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ABSTRACT 

Brain computer interfaces (BCIs) currently 

require extensive user training to effectively 

isolate and translate the desired brain signal 

characteristics into desired control signals for 

external devices. To simplify this process, I 

propose utilizing machine learning to decrease 

the amount of training time and improve 

recognition, classification, and prediction of 

the desired movement. Brain signals of upper 

limb movement can be detected and captured 

by an electroencephalogram (EEG). This data 

can be fed into machine learning (ML) 

algorithms to develop a model that can 

categorize and predict the desired action. By 

creating this model, neuroprosthetics will 

become more viable due to increased 

accuracy. Following the creation of an ML 

model fit to a singular patient, comparing 

multiple models will determine whether the 

models can be applied to multiple patients. 

 

1. INTRODUCTION 

Computers have evolved the ability to read 

minds. BCIs are a category of device that 

captures and decodes brain signals into 

computer recognizable information. These 

devices are further split into two categories: 

invasive and non-invasive. For invasive BCIs, 

electrodes are implanted either directly on the 

brain or in the membrane surrounding the 

brain. For non-invasive BCIs, electrodes are 

instead attached to the scalp. Brain signals 

captured by these electrodes are then fed into 

decoding processes, which are often lengthy 

and complicated. Once processed, decoded 

brain signals can be used for various 

applications, including controlling machines 

and performing computer tasks. 

 

Brain signals are typically detected using 

electrocorticography (ECoG) or electro-

encephalography (EEG) for invasive and non-

invasive BCIs, respectively. Both these 

methods produce a chart of electrical readings 

from the electrodes over time. By recording 

these readings while a patient performs 

specific movements, it is possible to identify 

characteristic features. These features can then 

be combined into a patient specific dictionary 

to speed up future recognition. Manually 

completing this task requires a large amount of 

work, including preprocessing, signal 

amplification and filtering for noise. 

 

2. RELATED WORKS 

According to Biddiss and Chau (2007), upper 

body prosthetics typically have higher 

abandonment rates and body-powered hands 

are typically associated with rejection rates as 

high as 80%. Furthermore, measured rejection 

rates are likely to be lower than the actual rates 

since patients who no longer use their 

prosthetic are less likely to participate in 

studies regarding its use. Prosthetic 

abandonment and rejection are caused by a 

variety of reasons, including weight, difficulty 

of use, discomfort, slowness in movement, 



 

appearance, and lack of functionality, 

predictability and feedback. My proposed 

approach targets one of the primary reasons for 

prosthetic abandonment, lack of functionality, 

predictability, and feedback. By creating an 

ML model that can classify the patient’s brain 

signals into their desired limb motion, their 

prosthetic becomes more closely an extension 

of their body, as opposed to an attachment. 

 

Chaudhary, et al. (2016) discussed the use of 

BCIs for communication in paralysis due to 

ALS and the restoration of motor impairment 

in stroke patients. For both these applications, 

there have been successes, though not enough 

to allow for widespread adoption. My 

approach builds specifically off the work done 

to restore motor impairment by applying the 

same capture and decoding methods but 

transmitting them to a prosthetic instead of 

attempting to rebuild degraded or blocked 

neural pathways. 

 

In 2011, Gert-Jan Oskam, was involved in an 

accident that paralyzed him from the waist 

down. He has been fitted with implants in his 

head and spinal cord that transmit brain signals 

and send instructions to Oskam’s paralyzed 

legs, returning control of his legs to him 

(Ghosh, 2023). My proposal builds off this 

development by applying it to upper limb 

prosthetics instead of biological legs, with the 

primary challenge being classifying the many 

degrees of movement upper body limbs have 

compared to lower body limbs. 

 

3. PROPOSAL DESIGN 

This approach consists of three components: 

gathering data, training an ML model, and 

applying the results. 

 

This proposal requires ECoG or EEG data 

captured while a subject performs specific 

limb motions. A large amount of data is 

necessary to provide the most accurate results, 

so each subject should repeat each motion 

more than one hundred times. This step has 

significant time requirements due to the need 

for a large library of training data. Subjects 

will likely need to spend multiple sessions 

having data recorded. For simplicity, the total 

number of limb motions should be limited to a 

single appendage, such as an arm or leg, and 

the most basic movements (up, down, left, 

right, and rotation). 

 

Once the data is complete, it must then be fed 

into an ML process. This involves data 

cleaning, model selection and training, and 

fine tuning. Data will undergo a standard 

cleaning process, called a Data Pipeline. This 

dictates a series of steps that will prepare the 

data for the ML algorithm. Most importantly, 

the Pipeline will remove as much noise as 

possible from the electrode readings and 

isolate the signals that produce the movement. 

Additionally, data from different subjects must 

be scaled so no single person’s data is 

considered more important. Finally, the 

dataset must be split into training, validation, 

and test sets. Adhering to common practice, 

the training, validation, and test sets will 

consist of 64%, 16%, and 20% of the total 

dataset, respectively, with each set containing 

a random selection. This division is important 

so that the model is evaluated on data it has 

never seen before to achieve accurate error 

metrics. Otherwise, the model may be able to 

“remember” the correct result for a given input 

it was trained on. 

 

Once the data is cleaned and prepared, a 

classification algorithm can be trained on the 

training set. To determine the best ML model 

for this dataset, the data will be trained using a 

selection of classifiers. This will include the 

Random Forest Classifier, Naïve Bayes 

Classifier, Logistic Regression, and Kernel 

Support Vector Machine. Once these models 

are trained, the error scores from predicting 

labels in the validation set will be compared 

and the best model selected for further 



 

analysis. This comparison will be done using 

the one-versus-one strategy, which scores the 

classification of a new instance into every 

possible class and compares it individually 

against every other option. The final 

assignment for the new instance is the class 

that wins the most matchups. Although this 

strategy is computationally expensive, it is 

designed to provide the highest accuracy. 

 

The remaining model can then be further tuned 

by adjusting its hyperparameters, or the 

internal model variables. These can be 

adjusted, and the model retrained to search for 

lower error scores. Specifically, the primary 

error score that will be minimized is the 

precision score. The precision score prioritizes 

the ratio of true positives (correct 

classifications) to all positives. This means 

that the best models will keep the number of 

false positives (incorrect classifications) low. 

The tradeoff to precision is that the number of 

false negatives will not be given as much 

importance, however it is better for the 

machine to not select an action than to select 

an incorrect action. 

 

With a trained and validated model, final 

evaluation will be done using the test set, to 

ensure that the model is able to be generalized 

to new and unseen data. It is important to 

ensure the model does not overfit the training 

data so much that it is unable to correctly 

classify new information. If needed, further 

tuning of hyperparameters will be completed 

to achieve a low error score. 

 

Finally, the model will be evaluated on real 

time inputs from test subjects. As the subject 

thinks about their desired action, the signal 

will be classified by the trained model and 

compared to the true action. 

 

4. ANTICIPATED RESULTS 

The result of my proposal is a classifier that 

can take an unknown brain signal as input and 

output a limb motion with a high degree of 

accuracy. This brain signal classifier can be 

continuously updated with new data to further 

improve its classification error. It can then be 

applied to various applications such as for 

prosthetics and paralysis patients. 

 

In the realm of neuroprosthetics, this classifier 

would allow for further advancements, 

specifically for upper limb prosthetics. The 

model can be focused to limit selection of 

signals to only upper limb movements and 

classify desired actions in real time. Being able 

to recognize desired limb movements from 

brain signals would allow for the transmission 

of the limb movement to a robotic arm such 

that an amputee patient could control a robotic 

limb using only their thoughts. This means that 

the prosthetic limb reacts just as a biologic 

limb would, thereby vastly reducing the 

patient's lost functionality. 

 

5. CONCLUSION 

Current prosthetics fail to fully replace the 

functionality of lost limbs. To narrow this gap, 

my proposal will build a classifier that is able 

to decode brain signals for the goal of 

controlling a prosthetic arm. By reacting to the 

user’s thoughts, the neuroprosthetic will act as 

if it were a biological arm, thereby greatly 

increasing regained functionality. This 

classifier, although trained for use in upper 

body prosthetics, can then be adapted to other 

uses such as lower limb prosthetics or other 

brain-controlled devices. By utilizing ML 

algorithms, the training time for a user to adapt 

to the neuroprosthetic will decrease, 

increasing access and viability.  

 

6. FUTURE WORK 

The first step is gathering the resources to 

complete this proposal in its original form. 

This includes gathering users to undergo brain 

signal capturing to build up the initial library 

of data to train the ML algorithm on. If this 

proposal is successful, future work can be 



 

completed on adapting the upper limb 

classification to other parts of the body, such 

as lower limb movement classification. If 

unsuccessful, future work should be directed at 

expanding the data used to train the ML 

algorithm and further training the model to 

improve accuracy. 
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