
Fast, Safe, and Proactive Runtime Planning and Control of Autonomous Ground Vehicles
in Changing Environments

A Technical Report submitted to the Department of Engineering Systems and Environment

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Grace Glaubit

Spring, 2021.

Technical Project Team Members

Katie Kleeman

Noelle Law

Jeremiah Thomas

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Nicola Bezzo, Department of Engineering Systems and Environment

Fast, Safe, and Proactive Runtime Planning and
Control of Autonomous Ground Vehicles in

Changing Environments
Grace Glaubit†

Computer Science

University of Virginia

Charlottesville, USA
gsg6bu@virginia.edu

Katie Kleeman†
Engineering Systems and Env.

University of Virginia

Charlottesville, USA
knk9ab@virginia.edu

Noelle Law†

Electrical and Comp. Eng.

University of Virginia

Charlottesville, USA
nl9sb@virginia.edu

Jeremiah Thomas†
Engineering Systems and Env.

University of Virginia

Charlottesville, USA
jt6fz@virginia.edu

Shijie Gao
Electrical and Comp. Eng.

University of Virginia

Charlottesville, USA
sg9dn@virginia.edu

Rahul Peddi
Engineering Systems and Env.

University of Virginia

Charlottesville, USA
rp3cy@virginia.edu

Esen Yel
Engineering Systems and Env.

University of Virginia

Charlottesville, USA
ey3un@virginia.edu

Nicola Bezzo
Engineering Systems and Env.

University of Virginia

Charlottesville, USA
nb6be@virginia.edu

Abstract—Autonomous ground vehicles (UGVs) traversing

paths in complex environments may have to adapt to changing

terrain characteristics, including different friction, inclines, and

obstacle configurations. In order to maintain safety, vehicles must

make adjustments guided by runtime predictions of future veloc-

ities. To this end, we present a neural network-based framework

for the proactive planning and control of an autonomous mobile

robot navigating through different terrains. Using our approach,

the mobile robot continually monitors the environment and the

planned path ahead to accurately adjust its speed for successful

navigation toward a desired goal. The target speed is selected

by optimizing two criteria: (1) minimizing the rate of change

between predicted and current vehicle speed and (2) maximizing

the speed while staying within a safe distance from the desired

path. Additionally, we introduce random noise into the network

to model sensor uncertainty and reduce the risk of predicting

unsafe speeds. We extensively tested and validated our framework

on realistic simulations in Gazebo/ROS with a UGV navigating

cluttered environments with different terrain frictions and slopes.

Index Terms—motion planning, terrain traversability, neural

network, unmanned ground vehicles

I. INTRODUCTION

Unmanned ground vehicles (UGVs) are increasingly pop-
ular for a wide range of use cases. The autonomous car
industry is booming, with a market set to reach $42 billion by
20251. Advances in data collection capabilities make UGVs an
ideal choice for Intelligence, Surveillance, and Reconnaissance
(ISR) missions and other dangerous tasks such as collapsed
cave exploration and detection of hazards.

An important part of these tasks is balancing safety and
efficiency, which is especially hard to do in unknown terrains.
Complex environments that combine difficult maneuvers, tight
turns, hills, and slippery or rough surfaces can cause issues
with existing control algorithms (Fig. 1). For example, an

† First four authors contributed equally to the paper
1https://www.digitalistmag.com/improving-lives/2019/04/02/rise-of-

autonomous-vehicles-why-ethics-matter-06197534/

(a) (b)

Fig. 1: Example of UGV traversing over an icy surface.
The UGV in (a) moves at its maximum speed, consequently
crashing while (b) limits its speed based on surface conditions
and the upcoming turn, and successfully maneuvers the path.

autonomous truck can maintain a constant speed as it maneu-
vers its route under normal conditions, but it must slow down
to safely execute turns under icy road conditions. If a UGV
moves too fast, it could reach an unsafe state like crashing into
an obstacle (Fig. 1(a)). Driving too slowly may be safer, but
being too conservative is inefficient. Therefore, it is important
for a UGV to maximize its speed while maintaining safety.

In this work, we propose a neural network (NN)-based
framework for proactive control of an autonomous UGV
navigating complex terrains. We consider the planned path and
the friction, obstacles, and ramps in the environment to find the
maximum speed that the UGV can operate at and still complete
its mission. Our framework proactively adjusts the UGV’s
speed based on the environment’s friction to meet future safe
speed targets. It also maintains a safe deviation threshold to
avoid obstacles near the planned trajectory. This framework
could be especially useful for time-critical missions.

The paper is organized as follows: Sec. II reviews the state
of the art for UGV navigation in complex environments,
Sec. III covers preliminaries, Sec. IV provides our problem
statement, Sec. V outlines our approach, Sec. VI details simu-
lations, and Sec. VII discusses conclusions and future work.

II. LITERATURE REVIEW

The predominant approach for UGV navigation in chal-
lenging environments is learning-based methods. In [1], a
temporal-based NN architecture for UGV navigation is used
to generate a steering command. The approach in [2] presents
navigation through complex environments using an unsuper-
vised learning algorithm that adapts driving control based on
surface classification. However, this work does not consider
turning radius in maximum velocity determination.

In [3], a general approach to long-range path planning in
challenging terrains is proposed, in which a learned model
uses partial knowledge to predict local motions of a robot.
Meanwhile, [4] proposes a risk-averse path-planning algorithm
that identifies potential traversable paths, ranked in terms of
safety and distance. Similarly, [5] provides a reinforcement
learning-based approach for safe local planning to navigate a
vehicle through unknown terrain.

Many NN-based approaches for autonomous navigation do
not consider model uncertainty. The work in [6] proposes a
method to handle model uncertainty in autonomous driving
scenarios by using dropout networks to predict vehicle crashes
in advance. Uncertainty and error are modelled in [7] through
formulating traversabilty as a probabilistic feature, in which
locally spaced elevation differences are verified or discarded.

Our work considers similar challenges to the aforemen-
tioned work, and builds a NN-based navigation system that
allows a UGV to successfully traverse complex environments
by generating a safe and efficient forward velocity command
while also considering model uncertainty.

III. PRELIMINARIES

A. UGV System Dynamics

In this work, we model a UGV as a differential drive robot,
which is steered by independently controlling the speed of the
wheels on either side of the robot. The left-hand wheels of
the UGV move at a speed of vL while the right-hand wheels
move at a speed of vR. The wheels are separated by distance
W . The equations of motion are as follows:

ẋ =
(vR + vL) cos ✓

2
ẏ =

(vR + vL) sin ✓

2
✓̇ =

vR � vL
W

We chose this model because we use a simulated Clearpath
Robotics Jackal UGV for training and testing, but our frame-
work applies to any type of UGV.

B. Environment and Obstacles

The objective of this work is to enable a vehicle to safely
and efficiently navigate any challenging environment with
different terrain properties.

The environment we use for training, testing, and imple-
mentation is comprised of a few key components. The first is
the frictional coefficient of the surface, µ, which determines
how slippery the path is. We use a range of µ values from 0.05
to 1, which are typical of common surfaces. We limit our µ
values at 1 as the UGV behavior does not change past 1. Since
the focus of this paper is on proactive motion planning and
control, we assume that µ for each surface is measured by on-
board sensors: for example, use of lidar and cameras enable

detection of roughness and type of surface ahead, similar to
what is presented in [2].

The next component is the angle of the path on the x-y
plane. Speed is dependent on this turning angle, as the robot
must slow down to safely make tight turns. We further consider
the angle of the surface along the z-axis to account for any
ramps on the desired path of the UGV. We must distinguish
between the three variables we use to refer to angles in this
work. We represent values describing the turning angle of the
path ⌧ on a flat surface with ⌧ . The angle input into our NN
(explained in more detail in Section V-B2) is represented by
✓, and the orientation of the robot is represented with �. We
distinguish between the orientation of the robot, the orientation
of the robot’s motion, and the desired orientation with the
subscripts x, m, and r, respectively.

Obstacle configuration is the last environmental component
considered. This determines the deviation threshold (�⌧) de-
pending on UGV placement, which is the distance the UGV is
allowed to deviate from the given path before being classified
as unsafe. For example, if the UGV is driving through an open
field, the �⌧ would be large, but in a forest it would be smaller
so it could safely navigate between trees.

These components encompass the main aspects of a typical
environment a UGV would encounter, and most environments
can be modeled by changing them.

IV. PROBLEM FORMULATION

The goal of this work is to adapt control policy so that a
vehicle is able to maximize its speed while ensuring safety. We
aim to find the fastest safe speed the robot can go depending on
the friction of the surface, the turning angle, and the presence
of ramps. This requires the identification of both ⌧ and the
angle of the ramp. Once these are identified, a maximum safe
speed is predicted. Stated more formally:

Problem I: Speed Adaptation in Uncertain Terrains

Consider a UGV with dynamics as discussed in Section III-A

traversing uncertain environments, as explained in Sec-

tion III-B following a predefined obstacle-free path ⌧ . Develop

a policy that dynamically adjusts speed to stay at all times

within a safe deviation from the path, �⌧ , to avoid collision

with any obstacle, and successfully reach the final goal xg:

Mathematically, the UGV needs to compute a speed v such

that:

kx(t)� x⌧ (t)k2  �⌧ , 8t > 0

lim
t!1

kx(t)� xgk2 = 0

where x(t) is the current position of the robot while x⌧ (t) is

the robot’s closest point to the trajectory ⌧ .

V. APPROACH

Our proposed architecture uses a cascading system of NNs
to allow a UGV to safely and efficiently navigate through
complex environments. Fig. 2 provides a high-level overview
of the approach followed in this work.

The vehicle navigates along a desired path by analyzing
both features related to the planar path and any ramp surfaces
in its environment. Planar characteristics, such as friction of
the environment, upcoming turn angles, and the deviation

Fig. 2: High level system architecture.

threshold, are fed into the flat surface navigation NN, which
outputs the maximum safe speed.

When a ramp is detected in the environment, the ramp
navigation system will first use a NN to detect if it’s traversable
at any speed given ramp length, ramp angle, and friction of the
surface. If the ramp is traversable, then ramp and environment
characteristics are inputted into another NN that outputs the
minimum or maximum speed the UGV can successfully
traverse the ramp. This upper or lower bound is compared
with the speed output of the flat surface navigation NN, and if
the speed is within safety bounds, it is sent to the controller.
Otherwise, the commanded speed is set based on the speed
bound. If it is found that the vehicle is unable to traverse the
ramp at any speed, the path is replanned to avoid the ramp.

In the following sections, we will discuss the details of the
proposed framework starting with the controller, followed by
the design of the flat surface and ramp navigation NNs, and
finally how input uncertainty is modelled in the approach.

A. Pure-Pursuit Control

The control algorithm is based on a pure-pursuit tracking
algorithm [8] that controls steering so that the robot can
move from its current location, x(t) = (x(t), y(t)), to an
intermediate goal along a predefined path, x̄g = (x̄g, ȳg). The
goal location is updated as the robot approaches it and the
path is revised to a new intermediate goal. The goal remains
at a fixed distance from the vehicle, so the UGV will only
reach the goal at the end of the trajectory. Pure pursuit is
computationally fast and contains information about the future
path and desired future robot state [8]. This information is
leveraged to proactively send a control input to the robot
in the present that will allow it to succeed in the future.
Additionally, it allows for smoother behavior compared to go-
to-goal algorithms as the UGV can take continuous turns on
a smooth arc, rather than following harsh angles [8].

First, the path is discretized into n points, ⌧ =
{x1

⌧ ,x
2
⌧ , . . . ,x

n
⌧ }, that serve as waypoints from the robot’s

starting position to the final goal. The intermediate goal x̄g

used for the pure pursuit control is calculated by first finding
the point in the path closest to the robot’s current location,
xi
⌧ 2 ⌧ , and then adding a constant horizon distance n̄  n

as follows:
x̄g = xi+n̄

⌧ , i 2 {1, . . . , n} (1)

Once the intermediate goal is determined, the angular ve-
locity, !z , is calculated as follows:

!z = �r � �x with �r = arctan
yg � y(t)

xg � x(t)
(2)

where �x is the orientation of the robot and �r is the desired
reference orientation.

In ideal conditions, the UGV will travel along its desired
path at its maximum speed. However, changes in various
terrain properties make it necessary to proactively adapt its
linear speed, as presented in the next section.

B. Flat Surface Neural Network

The flat surface NN predicts the maximum safe speed of
a UGV over a given flat terrain. The NN uses the friction
coefficient of the environment (µ), the deviation threshold (�⌧),
and the turn angle (✓) in the upcoming path as inputs.

1) Speed Data Collection and Processing: To create this
NN, speed training data were collected in environments of
varying surface friction coefficients as the UGV executes
trajectories of various ⌧ and �⌧ values. The UGV was
instructed to travel at a constant speed for 15 meters, turn at a
specified angle ⌧ , and then travel 15 meters to a goal point.
Training angles ranged from 0° through 165° with increments
of 15°. Frictional coefficients of µ = 1.0, 0.5, 0.09, 0.05, and
0.009 were used to simulate environments with varying levels
of friction. The maximum speed for the simulated Jackal UGV
is 2.0 m/s. The commanded speeds ranged from 0.2 to 2.0 m/s
with a step of 0.2 m/s. To minimize the number of training
runs, experiments were conducted with a �⌧ of 4 m. Data
for the remaining thresholds were then computed during post-
processing. All combinations of these variables resulted in
data for 600 trial runs, which were then processed for use in
training the NN. Two examples of these training trajectories
are shown in Fig. 3.

(a) µ = 0.05, ⌧ = 75° (b) µ = 0.09, ⌧ = 120°

Fig. 3: Paths for various friction coefficients and angles.

The speed training data were first analyzed to determine if
the UGV successfully reached the goal position. A run was
classified as a success if the UGV reached the goal point
without deviating from the path by more than the given thresh-
old, and was classified as a failure otherwise. For example, in
Fig. 3(b), the UGV is unable to make it to the goal position
at a speed of 2.0 m/s. Data were then processed taking into
account �⌧ . This resulted in 3600 training runs that indicate
success or failure for each combination of speed, angle, µ, and
�⌧ . Once these data were computed, the maximum successful
speed was found for each combination of angle, µ, and �⌧ .
An example of this output is shown in Fig. 4 for two values
of µ.

2) Flat Surface Speed Prediction and Adaptation: The flat
surface NN depicted in Fig. 2 predicts safe speeds. The robot
is always able to reach the goal at the minimum tested speed
of 0.2 m/s, regardless of the surface friction. We trained a

(a) µ = 0.09 (b) µ = 0.05

Fig. 4: Maximum safe speeds for different environmental
friction coefficients and deviation threshold.

network with 10 neurons in one hidden layer to predict the
maximum safe speed given a µ, ✓, and �⌧ as inputs. The turn
angle ✓ fed into the NN is calculated as follows:

✓ = ⌧ � �x (3)

where ⌧ and �x are the angle of the path and the angle of the
robot’s motion with respect to the global coordinate system.

It is critical that the robot calculates both the angle at the
look-ahead distance and the angles between that point and its
current position, as is shown in Fig. 5. This ensures that the
robot does not accelerate if there is a more imminent turn at a
greater angle. The algorithm loops through the points on the
path directly in front of the robot to the determined look-ahead
distance, then calculates the angle at each point in between the
two. Once ✓ at each point is calculated, the maximum angle
is found and input into the NN.

Fig. 5: Turn angle (✓) calculation.
Entering a turn with too high of a speed can cause the

robot to lose control and fail the maneuver. Therefore, the
NN uses an asymmetrical mean square error (MSE) to make
conservative predictions that are more likely to succeed. MSE
is calculated normally during training but is biased to favor
slower speeds.

Furthermore, to prevent over-correction from slippage, an
alignment check is implemented in the algorithm. Once the
desired speed is determined, the alignment check ensures
the orientation of the robot, �x, is aligned within a certain
threshold, ✏, with the angle of the path, ⌧ .

|�x � ⌧ | < ✏ (4)

The alignment condition is checked over na 2 N consecutive
iterations to ensure the robot is not only briefly aligned with
the path. If this condition is met, the speed predicted by the
NN is sent to the robot. Otherwise, the current speed is held
until the condition is met unless the predicted speed is less
than the current speed.

Once the robot determines a safe speed to maintain along
the look-ahead distance, it can change its speed immediately or
wait until it is closer to the turn to make the change. Inertia
can cause a delay for the robot’s actual speed to reach the

commanded linear speed. To ensure that the robot can slow
down in time to make the upcoming turn safely, we define a
reaction distance based on µ. For environments with a smaller
value of µ, the robot must start slowing down earlier to reach
the commanded linear speed before approaching the turn.
Therefore, slippery environments require a larger look-ahead
distance than rough environments. Based on data collected on
the stopping distance for each µ at maximum speed, different
values of µ have been grouped into bins that determine the
look-ahead distance as shown in Table I.

TABLE I: Categorization of look-ahead distance based on µ.
Frictional Coefficient Look-Ahead Distance

µ � 0.2 2.5 m
0.2 > µ � 0.04 5 m

0.04 > µ � 0.009 10 m
µ < 0.009 15 m

C. Ramp Neural Network

A similar procedure is deployed for ramp traversal.
1) Ramp Data Collection and Processing: Complex envi-

ronments often contain sloped surfaces (e.g., when driving
inside a parking lot, down a hill, etc.). Therefore, data were
collected for vehicle traversal of ramps of varying lengths,
slopes, and µ. The ramps ranged from 0.5 m to 3 m in
length, with an increment of 0.5 m. For each ramp length,
angles of ±0.4, ±0.5, ±0.55, and ±0.6 radians (= ±22.9°,
±28.6°, ±31.5°, ±37.8°) were used, in which the sign in-
dicates whether the UGV is to traverse the ramp upwards
or downwards. Frictional coefficients, µ, of 0.09, 0.5, and 1
were used for each length-angle combination. It was seen in
simulation that µ values below 0.09 produced identical results,
and so these experiments were not taken into consideration
while training the NN to prevent over-weighting of the results.

Each ramp combination was tested with commanded speeds
ranging from 0.1 m/s to 2.0 m/s, incrementing by 0.1 m/s. This
produced 2880 trials which were analyzed to find the range of
speeds that can be commanded to a UGV to safely traverse up
or down a ramp of given parameters. Fig. 6(a) demonstrates
an unsuccessful ramp traversal because the UGV executes the
path at maximum speed. Fig. 6(b) shows the vehicle safely
maneuvering the same environment by taking environment
characteristics into consideration and limiting its speed.

(a) (b)

Fig. 6: Example of UGV traversing a downwards ramp. The
UGV in (a) moves at maximum speed, consequently flipping
while (b) limits speed based on surface and ramp conditions.

2) Ramp Traversability Prediction: When a UGV discovers
there is a ramp along its current trajectory, it must first
determine if it can successfully traverse the ramp at any
speed. The ramp traversal NN has 5 neurons in one hidden
layer and takes ramp length, ramp angle, and the surface

friction coefficient as inputs. The NN outputs a probability
as to whether or not the ramp can be successfully traversed,
and any output less than 50% certainty is classified as not
traversable. Fig. 7(a) depicts training data classification results
for ramp traversability and Fig. 7(b) displays the associated
NN prediction results. Our network produced one false positive
and one false negative over 161 training points.

(a) Ramp training success (b) Ramp prediction success

Fig. 7: Training traversability classification vs. NN predictions.
3) Ramp Speed Prediction, Adaptation, and Replanning:

If a ramp is traversable, the vehicle must determine the range
of safe speeds to execute its desired path. Therefore, two NNs
are designed to predict the speed bounds for ramp traversals.
For downward ramps, the maximum speed bound is predicted
given µ, ramp angle, and length with an asymmetric MSE
penalizing overpredictions. For upward ramps, the minimum
speed bound is predicted given µ, ramp angle, and length
with an asymmetric MSE penalizing underpredictions. Both
networks use 10 neurons in one hidden layer.

The speed decision block, seen in Fig. 2, compares the
upper speed bound for downwards ramps and the lower speed
bound for upwards ramps to the speed output of the flat surface
navigation NN. If the speed is within safety bounds, it is sent
to the controller. Otherwise, the commanded speed is set based
on the upper or lower speed bound. This system ensures that
the robot only changes speed when necessary.

However, if the planned path is found to be non-traversable,
a new path must be calculated. There are a variety of existing
path planning techniques that could work here such as greedy
search [9], Dijkstra’s algorithm [10], and A* search [11].
For the sake of computational simplicity and efficiency of
our code, we used a modified version of A*. A* is a best-
first search algorithm, however it has a very high space
complexity because it stores all potential nodes. In our case
study, discussed in section VI, we use a track with multiple
paths, rather than a graph with many different path options.
Therefore we modified the A* algorithm by keeping the focus
on minimizing the cost function, but with predefined paths,
rather than nodes and edges. The path options are ranked
according to our cost function, distance, giving the path with
the shortest distance top priority. If at some point the current
path is determined to be non-traversable, the control will
switch to the path with the next highest priority.

D. Modeling Input Uncertainties

Environmental and sensor uncertainty were modeled by
applying Gaussian noise to the NN inputs during training
and prediction. This resulted in noisy outputs, with more
noise signifying less certainty. Risk was reduced by using
the variance in output values to adjust the speed given to the

control algorithm. For a given set of inputs, we run the NN
10 times and calculated the mean and standard deviation of
the outputs. For situations where overpredictions were less
safe, 2 standard deviations were subtracted from the mean.
Likewise, for situations where underpredictions were less safe,
2 standard deviations were added. Fig. 8 compares unadjusted
predictions (purple) with adjusted predictions (green). Some
of the unadjusted predictions fall into the unsafe speed range
above the training data, but after adjustment, they are all within
the successful speed range. This method also produces more
conservative estimates where the network is more sensitive
to uncertainty in the inputs. For example, we observe that
adjusted speed predictions are more conservative for large-
angle turns and in more slippery environments.

Fig. 8: Noisy speed predictions at µ = 0.05 and �⌧ = 4 meters,
adjusted for variance.

VI. CASE STUDY

The proposed framework was validated in simulation using
Gazebo and ROS, on the complex environment depicted in
Fig. 9 with different turning angles, walls, and ramps. The
robot is tasked to traverse through such complex environment
under different surface friction coefficients, µ. Simulations
were run with walls placed at a distance of 1 m surrounding the
desired trajectory and with no walls to distinguish the behavior
of the UGV when it is not constrained by a tight boundary (i.e.,
a large �⌧). For the latter, �⌧ = 3 m was provided to guarantee
that the system doesn’t deviate too much from the desired
path. Path characteristics are highlighted in Fig. 9, where the

Fig. 9: Bird’s eye view of Gazebo environment used for
validation.

Jackal UGV must maneuver through turns of 30°, 45°, 60°,
90°, and 135°. The shortest possible segment the robot must
navigate is 7.5 m. The desired trajectory features ramps of
3 m and 1 m, with angles of ±0.4 and ±0.6 radians (22.9°,
37.8°), respectively. The figures in the following section show
the commanded velocity (m/s) using a colorbar.

A. Simulation Results

Our approach is first compared to two trials using constant
speeds of 0.2 m/s and 2.0 m/s to demonstrate the need for
adaptation. The UGV is often unsuccessful when travelling at
the constant speeds due to obstacles such as ramps and sharp
turns. In contrast, by using our NN-based speed adaptation and
replanning, the UGV successfully reaches the goal for each µ
value. Fig. 10 shows an example of UGV traversals using the
constant and dynamic speeds. The color-gradient side bar on
the figure indicates the commanded speed. In Fig. 10(a), the
UGV cannot traverse the first ramp while going 0.2 m/s due to
insufficient speed. Whereas at 2.0 m/s, the UGV is too fast to
stay within �⌧ while executing a 135° turn. In Fig. 10(b), the
UGV leverages our framework and successfully reaches the
final goal by adapting its speed and executing a replanning
because it recognizes that it cannot successfully traverse the
ramp at µ = 0.09. Due to higher slippage on µ = 0.09, the
commanded speed here decreases 10 m before turns – the
specified look-ahead distance for µ = 0.09 in Table 1 – to
ensure the UGV is able to slow enough to traverse the turn
while staying within �⌧ .

(a) Constant speed (b) Dynamic speed

Fig. 10: Constant vs. dynamic UGV speed on µ = 0.09.
Fig. 11 shows the effect of look-ahead distance on speed.

The commanded and actual speed of the UGV are compared
prior to turn traversal on µ = 0.05. Fig. 11(b) shows the delay
in reaching commanded speeds in Fig. 11(a) due to a low µ.

(a) Commanded speed (b) Actual speed

Fig. 11: Commanded vs. actual speed on µ = 0.05.
Fig. 12 shows another example of replanning. The robot is

able to traverse a 1m long ramp at µ = 0.5 (Fig. 12(a)), but
because a 2m long ramp is predicted “not safely traversable”,
it must take another path as shown in Fig. 12(b).

Finally, Fig. 13 shows the effect of deviation threshold. With
a �⌧ of 1 m, the NN predicts a safe speed of 1.2 m/s. With a
�⌧ of 3 m, the NN predicts a speed of 1.7 m/s, which would
be an unsafe speed at �⌧ = 1 m, as demonstrated in Fig. 13(b).

VII. CONCLUSION AND FUTURE WORK

In this work we have presented a NN-based framework to
predict the maximum safe speed to traverse terrains charac-

(a) Ramp length = 1 m (b) Ramp length = 2 m

Fig. 12: Commanded speed on trials demonstrating path re-
planning on different ramp lengths on µ = 0.5.

(a) �⌧ = 1 m (b) �⌧ = 3 m

Fig. 13: Comparison of UGV speeds executing a 120° turn
with µ = 0.09 and different �⌧ values.

terized by different friction, turns, ramps, and obstacles. A
pure-pursuit algorithm is considered and an A*-based replan-
ning procedure is deployed to guarantee that the system can
navigate safely through the considered path. Uncertainties in
the NN prediction are also taken into account during training
to provide safe speeds. Our framework was validated with
extensive simulations in Gazebo.

Future work will extend this framework to consider un-
known environments and uncertainties in terrain detection.

ACKNOWLEDGMENTS
This work is based on research sponsored by DARPA under

Contract No. FA8750-18-C-0090.

REFERENCES

[1] H. U. Unlu, N. Patel, P. Krishnamurthy, and F. Khorrami, “Sliding-
window temporal attention based deep learning system for robust sensor
modality fusion for ugv navigation,” IEEE Robotics and Automation

Letters, vol. 4, no. 4, pp. 4216–4223, 2019.
[2] R. Rosenfeld, M. Restrepo, W. Gerard, W. Bruce, A. Branch, G. Lewin,

and N. Bezzo, “Unsupervised surface classification to enhance the
control performance of a ugv,” 04 2018, pp. 225–230.

[3] J. Guzzi, R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and
A. Giusti, “Path planning with local motion estimations,” IEEE Robotics

and Automation Letters, vol. 5, no. 2, pp. 2586–2593, 2020.
[4] M. Ono, T. J. Fuchs, A. Steffy, M. Maimone, and J. Yen, “Risk-aware

planetary rover operation: Autonomous terrain classification and path
planning,” in 2015 IEEE Aerospace Conference, 2015, pp. 1–10.

[5] S. Josef and A. Degani, “Deep reinforcement learning for safe local
planning of a ground vehicle in unknown rough terrain,” IEEE Robotics

and Automation Letters, vol. 5, no. 4, pp. 6748–6755, 2020.
[6] R. Michelmore, M. Kwiatkowska, and Y. Gal, “Evaluating uncertainty

quantification in end-to-end autonomous driving control,” 2018.
[7] S. Thrun, M. Montemerlo, and A. Aron, “Probabilistic terrain analysis

for high-speed desert driving,” in Robotics: Science and Systems, 2006.
[8] R. C. Coulter, 1992.
[9] D. Huffman, “A method for the construction of minimum-redundancy

codes,” Proceedings of the IRE, vol. 40, no. 9, p. 1098–1101, 1952.
[10] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”

Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” IEEE Transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

