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Abstract 
 

Recent technological advances have enabled high-throughput single cell molecular profiling, 

generating unprecedented volumes of data that promise to revolutionize our understanding of 

cellular heterogeneity and its role in health and disease. However, our ability to extract 

meaningful biological insights from these complex datasets has not kept pace with our capacity 

to generate them. A fundamental challenge lies in the computational methods used to 

characterize cell populations, which often lack scalability, generalizability, and the ability to 

capture the nuanced biological reality of both discrete and continuous cellular variation. 

This thesis addresses these challenges through the development of novel computational 

approaches for analyzing and organizing single cell data. Central to this work is ESCHR, an 

innovative ensemble clustering method that eliminates the need for manual parameter tuning 

while providing superior accuracy and robustness compared to existing approaches. ESCHR's 

unique hyperparameter-randomized ensemble approach not only generates high-quality 

discrete clustering results but also enables soft clustering to characterize regions of biological 

continuity and quantifies clustering uncertainty at the single cell level. 

Comprehensive evaluation across a large collection of diverse single cell datasets demonstrates 

ESCHR's superior performance and generalizability compared to existing methods. We further 

showcase the method's capabilities through in-depth analysis of two distinct applications, 

mapping the connectivity and intermediate transitions between handwritten digits (MNIST) and 

between hypothalamic tanycyte subpopulations. In both cases, ESCHR successfully identified 

canonical discrete groups while revealing meaningful continuous structure between them. This 

unified approach to capturing both discrete and continuous aspects of data structure, combined 

with transparent uncertainty quantification, represents a significant advance in our ability to 

generate hypotheses from single cell data. 

By emphasizing generalizability, robust performance, and interpretability while eliminating the 

need for manual parameter tuning, ESCHR provides a powerful framework for extracting 

biological insights from the growing volume of single cell data. This work contributes not only 

practical tools for the single cell research community but also advances our conceptual 

approach to understanding cellular heterogeneity. 
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1.1 Why do we need single cell molecular profiling? 

Cells are the fundamental units of life, serving as the basic building blocks from which all living 

organisms are constructed. This principle, first formalized in cell theory by the pioneering work 

of Schleiden, Schwann, and Virchow in the 19th century [1], has only grown in importance as 

our understanding of biology has advanced. What makes cells particularly remarkable is their 

ability to adopt diverse functional roles while maintaining the same genetic blueprint 

(approximately, barring somatic mutation). This cellular diversity is what enables complex 

multicellular organisms to develop and function. 

The diverse functions of cells arise from their molecular phenotypes – the complete set of 

proteins, RNA molecules, metabolites, and other biomolecules that are present and active within 

each cell at any given time [2, 3]. These molecular components work together in complex 

networks to determine cellular behavior, from basic processes like energy metabolism to 

specialized functions like neurotransmitter release or antibody production. Thus, the diversity of 

cellular functions that we observe at the physiological level must emerge from underlying 

diversity in molecular phenotypes. 

However, our understanding of this molecular basis of cellular diversity remains incomplete. 

Traditional bulk approaches to molecular profiling, which analyze entire populations of cells 

simultaneously, obscure the very heterogeneity that makes our organismal complexity possible. 

These methods provide only an average view of cellular state, potentially missing rare cell 

types, transitional states, and subtle variations in cellular phenotypes that may be crucial for 

tissue function [4]. Furthermore, bulk approaches often rely on pre-existing knowledge to isolate 

supposedly pure populations of cells, introducing potential bias and limiting our ability to 

discover new cell states or types. 

To truly understand biological complexity, we need approaches that can comprehensively map 

the molecular phenotypic space of cells in an unbiased manner. This mapping would reveal how 

cells are distributed across this high-dimensional space, identifying both discrete groupings and 

patterns of continuous variation. By relating these molecular profiles to cellular functions, we 

can begin to understand how molecular diversity gives rise to functional diversity, how cells 

transition between different states, and how these processes may go awry in disease. 

High-throughput, high dimensional single cell molecular profiling technologies (which we will 

generally refer to as “single cell ‘omics” throughout this thesis) offer the resolution and scale 

https://sciwheel.com/work/citation?ids=706202&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=55439,11149811&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=17004&pre=&suf=&sa=0
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needed to create such maps, providing a path toward understanding how molecular variation 

gives rise to biological function. 

1.2 The rise of single cell ‘omics 

When single cell RNA sequencing (scRNA-seq) was first demonstrated in 2009 [5], it marked a 

pivotal moment in biological research. While very low-throughput, it demonstrated the feasibility 

of generating reliable transcriptional profiles from the minute amounts of RNA present in single 

cells. The subsequent development of Smart-seq and related approaches further improved the 

quality of single cell data by enabling full-length transcript coverage, allowing detection of splice 

variants and more accurate gene quantification [6, 7]. The technological progression rapidly 

accelerated with the development of droplet-based scRNA-seq methods [8, 9], which enabled 

high-throughput profiling of thousands of cells simultaneously. These advances dramatically 

reduced per-cell sequencing costs, encouraging adoption and facilitating rapid scaling of the 

number of cells being assayed. Building on the success of scRNA-seq, a diverse ecosystem of 

single cell technologies has emerged. Single cell ATAC-seq and epigenomic profiling techniques 

have enabled investigation of the complex regulatory landscapes that underpin cellular diversity 

and function [10, 11], while single cell DNA sequencing has enabled fine-grained analysis of 

somatic variation in contexts ranging from cancer evolution to development and aging [12].  

In parallel with sequencing-based approaches, mass cytometry emerged as a powerful 

advancement over traditional flow cytometry and immunohistochemistry (IHC) techniques. While 

flow cytometry had enabled single cell protein analysis since the late 1970’s, it was limited by 

spectral overlap between fluorescent markers to measuring around 12-15 proteins 

simultaneously [13]. Mass cytometry overcame this limitation by using heavy metal isotopes as 

antibody labels instead of fluorophores, enabling simultaneous measurement of over 40 protein 

markers in individual cells [14]. This dramatic increase in the number of proteins that could be 

measured together provided unprecedented ability to deeply phenotype cellular populations and 

capture complex protein-level molecular phenotypes, though at the cost of losing the ability to 

retain viable cells as with traditional flow cytometry. 

More recently, technological innovations have expanded in two key directions: spatial resolution 

and multimodal integration. Spatial 'omics techniques have emerged to map molecular profiles 

while preserving the precise spatial relationships between cells within their tissue context. 

Methods like MERFISH [15] and seqFISH+ [16] enable spatial transcriptomics, while imaging 

https://sciwheel.com/work/citation?ids=24779&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=24780,17063&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=183260,179739&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=326986,5941086&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=11365564&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17272936&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=328550&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4974852&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6712564&pre=&suf=&sa=0
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mass cytometry extends the protein-detection capabilities of mass cytometry into a spatial 

context, allowing visualization of dozens of proteins within intact tissue sections [17]. In parallel, 

the field has evolved toward multimodal approaches that integrate multiple types of 

measurements from the same cell, though no current methods measure more than two 

modalities at once. Technologies such as CITE-seq [18] bridge the sequencing and 

antibody-based approaches by simultaneously capturing both RNA and protein expression from 

individual cells. Together, these technological advances have created a toolkit for dissecting 

cellular heterogeneity at unprecedented scale and depth. 

1.3 Challenges of single cell ‘omics analysis 

The advent of single cell ‘omics technologies has revolutionized our ability to dissect cellular 

heterogeneity, uncovering layers of complexity previously obscured by bulk measurements. 

However, this new frontier comes with its own set of analytical challenges. With the ability to 

capture vast numbers of cells across thousands of molecular features, researchers now face 

two interconnected problems: the inherent complexity of cellular identity and the technical 

challenges of analyzing high-dimensional, noisy, and often sparse data. Addressing these 

issues is essential to fully realize the potential of single cell ‘omics and to make meaningful 

biological inferences from this unprecedented scale and resolution of data. 

  A fundamental limitation of single cell technologies is their destructive nature: cells are lysed to 

extract molecular information, making it impossible to track changes within the same cell over 

time. This presents a significant challenge for studying dynamic biological processes such as 

differentiation, immune responses, and disease progression. Reconstructing temporal 

processes from distinct cell snapshots requires computational inference, which can then 

introduce uncertainty and potential inaccuracies. 

A single cell dataset typically consists of molecular counts of a single modality (even in 

multimodal assays, the data are separated into counts for each modality), such as mRNA, 

protein, or chromatin accessibility. Most modalities rely on indirect measurements that require 

inference of the true biological target. For example, scRNA-seq measures cDNA molecules 

reverse transcribed from mRNA, while mass cytometry quantifies antibody binding events as a 

proxy for protein abundance. Others require even more complex inference, such as scATAC-seq 

which detects DNA fragments made accessible through nucleosome displacement to infer 

regulatory element activity. The raw data obtained from a single cell ‘omics experiment thus 

https://sciwheel.com/work/citation?ids=6528245&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4006944&pre=&suf=&sa=0
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provides as a starting point only a partial and indirect view of cellular state, which is insufficient 

to fully capture the complexity of cellular identity. 

The variation observed in single cell molecular counts arises from three main sources: technical 

variation, allele-intrinsic variation, and allele-extrinsic variation [19]. 

● Technical variation stems from differences in cell lysis, RNA capture efficiency, and 

detection sensitivity [20, 21]. 

● Allele-intrinsic variation reflects stochastic factors inherent to molecular mechanisms, 

such as transcriptional bursting and variable mRNA degradation, leading to differences 

between otherwise identical cells or even between alleles of the same gene within a cell 

[21–23]. 

● Allele-extrinsic variation arises from external factors, such as regulatory molecules or 

stable chromatin states, that influence gene expression and establish differences 

between cell types or states [21–23]. 

Most studies aim to understand allele-extrinsic variation, which is often biologically meaningful, 

but technical and allele-intrinsic variations can obscure these signals. The noise from these 

sources is particularly problematic when analyzing subtle phenotypic differences or rare cell 

populations. Furthermore, technical variability can correlate with biological features [24], 

complicating efforts to disentangle genuine biological signals from artifacts. 

This variation can manifest as anything from coordinated differences shared by discrete groups 

of cells to a complex high dimensional continuum of changes. Both of these extremes can be 

observed in the case of stem cell differentiation, where cells proceed through transitional states 

characterized by continuous variation of markers associated with both progenitor and mature 

populations, but there are pools of progenitors and mature cells that each have clearly distinct 

shared molecular profiles [25]. To make matters even more complicated, these varying degrees 

of discreteness and continuity are reflected differently across different molecular modalities, with 

some regulatory layers enforcing sharp transitions while others allow for more graded 

responses [26]. 

Single cell datasets are inherently high-dimensional, with dozens to tens of thousands of 

molecular features measured per cell. This richness enables detailed exploration of cellular 

diversity but also introduces the "curse of dimensionality" [27]. In high-dimensional spaces, it 

https://sciwheel.com/work/citation?ids=2442624&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1658004,1357700&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=1357700,54504,171982&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=1357700,54504,171982&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=1877739&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17273090&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5102551&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17237228&pre=&suf=&sa=0
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becomes difficult to accurately define distances or relationships between cells, which can 

obscure biologically meaningful patterns. 

Adding to these challenges is data sparsity. Single cell data matrices, especially those derived 

from sequencing-based methods, are often dominated by zeros. These zeros reflect some 

combination of technical limitations (such as incomplete molecular capture), biological noise 

(such as from stochastic gene expression dynamics), and true biological phenomena of interest 

(such as selective gene expression in differently specialized cell types). This sparsity 

complicates the application of traditional statistical and machine learning methods, which often 

assume data distributions that are not met in single cell datasets [28]. 

Finally, the sheer size of single cell datasets has grown dramatically. Modern technologies can 

generate data for hundreds of thousands or even millions of cells in a single experiment. 

Analyzing and interpreting these large-scale datasets requires substantial computational 

resources and sophisticated algorithms capable of scaling efficiently. 

The core analytical challenge of single cell 'omics lies in transforming this noisy and fragmented 

count data into meaningful biological insights. One approach is to first identify underlying 

structure in how cells cluster or arrange themselves, then work backwards to understand the 

molecular features driving these patterns. Alternatively, we can start by identifying coordinated 

patterns in molecular features themselves, using these to infer cellular states and transitions. 

Both approaches must address the fundamental question of how molecular-level measurements 

connect to higher-level biological phenomena - how patterns of RNA counts, chromatin 

accessibility, or protein levels reflect meaningful cellular states and functions. Successfully 

bridging this conceptual gap is essential for translating the vast amounts of data generated by 

single cell technologies into advances in our understanding of biological systems. 

1.4 Current methods for analyzing single cell data 

Major technological and experimental advances over the last decades have enabled 

increasingly high-resolution dissection of molecular features including the genome, 

transcriptome, epigenome, proteome, metabolome, and more at the level of single cells. 

Throughput for these methods has also expanded rapidly, and now large information-rich 

datasets are increasingly easy to collect. However, realizing the full scope of possibilities 

afforded by this new capacity for data collection depends on the ability to overcome the 

https://sciwheel.com/work/citation?ids=8194974&pre=&suf=&sa=0
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challenges discussed above and find ways to extract meaningful insights from these large and 

complex datasets. To achieve this, researchers employ two primary methodological frameworks: 

clustering and trajectory inference. Each addresses distinct aspects of cellular heterogeneity 

and functional organization and offers a different lens for understanding cellular population 

structures. 

1.4.1 Clustering: defining discrete cell populations 

Clustering aims to partition cells into distinct groups based on their similarity across measured 

features (e.g., gene expression). This approach assumes that cells within a cluster share 

functional properties or represent a common biological state. 

Clustering methods in single cell analysis operate through a series of interconnected 

computational steps, each adapted from traditional methods to handle the unique characteristics 

of single cell data. The process begins with quality control and preprocessing, where cells are 

filtered based on quality metrics such as total counts, number of detected features, and 

proportion of mitochondrial reads (in sequencing-based methods). Normalization techniques, 

ranging from simple library size adjustment to more sophisticated methods accounting for 

technical covariates, help mitigate batch effects and technical variation [29, 30]. 

Feature selection identifies informative molecular markers while reducing computational burden 

and noise. This step often employs variance-based methods, but can also incorporate domain 

knowledge about marker genes or more sophisticated statistical approaches [31]. This is often 

followed by a subsequent step of dimensionality reduction, typically using variations of Principal 

Component Analysis (PCA) [30].  

The final step is to perform the actual clustering, and there are a wide variety of algorithms with 

distinct strengths and weaknesses that have been used. Graph-based methods like Louvain or 

Leiden, combined with k-nearest neighbor graphs, have become popular due to their ability to 

handle large datasets and identify communities at multiple resolutions. Density-based methods 

can identify clusters of varying shapes and sizes, while hierarchical clustering can reveal 

relationships between populations. These and other base algorithms, such as k-means, are 

often modified with specialized distance metrics and weighting schemes before they are applied 

to single cell data [32]. 

https://sciwheel.com/work/citation?ids=82308,14610570&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=12219744&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14610570&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7168825&pre=&suf=&sa=0
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Applications of clustering have been particularly successful in tumor heterogeneity analysis, 

where they have revealed previously unknown cancer cell states [33], and in immunology, 

where they have helped define new cell subtypes [34]. However, clustering methods tend to 

oversimplify complex biology by forcing cells into rigid categories, introducing artificial 

boundaries in continuous processes. Many methods also make strong assumptions about 

cluster properties, such as expecting spherical shapes or similar cluster sizes, making the 

detection of rare states or groups a particular challenge. The sensitivity of these methods to 

parameter choices - from feature selection to distance metrics to cluster number - further 

complicates their application, as decisions at each step of the analysis pipeline can substantially 

affect biological interpretations [35, 36, 37, 38]. 

1.4.2 Trajectory inference: mapping dynamic processes 

While clustering focuses on static population structures, trajectory inference aims to reconstruct 

dynamic processes by arranging cells along a continuum or developmental pathway. 

Trajectory inference methods reconstruct continuous cellular processes by ordering cells along 

developmental or state-transition paths. These methods begin with similar preprocessing steps 

to clustering but diverge in their core algorithms. The fundamental assumption is that cells 

captured at a single timepoint contain information about their developmental history or future 

states, allowing reconstruction of temporal processes from static measurements [39, 40]. 

Early methods like Monocle [41] and Wanderlust [42] introduced the concept of pseudotime 

ordering, where cells are arranged along a trajectory based on their molecular similarity. Modern 

approaches have evolved to handle more complex topologies, including branching processes 

and cyclical behaviors [40]. Methods like RNA velocity leverage splicing dynamics to infer 

directionality, providing additional information about cellular transitions [43]. 

The algorithmic approaches vary significantly. Some methods use minimum spanning trees or 

principal curves to find paths through high-dimensional space. Others employ manifold learning 

techniques to identify low-dimensional representations of cellular transitions. Graph-based 

approaches construct cellular networks and use path-finding algorithms to identify likely 

trajectories. More recent methods incorporate probabilistic models to account for uncertainty in 

trajectory inference [39, 40]. 

https://sciwheel.com/work/citation?ids=16816299&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4081949&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13120647,12029630&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8099844&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10762315&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11157303,6744309&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=17045&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=424391&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6744309&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5636602&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11157303,6744309&pre=&pre=&suf=&suf=&sa=0,0
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These methods have provided crucial insights in developmental biology, revealing new 

understanding of cell fate decisions and lineage commitment [42]. In disease research, they've 

helped map responses to drug treatments in cancer [44]. However, trajectory methods face 

several challenges. They often require substantial computational resources and can be highly 

sensitive to noise [39, 40]. Additionally, most of these methods are designed with specific 

biological processes in mind, assuming that continuous variation must reflect directional 

transitions like development or disease progression, rather than accommodating the broader 

spectrum of cellular continuity present in biological systems [26]. 

1.5 Balancing discrete and continuous perspectives: a unified 

approach 

When analyzing single cell data, researchers must navigate the inherent tension between 

discrete and continuous representations of cellular identity. While clustering methods effectively 

identify distinct cellular populations that may represent stable functional units, trajectory 

inference methods capture dynamic processes and gradual transitions. Neither approach alone 

fully captures biological reality, as cellular identity can manifest not only as discrete cell types 

and dynamic transitions, but also as continuous spectra of molecular phenotypes within stable 

cell types. For instance, while neurons constitute a discrete cell type, their diverse functional 

roles are reflected in continuous variations in their molecular profiles - making both discrete and 

continuous representations essential for understanding cellular function. The challenge is further 

complicated by technical noise and stochastic biological variation, which can blur the 

boundaries between what might otherwise be discrete populations. Understanding how such 

complex population structures relate to cellular function remains a central challenge in 

single-cell biology. Progress requires computational methods that can flexibly capture both 

discrete and continuous representations while conveying uncertainty and facilitating biological 

interpretability. This goal motivates the methodological developments and applications 

presented in this thesis.  

https://sciwheel.com/work/citation?ids=424391&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11003737&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11157303,6744309&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5102551&pre=&suf=&sa=0
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2.1 Abstract 
Clustering is widely used for single cell analysis, but current methods are limited in accuracy, 

robustness, ease of use, and interpretability. To address these limitations, we developed an 

ensemble clustering method that outperforms other methods at hard clustering without the need 

for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions 

and quantify clustering uncertainty, demonstrated here by mapping the connectivity and 

intermediate transitions between handwritten digits (MNIST), and between hypothalamic 

tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the 

accuracy, robustness, ease of use, and interpretability of single cell clustering, and may prove 

useful in other fields as well. 

 

2.2 Introduction 
Clustering is widely used for exploratory data analysis across diverse fields, where it is applied 

to identify dataset grouping structures in an unsupervised manner. In particular, clustering has 

become a workhorse tool for single cell analysis, enabling the identification and characterization 

of cell populations that share similar molecular profiles within heterogeneous biological samples 

[45]. The output of clustering analysis is often used for direct comparison of biological samples, 

to identify changes in the abundance or molecular state of specific cell populations. 

Furthermore, clustering output is frequently carried forward into additional downstream analyses 

such as cell type classification or trajectory analysis [40, 46, 47]. Therefore, the accuracy and 

reproducibility of clustering partitions is important for the quality of single cell analysis. This 

importance has motivated the development of hundreds [48] of clustering methods with a variety 

of algorithmic strategies, but there are still important shortcomings in all of these methods which 

reduce their effectiveness. 

 

An ideal clustering method for single cell analysis would satisfy the following requirements: 

  

1) Operate without the need for human input such as hyperparameter tuning. The vast majority 

of existing methods require selection and optimization of hyperparameters, which can 

significantly impact clustering quality [35–38]. Manual hyperparameter tuning is time-consuming 

and relies subjectively on human intuition about which groupings appear correct [49]. 

Automated methods have been proposed to overcome this limitation, but many are 

computationally inefficient, and all are biased by the criteria used for optimization [38, 50–52].  

https://sciwheel.com/work/citation?ids=10120121&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12083650,6246285,6744309&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=11949995&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13120647,12029630,8099844,10762315&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=12992018&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10762315,10493095,15531844,15531847&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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2) Perform well across diverse single cell datasets from different tissues and across multiple 

measurement modalities such as single cell/single-nucleus RNA sequencing (scRNA-seq and 

snRNA-seq), single cell Assay for Transposase-Accessible Chromatin sequencing 

(scATAC-seq), flow cytometry, mass cytometry, and multiplexed imaging analysis such as 

high-content fluorescence imaging, imaging mass cytometry (IMC), multiplexed ion beam 

imaging (MIBI), and multiplexed error-robust fluorescence in situ hybridization (MERSCOPE). 

Generalizability is a concern in existing methods; many clustering methods perform well on 

gold-standard single cell datasets, but do not generalize well to datasets from other tissue types 

or from other single cell analysis modalities which may have different or more complex 

distributions or structural properties [36–38, 49, 53].  

 

3) Produce stable and consistent partitions that are robust to random sampling and minor 

perturbations. Existing methods do not reliably produce robust partitions when applied to 

complex, high dimensional single cell datasets. Meaningfully different results can be produced 

with different hyperparameter combinations [37], slight perturbations of a dataset [49, 53], or 

even when an identical dataset and hyperparameters are run multiple times due to 

randomization steps in most clustering algorithms (Supplementary Fig. 1a,b).  

 

4) Capture and describe the wide variety of discrete and continuous grouping structures present 

in single cell datasets [26, 54]. Most existing methods implement hard clustering, which 

assumes a data structure with discrete, well-separated groups, but is unable to characterize 

overlap or continuity between groups. Alternative computational methods for trajectory inference 

can better capture specific types of continuum-like processes such as cell differentiation in 

single cell datasets, but these methods make a different set of assumptions about data structure 

that can be equally restrictive.  

 

5) Quantify uncertainty at the levels of individual data points and clusters. There are many 

scenarios where clustering can provide useful information, but a single optimal solution to the 

clustering task either does not exist or cannot be determined [55]. In many cases, there is 

additionally no known ground truth that could define what a correct solution might look like. 

Therefore, measures of uncertainty are crucial to assess the reliability and aid interpretability of 

clustering results before using them as inputs for downstream analytical methods or for 

purposes such as hypothesis development or orthogonal validation of results. 

https://sciwheel.com/work/citation?ids=12029630,8099844,10762315,12992018,5762308&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=8099844&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12992018,5762308&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=5102551,2995832&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=9823951&pre=&suf=&sa=0
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6) Scale to analyze large single cell datasets with millions of cells. While many of the most 

commonly used methods are scalable, several that have been developed to address these key 

challenges for clustering have done so at the expense of scalability. Methods that improve on 

these other challenges can only be realistically impactful if they can produce results for the large 

dataset sizes that are becoming increasingly commonplace. 

 

Recently developed clustering methods have made progress towards some of these goals. 

Ensemble and consensus methods represent a promising approach to improve clustering 

robustness by combining information from multiple diverse partitions [56–63]. Fuzzy and soft 

clustering allow data points to belong to multiple clusters, and can therefore be used to provide 

a more complete description of both continuous and discrete data structures [64, 65]. There are 

several methods that provide measures of stability or uncertainty at the cluster level [38, 50, 62, 

66], but cell-level measures of uncertainty are rarely provided in single cell methods [67, 68]. 

However, none of these approaches have been able to incorporate all of the six key features 

described above. 

 

To address this need for a single method that performs robustly across diverse datasets with no 

hyperparameter tuning and transparently communicates uncertainty, we developed a clustering 

algorithm that applies EnSemble Clustering with Hyperparameter Randomization (ESCHR). This 

algorithm requires no human input due to hyperparameter randomization, which explores a wide 

range of data subspaces that contribute to the final consensus clustering step. Our 

implementation of ESCHR in Python (https://github.com/zunderlab/eschr) can be used as a 

self-contained framework for clustering, or it can be integrated into commonly used single cell 

analysis pipelines such as the scverse ecosystem [69]. To evaluate this new method, we 

performed extensive benchmarking tests, which demonstrated that ESCHR outperforms both 

general clustering methods and the most widely used clustering methods for single cell analysis 

[62, 70–72], both in terms of accuracy on synthetic datasets with a known “ground truth,” and in 

terms of robustness on real single cell datasets encompassing diverse tissues (bone marrow, 

pancreas, developing and adult brain), organisms (mouse, human), cell numbers (from 

hundreds to millions), and measurement techniques (single cell RNA sequencing, mass 

cytometry, flow cytometry). 
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https://sciwheel.com/work/citation?ids=6246430,5541136&pre=&pre=&suf=&suf=&sa=0,0
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After benchmarking for accuracy and robustness, we applied ESCHR clustering to two complex 

real-world datasets - first to the MNIST dataset [73], a commonly used example for machine 

learning image analysis, and then in the single cell context to investigate the relationships 

between tanycyte populations in the hypothalamus, which have been previously shown to 

display spatial and molecular-level continuity between subtypes [74–78]. In both of these 

exploratory analyses, the soft cluster assignments and uncertainty scoring from ESCHR were 

used to identify regions of low confidence cluster assignments corresponding to transitional 

overlap between clusters and map the key feature transitions that define these regions. 

 

2.3 Results 

2.3.1 Overview of ESCHR clustering 

To develop a robust and scalable clustering method for analysis of single cell datasets, we 

employed an ensemble and consensus approach, which has been shown to improve 

robustness across many domains of machine learning [59, 79–85]. This approach consists of 

two main steps: 1) generate a set of base partitions, referred to as the ensemble, and 2) use 

this ensemble to generate a final consensus partition. The graph-based Leiden community 

detection method [86] was selected as a base algorithm to generate the clustering ensemble, 

because it is widely used for single cell analysis, and is efficiently implemented to be scalable 

for large datasets [47]. 

 

A key element of successful consensus approaches is generating sufficient diversity in the 

ensemble [59, 80, 81, 87]. To generate this diversity, ESCHR randomizes four hyperparameters 

for each base partition: subsampling percentage, number of nearest neighbors, distance metric, 

and Leiden resolution. Within a given base partition, ESCHR first selects a subsampling 

percentage by random sampling from a gaussian distribution with μ scaled to dataset size 

(within 30-90%), and then extracts the specified subset of data from the full dataset.  Next, 

ESCHR randomly selects values for the number of nearest neighbors (15-150) and the distance 

metric (euclidean or cosine) and uses these to build a k-nearest neighbors (kNN) graph for the 

extracted subset of data. Finally, ESCHR performs Leiden community detection on this kNN 

graph using a randomly selected value for the required resolution-determining hyperparameter 

(0.25-1.75). The ranges for randomization of these hyperparameters were optimized empirically 

(Supplementary Fig. 2a-f and Methods). This subsampling and randomization scheme is used 

https://sciwheel.com/work/citation?ids=12107779&pre=&suf=&sa=0
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to produce diversity amongst each of the different base partitions (Fig. 1a). This diversity 

provides many different views of the dataset, and the full ensemble of these views provides a 

more comprehensive picture of the dataset grouping structure (Supplementary Fig. 3), which is 

less likely to be influenced by the stochastic variations present in any single view, including the 

full unsampled dataset. In addition to generating ensemble diversity, this hyperparameter 

randomization approach is what enables ESCHR to operate without the need for 

hyperparameter tuning at this first stage of the algorithm. 

 

After generating a diverse ensemble of base partitions, ESCHR applies a bipartite graph 

clustering approach to obtain the final consensus partition. First, the base partitions are 

assembled into a bipartite graph, where cells are represented by one set of vertices, base 

clusters are represented as a second set of vertices, and each cell is connected by an edge to 

each of the base clusters it was assigned to throughout the ensemble (Fig. 1b). Next, ESCHR 

applies bipartite community detection to obtain the final consensus partition (Fig. 1b) [88].  

Bipartite community detection is applied here instead of more common consensus approaches 

that suffer from information loss [89]. To remain hyperparameter-free without the need for 

human intervention in this consensus stage of the algorithm, ESCHR performs internal 

hyperparameter selection to determine the optimal resolution for the final consensus clustering 

step by selecting the medoid from a range of resolutions (Supplementary Fig. 4). After obtaining 

the final consensus partition, ESCHR converts the ensemble bipartite graph to a final weighted 

bipartite graph by collapsing all base partition cluster nodes assigned to the same consensus 

cluster into a single node. Cells are then connected to these consensus cluster nodes by edges 

with weights representing the number of times each cell was assigned to any of the base 

partition clusters that were collapsed into a given consensus cluster (Fig. 1b). These raw 

membership values are then normalized to obtain proportional soft cluster memberships, and 

hard cluster labels are assigned as the consensus cluster in which a cell has the highest 

proportional membership (Fig. 1c).  

 

While many analysis strategies for single cell datasets require hard clustering labels, these by 

definition cannot convey whether a cell is at the borderline between multiple clusters or located 

firmly in the center of a single cluster. Hard clusters also do not provide any insight into potential 

continuity between clusters. Using the soft cluster memberships derived from the weighted 

consensus bipartite graph, ESCHR provides several additional outputs beyond hard cluster 

assignments that enable more comprehensive characterization of the grouping structures within 

https://sciwheel.com/work/citation?ids=15420439&pre=&suf=&sa=0
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a dataset. Firstly, soft cluster memberships can be directly visualized in heatmap form to identify 

areas of cluster overlap at the single cell level (Fig. 1c). Importantly, these soft membership 

heatmap visualizations can serve as complements or even alternatives to the widely used but 

also widely misinterpreted [90] stochastic embedding methods (i.e. UMAP [91], t-SNE [92] ) for 

visualizing the complex relational structures within single cell datasets. ESCHR also produces 

an Uncertainty Score for every object, derived from its soft cluster membership, which quantifies 

regions of higher and lower certainty in hard cluster assignment (Fig. 1c). Finally, ESCHR 

produces a cluster-level map of the continuity structure within a dataset by using the soft cluster 

memberships to calculate a corrected-for-chance measure of the connectivity between each 

pair of hard clusters (Fig. 1c and Methods).  

 

 
Figure 1: ESCHR framework overview. 
(A) Starting from a preprocessed input dataset, ESCHR performs ensemble clustering using randomized 
hyperparameters to obtain a set of base partitions. This set of base partitions is represented using a 

https://sciwheel.com/work/citation?ids=7859762&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12611897&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15602586&pre=&suf=&sa=0


24 

bipartite graph where one type of node consists of all data points and one type of node consists of all 
clusters from all base partitions and edges exist between data points and each base cluster they were 
assigned to throughout the ensemble. (B) Leiden bipartite clustering is performed on the ensemble 
bipartite graph. Base clusters are collapsed into their assigned consensus clusters obtained through the 
bipartite clustering and edge weights are summed such that each data point now has a weighted edge to 
each consensus cluster representing the number of base clusters it had been assigned to the were then 
collapsed into that consensus cluster. (C) Soft cluster memberships are obtained by scaling edge weights 
between 0 and 1, and can then be visualized directly in heatmap form and used to generate hard cluster 
assignments, per-data point uncertainty scores, and cluster connectivity maps. 
 

2.3.2 ESCHR soft clustering and uncertainty scores capture diverse 

structural characteristics and quantify uncertainty in cluster assignments 

We first sought to examine how ESCHR uncertainty scores and soft clustering could enable 

effective and informative analysis for datasets containing complex combinations of continuity 

and discreteness, and how these results compared to a wide range of alternative clustering 

methods used for single cell analysis or general purpose clustering (Supplementary Table 1 and 

Methods). For this analysis, we generated a synthetic scRNA-seq dataset containing 1000 

cells and 1000 features using the DynToy package [93]. This dataset is generated by sampling 

“cells” from a complex trajectory model, with library size and transcript distributions per cell 

modeled on a real scRNA-seq dataset. Specifically, “cells” are sampled from prototypical “cell 

states”, where each cell has a varying probability of belonging to multiple neighboring states and 

the ground truth hard cluster labels are assigned as the state in which the cell has the highest 

percent membership. This process generates a dataset which is similar to real single cell data 

but provides known ground truth grouping structure and known ground truth continuity structure 

(Fig. 2a-b, Supplementary Fig. 7a), which is not generally available for real datasets 

(Supplementary Note 1).  

 

We first compared the ESCHR hard clustering results (Fig. 2c, Supplementary Fig. 7b) and 

uncertainty scores (Fig. 2d) with the true hard cluster labels and the true membership 

percentage for those labels. While ESCHR successfully captures all of the ground truth cell 

states, it also adds two additional clusters (ESCHR clusters 9 and 6) between true clusters M2 

and M3 and between M1 and M7. However, the ground truth membership percentages show 

that these regions are highly transitional, with low percentages for the maximum membership 

(Fig. 2b). ESCHR uncertainty scores correspond closely to this observed ground truth continuity 

in Figure 2b, indicating that the uncertainty scores can identify regions of uncertainty in cluster 

assignment due to ground truth continuity and cluster overlap. In addition to quantifying this 

https://sciwheel.com/work/citation?ids=11275199&pre=&suf=&sa=0
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level of uncertainty per ”cell”, ESCHR also provides information at the cluster level about which 

clusters overlap, and to what extent, through direct visualization of the soft cluster 

memberships. This reveals overlap structure that corresponds to the ground truth patterns of 

transitional membership between groups, such as between ESCHR clusters 7, 9, and 1 

(corresponding to true labels M2 and M3) and ESCHR clusters 1, 8, and 2 (corresponding to 

true labels M3, M6, and M5) (Fig. 2e). 

 
Figure 2: Visualization of ESCHR clustering and uncertainty scores compared to other 
clustering methods. 
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UMAP visualizations of (A) ground truth cluster labels, (B) ground truth cell state membership, (C) 
ESCHR hard clusters, and (D) ESCHR uncertainty scores. (E) Heatmap visualization of ESCHR soft 
cluster memberships. (F) UMAP visualizations of cluster assignments from selected comparison methods. 
Points are colored by cluster ID. (G) Box and whisker plot comparing uncertainty scores of data points 
from ESCHR hard clustering that were accurately assigned versus not accurately assigned. The box 
shows the quartiles of the dataset, whiskers extend to 1.5*IQR, plotted points are outliers. Two-sided 
Mann-Whitney U test was used for statistical analysis. N = 126545, 750955 for inaccurate and accurate 
groups respectively. (H) Comparison of ESCHR uncertainty scores versus method agreement per each 
individual data point. Primary box and whisker plot x-axis is binned ESCHR uncertainty scores and y-axis 
is the average method agreement across all pairs of methods; inset scatterplot shows raw data (i.e. not 
binned) with red line of best fit and Pearson correlation statistic.  
 

 

We next evaluated the results from multiple different clustering methods and found that there 

was wide disagreement between the results of these different methods (Fig. 2f, Supplementary 

Fig. 7c). Seurat, Scanpy, and Phenograph, which are all based on either leiden or louvain as 

their base clustering method, all identify approximately the same clusters as ESCHR, but 

importantly each of these methods has selected different boundaries between these clusters. 

While the results from the remaining methods exhibit more diversity, it is notable that none have 

placed cluster boundaries within the regions of ground truth high single state membership but 

rather have over-clustered transitional regions or under-clustered by grouping multiple true 

clusters together. The regions of disagreement between the different clustering methods 

highlight areas that are challenging for and perhaps not well suited to the discreteness 

assumptions of traditional hard clustering. High ESCHR uncertainty scores and overlapping soft 

cluster memberships correspond to regions of disagreement between other clustering methods, 

providing further evidence that these metrics can help identify regions that are challenging for 

traditional clustering methods due to continuous data structures such as overlap between 

ground truth clusters.  

 

To assess whether ESCHR uncertainty scores were similarly informative across diverse 

datasets, we generated an additional 4 simulated datasets using DynToy and 16 additional 

structurally diverse synthetic datasets which consist of randomly generated gaussian 

distributions varying in number of objects (5000 or 10000), number of features (20,40,50,60), 

number of clusters (3,8,15,20), cluster sizes, cluster standard deviations, cluster overlap, and 

feature anisotropy (Supplementary Figs. 5-6, Supplementary Tables 2-3). To quantitatively 

evaluate the utility of ESCHR uncertainty scores across our full set of 21 structurally diverse 

synthetic datasets with ground truth cluster labels, we first compared ESCHR uncertainty scores 

to the accuracy of assignment compared to ground truth labels per data point across all 
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datasets, and found that ESCHR uncertainty scores were significantly higher in inaccurately 

assigned cells (Fig. 2g). We then quantified the level of agreement between clustering 

assignments from all the different clustering algorithms we tested (in Fig. 2f) and used this as an 

alternative external indicator for per data point uncertainty and difficulty of clustering (Methods). 

This analysis revealed that higher ESCHR uncertainty scores were significantly negatively 

correlated with method agreement (Fig. 2h). Taken together, these comparisons demonstrate 

that ESCHR uncertainty scores identify meaningful uncertainty, and that when used in 

combination with the soft clustering results, they enable more in-depth interpretation of dataset 

structure than other methods which produce only hard cluster assignments. Furthermore, 

ESCHR is able to provide these high-quality insights for datasets with diverse structural 

characteristics without the need for human intervention such as hyperparameter tuning. 

2.3.3 ESCHR outperforms other methods across measures of accuracy 

and robustness 

To systematically evaluate the performance of ESCHR vs. other clustering methods on real 

datasets as well as synthetic ones, we performed systematic benchmarking of ESCHR against 

other clustering algorithms (Supplementary Table 1) using a collection of 45 published real 

datasets in addition to the 21 synthetic datasets described above. This collection of 45 

published datasets vary widely in size (300-2,000,000 cells), source tissue (e.g. blood, bone 

marrow, brain), measurement type (sc/nRNA-seq, mass cytometry, flow cytometry, non-single 

cell datasets), and data structure (varying degrees of discreteness and continuity) 

(Supplementary Table 4). For our evaluation criteria, we selected two extrinsic evaluation 

metrics, Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI), to assess two 

aspects of the clustering results: 1) accuracy and 2) robustness. Extrinsic evaluation metrics 

measure the distance of a clustering result to some external set of labels, and our two selected 

metrics ARI and AMI represent different approaches to this problem, with divergent biases. ARI 

tends to yield higher scores in cases of similarly sized clusters and similar numbers of clusters 

within and between the partitions being compared, while AMI is biased towards purity and yields 

higher scores when there are shared pure clusters between the two partitions (Methods) [94]. 

Using ARI and AMI together should therefore provide a more complete comparison of clustering 

performance [51, 52]. 

https://sciwheel.com/work/citation?ids=13211383&pre=&suf=&sa=0
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Figure 3: Systematic analysis of ESCHR clustering performance compared to competing 
methods on synthetic and real datasets. 
(A-D) Box and whisker plots comparing accuracy (A and B) and robustness (C and D) of results from 
ESCHR and all comparison methods across all synthetic (A and C) and real (B and D) benchmark 
datasets as measured by ARI (left) and AMI (right). Boxes show the quartiles of the dataset, whiskers 
extend to 1.5*IQR. Data points used in creation of box and whisker plots and shown in overlaid 
scatterplots are the means across 5 replicates for each dataset. Two-sided Wilcoxon signed-rank test with 
Bonferroni correction was used for statistical analysis comparing ESCHR to each method. N = 21 for 
comparisons using synthetic datasets and N = 45 for comparisons using real datasets. (E) Mean rank 
across all metrics shown in box-and-whisker plots for different cluster numbers of the synthetic datasets. 
Error bars show 1 standard deviation. (F) Mean rank across all metrics shown in box-and-whisker plots 
for different modalities of the real datasets. Points represent means across all replicates of all datasets in 
a given category and error bars show 1 standard deviation. (G) Mean rank across all metrics shown in 
box-and-whisker plots for different sample number bins for all real and synthetic datasets. Points 
represent means across all replicates of all datasets in a given category and error bars show 1 standard 
deviation. (H) Box plots of difference from the true cluster number for each synthetic datasets for each 
method. Values below zero reflect calculated cluster numbers being lower than true cluster numbers and 
higher than zero indicates more clusters than the true cluster number. SINCERA is shown separately due 
to the scale of values being 2 orders of magnitude different from all other methods.  (I) Scalability 
comparison between ESCHR and other methods on synthetic datasets with increasing number of data 
points. X-axis is log scaled but labels show the unscaled values for easier interpretation. Each dot 
represents 5 replicates and error bars show 1 standard deviation.  
 

 

When we applied these extrinsic metrics ARI and AMI to assess clustering accuracy for our 

collection of synthetic datasets, ESCHR outperformed all other clustering algorithms across both 

metrics, and this superior performance was statistically significant for all cases (Fig 3a, 

Supplementary Table 5, Supplementary Fig. 8b-c). We also applied ARI and AMI to benchmark 

clustering accuracy in non-synthetic real datasets, although it is important to note that a priori 

known class labels do not generally exist for real-world single cell datasets, and the various 

proxies accepted as ground truth labels should be interpreted with skepticism (discussed further 

in Supplementary Note 1). Keeping these caveats in mind, ESCHR still clustered real datasets 

more accurately by ARI and AMI than all methods, significantly so in all comparisons except for 

scCAN and Agglomerative clustering by ARI and only scCAN by AMI (Fig 3b, Supplementary 

Table 6, Supplementary Fig. 8b-c). Many of the ground truth labels that are widely accepted for 

real single cell datasets are based on a hierarchical framework of clustering or manual labeling, 

which could explain why agglomerative clustering performs better relative to the other methods 

for this particular comparison. 

 

After benchmarking for accuracy, we next used ARI and AMI to evaluate clustering robustness, 

by comparing results from repeated runs with different random subsamples of a given dataset 

(Methods). Due to its ensemble and consensus clustering approach, we expected ESCHR to 
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perform well in these tests of robustness, and indeed it demonstrated superior performance to 

all other clustering algorithms on both synthetic and real data across both ARI and AMI metrics 

(Fig. 3d,e, Supplementary Fig. 8d-e). These results were significant for all comparisons except 

against scCAN on the real datasets by ARI (Supplementary Tables 5-6). To gain insight into the 

generalizability of ESCHR versus the other methods for specific dataset types, we calculated 

the mean rank of each clustering algorithm across all metrics for major subcategories of our 

collection of datasets: cluster number for synthetic datasets (for which we have reliable ground 

truth cluster numbers), data modality for real datasets, and sample number across all datasets. 

Different clustering algorithms perform better or worse for different subsets, but ESCHR is 

consistently ranked first or tied for first across these subcategories of both synthetic (Fig. 3e,g) 

and real datasets (Fig. 3f,g), indicating that its performance is more generalizable to diverse 

datasets than the other tested clustering algorithms.  

 

We next evaluated the scalability of each method over a range of dataset sizes. While ESCHR 

generally takes the longest, this does not present a practical limitation for typical usage, as it is 

able to successfully complete analyses on millions of data points and the runtime scales linearly 

(Fig. 3g). This analysis also revealed that several of the alternative clustering algorithms we 

tested could not successfully run to completion for larger datasets. The dataset size limit for 

ESCHR is effectively the size limit of its underlying base clustering method, the Leiden algorithm 

implemented in Python [86]. While it is true that our method does have longer runtimes than 

some of the commonly used methods we compare to here, we believe it is worth the wait due to 

the demonstrated superior accuracy and robustness of our results, and perhaps even more 

importantly due to the additional insights afforded by the uncertainty scores and soft cluster 

membership information highlighted in Figure 2. Additionally, the manual guess-and-check 

hyperparameter tuning that is required to achieve desired results with other methods can be 

very time consuming (not to mention highly subjective), and so it is possible that in practical 

usage ESCHR could potentially end up providing useful results more quickly than other 

methods. When taken together, these quantitative evaluations demonstrate that ESCHR 

performs favorably compared to the other methods tested here and achieves our desired goals 

of providing accurate and robust results, being generalizable to a broad range of diverse 

datasets, and being scalable to large datasets.  

https://sciwheel.com/work/citation?ids=6947194&pre=&suf=&sa=0
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2.3.4 ESCHR soft clustering and uncertainty scores provide increased 

interpretability in exploratory data analysis of the MNIST dataset  

To illustrate how ESCHR can identify regions of continuity and provide insight into cluster 

overlap and dataset structure, we selected the MNIST dataset for further analysis. This dataset, 

consisting of 70,000 handwritten digits with ground truth labels, is often used for machine 

learning demonstrations because the images can be visualized for intuitive interpretation [73]. 

Other clustering algorithms set to default hyperparameters do not recapitulate the ground truth 

labels with high accuracy (Supplementary Fig. 9a), explained in part by the real variation that 

exists within the ground truth sets. For example, there are two common variations of the 

handwritten digit 1, and most of the clustering algorithms capture this difference. Of all the 

clustering algorithms tested, ESCHR clusters the MNIST dataset with the highest robustness 

and accuracy (Supplementary Fig. 9b), but it consistently splits the 1 and 9 digits into separate 

subsets (Fig. 4a,b), and in some cases it splits the digit 4 as well (Supplementary Fig. 9a). 

ESCHR usually produces highly consistent results from run to run thanks to its consensus 

clustering step, but this inconsistency around the digits 4 and 9 is suggestive of a high degree of 

continuity within and between these two classes (Supplementary Fig. 9c), which is highlighted 

by elevated ESCHR uncertainty scores in this region (Fig. 4c). The soft cluster membership 

heatmap also draws attention to the visual similarities between digits 3, 5, and 8, as well as the 

two types of handwritten 1 digits (Fig. 4d). These subset-level differences and connections 

between related digits motivated further investigation of the ESCHR outputs for the MNIST 

dataset. 

 

To further investigate the continuity and overlap structure that was indicated by the uncertainty 

scores and soft cluster membership heatmap, cluster connectivity mapping was applied to 

identify significant overlap beyond what would be expected by random chance for the ESCHR 

clusters (Fig. 4e) (Methods). This revealed significant overlap between clusters “3”-”5”-”8”, 

“1a”-”1b”, and “4”-“9a”-“9b”. To explore the nature of the continuity structure underlying the 

significantly overlapping clusters “1a” and ”1b”, we devised a simple rank ordering scheme 

based on the soft membership values for the datapoints in these two clusters, and then used 

this ordering score to examine both the continuous progression of soft membership values 

across the rank-ordered datapoints and their density along this ordering score (Methods). This 

revealed that each cluster had a high density peak of “core” datapoints with a secondary smaller 

“transitional” peak (Fig. 4f, bottom). Individual representative MNIST digit images (Fig. 4f, top 

https://sciwheel.com/work/citation?ids=12107779&pre=&suf=&sa=0


32 

row) and summed pixel intensities (Fig. 4f, second row) from the images within each of these 

regions indicate that the core “1b” images are heavily slanted whereas the core “1a” images are 

vertically straight, with the images from the lower density transitional peaks falling in between 

these extremes. The two high density peaks consisting of images with distinctly different styles 

of 1s explain why ESCHR and many of the other clustering methods tested identified two 

clusters corresponding to this single digit (Supplementary Fig. 9a), while the high degree of pixel 

overlap between the two styles and the presence of images with intermediate slantedness 

explain the high degree of continuity and significant overlap detected by ESCHR. 

 

We next examined the more complex relationship between subsets of the digits 4 and 9. Cluster 

connectivity mapping indicated that there was significant overlap among all three of the ESCHR 

clusters “4”,“9a”, and “9b” (Fig. 4e). Additionally in the soft membership heatmap, there appear 

to be some cells that are overlapping all three clusters, and some cells from clusters “9a” and 

“9b” that overlap separately with cluster “4” and not with each other (Fig. 4d). Unlike the simpler 

relationship between ESCHR clusters “1a” and ”1b,” which could be analyzed by linear 

one-dimensional reduction, the more complex relationship around digits 4 and 9 could not be 

adequately captured or described along a single dimension, so principal components analysis 

(PCA) was applied to the ESCHR soft cluster memberships corresponding to these three 

clusters in order to reduce these relationships into two dimensions (Methods). Representative 

images selected from throughout the resulting PC space reveal that the between-cluster 

continuity is indeed reflecting the existence of a continuous progression through different 

conformations of the two digits 4 and 9 (Fig. 4f). Specifically, we can see that there is continuous 

progression through the 9’s based on how slanted they are, with two areas of higher density at 

either extreme. This explains why a clustering algorithm would be likely to split this into two 

clusters, albeit with a high amount of uncertainty about precisely where to make the split. The 

images also illustrate how the more slanted closed 4’s form a continuous transition primarily with 

cluster 9a and more vertically oriented closed 4’s form a continuous transition primarily with 

cluster 9b. This approach also allows us to identify features that are most correlated with the top 

two principal components. The top PC-correlated features lend further insight by identifying the 

specific pixels that are primarily capturing these changes in slantedness and upper loop closure 

(Fig. 4g). These analyses illustrate how structures within the MNIST dataset are not ideally 

suited for hard clustering assignment, but also how ESCHR is able to identify these structures 

and provide deeper insights than could be obtained by other hard clustering methods, or even 

beyond what is available from the ground truth class assignments.  
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Figure 4: ESCHR-guided exploration of the benchmarking dataset MNIST. 
(A) UMAP visualization with points colored by true class labels. (B) UMAP visualization with points 
colored by ESCHR hard cluster labels. (C) UMAP visualization with points colored by ESCHR uncertainty 
score. (D) Heatmap visualization of ESCHR soft cluster memberships. (E) Nodes represent ESCHR hard 
clusters and are located on the centroid of the UMAP coordinates for all data points assigned to that hard 
cluster. Node size is scaled to the number of data points in a given cluster. Edges exist between nodes 
which were determined to have significant connectivity by ESCHR cluster connectivity analysis, and edge 
thickness is scaled to the connectivity score. (F) Stacked bar plot showing the soft membership of 
datapoints in clusters 1b and 1a, ordered by increasing ESCHR soft cluster membership (SCM) rank 
ordering score (middle); kernel density estimation across the ordering score (bottom); dashed lines 
indicate boundaries between ordering score density peaks to separate “core” and “transitional” datapoints 
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(middle and bottom); smaller images show individual representative images and larger images show 
summed pixel intensities for all datapoints contained within each dashed partition (top). (G) Visualization 
of data points from ESCHR clusters 4, 9a, and 9b projected onto the first two principal components 
resulting from PCA performed on the soft membership matrix of these three clusters. Primary scatterplot 
shows points colored by their ESCHR hard cluster assignment, and inset scatterplot shows points colored 
by ESCHR uncertainty score. Images are real examples from the MNIST dataset. (H) Scatterplot points in 
the first two rows of plots show the pixel locations of the 30 features with the largest positive (first row, 
red) and 30 largest negative (second row, blue) Pearson correlation to each of the PCs. Example digit 
images are underlaid in light gray to aid interpretation. The final row contains heatmaps with each pixel 
colored according to its Pearson correlation with PC1 (left) or PC2 (right), with bright red indicating a large 
positive correlation and dark blue indicating a large negative correlation. 
 

2.3.5 ESCHR captures cell types and continuity in static adult tissue 

To illustrate how ESCHR can provide additional interpretability and insight for single cell 

datasets, we selected an integrated scRNA-seq dataset of hypothalamic tanycytes [77] for 

further analysis. Tanycytes are elongated ependymoglial cells that form the ventricular layer of 

the third ventricle and median eminence, and have historically been classified into four subtypes 

(α1, α2, β1, β2) based on the hypothalamic nuclei where they project to, their spatial localization 

along the third ventricle, and their morphological, structural, genetic, and functional properties 

(Fig. 5a) [95]. More recent studies have suggested that many of these properties may exhibit 

substantial continuity between and within each of these subtypes [74–78, 96]. However, 

individual tanycyte scRNA-seq studies and an integrated analysis of these datasets all reported 

discrete groupings of tanycytes defined by hard clustering approaches [75, 77, 97–99], with no 

insight into the robustness of these assignments and whether there is overlap or continuity 

between them.  

 

Initial ESCHR analysis produced hard clustering outputs that match canonical tanycyte 

subtypes by their RNA expression profiles (Fig. 5b-d) [77]. Subtypes β1 (expressing Fizb, Penk, 

Rlbp1, and Ptn) and α2 (expressing Vcan, Nr2e1, Fabp5, and Slc7a11) are represented by 

multiple hard clusters, while the subtypes β2 (expressing Scn7a, Cal25a1, Meat, and Lrrtm3) 

and α1 (expressing Mafb, Necab2, Agt, Slc17a8, and Lyz2) each correspond to a single hard 

cluster, indicating that there is more transcriptional diversity within the β1 and α2 populations. 

On top of this however, ESCHR uncertainty scores identify substantial heterogeneity within each 

hard cluster, including the β2 and α1 clusters (Fig. 5c), and the soft cluster memberships reveal 

additional levels of overlap and continuity between these canonical tanycyte subtypes (Fig. 5e). 

ESCHR cluster connectivity mapping (Methods) revealed significant overlap between the β1 

clusters (2, 3, and 5) and each of the other three canonical subtypes (Fig. 5f). This result was 

https://sciwheel.com/work/citation?ids=13458841&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=668759&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15124303,3117894,7169328,13458841,15377265,12241298&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=3117894,13458841,11133882,3412349,13444613&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=13458841&pre=&suf=&sa=0
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somewhat unexpected, because transcriptional continuity was previously thought to exist only 

between spatially neighboring tanycyte subtypes [76, 96]. A more recent study provided 

evidence that β1 tanycytes exhibit some transcriptional continuity with both α1 and α2 

tanycytes, but also indicated that β2 tanycytes were non-overlapping and transcriptionally 

distinct [74]. Our analysis with ESCHR soft clustering memberships and cluster connectivity 

provide additional corroboratory evidence for the transcriptional continuity between β1 and 

α1/α2 tanycytes, but also reveal a previously uncharacterized relationship of transcriptional 

continuity between β1 and β2 tanycytes. 

 

To further investigate this previously uncharacterized transcriptional overlap between β1 and β2 

tanycytes, specifically between ESCHR clusters 1 and 2, we selected the subset of cells 

comprising the transitional zone between clusters, and rank ordered these based on whether 

their soft cluster membership was closer to β1 (ESCHR cluster 1) or β2 (ESCHR cluster 2) (Fig. 

5g and Methods). Using this rank ordering scheme, we identified genes with expression 

patterns that correlate with progression through the transition zone from β2 to β1 tanycytes, 

either decreasing across the transition like Igfbp5 (Fig. 5h,k), peaking during the transition like 

Tgfb2 (Fig. 5i,l), or increasing across the transition like Crym (Fig. 5j,m). We next sought to 

determine whether these gene expression patterns in the transitional zone between ESCHR 

clusters were also observed in the spatial distribution of β2 and β1 tanycytes along the median 

eminence and third ventricle where these subtypes are thought to reside (Fig. 5n). To 

investigate this possibility, we examined the in situ hybridization (ISH) database from the Allen 

Mouse Brain Atlas (ABA; http://mouse.brain-map.org) [100] and observed that the overlapping 

expression for these three genes did in fact manifest as progressive spatial overlap spanning 

the anatomical regions canonically associated with β2 and β1 populations (Fig. 5o-q). 

Altogether, this analysis of tanycyte subtypes demonstrates the utility of ESCHR for 1) 

identifying robust and biologically meaningful hard cluster assignments, 2) providing insight into 

the overlap and continuity between cell type clusters, and 3) providing a springboard for further 

analysis of expression level transitions via soft cluster membership ordering. 

https://sciwheel.com/work/citation?ids=12241298,7169328&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=15124303&pre=&suf=&sa=0
http://mouse.brain-map.org
https://sciwheel.com/work/citation?ids=228872&pre=&suf=&sa=0
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Figure 5: ESCHR identifies continuity between and within canonical cell subtypes in 
static adult tissue. 
(A) Schematic illustration of canonical tanycyte subtypes in their anatomical context surrounding the third 
ventricle. (B) UMAP visualization with points colored by ESCHR hard cluster labels. (C) UMAP 
visualization with points colored by ESCHR uncertainty score. (D) Heatmap dotplot showing expression of 
marker genes for the canonical tanycyte subtypes across the ESCHR hard clusters. (E) Heatmap 
visualization of ESCHR soft cluster memberships. (F) Nodes represent ESCHR hard clusters and are 
located on the centroid of the UMAP coordinates for all data points assigned to that hard cluster. Node 
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size is scaled to the number of data points in a given cluster. Edges exist between nodes which were 
determined to have significant connectivity by ESCHR cluster connectivity analysis, and edge thickness is 
scaled to the connectivity score. Node colors map to their ESCHR hard cluster colors from panel B (left) 
and to the color from panel A of the canonical subtype to which they primarily belong (right). (G) UMAP 
visualization with the subset of points which were included in the ordering analysis colored by ESCHR 
soft cluster membership (SCM) rank ordering score, and all others colored gray. (H-J) UMAP 
visualizations where points included in the ordering analysis are colored by their expression level and all 
others are colored gray. (K-M) Scatterplots showing normalized mRNA abundance on the y-axis and SCM 
rank order on the x-axis. Expression is bounded between the 2nd and 98th percentiles. Lines show 
gaussian-smoothed B-splines fit to the data. (N) Schematic illustration of the anatomical region being 
shown in O-Q. (O-Q) In situ hybridization (ISH) of coronal brain sections, using probes specific for Igfbp5, 
Tgfb2, and Crym (Allen Mouse Brain Atlas). Red arrowheads indicate the areas of expression in the 
region of interest.  
 

2.4 Discussion and conclusions 
Clustering is a fundamental tool for single cell analysis, used to identify groupings of cell types 

or cell states that serve as the basis for direct comparisons between biological samples or 

between specific cell types within a biological sample, as well as numerous further downstream 

applications. However, it has proven challenging to generate appropriate and consistent cell 

groupings when using previously available clustering methods on single cell datasets, due to 1) 

continuity and overlap between cell types, 2) randomness and stochasticity built into the 

clustering algorithms, and 3) non-generalizable hyperparameter settings that were optimized for 

a specific dataset or data type. To overcome these limitations we developed ESCHR, a 

user-friendly method for ensemble clustering that captures both discrete and continuous 

structures within a dataset and transparently communicates the level of uncertainty in cluster 

assignment. Using a large collection of datasets representing a variety of measurement 

techniques, tissues of origin, species of origin, and dataset sizes, we benchmarked ESCHR’s 

performance against several other clustering algorithms, demonstrating that ESCHR 

consistently provides the highest robustness and accuracy for clustering across all categories of 

this diverse dataset collection. 

 

One of the key design features of ESCHR is our approach using hyperparameter randomization 

during the ensemble generation step. While this was a deliberate design choice to generate 

diversity amongst the base clusterings to enhance robustness and generalizability of clustering, 

an additional benefit is that it removes the need to manually test and select an optimized set of 

hyperparameters for each dataset. This design also affords several avenues for potential future 

improvements to the ESCHR algorithm, such as expanding the number of hyperparameters 

randomized in order to generate an even more diverse clustering ensemble. For example, we 

currently use k-nearest neighbor (kNN) graphs for the base Leiden clustering steps, but mutual 
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nearest neighbor (mNN) or shared nearest neighbor (sNN) have shown good performance in 

other frameworks [47, 101, 102], and may improve ESCHR performance if incorporated as an 

additional hyperparameter to vary. ESCHR may also benefit from expanding the set of distance 

metrics utilized. We currently restrict our analysis to euclidean and cosine distances due to their 

efficient implementations within our chosen fast approximate nearest neighbor (ANN) package 

[103]. However, recent research has demonstrated the efficacy of a broader range of distance 

metrics for capturing diverse data structural properties [104]. While not all of these metrics may 

be applicable in an ANN context, several may hold potential for enhancing the quality of our 

clustering outcomes. Additionally, the current version of ESCHR uses only Leiden community 

detection for clustering in the ensemble stage, but additional base clustering methods could be 

explored and potentially incorporated in future versions. Finally, our empirical identification of 

optimal ranges for ESCHR’s numeric hyperparameters was somewhat limited by the time and 

memory required for running these experiments with many, sometimes large, datasets and very 

wide search spaces. It is therefore possible that there may be more optimal default ranges or 

more sophisticated regimes for hyperparameter randomization and selection that could improve 

ESCHR’s performance. 

 

Another key design feature of ESCHR is our soft clustering approach for generating the final 

consensus results. Single cell data is inherently complex and heterogeneous, and clustering 

methods often make assumptions about the structure of the data that may not hold in practice. 

For example, hard clustering methods assume discrete groups of single cells, which rarely exist 

in biological data [26]. Many clustering algorithms make further assumptions about the shapes 

and other properties of these discrete groups. In the opposite direction, toward continuity rather 

than discreteness, numerous methods have been developed for trajectory inference in single 

cell datasets [40], but these methods also make assumptions about dataset structure, for 

example many force a branched tree structure. ESCHR’s soft cluster outputs enable unified 

mapping of both discrete and continuous grouping structures, without the need for assumptions 

about the shape and properties of the dataset. To illustrate this concept, we used ESCHR to 

identify tanycyte subtypes and reveal the transitional continuity between them (Fig. 5a-q, 

Supplementary Fig. 10), which is notable because assumptions about lineage relationships or 

dynamic developmental processes in this static adult tissue would be inappropriate and could 

lead to inaccuracies and distortion. Instead, ESCHR can identify and characterize discrete and 

continuous patterns simultaneously, even in the same dataset, without relying on assumptions 

about data shape and properties. 

https://sciwheel.com/work/citation?ids=977911,6246285&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=355993&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=977911,6246285&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=15403125&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13672365&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5102551&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6744309&pre=&suf=&sa=0
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One of ESCHR’s most useful outputs is the per-cell uncertainty score, which enables users to 

estimate clustering uncertainty and interpret hard clustering results more effectively. The 

Impossibility Theorem for clustering states that it is impossible for any clustering method to 

satisfy the three proposed axioms of good clustering, and therefore all clustering algorithms 

must make trade-offs among the desirable features, and no clustering result can be perfect [55]. 

Because of this, it is critical to evaluate the guaranteed uncertainty in a clustering result before 

using it for direct comparisons, downstream analyses, or hypothesis generation. ESCHR 

uncertainty scores, which are derived from the degree of cluster overlap for each datapoint as 

indicated by their soft cluster assignments, provide a useful proxy for this uncertainty and 

difficulty in cluster assignment. These scores can be visualized alongside hard cluster 

assignments to facilitate more discerning interpretation of clustering results. We have validated 

the utility of these uncertainty scores by demonstrating that (1) they identify areas of ground 

truth continuity due to cells transitioning between cell states in simulated scRNA-seq data (Fig. 

2b,d), (2) they are significantly higher for inaccurately assigned data points (Fig. 2g), and (3) 

they are significantly negatively correlated with the level of agreement between clustering 

algorithms (Fig. 2h). Altogether, these findings demonstrate that ESCHR uncertainty scores 

provide meaningful insights into clustering uncertainty. 

 

To make the advantages of ESCHR clustering easily accessible to the research community, we 

have made ESCHR available as a Python module on github 

(https://github.com/zunderlab/eschr), packaged as an extensible software framework that is 

compatible with the scverse suite of single cell analysis tools [69]. We have provided tutorials for 

how to incorporate it into existing single cell analysis workflows as well as for how to use it as a 

standalone analysis framework. In conclusion, our results demonstrate that ESCHR is a useful 

method for single cell analysis, offering robust and reproducible clustering results with the added 

benefits of per-cell uncertainty scores and soft clustering outputs for improved interpretability. By 

emphasizing ease of adoption, clustering robustness and accuracy, generalizability across a 

wide variety of datasets, and improved interpretability through soft clustering outputs and the 

quantification of uncertainty, we aim to support the responsible and informed use of clustering 

results in the single cell research community. 

 

 

https://sciwheel.com/work/citation?ids=9823951&pre=&suf=&sa=0
https://github.com/zunderlab/eschr
https://sciwheel.com/work/citation?ids=14649766&pre=&suf=&sa=0
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2.5 Methods  

2.5.1 ESCHR Framework 

ESCHR takes as input a matrix, M, with n instances (e.g. cells) as rows and d features (e.g. 

genes/proteins) as columns. It does not perform internal normalization or correction, so input 

data are expected to have already been preprocessed appropriately. ESCHR can be thought of 

in three primary steps: base clustering to generate the ensemble, consensus determination, and 

output/visualization. 

 

Consistent with other published manuscripts in this domain, we will use the following notation. 

Let  denote a set of objects to be clustered, where each  is a tuple of some 𝑋 = 𝑥
1
, 𝑥

2
,..., 𝑥

𝑛{ } 𝑥
𝑖

𝑑

-dimensional feature space for all . Let  denote a random subset of  𝑖 = 1... 𝑛 𝑋
𝑠
= 𝑥

1
, 𝑥

2
,..., 𝑥

𝑟{ } 𝑋

where all of  are between 1 and .   is a set of partitions, where each 𝑥
1
,..., 𝑥

𝑟
𝑛 ℙ = 𝑃

1
, 𝑃

2
,..., 𝑃

𝑚{ }
 is a partition of an independent instantiation of  and contains  clusters.  𝑃

𝑖
= 𝐶

1
𝑖 , 𝐶

2
𝑖 ,..., 𝐶

𝑞
𝑖

𝑖⎰
⎱

⎱
⎰ 𝑋

𝑠
𝑞

𝑖
𝐶

𝑗
𝑖

is the  th cluster of the  th partition, for all   .  is the total number of clusters 𝑗 𝑖 𝑖 = 1... 𝑚 𝑡 =
𝑖=1

𝑚

∑ 𝑞
𝑖

from all ensemble members. Where  is the set of all possible partitions with the set of objects ℙ
𝑋

 and  , the goal of clustering ensemble methods is to find a consensus partition 𝑋 ℙ ⊂ ℙ
𝑋

𝑃∗ϵ ℙ
𝑋

which best represents the properties of each partition in . Additionally, the more general ℙ

terminology of “instance” and “feature” will generally be used rather than domain specific terms 

such as cells and genes/proteins.  

 

Hyperparameter-randomized ensemble clustering 
The ESCHR ensemble is generated with Leiden community detection as the base clustering 

algorithm [86]. Leiden is applied using Reichardt and Bornholdt’s Potts model with a 

configuration null model [105]. Diversity is generated amongst ensemble members through a 

combination of data subsampling and Leiden hyperparameter randomization. The subsampling 

percentage varies for each ensemble member and is selected from a gaussian distribution with 

the mean 𝜇 scaled to dataset size within the range 30 to 90. After subsampling a random subset 

 from , principal components analysis (PCA) is applied to generate the most informative 𝑋
𝑠

𝑋

https://sciwheel.com/work/citation?ids=6947194&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=205688&pre=&suf=&sa=0


41 

features for this data subspace. A default value of 30 or one less than the number of features if 

the number of features is less than 30 is used for the number of PCs.. In the subsequent 

clustering step, three numerical hyperparameters are randomized for each ensemble member: 

1) , the number of neighbors for building a k-nearest neighbors (kNN) graph, 2) the choice of 𝑘

distance metric for building the kNN graph, and 3) , a resolution parameter for the modularity 𝑟

optimization function used in Leiden community  detection. The numerical hyperparameters  𝑘

and  are randomly selected from within empirically established ranges (Supplementary Fig. 2). 𝑟

The distance metric is selected between either euclidean or cosine, because these choices are 

efficiently implemented for fast calculation of approximate nearest neighbors (ANN) in our 

chosen implementation, nmslib [103]. Since each ensemble member is independent, we 

implemented parallelization via multiprocessing for this stage of the algorithm. Ensemble size is 

set at a default of 150 based on experiments demonstrating that this was sufficient to reach 

convergence to a stable solution for all of our diverse collection of datasets (Supplementary Fig. 

2).  

 

Bipartite graph clustering and consensus determination  
Bipartite graph clustering was used to obtain consensus clusters from the ESCHR ensemble. 

This approach was selected because methods that compute consensus using unipartite 

projection graphs of either instance or cluster pairwise relations suffer from information loss [89]. 

For these calculations, the biadjacency matrix is defined as:  where  is an  𝐵 =
𝐴
0

0
𝐴𝑇

⎡⎢⎣
⎤⎥⎦

𝐴 𝑛 × 𝑡

connectivity matrix whose rows correspond to instances {1 . . . n} and columns correspond to 

the ensemble clusters {1 . . . t}.  is an indicator that takes value 1 if instance  belongs to the 𝐴
𝑖,𝑗

𝑖 𝑗

-th cluster and 0 otherwise. Using this, we then create a bipartite graph . The weights 𝐺 = (𝑉, 𝑊)

matrix  and , where  contains  vertices each representing an instance of 𝑊 =  𝐵, 𝑉 = 𝑉
1

∪ 𝑉
2

𝑉
1

𝑛

the data set ;  contains  vertices each representing a cluster of the ensemble (see Fig. 1a 𝑋 𝑉
2

𝑡

“Ensemble bipartite graph”). Given our bipartite graph G, we can define a community structure 

on G as a partition  containing pairwise disjoint subsets of  and 𝑃
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specific Ci are more connected to a particular subset of V2 than the rest of the nodes in V1 are, 

and likewise (but opposite) for a given Dj of V2. Optimal  and  are computed with the Leiden 𝑃
1

𝑃
2
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algorithm for bipartite community detection with the Constant Potts Model quality function [88, 

106]. This approach was designed to overcome the resolution limit of previous bipartite 

community detection approaches [107, 108]. There is one hyperparameter for this approach, the 

resolution , which indirectly influences the number of clusters for P1 and P2 by modulating the γ

density of connections within and between communities [106]. To avoid the need for external 

hyperparameter tuning, we implemented an internal hyperparameter selection strategy at this 

stage. First, ESCHR generates a set of potential consensus labelings across an 

internally-specified range of  values. Since ARI can be used as a similarity measure between γ

two different clustering results, ESCHR then calculates the pairwise ARI between each of the 

final consensus labelings generated using each different  value. Finally, ESCHR selects the γ

result that has the highest sum of similarity to all other results from the set of potential 

consensus labelings (the medoid) to return as the final consensus result. In experiments to 

validate this approach, we found that the number of and memberships in the final consensus 

hard clusters are robust to the setting of this resolution parameter, indicating that more 

extensive optimization is not required (Supplementary Fig. 4d-e). To obtain the final consensus 

result, we collapse the base ensemble clusters contained in  into the  meta-cluster to which 𝑉
2

𝑃
2

they were assigned. This results in each vertex of   having a weighted edge to each 𝑉
1

meta-cluster equal to the sum of its edges with constituent base clusters of . The resulting 𝑉
2

weighted bipartite graph  therefore represents the final consensus clustering , with  𝐺* 𝑃∗ 𝑛

vertices representing the instances,  vertices representing the final consensus clusters, and 𝑞*

weighted edges representing the membership of instance  in each of the  clusters of . 𝑖 𝑞* 𝑃∗

 

Hard and soft clustering outputs 

Let  be a nonnegative matrix where each row, , contains Θ ϵ ℝ 𝑛 × 𝑞* Θ
𝑖
 : =  (Θ

𝑖1
,..., Θ

𝑖𝑘
2

)

nonnegative numbers that sum to less than or equal to one, representing the membership of 

instance  in each of the  clusters of .  is calculated by dividing the weight of the edge 𝑖 𝑞* 𝑃∗ Θ
𝑖𝑗

between instance  and consensus cluster  by the sum of all edge weights for instance . We 𝑖 𝐷
𝑗

𝑖

refer to this matrix as the soft membership matrix and to each row as the association vector  𝑣

for each instance. To determine hard clustering assignments, each instance is assigned to the 

meta-cluster with the highest entry in its association vector , with ties broken randomly. A 𝑣

“core” cell of a given cluster  will have  and zeros elsewhere, while a “transitional” 𝑗 Θ
𝑖𝑗

= 1

https://sciwheel.com/work/citation?ids=747043,15420439&pre=&pre=&suf=&suf=&sa=0,0
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instance may have up to  non-zero membership values. To describe the degree to which a 𝑞*

given instance is “core” versus” transitional”, we define an “uncertainty score”,  , for each Ω

instance as the highest membership value in its association vector ( ). We can Ω =  𝑚𝑎𝑥(𝑣)

additionally calculate the mean of all instance memberships in a given cluster to yield a 

measure of each cluster’s discreteness, which we call the “cluster stability score” .  𝑠 = 1
𝑛 Σ

𝑖ϵ𝑛
θ

𝑖,𝑗
 

2.5.2 Cluster connectivity mapping 

To map the connectivity structure of clusters, we first calculate the 

sum-of-squares-and-cross-products matrix (SSCP) of the soft membership matrix , which is Θ

calculated as  and then consider  to be an uncorrected measure for connectivity 𝑆 = Θ'Θ 𝑆
𝑖,𝑗

between consensus clusters  and . To correct for connectivity that may result from random 𝑖 𝑗

chance, we first estimate a null distribution of connectivity scores accounting for the following 

attributes of : (1) the association vector  for a given instance are proportions and can sum to Θ 𝑣

no more than 1 (with cells summing to less than one being potentially outliers) and (2) the 

distribution of values is not uniformly distributed and will be differently skewed for different 

datasets depending on overall levels of continuity or discreteness. In practice, we achieve this 

by independently shuffling the association vector, , for each instance to generate a random 𝑣 

sample. We then calculate the SSCP for 500 iterations of this randomization procedure. Using 

this empirical null distribution, we then calculate a p-value for each observed edge and prune 

edges that do not meet a default alpha value cutoff of 0.05. Thus the final corrected connectivity 

is defined as the ratio of the cross-product of instance memberships between a given two 

clusters normalized to the cross-product of instance memberships expected under constrained 

randomization.  

2.5.3 Exploring soft cluster continuity for the MNIST dataset 

To visualize the transition between clusters 1a and 1b (Fig. 4f) that was identified by connectivity 

mapping of ESCHR clustering results, we devised a simple approach for creating a 

one-dimensional ordering of the instances in a transitional zone based on their membership in 

the connected clusters of interest. Specifically, the ordering score, , of cell  having  δ
𝑖

𝑖 𝑚
𝑗

membership in the cluster at position  along the cluster path of interest was calculated as: 𝑗

 , where  is the number of clusters in the path. To obtain the relevant cells of δ
𝑖

= Σ
𝑗=1
𝑁 𝑚

𝑗
· 𝑗 𝑁
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interest for ordering, we used the following criteria: cells were included if they had (1) >90% 

membership in either one of the 2 clusters of interest or (2) >5% membership in both clusters 

and a combined membership of >80% in the 2 clusters. We then visualized the progression of 

cluster memberships using a stacked bar plot of rank ordered data points. The ordered data 

points were then partitioned into “core” datapoints and “transitional” datapoints for each cluster 

based on bimodality observed in the ordering scores for the cells assigned to each hard cluster.  

 

While a linear ordering approach could in principle be used to create an ordering across a path 

of more than two connected clusters, it would likely only be effective in cases where connectivity 

mapping identifies a linear path of successively connected clusters. In cases such as the 

example in Figure 4 where connectivity mapping identified a ring of 3 connected clusters (9a, 

9b, 4), this approach will generally not work as well since a group of more than two clusters with 

nonlinear connectivity may exhibit more complex continuity structures than could be captured 

with a simple linear ordering. We therefore devised another method for distilling the core 

continuity structure for cases of greater than two clusters and nonlinear connectivity paths. We 

first performed principal components analysis (PCA) on the columns of the soft membership 

matrix  that correspond to the hard clusters selected for analysis, thereby capturing the primary Θ

axes of variation contained within these soft memberships. We then projected the data onto the 

first two PCs and used this to gain insight into the continuity structure by (1) visualizing the data 

points belonging to the relevant hard clusters projected into the space of these first two PCs and 

(2) identifying and exploring the features most highly correlated with these PCs. 

2.5.4 Exploring soft cluster continuity for the Tany-Seq dataset 

To visualize transitional zones between connected clusters in the Tany-Seq dataset [77], we 

applied the same one-dimensional linear ordering approach that was used to examine clusters 

1a and 1b of the MNIST dataset in Figure 4f. To identify marker features associated with the 

one-dimensional soft cluster transition paths, we calculated the Pearson correlation between 

each feature and the vector of cluster memberships for each cluster in the path. Features were 

then selected based on their correlation with each of the clusters individually and based on the 

sum of their correlations across the clusters. The three genes in Figure 5h-j were selected from 

the top ten features identified through each of these methods based on their expression 

patterns and the availability of in situ hybridization images of sufficient quality in the Allen Mouse 

Brain Atlas [100]. To handle outliers for the expression heatmap UMAP plots and the expression 

scatterplots in Figure 5h-j, values were thresholded to fall between the 2nd percentile and 98th 

https://sciwheel.com/work/citation?ids=13458841&pre=&suf=&sa=0
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percentile. The curves overlaid on the expression scatter plots in these panels were generated 

by first fitting B-splines with degree 3 (cubic) to the points included in the scatterplot. To 

generate a smoothed curve, a gaussian kernel with sigma of 10 was applied on the results of 

the spline function evaluated at 100 evenly spaced points within the range of the number of 

points included in the scatter plot. This is approximately equivalent to the behavior for large data 

sizes of the `geom_smooth` function from the R package ggplot [109].   

2.5.5 Clustering evaluation metrics 

Extrinsic evaluation metrics measure the distance of a clustering result to some external set of 

labels. When these labels are ground truth class labels, we can consider these to be measures 

of accuracy. However, they can also be used in other contexts such as with an “external” set of 

clustering labels. There are numerous metrics that can be used to measure this distance 

between a given set of predicted cluster labels and a ground truth or other set of external labels. 

Each of these metrics introduces some type of bias in evaluating the accuracy and robustness 

of clustering results, as discussed further below. To diversify these biases, we selected 2 metrics 

from different categories: Adjusted Rand Index (ARI) from the category of methods that employ 

peer-to-peer correlation and Adjusted Mutual Information (AMI) from the information theoretic 

measures [94]. We use both ARI and AMI to evaluate accuracy and robustness in our 

systematic benchmarking in Figure 3 and in Supplementary Figures 2 and 7. 

 

The ARI is the corrected-for-chance version of the Rand index, which measures the agreement 

between two sets of partition labels  and  [110]. The ARI is defined as: 𝑈 𝑉

 

 𝐴𝑅𝐼 =
𝑛
2( )(𝑎+𝑑)−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]

𝑛
2( )−[(𝑎+𝑏)(𝑎+𝑐)+(𝑐+𝑑)(𝑏+𝑑)]

where  is the number of pairs of two objects in the same group in both  and ;  is the 𝑎 𝑈 𝑉 𝑏

number of pairs of two objects in different groups in both  and ;  is the number of pairs of two 𝑈 𝑉 𝑐

objects in the same group in  but in different groups in ; and  is the number of pairs of two 𝑈 𝑉 𝑑

objects in different groups in  but in the same group in . Random clusterings have an 𝑈 𝑉

expected score of zero and identical partitions have a score of 1. ARI is biased towards 

solutions containing (1) balanced clusters (i.e. similar size clusters within each partition) and (2) 

similar cluster numbers and sizes between the two partitions [52]. ARI was calculated using the 

implementation in sklearn (v 1.0.1). 

 

https://sciwheel.com/work/citation?ids=15725166&pre=&suf=&sa=0
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AMI is the corrected-for-chance version of Mutual Information, which quantifies the amount of 

information that can be obtained about one random variable (in this application, a list of cluster 

labels) by observing the other random variable (another list of cluster labels) [111]. Let 

 and  be the predicted and ground truth labels on a dataset 𝐶 = 𝐶
1
, 𝐶

2
,..., 𝐶

𝑡𝑐{ } 𝐺 = 𝐺
1
, 𝐺

2
,..., 𝐺

𝑡𝑔{ }
with n cells. AMI is then defined as: 

 𝐴𝑀𝐼(𝐶, 𝐺) = 𝐼(𝐶,𝐺)−𝐸 𝐼(𝐶,𝐺){ }
𝑚𝑎𝑥 𝐻(𝐶),𝐻(𝐺){ }−𝐸 𝐼(𝐶,𝐺){ }

 

Here  represents the mutual information between  and  and is defined as:𝐼(𝐶, 𝐺) 𝐶 𝐺

 .  and  are the entropies:   𝐼(𝐶, 𝐺) =
𝑝=1

𝑡𝑐

∑
𝑞=1

𝑡𝑔
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𝑝

∩ 𝐺
𝑞| |𝑙𝑜𝑔

𝑛 𝐶
𝑝
∩𝐺

𝑞| |
𝐶

𝑝| |× 𝐺
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𝑡𝑐
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and  .  is the expected mutual information between two 𝐻(𝐺) =−
𝑝=1

𝑡𝑔

∑ 𝐺
𝑝| |𝑙𝑜𝑔

𝐺
𝑝| |

𝑛 𝐸 𝐼 𝐶, 𝐺( ){ }

random clusters. Random clusterings have an expected score of zero and identical partitions 

have a score of 1. AMI is biased towards solutions containing pure clusters, with a “pure cluster” 

being defined as a cluster in one set of labels that contains instances from only one cluster of 

the other set of labels to which it is being compared [52]. AMI was calculated using the 

implementation in sklearn (v 1.0.1). 

2.5.6 Systematic Benchmarking 

For benchmarking ESCHR, we selected the following clustering algorithms for comparison: 

(1&2) K-means and agglomerative hierarchical clustering (from scikit-learn version 1.0.1) [112], 

(3) SC3 (version 1.10.1 from Bioconductor) [62],  (4) SC3s (version 0.1.1 through Scanpy) [63], 

(5) Seurat (version 4.1.1 from CRAN) [113], (6) SINCERA (version 1.0 from 

https://github.com/xu-lab/SINCERA) [114], (7) Scanpy (version 1.8.2 from Anaconda) [71], (8) 

Phenograph (version 1.5.7) [101], (9) scCAN (version 1.0 from 

https://github.com/bangtran365/scCAN) [115], and (10) scAIDE (version 1.0 

https://github.com/tinglabs/scAIDE) [116].  

 

Clustering algorithms were excluded from our benchmarking comparison if they did not meet the 

following selection criteria: (1) software freely available; (2) code publicly available; (3) can run 

on multiple data modalities (e.g. not scRNA-seq-specific); (4) no unresolved errors during install 

or implementation; (5) does not require additional user input during the algorithm (other than 

https://sciwheel.com/work/citation?ids=11703557&pre=&suf=&sa=0
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prior information); and (6) able to complete analysis of datasets with >= 100,000 data points and 

2,000 features.   

 

For included methods, we followed the instructions and tutorials provided by the authors of each 

software package. For the K-means, SC3s, and Agglomerative methods, which require 

pre-specification of cluster number, we calculated distortion scores over a range of cluster 

numbers for K-means clustering and used the elbow method to select the optimal cluster 

number for use across all three methods. Default values were used for all other 

hyperparameters for each tool, as is common practice for most realistic use cases [35, 117]. 

ESCHR was also run with all default settings, which is the intended usage. For all benchmarking 

analyses, the memory was set to 100GB of RAM on the University of Virginia (UVA) Rivanna 

High Performance Computing (HPC) cluster.  

 

No random seeds were intentionally fixed, but from inspecting the respective codebases we 

believe it is likely that there remained internally-fixed random seeds for some functions within 

some of the tested methods. Many common methods have internally-fixed random seeds and/or 

default hyperparameters with fixed random seeds. This practice may mask a lack of robustness 

of these methods, and should only legitimately serve to replicate exact analyses when that is 

desired by the end user. 

 

To assess accuracy of methods in clustering our synthetic and image datasets, which have 

ground truth labels, we used the two extrinsic evaluation metrics defined above (ARI, AMI). For 

these purposes, each of five independent runs of a given method was scored against the 

ground truth labels. Since it is nearly universal in papers describing new single cell analysis 

methods, we also applied this analysis to evaluate accuracy for our collection of “real” datasets 

using available published labels. However we stress that we do not think this is a reliable or 

effective measure for evaluating clustering methods, as we detail further in Supplementary Note 

1. 

 

We also used the extrinsic metrics ARI and AMI to evaluate the stability and reproducibility of 

hard clustering results. In line with standard practice for benchmarking stability/robustness [118], 

we performed repeated runs with 5 random subsamples (90%) of each dataset for every 

method. This simulates slight differences in data collection and/or preprocessing, and if the 

clustering is capturing a true underlying structure rather than overfitting to noise it should be 

https://sciwheel.com/work/citation?ids=13120647,8748047&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=7097160&pre=&suf=&sa=0
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detected regardless of the exact set of cells that are sampled for the analysis. We then 

calculated pairwise scores for each metric between each of the 5 independent runs of a 

respective method and then took the mean across replicate pairs to obtain the final score per 

dataset-method. 

 

To calculate both method and replicate “agreement scores” for comparison with ESCHR 

uncertainty scores (Fig. 2j), we first constructed contingency matrices between all pairs of 

replicates and methods and mapped the cluster labels from the result with more clusters to the 

result with fewer clusters. Using the shared labels between a given pair of clustering results we 

could then calculate per-instance agreement (binary) within the pair of results. The final 

per-instance score was calculated as the mean agreement across all possible combinations.  

 

We similarly calculated the F-measure per true cluster per method (Figure 2 c,g) by constructing 

a contingency matrix between the true cluster labels and the hard cluster labels predicted by 

each method. Using this mapping we then calculated the harmonic mean of precision and recall 

separately for each true cluster and its best-matched predicted cluster. 

2.5.7 Statistical analyses 

Statistical comparisons were performed using the “scipy.stats” and “statannotations” python 

packages [119, 120]. The two-sided Wilcoxon signed-rank test with Bonferroni correction was 

used to compare the performance of ESCHR versus each alternative method in the systematic 

benchmarking panels shown in Figure 3. Comparisons were calculated using dataset means 

across replicates for all tested datasets. N = 21 for comparisons using synthetic datasets and N 

= 45 for comparisons using real datasets. The two-sided Mann-Whitney-Wilcoxon was used for 

comparing uncertainty scores between accurately and inaccurately assigned cells in Figure 2g, 

with N = 126545 and N = 750955 for inaccurate and accurate groups respectively. The resulting 

p-value was below the threshold of calculation in a standard python computing environment and 

was reported as zero, so we have reported this as p<0.00001 in the figure. 

2.5.8 Datasets 

All “real” datasets are publicly available. The 45 datasets used in our study are described in 

Supplementary Table 2, including information and links to download preprocessed datasets. The 

only processing step we performed was log2 transformation for scRNA-seq datasets and 

https://sciwheel.com/work/citation?ids=15736252,15736230&pre=&pre=&suf=&suf=&sa=0,0
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arcsinH transformation for mass cytometry datasets if a given dataset was not yet scaled. The 

MNIST dataset was downloaded from keras datasets [121] and was preprocessed as 

recommended by the accompanying documentation. 

 

Synthetic gaussian datasets were generated using sklearn “make_blobs” [112] using various 

combinations of object number, feature number, cluster number, cluster size, and cluster 

standard deviations. Anisotropic transformations were then applied to the resulting datasets by 

multiplying pairs of features (an n x 2 subset of the full data matrix) by different 2 x 2 matrices 

filled with random values between -2 and 2. These datasets are available at: 

https://doi.org/10.5281/zenodo.12746558.  

 

Simulated scRNA-seq datasets with 1000 “cells” and 1000 “genes'' were generated using the 

DynToy package, which simulates different complex trajectory models based on real single cell 

gene expression data [93]. These datasets are available at: 

https://doi.org/10.5281/zenodo.12786322 

 

ISH images were downloaded from the ABA portal (http://mouse.brain-map.org) [122] and are 

freely available. 

2.5.9 Software 

The ESCHR python package can be downloaded from PyPi (TBD), github 

(https://github.com/zunderlab/eschr). The version used for making the figures in this manuscript 

is noted in the documentation and can be found on zenodo (link TBD). ESCHR is compatible 

with standard python single cell data structures and can be easily incorporated into scverse 

workflows or used as a standalone framework. 

 

https://sciwheel.com/work/citation?ids=15917406&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15742788&pre=&suf=&sa=0
https://doi.org/10.5281/zenodo.12746558
https://sciwheel.com/work/citation?ids=11275199&pre=&suf=&sa=0
https://doi.org/10.5281/zenodo.12786322
http://mouse.brain-map.org
https://sciwheel.com/work/citation?ids=15917433&pre=&suf=&sa=0
https://github.com/zunderlab/eschr


50 

 

 

 

Chapter 3: Concluding remarks and future directions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



51 

3.1 Overview and Key Contributions 

Clustering analysis is widely used to group objects by similarity, but for complex datasets such 

as those produced by single-cell analysis, the currently available methods are limited by 

accuracy, robustness, ease of use, and interpretability. ESCHR was specifically designed to 

address these core challenges, and our results demonstrate significant advances in several key 

areas. 

First, ESCHR provides a novel solution to one of the most persistent challenges in single cell 

analysis: the tension between discrete and continuous perspectives of cellular organization [54]. 

Traditional hard clustering methods assume the presence of discrete groups, which are rare in 

biological data [26]. Additionally, many clustering approaches impose further assumptions about 

the shapes, sizes, or other properties of these discrete groups. To complement these discrete 

perspectives, significant effort has been dedicated to developing methods that capture continuity 

in tissues or cells. However the focus has been almost entirely on contexts where cells are 

undergoing dynamic, directional changes, such as during development or disease. As such, 

these methods often make assumptions about the structure of continuity based on the 

expectation of an underlying dynamic process (e.g. branching structures). Meanwhile, the 

pervasive continuity within ostensibly "static" tissues has been largely neglected, even though 

understanding this continuity may be crucial for deciphering the function of tissues or their 

constituent cell types and states [26]. ESCHR's weighted bipartite graph representation of the 

grouping structure in a dataset enables simultaneous mapping of both discrete and continuous 

structures, and importantly, this unified approach achieves its results without making 

assumptions about the shapes or properties of areas of continuity or discreteness. This 

capability was demonstrated in our analysis of tanycyte cells, where ESCHR successfully 

identified the four canonical discrete subtypes while simultaneously revealing substantial 

continuity both within and between these populations (Chapter 2, Figure 5). This balanced 

perspective provides a more nuanced and biologically relevant view of cellular organization than 

traditional approaches that favor either discrete or continuous interpretations. 

Another significant advancement lies in ESCHR's uncertainty quantification. The fundamental 

limitations of clustering are well established, as demonstrated by Kleinberg's Impossibility 

Theorem which proves that no clustering algorithm can simultaneously satisfy all desirable 

clustering properties [55]. This inherent limitation makes it crucial to understand and 

communicate the uncertainty in clustering results before using them for downstream analyses or 

https://sciwheel.com/work/citation?ids=2995832&pre=&suf=&sa=0
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hypothesis generation. ESCHR addresses this challenge through its provision of per-data-point 

uncertainty scores, which we have rigorously validated through multiple approaches. We have 

validated these uncertainty scores by demonstrating that they are significantly higher for 

inaccurately assigned data points (Chapter 2, Figure 2g) and that they are strongly positively 

correlated with the level of disagreement between the results from different methods (Chapter 2, 

Figure 2h). These findings confirm that ESCHR's uncertainty scores provide meaningful insights 

into clustering uncertainty, enabling researchers to make more informed decisions in their 

analyses. 

The challenge of method selection and parameter tuning has also been effectively addressed 

through ESCHR's ensemble hyperparameter randomization approach. Single cell datasets vary 

widely in their characteristics, and no single parameter setting or method can be optimal across 

all cases [35, 36]; [37]; [38]. ESCHR's hyperparameter-randomized ensemble approach 

eliminates the need for manual parameter tuning while providing robust results across diverse 

datasets. This was demonstrated through our comprehensive evaluation across a large 

collection of datasets representing various modalities, sizes, tissues, species, and intrinsic 

structures, where ESCHR consistently provided accurate and robust results regardless of the 

dataset's specific characteristics (Chapter 2, Figure 3). 

Finally, ESCHR contributes new means for interpretation and visualization of clustering results. 

While stochastic embedding methods like UMAP [91] and t-SNE [92] are widely used for 

visualizing single cell data, they can be misleading if not properly interpreted [90]. It is common 

practice to color a UMAP or t-SNE 2D layout by cluster labels or other metadata. Visualizing 

ESCHR's uncertainty scores alongside hard cluster labels can improve transparency and 

interpretability, allowing researchers to better understand the underlying structure of their data 

and the reliability of the clustering results and how they map to the 2D layout. Additionally, soft 

cluster membership heatmaps offer a completely separate alternative visualization method, 

effectively capturing the complex relational structures within single cell datasets without the risk 

of overinterpreting spurious patterns that can arise from 2D layouts. 

By addressing these fundamental challenges while maintaining compatibility with existing 

workflows through integration with the scverse ecosystem [69], ESCHR represents a significant 

step forward in single cell analysis methodology. Its success in providing robust, interpretable 

results while explicitly acknowledging and quantifying uncertainty sets a new standard for 

responsible and informed utilization of clustering in single cell research. 

https://sciwheel.com/work/citation?ids=13120647,12029630&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8099844&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10762315&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12611897&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15602586&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7859762&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14649766&pre=&suf=&sa=0


53 

3.2 Technical Improvements and Software Development 

3.2.1 Alternative ensemble configurations 

Our study has undertaken a rigorous evaluation of diverse alternatives for multiple aspects of 

the ESCHR algorithmic framework, but we recognize that there is potential for further 

methodological enhancement. For instance, we currently base our ensemble Leiden clusterings 

on k-nearest neighbor (kNN) graphs, but mutual nearest neighbor (mNN) or shared nearest 

neighbor (sNN) have demonstrated good results in other frameworks and may produce 

improved results [101] [102] [47]. ESCHR may also benefit from expanding the set of distance 

metrics utilized. We currently restrict our analysis to euclidean and cosine distances due to their 

efficient implementations within our chosen fast approximate nearest neighbor (ANN) package 

[103]. However, recent research has demonstrated the efficacy of a broader range of distance 

metrics for capturing diverse data structural properties [104]. While not all of these metrics may 

be applicable in an ANN context, several may hold potential for enhancing the quality of our 

clustering outcomes. Additionally, this published version of ESCHR uses only Leiden community 

detection for clustering in the ensemble stage, but additional base clustering methods could be 

explored and potentially incorporated in future versions. Finally, our empirical identification of 

optimal ranges for ESCHR’s numeric hyperparameters was somewhat limited by the time and 

memory required for running these experiments with many, sometimes large, datasets and very 

wide search spaces. It is therefore possible that there may be more optimal default ranges or 

more sophisticated regimes for hyperparameter randomization and selection that could improve 

ESCHR’s performance. Further exploration of the effects of these and other hyperparameters is 

an exciting avenue for future development. 

3.2.2 Improving runtime and memory performance 

There are several promising avenues for performance optimization that could further enhance 

the computational efficiency and scalability of the ESCHR method. The current implementation 

already incorporates important optimizations, including the use of Zarr [123] arrays for efficient 

out-of-core dataset storage and multiprocessing for parallel execution of base clusterings, but 

additional enhancements could further improve performance. 

A primary focus for optimization is the implementation of GPU acceleration using CUDA through 

the RAPIDS ecosystem [124]. The computation of k-nearest neighbor graphs, which forms a 
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fundamental step in ESCHR's workflow, is particularly well-suited for GPU parallelization. By 

leveraging cuGraph and cuML from the RAPIDS suite, we could significantly accelerate both the 

KNN graph construction and the subsequent community detection operations. This would be 

especially impactful for larger datasets where these computations currently represent 

substantial bottlenecks. Preliminary analysis suggests that GPU acceleration could potentially 

reduce computation time by an order of magnitude for these steps. 

Building upon our existing use of Zarr arrays for dataset storage, we propose extending this 

efficient storage strategy to the ensemble results themselves. Currently, while the input data is 

efficiently managed through Zarr and the base clustering computations are parallelized through 

multiprocessing, the ensemble results require significant memory during the consensus 

calculation phase. By implementing Zarr storage for the ensemble results, we could reduce 

peak memory usage during consensus calculation. 

These optimizations would be implemented with careful consideration of maintaining ESCHR's 

current accuracy and robustness while improving its computational efficiency. All optimizations 

would be thoroughly validated against our existing benchmark datasets to ensure that 

performance improvements do not come at the cost of quality. 

3.3 Extensions and Future Applications 

3.3.1 Mining soft clustering patterns for biological insights 

While ESCHR's soft clustering output currently provides valuable information about regions of 

continuity between clusters, there are opportunities to develop more sophisticated analyses of 

these patterns to gain deeper biological insights. The weighted relationships between cells and 

clusters captured in our soft clustering results contain rich information about both fine-grained 

population structure and patterns of molecular variation that has yet to be fully exploited. 

By analyzing patterns of shared cluster membership across cells, we could potentially identify 

substructures within regions of continuity that aren't apparent in the hard clustering results. This 

could help distinguish between different types of continuity – for example, differentiating 

between gradual phenotypic drift versus distinct intermediate states that bridge major cell types. 

For instance, cells that share similar patterns of partial membership across multiple clusters 

might represent distinct intermediate states or transition points. These patterns could be 
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particularly informative when correlated back with the features of the data (e.g. gene 

expression), potentially revealing signatures associated with specific patterns of cluster 

membership.  

We could also take a “features first” approach and directly map patterns of molecular phenotypic 

changes across regions of continuity. This would enable us to identify modules of molecular 

features that exhibit similar patterns across the phenotypic space, such as those that vary 

smoothly across a given continuous region versus those that show more discrete transitions. 

This approach could reveal the specific molecular programs that underlie cellular heterogeneity, 

helping to distinguish between coordinated program changes and more stochastic variation in 

gene expression. Such analysis could be particularly valuable for understanding how cells 

navigate phenotypic spaces and for identifying potential regulatory mechanisms that maintain or 

modify cell states. 

While we have applied some of these analytical approaches in a targeted manner to specific 

examples in our study, a key challenge moving forward is to develop robust, computationally 

efficient implementations that can be applied across diverse datasets. By formalizing these 

analyses and incorporating them directly into the ESCHR framework, we aim to make these 

sophisticated interpretative tools readily available to the broader research community. 

3.4 Final Conclusions 

Looking forward, the extensions and improvements outlined in this chapter will further enhance 

ESCHR's utility for the single cell research community. From performance optimizations that will 

enable analysis of larger datasets to advanced interpretability tools that will provide deeper 

biological insights, these developments aim to ensure that ESCHR continues to evolve 

alongside the rapidly advancing field of single cell analysis. 

By emphasizing generalizability, transparency about uncertainty, and ease of adoption while 

providing novel insights into cellular population structures, ESCHR advances not only the 

technical capabilities of the field but also our conceptual framework for understanding cellular 

heterogeneity. As single cell technologies continue to evolve and generate increasingly complex 

datasets, such robust and interpretable methods will be essential for translating this wealth of 

data into biological understanding. 
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Appendix I: Supplementary Materials for “A 
hyperparameter-randomized ensemble approach for 
robust clustering across diverse datasets” 
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Supplementary Notes 

1. On the difficulty of identifying a “ground truth” to assess clustering 
accuracy on single cell datasets 

Clustering accuracy can be evaluated with extrinsic validation metrics to compare a set of 
cluster labels to a set of ground truth class labels. This requires the existence of a priori known 
ground truth class labels, which generally do not exist for real-world single cell datasets. 
Nevertheless, clustering accuracy is widely used as a key metric for evaluating single cell 
clustering methods, and many publications featuring new single cell clustering methods have 
claimed to measure the accuracy of their clustering results using a variety of different 
annotations as proxies for ground truth. These “ground truth” annotations are frequently based 
on either manual annotation and/or previous clustering results, and we are skeptical about the 
validity of these human-guided ground truth assignments. There are some rare exceptions 
where ground truth class labels in single cell data are unambiguous and clear cut, such as 
unique cell lines or drug treatments. But in most cases, we propose that the ground truth 
annotations used to benchmark clustering accuracy in single cell datasets are inappropriate, 
and not a useful yardstick to measure the “goodness” of clustering. 
 
Besides cell lines and drug treatments, all other examples of “ground truth” annotations of single 
cell data that we’re aware of are problematic. Previous clustering results, even those obtained 
with human-optimized parameter tuning to give a result that looks best the human eye on a 
tSNE or UMAP plot, are still just one result from a single clustering algorithm, and should not be 
the yardstick by which all other clustering algorithms are judged. Even expert-guided “ground 
truth” annotations on a cell-by-cell basis still rely on our imperfect knowledge of functional 
markers, and rely on human intuition which doesn’t perform well in high-dimensional space. An 
important additional point which has been made by others is that manual annotation is 
inherently limited to only capturing already-known biology and will miss novel findings [125] 
[126]. 
 
Another annotation that has previously been used as ground truth is patient source of tissue 
samples, but if these samples include a heterogenous mixture of cells then it is not reasonable 
to expect that the ground truth that clustering should capture would be differences between 
patients rather than between cell types shared by all patients. Developmental stage or collection 
day of differentiating cell types is also commonly considered to be a “gold standard” annotation, 
but considering that cell types often persist over varying time spans of development or other 
dynamic biological processes, it is a flawed assumption to believe that clustering should ideally 
be capturing differences between stages or collection days. Other studies use some versions of 
“sorting” by an alternate data modality as true labels. A common example of this is using flow 
cytometry-based sorting using a small set of cell surface proteins to select out different 
populations of cells and then using these population labels as ground truth for assessing 
clustering of scRNA-seq of the cells. While this can certainly be useful for a researcher aiming to 
explore mRNA expression specifically within cells defined by protein markers, there is no reason 
to believe that the actual true best clustering based on one modality should capture the same 
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population structure that is defined by another modality, and this is therefore also not a valid 
basis for assessing the accuracy of a clustering result in the context of evaluating a new 
method. 
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Supplementary Figures 
 

 
Supplementary Figure 1: Inherent randomness in the commonly used Leiden algorithm. 
UMAP visualizations of 8 replicates of Leiden clustering run with identical hyperparameters on 
identical input k-NN graphs. (A) shows the Tany-seq scRNA-seq dataset [77] which was 
explored in Figure 4 and (B) shows this analysis applied to the synthetic gaussian 10 cluster 
dataset that was used as one of the examples in Figure 2. Points are colored by cluster labels 
and numerical cluster labels are placed on the centroid of the cluster. 

https://sciwheel.com/work/citation?ids=13458841&pre=&suf=&sa=0
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Supplementary Figure 2: Establishing default settings for ensemble hyperparameter 
randomization. (A-C) Clustering quality metrics (y-axis) improve with increasing ensemble size 
(x-axis), evaluated in synthetic datasets for accuracy by ARI (A) and robustness by ARI (B), and 
in real datasets for robustness by ARI (C). Each dataset is represented by a different color of 
line. Dark lines show the mean and lighter colored surrounding band shows 1 standard 
deviation from across 5 replicates of ESCHR hard clustering results. X-axis is log2 scaled but 
the text labels show the unscaled values to aid interpretation. (D) Composite visualization 
illustrating the variability of optimal hyperparameters across different datasets. Dark and light 
red dots represent the highest scoring 10 hyperparameter combinations for each synthetic 
dataset and real dataset respectively. Dark and light blue dots represent the lowest scoring 10 
hyperparameter combinations for each synthetic dataset and real dataset respectively. The 
vertical position of the dots represents the mean rank across accuracy ARI and AMI and 
robustness ARI and AMI and the horizontal position indicates the combination of 
hyperparameters represented by a given point, as specified by the overlapping colorbars. (E) 
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Heatmap showing the mean rank across accuracy ARI and AMI and robustness ARI and AMI 
and across all synthetic datasets analyzed with different ranges set for the 2 numeric 
hyperparameters, k number of neighbors for building the k-NN graph on the x-axis and r 
resolution for Leiden clustering on the y-axis. Dashed box indicates the highest scoring 
combination, which was selected for use in the version of ESCHR that was used to generate the 
figures in this manuscript. (F) Box and whisker plot showing the mean rank calculated as 
described for panels D and E for each of 4 different subsampling protocols. Individual dots 
represent each of 5 replicates of each of the 20 synthetic datasets. Note that lower rank 
indicates better performance. 
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Supplementary Figure 3: Combined visualization of ensemble base clusterings. The base 
clusterings from Fig. 1a are displayed as ovals, with the same coloring as in the “Base clustering 
results” section of Fig. 1a (light brown, light blue, purple). The data points are displayed as filled 
circles, with labels and coloring matched to the “Input data” section of Fig. 1a (labels 1-18, 
colors blue, red, and green). 
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Supplementary Figure 4: Validation of internal hyperparameter selection at consensus 
stage. Sorted heatmap visualizations indicating ESCHR hard cluster groupings (y-axis, sorted 
group labels together) across different resolutions (on x-axis) for the consensus stage bipartite 
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clustering. Example datasets shown here include the Tany-seq scRNA-seq dataset [77] (A), 
Zeisel scRNA-seq dataset [127] (B), Levine 13 dim mass cytometry dataset [101] (C). The red 
dashed line indicates the resolution that was selected by the ESCHR internal optimization 
protocol in each case. (D) Point plot showing the difference from true cluster number across 16 
synthetic datasets at each possible value for the resolution hyperparameter gamma for final 
consensus bipartite clustering. Points represent means across all replicates of all datasets and 
error bars show 1 standard deviation. (E) Heatmap of mean ARI between consensus labelings 
from different resolutions within the same set of synthetic datasets used to generate panel D. 
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Supplementary Figure 5: 2D visualizations of synthetic gaussian datasets. UMAP (first 
column) and PCA (second column) dimensionality reduced 2D visualization of the synthetic 
gaussian datasets used for benchmark testing. (A) contains the datasets with three ground truth 
clusters, (B) contains the datasets with 8 ground truth clusters, (C) contains the datasets with 15 
ground truth clusters, (D) contains the datasets with 20 ground truth clusters. 
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Supplementary Figure 6: 2D visualizations of simulated scRNA-seq datasets. UMAP (first 
column) and PCA (second column) dimensionality reduced 2D visualization of the synthetic 
gaussian datasets used in Figures 2 and 3. (A-B) contains the dataset labeled dyntoy_multi_1 in 
corresponding Supplementary Table 4, (C-D) contains the dataset dyntoy_multi_2,  (E-F) 
contains the dataset dyntoy_multi_3,  (G-H) contains the dataset dyntoy_discon_1,  (I-J) 
contains the dataset dyntoy_discon_2. 
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Supplementary Figure 7: PCA embeddings for example simulated dataset. Visualization of 
data points projected onto the first two principal components, with points colored by: (A) ground 
truth labels, (B) ESCHR hard cluster labels, (C) cluster labels from the method indicated in the 
respective title.  
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Supplementary Figure 8: Individual scores for each dataset and each method used in 
systematic benchmarking. (A) Mean rank across all scores; (B) accuracy measured by 
Adjusted Rand Index (ARI) between cluster labels and true labels; (C) accuracy measured by 
Adjusted Mutual Information (AMI) between cluster labels and true labels; (D) robustness 
measured by ARI between cluster labels generated for 5 independent random 90% subsamples 
of each dataset; (E) robustness measured by AMI between cluster labels generated for 5 
independent random 90% subsamples of each dataset for each dataset per each method. Blank 
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spaces with no filled circle indicate that results were not able to be generated for the given 
dataset by the given method.  



80 

 



81 

Supplementary Figure 9: Benchmarking and robustness analysis of ESCHR clustering of 
the MNIST dataset. (A) UMAP visualizations of ground truth cluster labels and hard cluster 
assignments from the first robustness replicate of ESCHR and each of the comparison methods 
used in benchmarking analysis. Points are colored by cluster ID. (B) Barplots showing accuracy 
by ARI (top left), accuracy by AMI (top right), robustness by ARI (bottom left), and robustness by 
AMI (bottom right) for 5 runs of each method on a randomly sampled 90% of the MNIST 
dataset. Error bars represent 1 standard deviation. Bars are plotted in rank order with highest 
mean score at the top. (C) UMAP visualizations of ESCHR clustering replicates of the MNIST 
dataset, where each replicate was generated on a randomly subsampled 90% of data points. 
First row points are colored by hard cluster label, second row points are colored by uncertainty 
score. 
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Supplementary Figure 10: Tanycyte clustering and expression profiles. (A) UMAP 
visualizations of ESCHR clustering replicates of Tany-seq data, where each replicate was 
generated on a randomly subsampled 90% of data points. First row points are colored by hard 
cluster label, second row points are colored by per-cell uncertainty score. (B) Correlation of 
metadata features and per-cell uncertainty scores from each of the 5 robustness replicates 
visualized in A. (C) Allen Mouse Brain Atlas in situ hybridization images of the full 
tancyte-containing region. 
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Supplementary Tables 
(not sure of the appropriate way to include the large tables? I did see some theses with 
additional files, so presumably I could just as them as .xlsx?) 
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Supplementary Table 1: Overview of methods used in benchmarking analysis.  
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Supplementary Table 2: Overview of synthetic datasets used in benchmarking analysis.   
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Name Package # clusters # samples # features 
Trajectory 
model 

dyntoy_multi_1 DynToy 8 1000 1000 multifurcated 
dyntoy_multi_2 DynToy 8 1000 1000 multifurcated 
dyntoy_multi_3 DynToy 13 1000 1000 multifurcated 

dyntoy_discon_1 DynToy 10 1000 1000 disconnected 

dyntoy_discon_2 DynToy 18 1000 1000 disconnected 
 
Supplementary Table 3: Overview of simulated scRNA-seq datasets used in 
benchmarking analysis. 
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Supplementary Table 4: Overview of real datasets used in benchmarking analysis. 
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Method Evaluation Metric Statistic 
Corrected 
p-value 

Seurat robustness ARI 26 9.96E-06 
Scanpy robustness ARI 24 1.86E-08 
Phenograph robustness ARI 15 1.19E-04 
SC3 robustness ARI 0 7.10E-06 
SC3s robustness ARI 15 9.31E-09 
SINCERA robustness ARI 17 4.08E-05 
Kmeans robustness ARI 26 9.31E-09 
Agglomerative robustness ARI 0 5.96E-07 
scCAN robustness ARI 0 1.28E-06 
scAIDE robustness ARI 6 7.45E-08 
Seurat robustness AMI 1 1.93E-06 
Scanpy robustness AMI 43 1.86E-08 
Phenograph robustness AMI 0 9.96E-06 
SC3 robustness AMI 1 1.57E-06 
SC3s robustness AMI 1 9.31E-09 
SINCERA robustness AMI 1 4.17E-06 
Kmeans robustness AMI 16 9.31E-09 
Agglomerative robustness AMI 6 2.98E-07 
scCAN robustness AMI 0 1.30E-07 
scAIDE robustness AMI 1 7.45E-08 
Seurat accuracy ARI 54 4.54E-04 
Scanpy accuracy ARI 2 9.31E-08 
Phenograph accuracy ARI 0 5.13E-03 
SC3 accuracy ARI 0 2.79E-08 
SC3s accuracy ARI 7 9.31E-09 
SINCERA accuracy ARI 21 2.98E-07 
Kmeans accuracy ARI 41 9.31E-09 
Agglomerative accuracy ARI 1 5.96E-07 
scCAN accuracy ARI 0 1.77E-07 
scAIDE accuracy ARI 3 3.73E-08 
Seurat accuracy AMI 5 4.16E-06 
Scanpy accuracy AMI 78 9.31E-09 
Phenograph accuracy AMI 0 9.19E-05 
SC3 accuracy AMI 1 4.66E-08 
SC3s accuracy AMI 0 1.86E-08 
SINCERA accuracy AMI 0 2.98E-07 
Kmeans accuracy AMI 3 9.31E-09 
Agglomerative accuracy AMI 0 5.96E-07 
scCAN accuracy AMI 1 4.66E-08 
scAIDE accuracy AMI 0 3.73E-08 
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Supplementary Table 5: Statistics for benchmarking analysis with synthetic datasets. 
Two-sided Wilcoxon signed-rank test with Bonferroni correction was used for statistical analysis 
comparing ESCHR to each method. N = 20 for comparisons using synthetic datasets. 
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Method Evaluation Metric Statistic 
Corrected 
p-value 

Seurat robustness ARI 103 7.08E-06 
Scanpy robustness ARI 109 1.14E-12 
Phenograph robustness ARI 49 1.90E-05 
SC3 robustness ARI 8 4.47E-05 
SC3s robustness ARI 288 1.14E-12 
SINCERA robustness ARI 152 3.21E-05 
Kmeans robustness ARI 59 2.84E-11 
Agglomerative robustness ARI 0 8.15E-09 
scCAN robustness ARI 8 1.76E-01 
scAIDE robustness ARI 215 9.09E-11 
Seurat robustness AMI 0 2.53E-04 
Scanpy robustness AMI 75 1.14E-11 
Phenograph robustness AMI 0 7.23E-06 
SC3 robustness AMI 4 1.04E-04 
SC3s robustness AMI 3 1.14E-12 
SINCERA robustness AMI 5 1.73E-06 
Kmeans robustness AMI 120 2.84E-11 
Agglomerative robustness AMI 28 3.49E-09 
scCAN robustness AMI 2 8.53E-03 
scAIDE robustness AMI 9 6.00E-10 
Seurat accuracy ARI 45 7.44E-06 
Scanpy accuracy ARI 36 4.37E-04 
Phenograph accuracy ARI 97 4.15E-04 
SC3 accuracy ARI 190 9.96E-06 
SC3s accuracy ARI 420 1.31E-02 
SINCERA accuracy ARI 120 1.22E-02 
Kmeans accuracy ARI 112 2.15E-02 
Agglomerative accuracy ARI 56 1.00E+00 
scCAN accuracy ARI 75 1.00E+00 
scAIDE accuracy ARI 360 7.87E-03 
Seurat accuracy AMI 112 1.04E-04 
Scanpy accuracy AMI 102 4.47E-05 
Phenograph accuracy AMI 179 4.37E-04 
SC3 accuracy AMI 198 3.51E-06 
SC3s accuracy AMI 136 2.92E-07 
SINCERA accuracy AMI 109 3.22E-06 
Kmeans accuracy AMI 66 2.22E-06 
Agglomerative accuracy AMI 32 1.55E-03 
scCAN accuracy AMI 87 1.00E+00 
scAIDE accuracy AMI 82 3.39E-05 
 
Supplementary Table 6: Statistics for benchmarking analysis with real datasets. 
Two-sided Wilcoxon signed-rank test with Bonferroni correction was used for statistical analysis 
comparing ESCHR to each method. N = 42 for comparisons using real datasets. 
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