. As can be seen in this table similar to Table 7, the proposed

Bi-LSTM-CRF model consistently outperformed the two baselines at both the chunk and sentence

levels, which further confirms the advantage of the proposed approach. A second conclusion from

the evaluations at the three levels is that the overall performance decreases with an increase in the

number of tokens taken as the unit of evaluation (i.e. token-level and sentence-level metrics have

the highest and lowest values, respectively). This is to be expected as achieving high chunk and

sentence-level accuracies requires larger numbers of tokens to be predicted accurately. Finally, it

can be observed from the comparison of Tables 7 and 8 that higher levels of evaluation even more

strongly highlight the advantage of the proposed method in comparison with the baselines. This is

evidenced by the higher gap between the sentence-level (and chunk-level) results of the proposed

method when compared with the token-level results.

Table 5.7: Chunk-level and sentence-level performance of the proposed model compared with the

two baselines: SVM(w2v) and RNN(w2v).

Model

Chunk Level Sentence Level

Precision Recall F1 score Accuracy

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

SVM(w2v) 55.57 2.37 57.72 2.78 56.24 2.53 49.22 2.69

RNN(w2v) 63.75 3.07 70.23 2.09 66.56 2.55 51.65 5.52

Bi-LSTM-CRF(dep) 81.83 2.22 83.73 2.00 82.72 1.90 71.65 3.81
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5.6.3 Analysis of Labeled Inspection Reports

As demonstrated in this paper, the proposed pipeline assigns sequences of labels to the sentences

from bridge inspection reports and extracts segments with consecutive labels. The extracted seg-

ments then form a structured bridge condition inventory that are organized by the condition cat-

egories. Constructing such a fine-grained and comprehensive condition inventory benefits bridge

maintenance and management by providing rich, historical information to support big data analyt-

ics. This condition inventory can be used to assist in creating targeted insights for infrastructure

owners, managers and maintenance planners such as ”What are the frequent damage types within

a region in Virginia?”, or ”How many bridges have cracks developed since last inspection and are

there severe deterioration or significant changes that warrant warnings?”.

In addition to answering such questions, deterioration forecasting models can also be created by

tracking and modeling the defects as well as their quantitative severity extracted and structured from

the raw inspection reports of one or more structures over the history of the inspections recorded in

a DOT database. Figure 5.8 presents an example of using the proposed model to evaluate dete-

rioration in condition descriptions of a concrete slab bridge built in 1932 in Virginia. This table

compares condition descriptions for the deck and curb between the inspection reports created by

inspectors in 2014 and 2017. Although the same general condition rating ”4” was assigned to this

Figure 5.8: Condition changes between two inspection dates for a 1932 slab bridge in Virginia.
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(a) Exposed rebar and spall on deck bottom

(2014).

(b) Exposed rebar and spall on deck bottom

(2017).

Figure 5.9: Visual illustration of deterioration progress revealed from historical inspection reports.

bridge deck in both inspections, details of deterioration progress can be revealed by the information

extracted from inspection reports. As shown in the comparison, the exposed rebar has changed in

both quantity (from 4 rebars to 5) and extent of section loss (from 75% to 75-100%). The severity

of deck curb scaling has also developed to full length from 2014 to 2017. Furthermore, new scal-

ing has been developed on the outside edge, and the size of scaling has also increased (from 1/2”

deep to 1” deep 3” long). Figure 5.9 depicts images from the 2014 and 2017 inspections of the

studied slab bridge showing exposed rebars and spalling on the deck bottom. As can be seen, the

increase in exposed rebar (the addition of the fifth exposed rebar in 2017) is hardly visible in the

2017 image, and therefore these images do not fully document the progression of damage on their

own. However, the extracted information from the textual inspection data is therefore helping to

provide detailed condition information that is otherwise hard to obtain and use for the purpose of

deterioration monitoring and maintenance decision making.
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Chapter 6

Conclusion and Future Work

This study envisions a path from current bridge management practices advancing towards a fully

automated, smart bridge infrastructure management system, as presented in Figure 6.1. The current

bridge management practice relies on visual inspections to routinely collect bridge condition data.

Inspection personnel assign condition ratings and determine repair needs following each inspection.

The identified limitations of the current practice are that, ensuring consistency in the experience-

based condition rating process is challenging and requires comprehensive training and quality con-

trol process; with no detailed local condition data available, maintenance planning is limited to

local optimal as determined by local agencies instead of system-level optimization. Meanwhile,

the bridge inspection reports generated through years of practice are rich in condition details and

condition assessment expertise, which motivates this dissertation to construct automated condition

rating and information extraction models using the unstructured data from bridge inspection re-

ports. Envisioning an automated bridge management system that has local conditions and defect

measurements provides by robotic inspection and image-based defect detection, the automated con-

dition rating task aims to map local conditions to a global assessment. Such model learns from

the collective knowledge base of inspectors’ rating expertise in order to improve the consistency

in condition rating. The information extraction task aims to extract categorized condition informa-

tion to construct a structured condition inventory, which can then support system-level maintenance

decisions.

To the above regards, Chapter 3 focused on two primary gaps in knowledge identified in a com-

prehensive review of the literature, namely 1) the lack of quality control works via raw condition

descriptions rather than human-assigned ratings, 2) the lack of semantics-based language modeling
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Figure 6.1: Dissertation outline of identified limitations, motivations, and research questions.

using deep learning, especially on ordinal score assignment. These gaps were addressed by col-

lecting textual data from a large amount of bridge inspection reports and constructing a data-driven

framework for mapping the narrative descriptions to condition ratings. A hierarchical attention net-

work was developed to fully exploit the semantics and contexts of highly heterogeneous textual data

from bridge inspection reports. The proposed framework was developed using bridge inspection re-

ports collected from the Virginia Department of Transportation database.

• The proposed Hierarchical Attention Network outperformed a variety of existing baselines

from the literature in the civil infrastructure domain. The testing predictions demonstrated a

clear trend concentrating diagonally on the confusion matrix with only 1.25% of predictions

missing by more than one level.

• The proposed model is highly interpretable, and the words and sentences emphasized by

the model demonstrated trends and insights regarding how local conditions contribute to the

overall condition rating. The resulting attention map can also be helpful during the rating

process by highlighting potentially important details that may be overlooked by inspectors.

• The proposed quality control process achieved a testing accuracy of 88.67% in deciding to

accept or reject synthetic condition ratings. Comparing the likelihood ratio with a data-driven
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threshold significantly improved both accuracy and F-1 score compared to direct quality con-

trol using model-predicted ratings.

• The data-driven likelihood threshold is affected by the types of errors and the percentage of

wrong ratings in the inspector-provided ratings. The threshold can be tuned depending on the

less desirable type of error (false positive vs. false negative) to be avoided given engineering

judgment in the specific application scenario.

• The presented framework demonstrated feasibility in automated condition rating recommen-

dation, as well as in quality control of bridge condition assessment, and hence can proactively

increase the statewide and nationwide consistency of condition rating practices.

Chapter 4 identifies the multi-modal data from bridge inspection reports as a source of domain

expertise and proposed a deep learning-based fusion model for automatic condition rating. Each

bridge inspection report contains visual data (a collection of images) and textual data (a sequence of

sentences) that documents the local condition findings during inspections. The challenges of fusing

such two modalities lie in that, visual data provides supplemental information without comprehen-

sively covering every aspect of bridge condition, and each image from the collection does not have

alignment with a sentence from the sequence. In that regard, this study developed an image-sentence

fusion model that extracts visual and textual representation from images and sentences respectively,

and fuses the representations using a sequence encoder followed by an attention mechanism. The

model was developed using bridge inspection reports collected from the Virginia Department of

Transportation (VDOT) and based on the results of experiments and model uncertainty analysis, the

following conclusions can be made:

• The image data alone from bridge inspection reports achieved 49.42% ACC0 for condition

rating, while the textual modality performed significantly better than the image, with an ACC0

of 64.43%. The textual data contains more comprehensive information in capturing bridge

conditions, while the image data provides supplemental information that does not guarantee

the coverage of all local conditions.

• The proposed fusion framework demonstrated further improvement over the uni-modal mod-

els for enhanced automated condition rating. As the two uni-modal baselines achieved uneven

performance, direct fusion with the uni-modal softmax scores did not demonstrate significant
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improvement in rating performance. Allowing image and sentence representation to be jointly

encoded and attended reached slightly better results compared with aggregating image and

sentence representations separately before fusion.

• With random image augmentation transforms and dropout during testing, the maximum un-

certainty in model predictions was 0.817; 95% of the testing data resulted in an uncertainty

smaller than 0.535. Considering the estimated uncertainty for inspector-assigned ratings was

within two rating points for 95% of the bridge population, the proposed model learns from a

large rating database and aggregated inspector expertise in order to alleviate the inconsistency

issue in experience-driven bridge condition assessment.

• When applying the automated condition rating model, the consideration of allowable uncer-

tainty help increases overall rating performance, where the predicted rating with exceeding

uncertainty may be referred to a human inspector for further investigation. Examining the cor-

relation of model predicted softmax scores revealed that the model tended to not mis-predict

outside the neighboring condition categories even in the uncertain setting with random image

transforms and dropout.

Chapter 5 extracted condition details from bridge inspection reports in a context-aware frame-

work. The information extraction problem was formulated as a sequential labeling task that pro-

cesses each sentence from the inspection reports and assigns a condition category label to each word.

A Bi-LSTM-CRF model was constructed to enforce the connections amongst the sequential data

and assign a label to each word based on its meaning and context. The assigned labels segmented

each sentence into chunks of structured condition details including condition names, locations, and

(numerical or qualitative) severity. The model was developed using bridge inspection reports col-

lected from the database of the Virginia Department of Transportation. The results provided in this

chapter demonstrated the success of the proposed method in extracting deterioration information

from bridge inspection reports.

• The proposed information extraction employing a Bi-LSTM-CRF architecture on top of the

dependency-based word embeddings achieved powerful performance with an F1 score of

94.12% during testing.

• Each component of the proposed architecture (LSTM cells, bidirectionality, and the CRF
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classifier) demonstrated effectiveness for improving the performance of the sequence labeling

model.

• The context-awareness enforced through both the architecture and the word embeddings

helped improve the performance compared with baselines.

• The extracted condition information was shown to be useful in maintenance planning and de-

cision making by providing targeted insights and historical comparison and change detection.

The results and discussions in this dissertation demonstrated the capability of currently avail-

able bridge inspection reports in supporting automated tools, and also pointed to potential future

directions towards the wider application of the developed tools, better regularization of future data

collection, and eventually the development of a formal representation of bridge conditions that can

support detail-oriented, data-driven bridge management systems.

While this study collected inspection reports from the Virginia Department of Transportation

(VDOT), a potential future research direction is to extend the proposed condition rating models

nationwide with more data collected from other state DOTs and bridge management agencies that

aggregate to a comprehensive knowledge base of condition assessment experience and expertise.

Depending on the level of variance between the nation-wide reports and those used in this study, the

proposed model might need to be fine-tuned on the additional data from other states. Visualization

of the resulting model may help reveal the underlying condition assessment patterns for each state.

Since each state DOT performs training and quality control separately, having a unified data-driven

tool for quality control of the in-training inspectors may improve the consistency in bridge condition

assessment nationwide.

As the inspection reports become recognized as a source of condition information for supporting

data-driven condition assessment, it is anticipated that future development of a unified guideline or

specification of inspection note-taking and report documentation will improve the performance of

automated condition rating models. Such guidelines may specify the level of details in inspection

notes (e.g. describing one local defect with one sentence of its name, location, and severity), the

overall length of narrative descriptions, as well as the number and scale of the site images docu-

mented in the inspection reports.

The proposed context-aware information extraction model processes bridge inspection reports

sentence by sentence and generates segments of bridge condition type, location as well as qualitative
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and quantitative severity. One possible future research direction in this regard is to create a detailed

national condition inventory by applying the proposed information extraction method to inspection

report data from a wide range of states. Such a condition inventory can support data-driven deterio-

ration modeling, and forecasting, which can be an important step in advancing bridge management

and maintenance analytics. Further dependency extraction and entity normalization processes might

be developed to organize the condition inventory for supporting data-driven decision-making. Al-

though the model-extracted segments can be automatically matched where there is only one segment

for each category in the sentence, it can become confusing when multiple segments are from the

same category. For a complex sentence that stated two damage conditions, it is not readily clear

which location and severity correspond to which damage condition mentioned in the same sen-

tence. Although examination of the inspection report corpus used in this study revealed that only

˜13% of the sentences were complex sentences, future work might be required to create relation

extraction methods that can match each extracted location and severity segment to their correspond-

ing condition to resolve such ambiguity and confusion. Examples of such methods in the literature

developed in different domains can be found [219–221]. Further normalization can be performed

for each of the condition categories. For example, the National Bridge Elements [16] can be used to

guide the normalization of the location category, to precisely describe the locations in terms of a de-

fined bridge element and a direction indicator such as top or bottom. The structure of the inventory

needs to be carefully designed to organize the records of defects by bridge elements and direction

indicators, so that the descriptions of the same defects from consecutive years can be aligned and

compared. Units and measurements from the severity category can also be further normalized to a

unified form to precisely describe the size and extent of each defect.

The development of such a comprehensive national bridge condition inventory links closely to

the design of a formal representation for bridge conditions. Such representation is aimed to doc-

ument all local bridge deficiencies in a tabular database format in order to support detail-driven

feature extraction for deterioration modeling. The design of such representation is a non-trivial task

that comprehensively identifies the formal representation of all defects, locations, and severity. For

example, a non-formal representation of a local defect can be ‘1/3 in. w. crack on the bottom of

the deck near abutment 2’, and the formal representation should include defect name (crack), de-

fect type (NA), measurement (0.3), measurement type (width), measurement unit (inch), location

(deck), location type (bottom), location reference (mid-span abutment), and etc.. Each item in the
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formal representation should be coded in numerical format, which requires defining a categorical

variable by identifying all possible values of each item. The entire evolutionary history of bridge

conditions documented in the inspection reports enables the construction of such representation,

and the resulting condition inventory has extensive potential in supporting data-driven deterioration

modeling and maintenance planning at an unprecedented level of detail. Such formal representation

of bridge condition can also guide the design of the automatic inspection process, where the inspec-

tor is only responsible for inputting measurement numbers, quantities, or answers to multi-choice

questions that will be further analyzed by automatic condition rating and deterioration prediction

models.
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