
Software Automation: Overview of the Process of Creating Tools

to Streamline Business Operations

CS4991 Capstone Report, 2023

Fardeen Khan

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ffk9uu@virginia.edu

ABSTRACT

A consumer and business credit card

company with millions of customers needed

to find a more streamlined way to track

records of each communication while

maintaining customer privacy. Internal access

required consulting engineers, who had to

spend time querying and troubleshooting

data. To streamline this operation, I used

Vue.js, Docker, Java Spring Boot, and

Amazon Web Services to create an automated

tool enabling customer-facing employees to

bypass the engineers, saving valuable time.

The tool consisted of a “message id” lookup

which returned message delivery status and

method, etc. Future expansions may include

broadening the tool’s function to serve as a

means for customers to track their messages.

1. INTRODUCTION

When a credit card customer makes a

purchase, receives a promotional alert, or

completes a payment to their account, a

system is triggered to send them a notification

confirming this action. However, upon

triggering this notification, background

subsystems are also initiated to store metadata

about the notification process. For example, if

the customer completed a purchase and is

now receiving the message confirming

payment on their mobile application, the

metadata includes the following—send

timestamp, message language, message id,

delivery status, delivery method (mail, push

notification, call, etc.), message type, etc.

Prior to development of this tool, clients

asked engineers about the status of a message

by giving them a message id. Then the

engineers would query data using the

message id and look up the additional related

metadata. This process could take up to one

hour a day per developer. To streamline this

operation, the tool was created for the clients

to bypass the process of reaching out to an

engineer, saving valuable time. In broad

technical terms, the tool consisted of a

“message id” lookup which would return the

desired information about a message such as

delivery status and method. In the

background the Vue.js frontend calls an API

querying the necessary data. To serve this in a

production environment, these components

were deployed onto an AWS ECS instance in

a Docker container. Upon deployment, the

process to access this metadata is now

reduced to searching a message id in the tool,

which will return the necessary data.

2. RELATED WORKS

A similar solution was proposed by

Gunklach, et al. (2023). When dealing with

large raw data sources like those in large

enterprise applications, cataloging the data for

human use and interpretation becomes

tedious, especially for non-technical users.

Navigating through the complex datasets

often requires specific queries and in turn

extensive knowledge of the architecture. The

solution proposed is a three-tier architecture

comprised of a logging layer, an extraction

layer and a presentation layer. The end user

interacts with the presentation layer, which is

the front-end of the application. The logging

layer is used to log all queries, which are then

executed in the extraction layer.

Because an integral part of this tool is the

search interface for looking up message

information, it functions much like a search

engine, using queries to obtain the desired

data. However, from Silverstein and

Helzinger’s (1999) study, search engines such

as the Altavista Search Engine or Google may

need to perform additional computation to

query data that may have been implied but

was not explicitly defined by the user. This is

one aspect where the self-service tool I

worked on differs from a search engine, as

the inputs for the tool must match an existing

message id exactly, and no intention by the

user can be inferred.

3. PROJECT DESIGN

The self-service tool was a part of a larger

suite of tools within the bank’s messaging

services. As such, prior to the start of the

project, there needed to be planning in order

to ensure the tool would properly use the

existing services used by the other tools.

3.1 Client Specification

A key component of this tool is its user

interface, as it is the main form of interaction

a user will have with the service. As a result,

it was imperative the design of the interface

complied with the “User Interface

Guidelines” set for all the company’s

software to maintain a streamlined experience

for all users. My development team was

assigned a design team to collaborate with on

the user interface and ensure these guidelines

were followed with the app. This meant

certain icons, error messages, fonts, symbols,

etc. were to be used when designing it.

The design team also specified the necessary

information to be displayed on the page when

returning a result: the send timestamp,

message language, message id, delivery

status, delivery method (mail, push

notification, call, etc.), message type. These

specific data fields were chosen because they

were deemed the minimal necessary fields but

would still provide ample information to

debug a scenario while keeping the visual

state clean.

3.2 Overview of Design

Implementing a tool to track message statuses

requires a three-tiered approach like most

apps: a front-end page developed using

Vue.js framework, a backend logic controller

configured using Java Spring Boot, and the

data layer hosted on Amazon’s AWS

DynamoDB service.

3.2.1 Front-end

Due to the structure of our summer

internship, the front-end component was the

first step towards creating the app. The goal

for the user interface was to have a search bar

upon the page loading for the first time. The

search bar only accepts a valid message status

ID, which will then be used to look up a

matching entry in the database and return its

associated data fields. The fields are then

displayed in a 3x2 grid. If the input is invalid

an error message will be shown to the user

saying an 18-digit message ID must be

entered. There will also be errors

communicating application issues, such as

HTTP 1xx, 3xx, 4xx, and 5xx statuses. The

exact message was drafted with the design

team to adhere to the company’s UX

guidelines.

3.2.2 Back-end

The majority of this app’s functionality was

spent on the back-end services, using Java

Spring Boot. During the process of sending a

message to the users, the message is sent to a

message vendor, such as Apple or Google for

push notifications or SparkPost for other

forms of communication. These vendors

return status codes showing the status of the

message. Additionally, as the message is sent,

the messaging system also stores data of its

own, such as timestamps, message types,

message size, transfer rate, language codes,

etc. The API would be used to access this

data from the database upon request from the

front end.

Specifically, the main function to be

implemented is the one retrieving the

necessary data fields. The format of the

returned data is required to be a JSON format

map, where the fields, send timestamp,

message language, message id, delivery

status, delivery method (mail, push

notification, call, etc.), message type, would

map to their values. This JSON payload

would then be sent to the Vue app to be

parsed into the HTML page.

3.2.3 Architecture

The reasoning for this design is mainly for the

purpose of resiliency and speed. Using Java

allows for a broad range of contributors and

Spring Boot is available as a very scalable

framework, allowing for over 66 million daily

messages to be sent while avoiding

overloading the infrastructure. Vue.js is a

modern front-end framework that can

combine the advantages of both Angular.js

and React.js allowing for simplicity while

developing an app.

Throughout the development pipeline, there

are three stages used to deploy versions of the

application to. Deployments must move from

development environments to QA

environments to the production environment,

allowing each to test the state of the app as

new features are added. Jenkins CI is used to

automate this process, along with the

company’s internal managed pipeline, which

reads a YAML file containing configurations

for the infrastructure using AWS and Docker.

Specifically, the YAML file contains the

necessary IAM roles for the app’s AWS

services to access the data. It also contains

information for starting up the ECS Fargate

service and initializing a Docker container

with it using the provided Dockerfile. Once

the ECS stage is complete, the app is

deployed into multiple regions for resiliency,

along with traffic routing for load balancing.

As a result, a sudden increase in the traffic

would not immediately exhaust one region,

but would route traffic to another to ease the

load on it. Also, failover capabilities are

implemented to allow for the resilience, so

the app does not lose its functionality in case

there is a failure on one of the regions.

4. RESULTS

The original purpose of this tool was to

alleviate engineer stress while allowing

clients to easily view and debug problems

related to sent messages. Upon deployment of

this application into the production

environment, it is available to all internal

employees with a valid message id, allowing

them to quickly see the status of their desired

messages.

Prior to this app, engineers would spend on

average one hour a day searching through a

database to present the clients with potential

solutions to their issues. Because the app is a

self-service tool, it can operate autonomously,

relieving engineers of this duty while also

presenting the clients with immediate results,

saving time for both parties.

5. CONCLUSION

The culmination of the internship was marked

by the deployment of this tool to the

company’s live servers for employees to use

on a daily basis. When visiting the site, users

will be able to enter a given message tracking

ID and see results for it within seconds. They

will be presented with information pertaining

to delivery statuses, dates and times relevant

to the transportation of the message, non-

personal identifiable information about the

contents of the message, such as language and

method of communication, and type of

message. In the case of an error, they will

also be given an error code and a team

responsible for troubleshooting. This will

save valuable time for both the company’s

customer-facing employees and engineers.

6. FUTURE WORK

Currently, the status tool has been functional

as the same release candidate at the end of my

internship. However, there has been new

proposed additions to the tool to allow it to

provide information of not only account-level

but also email-level messages, which has

been prioritized as the next step of the

lifecycle of the tool. Further potential

additions of the app can be searching multiple

messages at once, for example, looking up

statuses of all push notifications sent to

customers containing promotional

information within the last three days, as this

would remove the need to do the same tasks

such as repeatedly searching related

messages.

REFERENCES

Gunklach, J., Michalczyk, S., Nadj, M.

Metadata Extraction from User Queries

for Self-Service Data Lake Exploration.

Datenbank Spektrum 23, 97–105 (2023).

https://doi.org/10.1007/s13222-023-

00448-z

Silverstein, C., Marais, H., Henzinger, M., &

Moricz, M. (1999). (rep.). Analysis of a

very large web search engine query log.

