
OPAQUE: Protecting User Data during Server Breaches

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Maven Kim

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Shangtong Zhang, Department of Computer Science

OPAQUE: Protecting User Data during Server Breaches

CS4991 Capstone Report, 2023

Maven Kim

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

mmk6xnb@virginia.edu

ABSTRACT

Ring, an Amazon-owned company that

creates home security and smart home

devices, must consistently update their data

security protocols to preemptively prevent

server breaches. To solve this problem, I

developed a basic implementation of an

oblivious pseudorandom-function password

authenticated key exchange (OPAQUE),

which secures user data in the event of a

server compromise. I created my

implementation using Python, Docker, and

Amazon Web Services’ (AWS) Nitro

Enclaves. I collaborated with a fellow intern

on this project using GitHub, a version

control system. We successfully engineered a

basic user registration and authentication

application that utilized OPAQUE. In the

future, we can scale this application to

support multiple users at the same time.

1. INTRODUCTION

Passwords are ubiquitous but fundamentally

insecure. When a client transmits a password

to a server, there are multiple opportunities

for a hacker to steal it. An attacker can

eavesdrop on the communication and

intercept the password while it is being sent

to the server. The hacker could also attack the

server itself and steal password data directly.

Companies protect against these attack

vectors in several ways. During transmission,

data is encrypted using a protocol called

Transport Layer Security (TLS). When server

receives password data, it applies a one-way

irreversible function, called a hash function,

to the password, making the data unreadable.

These encryption mechanisms have several

vulnerabilities. The server must handle a

plaintext version of the password to compare

it against the encrypted version when a user

logs in. During this process, the server could

accidentally log the password or become

corrupted, making the data vulnerable in the

event of a server breach. For example, in

2019, Facebook discovered that it was storing

user passwords in an unencrypted format.

Users must also trust the server to properly

handle their password data. Even if the server

is trustworthy, data can be accidentally

mishandled, and users cannot know for

certain that their passwords are properly

stored.

Ring, an Amazon-owned company that

creates home security and smart home

devices, attempts to solve this issue with its

end-to-end encryption. In this protocol, the

user’s smartphone encrypts the user’s videos

and data before they are sent and stored in

Ring’s servers. The only way to access this

data is by using a ten-word autogenerated

password local to the phone. No unauthorized

users, including Ring employees or other

potential eavesdroppers, are able to access

any user data unless they have this password.

The issue with this implementation is that

remembering and using a ten-word password

is rather tedious. If the user forgets the

password or loses their phone, their data is

also lost with no method of recovering it.

The OPAQUE protocol is one possible

solution to this problem. By employing an

Oblivious Pseudo-Random Function (OPRF)

in a Password Authenticated Key Exchange

(PAKE), user passwords and encrypted

representations of them are never transmitted

to the server. The protocol also ensures that

users have sole access to their video data

without requiring them to remember complex

passwords.

2. RELATED WORKS

Bourdrez et. al. (2023) outline a specification

of the OPAQUE protocol. They state that

OPAQUE has a formal security proof and

they list some of the advantages of the

protocol. OPAQUE is secure against pre-

computation attacks, unlike other PAKE

protocols. A pre-computation attack involves

a hacker taking a list of common passwords,

and applying a hash function to them to create

a table of hashes. When a server is

compromised and the hacker retrieves a list of

hashed passwords, the attacker can instantly

look up each of these hashed passwords in the

table to find each user’s password. With

OPAQUE, each user has some server-

generated random data, called a salt, that is

added to the password before it is hashed.

This makes the pre-computed table of hashes

useless, since the attacker has no way of

knowing the salt before server compromise.

Users then have time to change their

passwords before an attacker obtains

unauthorized access to their data.

Bellovin and Merritt (1992) specify the

benefits of PAKE protocols, which are the

basis of OPAQUE. In a PAKE protocol, the

client and server never reveal their password

to each other. They establish a strong shared

secret key only when the passwords match.

When this occurs, the server can authenticate

the client, and the client can authenticate the

server. The disadvantage of this early

protocol was that it relies on passwords being

stored in plaintext on the server, making user

data vulnerable in the event of server

compromise.

3. PROJECT DESIGN

At the beginning of my internship, my

manager assigned a fellow intern and me to

work on creating an OPAQUE prototype

using Nitro Enclaves. Nitro Enclaves allows

for rate-limiting, which prevents any potential

brute-force attacks and adds an extra layer of

security to the OPAQUE protocol. Our

project also needed to use Docker containers,

since they serve as a template for an enclave,

and Python. Our manager also provided us

with a working command-line interface (CLI)

implementation of OPAQUE, so the majority

of the project involved incorporating this with

Nitro Enclaves. Outside of this initial project

description, the rest of the implementation

details were left to us.

Figure 1: Basic Prototype Structure

As shown in Figure 1, our prototype included

three main features: a single client, a single

server running in an enclave, and the

communication channel between them. The

client registers users and lets them log into

the server, which secures user information

with the OPAQUE protocol. Incorporating

multiple servers would have introduced

parallelism and a level of complexity that we

could not address during our short internship.

This entire system ran on a virtual Elastic

Compute Cloud (EC2) instance.

The client, which my partner primarily

worked on, consisted of a command-line

interface that registered and authenticated

users. Users could register an account using a

username and password. After registration,

users could log into their account using the

same username or password. Behind the

scenes, the client was securely performing the

client-side portion of the OPAQUE protocol,

which hinges on an OPRF. The OPRF takes

in two values, a secret key provided by the

server and the client’s password. The client

can use the OPRF to compute the result of

this function without learning the secret key,

and the server can provide the key without

learning the password or the result. Along

with this result, the client generates a public

and private key pair specific to the newly

created account and uses the OPRF result to

encrypt an envelope containing this key pair.

The server, which is running on the Nitro

Enclave, handles both the storage of the

envelope and the server-side portion of the

OPAQUE protocol. Each user’s envelope

along with the secret key provided by the

server was stored on AWS DynamoDB and

encrypted with AWS Key Management

Service (KMS). When the user authenticates,

the server sends back the envelope along with

the secret key linked to the user’s username.

If the client generates the correct OPRF result

to unlock the envelope, it initiates a PAKE

with the server so that they can mutually

authenticate each other.

The communication between the client and

the server was formatted using JavaScript

Object Notation (JSON) and done using

Transport Layer Security (TLS) over the

vsock channel. This channel is the only way

the enclave can communicate with external

services. When the enclave needs to

communicate with an external service, such

as DynamoDB or KMS, it sends a document

containing measurements that are specific to

the enclave. These services can then verify

the enclave using these measurements. This

process, called cryptographic attestation, fails

if the enclave’s source code is changed or if

the code is run outside of the enclave, further

securing the secret key and envelopes used in

the OPAQUE protocol.

4. RESULTS

At the end of the internship period, my

partner and I created a script that

automatically set up the OPAQUE prototype

we created. The script downloaded all of the

client code, server code, and any other

dependencies our project relied on. We

demoed this script in front of the entire AWS

Cryptography team. We also documented our

code so that other members of the team could

continue to expand on the prototype we

created. Our prototype template became an

AWS sample, which gives other developers at

AWS open access to our code. This allows

other developers to further develop the

prototype into a system Ring can use at scale.

We also extended cryptographic attestation

functionality for AWS KMS. Originally,

KMS could only attest decrypt operations

from KMS, meaning it could only verify if

the enclave ran a decrypt operation. We

enabled the encrypt operation to also send the

attestation document, allowing KMS to verify

the enclave during encryption.

5. CONCLUSION

We developed a basic implementation of the

OPAQUE protocol using AWS Nitro

Enclaves. The OPAQUE protocol addresses

the inherent vulnerabilities of traditional

password authentication by employing an

OPRF during a PAKE. These cryptographic

protocols, combined with Nitro Enclaves,

secure user data even in the event of server

compromise. The prototype was built using

Python, Docker, and AWS Nitro Enclaves,

and we demoed this project to the AWS

Cryptography team.

6. FUTURE WORK

In the future, there are several avenues we

could explore to further expand on our

project. We can work on scaling the

application to support multiple users and

servers simultaneously, which would help

make the system more robust and practical

for real-world usage. Without this support,

companies like Ring cannot use our

OPAQUE implementation.

To further optimize the user experience, we

can also investigate ways to move the user

registration and authentication process to a

more user-friendly user interface, instead of a

command line interface. We also need to

conduct more rigorous testing and

benchmarking to identify and address any

potential performance bottlenecks or security

vulnerabilities, ensuring that the system

remains reliable and secure as it evolves.

7. ACKNOWLEDGMENTS

I would like to thank my manager, Matthew

Campagna, for providing me with guidance

throughout my internship period. I would also

like to thank my fellow intern, Alex Richman,

for working on this project with me.

REFERENCES

[1] Bellovin, S. and Merritt, M. 1992.

Encrypted key exchange: password-based

protocols secure against dictionary attacks. In

Proceedings 1992 IEEE Computer Society

Symposium on Research in Security and

Privacy, IEEE Comput. Soc. Press, Oakland,

CA, USA, 72–84.

DOI:https://doi.org/10.1109/RISP.1992.2132

69

[2] Bourdrez, D., Krawczyk, H., Lewi, K.,

and Wood, C. 2023. The OPAQUE

Asymmetric PAKE Protocol. Internet

Engineering Task Force. Retrieved April 7,

2023 from

https://datatracker.ietf.org/doc/draft-irtf-cfrg-

opaque

[3] Bradley, T. 2020. OPAQUE: The Best

Passwords Never Leave your Device. The

Cloudflare Blog. Retrieved April 7, 2023

from http://blog.cloudflare.com/opaque-

oblivious-passwords/

[4] Canahuati, P. 2019. Keeping Passwords

Secure. Meta. Retrieved April 7, 2023 from

https://about.fb.com/news/2019/03/keeping-

passwords-secure/

[5] Nitro Enclaves. n.d. secure-local-channel-

arch.png (1130×631). Retrieved April 7, 2023

from https://nitro-

enclaves.workshop.aws/images/secure-local-

channel-arch.png

[6] Ring.com. n.d. Understanding Video End-

to-End Encryption (E2EE). Ring Help.

Retrieved April 7, 2023 from

https://support.ring.com/hc/en-

us/articles/360054941511-Understanding-

Video-End-to-End-Encryption-E2EE-

Be

https://support.ring.com/hc/en-us/articles/360054941511-Understanding-Video-End-to-End-Encryption-E2EE-
https://support.ring.com/hc/en-us/articles/360054941511-Understanding-Video-End-to-End-Encryption-E2EE-
https://support.ring.com/hc/en-us/articles/360054941511-Understanding-Video-End-to-End-Encryption-E2EE-

