
Accelerating Decision Tree Ensemble

Inference with an Automata Representation

Tommy James Tracy II

B.S., University of Virginia (2010)

M.E., University of Virginia (2014)

A Dissertation Presented to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Engineering

University of Virginia

August, 2019

c○Copyright by Tommy James Tracy II 2019

All Rights Reserved

Abstract

Decision tree ensembles including Random Forests and Boosted Regression Trees have

become ubiquitous in the research domains of medicine, natural sciences, natural lan-

guage processing, and information retrieval. With increasing data rates and new

research into larger ensembles, accelerating the inference rate and reducing the power

consumption of this class of machine learning models is critical. It also presents a

variety of technical challenges. The random memory access pattern and execution

divergence of decision tree traversal results in memory-bound von Neumann imple-

mentations.

In this dissertation, we present a series of novel techniques to accelerate decision

tree ensembles, by representing their constituent trees as spatial automata that exhibit

sequential streaming memory access, and can be executed with high parallelism. We

develop novel algorithms and an open source automata framework that allow machine

learning and computer architecture researchers to accelerate their applications, as

well as stimulate further research into the field of automata-based machine learning.

Finally, we present an application study of these techniques and tools with a boosted

regression tree-based Learn-to-Rank document ranking model.

Acknowledgments

This dissertation would not have been possible without the mentorship, guidance,

and love of many people and organizations.

First and foremost, I would like to thank my family. The PhD was a lengthy

and challenging process, and I appreciate the encouragement and love you provided

me over the span of the journey. I would like to especially acknowledge my parents

Tom Tracy and Christine Tracy for their lifelong love, encouragement, and for an

amazing childhood that built me into the man I am today. I would not have gotten

this far without the early push to achieve and the continuous support from both of

my excellent parents.

I would also like to acknowledge each of my brothers for always being there for

me and providing the brotherly love that can only really be fostered in a loving

environment. We grew up together bouncing around the World and were given the

freedom to explore and develop into the unique people we are today. Thanks guys.

I promise to visit you more frequently now that I’m not a poor graduate student

anymore. Thank you: #2 Benjamin, #3 Ian, #4 Michael, #5 David, and #6

Phillip.

To my close friends, for all of your support, thank you Shane Anderson, Nathan

Brunelle, Dan Klopp, Jane Plummer, and Karolina Sarnowska-Upton. Being

a graduate student was an emotional challenge that each and everyone one of you

helped me through it.

To my advisor, Mircea Stan, thank you for your guidance and support. You let

me explore and define my research journey in ways that I think very few other advisors

would have. In some ways this let me broaden my perspective and get hands-on with

many different technologies and domains of study. Thank you, Mircea; I truly do

think I’m a better researcher, engineer, and life student because of this.

To my mentor Kevin Skadron, thank you for your guidance and support. Your

hands-on guidance helped me focus my energies towards the end of my dissertation.

Also, your approach to leadership, collaboration, and politics was inspiring.

i

To my mentors of education, thank you Joanne Dugan, Harry Powell, and

Steven Wilson. I learned a lot from each of you about what it means to be an

inspiring educator.

To Natalie Edwards, thank you for all your help and support. You were con-

stantly there to help me with the complications of the UVa bureaucracy and for so

much more.

To my collaborators and friends at UVA and elsewhere, including Kevin Angstadt,

Chunkun Bo, Vinh Dang, Patricia Gonzalez, Xinfei Guo, Mehdi Kabir,

Benjamin Melton, Sergiu Mosanu, Mateja Putic, Reza Rahimi, Alec Roelke,

Indranil Roy, Elaheh Sadredini, Jack Wadden, Ke Wang, Ted Xie, and ev-

eryone else in the High Performance Low Power lab, thank you for your support

and friendship. I’m looking forward to continuing a lifelong friendship and continue

collaboration with you all.

To the National Science Foundation (NSF) and Semiconductor Research Corpo-

ration (SRC), thank you for providing the resources to conduct this research.

ii

Contents

1 Introduction 1

1.1 Hypothesis and Contributions . 5

1.2 Organization . 6

2 Background 7

2.1 Supervised Machine Learning . 8

2.1.1 Training Machine Learning Models 8

2.2 Classification and Regression Trees 9

2.2.1 Training Decision Trees . 9

2.2.2 Decision Tree Inference . 12

2.3 Decision Tree Ensembles . 12

2.3.1 Bagging vs. Boosting . 13

2.3.2 Random Forest . 14

2.3.3 Boosted Regression Trees . 15

2.4 Why Decision Tree Ensembles? . 16

2.4.1 Cascaded Decision Tree Ensembles 16

2.5 Accelerating Decision Tree Ensembles 18

2.5.1 Accelerating Decision Tree Ensemble Training 18

2.5.2 Temporal Architectures . 19

2.5.3 Spatial Architectures . 21

2.6 Finite State Automata . 22

2.6.1 Automata Computing . 23

2.7 Processor Architectures . 24

iii

2.7.1 von Neumann Architectures 24

2.7.2 Automata Processing on Spatial Architectures 25

3 Decision Tree Automata 31

3.1 Streaming Automata Inference . 32

3.1.1 Automata Challenges . 33

3.1.2 One Finite State Automaton per Partition 34

3.1.3 Aligning Automata . 36

3.1.4 Numerical Comparisons to Set Membership 37

3.2 Automata Folding . 40

3.3 Decision Tree Automata Model . 43

3.4 Experimental Analysis . 44

3.4.1 Datasets . 44

3.4.2 Training . 45

3.4.3 CPU Evaluation . 45

3.4.4 Automata Evaluation . 45

3.4.5 Results and Discussion . 46

4 Automata Optimizations 51

4.1 Scaling Alphabet Size . 52

4.1.1 Single- Versus Multi-Character Character Sets 52

4.1.2 One-Hot Encoded Super-States 55

4.1.3 Two-Hot Encoded Super-States 55

4.2 One-Hot and Two-Hot Automata Folding 57

4.2.1 The Grid and Block Abstraction 58

4.2.2 Feature Permutations . 58

4.2.3 One-Hot Automata Folding 59

4.2.4 Two-Hot Automata Folding 62

4.2.5 Evaluating One-Hot versus Two-Hot Automata Folding 64

4.3 Further Optimizations . 66

4.3.1 Compacting The Input . 66

iv

4.3.2 Feature Compression . 67

4.3.3 Logarithmic Automata Search 67

5 Benchmarks and Tools 71

5.1 RFAutomata . 72

5.1.1 Feature Extraction . 72

5.1.2 Training . 73

5.1.3 RFAutomata Automata Synthesis 75

5.1.4 Input Formats . 78

5.1.5 Outputs . 79

5.1.6 Direct Hardware Support . 79

5.2 REAPRpp . 82

5.2.1 Reporting Architecture . 82

5.2.2 Debugging Support . 83

5.2.3 Amazon Web Services EC2-F1 84

5.2.4 Recursively Grouping Automata 85

5.2.5 Additional REAPRpp Functionality 89

5.3 Benchmarks . 90

5.3.1 ANMLZoo . 91

5.3.2 AutomataZoo . 92

6 Learn To Rank (LTR) Automata 95

6.1 Learn To Rank Document Ranking 95

6.1.1 Training with LtR Models . 97

6.2 QuickRank: High Performance LtR on CPUs 98

6.2.1 QuickScore . 98

6.3 Experimental Setup . 99

6.3.1 Microsoft Learning to Rank Dataset 99

6.3.2 Training the LTR Model . 100

6.3.3 Evaluating LtR on the CPU 101

6.3.4 Evaluating LtR on the Automata 101

v

6.3.5 Hardware Utilization . 102

6.4 Implementation Challenges and Solutions 103

6.4.1 Congestion . 103

6.4.2 Compilation Time . 105

7 Conclusions and Future Work 107

7.1 Summary . 107

7.2 Impact . 109

7.2.1 Automata Tools . 109

7.2.2 Automata Benchmarks . 109

7.2.3 Industry Penetration . 110

7.3 Future Architecture Research . 110

7.3.1 Automata Overlays . 110

7.3.2 Automata Machine Learning 111

7.3.3 Exploring Additional Machine Learning Models 111

Bibliography 113

vi

List of Figures

2-1 Training a decision tree by recursively dividing the training data. [92] 10

2-2 Classification using a decision tree in the Random Forest. 13

2-3 The result is the majority vote of the individual classifications.[92] . . 15

2-4 The cascaded forest structure proposed by Zouh Feng et al.[123]. . . . 17

2-5 Representing decision trees with structs and indexing with data com-

parisons from [3] . 20

2-6 A simple FSA that recognizes all valid English spellings of the word

“Donut". 23

2-7 An AP State Transition Element (STE). Each STE contains a bit col-

umn representing a character set and a state bit that indicates if the

state is active or not. An 8-to-256 decoder sets one of the bits in the

column high; this value is then AND’d with the state bit to produce

the output signal that enables STEs tied to this one’s output. 26

2-8 All STEs receive the 8-bit input symbol, a clock and reset signal. They

are connected in one flat design. 29

2-9 All automata are generated in one flat design without any structure. . 30

3-1 The full Decision Tree Automata pipeline. First, the feature vector is

converted into feature labels. These labels are then streamed to the

Decision Tree Automata on a spatial architecture. [92] 32

3-2 Eight decision trees automata that each evaluate one of the paths from

Root to one of the red leaf nodes in Fig 3-3[92] 35

3-3 A decision tree model. [92] . 35

vii

3-4 Automata can be used to recognize an input string that maps to each

of the partitions instead of using decision trees. 36

3-5 The automata after sorting nodes in increasing order and filling unused

state STEs with don’t care values (*).[92] 37

3-6 Combine all thresholds across all trees into one shared address space. 39

3-7 The feature address spaces of four different features.[92] 40

3-8 Finite State Automata that recognize feature ranges with set mem-

bership. Each state only accepts feature range values that correspond

with that automaton’s traversal path.[92] 41

3-9 Combining features into STEs[92] . 42

3-10 Throughput of Twitter Random Forest as a function of number of trees

an leaves.[92] . 48

3-11 Throughput of MNIST Random Forest as a function of number of trees

an leaves.[92] . 49

4-1 Number of unique thresholds per feature for a Random Forest with 20

decision trees, 800 leaves per tree, and 200 features.[106] 53

4-2 Number of unique thresholds per feature for a boosted regression tree

model with 1000 decision trees, 10 leaves per tree, and 200 features. . 54

4-3 Representing 16-bit super-symbols for one item, and cross contamina-

tion with representing item sets. 54

4-4 One-Hot Encoding. 56

4-5 Two-Hot Encoding. 57

4-6 Encoding features with 2d encoding. 63

4-7 2D-encoded Automata Folding. 63

4-8 Combining four nucleotide characters into one 8-bit symbol with bit-

level automata striding. 66

4-9 Combining three nucleotides from Σ1 = 𝐴,𝐶,𝐺, 𝑇,𝑋 into one 8-bit

symbol by representing them as unique addresses in a cube. 68

4-10 Clustering chain automata into fuzzy automata. 69

viii

5-1 Heatmap of the MNIST pixels indicating feature importance in the

trained model. 76

5-2 Random Forest accuracy on the MNIST training dataset with a varying

number of top features. 76

5-3 Number of unique thresholds per feature for Variant C of Automata-

Zoo’s Random Forest benchmark.[94] 78

5-4 Reporting architecture for large automata designs[102]. 83

5-5 Recursively grouping automata into modules with preserved hierarchy. 88

5-6 Automatazoo Benchmarks[106] . 93

6-1 The two-stage LTR pipeline. 96

6-2 LTR throughput and NDCG@10 vs. number of trees. 101

6-3 CPU throughput vs. FPGA throughput as a function of the number

of trees. 102

6-4 Total F1 power as a function of the number of trees. 103

6-5 Percentage of hardware resourced utilized by the LtR model as a func-

tion of the number of trees in the ensemble. 104

6-6 Diagram of the F1 FPGA utilization for our 800-tree LtR model; the

orange components are the Shell, the blue the automata, and the grey

show the wide input signals distributed to the STEs. 104

6-7 Time required to synthesize and place-and-route the 600-tree LtR de-

sign with and without the H-Tree hierarchy. *The design without

H-Tree failed to meet 250MHz timing constraints. 105

ix

List of Tables

3.1 Automata Size vs Accuracy and Throughput for Twitter Results . . . 46

3.2 Key data points of MNIST Results 47

4.1 Random Forest benchmark variant trade-offs from the AutomataZoo

Benchmark Suite[106]. 65

4.2 Number of automata states per Random Forest model. 65

5.1 Supported RFAutomata machine learning models as of version 1.0. . 72

5.2 Performance in kilo classifications/second of the Random Forest Au-

tomata, normalized to single-threaded Hyperscan[106] 94

5.3 Random Forest benchmark variant trade-offs. Increasing the number of

features increases accuracy but also increases runtime. Increasing the

maximum number of leaves per tree increases accuracy, but increases

automata size.[106] . 94

6.1 Runtimes for converting ML models into automata, automata into

HDL, and compiling the HDL into an FPGA bitstream. 102

xi

Chapter 1

Introduction

Machine Learning (ML) algorithms make decisions about inputs without being

provided explicit instructions on how to get to the result. These algorithms devise

the method by which they come to a result by learning from experience. There are

many different ML algorithms, called models, that fulfill different use cases. A few

examples include linear regression models, where a linear model is assumed between

input and output values; decision trees, where a statistical model is constructed based

on example data; and neural networks, where a series of nodes are arranged in layers

and connected by weighted sums.

Decision trees serve as base learners for a variety of machine learning models

including Random Forests [12] and boosted regression trees [30]. These decision tree-

based models are versatile with high performance across a significant range of appli-

cation domains including medicine [87, 60, 28, 118], computer vision [6], information

retrieval [112], and in the natural sciences [83, 85, 17]. They also do not require sig-

nificant optimization effort with only a few hyper-parameters to tune, and are often

chosen as a first model for prototyping and testing by researchers and engineers.

With the advent of Internet of Things (IoT) devices and with the rapidly increasing

data available to medical [41] and natural science practitioners[57, 69], accelerating

the inference (classification or regression) rate of these models, as well as increasing

their efficiency is of importance. Additionally, contemporary research by Zouh Feng

et al. [123, 97], with their introduction of gcForest, showed that variations on very

1

large cascades of decision tree ensembles could obtain promising accuracy results

when compared to deep neural networks. This introduces the potential for large

decision tree ensemble models to utilize the research and industry advancements in

deep learning. One limitation of the authors’ approach is the performance of these

large models. The authors highlight in Section 6 of their paper the need for both

accelerating their work as well as reducing the memory utilization in order to achieve

high throughput, motivating the acceleration and improving the efficiency of decision

tree ensemble inference.

Accelerating the inference of decision tree-based models presents a variety of tech-

nical challenges. The random memory access pattern of decision tree traversal re-

sults in memory-bound von Neumann implementations. Execution divergence while

traversing different paths of a plurality of trees prevents efficient parallel execution

using SIMD accelerators like GPUs. Although the trees of the ensembles are indepen-

dently computable, which allows for task-level parallelization on Multiple Instruction

Multiple Data (MIMD) machines like CPU-based clusters, achieving load balancing

and hiding communication overhead remains a challenge. The paths to leaf nodes

in the trees are of different depths, resulting in non-uniform execution times, and

transferring the feature vectors and results between all computing nodes increases

communication overhead. In addition, existing decision tree-based machine learning

models require buffering and are not conducive to stream processing, a technique

whereby data is processed as it arrives.

The Automata Processor (AP) [22] is a non-Von Neumann processor architecture

based on the Multiple Instruction Single Data (MISD) architectural taxonomy [27].

It can compute thousands of user-defined state machines, called automata, in parallel

on a single input data stream. We developed techniques for accelerating decision

tree ensembles on the AP as well as other spatial architectures by converting them

into spatially-represented automata [92] that can be concurrently executed on an

input stream. The random forest algorithm works by comparing the values from a

feature vector (representing the input sample) against threshold conditions captured

by the root-to-leaf paths in the decision trees. By creating separate automata for all

2

possible root-to-leaf paths, and by executing these automata in parallel, we were able

to achieve significant speedups over the state-of-the-art CPU implementation while

also supporting streaming processing.

In order to accomplish the refactoring of these tree data structures, we had to over-

come several challenges not addressed by previous automata processing and decision

tree model research. Firstly, the classifier feature values, often represented by numer-

ical or statistical values like intensity, TF-IDF, etc. are often expressed as floating

point values. Neither floating point values nor floating point operations are natively

supported by the automata processing paradigm. We addressed this limitation by

developing a pipelined labeling technique that represents floating point values with

a discrete symbol address space. Pipelined labeling allowed us to maintain fidelity

to the original model, reduce the amount of data that the automata needed to pro-

cess, and also separate and pipeline the thresholding operation from the decision tree

traversal. Existing acceleration techniques also reduce the width of feature vectors

by converting floating point features into a fixed point representation, albeit at a cost

to accuracy[59]; we reduce the need for expensive arithmetic hardware by computing

all floating-point comparisons in one step of the pipeline or pushing it off to feature

extraction entirely.

Secondly, due to the Multiple Instruction Single Data (MISD) nature of automata

computing, all spatially-represented automata consume input feature information en-

coded in the input stream simultaneously. This requires that all automata be aligned

such that they all expect the same feature bytes at the same clock cycles. This

deviates from existing decision tree traversal implementations, wherein the order of

access to the feature vector’s values is determined by the data-dependent tree traver-

sal. We solve this problem by fundamentally restructuring decision tree traversal into

the task of filtering an input stream. To do this, we trade off spatial resources for

pipelineability, reduce the need for expensive hardware in the decision tree traversal

computation, and aligned all decision tree traversals for true parallel and streaming

execution.

Finally, in order to reduce the spatial resources required to fit larger decision tree

3

models onto existing spatial architectures, we develop several compaction techniques

called Automata Folding techniques. Existing implementation of automata on spatial

architectures map state character sets directly. Automata Folding combines charac-

ter sets into fewer state elements using novel multi-dimensional encoding, reducing

the memory requirements of the automata and increasing the spatial efficiency of

our representation. This allows us to represent larger models with fewer hardware

resources.

We developed two open source research tools, RFAutomata and REAPRpp. RFAu-

tomatat allows researchers to easily convert their existing decision tree ensemble mod-

els into automata representations and catalyze automata-based machine learning ac-

celeration. It also allows researchers to explore spatial design tradeoffs and evaluate

their models on a variety of automata engines for CPUs, GPUs, Micron’s Automata

Processor and FPGAs. REAPRpp is a enhanced synthesis tool for converting au-

tomata intermediate representations into RTL for FPGAs. This is the final tool

required to complete a large set of automata tools for targetting spatial architectures

for deployment.

Up until recently, automata engines and architectures were evaluated against sets

of regular expressions. Our automata decision tree algorithms are one of several

new applications that can be accelerated by automata. In order to better serve the

architecture communited, we introduced two new automata benchmarks that include

regular expressions and application automata: ANMLZoo and AutomataZoo. We

included several automata decision tree models at several key design points into these

benchmark suites.

Finally, we accelerate a Learn-to-rank based information retrieval application us-

ing this framework on the FPGA as a system-level end-to-end solution achieving

significant performance improvements.

4

1.1 Hypothesis and Contributions

Hypothesis: Decision tree ensemble models can be accelerated on spatial archi-

tectures by representing them with finite state automata and optimizing the memory

access pattern and model size tradeoffs.

In this dissertation, we demonstrate several novel algorithms and techniques for

accelerating decision tree ensembles by representing them as independent automata

that run in parallel on spatial architectures. We also describe and demonstrate several

tools and benchmarks created for the purpose of furthering the field of automata

processing research.

First, we describe a technique for representing decision trees, optimized for von

Neumann architectures, as Nondeterministic Finite State Automata (NFAs) on spa-

tial architectures and how to optimize these representations for runtime and spatial

resources utilization. We show how these techniques assure deterministic runtimes

without modifying the underlying architecture or using approximation methods, and

can achieve considerable performance improvements over existing implementations.

Second, we present several additional automata optimization techniques that fur-

ther improve the resource utilization on spatial architectures. These techniques are

applicable across other automata applications, but improve the spatial efficiency of

large decision tree-based models on spatial architectures, as well as reducing the

length of an encoded input stream representation.

Third, we implement our algorithms in two open source tools: RFAutomata and

REAPRpp. RFAutomata is a tool that translates decision tree ensemble models into

an automata representation. This tool also provides a slew of features including sim-

ulators for various architectures and measurement tools to evaluate the automata

representation on CPUs and GPUs. REAPRpp is a synthesis tool for converting this

automata representation into hardware description language (HDL) files for deploy-

ment on FPGAs. Our tools allow for flexibility by supporting different decision tree

ensemble models, automata encoding techniques, and I/O widths. REAPRpp also

provides debugging support as well as support for targetting Amazon’s AWS F1 in-

5

stances. We implement a Learn to Rank machine learning application using our tools

and techniques. We then evaluate our spatial automata solution deployed on Ama-

zon’s cloud-based FPGA instance against a high performing CPU implementation

and achieve significant improvements in performance and efficiency.

Our automata models and tools are now part of two automata benchmark suites re-

leased to the research community and utilized to evaluate automata architectures and

applications. These benchmark suites, namely ANMLZoo[104] and AutomataZoo[106],

both serve as the most diverse automata benchmarks currently available.

1.2 Organization

The remaining sections of the dissertation are organized as follows:

Chapter 2: Background introduces decision tree ensembles and automata pro-

cessing, prior automata acceleration approaches and an introduction to Micron’s Au-

tomata Processor.

Chapter 3: Decision Tree Automata presents a novel transformation from

decision tree ensembles into spatial automata, targeting Micron’s Automata Proces-

sor.

Chapter 4: Automata Optimizations presents several novel automata opti-

mization techniques for improving the performance of decision tree automata as well

as other automata applications.

Chapter 5: Benchmarks and Tools presents several automata research tools

and benchmarks used by researchers and in industry.

Chapter 6: Learn To Rank (LTR) as Automata on cloud-resident FP-

GAs presents a search engine application that we accelerate using our techniques and

tools using Amazon’s AWS F1 instance.

Chapter 7: Conclusions and Future Work summarizes the dissertation and

further discusses the implications and future research directions of our work.

6

Chapter 2

Background

Machine Learning (ML) as a field of research has been around for decades, but

with the explosion of data from Internet of Things (IoT) devices and smart phones,

as well as the rise of cloud computing and big data platforms, it has become a crit-

ical part of many contemporary computing systems. Whereas in the past complex

technologies have remained hidden from consumers and users, “machine learning" is

now a discussed issue of our technophillic society and even a feature sought after by

the populous for its revolutionary capabilities[78].

ML algorithms make decisions about inputs without being provided a series of

explicit instructions to get to the result. They devise the method by which to come

to the result, themselves; in essence, they learn their functionality. Machine Learning

was formalized by Tom Mitchell as: “A Computer program is said to learn from expe-

rience with respect to some class of tasks and performance measure if its performance

at tasks, as measured by their performance, improves with experience."[56] These

algorithms learn a mapping function 𝑓(𝑋) = 𝑦 that maps a given input (𝑋) to an

output (𝑦). Some examples of ML algorithms, called models, include Linear Regres-

sion, where a linear relationship between an input and the output is learned given

a series of example points; decision trees, where a tree data structure is constructed

based on statistics of a given set of example data; and neural networks, where a series

of weighted edges between layers of nodes are used in an iterative multiply-accumulate

pipeline.

7

2.1 Supervised Machine Learning

Supervised machine learning models are those that learn the mapping function

from a set of labelled training data[45]. They are supervised in the sense that they

are given large sets of example inputs and outputs with which to compute the mapping

function. What differentiates this class of models are the assumptions made by the

training algorithms (parameterized vs. non-parameterized), the nature of the outputs

(classification vs. regression), and the techniques used to learn and represent the

mapping function.

Supervised machine learning models can be broken up into classification and re-

gression models. A classification model is one that maps an input to a value in a

discrete set of classifications. An example classification model, also called a classifier,

could determine what of a finite set of objects is depicted in an input image. The

classes need to be designated before the machine learning model is trained, and the

training data would contain labels only from that set. A regression model is one that

maps an input to a continuous, numerical value. An example regression model, also

called a regressor, would given an input that represents the current weather pattern,

return the future temperature at a given location and time.

2.1.1 Training Machine Learning Models

A supervised machine learning model must first be trained with a labelled training

dataset. This dataset is composed of a set of matched input (𝑋) features called a

feature vector and output (𝑦) labels. The goal of the training phase is to learn the

mapping function between the inputs and outputs:

𝑦 = 𝑓(𝑋)

What differs between machine learning models is the way this relationship is

learned as well as the mathematical model used to represent it. In the case of a linear

regression model, the mapping is represented with a linear function. In the case of

a decision tree, the mathematical model is represented with a series of comparisons

that make up a binary decision tree, where the leaf nodes represent the result.

8

2.2 Classification and Regression Trees

A Decision Tree is a supervised machine learning model in the shape of an inverted

tree, with a root node, internal decision (split) nodes, and leaf result nodes. There

are two main types of decision trees: classification trees and regression trees [11]. A

classification tree classifies an input into one of several discrete classes, making it

suitable for models with categorical output variables. Regression trees are similar to

classification trees, but where the output variable can take on a continuous, numerical

value. Decision trees are highly interpretable, whereby the importance of particular

features can be calculated by their references in the split nodes of the decision tree.

Also, the path taken from the root to the resulting leaf clearly indicates what feature

comparisons were made to come to the resulting inference. This makes them particu-

larly useful for medical and science research where interpretability provides valuable

research insight[35].

2.2.1 Training Decision Trees

Machine learning models can also be broken up into parametric and non-parametric

models[38]. Parametric models are ones whose mapping functions are based on a

predefined mathematical model that requires specific assumptions be made. Non-

paramtric models do not make an underlying assumption about the mapping func-

tion.

The advantage of parametric models is that training has to simply solve for the

parameters of the assumed function, reducing the solution space and speeding up

training. They also improve the potential for a training algorithm to converge on the

distribution embedded in the training data, assuming the parametric assumptions are

valid. The major disadvantage is that if the assumptions are incorrect, the model will

poorly fit the training data, resulting in high error.

Non-parametric models, also called distribution-free models, do not make any

assumption about the general form of the mapping function, and instead are free to

fit any training dataset without a priori knowledge. The advantage of this approach

9

Figure 2-1: Training a decision tree by recursively dividing the training data. [92]

is that no assumptions need to be made about how the mapping function will look.

The disadvantage associated with this more general approach is that training becomes

more difficult, generally requiring more training data and additional methods to deal

with higher variance. Models also tend to grow in complexity with data size.

Decision trees are non-parametric models. Instead, they learn this mapping from

a statistical analysis of training data and are “grown" from the root down in an

inverted-tree pattern using recursive partitioning of the training data space, each

time attempting to split the training dataset between labels.

Figure 2-1 shows a simple example of how this process is done. For our example,

we will build a classification decision tree. The left-most plot shows a small training

dataset as orange circles and blue squares on a 2-dimensional plot; each of these

dimensions represents a feature (𝑓𝑒𝑎𝑡𝑢𝑟𝑒0 and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1) of our input space. The

purpose of our model is to grow a decision tree to separate these shapes into their

own partitions. Once we have the space partitioned such that the shapes are mostly

separated into partitioned groups, the model can then assign a classification (orange

circle or blue square) to any input features by determining which partition the input

features index to.

10

To do this, the training algorithm finds the feature and associated threshold value

to split the training data in order to maximize purity or information gain on each

side of the partition. The algorithm tracks a histogram of the different shapes for

each partition and determines the ideal split to improve purity in the splits. Our

second plot shows the 𝑓𝑒𝑎𝑡𝑢𝑟𝑒0 split at 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑0 that maximizes purity. In this

case, the right side of the split is only orange circles (100% pure), but the left side is

a mix, so we continue. Next, we select the 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 split threshold that separates the

remaining orange and blue shapes. Every time a split is made, a new node is added

to the decision tree. Our first split added the purple node to the decision tree, and

the second the green node. In our case, our training data is simple enough to train a

decision tree with two split nodes and 100% purity, but this is not usually the case.

The training process continues until some purity threshold is met or a maximum

depth of growth is met; these restrictions avoid overfitting the dataset, where the

model extracts more than the intended function, and includes noise in the training

data.

Regression tree learning is very similar to classification tree learning, but where

the labels of the training data contain continuous values, and the decision tree leaves

return continuous, numerical values. Instead of splitting to maximize purity or in-

formation gain, regression tree learning maximizes variance reduction. Every time a

split is made, the variance is calculated for the training data points in each partition.

The goal is to reduce the variance, or the stopping criteria 𝑆, and effectively parti-

tion data points with very similar numerical values. The equation below computes

the 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 by summing up the square of the differences between predicted

and actual label values for each leaf in all trees. This is effectively computing the

sum of the variances within all partitions.

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 =
𝑇∑︁

𝑙∈𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)

∑︁
𝑖∈𝑙

(𝑦𝑖 −𝑚𝑐)
2

Decision Tree training can be concisely summarized as the process of recursively

partitioning a training dataset with the intent to maximize a purity metric (classifi-

11

cation) or minimize variance (regression) while avoiding overfitting. Statistical algo-

rithms are used to determine which feature and thresholds are chosen at each step.

The result is a high-dimensional feature space that has been cut up into partitions,

where each represents a unique leaf inference value (classification or regression).

2.2.2 Decision Tree Inference

Decision trees make a decision (classification or regression) from an input that

is represented by a vector of numerical feature values called a feature vector. These

features that make up the feature vector are usually selected and transformed to

concisely, and with minimal redundancy, represent the input to the predictive model.

A decision for a feature vector is determined by a traversal through the decision tree

from the root node through several split nodes, to one of the decision leaves at the

bottom. There is a single valid traversal for each input feature vector through the

tree, because each split node has two mutually-exclusive outcome paths.

Figures 2-2a and 2-2b show an example of a decision tree and a feature vector.

The root-to-leaf path traversed for the given input is shown with bold states. At each

split node, the relevant feature is compared against the node’s learned threshold value,

yielding a left (true) or right (false) traversal. The result for this feature vector is an

output prediction taking a continuous, numerical value, in the form of a regression, or

a discrete value from a set of classes, in the form of a classification. In this example,

the output of our traversal is a classification to 𝐶𝑙𝑎𝑠𝑠 2.

2.3 Decision Tree Ensembles

Decision trees can learn any ML data distribution. In the worst case, a decision

tree can represent every separate data point in a training dataset by growing deep.

This would be accomplished by recursively partitioning the hyper-dimensional space

until all partitions have obtained 100% purity, or in the case of regression, 0 vari-

ance. Although being able to perfectly represent the training dataset in this way, it

would come at the expense of generalizing to all datasets, and Overfitting that train-

12

f1 < 0.2

f4 >= 0.75 f3 >= 0.7

f1 >= 0.1f2 < 0.8 f1 < 0.5 f2 < 0.8

Class 1Class 0 Class 2 Class 0 Class 3 Class 1 Class 2 Class 0

(a) A decision tree.

0.30.1 0.0 0.5 0.75 0.25

 f0 f1 f2 f3 f4 f5

(b) feature-vector

Figure 2-2: Classification using a decision tree in the Random Forest.

ing dataset. To evaluate how well the decision tree has learned the training data,

validation data is used to evaluate the trained model. Once the decision tree fails

to achieve higher accuracy or variance reduction, the decision tree fails to continue

learning without tending to overfit.

A decision tree ensemble is a machine learning model composed of a plurality of

decision trees. Each individual decision tree comes to its own inference, which are then

combined using a function determined by the ensemble technique. Two approaches

to using ensembles of decision trees are Bagging and Boosting.

2.3.1 Bagging vs. Boosting

Bootstrap Aggregation, or Bagging, reduces the variance of decision tree models

by training a set of decision trees on different random subsets of the training data.

It does this by randomly sampling, with replacement, the training dataset, a process

called Bootstrapping. A new decision tree is then trained on each of these random

subsets. The effect of this approach is that any noise in the training dataset is learned

by a subset of the decision trees, and by computing a separate inference value from

each decision tree and combining the results with a voting function, the net variance

13

is reduced.

Boosting is another ensemble algorithm that combines multiple decision trees’ re-

sults to compute one improved inference. Unlike with bagging, where each constituent

model attempts to learn the underlying training data distribution with variance that

is offset by voting, boosting trains decision trees incrementally. Each decision tree is

small and learns the remaining residuals of the previously learned distribution, incre-

mentally constructing a more effective mapping function. The constituent decision

tree inference values are then multiplied by weights and summed together to come to

a result.

2.3.2 Random Forest

The Random Forest [12] is a decision tree ensemble ML model that uses bagging for

training and a majority voter to combine the inferences from its constituent learners

as shown in Figure 2-3. It is called random because not only does it use bagging,

where random subsets of the training data are used to train constituent decision

trees, but during the training phase a subset of the features are randomly chosen to

be considered for the next split. This reduces the tendency for the decision trees to

have high coherence, or for them to learn the same mapping function.

Random Forests are ubiquitous across a large group of research domains; some ex-

ample research includes segmenting rat brains [9], classifying the alcohol dependence

of patients based on MRI data[124], meteorological normalization [33], predicting

building energy consumption [113], using drones to discriminate weeds from plants

[21], and detecting traffic accidents [23]. Random Forests are also being used by the

computer architecture research community. Singh et al. proposed Napel[86], a per-

formance and energy estimation tool, where they use a Random Forest model to infer

performance and energy usage from micro-architectural parameters and application

characteristics. O’Neal et al. propose HLSPredict[64], a tool to predict FPGA perfor-

mance and power consumption. Random Forests continue to be a popular ML model

in many research communities, and it is important to improve their performance and

efficiency to further motivate their use.

14

Figure 2-3: The result is the majority vote of the individual classifications.[92]

2.3.3 Boosted Regression Trees

Boosted Regression Trees (BRTs), and the many variations on this approach in-

cluding AdaBoosted Regression Trees and XGBoosted Regression Trees, are ensem-

bles of regression trees. These models differ from Random Forests in the way that

they are trained as well as the way inference is computed. Unlike with Random

Forests, BRTs are additive models, where the decision trees are trained on residuals

from previously-trained models. Predictions are made by combining tree partial re-

sults. Partial results from each decision tree are multiplied by their tree weights and

summed for the resulting score:

𝑆(𝑥) =

|𝑇 |−1∑︁
𝑡=0

𝑤𝑡 * 𝑙𝑡(𝑥)

Like Random Forests, BRTs are also ubiquitous across a large group of research

domains. A small sample of publications from the last two years includes researchers

predicting global irradiation forecasts [101], using GIS features to map forests for

fire susceptibility [79], and associating microRNAs, or short non-coding RNAs of

15

approximately 22 nucleotides in length, with various diseases[19]. Another research

project uses BRTs to measure the occurance of cyanotoxins in water supplies [61].

The authors also extract Feature Importance information from their trained model

to gain insight into what features best indicate the presence of the toxin. It turns out

that the pH of the water is the most important feature, followed by the presence of

Microcystis Woronichinia, a species of freshwater cyanobacteria that can cause algal

blooms.

2.4 Why Decision Tree Ensembles?

Although Neural Networks(NN) dominate the contemporary machine learning lit-

erature, decision tree ensembles are consistently used across a wide domain of research

fields. In particular, research fields where data is pre-processed into tabular, often

categorical, data often use decision tree ensembles like Random Forests for classifi-

cation tasks. They tend to perform well in the general case, and they’re very easy

to use with only two significant hyper-parameters to tune for in the case of RFs: the

number of decision trees in the ensemble and the maximum depth of the decision

trees (optional). BRTs have a few more hyper-parameters, but significantly fewer

than many other models. Neural Networks, on the other hand, require significant

tuning effort, machine learning expertise, and significant training times.

Decision tree ensembles also remain the focus of continuing research in statistics[5,

18] looking at techniques to improve the generalizability of the models with novel

training algorithms considering adaptive weighting, dimensional reduction, and vari-

able selection.

2.4.1 Cascaded Decision Tree Ensembles

Additionally, there have been several research projects exploring the use of cas-

caded decision tree ensembles to represent layered feature processing in a similar way

to how neural networks compute inference. These models work by layering decision

tree ensembles and passing forward their inference values as input features for the

16

Figure 2-4: The cascaded forest structure proposed by Zouh Feng et al.[123].

next layer. Zouh Feng et al.[123] propose gcForest (multi-Grained Cascade Forest)

where they use a combination of Random Forests and Complete Random Forests[49],

RFs that are trained with completely random features, to form a new class vector for

the next layer to process. These class vectors are then combined with the initial input

feature vector and passed forward until the output converges. The authors argue that

their approach automatically determines the number of layers necessary and can be

trained with far fewer hyper-parameters than a traditional Neural Network. They

also demonstrate that they can achieve comparable accuracy to a NN-based solution

on the GTZAN[95], IMDB[53], sEMG[82], ORL[80], and MNIST[46] datasets, but

that they can do so with less training data.

Figure 2-4 shows the cascaded forest structure of GCForest. The left-most green

rectangle represents the input feature vector that is processed by the trained Random

Forests (shown in blue) and the trained Completely Random Forests (shown in red).

The resulting outputs are interpreted as a vector of class features. These class feature

vectors are then combined with the input feature vector (shown in orange), and passed

to the next layer. This process is repeated until the 𝑀𝐴𝑋 of the 𝐴𝑉 𝐸𝑅𝐴𝐺𝐸 of the

resulting feature vectors converges to the expected output.

Miller et al.[55] with their Forward Thinking Deep Random Forests did something

very similar. Whereas the gcForest used full Random Forests to generate the class

17

vector to the next layer, FTDRFs use the output of individual decision trees. This

allowed them to achieve the same 98.98% accuracy as GCForest with the MNIST

dataseet, but with fewer decision trees. Unfortunately, because the output of all of

the decision trees was fed forward, their memory utilization was much higher.

Subsequent work has explored variations on cascaded decision tree ensembles.

Ryutaro Tanno et al.[88] merge representation learning from NNs into gcForests by

encoding feature representations into edges and leaf nodes. Utkin et al.[96] introduced

a weighted approach to gcForest, and Guo et al. introduced BCDForest (Boost-

ing Cascade Deep Forest), to emphasize important features between layers. Kim et

al.[43] propose using Random Ferns, or much shallower decision tree ensembles. Other

models were also considered; Feng et al.[25] introduced EncoderForest, constructing

ensemble-based Autoencoders and Utkin et al.[98] introduced Siamese Deep Forests

(SDFs) that implement Siamese Neural Networks[13] as well as implementing weight-

ing of the class vectors between layers.

2.5 Accelerating Decision Tree Ensembles

2.5.1 Accelerating Decision Tree Ensemble Training

There has been a significant amount of work published about accelerating the

training of decision tree ensembles. Wang et al. introduce DistForest[108], a supercomputer-

based parallel RF training framework. Zhao et al. introduced RFAcc[121], a ReRAM

based acclerator for training RF models. Zhang et al. with Google introduced a

massively parallel decision tree building accelerator for Gradient Boosted Regression

Trees with GPUs [120] and Hernandez et al. [36] and Marron et al. [54] introduce

two RF training accelerator also with GPUs. Lin et al. [48] propose a decision tree

learning approach using FPGAs.

Although important for applications where rapid reconfiguration is important, the

training of decision tree ensembles is beyond the scope of this dissertation. Typically,

machine learning models are trained offline and then optimized for fast and efficient

18

inference during runtime. This motivates research energies be spent for accelerating

and improving the efficiency of machine learning inference. These are the primary

concerns that motivate the novel ideas in this dissertation.

Decision tree ensemble inference is bottlenecked by the low-locality of the mem-

ory access pattern of the decision tree data structure as well as of the feature vector.

Von Neumann architectures with their deep cache hierarchies are heavily optimized

for workloads with high temporal locality; the fewer memory accesses made per unit

computation, the lower the cache miss rate, and the higher the performance. This

ideal workload is very much at odds with the nature of decision tree ensemble in-

ference. Additionally, execution divergence while traversing a plurality of trees of

various sizes prevents multi-threaded implementations of Single Instruction Multiple

Data (SIMD) accelerators such as general purpose graphics processing units (GPG-

PUs) from executing tree traversal in parallel.

The mismatch between the ideal workload characteristics of von Neumann pro-

cessors and the memory access pattern of decision tree ensembles motivates the use

of spatial architectures like FPGAs. By partitioning and pipelining the ensemble

computations spatially, there is potential for more computations per memory access.

Existing implementations explore this tradeoff.

2.5.2 Temporal Architectures

There has been a significant effort made in accelerating decision tree ensembles

on CPUs and GPUs as well as spatial architectures including the FPGA. The deci-

sion trees that make up these ensemble models are often nonuniform in shape and

significant in depth. This prevents the entire ensemble as well as the associated fea-

ture vector from residing in the cache memory of modern processors. Additionally,

decision tree inference is not compute intensive, but very memory intensive. One

threshold comparison is done for each level of the decision tree, requiring the memory

architecture load large chunks of the decision tree and feature vector between fea-

ture comparisons. CPU approaches have attempted to improve the runtime of the

algorithm by maximizing the cache reuse spatially and temporally.

19

Figure 2-5: Representing decision trees with structs and indexing with data compar-
isons from [3]

Researchers have borrowed concepts from modern compiler and database design

to improve the performance of decision tree ensemble models on CPUs. For example,

Asadi et. al[3] use predication and vectorization to improve the locality of decision

tree traversal and maximize runtime performance. Predication is a technique from

compiler design research that converts control dependencies into data dependencies,

effectively reducing cache misses in exchange for larger models. Branching operations

are removed from the execution flow and replaced by trees encoded with struct ar-

rays. Figure 2-5 shows how predication is used. Trees are encoded as a struct array

𝑛𝑑, where 𝑛𝑑[𝑖].𝑓 𝑖𝑑 represents the feature id of the 𝑖𝑡ℎ node, and 𝑛𝑑[𝑖].𝑡ℎ𝑒𝑡𝑎 is the

threshold for that node. The nodes are laid out in memory in a breadth-first traversal

of the tree, assuming a balanced tree, where node i’s left child is located at 2𝑖+ 1 and

its right child at 2𝑖 + 2. Vectorization is a technique from database design research

that batches decision tree computation to mask cache misses that a traditional se-

quential approach would incur. This allows temporal architectures to take advantage

of pipelining.

Lucchese et. al[51] use an entirely different approach to accelerating ensem-

bles of regression trees by representing traversals with bit vectors. Their algorithm,

QuickScorer, uses the commutativity of the AND operation to compute out-of-order

tree traversals. We use a similar out-of-order approach, ordering all feature thresholds

to be used for simultaneous comparisons, but we pipeline the thresholding, effectively

reducing the size of the resulting model. Our implementation also targets spatial

20

architectures, removing the memory access required by CPU implementations. The

authors report the fastest run-times to date by reducing the rates of control hazards

and branch mispredictions over the previous state-of-the-art VPRED[3] implemen-

tation. Although these approaches have demonstrated considerable improvements

over earlier solutions, they are incremental improvements on an algorithm that fun-

damentally lacks the data locality (both spatial and temporal) necessary for high

performance throughput on von Neumann architectures.

2.5.3 Spatial Architectures

There has also been a significant effort made in accelerating decision tree ensem-

bles on spatial architectures like FPGAs. The decision trees can be processed in

parallel during inference, making them suitable for pipeline-acceleration on FPGAs.

Unfortunately, large ensembles require significant on-chip memory and memory man-

agement resources. For this reason, existing FPGA implementations have only been

able to accelerate relatively small ensembles on the order of 10 trees with a depth

of 12. These existing approaches divide the ensemble into individual trees that are

executed in parallel in separate pipelines with threshold comparison units. The heavy

memory and buffering costs of these algorithms has resulted in the prevalence of hy-

brid CPU-FPGA models and often necessitate pruning to ensure that the trees are

aligned during processing, allowing for efficient memory utilization. The problem

with this approach is that it is still susceptible to the von Neumann bottleneck.

Essen et al.[99] compare multi-core CPU, GPGPU and FPGA Random Forest

(RF) implementations and propose accelerating RFs by converting them into a dif-

ferent representation called the Compact Random Forest (CRF) model, pruning the

trees and improving the model’s pipelinability on FPGAs. Their implementation re-

quires a significant amount of memory management and floating-point comparison

hardware that results in their architecture using multiple FPGAs for relatively small

RF models.

Owaida et al.[66] recognize the limitations of existing FPGA solutions and pre-

sented a hybrid CPU-FPGA approach that can deploy half a million tree nodes in

21

on-chip memory and achieving a 20x speedup over a 10-threaded CPU baseline. Their

approach uses pruning to be able to coerce non-uniform decision trees into a breadth-

first memory representation. In fact, the authors cite our work[92] with the Automata

Processor mentioning that our implementation cannot handle more than 20 trees of

depth 12; we address this limitation in Chapter 4. They continue their work[65]

to handle large ensembles by targetting cloud-resident FPGA services from Amazon

(AWS) and Microsoft (Catapult).

Nakahara et al. [58] argue that existing FPGA accelerators are based on low-level

HDL designs and therefore require longer design time over purely software-based

solutions. Their solution is to implement an RF inference accelerator with Altera’s

SDK and OpenCL. We agree that HDL design is complex and time consuming, but

the authors propose a tool flow that generates HDL for the FPGA. Our solution

also accepts a Scikit-learn based Random Forest model and generates the HDL, it

just does so by constructing HDL instead of using a higher level language in the

intermediate. Furthermore, the authors used a fixed point representation to reduce

hardware utilization, but at an accuracy cost. This is a common approach to being

able to represent decision tree ensembles on spatial architectures without running out

of hardware, but our approach does not make this approximation tradeoff.

2.6 Finite State Automata

A Finite State Automaton (FSA)[73] is a mathematical model of computation

originating from Computer Science formal language theory that can recognize the

class of Regular Languages. It is a recognizer, in that it processes an input stream

and returns a binary output 𝐴𝐶𝐶𝐸𝑃𝑇,𝑁𝑂𝑇𝐴𝐶𝐶𝐸𝑃𝑇 , depending on whether the

machine recognizes the input.

An FSA is a graph of a finite set of node states that are connected by directed

edges. Each state in the FSA accepts a set of symbols called that state’s character set.

When an active state matches an input character, the edges that emanate from the

matching state activate the next set of states for matching. This process continues

22

Figure 2-6: A simple FSA that recognizes all valid English spellings of the word
“Donut".

until either a final state, represented with a double-ring, is reached, or the end of the

input stream is reached. If a final state is reached, that FSA has found a pattern

in the input string and generates an ACCEPT. Figure 2-6 shows an example FSA

that recognizes all valid English spellings of the word “Donut". The starting state

recognizes a ’d’ or “D", and each of the two branches of the automaton recognize the

subsequent letters of the accepted language {𝐷𝑜𝑛𝑢𝑡, 𝑑𝑜𝑛𝑢𝑡,𝐷𝑜𝑢𝑔ℎ𝑛𝑢𝑡, 𝑑𝑜𝑢𝑔ℎ𝑛𝑢𝑡}.

Notice how the first two and last three states are shared between the spelling with

and without “ugh"; this is an example of prefix and suffix merging, respectively, an

optimization to reduce the size of the FSA.

2.6.1 Automata Computing

Automata computing is a computing paradigm whereby one stream of input sym-

bols serves as the input to be processed, and one or more FSAs are run against that in-

put stream. These FSAs are each small pattern matching state machines that look for

patterns, effectively computing a Multiple Instruction Single Input (MISD) computa-

tion. This model of computing can only be used to describe the class of computing lan-

guages called Regular Languages, but automata processing has demonstrated perfor-

mance and efficiency improvements on spatial architectures across a significant appli-

cation space including big data analysis[10], data mining[110], bioinformatics[75, 89],

high energy particle physics[111], machine learning[92], pseudo-random number gen-

23

eration and simulation[103], and natural language processing[122].

2.7 Processor Architectures

FSAs are graphs represented with nodes that each have their own character sets

that are connected with directed edges. This graph represents a language, but not a

method by which to process the graph. Efficiently computing FSAs is the focus of

on-going architecture research on CPUs, GPUs, FPGAs, and in-memory processing.

2.7.1 von Neumann Architectures

Von Neumann architectures leverage deep cache hierarchies to reduce the cost of

memory access by leveraging the locality within workloads. If the workload does not

exhibit a high computation-per-load characteristic and has low locality, as in the case

with random pointer chasing algorithms, von Neumann architectures will run into

the memory bottleneck affectionately known as the "von Neumann Bottleneck." We

discussed in a previous section how these architectures map poorly to decision tree

ensemble inference. This also holds true to processing finite state automata.

To maximize the performance of finite state automata computing on von Neumann

architectures, the FSA graphs are represented compactly, representing transitions

between states with look-up tables rather than pointers. To minimize the redundancy

of computation, an active set of currently active automata states is maintained. For

every input symbol only lookups with the tuples generated from the cross product

of the active states in the active set and the input symbol need to be evaluated.

The lookups yield any subsequent states to then be loaded into the active set. This

process is continued until a reporting state is met, in which case a 𝐴𝐶𝐶𝐸𝑃𝑇 report

is logged.

VASim[105] is one such automata engine. For every input symbol, three stages

are computed:

1. For each active STE in the active set, check to see if it matches with the input

24

symbol; if so, buffer it.

2. Enable each child node of the buffered matched states.

3. Special elements (logic and counters) are simulated.

Hyperscan[31] is another automata engine owned by Intel. It uses a series of

complex optimizations to maximize performance on CPUs. GPU-based engines[15]

have also been implemented to achieve better performance over CPUs. Although

they provide a significant increase in thread parallelism, the memory access pattern of

automata processing means they do not obtain the same performance advantages[104]

that spatial architectures can.

2.7.2 Automata Processing on Spatial Architectures

Many automata applications utilize large numbers of individual automata that all

process an input stream in parallel. This Multiple Instruction Single Data (MISD)

style of computing maps poorly to von Neuman architectures that assume locality

in their application workloads. Several spatial architectures including Micron’s Au-

tomata Processor (AP) and Field Programmable Gate Arrays (FPGAs) have shown

considerable speedups over von Neumann implementations, utilizing the inherent spa-

tial parallelism available to run multiple automata concurrently on one distributed

input stream of symbols.

Micron’s Automata Processor

Micron’s Automata Processor [22](AP) is a reconfigurable, DRAM-based, au-

tomata processing architecture. It is a fabric of automata elements, additional logic

and counter elements, and an interconnect. The fabric contains State Transition El-

ements (STEs) and boolean elements that can be configured and connected to com-

pute a set of Nondeterministic Finite Automata (NFAs) simultaneously in hardware.

NFAs are FSAs where multiple states can be active at once. The AP also contains

counter elements that provide additional functionality for more complex machines. A

25

Figure 2-7: An AP State Transition Element (STE). Each STE contains a bit column
representing a character set and a state bit that indicates if the state is active or not.
An 8-to-256 decoder sets one of the bits in the column high; this value is then AND’d
with the state bit to produce the output signal that enables STEs tied to this one’s
output.

programmer designs automata machines in software, which are compiled and loaded

onto the AP.

Figure 2-7 shows a schematic of a single STE in the AP fabric. Each STE contains

one 256-bit column of DRAM that contains that state’s character set. 256 bits allow

the STE to represent all possible combinations of 8-bit values, effectively allowing

the STE to represent any subset of 8-bit symbols. In order for a match to be made,

that state also needs to be active, so each STE also contains one active bit that is

AND’d with the decoded character lookup. If the result of this logical AND is high,

all out-going edges are activated and the next states become active for the next input

symbol.

NFAs are represented on the AP with STEs and activation edges. STEs represent

26

states and their corresponding state transition conditions; activation edges describe

activation (transition-enabling) relationships between STEs. STEs with incoming

edges from the start state are marked as Start STEs, and STEs with final states

are marked as Reporting STEs. Start STEs can be configured as start-of-data STEs

which process only the first symbol of the input data stream, or all-input-start STEs

which process every symbol in the input data stream.

At runtime, all of the automata are loaded onto the processor, and the input data

is streamed in as an input data stream. This input stream broadcasts one symbol

per cycle to all of the AP-chips in an AP Rank. On the first clock cycle, only the

Start STEs are active which then match the input symbol against the character sets

of those STEs. If a match occurs, the matched STE activates all STEs connected

to its outgoing connections. This process continues on the next cycle. The counter

elements and boolean elements may be used to provide additional logic to these

activation signals. If in a cycle one or more reporting STEs are matched, then an

output is reported identifying the reporting STE(s) and the offset in the input stream

where the match(es) occurred.

A single AP chip contains 49, 152 STEs, 2304 boolean elements and 768 counter

elements. An AP board contains 32 such chips, arranged in 4 ranks of 8 chips each.

This cumulatively amounts to over 1.57 million STEs, 73, 728 boolean elements and

24, 576 counter elements. All of the chips in one rank can receive a broadcast from

a single data stream or can be organized into two logical cores of 4 chips each. Each

logical core processes the data flow at up to 1 Gbps, allowing a maximum data

processing rate of 8 Gbps per board.

Micron’s AP hardware is accompanied by a Software Development Kit (SDK)

which includes design tools to define, visualize, simulate, compile, load, and run user-

defined NFAs on the AP. Using these tools, previous work including biological motif

search [75], modeling Markov Chains [103], association rule mining [109], and Brill

tagging [122] were developed. Although, these works inspired our research, we report

results on actual hardware. In fact, the application for sentiment analysis has been

showcased on hardware at the International Supercomputing Conference 2015 (ISC-

27

15) and the Supercomputing Conference 2015 (SC-15), albeit with restrictions on

prototype hardware.

FPGAs

Field Programmable Gate Arrays (FPGAs) are SRAM-based integrated circuits

based on a matrix of Configurable Logic Blocks (CLBs) and other hardware re-

sources that can be interconnected with a programmable interconnect. The "Field

Programmable" term in the name indicates that FPGAs can be programmed after

manufacturing[116]. FPGAs give engineers the ability to rapidly prototype hardware

devices.

Xie et al. introduced REAPR[115] (Reconfigurable Engine for Automata PRo-

cessing), a hardware description language (HDL) generator tool for converting finite

state automata graphs into a digital circuit, targeting FPGAs. Their LUT-based ap-

proach reads the automata intermediate representation, called "ANML" (Automata

Network Markup Language), and generates one large flat HDL file that contains

statically interconnected STE-like states with one module per state.

REAPR directly translates the finite automata graphs into a digital circuit rep-

resentation. Xie et al. leverage the one-to-one mapping between characteristics of

automata states and circuit elements: the character set can be represented as an 8-

input look-up table, the activated status can be stored in a 1-bit flip-flop, and these

two elements combined with an AND gate in one STE module.

Each STE module has 4 inputs: 1) an 8-bit global symbol input, 2) a global

reset signal, 3) a global clock signal, and 4) a 1-bit signal that determines whether

upstream states have been activated. If there are multiple upstream states that

activate a particular STE, the outputs of those states are passed through a multiple-

input OR gate. The only output from an STE is the AND of whether the STE is

activated by other states, and whether the current symbol is in the STE’s character

set.

REAPR first translates each individual STE’s character set into a 256-bit vector,

and then creates wires between all of the instantiated states. The connections and

28

character set bitvectors are hard-coded to enable the FPGA physical implementation

tools to maximally apply fine-grained optimizations at various levels, especially logic

optimizations. The 256-bit vectors use up precious LUTs and flip-flops in the FPGA

fabric, and in case an STE has a very simple character set, then the compiler does

not need to use as many resources to implement that logic.

Figure 2-8 shows how each STE is represented by a vector of bits connected to

discrete logic components, and how the states are connected by wires. The generated

design is a flat dataflow architecture, where symbols enter the automata and cause

states to activate downstream states, as shown in Figure 2-9.

Figure 2-8: All STEs receive the 8-bit input symbol, a clock and reset signal. They
are connected in one flat design.

The authors mention that the main disadvantage of their approach is the long

compilation times, where the compiler aggressively attempts to minimize logic and

increasing compiler effort. Another limitation of REAPR is that the benchmarks used

to evaluate it are relatively small, with 2,784 and 100,500 states.

29

Figure 2-9: All automata are generated in one flat design without any structure.

30

Chapter 3

Decision Tree Automata

In Section 2.2.1, we discussed how decision trees represent a partitioning of a high-

dimensional feature space and that each leaf of the decision tree represents a unique

partition. Decision trees are useful for representing this partitioning because they do

so in a space-efficient way, and compactness is a primary concern for von Neumann

architectures with deep cache hierarchies. Unfortunately, this representation comes

at the cost of poor locality in memory access, limiting its inference throughput and

efficiency with large models on these architectures.

We replace the decision tree data structures with finite state automata (FSA) [92]

we call decision tree automata (DTA), where each separate automaton recognizes a

sequence of input symbols that represent features that maps to that automaton’s

assigned partition. We introduce a series of algorithms and transformations to trans-

form decision trees with their data-dependent memory access patterns to DTA that

compute on a sequential stream of data. Our approach also removes the need for

significant memory management and buffering hardware that existing spatial archi-

tectures use for decision tree inference. Instead, our DTA solution computes on a

single, sequential stream of data. With access to large spatial architectures like Mi-

cron’s Automata Processor (AP) and Field Programmable Gate Arrays (FPGA), we

compute all of the FSAs in parallel and achieve significant speedups over a high

performance CPU implementation.

31

3.1 Streaming Automata Inference

The execution pipeline for decision tree automata is shown in Figure 3-1. There are

three steps in the inference processing pipeline: labeling the input features, executing

the finite state automata against the stream of labels, and reduction, where the

resulting automata outputs are combined into one inference value. In the labeling

step, continuous features from the input feature vector are converted to their discrete

label representation with the help of a lookup into the Feature Range Lookup Table.

This transformation yields a stream of discrete labels for each input, which are then

evaluated in the second step as a stream of symbols with FSAs.

f1f0 f2 f3 f4 f5

Feature Vector

FPGA

Feature Range Lookup
Table

AP

Feature Labels: L
0
, L

1
, L

2
, …, #, L

0
, L

1
, L

2
, …

Feature Values: F
0
, F

1
, F

2
, …, #, : F

0
, F

1
, F

2
, …

Tree Classifications: C
0
, C

0
, C

2
, …

T
1 T

2
T

3 T
4

Figure 3-1: The full Decision Tree Automata pipeline. First, the feature vector is
converted into feature labels. These labels are then streamed to the Decision Tree
Automata on a spatial architecture. [92]

In the second stage, the feature label stream is evaluated against all decision tree

automata that have been loaded onto the target spatial architecture. Each automaton

looks for a set of labels that correspond to its partition. Because there is a single

valid traversal per tree, there will be a single reporting FSA per tree in the ensemble.

Finally, the output reports, one per tree, are sent to the CPU for the reduction

32

step. In the case of the Random Forest a majority vote is calculated; in the case of

boosted regression trees, a multiply and accumulate step is performed. This process

is also pipelined and can be computed on the spatial architecture[115] or on the CPU.

3.1.1 Automata Challenges

In order to accomplish this refactoring from tree traversals to sequential stream

processing, we had to overcome several challenges not addressed by previous automata

processing and decision tree model research. Firstly, feature values like intensity and

TF-IDF are often represented by floating-point values. These values are typically

incompatible with automata processing, because automata processing uses set mem-

bership operations that are oblivious to floating-point encodings. Roy et al.[76] in-

troduce a parallel interval stabbing approach that compares a stream of input bytes

against floating-point values, but at a high cost per automaton. Their approach re-

quires several comparisons at various locations in the floating-point byte array. We

opt to instead pipeline floating-point comparisons, where we convert floating-point

values into fixed-point labels, and generate smaller automata that work on the labels.

We develop a novel pipelined labeling technique that discretizes numerical features

into discrete symbols. Pipelined labeling allowed us to maintain complete fidelity

to the original model, reduce the amount of data that the automata needs to pro-

cess, and also separate and pipeline the thresholding operation from the decision tree

traversal. Existing acceleration techniques reduce the width of feature vectors by

converting floating point features into a fixed point representation, albeit at a cost

to accuracy[59]; we reduce the need for expensive arithmetic hardware by computing

all floating-point comparisons in one step of the pipeline or pushing it off to feature

extraction entirely.

Secondly, decision tree traversal is data-dependent, where the index into the fea-

ture vector as well as the index of the relevant tree node is not known in advance and

is a function of the input. In order to use massively-parallel automata computing, it is

necessary to align all FSAs to process the same input feature label at the same clock

cycle; doing so would allow us to stream in the feature values once and process all

33

automata in parallel on that stream. We accomplish this by reshaping our automata

such that all automata are aligned to process the same features concurrently. This

allows us to stream in our input representation as well as align automata to do stream

processing.

We traded off spatial resources for temporal resources. By expanding our model

from compact decision trees into many parallel automata, we could reorder our access

pattern and enforce perfectly sequential and streaming access of the feature vector.

In order to reduce the spatial penality of our method, we developed a compaction

technique called Automata Folding. Existing implementations of spatial automata

map state character sets directly to hardware resources. Automata Folding allows us

to combine character sets into fewer state elements, increasing the spatial efficiency

of our representation. This allows us to represent larger models with fewer hardware

resources.

3.1.2 One Finite State Automaton per Partition

Decision trees can be converted into rules that represent the paths from the root

of the decision tree to each leaf node as demonstrated by Quinlan et al. [71]. The

authors use this approach to merge decision trees by merging the tree traversal rules.

We use a similar approach to convert decision trees into chains of operations which

we then convert into automata. Figure 3-2 shows how decision trees are converted

into parallel chains by breaking the tree shown in Figure 3-3 into separate paths, and

generating one chain per path. As shown in Figure 2-1, each of these chains effectively

detects if the input feature vector maps to a particular sub-partition.

Each chain represents one partition, or one leaf of the decision tree. The total

number of chains represented by all trees (𝑡) in the ensemble of trees (𝑇) is:

𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑎 = 𝐶ℎ𝑎𝑖𝑛𝑠 =
𝑇∑︁

𝑡∈𝑇

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡)

Because the number of leaves of a decision tree grows in the exponential of the

decision tree’s depth, the number of chains also grows in the exponential of the depth.

34

Figure 3-2: Eight decision trees automata that each evaluate one of the paths from
Root to one of the red leaf nodes in Fig 3-3[92]

.

Figure 3-3: A decision tree model. [92]

Our approach scales memory utilization exponentially with decision tree depth and

linearly with the number of trees in the ensemble. For this reason, decision tree

automata tend to achieve better performance for larger ensembles of shorter decision

trees.

Figure 3-4 shows a simple partitioning of the training data space presented in

the previous chapter. We replace the decision tree with three small, independently-

computable state machines that can all be evaluated in parallel at not only the decision

tree granularity, but across the entire ensemble. This means that, with a single

sequential stream access of the feature values, an inference can be computed regardless

of the decision tree complexity in terms of depth, count or feature permutation.

35

Figure 3-4: Automata can be used to recognize an input string that maps to each of
the partitions instead of using decision trees.

.

3.1.3 Aligning Automata

In order to achieve streaming parallelism, all generated chains must be executed

simultaneously on the input stream of symbols. Therefore, all chains must share a

common feature access pattern. For our decision tree automata, the input stream of

feature labels is ordered in a particular way that aligns with the corresponding nodes

in each state machine that map to those features at a given input index.

In addition, not all chains consider every feature in the feature vector, so these

automata must ignore feature labels that are not considered in the traversal they

represent. To accommodate this, we insert ‘match-all’ states represented with the

Kleene Star, *. The order of the nodes for the chains has no effect on the outcome of

the computation because each evaluation must be true for the full chain to be true.

The commutivity of the chain allows us to reorder the nodes. Figure 3-5 shows how

the nodes are rearranged so that at each moment in time (node index from the top)

the same feature index is evaluated.

36

The chains can now be arranged on a spatial architecture and all paths computed

in parallel. Each chain acts as a small path detector that evaluates an input stream

of features, and will report if that input stream corresponds to the traversal that

the detector is looking for. The runtime of this algorithm is linear in the number of

features considered by the model (the length of the input stream), and is independent

of the depth of the decision trees as well as the number of decision trees as long as

the model can fit in the available space. If the model exceeds the available space, the

overhead of reconfiguration is significant, motivating the need for more efficient use

of spatial resources.

Figure 3-5: The automata after sorting nodes in increasing order and filling unused
state STEs with don’t care values (*).[92]

3.1.4 Numerical Comparisons to Set Membership

To complete the transformation from decision trees to automata, we convert the

continuous input features to discrete symbols as well as to convert the numerical

comparison operations that are performed in the chain from threshold comparisons

to set membership operations. Conventional implementations of decision tree ensem-

bles compute floating-point comparisons at each inner node. Converting from this

continuous approach to one that utilizes discrete features is one approach to increas-

ing the performance of ML classification. By reducing the number of bits used to

represent inputs and reducing the size of the model, less hardware is required and

37

higher clock frequencies can be achieved. This is typically achieved by discretizing

the continuous feature space. Lim et al.[47] explained that there are two approaches

to Discretization:

1. Unsupervised Discretization: Quantize each feature without knowledge of the

classes and data. This is typically done by setting an interval width between

discrete values or setting equal frequency intervals.

2. Supervised Discretization: Use an ML model to learn discretization intervals

based on a training dataset, lumping together feature values that map to the

same label.

The authors use decision tree learning to compute the discretization intervals

of each feature by breaking a training dataset into partitions (one per leaf) that

represent discrete value ranges. They achieved their best performance by using an

entropy-based discretization algorithm. Tong et al.[90] accelerate existing FPGA im-

plementations of decision tree ensembles by discretizing feature values in a similar way

with their entropy-based Empirically Optimized Feature Set (EOFS) approach. We

use a discretization approach that perfectly represents the thresholding comparisons,

but future work could explore using these other techniques to potentially reduce the

amount of ranges required at the expense of accuracy.

We call our approach to discretization feature labeling [92]. It differentiates itself

from previous approaches by constructing discrete ranges for each feature based on a

model trained on continuous data without losing any fidelity to that model. Feature

labeling is also an important component of our automata-based approach because by

transforming features into discrete symbols, we can perform set-membership opera-

tions, the fundamental building block of automata computing.

Our approach works by searching the full ensemble of decision trees and collecting

all thresholds evaluated against each feature and binning them. We then sort and

list all features’ thresholds into address spaces, one per feature. We assigned each

range between neighboring threshold values a unique range value; figure 3-6 illustrates

this concept. The three plots at the top of the figure show three simple partitions

38

of the feature space by three different trees. The vertical purples lines are all of the

thresholds learned for 𝑓𝑒𝑎𝑡𝑢𝑟𝑒0 and the horizontal green lines are all of the thresholds

learned for 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1. We combine all thresholds by stacking these partitions on top of

each other to form the plot below. To find the resulting threshold ranges, we project

the lines to the axes of the thresholds, and form address ranges for each feature.

Figure 3-6: Combine all thresholds across all trees into one shared address space.

By representing the ranges between all thresholds with unique identifiers, or labels,

it is now possible to perform the same operation as a floating-point comparison by

representing the equivalent set of ranges that correspond with the inequalities. The

input to the algorithm now corresponds to a range index, and the automaton for

each traversal path accepts a set of ranges that correspond to the same mathematical

inequality. It is important to note here that we lose no fidelity to the original model.

Figure 3-7 shows an example Feature Range Lookup Table (FRLT) with four dif-

ferent features’ threshold address spaces: 1, 2, 3, and 4. In this case, for feature 1,

there are 3 unique thresholds found in the entire ensemble model: v1, v5 and v6.

These three thresholds are sorted and combined, and all ranges between them are

labeled with unique range identifiers 0x0 through 0x3. Feature 1 is now represented

39

with a range index, and the states in the recognizing automata also only accept range

indexes, as shown in Figure 3-8. This approach removes the need for floating point

comparisons during the inference step of the model, and replaces them with set mem-

bership operations. This is a vital step in our transformation, because now we can

perform very light-weight pattern recognition on encoded symbols.

Feature 2 Address SpaceFeature 1 Address Space

f1 < v1 v1 <= f1 < v5 v5 <= f1 < v6 f1 >= v6 f2 < v4 v4 <= f2 < v7 f2 >= v7

0x0 0x1 0x2 0x3 0x4 0x5 0x6

Feature 3 Address Space

f3 < v3 f3 >= v3

0x7 0x8

Feature 4 Address Space

f4 < v2 f4 >= v2

0x9 0xa

Figure 3-7: The feature address spaces of four different features.[92]

This FRLT is used during the first phase of execution for feature labeling. This

can be done on the FPGA or in the feature extraction step. By moving the feature

binning step to the feature extraction step, it may be possible to reduce feature

extraction power and timing requirements. We leave this for future work.

3.2 Automata Folding

We have discussed converting decision tree traversals into stringy FSAs by break-

ing the decision trees into chains that represent all tree traversals, one FSA per

partition or leaf. We also discussed how we can align all FSAs to consume one fea-

ture input stream simultaneously. One limitation of our approach so far is that when

mapping our automata to the Automata Processor, one STE is used per feature, per

automaton, or in the case of an FPGA implementation, one STE module per feature

per automaton. This leads to significant resource requirements, even for moderately

sized decision tree ensembles.

We determined that each of these single-feature STEs were being underutilized

because of the relatively small number of feature ranges required per feature. By

40

Figure 3-8: Finite State Automata that recognize feature ranges with set membership.
Each state only accepts feature range values that correspond with that automaton’s
traversal path.[92]

combining multiple features into a single state, we could considerably reduce the

number of STEs required for each automaton. We use a compaction technique called

Automata Folding [92] to combine features into fewer STEs by generating loops from

our automata chains, effectively folding chains in on themselves.

The features in a Random Forest model typically have differing numbers of inter-

vals (threshold ranges) associated with them. As long as a feature is using significantly

less than 255 feature ranges, or the range capacity of an STE, it is possible to repre-

sent multiple features in that STE. Automata Folding combines STEs by solving the

following optimization problem:

min𝑛 : ∀𝑖 ∈ [1, 𝑛],

⌊𝑚/𝑛⌋∑︁
𝑗=0

𝑓𝑛𝑗+𝑖 ≤ 𝐶 (3.1)

where 𝑛 is the number of STEs used in the automaton, 𝑖 is the index of the current

STE, 𝑓𝑛𝑗+𝑖 is the number of intervals assigned to feature 𝑛𝑗+ 𝑖, 𝑚 is the total number

of features, and 𝐶 is the capacity of the STE, 255. This optimization function returns

41

the minimum number of STEs required to represent 𝑚 features, where the STEs are

chained to form a loop. In a simple case where two STEs are required, 𝑆𝑇𝐸1 checks

feature 1. 𝑆𝑇𝐸2 then checks feature 2, 𝑆𝑇𝐸1 checks feature 3, 𝑆𝑇𝐸2 checks feature

4, and so forth.

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Figure 3-9: Combining features into STEs[92]

Figure 3-9 shows our folded automata. For our simple example, the total number

of labels for all of the features is less than 2551. Therefore, we need a single STE

to check the labels of all of the features. This STE checks the first symbol of the

label vector against the possible labels for feature 𝑓1. If a match occurs, it activates

itself to check the second symbol in the label vector against the possible labels for

𝑓2 and so on. This is possible because the labels for different features are processed

on separate clock cycles and the labels assigned to each feature are disjoint in that

STE’s address space.

If the number of threshold ranges for all features exceeds 255, as is the case

with decision tree ensembles of nontrivial size, we extend our loop by adding an

additional STE. We then connect the states in a round-robin fashion and use temporal

multiplexing to ping-pong between states. The first feature’s ranges would map to

the first state, the second to the second, the third to the first, and so forth. Solving

Equation 3.1 yields the minimum number of STEs required to fit all of the label

ranges for all features. It is important to note here that this approach does not

support features with over 255 feature ranges; we address this in the next chapter.

1the symbol space of an STE minus one symbol reserved for the delimiter

42

3.3 Decision Tree Automata Model

To explore the capacity and performance tradeoffs made by our approach relative

to decision tree ensemble model parameters, we explore the number of states required

to represent a decision tree ensemble model containing 𝑇 decision trees with 𝑙𝑒𝑎𝑣𝑒𝑠(𝑡)

number of leaves per tree (𝑡), with 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 number of features. We assume that all

features are used fewer than 255 times throughout the ensemble; we address the case

where features are used more often in the next chapter.

As explained in Section 3.1.2, the number of automata that represent the decision

tree ensemble is linear in both the number of trees in the ensemble and the number of

leaves per tree. It should be noted that the number of leaves per tree is exponential

in the depth of the decision tree, meaning that the spatial resources grow exponential

in decision tree depth.

𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑎 = 𝐶ℎ𝑎𝑖𝑛𝑠 =
𝑇∑︁

𝑡∈𝑇

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡)

Next, we explore the size of each individual automaton. We showed in Section 3.2

that we could combine logical states with Automata Folding. In the case where all

feature ranges could be represented within 255 ranges, the best case scenario would

allow us to represent the full automaton with a single state. In the worst case,

Automata Folding would not provide any spatial reduction, resulting in the number

of states per automaton being equal to the number of features in the input stream.

𝑆𝑡𝑎𝑡𝑒𝑠𝑃𝑒𝑟𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛𝐵𝑒𝑠𝑡𝐶𝑎𝑠𝑒 = [1, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]

Combining these cases, we determine that the total number of spatial states re-

quired for our automata decision tree model is:

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝑠 = 𝑆𝑡𝑎𝑡𝑒𝑠𝑃𝑒𝑟𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛× 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑎

43

With best and worst case scenarios resulting in:

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝑠𝐵𝑒𝑠𝑡𝐶𝑎𝑠𝑒 =
𝑇∑︁

𝑡∈𝑇

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡)

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑡𝑎𝑡𝑒𝑠𝑊𝑜𝑟𝑡𝐶𝑎𝑠𝑒 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠×
𝑇∑︁

𝑡∈𝑇

𝑙𝑒𝑎𝑣𝑒𝑠(𝑡)

Assuming that all automata can be represented on the spatial architecture con-

currently, the runtime per inference is then linear in the number of features, as the

length of the input feature vector is the number of features. This constant inference

time is one benefit of using automata for decision tree traversal.

3.4 Experimental Analysis

We implemented our automata-based design on the Automata Processor as a proof

of concept. Although we were able to run our design on AP hardware, because the AP

was a prototype, we were unable to achieve high performance results. For this reason,

we ran performance simulations with the performance metrics provided by Micron;

we provide those in our results section below. We then compared our AP implemen-

tation against a high performance CPU implementation using Random Forest models

trained on two different datasets: the MNIST handwritten digits database [46] and

the Sanders Twitter Sentiment Corpus [81].

3.4.1 Datasets

The MNIST handwritten digits dataset[46] contains labeled images of handwritten

digits, where the classification for each image takes on one of the values from 0 to 9.

Each input sample is represented by a 28x28 pixel two-dimensional array representing

the greyscale values of the image after being centered and scaled. This dataset has

become a commonly used dataset for evaluating machine learning algorithms and

serves as a good example for our problem because of the relatively high feature count

and learning complexity.

44

The second dataset is the Sanders Twitter Sentiment Corpus [81]. This dataset

contains one large set of Twitter messages and their associated sentiments. The

positive, negative, neutral and irrelevant sentiment classifications indicate the inferred

author’s sentiment when posting the tweet.

3.4.2 Training

The two applications that span very different domains were used to train two

diverse sets of Random Forest models using version 0.16.11 of the Scikit-Learn [68]

machine learning framework. We vary the tree counts, tree depths, and feature counts.

We then took the generated models and converted them into decision tree automata

to run on the Automata Processor. For the MNIST data, we chose to represent the

handwritten digit input data with a 784 byte wide feature vector, one per pixel. For

the Twitter data, we used TF-IDF (Term Frequency, Inverse Document Frequency)

vectorization with an experimentally-determined 1600 feature size.

3.4.3 CPU Evaluation

We determined the CPU throughput values of our RF models by using Scikit-

Learn’s Random Forest implementation. While benchmarking CPU performance us-

ing multi-cores, we found that the performance varies depending on the hardware

configuration and the algorithm’s parallel efficiency. We chose to evaluate against a

single thread of the Intel Xeon CPU E5-2630 v3 @2.4GHz processor.

3.4.4 Automata Evaluation

Our generated Random Forest models were converted into our automata repre-

sentations and loaded onto the AP with Micron’s SDK. Knowing the number of STEs

per automata, the feature vector size, and the number of trees in the ensemble, we

could calculate the throughput of our models on functioning AP hardware. There are

16 rows of STEs per block, 192 blocks per AP chip, 8 chips per AP rank, and 4 ranks

per AP board. The input symbol rate was expected to sustain 133 MegaSymbols -per

45

second. If the Random Forest model fits on a single rank, we use inter-rank multi-

streaming to increase our throughput to 4x a single rank throughput. If the model

is small enough to fit into two chips in a rank, we use rank core multi-streaming to

achieve an additional 4x speedup, with an effective throughput of 2.128 gigasymbols

per second!

3.4.5 Results and Discussion

Random Forest Model Parameters and Accuracy

The experimental results on Twitter data show that the classification accuracy

increases with the leaf count. We found that the maximum accuracy for our model

saturated at 72% with 800 leaves per tree as shown in Table 3.1. We also found the

classification accuracy to increase from 5 to 40 trees, but no more significant increase

of accuracy beyond that count.

Table 3.1: Automata Size vs Accuracy and Throughput for Twitter Results

Trees Leaves Accuracy AP Throughput
(k Pred/Sec)

CPU Throughput
(k Pred/Sec) AP Speedup

5 40 66.9% 14400 154 93
10 40 67.5% 8130 129 63
20 40 67.7% 5360 93.4 57
40 40 68.0% 3750 58.5 64
5 600 70.4% 2010 118 17

10 600 71.4% 1530 86.4 18
20 700 71.7% 385 51.5 7
40 700 71.9% 194 32.4 6

We performed the same exploration for the MNIST dataset models. Our results

show that increasing the number of leaves per tree in the ensemble has a similar effect

as with Twitter data, and we found our elbow was around 10000 leaf nodes per tree.

Unlike with the Twitter dataset, MNIST data models had a significant increase in

accuracy when increasing the number of trees per model from 5 to 160. Our highest

experimental accuracy was calculated to be 97.1% and was computed with 160 trees

with 4500 leaves per tree as shown in Table 3.2.

46

Table 3.2: Key data points of MNIST Results

Trees Leaves Accuracy AP Throughput
(k Pred/Sec)

CPU Throughput
(k Pred/Sec) AP Speedup

5 50 82.2% 13200 337 39
10 50 86.1% 5980 242 25
20 50 87.8% 4170 150 28
40 50 88.7% 3350 86.5 39
80 50 89.2% 2940 46.4 63

160 50 89.6% 1350 25.0 54
10 500 93.3% 2480 205 12
20 500 94.3% 1160 125 9
40 750 95.2% 420 68.0 6
80 1250 96.0% 111 34.3 3
20 4000 96.1% 129 98.9 1.3
40 4750 96.7% 55.0 51.5 1.1
80 5000 96.9% 25.0 26.6 0.9

160 5000 97.1% 12.2 13.5 0.9

Throughput vs. Accuracy

Generally, there are design tradeoffs that can be made between throughput and

model accuracy for ML inference. Random Forest models with fewer and shallower

trees can achieve higher throughput, but below a threshold, they achieve lower accu-

racy. Adding additional trees and training them to be deeper increases the accuracy to

the model’s saturation; adding any additional resources beyond this point just reduces

the efficiency of the model and can lead to over-fitting. The goal of model optimiza-

tion is to find the trade-off between these parameters that maximizes throughput,

while still achieving the required level of accuracy.

Figures 3-10 and 3-11 show that throughput is significantly affected by the num-

ber of trees in the Random Forest ensemble. As we discussed above, we saturate

our accuracy with 40 decision trees, and therefore adding any more is unnecessary.

With the same number of trees per model, the AP consistently performs with higher

throughput than a single-threaded CPU on Twitter data. Figure 3-11 shows that, on

MNIST data, the AP outperforms the CPU in most of the cases. With the number

of trees greater than 20, and a large leaf number per tree (over 4000 leaves per tree),

47

the throughput matches.

Figure 3-10: Throughput of Twitter Random Forest as a function of number of trees
an leaves.[92]

The AP architecture allowed us to multi-stream by 16x if the full model fits into

two of the 32 AP chips. As the model size increases beyond this threshold, this

multi-streaming factor is reduced by factors of two (Table 3.1, Table 3.2) . The steps

in the graph indicate the model dimensions where the hardware cannot sustain the

multi-streaming factor. Future generations of the hardware will be able to fit larger

models, therefore flattening the throughput curve.

For the Twitter models, the Random Forest implementations on the AP achieve

from 2 times to 93 times the prediction throughput of a single CPU. For MNIST, the

AP can achieve up to 63 times speed up over the CPU. The speed ups achievable

using the AP are more significant with models that have fewer leaves per trees and

48

Figure 3-11: Throughput of MNIST Random Forest as a function of number of trees
an leaves.[92]

fewer trees per forest.

The AP is a massively parallel device. With smaller Random Forests models,

especially for models with lower numbers of leaves per tree, the AP’s advantage of

massive parallelism can process hundreds of trees simultaneously. For the smaller

models, we were able to achieve results with up to 93 times speedup against a single

CPU thread. The AP’s advantage decreases as the number of leaves per tree increase.

With significantly decreased parallelism, a higher frequency CPU can reach similar

performance. With these properties in mind, it is important to focus on compacting

ensemble models on the AP to maximize performance.

49

Chapter 4

Automata Optimizations

In chapter 3, we showed that decision tree ensembles could be transformed into a

set of Finite State Automata (FSA) by breaking the trees into all paths and represent-

ing each path with a separate FSA. By mapping these FSAs to spatial architectures,

we showed that we could achieve significant parallelism that von Neumann architec-

tures could not provide. One limitation of our approach is that we map thresholds

directly to states, limiting the number of unique thresholds per feature to 255, or the

Alphabet size of an STE. In this chapter we present a solution to the limited alphabet

size by representing super-alphabets composed of multiple states.

As part of our analysis, we showed that input vector size, or the number of bytes

that are processed by the spatial architecture per inference, and the capacity require-

ments of the automata representation were directly related to the inference through-

put. If we could reduce the size of the input stream size by half, we would achieve 2×

the throughput. If we could represent our ensemble on the spatial architecture in half

the spatial resources, it is possible to get 2× the throughput with multi-streaming as

well. This chapter will also explore the space/time tradeoff of several key automata

compaction algorithms that we devised that are applicable for decision tree automata

as well as other automata applications.

51

4.1 Scaling Alphabet Size

One limitation of the decision tree automata (DTA) we presented in Chapter 3 is

the upper bound set on the number of feature thresholds DTAs can support. Because

the STE bit columns on the Automata Processor are 256 bits tall, our approach allows

a maximum of 255 unique thresholds per feature. Although this is sufficient for smaller

models or models with less threshold variation like Random Forests, models with

higher threshold variation including boosted regression trees quickly pass this limit.

To demonstrate this, we trained a Random Forest on MNIST with 20 trees, 800 leaves

each, and 200 features. This model when transformed into our DTA representation

contains 20 × 800 = 16000 automata. Figure 4-1 shows the distribution of unique

threshold counts. Because none of the features have more than 254 unique thresholds,

this model can be represented with DTA without modification.

We then trained a boosted regression tree with 1000 decision trees, 10 leaves each,

and 200 features. This model is smaller than our RF model with 10 × 1000 = 10000

automata. Figure 4-2 shows the distribution of unique thresholds. One feature re-

quires more than our allotted space of 255 thresholds. Furthermore, because of the

significant difference between thresholds counts among the features, Automata Fold-

ing as presented in Chapter 3 would result in poor utilization of memory resources.

Optimization Algorithm 3.1 would yield a fold where the STE with the large feature

would fill up the STE while the remaining STEs would be underutilized.

4.1.1 Single- Versus Multi-Character Character Sets

Wang et al.[109] use automata to find frequently associated items in large databases.

They recognize 16-bit symbols by concatenating two 8-bit STEs and representing 16-

bit super-symbols with two 8-bit symbols. This approach works in the case where the

automata states only accepts one symbol from the super-alphabet, but fails with sets

of symbols because of a phenomenon we call cross product contamination (CPC).

CPC occurs when an arbitrary set of items from a super-alphabet is represented by

concatenated states. Figure 4-3 shows how Wang et al.[109] represent a 16-bit super-

52

Figure 4-1: Number of unique thresholds per feature for a Random Forest with 20
decision trees, 800 leaves per tree, and 200 features.[106]

symbol by concatenating two state elements. To represent an item in this larger

alphabet, two symbols need to be processed; the first for the most-significant-byte

(MSB), and the second for the least-significant-byte (LSB). This technique works if a

single item is to be accepted, as shown by the first row under the STEs. In this case,

the two STEs are accepting the symbol 0000000100000001, or 257 in deciminal. The

input would then be streamed in as 00000001 followed by 00000001.

The second row shows a situation where a set of two super-symbols from the 16-bit

alphabet are meant to be accepted by the two concatenated states: 0000000100000001

and 0000001000000010. Both of these super-symbols are broken into LSB and MSB

and represented in their respective STEs.

This technique fails, because the two concatenated STEs also accept all cross-

products between the MSBs and LSBs character sets. In this case, 0000000100000010

53

Figure 4-2: Number of unique thresholds per feature for a boosted regression tree
model with 1000 decision trees, 10 leaves per tree, and 200 features.

Figure 4-3: Representing 16-bit super-symbols for one item, and cross contamination
with representing item sets.

and 0000001000000001 would also be accepted, even if they weren’t intended to be

part of the accepted inputs. We present a solution to deal with larger alphabets by

using a One-Hot Automata Encoding, and also introduce a special case for contiguous

54

ranges in our Two-Hot Automata Encoding.

4.1.2 One-Hot Encoded Super-States

One-Hot automata encoding is based on the one-hot binary encoding representa-

tion. It works by effectively combining the bit columns of STEs into one large bit

column. Unlike the work of Wang et al.[109] and their bit-level encoding where the

address space grows exponentially with STE count and input symbol count, our ap-

proach grows linearly in both. In exchange, our One-Hot encoding can represent any

subset of the entire address space without CPC.

In order to avoid CPC, One-Hot encoding enforces a character encoding with an

empty valid cross product. It requires that all input super-symbols be represented

with only one value symbol, and that all other symbols be represented with DONT

CARE symbols. To demonstrate One-Hot Encoding, we show a simple automaton

that accepts symbols in the range 701 − 762 and the input symbol stream that cor-

responds to 701.

Figure 4-4 shows an example of a super-state STE representation that uses one-

hot encoding to represent all values between 701 and 762. It requires three STEs.

The input super-symbol 701 is then represented with three symbols. Index 701 maps

to the third STE, so the first two are set to the DONT CARE symbol 255, and the

third is set to the value that maps to 701, 193.

This encoding technique is applicable to any automata application with large

alphabets and can be dropped into existing automata designs by replacing single

automata states with these chains of states. The number of STEs as well as the

runtime of inference is linear in the size of the feature address spaces.

4.1.3 Two-Hot Encoded Super-States

Our second encoding technique requires that all items accepted in the character set

be in one continuous range. This assumption does not generalize across all automata,

but it is applicable to decision tree automata, because each automaton represents one

55

Figure 4-4: One-Hot Encoding.

continuous partition in feature space.

Two-Hot encoding works by representing an address space in a two-dimensional

grid where one dimension is represented by one STE, and the other by a second.

Figure 4-5 shows an example of a two-hot encoded super-state representation accept-

ing values between 100 and 725 for a feature with 764 unique threshold ranges. To

reduce the address space used by each of the two STEs, we find the square root of

764 and represent all thresholds in a square of size 28×28, where one STE represents

the X-axis and the other the Y-axis. We index into the square address space shown

in blue in column-major order, indexing from the bottom-left up to the top of the

square, and then up from the bottom of the next column.

The grid next to the blue block indicates the range that this automaton will accept.

The green column represents the first partial column of values that are accepted and

the orange column represents the last partial column. The red rectangle between the

two partial columns is the set of full columns in the acceptable range.

The three pairs of states shown under “STE Representation" shows how we accept

the different parts of the continuous range of values. The first pair of states, shown

in green, accept feature values that map to the first partial column and the one in

orange accepts those that map to the last partial column. The first state of each

colored pairs indexes into the X-axis of the plot and represents the column index.

The second state represents the rows in the partial columns that are accepted by the

range. The middle two red states accept the continuous rectangle between the first

56

Figure 4-5: Two-Hot Encoding.

and the last partial columns.

This encoding technique requires six STEs to represent the two-dimensional ad-

dress space, but can represent up to 2562 unique thresholds; One-Hot encoding would

require 256. The input representation, as shown in the figure, indexes into the two-

dimensional space. 701 for example would index into the 25th column and the 1st

row. The 25th column corresponds to the last partial column and would activate

the first orange state. The second symbol, 1, would then be accepted in the partial

column range indicating a match.

4.2 One-Hot and Two-Hot Automata Folding

One-Hot and Two-Hot automata encoding allow us to represent arbitrarily large

automata alphabets, but our STE utilization is limited if we cannot combine multi-

ple features into the STEs. To accomplish this, we present One-Hot and Two-Hot

Automata Folding (AF), extending our original AF approach to these new encoding

techniques.

57

4.2.1 The Grid and Block Abstraction

In order to generalize our Automata Folding approaches, we represent automata

using a Grid and Block Abstraction. This approach allows us to provide one common

interface to discuss encoding techniques. We use this abstraction when describing

both One-Hot and Two-Hot Encoded AF.

A Grid represents one continuous symbol address space. In the case of One-

Hot representation, a Grid represents the address space of one large character set

that can be compoosed of multiple STEs. For the Two-Hot representation, a Grid

represents the full 256 × 256 address space provided by the two STEs. We showed

that with Automata Folding we could use an address space to represent multiple,

smaller address spaces. To address those independent and non-overlapping address

spaces, we use the Block abstraction. For the One-Hot encoding, we can have multiple

blocks assigned to 1 Grid, as long as the combined address space does not exceed the

size allocated to the chain of STEs. For the Two-Hot encoding, we can fill the two-

dimensional Grid with feature Blocks.

4.2.2 Feature Permutations

Our original Automata Folding algorithm presented in Chapter 3 assumes an

ordering of features, simplifying the optimization algorithm to one where only the

number of states serves as the independent variable. Although all automata need

to process each feature simultaneously in the same order, this global permutation of

feature access is entirely arbitrary.

The flexibility to move these features around into a different permutation opens the

door for improved spatial efficiency, by allowing us to combine features and states in

such a way to minimize the number of total states required to represent our automata,

and therefore total number of spatial resources required. This optimization comes at

a cost. By introducing another dimension, that of ordering the features, we increase

the complexity of this problem to an NP-Complete bin-packing problem. In order to

compute more efficient packings of features in a reasonable amount of time, we utilize

58

a polynomial-time bin packing heuristic.

4.2.3 One-Hot Automata Folding

One-Hot AF works in a similar way to our earlier AF implementation presented in

Chapter 3, but with support for large features (those with > 255 threshold ranges) and

by reordering features, the algorithm can achieve significant improvement in memory

utilization.

To accommodate features with more than 255 unique threshold values, we select

all large features and split their address spaces into sub address spaces (Blocks) using

our One-Hot encoding. These large features are then assigned to their own states, and

are not part of the circular access pattern of Automata Folding. We assign these large

features to the first few states in the automata, and represent the first few feature

values in the input feature stream to these large features.

The features with less than 255 unique threshold values are combined into fewer

automata states with our One-Hot Automata Folding algorithm. The goal is to make

a loop of as few states as possible. In our improved algorithm, we use a variation

on the best fit decreasing bin packing heuristic; in this case, an automata state is

treated like a bin of features, where the size of the feature is the number of thresholds

associated with that feature + 1. We sort the features by number of unique threshold

values, from the feature with the most thresholds, to the feature with the fewest. We

use a min heap to fill the most empty bin in the set of bins with the next largest

feature, and add features until either we are out of features to add to the bins, or

the bins have overfilled. If the bins are overfilled; we add another bin and repeat.

Algorithm 1 shows how our bin packing algorithm works.

After computing our One-Hot Folding algorithm, it is possible that the bins have

differing numbers of features associated with them. This is a problem, because Au-

tomata Folding requires a round-robin access pattern of the states, where the au-

tomata are effectively loops of states accessed one after another. To balance out the

number of features per state, we introduce a balancing algorithm. Our balancing

algorithm first determines the bin with the fewest number of features, and pops off

59

Result: Heap of lists of features such that their combined address space is less
than capacity

num_stes = 1;
sort(features, key=len, reverse=True);
while True do

Fill heap with n empty bins for i in range(num_stes) do
heap.push(([], 0));

end
Fill bins first-fit decreasing
for feature in features do

bin, old_size = heap.pop();
new_size = old_size + len(features.thresholds);
bin.append(feature.thresholds);
heap.push((bin, new_size));

end
Make sure we haven’t over-filled
if 𝑚𝑎𝑥(ℎ𝑒𝑎𝑝) ≤ 255 then

break;
end

end
Algorithm 1: Using Bin Packing to efficiently pack feature address spaces in as
few states as possible

features from all other bins to enforce a consistent number of features per bin. It then

proceeds to add the next biggest extra feature to the least empty of the remaining

bins, adding that bin to a timeout list, enforcing the requirement that all bins have

a feature count within 1 of all of the rest.

We present a proof[93] that packing bins such that the number of items within

each bin is within 1 of all of the rest is an NP-Complete problem, and therefore there

is no known tractable perfect solution. This means that we need an approximate

solution.

Bin Packing The bin-packing problem is as follows: Given a list of objects of

various volumes (𝑂1, . . . 𝑂𝑛), and a bin capacity 𝑉 , assign objects to bins in such a

way to minimize the number of bins required to contain all items in the list. This

problem is famously NP-Hard.

60

𝑘-balanced Bin Packing Call |𝐵𝑖| the number of items in bin 𝑖. A packing solution

is 𝑘-balanced if the difference in the item count of the bin with the maximum number

of items and that with the minimum number is ≤ 𝑘; in other words, if 𝑀𝐴𝑋𝑖|𝐵𝑖| −

𝑀𝐼𝑁𝑖|𝐵𝑖| ≤ 𝑘. Thus the 𝑘-Balanced bin packing problem is as follows: Given a

list of objects of various volumes(𝑂0, . . . 𝑂𝑛), a bin capacity 𝑉 , and an item-balance

threshold 𝑘, assign objects to bins in such a way to use the minimum number of bins

such that each is 𝑘-balanced.

Theorem 1. 1-balanced bin packing is NP-Hard

Proof. We will show how to use a polynomial time solver for 1-balanced bin packing,

𝐵𝑃1 to construct a polynomial time solver for the traditional bin packing problem

𝐵𝑃 , showing a reduction to 𝐵𝑃 .

Consider if there is an object in an optimal bin-packing solution which has zero (or

sufficiently small) volume. A solution constructed by removing this small object from

the original solution will also be optimal. In the case that the latter solution used

fewer bins, we could construct a more optimal solution to the original bin packing

instance by taking this new smaller solution, then adding the small object to any

arbitrary bin.

Using this idea, if we had a 1-balanced bin packing instance that was “padded”

with some objects having zero (or sufficiently small) volume, then an optimal solution

could be converted into an optimal standard bin packing solution by removing these

small “padding” objects. In this way we can reduce a polynomial time solver for bin

packing, 𝐵𝑃 , to a polynomial time solver for 1-balanced bin packing 𝐵𝑃1 by taking

the input to 𝐵𝑃 , that is a list of 𝑛 objects, represented by their volumes, and padding

this solution with 𝑚 objects of zero (or small) volume. In this case, if 𝐵𝑃1 runs in

time 𝑂(𝑛𝑝) for some 𝑝, then this algorithm for 𝐵𝑃 will run in time 𝑂((𝑛+𝑚)𝑝). Now

all that remains is to define a sufficiently large 𝑚 (it is impossible for 𝑚 to be too

large). As long as 𝑚 is polynomial in 𝑛 then this solution to 𝐵𝑃 is also polynomial.

Any unbalanced bin-packing solution will have at most 𝑛 bins, one for each item.

Also, each bin in an unbalanced bin-packing solution may contain at most 𝑛 items

61

(all in one bin). Therefore, naively, the maximum unbalance in a bin-packing will be

𝑛 across 𝑛−1 bins. This means that there always exists a choice of 𝑚 < 𝑛2 to pad an

unbalanced packing to be 1-balanced, so 𝑚 = 𝑛2 is sufficient. For this choice of 𝑚,

the time to solve bin packing is 𝑂((𝑛 + 𝑛2)𝑝) = 𝑂(𝑛2𝑝), so bin packing can be solved

with quadratic overhead over 1-balanced bin packing.

4.2.4 Two-Hot Automata Folding

We extend our One-Hot Automata Folding (AF) technique to Two-Hot encod-

ing. Figure 4-6 shows how we can combine multiple Two-Hot encoded features into

the six STEs by aligning the feature Blocks on a diagonal. Like with the One-Hot

approach where the feature Blocks occupied non-overlapping parts of the full STE ad-

dress space, Two-Hot AF requires that the blocks not overlap with both dimensions,

resulting in a diagonal line of blocks in the Grid.

One-Hot AF scales spatial resources and runtime linearly with the feature range

count. Our Two-Hot AF technique scales spatial resources and runtime by the square

root of the feature range count. Our approach does this by representing feature

threshold address spaces with Two-Hot automata encoding as square Blocks in a

two-dimensional Grid.

We use the same first-fit decreasing algorithm as with One-Hot Automata Folding,

but this time each feature’s address space size is the square root of the number of

thresholds, as we’ve transformed the array of thresholds into a square with side lengths

of length square-root. This results in a total number of states:

𝑁𝑢𝑚𝑆𝑡𝑎𝑡𝑒𝑠 = 6 * 1

255

𝑁∑︁
𝑓=0

√︀
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑓

Figure 4-7 shows the resulting automata on the right. The black arrows show how

the states are accessed in a round-robin fashion until the delimiter character, 255,

is seen. If the automata have recognized all pairs of feature symbols up until 255,

the automaton will accept the input as the tree traversal path it was configured for.

There is no such thing as free lunch, so our approach has several disadvantages. For

62

Figure 4-6: Encoding features with 2d encoding.

Figure 4-7: 2D-encoded Automata Folding.

one, six states are now required per Grid. If a full Grid is not used, this is a significant

overhead. Also, each input feature is now represented with two symbols. In the case

of 1D encoding, if the feature has fewer than 255 unique thresholds, one symbol is

sufficient to represent the feature; for 2D encoding, a minimum of 2 symbols are used

per feature:

63

𝑁𝑢𝑚𝑆𝑦𝑚𝑏𝑜𝑙𝑠 = 2 *
𝑁∑︁

𝑓=0

⌈︃√︀
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑓

256

⌉︃

The resulting three pairs of states represent any continuous range of values in the

square sub-space of the 255×255 full address range. The overhead for a single feature

is significant, at 6× the STE cost, but with automata folding and the ability to loop

back on the states, we can achieve a much more efficient spatial representation of the

automata.

Let us consider the extremes when using Two-Hot Automata Folding and find

the feature cardinality that makes the spatial overhead worthwhile. For our best-case

scenario, let us consider a feature that contains 2552 threshold ranges. In this case, we

can represent 65025 feature ranges in 6 states, whereas the original automata folding

algorithm would have mapped this feature as a Large Feature to 255 states. This

gives us an increased spatial utilization of 255 ÷ 6 or 42.5×!

The other extreme is representing 127 features all of cardinality 2. This would

correspond to 127 unique features that each contain a single split node. The resulting

effective address space size is 127 * 2 = 254 per 6 states, or 42.3 ranges per STE,

whereas our One-Hot folding technique would be able to fit all of these features into

a single STE, achieving a effective address space size of 254 per 1 state, or 254 ranges

per STE, a 6× increase in utilization! It therefore becomes necessary to find the point

of inflection, where feature address spaces are large enough to warrant the space cost.

This approach can be generalized to an arbitrary dimensionality, further increasing

our spatial efficiency, but with each additional dimension, the number of STEs to

represent boundaries increases exponentially as well, effectively introducing higher

overhead per N-dimensional grid. We leave this generalization to future work.

4.2.5 Evaluating One-Hot versus Two-Hot Automata Folding

AutomataZoo[106] is an automata processing benchmark suite composed of 24

different benchmarks that span several domains. One of those benchmarks contains

three different Random Forest models that classify 28x28 pixel images into the nu-

64

merals 0-9. These models were trained on the MNIST[46] digit recognition database.

To compare the One- and Two-Hot Automata Folding techniques, we evaluate

the performance of both AF techniques on all three Random Forest model variants,

as shown in Table 4.1. We then determine the number of states that the resulting

automata contain, as well as the number of input symbols required per inference.

Variant Features Max Leaves States Accuracy Runtime
A 270 400 248k 93.37 1.35x
B 200 400 248k 92.91 1.0x
C 200 800 992k 93.85 1.0x

Table 4.1: Random Forest benchmark variant trade-offs from the AutomataZoo
Benchmark Suite[106].

Table 4.2 contains the results of using the One-Hot and Two-Hot AF on all three

variants. Although we have shown that our Two-Hot AF approach requires assymp-

totically fewer states and input symbols as the number of thresholds per feature

increases to infinity, for both variants A and B, One-Hot AF results in fewer number

of states used and smaller input streams. Only in the larger variant C did we achieve

a space reduction. In this largest and most accurate model we were able to encode

the automaton with 29% fewer state elements using Two-Hot AF.

Variant One-Hot States Two-Hot States One-Hot Input Two-Hot Input
A 248k 304k 271 541
B 248k 256k 201 401
C 992k 704k 201 401

Table 4.2: Number of automata states per Random Forest model.

These results indicate that Two-Hot AF is preferential with very large models

because of the large constant overhead imposed on the input length and automata

size. We showed that Two-Hot AF requires six state elements per super-state, and

that this overhead is significant, making Two-Hot AF inefficient for smaller models.

To encode the input stream, we also require an additional symbol per feature, one for

each dimension. This halves our throughput for our C Variant model.

65

4.3 Further Optimizations

4.3.1 Compacting The Input

Automata computing works by processing ordered input stream symbols sequen-

tially; state transitions are made on these symbol values as a function of the pre-

vious active state and the input symbol. If the input stream size can be reduced,

a linear throughput increase is achieved. This motivates approaches like automata

striding [62], where multiple logical input symbols are combined and represented by a

single input symbol. Striding works by representing multiple symbols from a small al-

phabet with one from a larger alphabet. As an example, the bioinformatics alphabet

Σ0 = 𝐴,𝐶,𝐺, 𝑇 can be represented with a 2-bit alphabet. Some existing automata

approaches[77, 89] represent each base with an entire 8-bit symbol. This is inefficient

because six extra bits are never utilized by the automata computation.

Wadden, et al.[106] and Becchi, et al.[7] use bit-level automata striding, represent-

ing multiple sequential base inputs within one symbol. With our example alphabet

from above, we could use 4-striding, where one input symbol can represent 4 2-bit

bases. This then allows us to represent 4 sequential bioinformatics inputs with a

single 8-bit symbol by breaking the 8-bit space into 4 non-overlapping 2-bit symbols.

This is illustrated in Figure 4-8 where the four nucleotides shown in the bottom row

map to four separate 2-bit slots in one 8-bit symbol. This allows us to stream four

logical symbols per symbol, achieving a 4× increase in throughput.

Figure 4-8: Combining four nucleotide characters into one 8-bit symbol with bit-level
automata striding.

One limitation of this approach is the tendency to have growing dead zones in the

bit-wise address spaces with larger alphabet sizes. A dead zone is a range of STE

66

values that do not have a symbol mapping. Effectively, they are wasted space. As

the size of the alphabet increases, so does the distance between powers of two, and

so does the distance between a random alphabet size and it is nearest power of 2. As

an example, let us consider the Bioinformatics alphabet Σ1 = 𝐴,𝐶,𝐺, 𝑇,𝑋, where

𝑋 is an unknown symbol. This special character is commonly added to a sequence

of nucleotides if the aligner is not confident of the identity of a base. Using bit-level

striding we would require 3 bits to represent the 5 characters. In our 8-bit symbols,

we would only be able to represent two of these characters in one 8-bit symbol.

4.3.2 Feature Compression

Our approach is different from bit-level automata multi-striding in that we can rep-

resent a smaller representation than bit-level striding. Our flexible automata encoding

gives us the flexibility to represent these encoding techniques with less overhead.

To demonstrate our approach, let us consider compressing Σ1 by representing as

many characters as possible from the alphabet in one 8-bit symbol. There are five

symbols in Σ1. We find the floor of the fifth root of 256, 3. Unlike bit-level striding

which can only represent two Σ1 characters per symbol, we can fit 3. We do this by

representing the full cross of three symbols in a cube space as shown in Figure 4-9 and

assigning each location in the address space a unique label. These labels can then be

used in the input stream and STE character sets in the same way as one would use

bit-level striding symbols.

4.3.3 Logarithmic Automata Search

If all automata do not fit on the available spatial hardware, one approach is

to buy more hardware! Another is to run automata in sequential batches on the

spatial architecture. Although Hybrid Automata Folding increases the number of

these automata that can be represented on the fabric, the number of automata is still

exponential in the depth of the decision trees, resulting in a 𝑂(2𝑑) runtime. We bring

this runtime down to 𝑂(𝑑) by partially reverting recursive partitioning.

67

Figure 4-9: Combining three nucleotides from Σ1 = 𝐴,𝐶,𝐺, 𝑇,𝑋 into one 8-bit
symbol by representing them as unique addresses in a cube.

Figure 4-10 shows how automata are combined, by agglomerating decision tree

branches, forming new branches that represent the union of their constituent branches.

These fuzzy automata are then loaded onto the spatial architecture and evaluated

against the input feature vector. Only the fuzzy automata that contain the accepting

branch will report. The fuzzy automata that make up this set are loaded and this

process is repeated until the a leaf node is reached.

We represent these unified branches with fuzzy automata that are then loaded onto

the hardware. The input is streamed in, and only the fuzzy automata that contain

the valid chain automata report; those constituent chains are then loaded, and this

process is continued all the way down the chain, for all trees of the ensemble. This

algorithm brings the runtime from linear in the automata count, to the logarithm of

the automata count.

One limitation of this approach is the significant overhead required to reconfigure

the spatial architecture. To reduce the impact of this overhead, we suggest future

work to implement a spatial overlay that allows for rapid partial reconfiguration. This

overlay would act in a similar way to Micron’s Automata processor, exposing state

element character set and routing configuration, while not requiring the significant

68

Figure 4-10: Clustering chain automata into fuzzy automata.

overhead of complication and place-and-routing.

69

Chapter 5

Benchmarks and Tools

One major limitation of many existing automata research projects is the lack of

complete and parameterizable automata generation tools. These tools are critical for

industry adoption as well as for assisting future research in the automata and archi-

tecture domains. We introduce an open source suite of tools called Random Forest

Automata (RFAutomata)[37]. This tool suite contains programs to train decision

tree ensembles, optimize automata-specific parameters, and generate automata rep-

resentations of their decision tree-based ML models. We also include tools to evaluate

performance and transform data between input types.

In addition to RFAutomata, we also introduce an FPGA synthesis tool called

REAPRpp based on previous work by Ted Xie et al. with their REAPR[115] tool.

REAPR is an FPGA Automata synthesis tool that converts ANML files into Sys-

tem Verilog files that can be used to target FPGAs. We improve upon REAPR by

adding support for debugging[16], adding a reporting architecture[102], and adding

additional optimizations like report coalescing. REAPRpp allows researchers and

industry developers to deploy decision tree ensemble machine learning models on a

variety of FPGA platforms. We target Amazon’s AWS F1 instance for performance

and accessability, but our generated code is meant to be flexible and should work for

any FPGA family.

Finally, our tools and several models generated with these tools were included

in two automata benchmark suites: ANMLZoo[104] and AutomataZoo[106]. These

71

Model Name Classification/Regression Framework
Random Forest Classification Scikit-Learn

Gradient Boosting Classifier Classification Scikit-Learn
Gradient Boosting Regression Trees Regression Scikit-Learn

Adaboost Classifier Classification Scikit-Learn
Gradient Boosted Regression Trees Regression QuickRank

Table 5.1: Supported RFAutomata machine learning models as of version 1.0.

benchmark suites serve as standards to the automata processing community by pro-

viding a variety of automata applications to evaluate automata processing architec-

tures. These sorts of benchmarks have become even more important with the end of

process node scaling and the industry moving towards application-specific accelera-

tion.

5.1 RFAutomata

RFAutomata[37] is an open-source tool suite for training, optimizing, transform-

ing, and evaluating decision tree automata models. It is open-source and has been

released as part of the ANMLZoo and AutomataZoo benchmark suites for generating

machine learning benchmarks. RFAutomata supports the machine learning models

listed in Table 5.1, and was written to be modular and supports low-effort integration

of other decision tree-based ensemble models.

5.1.1 Feature Extraction

RFAutomata includes several ML and architecture tools to assist researchers in

design space exploration as well as to catalyze industry adoption of our work. An

RFAutomata Feature Extractor is a python program that parses an existing ML

dataset and converts it into a Numpy[107] zipped archive file to be used by the

training and testing tools in RFAutomata. A Feature Extractor is only necessary

if the data is not already in a format that Scikit-Learn can use. In version 1.0 we

include two feature extractors: OCRExtractor and MSLRExtractor. OCRExtractor

72

extracts the pixel features from the OCR datasets[42] into a Numpy matrix as well

as extracting the associated classifications into a Numpy vector. These two data

structures are then zipped into one Numpy zipped archive file. The MSLRExtractor

does the same thing for Microsoft’s Learning to Rank datasets[53].

python mslrExtractor.py -i <mslr dataset> -o mslr.npz

5.1.2 Training

RFAutomata supports decision tree ensemble models trained using existing frame-

works as shown in Table 5.1, but it also includes tools for training models with au-

tomata considerations. In order to simplify training decision tree ensemble models,

RFAutomata uses a wrapper around Scikit-Learn. This program includes support for

hyperparameter-searching as well as dimensional reduction.

We include functionality including providing Scikit-Learn canned datasets includ-

ing MNIST[46, 24], IRIS[26, 24], Wisconsin Breast Cancer[24], Boston Housing[24],

and Diabetes[24] to make training easier as well as generating output files that pro-

vide useful information about the trained model’s characteristics. To run the training

program use the following syntax:

python trainEnsemble.py -c MNIST -m RF -d 10 -n 20 --feature_importance

See the available options below for more features that 𝑡𝑟𝑎𝑖𝑛𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 provides.

Options:

-h, --help show this help message and exit

-c CANNED, --canned=CANNED

A canned dataset included in SKLEARN (mnist)

-t TRAINFILE, --train=TRAINFILE

Training Data File (.npz file)

-x TESTFILE, --test=TESTFILE

Testing Data File (.npz file)

73

--metric=METRIC Provide the training metric to be displayed

-m MODEL, --model=MODEL

Choose the model (rf, gbrtc, gbrtr, ada)

--model-out=MODELOUT Output model file

-d DEPTH, --depth=DEPTH

Max depth of the decision tree learners

-l LEAVES, --leaves=LEAVES

Max number of leaves of the decision tree learners

-n TREE_N, --tree_n=TREE_N

Number of decision trees in the ensemble

-f N_FEATURES, --n_features=N_FEATURES

The max number of features used by the ensemble (finds the n

best features).

-j NJOBS, --njobs=NJOBS

Number jobs to run in parallel for fit/predict

--feature_importance Dump the feature importance values of the trained

dataset as a plot

--explore_parameters Explore a parameter space for accuracy/runtime

tradeoffs

-v, --verbose Verbose

-r REPORT, --report=REPORT

Name of the report file

-p PREDICTIONS, --predictions=PREDICTIONS

Predictions made by model to be used to verify

the automata implementation

Feature Selection

The automata representation of decision trees scales in the leaf count, tree count,

and feature count of the models. For this reason, we included functionality for reduc-

ing the number of features to be considered when training a decision tree ensemble

74

with the −𝑓 argument. We use a heuristic whereby we train the decision tree en-

semble with full features and grab the top-N features in terms of importance. We

then transform the feature matrix to include those features, and train the new model.

Figure 5-1 shows the computed feature importance values (−−𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒)

for all 28× 28 pixels of the MNIST dataset. The intensity of the pixels indicate what

the full RF model designates to be the most important features.

We conducted an experiment where we trained a full Random Forest with a varying

number of top features on the MNIST dataset and evaluated the accuracy of each

model by using 3-Fold Cross Validation. Figure 5-2 shows our results. We found that

by setting the number of features to 200, instead of the maximum of 784, we could

achieve within 1% of the accuracy, and with 270 features, or 34.4% of the full feature

vector, we could achieve within 0.2%. This allows us to significantly reduce both the

size of our automata, but also the number of input features we need to stream per

inference.

5.1.3 RFAutomata Automata Synthesis

The RFAutomata synthesis tool, called automatize.py, is a Python program that

accepts as input a decision tree ensemble model (this can be trained with 𝑡𝑟𝑎𝑖𝑛𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒

or imported as a python archive file) and generates an output automata representa-

tion in ANML format. The current supported models as shown in Table 5.1 can be

pre-trained, but need to be serialized to a pickle file for conversion by RFAutomata.

To run the automata synthesis tool, run:

python automatize.py <model file>

𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑧𝑒 provides several architecture-specific parameters. Especially for test-

ing small models on von Neumann architectures, we found that unrolling folded au-

tomata can yield better performance because it removes the branch loop from the

automata. The −− 𝑢𝑛𝑟𝑜𝑙𝑙𝑒𝑑 argument effectively undoes Automata Folding to gen-

erate a series of long chains of set membership operations.

75

Figure 5-1: Heatmap of the MNIST pixels indicating feature importance in the trained
model.

Figure 5-2: Random Forest accuracy on the MNIST training dataset with a varying
number of top features.

76

One important metric to consider when generating decision tree automata is the

number of unique thresholds required per feature. This information could be used

to decide whether to use One-Hot or Two-Hot Automata Folding. We provide this

information with the − − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 argument which generates a plot as shown in

Figure 5-3.

We also support several optimizations. One of them is to merge reporting states

at the tree level; another to set the Automata Folding encoding. We know that each

tree will only have a single reporting STE per input, and therefore we can combine

all leaf nodes with the same output code; in the case of a classifier, nodes that map

to the same classification; in the case of a regressor, nodes that map to the same

partial sum. This feature is very useful for models like Random Forest where each

tree reports one classification per input and all classifications come from a small

set of discrete values. By merging all automata from one tree into a small set of

reporting states, we can considering reduce the number of output signals that need

to be processed. AutomataRF also supports both versions of Automata Folding:

One-Hot and Two-Hot with the −− 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 argument.

See the available options below for more features that 𝑟𝑓𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑎 provides:

Options:

-h, --help show this help message and exit

-a ANML, --anml=ANML ANML output filename

--gpu Generate GPU compatible chains and output files

EXPERIMENTAL

--circuit Generate circuit compatible chains and output files

EXPERIMENTAL

--unrolled Set to generate unrolled chains (no loops)

--short Make a short version of the input (100 samples)

-p, --thresholds Generate a plot of the distribution of threshold counts

--input_format=INPUT_FORMAT

Input file format types:

SIMPLE: Space-delimited feature values with newlines

77

Figure 5-3: Number of unique thresholds per feature for Variant C of AutomataZoo’s
Random Forest benchmark.[94]

between vectors (circuit)

BIN: Binary feature values with \xff delimiters

(VASIM)

CSV: Comma-separated ASCII features with newlines

between vectors

--merge Combine all states from each tree that report the

same classification

-d DIMENSIONS Automata Folding with this many dimensions

-v, --verbose Verbose

5.1.4 Input Formats

Finite State Automata process an input stream by evaluating input symbols

against character sets, setting state activity, and proceeding to the next state. Dif-

78

ferent simulators use different formats for input types. We currently support the

following formats:

- Simple: This file is human-readable with feature values represented in their ASCII

representations, and feature vectors separated by newlines. This input representation

is used by our circuit simulator.

- Bin: This binary file format represents the input stream as a series of bytes, the

same bytes that would be sent to an AP or FPGA with 0𝑥𝐹𝐹 bytes to delimit in-

puts. This file format is used by the spatial architectures as well as VASim and is

most space-efficient of the available formats.

- CSV: This file format is Comma-separated-value with features separated by com-

mas, and inputs separated by new-lines. This format is also supported by the circuit

simulator.

5.1.5 Outputs

RFAutomata produces an automata ANML file. ANML is an XML-based au-

tomata representation created by Micron. There are tools that natively execute

this format on the CPU (VASim[105]), Automata Processor[22](Native) and FPGA

(REAPR[115]).

RFAutomata also produces an input symbol file, and other supporting files in-

cluding a Feature Range Lookup Table (FRLT) for generating new inputs. The FRLT

is used to convert raw input feature values into labels for automata processing. This

can be done during feature extraction or as a separate pipeline stage on an FPGA.

5.1.6 Direct Hardware Support

RFAutomata supports GPU and ASIC hardware platforms by generating an in-

termediate representation that can be executed on these architectures.

79

GPU Automata Chains

We have developed an automata-based CUDA implementation that represents

the independent automata chains in memory for execution on the GPU; one chain

per thread. This program called RFAutomataGPU is a GPU accelerator for chain

automata.

RFAutomata generates a GPU output format, shown below. The first line is the

number of automata in the file. The second is the number of states per chain; the

third the state at which the automata loop starts. Finally, the last header information

contains the number of features used by the model. Then subsequent lines in the file

start with the name of the automata and one character set per state.

19828

62

62

526

0t_0l_2r

[\x00-\x04\x05-\x09\x0A-\x0B\x0C-\x33\x34-\x47\x48-\x8C\x8D-\xC2\xC3-\xD6\...]

[\x00-\x03\x04-\x0A\x0B-\x0C\x0D-\x38\x39-\x76\x77-\xB2\xB3-\xD2\xD3-\xEA\...]

[\x00-\x03\x04-\x1A\x1B-\x1C\x1D-\x23\x24-\x62\x63-\x9D\x9E-\xC9\xCA-\xDB\...]

[\x00-\x03\x04-\x05\x06-\x1C\x1D-\x23\x24-\x45\x46-\x8F\x90-\xB6\xB7-\xE9...]

[\x00-\x04\x05-\x09\x0A-\x0B\x0C-\x20\x21-\x44\x45-\x6C\x6D-\xA0\xA1-\xE7...]

[\x00-\x03\x04-\x1A\x1B-\x1C\x1D-\x23\x24-\x5A\x5B-\x9D\x9E-\xC9\xCA-\xE9...]

...

0t_1l_8r

[\x00-\x04\x05-\x09\x0A-\x0B\x0C-\x33\x34-\x47\x48-\x8C\x8D-\xC2\xC3-\xD6...]

[\x00-\x03\x04-\x0A\x0B-\x0C\x0D-\x38\x39-\x76\x77-\xB2\xB3-\xD2\xD3-\xEA...]

[\x00-\x03\x04-\x1A\x1B-\x1C\x1D-\x23\x24-\x62\x63-\x9D\x9E-\xC9\xCA-\xDB...]

[\x00-\x03\x04-\x05\x06-\x1C\x1D-\x23\x24-\x45\x46-\x8F\x90-\xB6\xB7-\xE9...]

[\x00-\x04\x05-\x09\x0A-\x0B\x0C-\x20\x21-\x44\x45-\x6C\x6D-\xA0\xA1-\xE7...]

[\x00-\x03\x04-\x1A\x1B-\x1C\x1D-\x23\x24-\x5A\x5B-\x9D\x9E-\xC9\xCA-\xE9...]

80

[\x00-\x04\x05-\x19\x1A-\x1E\x1F-\x46\x47-\x48\x49-\x6C\x6D-\xB0\xB1-\xE7...]

...

Generic Circuits

We also support generic circuits. This works by representing the states in the

automata as a series of simple upper- and lower-end comparisons that can be imple-

mented in the target circuit with hardware comparators or other means of making

the comparisons. Below is an example snippet from the output format from the

− − 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠 option. Each chain is represented with three separate lines: chain id,

threshold ranges, and leaf value. This format is used by the work of Gonzalez et

al.[32] in their asynchronous computing implementation.

0

0.0-22.0,0.0-256.0,0.0-0.5,0.0-256.0,0.0-256.0,0.0-256.0,0.0-256.0, ...

0

1

22.0-256.0,0.0-256.0,0.0-0.5,0.0-256.0,0.0-256.0,0.0-256.0,0.0-256.0, ...

3

2

0.0-256.0,0.0-256.0,0.0-0.5,0.0-256.0,0.0-0.5,0.0-256.0,0.0-256.0, ...

7

3

0.0-256.0,0.0-256.0,0.0-0.5,0.0-256.0,0.5-256.0,0.0-256.0,0.0-256.0, ...

3

...

81

5.2 REAPRpp

REAPRpp is an open-source synthesis tool for converting automata ANML files

into hardware description language (HDL) files for deployment on FPGAs. We extend

the work of Xie et al. and their REAPR[115] tool by including a parameterizable

reporting architecture, debugging support, and support for targeting Amazon’s AWS

F1 instances. REAPRpp uses parameterized System Verilog modules to simplify

deployment; it generates a REAPR header file that sets the parameters for reporting,

debugging, and I/O.

REAPRpp performs the same HDL generation from an ANML automata descrip-

tion file as REAPR. Where REAPR generates VHDL automata files, REAPRpp

generates a higher level System Verilog automata output files. One limitation with

REAPR is that the I/O is statically configured in the generated modules. We use

a dynamic approach by generating a Wrapper file around the generated automata

modules. This separates automata logic from the I/O and allows us to parameterize

both the reporting as well as the I/O.

To run the REAPR tool, run:

python3 reapr.py -a Model.anml

5.2.1 Reporting Architecture

REAPRpp includes support for the work of Jack et al. [102] and their automata

reporting architecture. REAPR originally provided an output interface that mapped

one wire to each reporting state in the automata. This is a significant limitation when

targeting FPGAs and ASICs because IO is often a limiting factor. Our reporting

architecture, as shown in Figure 5-4, serializes a large output reporting vector using

Report Aggregators (RAGGs). Each RAGG receives a subset of the total report

signals from the automata. When any RAGG receives at least one reporting signal,

the Arbiter sends the contents of all active RAGGs off to the CPU.

We allow the user to provide either the number of RAGGs (− − 𝑛𝑢𝑚𝑟𝑎𝑔𝑔𝑠)

or the width of the RAGGs (− − 𝑟𝑎𝑔𝑔𝑤𝑖𝑑𝑡ℎ). This information is then used to

82

parameterize the reporting architecture modules to handle the reporting bits from

the automata. Decision tree ensembles result in one inference from each tree in the

ensemble, producing potentially hundreds of report bits per input. This is not a

problem, because all reports occur in the same clock cycle, and the reports can be

serialized and removed from the spatial architecture in time for the next set of bits,

depending on the size of the input label vector. If there are more RAGGs that need

to be serialized for reporting than their are input symbols, the automata are stalled

by the Arbiter.

Figure 5-4: Reporting architecture for large automata designs[102].

5.2.2 Debugging Support

REAPRpp also includes the first example of an Automata Accelerator-based de-

bugging architecture [16]. We have included a − − 𝑑𝑒𝑏𝑢𝑔 option to REAPRpp that

inserts Xilinx Virtual IO blocks[117] into the automata structure during RTL gener-

ation time. Once the design is deployed, the user can use Vivado to sample all of the

STE state signals at runtime. This gives the user a snapshot of the state of all of the

automata, providing a full picture of the automata configuration.

This debugging functionality comes at a price of hardware utilization, clock, and

83

power overhead. We were able to integrate the VIOs for all automata in the ANML-

Zoo bechmark (which we introduce later in this chapter), maintaining an average of

81.7% of the baseline clock frequencies, a 2.82× and 6.09× LUT and FF overhead,

respectively, and a 1.76× power overhead. We conducted a human study with over

60 participants and 20 buggy segments of code; our debugging information provided

by REAPRpp’s debugging functionality increased fault localization by 22%[16].

5.2.3 Amazon Web Services EC2-F1

Amazon’s Elastic Compute Cloud (EC2) is a cloud computing service that allows

users to rent virtual computers to run applications in the Cloud. Recently, Amazon

has added instance types that include GPUs and FPGAs so that customers can take

advantage of hardware acceleration. Amazon EC2 F1[1] instances include Xilinx

FPGAs. Amazon also offers a variety of FPGA development instances that have

FPGA development tools and licences pre-installed. These instances significantly

reduce the complexity of accelerated application development and deployment, and

eliminates the significant upfront monetary costs associated with development tool

licenses and FPGA hardware. One f1.2xlarge instance offers 1 Xilinx FPGA with

64GB of on-chip DRAM, 8 virtual CPUs, and 122GB of host DRAM for just $1.65

per hour of use.

AWS provides an on-FPGA controller called the Shell that simplifies hardware

and software development of applications. The shell is a statically programmed region

of the FPGA that handles I/O tasks such as programming the dynamic region of the

FPGA and implements a full AXI4 interface to the on-board DRAM.

One limitation of the Shell is that it limits the maximum frequency of its main

clock to 250MHz, 125MHz, or 15.625MHz. An important metric for automata com-

puting is the symbol processing rate, or the number of symbols that can be processed

by the automata in a given time. For a standard one byte-per-cycle automata design

(optimistically assuming a no-stall pipeline), a 250 MHz clock speed will yield a max-

imum throughput rate of 250 megasamples per second. Importantly, if the automata

design cannot meet the shell’s maximum 250MHz timing, by default the Shell will

84

use the next fastest supplied 125MHz clock: a 50% hit to performance. While the

automata and shell can run at separate frequencies, we do not explore multi-clock

domain designs. We leave this to future work.

Meeting Timing

Because the AWS Shell provides three significantly-spaced clock frequencies and

the performance of automata computing is bound to the symbol rate, we were moti-

vated to close our design within the highest 250MHz clock timing constraints. This

presented a significant challenge to us for several reasons.

First, every STE (of the 10s to 100s of thousands of STEs) needed to receive all

incoming data in the same clock cycle. This is particularly challenging as the input

data stream is provided by a DDR RAM interface and would result in a massive

fan-out. We managed to reduce the impact of the fanout on clock delay by capping a

maximum fanout of 256. Vivado then duplicated these high-fanout paths across the

chip.

The second significant challenge was dealing with long critical paths. Even with

duplicated paths, the paths with input signals and paths back with output signals

were very difficult to route meeting the tight timing constraints.

5.2.4 Recursively Grouping Automata

We introduce a balanced tree hierarchy to flat automata design in REAPRpp.

Instead of relying on compiler tools to best optimize the logic across the full, flat

design and place and route the resulting logic, we recursively partition automata

subgraphs into groups of 𝑁 , where 𝑁 is the out-degree of our balanced tree structure.

We found that most application workloads were composed of many sub-graphs,

and we used those subgraphs as the lowest unit of automata computing. We started

by breaking apart the large graph into independent subgraphs with our technique

illustrated in Algorithm 2. We do this by selecting a random seed state from the flat

graph and sequentially traversing to outgoing as well as incoming states, adding them

85

all to the same subgraph list. We continue doing this until we have broken apart the

flat graph into a large set of connected subgraphs.

Result: List of subgraphs
subgraphs = [];
temp_graph = [];
while flat_graph not empty do

seed_state = flat_graph[0];
state_stack = Stack();
state_stack.push(seed_state);
while state_stack not empty do

state = state_stack.pop();
temp_graph.append(state);
flat_graph.pop(state);
for outgoing_edge in state.outgoing do

if outgoing_edge in flat_graph then
state_stack.push(outgoing _edge);

end
end
for incoming_edge in state.incoming do

if incoming_edge in flat_graph then
state_stack.push(incoming_edge);

end
end

end
subgraphs.append(temp_graph);

end
Algorithm 2: Flat graph to subgraphs

Then we combine these subgraphs by recursively grouping them into groups of

𝑁 . Algorithm 3 shows how a balanced tree of degree split_factor is recursively built

from the set of subgraphs. At each level, the algorithm generates 𝑁 new hierarchical

modules. We then continue to group the hierarchical modules recursively into groups

of 𝑁 until we’ve run out of groups.

Figure 5-5 shows the resulting balanced-tree hierarchy. The out-degree of our

balanced tree is configurable, but in the diagram we show an out-degree of 2; for our

experiments, we set it to 10. Additionally, at each split in the tree structure, we in-

sert pipelining registers shown as red rectangles. From the input to the bottom-most

(level 0) module, all symbol, reset, and output signal lines are registered the same

86

recursivesplit(self)
if len(self.subgraphs) < split_factor then

return;
end
new_subgraphs = [subgraph for self.subgraphs.split(split_factor)];
new_reporting_states = [reporting_state for
self.reporting_states.split(split_factor)];

for new_states in new_subgraphs do
if len(new_states) < split_factor then

split = False;
else

split = True;
end
for new_states, new_reports in zip(new_subgraphs, new_reporting_states)
do

new_node = Node(subgraphs=new_subgraphs,
reporting_states=new_reports)

if split then
new_node.recursivesplit();

end
self.children.append(new_node);

end
end

Algorithm 3: Recursively grouping automata

87

number of counts, ensuring that all automata graphs receive the same input data in

the same clock cycle, and that all reporting output data makes it back to the I/O

interface in the same clock cycle.

Figure 5-5: Recursively grouping automata into modules with preserved hierarchy.

Finally, we generate a separate Verilog module for each node in the balanced tree.

The leaf nodes contain the Verilog automata structures, while the other branches

contain pipeline registers for input and output signals. In order to enforce hierar-

chy and disable global optimizations across module boundaries, we use the following

Vivado flag when instantiating child node modules: (*𝑘𝑒𝑒𝑝_ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 = ”𝑦𝑒𝑠”*).

This balanced H-Tree design with pipeline registers approach significantly reduced

our compilation time by 50% and made larger designs over 50,000 STEs routable, but

88

came at the cost of 5% LUT overhead.

5.2.5 Additional REAPRpp Functionality

Below are additional parameters that we expose to the user:

usage: reapr.py [-h] -a AUTOMATA [-o OUTFILE] [-e ENTITY] [-w WRAPPER]

[-d DEBUG] [--generate_vios] [--stes_per_probe STES_PER_PROBE]

[--numraggs NUMRAGGS] [--raggwidth RAGGWIDTH]

[--indexwidth INDEXWIDTH] [-m REPORTMAP]

[--combine_bitcolumns] [--raggmap RAGGMAP] [--split SPLIT]

[-v]

Generate an AWS F1-compatible FPGA accelerator for automata processing.

optional arguments:

-h, --help show this help message and exit

-a AUTOMATA, --automata AUTOMATA

Input automata filename (ANML format).

-o OUTFILE, --outfile OUTFILE

Output filename (defaults to <entity>.sv).

-e ENTITY, --entity ENTITY

Automata entity name (defaults to ’automata’).

-w WRAPPER, --wrapper WRAPPER

Generate a wrapper around the automata

-d DEBUG, --debug DEBUG

FOR DEBUGGING: Include debugging hardware and generate

xdc file for debugging cores

--stes_per_probe STES_PER_PROBE

FOR DEBUGGING: Number of states sampled per probe

--numraggs NUMRAGGS If generating a wrapper, set the number of report

89

aggregators (RAGGs) used for reporting.

--raggwidth RAGGWIDTH

If generating a wrapper, set the number of report bits

assigned to each report aggregator (RAGG).

--indexwidth INDEXWIDTH

If generating a wrapper, set the number of metadata

bits assigned to each report aggregator (RAGG) for

counting input symbols.

-m REPORTMAP, --reportmap REPORTMAP

Generate a report mapping file (element name to index)

--combine_bitcolumns Have STEs share equivalent bitcolumns

--raggmap RAGGMAP A ragg mapping file that maps regular expressions to RAGGs

--split SPLIT Split the automata into connected graphs and populate

./tmp directory with separate modules

-v Verbosity flag for details.

5.3 Benchmarks

The University of Virginia’s Center for Automata Processing (CAP) made several

significant contributions to the automata computing research community. Two of

those contributions are the ANMLZoo[104] and later the AutomataZoo[106] bench-

mark suites. Up until their release, high-performance automata-processing engines

were evaluated against a limited set of regular expression rulesets. Our research

projects contributed a set of new automata-based applications to the benchmarks,

and we contribute several Random Forest models as well as the tools to generate

them.

90

5.3.1 ANMLZoo

ANMLZoo, named after Micron’s ANML Automata markup language, was the

first automata benchmark suite that included the new and growing diversity of au-

tomata applications. Up until it’s release in 2016, benchmarks used for evaluating au-

tomata accelerators and tools were based on large sets of regular expressions [74, 44, 8],

several of which were synthetic [4]. With the recent boom of automata applications,

there was a need to address this new diversity of automata applications with matching

benchmarks.

Micron’s Automata Processor architecture, with the included software develop-

ment kit and simulation tools, significantly reduced the effort required to prototype

and develop automata-based pattern matching, reducing the overhead that this ap-

proach previous had over regular expression-based solutions. Being able to directly

work with automata made reasoning about these abstract machines more concrete and

stimulated new research in the field. Out of this explosion of automata research came

several novel automata-accelerated applications including big data analysis[10], data

mining[110], bioinformatics[75, 89], high energy particle physics[111], the machine

learning research discussed in this dissertation, pseudo-random number generation

and simulation[103], and natural language processing[122]. Many of these applica-

tions significantly differ from the previous works’ regular expressions in structure and

runtime behavior.

To that end, ANMLZoo became a standard for evaluating architectures and tools

in the automata space. It is a benchmark suite of automata-based applications for

evaluating software and hardware automata processing engines. It contains 14 differ-

ent automata applications that represent four different classes: regular expressions,

string scoring machines, programmable widgets, and synthetic automata. It also

contains tool for evaluating these benchmarks on four different architectures: Intel

i7-5820k, Intel’s XeonPhi 3120, a Maxwell-based NVidia Titan X GPU, and Micron’s

Automata Processor.

We contributed one Random Forest (RF) model trained on the MNIST dataset to

91

the ANMLZoo benchmark suite. We reduced the number of features considered by the

model to 300 from 784 and trained the RF on 15 decision trees. We then pruned the

resulting automata chains to fit within the hardware limitations of a single Automata

Processor chip. We also include 1MB and 10MB input stream files to serve as input

to the automata benchmark.

5.3.2 AutomataZoo

We received feedback from the community indicating that ANMLZoo could be

improved. A list of the drawbacks that we addressed with AutomataZoo[106] include:

∙ Promoting a now obsolete baseline: Micron’s AP is not commercially available

and built on an old design node. ANMLZoo benchmarks were designed around

the capacity of one of the AP’s chips, and this limited the design space of the

benchmarks. Additionally, the benchmarks inherited the capacity and routing

characteristics from the AP.

∙ Incomplete Benchmarks: In order to standardize to the capacity of one AP chip,

many of the benchmarks were not complete applications, and were actually

cut down to fit one chip. This made it impossible to make cross-algorithm

performance comparisons.

∙ Most of the ANMLZoo benchmarks were a single design point and did not

explore the spatial/temporal tradeoffs.

We address all of these concerns in AutomataZoo with 24 new benchmarks shown

in Figure 5-6, where each is designed to be a real-world use case with multiple design

points.

In order to give a more fair evaluation of automata across architectures, we demon-

strated how to make full-kernel algorithm comparisons and we used the Random

Forest benchmarks to make that comparison. We evaluated the full Random Forest

models as automata on the CPU and FPGA versus a native Random Forest imple-

mentation on the CPU.

92

Figure 5-6: Automatazoo Benchmarks[106]

We used Intel’s Hyerscan [31] automata engine with help from the MNCaRT [2]

automata processing ecosystem. For an FPGA-based automata processing evaluation,

we used Ted Xie’s REAPR [115], and for native Random Forest computation on the

CPU, we used single and multi-threaded version of Scikit-Learn [68]. All CPU results

were measured on an Intel i7-5870k 6- core (12 logical core) server. Multi-threading

experiments were conducted with 12 threads. FPGA results were obtained by placing

and routing REAPR-generated automata on a Xilinx Kintex Ultrascale XCKU060

FPGA and multiplying the resulting maximum clock frequency by the input symbols

required to drive the automata[106].

We normalized the results to the single-threaded Hyperscan performance shown

in Table 5.2. Scikit-Learn achieved a 141.5× speedup in single-threaded performance

over Hyperscan. This indicated that our automata approach was not a viable method

to accelerated decision tree ensembles on von Neumann architectures because of the

increased model size countered any improvement in access pattern. The FPGA-based

REAPR automata achieved the best performance, but showed reduced performance

improvements over the native Scikit-Learn implementation. These results highlight

the usefulness of having complete application benchmark kernels to allow for useful

93

inter-architecture comparisons.

Hyperscan Scikit Learn Scikit Learn MT REAPR FPGA
1× 141.5× 401.1× 817.9×

Table 5.2: Performance in kilo classifications/second of the Random Forest Automata,
normalized to single-threaded Hyperscan[106]

We contributed three different Random Forest (RF) models all trained on the

MNIST dataset. Unlike our ANMLZoo benchmark model, these models are complete

and with interpretable results. This allows researchers to compare end-to-end perfor-

mance between automata-based and non-automata-based accelerators and software

engines.

We trained each RF model with 20 trees and varied the number of features and

leaves per tree as shown in Table 5.3. Variant A and B differ by the number of features

used to train the model as well as the number of features in the input stream. We

chose 270 features for variant A, because we experimentally determined any increase

beyond this number of features resulted in a negligible impact on accuracy of the

model and only resulted in increased runtime. Variants B and C used 200 features to

stay above a 90% accuracy.

Variants B and C differed by the maximum number of leaf nodes per tree, increas-

ing the size of the tree model. With 200 features, increasing the maximum leaf count

from 400 to 800 increased accuracy by almost a full percentage point, but it came at

the cost of quadrupling the model size.

Variant Features Max Leaves States Accuracy Runtime
A 270 400 248k 93.37 1.35×
B 200 400 248k 92.91 1.0×
C 200 800 992k 93.85 1.0×

Table 5.3: Random Forest benchmark variant trade-offs. Increasing the number of
features increases accuracy but also increases runtime. Increasing the maximum num-
ber of leaves per tree increases accuracy, but increases automata size.[106]

We have released this new implementation to the ACM Sigarch community and

we actively host the benchmark suite on github[91].

94

Chapter 6

Learn To Rank (LTR) Automata

In this Chapter, we apply the decision tree automata algorithms presented in

Chapters 3 and 4, and the automata tools RFAutomata and REAPRpp presented in

Chapter 5 to accelerate a state of the art Learn to Rank (LTR) document ranking

algorithm used by Web search engines. We implement our LTR automata in the Ama-

zon AWS Cloud on FPGAs and evaluate our approach against a high-performance

CPU implementation to achieve significant speedups as well as reduction in power.

6.1 Learn To Rank Document Ranking

Learning to Rank (LtR)[50] is a supervised machine learning task used as a core

component of information retrieval, natural language processing, and data mining

systems. Given a large set of documents and a user query, LtR models learn to

assign a score to each document in a candidate subset of the documents. These

scores are based on each document’s relevance to a user’s input query. The scores

are then used to return the most relevant documents to the user’s query in ranked

order. Although useful for other applications, we will consider LtR techniques for

information retrieval[34] like those used by Web search engines.

LtR models are computationally expensive to use on large sets of documents.

The model evaluates a score for the user’s input query against each document in the

document set. This is done by first constructing a feature vector with hundreds of

95

features for each (query, document) pair and computing a relevance score from that

feature vector. To reduce the time and power costs of each LtR query, contemporary

information retrieval systems use a two-stage processing pipeline[20] as shown in

Figure 6-1.

In the first stage of the pipeine, a simple base ranking function is used to return the

top-N results of a large database of documents using a less computationally intensive

method like Okapi Best Matching 25 (BM25)[100]. BM25 is a bag-of-words retrieval

function that assigns a score to a document based on the frequency of query terms in

the document.

Figure 6-1: The two-stage LTR pipeline.

A high-precision LtR scorer is then used in the 2nd stage. Here the LtR scorer

re-scores and ranks the candidate set of documents to achieve higher precision. The

second stage returns the top-K results ranked in order where 𝐾 << 𝑁 .

LtR models that use additive ensembles of regression trees have proven very ef-

fective for ranking Web pages returned by search engines[51, 40, 52]. Quality is im-

96

portant, but so is efficiency and throughput when considering the number of queries

search engines process each day. It is this second stage that we seek to accelerate

with decision tree automata.

6.1.1 Training with LtR Models

Several modern LtR models are based on additive ensembles of Regression trees

that are trained with the Gradient-Boosted Regression Tree (GBRT)[29] or Lambda-

Mart[114] algorithms. These algorithms produce ensembles of 100s to 1000s of deci-

sion trees that all need to be traversed to come up with a single score for a web query

against all of the k documents.

LtR models are ML models and have a training and testing phase. In the training

phase, a large training dataset is used to generate the decision tree ensemble. This

training dataset contains feature vectors extracted from (query, document) pairs with

their associated relevance scores. Example features included in the extracted featured

vector include BM25 [72] and PageRank [67] scores.

Normalized Discounted Cumulative Gain

Traditional classification and regression algorithms compute an inference on a

single input data point. For this reason, metrics like least square error and accuracy

are relevant, as they assess the difference between an inferred value and a ground

truth.

LTR models are different in that they compute inferences on a list of items, learn-

ing a function to assign a score to each item such that their ordering is optimal. For

this reason the score, itself, is not of importance; only the relative scores are. There-

fore to measure the quality of an LtR model, it is necessary to measure the quality

of an ordering of documents.

The LtR LambdaMART boosted regression tree model is trained to maximize the

Normalized Discounted Cumulative Gain (nDCG)[39]. The nDCG is a measure of the

quality of a ranking of documents and is commonly used to measure the effectiveness

97

of search engine algorithms. It calculates a discounted cumulative gain as the sum of

the relevance values of the documents in a ranked list, and penalizes highly relevant

documents that appear lower in the list of results.

𝐷𝐶𝐺𝑝 =

𝑝∑︁
𝑖=1

2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)

It then divides the discounted cumulative gain by the ideally-ranked discounted

cumulative gain to achieve a normalized value in the range [0, 1]:

𝐼𝐷𝐶𝐺𝑝 =

|𝑅𝐸𝐿𝑝|∑︁
𝑖=1

2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)

𝑛𝐷𝐶𝐺10 =
𝐷𝐶𝐺10

𝐼𝐷𝐶𝐺10

6.2 QuickRank: High Performance LtR on CPUs

QuickRank[14] is a public-domain, C++ framework for evaluating the perfor-

mance of various LtR models. It supports several LtR models including Gradient

Boosted Regression Trees (GBRT)[29], Lambda-Mart[114], and Oblivious Lambda-

Mart[84]. QuickRank provides learning algorithms for each of the models and gen-

erates optimized memory data structures to maximize scoring performance. It does

this by translating learnt models into an efficient C++ source code that is recompiled

into a ranker. This framework also includes timing support to give details about

performance.

6.2.1 QuickScore

QuickRank uses QuickScorer[51] to efficiently compute the decision tree traver-

sals. It does this be converting decision trees into bit vectors and uses nodemasks

and bit-wise operations to interleave processing of regression trees for out-of-order

computation. QuickScorer achieves significant performance increases (up to 6.5×)

over previous boosted regression tree-based LTR models, establishing the state of the

98

art solution for LtR implementations on the CPU. To the best of our knowledge, it is

the highest performing Boosted Regression Tree inference engine available for CPUs.

6.3 Experimental Setup

6.3.1 Microsoft Learning to Rank Dataset

In order to evaluate our automata-based decision tree approach, we use the first

fold of Microsoft’s LTR (MSLR) Bing dataset[70]. This dataset contains training,

validation, and testing datasets. Each row in the dataset contains a relevance label

from 0 (irrelevant) to 4 (perfectly relevant), followed by a query id, and 136 features

extracted from the query-url pair. These features include, among others, the following

information about the pair:

∙ The occurrence of the query term in the body and anchor of the URL

∙ PageRank, SiteRank, QualityScore, and length of URL

∙ URL dwell time, URL click count

Below is an example of a single entry in the MSLR dataset. Notice how the first

item is the relevance label, the second the query ID, and the remaining are features

in the form < 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑖𝑛𝑑𝑒𝑥 >:< 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒 >.

2 qid:13 1:2 2:0 3:2 4:1 5:2 6:1 7:0 8:1 9:0.50000 10:1 11:31 12:0 13:11

14:7 15:49 16:6.553125 17:15.011174 18:12.950828 19:14.369216 20:6.550869

21:4 22:0 23:2 24:1 25:7 26:2 27:0 28:1 29:0 30:3 31:2 32:0 33:1 34:1 35:4

36:2 37:0 38:1 39:0.50000 40:3.50000 41:0 42:0 43:0 44:0.25000 45:0.25000

46:0.129032 47:0 48:0.181818 49:0.142857 50:0.142857 51:0.064516 52:0

53:0.090909 54:0 55:0.061224 56:0.064516 57:0 58:0.090909 59:0.142857

60:0.081633 61:0.064516 62:0 63:0.090909 64:0.071429 65:0.071429 66:0

67:0 68:0 69:0.005102 70:0.000104 71:13.106251 72:0 73:12.950828 74:6.829093

75:22.821554 76:6.340183 77:0 78:6.129836 79:0 80:10.145764 81:6.766068 82:0

99

83:6.820992 84:6.829093 85:12.67579 86:6.553125 87:0 88:6.475414 89:3.414546

90:11.410777 91:0.045344 92:0 93:0.119424 94:11.659127 95:1.600258 96:1 97:0

98:1 99:0 100:1 101:1 102:0 103:1 104:0.671329 105:0.989811 106:17.818264 107:0

108:10.183562 109:7.633816 110:19.436549 111:-6.340431 112:-12.071142

113:-7.191141 114:-13.131176 115:-5.755162 116:-13.631532 117:-16.095443

118:-14.367199 119:-16.975368 120:-12.63974 121:-5.692009 122:-12.91985

123:-5.00585 124:-13.980776 125:-5.509102 126:2 127:35 128:1 129:0 130:266

131:25070 132:28 133:7 134:0 135:0 136:0

6.3.2 Training the LTR Model

We used the default arguments provided by QuickRank to train our Lambdamart

model on the first Fold of Microsoft’s MSLR dataset. We achieved a maximum 0.4545

NDCG@10 score with 800 trees as shown in Figure 6-2. We experimentally determined

that our model saturated its NDCG score at 800 trees by allowing QuickRank to

continue training the Lambdamart model until there was no increase in NDCG@10

score.

./quicklearn --algo LAMBDAMART --train ~/data/mslr/Fold1/train.txt

--valid ~/data/mslr/Fold1/vali.txt --train-metric NDCG --train-cutoff 10

--model-out lambdamart-model.xml

We then trained eight different models with between 100 and 800 trees. For each

of the models, we used QuickRank’s efficient scoring with CONDOP optimization to

maximize our inference performance. This optimizer produced a new 𝑚𝑜𝑑𝑒𝑙.𝑐𝑐 file

that we compile and run to evaluate scoring inference.

./quicklearn --model-file lambdamart-model.xml --code-file model.cc

--generator condop

100

6.3.3 Evaluating LtR on the CPU

We then executed the optimized CPU models on an Intel i7-7700K CPU run-

ning at 4.20GHz with 4 cores and 8 virtual cores, 64GB of DDR4 RAM running at

2133MHz, and running Ubuntu Linux 16.04.6 LTS. For each model, we determined

the nDCG@10 score as well as the throughput achieved by the CPU. As shown by the

blue bars in Figure 6-2, we saw a significant decrease in throughput as the number of

trees in the ensemble increase.

Figure 6-2: LTR throughput and NDCG@10 vs. number of trees.

6.3.4 Evaluating LtR on the Automata

We use RFAutomata to generate automata by converting the trained QuickRank

models into ANML files. We then use REAPRpp to generate HDL by converting

the ANML files into a set of System Verilog and header files. Finally, we compile

the HDL files into a bitstream that we deploy on Amazon’s AWS F1 [1]. We do

this for all eight models trained by QuickRank. Table 6.1 shows the time it takes to

generate the automata, generate the HDL, and compile the HDL for the FPGA on

the smallest and largest models. The majority of the pre-computing time was spent

on compiling the bitstream, with automata and RTL generation taking less than 1%

101

of the pre-computing time.

Trees Generate Automata Generate HDL Compile for FPGA
100 0.01 min 0.87 min 91 min
800 0.22 min 9.58 min 2034 min

Table 6.1: Runtimes for converting ML models into automata, automata into HDL,
and compiling the HDL into an FPGA bitstream.

We then evaluate our model’s throughput against the CPU throughput as shown

in Figure 6-3. We obtained approximately an 8× increase in throughput on the

FPGA. When comparing our power results of our FPGA implementation as shown in

Figure 6-4 to the approximated 90 Watt TDP of our CPU, we utilize between 41% and

48% of the CPU power on the FPGA with Vivado-calculated power measurements

between 37 and 43 Watts.

Figure 6-3: CPU throughput vs. FPGA throughput as a function of the number of
trees.

6.3.5 Hardware Utilization

Figure 6-5 shows the hardware utilization of the AWS F1 FPGA as a function

of the size of the LtR model. The 800 tree model used only 41.5% of the FPGA’s

102

Figure 6-4: Total F1 power as a function of the number of trees.

resources, leaving a significant amount of usable space for multi-streaming. In our

evaluation, we only used one of the four DRAM channels, leaving room for additional

multi-streaming throughput.

Figure 6-6 shows the FPGA layout generated by Vivado. The orange components

shown on the FPGA are the Shell components. The Shell is provided by AWS and

implements PCIe, DRAM, DMA, interrupts and other external peripheral logic. The

shell comes at a heavy price, costing approximately 20% of the FPGA’s resources.

6.4 Implementation Challenges and Solutions

During the process of implementing our automata LtR models on AWS-F1, we

encountered several complications as we implemented larger models. Our initial ap-

proach of one large flat design required long compilation times and we could not close

on the intended 250MHz timing constraints.

6.4.1 Congestion

We encountered congestion issues that required that we adapt REAPRpp to im-

prove the routability of larger automata designs. To reduce the critical path size, we

103

Figure 6-5: Percentage of hardware resourced utilized by the LtR model as a function
of the number of trees in the ensemble.

Figure 6-6: Diagram of the F1 FPGA utilization for our 800-tree LtR model; the
orange components are the Shell, the blue the automata, and the grey show the wide
input signals distributed to the STEs.

sub-moduled all subgraphs in our flat automata representation and enforced an artifi-

cial hieararchy by generating an H-Tree structure as described in Section 5.2.4. Each

of the terminating nodes represented one automata from the ensemble. By inserting

pipelining registers at each stage of the hierarchy, we could meet timing.

Using our recursive hierarchy approach, we were able to close the 250MHz timing

for all of the 100-800 decision tree models, whereas without we could not for ensembles

larger than 500 trees. Although the underlying functionality is preserved, by providing

104

a hint to the synthesis tools about the relationship between automata simplified the

complexity of routing the design. Also the introduction of the pipeline registers

increase the startup costs to fill the pipeline, but this approach reduced the critical

path lengths of our design.

6.4.2 Compilation Time

One limitation of using the FPGA over other hardware platforms is the significant

synthesis and place-and-route time. For our implementation, compile times ranged

from 90 minutes for a smaller 100 tree ensemble to just under 34 hours for the 800 tree

implementation! As shown in Figure 6-7, utilizing the H-Tree reduced our compilation

time by up to 50% by significantly reducing the amount of time the compilation tools

were optimizing the logic!

Figure 6-7: Time required to synthesize and place-and-route the 600-tree LtR design
with and without the H-Tree hierarchy. *The design without H-Tree failed to meet
250MHz timing constraints.

105

Chapter 7

Conclusions and Future Work

7.1 Summary

Machine learning models based on a plurality of decision trees are versatile and

high performing across a significant range of application and research domains. Their

simplicity with few hyper-parameters to tune, fast training, and flexibility make them

popular for prototyping. Their interpretability also provides valuable insight to the

way they make their decisions.

With the increasing amount of data sourced from IoT devices, smart phones, and

medical devices, accelerating decision tree inference rates as well as increasing their

efficiency is critically important. Also, with the introduction of new layered decision

tree models that obtain neural network-like performance, there is a need to increase

the throughput that large decision tree models can sustain.

Unfortunately, accelerating the inference rate and efficiency of decision tree mod-

els presents a variety of technical challenges. Decision trees exhibit a memory access

pattern with low locality that results in memory-bound von Neumann implementa-

tions. Execution divergence while traversing the many different paths of all of the

decision trees stifles efficient parallel execution with SIMD architectures. Finally, ex-

isting work on accelerating these models on spatial architectures require buffering and

significant hardware costs for memory management and floating-point comparisons.

The Automata Processor and FPGAs are non-von Neumann spatial processor ar-

107

chitectures that can efficiently compute thousands of small state machine automata

in parallel on an input stream of data. We develop algorithms and tools for acceler-

ating decision tree ensembles on these spatial architectures by converting them into

spatial automata. In order to accomplish this transformation from decision tree en-

semble to independently-computable state machines, we had to solve several complex

challenges.

Firstly, we had to convert continuous numerical feature values into symbols from

a discrete address space. We solved this problem by introducing a pipelined labeling

technique that converted between these formats without any loss of fidelity to the

original model. Secondly, we had to convert a local, data-dependent memory access

pattern to a global, sequential, streaming access pattern for all automata on the spa-

tial architecture. We solved this problem by fundamentally restructuring decision tree

traversal into the task of filtering an input stream. Finally, our automata representa-

tion came at a significant spatial overhead. We reduce the spatial resources required

to fit the large models onto existing architectures by introducing two compaction

techniques called One-Hot and Two-Hot Automata Folding.

We developed two open source research tools: RFAutomata and REAPRpp.

RFAutomata allows researchers and developers to convert between their existing de-

cision tree ensemble models and our automata representation, catalyzing automata-

based machine learning acceleration. RFAutomata also allows researchers to explore

spatial and temporal design tradeoffs and evaluate their models on a variety of au-

tomata engines. REAPRpp is an enhanced synthesis tool for converting this automata

representation into RTL for FPGAs.

Finally, we prove our hypothesis by accelerating several decision tree ensemble

applications on spatial architectures by representing the constituent decision trees

with finite state automata. One application we focused on was Learn-to-Rank docu-

ment ranking. We targeted cloud-based FPGAs and achieve significant performance

improvements and power reduction.

108

7.2 Impact

The work presented in this dissertation has been distributed to researchers and

industry by way of several publications at workshops and conferences, as well as

having been demonstrated at a research annual review meeting. To the best of our

knowledge, we are the first researchers to demonstrate an end-to-end application on

Micron’s Automata Processor. We demonstrated a Random Forest-based character

recognition application with Brill rule tagging at the Center for Future Architec-

ture Research (CFAR) 2016 meeting at the University of Michigan. Our automata

decision tree work was also accepted twice (2018 and 2019) at the competitive GO-

MACTech conference, a yearly conference established for the review of developments

in microcircuit application with government applications.

In addition, our techniques are currently being patented and the open-source tools

presented have been used by other researchers in other research projects. Finally, our

tools have have achieved industry penetration and expect future work to expand

adoption.

7.2.1 Automata Tools

Several research projects utilize our automata design tools including a current

research project in asychronous, stochastic computing, using the automata repre-

sentation of the decision tree ensembles to do machine learning inference at very

low power, on a stream of values close to the sensor[32]. Our automata debugging

paper[16] presented at the Architectural Support for Programming Languages and

Operating Systems (ASPLOS) conference also utilized the debugging options built

into REAPRpp.

7.2.2 Automata Benchmarks

In Chapter 5 we described the ANMLZoo and AutomataZoo benchmark suites

with 28 and 2 citation counts as of 6 June 2019, respectively. These benchmarks are,

to our best knowledge, the most diverse automata benchmarks currently available to

109

researchers, providing a variety of applications that traditional automata benchmarks

do not.

7.2.3 Industry Penetration

The algorithms presented in Chapter 3 were also submitted and are currently

being reviewed to be patented, under the ownership of Micron. The patent has a

pending status[119] as of July 2019. In addition, we worked with an employee of

Xilinx on implementing a Random Forest model, indicating some level of industry

adoption.

7.3 Future Architecture Research

This dissertation introduces several novel techniques for transforming decision tree

ensembles into state machines that can process an input stream with high parallelism.

We have shown their implementation on CPUs, GPUs, FPGAs, Micron’s Automata

processor, and on an ASIC with stochastic computing logic. Future work could ex-

plore targeting additional architectures including MIMD architectures like Adapteva’s

Parallella[63]. One approach could utilize wave-style processing for automata com-

puting across an array of lightweight processor cores.

7.3.1 Automata Overlays

Our approach has focused on implementing decision trees directly in hardware

by mapping the State Transition Elements directly in the LUTs and connecting the

STEs directly. Although this process allows for very lightweight design, it requires

expensive synthesis and place-and-route every time a new design is implemented. We

have explored techniques for reducing the impact of this overhead in Chapter 5, but

there is room for additional work to further reduce compilation overhead.

Another approach is to use an overlay architecture. Future work could make a

time/space tradeoff by using an Overlay architecture, something similar to the AP,

110

where the STE character sets and connectivity can be reconfigured much faster at the

cost of additional power and spatial resources. This architecture would be useful for

applications where rapid reconfigurability is important, a metric that this dissertation

did not focus on.

7.3.2 Automata Machine Learning

We demonstrated in Chapter 3 that decision tree automata essentially map each of

the learned partitions to a filter state machine that recognizes an input feature vector

that maps to that partition. Instead of training decision trees and deconstructing

them, future work could explore directly generating automata from the training data.

With the development of flexible automata overlays, this process could be done in-situ

on the spatial architecture.

This approach could also allow for continual learning, where as new training data

is added, the automata assigned to partitions could adjust the ranges in each feature

dimension to account for new statistical changes. Instead of rebuilding the entire

ensemble, each of the automata would keep track of their own histograms, and as

new data was added to their random subset and the histogram statistics changed,

the automata could update their thresholds to accommodate the change. This would

also require that the feature table be flexible in adding new feature ranges.

One approach for implementing in-situ decision tree automata learning could use

a hard or soft core CPU and DRAM to handle the update computations and modify

the BRAMs as new data arrives. We hypothesize that this approach could be very

useful for space and automotive applications where reliability is a primary concern,

for IOT devices where power is a primary concern, and for cybersecurity applications

where rapid updates are important when responding to events.

7.3.3 Exploring Additional Machine Learning Models

We believe that decision trees and decision tree ensembles are not the only models

that can be accelerated with our automata approach. We propose future research into

111

utilizing the techniques that we presented for other models including Support Vector

Machines (SVMs) and binarized neural networks.

112

Bibliography

[1] EC Amazon. F1 instances: Run custom fpgas in the aws cloud, 2017. URL
https://aws. amazon. com/ec2/instance-types/f1.

[2] Kevin Angstadt, Jack Wadden, Vinh Dang, Ted Xie, Dan Kramp, Westley
Weimer, Mircea Stan, and Kevin Skadron. Mncart: An open-source, multi-
architecture automata-processing research and execution ecosystem. IEEE
Computer Architecture Letters, 17(1):84–87, 2017.

[3] Nima Asadi, Jimmy Lin, and Arjen P. de Vries. Runtime optimizations for tree-
based machine learning models. IEEE Transactions on Knowledge and Data
Engineering, 26(9):1–1, 2014.

[4] Kubilay Atasu, Florian Doerfler, Jan van Lunteren, and Christoph Hagleitner.
Hardware-accelerated regular expression matching with overlap handling on ibm
poweren processor. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, pages 1254–1265. IEEE, 2013.

[5] Susan Athey, Julie Tibshirani, Stefan Wager, et al. Generalized random forests.
The Annals of Statistics, 47(2):1148–1178, 2019.

[6] Shuang Bai. Growing random forest on deep convolutional neural networks for
scene categorization. Expert Systems with Applications, 71:279–287, 2017.

[7] Michela Becchi. Data structures, algorithms and architectures for efficient reg-
ular expression evaluation. Washington University in St. Louis, 2009.

[8] Michela Becchi, Charlie Wiseman, and Patrick Crowley. Evaluating regular
expression matching engines on network and general purpose processors. In
Proceedings of the 5th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, pages 30–39. ACM, 2009.

[9] Simone Bendazzoli, Irene Brusini, Peter Damberg, Örjan Smedby, Leif Ander-
sson, and Chunliang Wang. Automatic rat brain segmentation from mri using
statistical shape models and random forest. In Medical Imaging 2019: Image
Processing, volume 10949, page 109492O. International Society for Optics and
Photonics, 2019.

113

[10] Chunkun Bo, Ke Wang, Jeffrey J Fox, and Kevin Skadron. Entity resolution
acceleration using micron’s automata processor. Proceedings of Architectures
and Systems for Big Data (ASBD), in conjunction with ISCA, 2015.

[11] Leo Breiman. Using adaptive bagging to debias regressions. Technical report,
Technical Report 547, Statistics Dept. UCB, 1999.

[12] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[13] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak
Shah. Signature verification using a" siamese" time delay neural network. In
Advances in neural information processing systems, pages 737–744, 1994.

[14] Gabriele Capannini, Claudio Lucchese, Franco Maria Nardini, Salvatore Or-
lando, Raffaele Perego, and Nicola Tonellotto. Quality versus efficiency in doc-
ument scoring with learning-to-rank models. Information Processing & Man-
agement, 52(6):1161–1177, 2016.

[15] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. in-
fant: Nfa pattern matching on gpgpu devices. ACM SIGCOMM Computer
Communication Review, 40(5):20–26, 2010.

[16] Matthew Casias, Kevin Angstadt, Tommy Tracy II, Kevin Skadron, and West-
ley Weimer. Debugging support for pattern-matching languages and acceler-
ators. In Proceedings of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2019.

[17] Mauricio Castro-Franco, José Luis Costa, Nahuel Peralta, and Virginia Apari-
cio. Prediction of soil properties at farm scale using a model-based soil sampling
scheme and random forest. Soil science, 180(2):74–85, 2015.

[18] Marie Chavent, Robin Genuer, and Jerome Saracco. Combining clustering
of variables and feature selection using random forests. Communications in
Statistics-Simulation and Computation, pages 1–20, 2019.

[19] Xing Chen, Li Huang, Di Xie, and Qi Zhao. Egbmmda: extreme gradient
boosting machine for mirna-disease association prediction. Cell death & disease,
9(1):3, 2018.

[20] Van Dang, Michael Bendersky, and W Bruce Croft. Two-stage learning to rank
for information retrieval. In European Conference on Information Retrieval,
pages 423–434. Springer, 2013.

[21] Ana de Castro, Jorge Torres-Sánchez, Jose Peña, Francisco Jiménez-Brenes,
Ovidiu Csillik, and Francisca López-Granados. An automatic random forest-
obia algorithm for early weed mapping between and within crop rows using uav
imagery. Remote Sensing, 10(2):285, 2018.

114

[22] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold
Noyes. An efficient and scalable semiconductor architecture for parallel au-
tomata processing. IEEE Transactions on Parallel and Distributed Systems,
25(12):3088–3098, 2014.

[23] Nejdet Dogru and Abdulhamit Subasi. Traffic accident detection using random
forest classifier. In 2018 15th Learning and Technology Conference (L&T), pages
40–45. IEEE, 2018.

[24] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[25] Ji Feng and Zhi-Hua Zhou. Autoencoder by forest. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[26] Ronald A Fisher. The use of multiple measurements in taxonomic problems.
Annals of eugenics, 7(2):179–188, 1936.

[27] Michael J Flynn. Some computer organizations and their effectiveness. IEEE
transactions on computers, 100(9):948–960, 1972.

[28] Brady Fowler, Monica Rajendiran, Timothy Schroeder, Nicholas Bergh, Abigail
Flower, and Hyojung Kang. Predicting patient revisits at the university of
virginia health system emergency department. In 2017 Systems and Information
Engineering Design Symposium (SIEDS), pages 253–258. IEEE, 2017.

[29] Jerome H Friedman. Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, pages 1189–1232, 2001.

[30] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics &
Data Analysis, 38(4):367–378, 2002.

[31] Geoff Langdale. HyperScan in Suricata: State of the Union. 2016.

[32] Patricia Gonzalez, Tommy Tracy II, Xinfei Guo, Marzieh Lenjani, and
Mircea R. Stan. Towards low-power machine learning using asynchronous com-
puting with streams. Submitted for publication.

[33] Stuart K Grange, David C Carslaw, Alastair C Lewis, Eirini Boleti, and
Christoph Hueglin. Random forest meteorological normalisation models for
swiss pm 10 trend analysis. Atmospheric Chemistry and Physics, 18(9):6223–
6239, 2018.

[34] LI Hang. A short introduction to learning to rank. IEICE TRANSACTIONS
on Information and Systems, 94(10):1854–1862, 2011.

[35] Satoshi Hara and Kohei Hayashi. Making tree ensembles interpretable. arXiv
preprint arXiv:1606.05390, 2016.

115

[36] Abián Hernández, Himar Fabelo, Samuel Ortega, Abelardo Báez, Gustavo M
Callicó, and Roberto Sarmiento. Random forest training stage acceleration
using graphics processing units. In 2017 32nd Conference on Design of Circuits
and Integrated Systems (DCIS), pages 1–6. IEEE, 2017.

[37] Tommy Tracy II. Rfautomata. https://github.com/hplp/rfautomata, 2018.

[38] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning, volume 112. Springer, 2013.

[39] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446,
2002.

[40] Shiyu Ji, Jinjin Shao, Daniel Agun, and Tao Yang. Privacy-aware ranking with
tree ensembles on the cloud. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, pages 315–324. ACM,
2018.

[41] Amod Jog, Aaron Carass, Snehashis Roy, Dzung L Pham, and Jerry L Prince.
Random forest regression for magnetic resonance image synthesis. Medical im-
age analysis, 35:475–488, 2017.

[42] Rob Kassel. Ocr dataset, 2013.

[43] Sangwon Kim, Mira Jeong, Deokwoo Lee, and Byoung Chul Ko. Deep coupling
of random ferns. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 5–8, 2019.

[44] Tomasz Kojm. Clamav, 2004.

[45] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning:
A review of classification techniques. Emerging artificial intelligence applica-
tions in computer engineering, 160:3–24, 2007.

[46] Yann LeCun and Corinna Cortes. Mnist handwritten digit database. AT&T
Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[47] Yeon-sup Lim, Hyun-chul Kim, Jiwoong Jeong, Chong-kwon Kim, Ted Taeky-
oung Kwon, and Yanghee Choi. Internet traffic classification demystified: on
the sources of the discriminative power. In Proceedings of the 6th International
COnference, page 9. ACM, 2010.

[48] Zhe Lin, Sharad Sinha, and Wei Zhang. Towards efficient and scalable ac-
celeration of online decision tree learning on fpga. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 172–180. IEEE, 2019.

116

https://github.com/hplp/rfautomata

[49] Fei Tony Liu, Kai Ming Ting, Yang Yu, and Zhi-Hua Zhou. Spectrum of
variable-random trees. Journal of Artificial Intelligence Research, 32:355–384,
2008.

[50] Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and
Trends R○ in Information Retrieval, 3(3):225–331, 2009.

[51] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Nicola Tonellotto, and Rossano Venturini. Quickscorer: A fast algorithm to
rank documents with additive ensembles of regression trees. In Proceedings of
the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’15, pages 73–82, New York, NY, USA, 2015.
ACM.

[52] Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Orlando,
and Salvatore Trani. Selective gradient boosting for effective learning to rank.
In The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, pages 155–164. ACM, 2018.

[53] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y
Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies-volume 1, pages 142–150. Association
for Computational Linguistics, 2011.

[54] Diego Marron, Albert Bifet, and Gianmarco De Francisci Morales. Random
forests of very fast decision trees on gpu for mining evolving big data streams.
In ECAI, volume 14, pages 615–620, 2014.

[55] Kevin Miller, Chris Hettinger, Jeffrey Humpherys, Tyler Jarvis, and David
Kartchner. Forward thinking: Building deep random forests. arXiv preprint
arXiv:1705.07366, 2017.

[56] Tom Mitchell, Bruce Buchanan, Gerald DeJong, Thomas Dietterich, Paul
Rosenbloom, and Alex Waibel. Machine learning. Annual review of computer
science, 4(1):417–433, 1990.

[57] Seyed Amir Naghibi, Hamid Reza Pourghasemi, and Barnali Dixon. Gis-based
groundwater potential mapping using boosted regression tree, classification and
regression tree, and random forest machine learning models in iran. Environ-
mental monitoring and assessment, 188(1):44, 2016.

[58] Hiroki Nakahara, Akira Jinguji, Tomonori Fujii, and Simpei Sato. An accelera-
tion of a random forest classification using altera sdk for opencl. In 2016 Inter-
national Conference on Field-Programmable Technology (FPT), pages 289–292.
IEEE, 2016.

117

[59] Hiroki Nakahara, Akira Jinguji, Simpei Sato, and Tsutomu Sasao. A random
forest using a multi-valued decision diagram on an fpga. In Multiple-Valued
Logic (ISMVL), 2017 IEEE 47th International Symposium on, pages 266–271.
IEEE, 2017.

[60] Giulio Napolitano, Julia C Stingl, Matthias Schmid, and Roberto Viviani. Pre-
dicting CYP2D6 phenotype from resting brain perfusion images by gradient
boosting. Psychiatry Research: Neuroimaging, 259:16–24, 2017.

[61] Paulino José García Nieto, Esperanza García-Gonzalo, Fernando Sánchez
Lasheras, José Ramón Alonso Fernández, Cristina Díaz Muñiz, and Fran-
cisco Javier de Cos Juez. Cyanotoxin level prediction in a reservoir using
gradient boosted regression trees: a case study. Environmental Science and
Pollution Research, 25(23):22658–22671, 2018.

[62] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng, and Michela
Becchi. Demystifying automata processing: Gpus, fpgas or micron’s ap? In
Proceedings of the International Conference on Supercomputing, page 1. ACM,
2017.

[63] Andreas Olofsson, Tomas Nordström, and Zain Ul-Abdin. Kickstarting high-
performance energy-efficient manycore architectures with epiphany. In 2014
48th Asilomar Conference on Signals, Systems and Computers, pages 1719–
1726. IEEE, 2014.

[64] Kenneth O’Neal, Mitch Liu, Hans Tang, Amin Kalantar, Kennen DeRe-
nard, and Philip Brisk. Hlspredict: cross platform performance prediction for
fpga high-level synthesis. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[65] Muhsen Owaida and Gustavo Alonso. Application partitioning on fpga clusters:
Inference over decision tree ensembles. In 2018 28th International Conference
on Field Programmable Logic and Applications (FPL), pages 295–2955. IEEE,
2018.

[66] Muhsen Owaida, Hantian Zhang, Ce Zhang, and Gustavo Alonso. Scalable in-
ference of decision tree ensembles: Flexible design for cpu-fpga platforms. In
2017 27th International Conference on Field Programmable Logic and Applica-
tions (FPL), pages 1–8. IEEE, 2017.

[67] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: bringing order to the web. 1999.

[68] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. The
Journal of Machine Learning Research, 12:2825–2830, 2011.

118

[69] Natalia S Podio, María V Baroni, and Daniel A Wunderlin. Relation between
polyphenol profile and antioxidant capacity of different argentinean wheat va-
rieties. a boosted regression trees study. Food Chemistry, 232:79–88, 2017.

[70] Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. CoRR,
abs/1306.2597, 2013.

[71] J Ross Quinlan. Generating production rules from decision trees. In ijcai,
volume 87, pages 304–307. Citeseer, 1987.

[72] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework:
BM25 and beyond. Now Publishers Inc, 2009.

[73] Emmanuel Roche and Yves Schabes. Finite-state language processing. MIT
press, 1997.

[74] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In
Lisa, volume 99, pages 229–238, 1999.

[75] Indranil Roy and Srinivas Aluru. Finding motifs in biological sequences using
the micron automata processor. In Parallel and Distributed Processing Sympo-
sium, 2014 IEEE 28th International, pages 415–424. IEEE, 2014.

[76] Indranil Roy, Ankit Srivastava, Matt Grimm, and Srinivas Aluru. Parallel
interval stabbing on the automata processor. In 2016 6th Workshop on Irregular
Applications: Architecture and Algorithms (IA3), pages 10–17. IEEE, 2016.

[77] Indranil Roy, Ankit Srivastava, Marziyeh Nourian, Michela Becchi, and Srini-
vas Aluru. High performance pattern matching using the automata proces-
sor. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1123–1132. IEEE, 2016.

[78] Cynthia Rudin and Kiri L Wagstaff. Machine learning for science and society,
2014.

[79] Shruti Sachdeva, Tarunpreet Bhatia, and AK Verma. Gis-based evolutionary
optimized gradient boosted decision trees for forest fire susceptibility mapping.
Natural Hazards, 92(3):1399–1418, 2018.

[80] Ferdinando S Samaria and Andy C Harter. Parameterisation of a stochastic
model for human face identification. In Proceedings of 1994 IEEE Workshop on
Applications of Computer Vision, pages 138–142. IEEE, 1994.

[81] Niek Sanders. Twitter sentiment corpus, 2011.

[82] Christos Sapsanis, George Georgoulas, Anthony Tzes, and Dimitrios Lym-
beropoulos. Improving emg based classification of basic hand movements using
emd. In 2013 35th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), pages 5754–5757. IEEE, 2013.

119

[83] Christopher Scarpone, Margaret G Schmidt, Chuck E Bulmer, and Anders
Knudby. Semi-automated classification of exposed bedrock cover in british
columbia’s southern mountains using a random forest approach. Geomorphol-
ogy, 285:214–224, 2017.

[84] Ilya Segalovich. Machine learning in search quality at yandex. Invited Talk,
SIGIR, 125, 2010.

[85] Robert P Sheridan, Wei Min Wang, Andy Liaw, Junshui Ma, and Eric M Gif-
ford. Extreme gradient boosting as a method for quantitative structure–activity
relationships. Journal of Chemical Information and Modeling, 56(12):2353–
2360, 2016.

[86] Gagandeep Singh, Juan Gómez-Luna, Giovanni Mariani, Geraldo F Oliveira,
Stefano Corda, Sander Stuijk, Onur Mutlu, and Henk Corporaal. Napel: Near-
memory computing application performance prediction via ensemble learning.
In Proceedings of the 56th Annual Design Automation Conference 2019, page 27.
ACM, 2019.

[87] Abdulhamit Subasi, Emina Alickovic, and Jasmin Kevric. Diagnosis of chronic
kidney disease by using random forest. In CMBEBIH 2017, pages 589–594.
Springer, 2017.

[88] Ryutaro Tanno, Kai Arulkumaran, Daniel C Alexander, Antonio Criminisi, and
Aditya Nori. Adaptive neural trees. arXiv preprint arXiv:1807.06699, 2018.

[89] II Tommy Tracy, Mircea Stan, Nathan Brunelle, Jack Wadden, Ke Wang, Kevin
Skadron, and Gabe Robins. Nondeterministic finite automata in hardware-the
case of the levenshtein automaton. Architectures and Systems for Big Data
(ASBD), in conjunction with ISCA, 2015.

[90] Da Tong, Yun Rock Qu, and Viktor K Prasanna. Accelerating decision tree
based traffic classification on fpga and multicore platforms. IEEE Transactions
on Parallel and Distributed Systems, 28(11):3046–3059, 2017.

[91] Tommy Tracy II. Automatazoo. https://github.com/tjt7a/AutomataZoo,
2018.

[92] Tommy Tracy II, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning. To-
wards machine learning on the automata processor. In International Conference
on High Performance Computing, pages 200–218. Springer, 2016.

[93] Tommy Tracy II and Mircea Stan. Streaming random forest inference. GO-
MACTech, 2018.

[94] Tommy Tracy II and Mircea Stan. An improved spatial encoding for large
decision tree ensemble automata. GOMACTech, 2019.

120

https://github.com/tjt7a/AutomataZoo

[95] George Tzanetakis and Perry Cook. Musical genre classification of audio signals.
IEEE Transactions on speech and audio processing, 10(5):293–302, 2002.

[96] Lev Utkin, Andrei Konstantinov, Anna Meldo, Mikhail Ryabinin, and Viach-
eslav Chukanov. A deep forest improvement by using weighted schemes. In
Proceedings of the 24th Conference of Open Innovations Association FRUCT,
page 63. FRUCT Oy, 2019.

[97] Lev V Utkin and Mikhail A Ryabinin. A siamese deep forest. arXiv preprint
arXiv:1704.08715, 2017.

[98] Lev V Utkin and Mikhail A Ryabinin. A siamese deep forest. Knowledge-Based
Systems, 139:13–22, 2018.

[99] Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. Ac-
celerating a random forest classifier: Multi-core, gp-gpu, or fpga? In Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual
International Symposium on, pages 232–239. IEEE, 2012.

[100] Gill Venner, Stephen Walker, and Nathalie Mitev. Okapi: a prototype online
catalogue. Vine, 15(2):3–13, 1985.

[101] Cyril Voyant, Fabrice Motte, Gilles Notton, Alexis Fouilloy, Marie-Laure Nivet,
and Jean-Laurent Duchaud. Prediction intervals for global solar irradiation
forecasting using regression trees methods. Renewable energy, 126:332–340,
2018.

[102] Jack Wadden, Kevin Angstadt, and Kevin Skadron. Characterizing and mit-
igating output reporting bottlenecks in spatial automata processing architec-
tures. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 749–761. IEEE, 2018.

[103] Jack Wadden, Nathan Brunelle, Ke Wang, Mohamed El-Hadedy, Gabriel
Robins, Mircea Stan, and Kevin Skadron. Generating efficient and high-quality
pseudo-random behavior on automata processors. In 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD), pages 622–629. IEEE, 2016.

[104] Jack Wadden, Vinh Dang, Nathan Brunelle, Tommy Tracy II, Deyuan Guo,
Elaheh Sadredini, Ke Wang, Chunkun Bo, Gabriel Robins, Mircea Stan, et al.
ANMLzoo: a benchmark suite for exploring bottlenecks in automata processing
engines and architectures. In Workload Characterization (IISWC), 2016 IEEE
International Symposium on, pages 1–12. IEEE, 2016.

[105] Jack Wadden and Kevin Skadron. Vasim: An open virtual automata simulator
for automata processing application and architecture research. University of
Virginia, Tech. Rep. CS2016-03, 2016.

121

[106] Jack Wadden, Tommy Tracy, Elaheh Sadredini, Lingxi Wu, Chunkun Bo, Jesse
Du, Yizhou Wei, Jeffrey Udall, Matthew Wallace, Mircea Stan, et al. Au-
tomatazoo: A modern automata processing benchmark suite. In 2018 IEEE
International Symposium on Workload Characterization (IISWC), pages 13–24.
IEEE, 2018.

[107] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy ar-
ray: a structure for efficient numerical computation. Computing in Science &
Engineering, 13(2):22–30, 2011.

[108] Chenxu Wang, Tingting Cai, Guang Suo, Yutong Lu, and Enqiang Zhou. Dis-
tforest: A parallel random forest training framework based on supercomputer.
In 2018 IEEE 20th International Conference on High Performance Comput-
ing and Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems (HPCC/S-
martCity/DSS), pages 196–204. IEEE, 2018.

[109] Ke Wang, Yanjun Qi, J.J. Fox, M.R. Stan, and K. Skadron. Association rule
mining with the micron automata processor. In IPDPS’15, May 2015.

[110] Ke Wang, Elaheh Sadredini, and Kevin Skadron. Sequential pattern mining
with the micron automata processor. In Proceedings of the ACM International
Conference on Computing Frontiers, pages 135–144. ACM, 2016.

[111] Michael HLS Wang, Gustavo Cancelo, Christopher Green, Deyuan Guo,
Ke Wang, and Ted Zmuda. Using the automata processor for fast pattern
recognition in high energy physics experimentsâĂŤa proof of concept. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 832:219–230, 2016.

[112] Yaozheng Wang, Dawei Feng, Dongsheng Li, Xinyuan Chen, Yunxiang Zhao,
and Xin Niu. A mobile recommendation system based on logistic regression
and gradient boosting decision trees. In Neural Networks (IJCNN), 2016 In-
ternational Joint Conference on, pages 1896–1902. IEEE, 2016.

[113] Zeyu Wang, Yueren Wang, Ruochen Zeng, Ravi S Srinivasan, and Sherry
Ahrentzen. Random forest based hourly building energy prediction. Energy
and Buildings, 171:11–25, 2018.

[114] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao.
Adapting boosting for information retrieval measures. Information Retrieval,
13(3):254–270, 2010.

[115] Ted Xie, Vinh Dang, Jack Wadden, Kevin Skadron, and Mircea Stan. Reapr:
Reconfigurable engine for automata processing.

[116] Xilinx. Field programmable gate array (fpga). URL
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html.

122

[117] Xilinx Inc., San José, CA. Virtual Input/Output v3.0: LogiCORE IP Product
Guide, PG159 edition, 2018.

[118] Weifeng Xu, Jianxin Zhang, Qiang Zhang, and Xiaopeng Wei. Risk prediction
of type ii diabetes based on random forest model. In 2017 Third International
Conference on Advances in Electrical, Electronics, Information, Communica-
tion and Bio-Informatics (AEEICB), pages 382–386. IEEE, 2017.

[119] Tommy Tracy II Eric Jonas Yao Fu, Paul Glendenning. Space efficient ran-
dom forests implementation utilizing automata processors, 2016. Patent No.
US20170255878A1, Filed Mar. 7, 2016, PENDING.

[120] Huan Zhang, Si Si, and Cho-Jui Hsieh. Gpu-acceleration for large-scale tree
boosting. arXiv preprint arXiv:1706.08359, 2017.

[121] Lei Zhao, Quan Deng, Youtao Zhang, and Jun Yang. Rfacc: a 3d reram as-
sociative array based random forest accelerator. In Proceedings of the ACM
International Conference on Supercomputing, pages 473–483. ACM, 2019.

[122] Keira Zhou, Jeffrey J Fox, Ke Wang, Donald E Brown, and Kevin Skadron. Brill
tagging on the micron automata processor. In Semantic Computing (ICSC),
2015 IEEE International Conference on, pages 236–239. IEEE, 2015.

[123] Zhi-Hua Zhou and Ji Feng. Deep forest: Towards an alternative to deep neural
networks. arXiv preprint arXiv:1702.08835, 2017.

[124] Xi Zhu, Xiaofei Du, Mike Kerich, Falk W Lohoff, and Reza Momenan. Random
forest based classification of alcohol dependence patients and healthy controls
using resting state mri. Neuroscience letters, 676:27–33, 2018.

123

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	Introduction
	Hypothesis and Contributions
	Organization

	Background
	Supervised Machine Learning
	Training Machine Learning Models

	Classification and Regression Trees
	Training Decision Trees
	Decision Tree Inference

	Decision Tree Ensembles
	Bagging vs. Boosting
	Random Forest
	Boosted Regression Trees

	Why Decision Tree Ensembles?
	Cascaded Decision Tree Ensembles

	Accelerating Decision Tree Ensembles
	Accelerating Decision Tree Ensemble Training
	Temporal Architectures
	Spatial Architectures

	Finite State Automata
	Automata Computing

	Processor Architectures
	von Neumann Architectures
	Automata Processing on Spatial Architectures

	Decision Tree Automata
	Streaming Automata Inference
	Automata Challenges
	One Finite State Automaton per Partition
	Aligning Automata
	Numerical Comparisons to Set Membership

	Automata Folding
	Decision Tree Automata Model
	Experimental Analysis
	Datasets
	Training
	CPU Evaluation
	Automata Evaluation
	Results and Discussion

	Automata Optimizations
	Scaling Alphabet Size
	Single- Versus Multi-Character Character Sets
	One-Hot Encoded Super-States
	Two-Hot Encoded Super-States

	One-Hot and Two-Hot Automata Folding
	The Grid and Block Abstraction
	Feature Permutations
	One-Hot Automata Folding
	Two-Hot Automata Folding
	Evaluating One-Hot versus Two-Hot Automata Folding

	Further Optimizations
	Compacting The Input
	Feature Compression
	Logarithmic Automata Search

	Benchmarks and Tools
	RFAutomata
	Feature Extraction
	Training
	RFAutomata Automata Synthesis
	Input Formats
	Outputs
	Direct Hardware Support

	REAPRpp
	Reporting Architecture
	Debugging Support
	Amazon Web Services EC2-F1
	Recursively Grouping Automata
	Additional REAPRpp Functionality

	Benchmarks
	ANMLZoo
	AutomataZoo

	Learn To Rank (LTR) Automata
	Learn To Rank Document Ranking
	Training with LtR Models

	QuickRank: High Performance LtR on CPUs
	QuickScore

	Experimental Setup
	Microsoft Learning to Rank Dataset
	Training the LTR Model
	Evaluating LtR on the CPU
	Evaluating LtR on the Automata
	Hardware Utilization

	Implementation Challenges and Solutions
	Congestion
	Compilation Time

	Conclusions and Future Work
	Summary
	Impact
	Automata Tools
	Automata Benchmarks
	Industry Penetration

	Future Architecture Research
	Automata Overlays
	Automata Machine Learning
	Exploring Additional Machine Learning Models

	Bibliography
	Bibliography

