
The Interactions Between Fire and Hyrdoclimate Over Seasonal Timescales 

 

 

Michael Vijay Saha 

Charlottesville, VA 

 

 

Bachelor of Science, The University of Virginia, 2012 

 

 

A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for 

the Degree of Doctor of Philosophy 

 

 

Department of Environmental Sciences 

 

 

University of Virginia 

May, 2018 

  



 2 

 

Committee 

Todd M. Scanlon (Advisor) 

Paolo D’Odorico (Advisor) 

Howard Epstein 

Jonathan Goodall 

  



 3 

Dedicated to the memory of Arunava Saha 

 

Not the first or the last in a tradition of Science 

  



 4 

Acknowledgements 

This work was only realized with years of selfless support from colleagues, friends and family. 

Profound thanks to all who gave their love, encouragement, time, knowledge, ideas and funding. 

 

 

An incomplete list 

Jillian 

Todd  &  Paolo 

Office 274 and the larger department 

Kyle,  Jessica,  Alex,  Matthew,  Alice,  Seekell,  Grace,  Liz  &  Cal 

Abi,  Mo,  Rwaza,  Patrick,  Nandos,  Bostick  &  the rest of the Bots crew 

David Hondula  &  Bob Davis 

Daniel,  Jessie,  Neena  &  Joey 

Mom,  Eric,  Ida  &  Rich 

 

 

The institutions brave enough to fund me 

The Virginia Space Grant Consortium 

The National Aeronautics and Space Administration 

The University of Virginia Department of Environmental Sciences 

The National Socio-Environmental Synthesis Center 

The National Science Foundation 

  



 5 

Table of Contents 

Committee ............................................................................................................................2 

Acknowledgements ..............................................................................................................4 

Table of Contents .................................................................................................................5 

List of Figures ......................................................................................................................6 

List of Tables .......................................................................................................................8 

Abstract ................................................................................................................................9 

Chapter One .......................................................................................................................11 

 Introduction 

Chapter Two.......................................................................................................................19 

Climate Seasonality as an Essential Predictor of Global Fire Activity 

Chapter Three.....................................................................................................................53 

Suppression of Rainfall by Fires in African Drylands 

Chapter Four ......................................................................................................................75 

Albedo Changes After Fire as an Explanation of Fire-Induced Rainfall Suppression 

Chapter Five .....................................................................................................................103 

Land surface brightening following wildfires in sub-Saharan Africa 

Chapter Six.......................................................................................................................119 

Conclusions and Future Research 

Appendix One ..................................................................................................................123 

Appendix Two .................................................................................................................125 

  



 6 

List of Figures 

Figure 2.1. GFED4 average annual proportion burnt ........................................................24 

Figure 2.2. The seasonal decomposition technique at two locations in Africa ..................29 

Figure 2.3. Global pattern of seasonality metrics ..............................................................34 

Figure 2.4. Predicted burned area and predictions error for a simple model .....................37 

Figure 2.5. Predicted burned area and predictions error for a complex model ..................39 

Figure 2.6. Fire activity as a function of MAP, MAT, AP and AT .....................................43 

Figure 2.7. Average fire activity as a function of MAP, MAT, SP and ST ........................44 

Figure 2.8. Average fire activity as a function of MAP, AP, OT, P and SP .........................46 

Figure 2.9. Average fire activity as a function of MAT, AT, OT, P and ST .........................47 

Figure 3.1. The start and length of the wet season across the study region .......................58 

Figure 3.2. Fire timing, extent and predicted wet season rainfall at 400 mm MAP ..........60 

Figure 3.3. Fire timing, extent and predicted wet season rainfall at 900 mm MAP ..........61 

Figure 3.4. Fire-induced rainfall suppression in drylands .................................................62 

Figure 3.5. Total dry season fire and the proportion that occurs late in the season ...........63 

Figure 3.6. A proposed fire-rainfall feedback ....................................................................66 

Figure 3.7. Autocorrelation in rainfall and observed fire-rainfall relationships ................67 

Figure 4.1. Daily afternoon rainfall amount and lengths of midday crossings ..................82 

Figure 4.2. Afternoon maximum rainfall rate and durations of midday crossings ............83 

Figure 4.3. The proportion of days for which h exceeds hLCL during a given hour ...........84 

Figure 4.4 Changes in the frequency of LCL crossing and land surface changes .............85 

Figure 4.5. Simulated afternoon boundary layer height and land surface changes ...........86 

Figure 4.6. Simulated afternoon LCL height and land surface changes ............................87 



 7 

Figure 4.7. Fire, sensitivity to land surface feedbacks and rainfall suppression ...............88 

Figure 4.8. Changes in albedo after fires in southern Africa .............................................89 

Figure 4.9. Distribution of spatial albedo anomalies as a function of MAP ......................90 

Figure 5.1. Evolution of albedo anomalies after fire in Africa ........................................112 

Figure 5.2. Average albedo anomaly in the year following fire ......................................114 

Figure 5.3. Timing of first brightening following fire .....................................................116 

  



 8 

List of Tables 

Table 2.1. Variable importance for different random forest models ...............................116 

  



 9 

Abstract 

Fire is a ubiquitous component of the Earth system and in African drylands in particular. 

It represents a dramatic and instantaneous change at the land surface by affecting plant 

communities, hydrologic cycling and the energy balance. The aim of this dissertation is to build 

understanding of how fire is affected by, and in turn affects, regional climate. 

This dissertation consists of research on two fronts. In the first I develop a novel 

methodology to explore the hypothesis that strong seasonality enhances burned area. Using 

monthly, global, gridded temperature and precipitation data I derived seasonality metrics that can 

be used to describe a periodic seasonal cycle. Using just three such metrics and a random forest 

model, I explained 66% of the variance in global burned area, on par with significantly more 

complex models that are limited to a regional scope. A more complex random forest model that 

included nine seasonality correctly predicted 87% of the variability in global burned area. These 

findings confirm that seasonality plays a large role in determining global burned area and suggest 

mechanism by which this occurs. The methodology developed in this Chapter will be useful for 

other researchers wishing to describe seasonality using standardized, interpretable metrics. 

The second research area surrounds the hypothesis that fire can influence rainfall on 

seasonal timescales. First, I demonstrated a relationship between dry season fires and subsequent 

with a statistical model and observational data. I find that more extensive and later dry season 

fires account for reductions of up to 30 mm of rainfall (~%10 of average yearly totals) in the 

subsequent dry season. The observed effect is strongest in regions that are already water limited. 

This could potentially lead to a negative feedback represented by an interannual oscillation in 

rainfall and fire activity, an effect observed in actual rainfall records. 
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I then used a simple physically-based boundary layer model to evaluate how the land 

surface could contribute to these observed rainfall deficits over the Kalahari region of southern 

Africa. Using simple, but realistic parameterizations of fire at the land surface, I showed that 

positive albedo anomalies (brightening) or increases in latent heat flux after fire could explain 

observed rainfall reduction. This is in large part by less vigorous boundary layer growth and a 

reduced probability of the boundary layer exceeding the lifting condensation layer. I also showed 

new satellite-based evidence that brightening does indeed occur after fires over the Kalahari 

transect in regions receiving less that 850 mm of rainfall annually. This finding challenges the 

idea that immediate darkening is the only meaningful albedo change after dryland fires and 

supports the idea that brightening is responsible for observed rainfall deficits after fire. 

Finally, I extended this observational approach to the whole continent of Africa. I applied 

a pixel grouping technique to label satellite burned area data into individual fire events and 

compared the albedo following fire to a surrounding unburnt reference region. On average 

albedo was +2.71 x 10-4 higher in burn scars in the five years following fire, representing a 

statistically significant negative forcing on a continental scale. These findings build new 

understanding of the land surface effect of fire and the potential for interactions with regional 

hydroclimate. 
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Chapter One 

Introduction 

  

To the dryland ecologists 
Wherever they may be 

In whatever time they work 
 

Frank Herbert 
Dedication of Dune 
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1.1 The geography of Africa 

Drylands are regions where ecosystems and physical processes are shaped by the 

perennial or intermittent limitation of available moisture [Nicholson, 2011]. Much of this 

dissertation focuses on physical processes in the drylands of sub-Saharan Africa. Geographically, 

Africa is a unique continent, spanning nearly 70° of latitude from 35° S to 40° N. This vast range 

shapes the major continental features and offers a wide range of heterogeneous, interesting and 

understudied landscapes. 

At a continental level, the main hydroclimatic features are an equatorial band of high 

moisture availability near the equator and two subtropical arid zones relating to the diverging 

Hadley cells around 30° N and 30° S [Nicholson, 2011]. These features are largely shaped by the 

presence of the intercontinental tropical convergence zone (ITCZ), a band of low pressure close 

to the equator that promotes rainfall. Near 0° the ITCZ remains close year-round, and rainfall is 

common. Outside of these bands, in relation to subtropical highs, are the two corresponding dry 

bands of the hyperarid Saharan desert and the less expansive Kalahari desert in southern Africa. 

Between these bands there are semi-arid regions—the Sahel in the northern hemisphere and the 

Kalahari transect in the southern hemisphere—where rainfall is highly seasonal, and wet seasons 

correspond to the seasonal, zonal migration of the ITCZ [Koch et al., 1995; Nicholson, 2011]. 

These natural moisture gradients offer two exceptional testbeds for understanding how 

both physical and ecological processes function with varying moisture availability. Many such 

processes—large scale ecology [Staver et al., 2011], fire frequency [Van Der Werf et al., 2008], 

and land-atmosphere feedbacks [Koster et al., 2004; Seneviratne et al., 2010; Nicholson, 

2015]—are known to be at least partially determined by these striking trends in moisture 

availability. In many ways, these large geographical trends are unique to Africa. 
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The study water of resources in Africa is not only interesting from a scientific 

perspective, but is also societally relevant [Wang et al., 2012]. In drylands there is extremely 

high variability in interannual rainfall totals [Nicholson, 2011]. Intraseasonal moisture variability 

is also highly intermittent; in some cases the whole of wet season rainfall is supplied in just a few 

storms. In these regions, the limitation of water resources is historically associated with loss of 

livelihood and lives. Many local economies are either directly or indirectly tied to the stable 

availability of water [Reynolds et al., 2007]. Understanding how Earth System processes such as 

fire might impact water is essential for improving predictions and mitigating the societal effects 

of drought on a seasonal time-scale. For this reason, understanding the physical determinants, as 

well as possible feedbacks that may aide or hamper the predictability of seasonal rainfall is 

extremely important. A goal of this dissertation is to examine the extent to which an important 

land surface process—fire—might modify rainfall over large areas. 

 

1.2 The fire continent 

Fire in Africa is extremely common, burning up to 10% of the land area on an annual 

basis. In some regions fire frequency approaches an annual return interval. However, like many 

features of the continent, this is highly dependent on geography. Fire is most common in regions 

around 1200 mm of mean annual precipitation (MAP). The ‘sweet spot’ in these moderate 

rainfall bands is due to the conflicting requirements of moisture availability for fuel 

accumulation and the desiccation and curing of fuel necessary for fire to spread [Van der Werf et 

al., 2008]. The extreme frequency of fire shapes the environment in profound ways. Frequent 

disturbance creates stable savanna plant communities with discontinuous woody cover and a 

continuous herbaceous understory [Staver et al., 2011]. This continuous bed of fuel in turn 
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promotes frequent fires, leading to a feedback cycle in which savanna is maintained. These 

feedbacks suppress woody cover on a continental level substantially below what is expected 

from water resources available to plants [Sankaran et al, 2005]. These savanna ecosystems 

dominate much of the land area of semi-arid Africa. An additional motivation of this research 

involves the linkage between humans and fire [Andela & Van Der Werf, 2014]. By causing or 

suppressing fires over large scales, humans may be unwittingly influencing regional climate in 

regions where water is already scarce. 

 

1.3 Land-atmosphere interactions 

There is growing recognition of the role that the land surface plays in modifying regional 

weather and climate. Research along this path has a strong history in semi-arid regions of Africa. 

One such example is the classic hypothesis of Charney [1975] used to explain a decades-long 

drought in the Sahel. Charney proposed a positive feedback cycle in which desertification causes 

brightening of the land surface. This in turn causes atmospheric subsidence and reduces rainfall, 

thereby intensifying the desertification. This hypothesis has been supported by more recent 

application of sophisticated interactive climate and land-surface models [Meng et al., 2014]. 

Another example of land-atmosphere interactions specific to Africa is the negative soil 

moisture-rainfall feedback proposed by Taylor et al. [2011]. These researchers observed that 

initiation of mesoscale convective systems in the Sahel were preferentially located downwind of 

regions that were drier than the surrounding area. The proposed mechanism suggested that 

boundary layer instability due to warmer, dry soils instigates the formation of large convective 

systems that are responsible for a majority of rainfall in the Sahel. These findings were in direct 

contrast to predictions of climate models that tend to ‘lock in’ periods of drought through 
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positive feedbacks. These studies demonstrate the importance of the land surface in the 

generation of rainfall and the ways in which modeling and observation can be used to form a 

mechanistic understanding of land-atmosphere feedbacks. This understanding can in turn aide 

the prediction of rainfall and help inform future modeling and validation efforts. Semi-arid 

regions are a focus for land-atmosphere interactions because they exist at the intersection of 

warm dry regions with high available energy for convective processes (but little available 

moisture), and wet regions with high moisture availability where available energy and 

convective instability might be lacking [Seneviratne et al., 2010; Nicholson, 2011]. It is precisely 

in these regions the inputs of energy and moisture from the land surface can modulate 

atmospheric processes. 

 

1.4 Research Needs 

While some land-based controls on precipitation have been demonstrated in the past, the 

possibility of fire-induced rainfall modification has not yet been studied. This is due to a few 

factors. First, there is lack of understanding of the physical changes associated with fire, 

especially over an extended timeframe. Even the directional change of albedo—a land surface 

property known to influence land-atmosphere interactions—is not known weeks and months 

after fire occurs. For fire to have a substantial impact on seasonal rainfall total, the land surface 

changes following a typical dry season burn would need to be sustained over multiple storms, 

well into the wet seasons. Understanding how the physical properties of the land surface recover 

after fire is key in predicting how fire might modify boundary layer dynamics. There are 

widespread reports that reaffirm the short-term darkening due to char on the land surface 

immediately after fire. However, knowledge of long-term land-surface effects of fire on a 
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continental level is precisely what is missing in the literature. This dissertation aims to fill that 

gap using maturing long-term satellite datasets. 

Even with knowledge of the effect of fire on the land surface, it is unclear how this might 

impact atmospheric processes. Boundary layer modeling with parameterizations for fire based on 

observations are needed investigate the potential for land-atmosphere interactions. This could 

provide a mechanistic link between fire and rainfall. Finally, even if physical models suggest 

fire-induced rainfall modification can occur, it is unclear if this is manifested in reality. The 

results must be confirmed with measurements. This dissertation represents the first such attempt 

to link fire to long-term rainfall using observations. 

 

1.5 Outline 

I broadly investigate the role of fire both as a cause and a result of regional climate in this 

dissertation. In Chapter Two I explore the effect of climatic aspects on the presence of fire on a 

global basis. I specifically investigate how large predictable intraannual variations in climate 

signals contribute to fire frequency. In Chapter Three I investigate the potential impact of fire on 

rainfall using an observational approach. This represents the first observational study associating 

fire with long-term changes in rainfall. Chapter Four explains this phenomenon mechanistically 

through the lens of boundary layer interactions. I provide an explanation that invokes observed 

increases in land surface reflectivity, or brightening, after fire to explain reduced convective 

rainfall. In Chapter Five I expand the exploration of brightening to the whole continent and 

demonstrate that the Kalahari in particular drives overall net brightening after fires. I end with a 

conclusion summarizing the new scientific knowledge and methodological advances that stem 

from the studies.  
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Chapter Two 

Climate Seasonality as an Essential Predictor of Global Fire Activity 
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2.1 Abstract 

Fire is a globally important disturbance that affects nearly all vegetated biomes. Previous 

regional studies have suggested that the predictable seasonal pattern of a climatic time-series, or 

seasonality, may aid in the prediction of average fire activity, but it is not known if these findings 

are applicable globally. Here I investigate how seasonality can be used to explain variations in 

fire activity on a global scale. I describe a method to partition a periodic seasonal cycle into two 

seasons and define conceptually simple temporal metrics that describe spatial variability in 

seasonality. I explore the usefulness of these metrics in explaining global fire activity using the 

average monthly time series of precipitation and temperature and a flexible machine learning 

procedure (random forests). A simple model that uses only precipitation and temperature 

amplitude and synchrony between wet and warm seasons correctly predicts 66% of the 

variability in global fire activity, substantially higher than a model with mean annual temperature 

and precipitation. A more complex model that includes nine seasonality metrics predicts 87% of 

variability in global fire activity. This study shows that seasonality of temperature and 

precipitation can be used to predict long-term fire activity in a globally relevant way. This new 

method may be useful in hindcasting historical fire from station data or predicting future fire 

regimes using coarse output from climate models.  

 

2.2 Introduction 

 Fires burn in virtually all vegetated biomes at varying frequency and intensity. On an 

annual basis up to 400 Mha of the terrestrial land surface is burned [Schultz et al., 2008]. These 

fires influence vegetation composition [Staver et al., 2011], global carbon cycling [Randerson et 

al., 2012], human health [Bowman & Johnston, 2005] and the climate system over a range of 
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scales [Kaufman et al., 2002; Tosca et al., 2014; Chapter Five]. Understanding the climatic 

causes of the biogeography of fire activity may aide in the prediction of future fire regimes and 

the global carbon dynamics under a changing climate. 

 Previous research has examined the effect that climate has on fire activity, and how 

various factors such as fuel accumulation, drought, and fire weather (i.e., local hot and dry 

conditions that promote the flammability of the fuel bed) mediate the occurrence of fire 

[Krawchuk & Moritz, 2014; Hantson et al., 2016]. In this study I examine seasonality, which I 

define as the predictable yearly cycle of an environmental variable, and seasonality metrics; 

quantitative descriptions of various aspects of the typical seasonal cycle. Seasonality is typically 

linked to fire due to the conditions that must be met in order for fire to occur [Bradstock, 2010]. 

On one hand, frequent fire must be supported by high fuel accumulation rates through net 

primary productivity. On the other hand, warm and dry weather conditions that promote the 

curing of fuels and the contiguity and flammability of the fuel bed (“fire weather”) must also 

occur. To support frequent fires on an annual basis, these dual conditions must be met frequently 

as well. In many cases, specifically in the seasonally water-limited tropics and subtropics, plant 

productivity is promoted by cooler, wetter conditions that lift growth limitations due to heat and 

water stress. In other regions, such as high-latitude forests, low temperature may be the limiting 

factor for plant growth, and the growing season and fire season have significant overlap. These 

spatially and temporally varying constraints make the prediction of global fire activity difficult 

[Hantson et al., 2016]. To date, a global study of the effect of climate seasonality on spatial 

patterns of fire has not been undertaken. 

 A number of past studies have identified a positive relationship between strong shifts in a 

climatic variable over the course of the year (i.e. a marked seasonal pattern) and long-term fire 



 22 

activity. However, these studies tend to focus on certain regions or climatic gradients (e.g. 

Archibald et al., [2009]; Mondal & Sukumar, [2016]), or selectively pool data over large spatial 

units in recognition that different aspects of climate may be regionally important contributors to 

lower fire return intervals [Pausas & Ribeiro, 2013; Bowman et al., 2014]. Furthermore, the 

precise definition of seasonality differs between studies. For the purpose of relating climate to 

fire, seasonality has been defined variously as the number of months with rainfall under a 

variable threshold (such as 100 mm, as in Van der Werf et al. [2008]), the number of months 

accounting for less than some percentage of mean annual precipitation [Archibald et al., 2009], 

rainfall accumulated during certain fixed months [Mondal & Sukumar, 2016] or rainfall 

accumulated during the six driest months of the year [Bowman et al., 2014]. A more subtle 

difficulty in synthesizing the results of previous seasonality-fire findings stems from differences 

in how seasonality is actually represented. For example, the aforementioned definitions from 

previous studies suggest that seasonality can be represented by durations, rates or accumulations 

of some variable of interest. The diversity of the metrics that different studies have found to be 

statistically important suggests that multiple aspects of intra-annual variability contribute to what 

is commonly called ‘seasonality’; a single metric is unlikely to capture all of these facets. 

Typically, these metrics are defined based on a specific knowledge of the system being studied 

and are appropriate for a specific region. While ad hoc definitions may be appropriate for 

regional studies where the general seasonal pattern of a climate variable like rainfall is spatially 

homogeneous, these metrics may not be as useful in other regions where the seasonal 

precipitation patterns differ. This makes comparison between studies difficult and precludes 

generalizations about importance of climate seasonality at the global level. For example, studies 

that report a precipitation seasonality metric typically find that a positive association exists 
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between the strength of intra-annual shifts and the amount of fire (e.g. Bowman et al., [2014]). It 

is unclear if the opposite is true, i.e. if a weak seasonal precipitation cycle is associated with 

lower fire activity. Furthermore, a variable representing some aspect of the seasonal cycle is 

often included alongside other predictors, so it is unclear if seasonality metrics alone can 

accurately predict average fire activity at regional or larger scales. 

 A standardized method for quantifying seasonality would be useful for study inter-

comparison and understanding more generally the role of climate seasonality in promoting or 

suppressing global fire activity. This method would ideally exclude ad-hoc metrics and data 

sources that are only relevant or available on a regional basis and instead be robust and generally 

applicable to all vegetated biomes. The results of such an analysis could be used for hindcasting 

historical fire activity based on station data as well as understanding data needs for predicting 

future fire. 

 While aspects of seasonality in climatic fields have been used to understand variability in 

fire in specific biomes, a formal quantitative and globally consistent approach has not yet been 

undertaken. This is a gap that I aim to fill in the current study. The goals of this study are (1) to 

develop a suite of conceptually simple, multi-faceted and globally applicable seasonality metrics, 

(2) to apply these metrics to global rainfall and temperature datasets and test their effectiveness 

as statistical predictors of global burned area, and (3) to understand the relationship between 

these metrics and burned area and place these results in the context of ongoing pyrogeographic 

research. 

 

 

2.3 Data 
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2.3.1. Study Area and Period 

I calculate the seasonality metrics over the global land surface from latitude 60° S to 60° 

N on a 0.25° grid. This latitudinal limitation is the maximum extent of satellite-based global 

precipitation estimates at higher latitudes. All average monthly (precipitation and rainfall) and 

yearly (fire) data are derived from monthly data spanning the time period 1999-2015. 

 

2.3.2. Fire 

I use fire data from the GFED version 4 fire product with small fires [Randerson et al., 

2012]. This product uses MODIS-derived burned area estimates with corrections to account for 

underestimation of low intensity or canopy-obscured fires. The data are available globally at 

0.25° resolution, on the same grid as rainfall. Overall, 98.6% of GFED burned area occurs within 

the bounds of the study area (60° S to 60° N), mainly missing fire activity in the boreal zone. I 

converted the monthly input data to average monthly burned area, then summed these values to 

achieve yearly average proportion burned for each pixel (Fig. 2.1). It is spatial variations in this 

response variable (average annual proportion burned) that I try to predict using seasonality 

metrics derived from climatic variables.

 

Figure 2.1. GFED4 average annual proportion burnt.  
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2.3.3 Rainfall 

 I performed the main analysis on the PERSIANN-CDR rainfall product [Ashouri et al., 

2015]. PERSIANN-CDR trains artificial neural networks to associate satellite brightness 

temperature with observed variations in rainfall. Estimates are then bias adjusted to match gauge-

derived estimates from the Global Precipitation Climatology Project version 2.2 monthly 

estimates. 

 

2.3.4 Temperature 

I use the GHCN+CAMS global near surface air temperature dataset [Fan & Van den 

Dool, 2008]. This dataset is available as monthly means at 2.5° resolution. I down-sample to the 

0.25° resolution of the fire and rainfall product by taking the temperature value of the closest 

2.5° pixel centroid to each 0.25° pixel centroid (i.e. nearest neighbor downscaling). 

 

2.4 Methods 

2.4.1 Aim 

My aim is to define simple metrics that succinctly describe how a climatic variable of 

interest varies over the course of an average year. As such, I assume that each variable oscillates 

between two periods over the course of the year (not necessarily a calendar year), where the 

values it takes are alternatively high and low. This assumption is physically rooted in the effects 

of Earth's obliquity, which is then manifested, for example, as seasonal variations between low 

and high temperature or the latitudinal migration of the inter-tropical convergence zone. 

However, this assumption is not valid for all regions. I also included a metric (seasonality index) 

that describes how appropriate this assumption is in different regions. 
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2.4.2 Seasonal Partitioning 

 It is assumed that the input data is a vector X of N regularly spaced measurements 

representing a single yearly cycle. In this study I considered monthly samples (N=12), but all of 

the following methods can be extended to regularly sampled data at any time scale, such as 

average daily (N=365); or seasonal (e.g. DFM, MAM, JJA, SON; N=4) values. Therefore the 

valid temporal indices, I, into X are: 

 𝐼 ∈ {1,2, . . . , 𝑁} 

Indexed subsets of X are denoted by XS, where 𝑆 ⊂ 𝐼. The mean of a given subset of X, �̄�𝑆, is 

defined as: 

�̄�𝑆 =
∑ 𝑥𝑥∈𝑋𝑆

|𝑆|
 

where |S| denotes the cardinality (number of elements) of an indexing set S and x is a given 

element of X. The variability of an indexed subset is defined as the within-season residual sum of 

squares: 

 𝑉𝑆 = ∑ (𝑥 − 𝑋�̄�)
2

𝑥∈𝑋𝑆  

with total variability of the yearly cycle for a given variable (VT) equal to: 

 𝑉𝑇 = ∑ (𝑥 − 𝑋𝐼¯ )
2

𝑥∈𝑋𝐼  

A season is defined as a contiguous subset of the possible indices, where contiguity is defined in 

the periodic sense such that index 12 (December) is contiguous to index 1 (January). For 

example, {12, 1, 2, 3} is a valid season, representing December, January, February and March. 

The set {5, 7, 8}, is not a valid season, because 5 (May) is not contiguous with 7 (July) or 8 

(August). Every season is required to contain at least one index (or month of data for N=12). My 

goal was to partition X into two seasons with no common elements. For convenience the 
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indexing set whose average indexed value is greatest is referred to as H (high season) and the 

other season as L (low) season, given by the following definition: 

 �̄�𝐻 > �̄�𝐿 

The definitions of high and low seasons are not predefined; their existence is a consequence of 

the following minimization procedure. I partitioned the seasons such that the sum of the within 

season variability is minimized: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝐻,𝐿

= 𝑉𝐻 + 𝑉𝐿 

where H and L are contiguous indexing sets with no common elements. 

 

2.4.3 Amplitude 

Using the above approach I defined metrics that capture different aspects of seasonality First, I 

defined the amplitude of a vector X, AX, as the difference between the average value of the high 

and low seasons: 

 𝐴𝑋 = �̄�𝐻 − �̄�𝐿 

In more sophisticated models, I also considered the average low and high seasonal values (�̄�𝐿 

and �̄�𝐻) as metrics, in which case the amplitude is not included as a predictor. 

 

2.4.4 Duration 

Seasonal duration is the number of months in the low season: 

 D = |L| 

There is a constraint on the duration |H| + |L| = N. I excluded high season length as it does not 

offer any extra information to the statistical model. 
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2.4.5 Seasonality Index 

 The partitioning procedure assumes that the seasonal cycle can reliably be represented as 

one of two discrete values at different points in the year. While this assumption is based 

ultimately on the obliquity of the earth, it may not be valid in all regions. For this reason, I 

defined another metric, the seasonality index (S), that captures how well the two-season 

assumption fits the observed data yearly cycle. The seasonality index is defined as follows: 

 𝑆 = 1 −
𝑉𝐻+𝑉𝐿

𝑉𝑇
 

The value of S is between 0 and 1 and approaches 1 as the proportion of variability explained by 

the partitioning approaches the total variability observed in the yearly cycle. Fig. 2.2 shows how 

S varies for two different locations. The variable S is invariant under shifts in the magnitude and 

amplitude of the individual seasons. The seasonality index is a measure of how coherent the 

time-series is within each season relative to the variability of the time-series as a whole. For 

example, if the wet season is frequently interrupted by intermittent dry periods or a minor dry 

season (as in Fig. 2.2b) then fuel accumulation (and subsequent fire) could be impacted. 

Similarly, if the dry season were frequently interrupted by wet periods, then fire would also 

become less likely. In both these cases the seasonality index would be lower than if there were 

single consistent wet (warm) periods followed by consistent dry (cool) periods, with little intra-

seasonal variability (as in Fig. 2.2a). Therefore, I expect regions with a larger seasonality index 

(i.e. high S) to promote greater fire activity across the globe. 
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Figure 2.2. An illustration of the seasonal decomposition technique at two locations in Africa. The sum of the 

squared magnitudes of the orange and blue dashed lines are minimized to find the seasons. In each panel the black 

line represents average monthly rainfall amount and the height of the solid gray line represents the yearly average. 

The solid orange and blue lines represent the high (�̄�𝐻) and low (�̄�𝐿) season rainfall averages, respectively. Mean 

annual precipitation (�̄�𝐼), seasonal duration (DP), and seasonality index (SP) are noted for these two examples.  

 

2.4.6 Seasonal Overlap 

 I defined one final variable, seasonal synchrony (OP, T), that describes the overlap 

between two seasonal decompositions. Synchrony is defined as the number of months of overlap 

between the respective high and low seasons of two seasonal decompositions and is a way of 

measuring the relative phase of two seasonal cycles over a discrete number of months. Given two 

seasonal decompositions of high and low season month indices given by the indexing sets HT, LT 

and HP, LP, (for temperature and precipitation, respectively) synchrony is defined as: 

𝑂𝑃,𝑇 = |𝐻𝑇 ∩ 𝐻𝑃| + |𝐿𝑇 ∩ 𝐿𝑃| 

where ∩ denotes set intersection and || denotes set cardinality. High overlap indicates that the 

warm season and the rainy season are in phase, while low cardinality indicates that the warm 
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season tends to overlap with the dry season. Note that the overlap variable (OP, T) is only defined 

for models that include both precipitation and temperature data. 

 

2.4.7 Application of Metrics 

 All of the aforementioned metrics are computed independently for each land pixel in the 

domain. It is important to reiterate that these metrics can be used on any regularly spaced vector 

representing an average year and can be applied to a data vector that contains negative data 

points as well. Given the generality and interpretability of the seasonality metrics I envision that 

these metrics could be applied to the investigation of other seasonal cycles. One immediate 

extension of this current study is to apply the seasonality decomposition to investigate the 

seasonality of the yearly fire cycle. In this study I extract spatially varying seasonality metrics for 

the average yearly cycle of precipitation (a monthly data vector P, taking the place of the generic 

data vector X referred to above) and temperature (T). I refer to seasonality metrics computed on 

the precipitation and temperature data with the subscript P and T, respectively. OP, T is calculated 

using the results from the seasonality decomposition of both the T and P data vectors, all other 

metrics are calculated using just one of the input data vectors. 

 

2.4.8 Statistical Model 

 The aim of this study is not to compare particular statistical methods but rather to test 

whether a flexible enough statistical model, when given inputs that correspond to different 

seasonality metrics, can accurately predict global fire activity. It was necessary for the statistical 

model I chose to be able to handle non-linear and non-monotonic relationships between the 

predictors and burned area, making methods such as generalized linear models unsuitable for this 
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task. I opted for random forests, a method that uses an ensemble of regression trees that vote on a 

continuous outcome variable [Breiman, 2001]. Random forests (RF) have been used previously 

for prediction of spatially varying fire activity. For example, Archibald et al. [2009] used random 

forests to predict fire occurrence using a suite of physical predictors and proxies for human 

activity and were able to explain 69% of variability in burned area. Additionally, RF estimators 

are adept at handling highly quantized metric (continuous) variables, like the duration metric 

(DP/DT). 

 I built a suite of models to demonstrate the efficacy of temperature and precipitation 

seasonality indicators as a predictor of fire activity. One third of variables were considered 

during each tree building iteration. Each random forest model was built with 1000 regression 

trees. All models are trained on a random subset of 70% of all land pixels in the domain, 

reserving the other 30% of the data for validation. As a measure of predictive performance, I 

report the proportion of variance explained in the validation data that is explained by models 

trained only on the independent training set. I compared these accuracy scores to a model using 

the same training procedure, but only MAP and MAT as inputs. I also report variable 

importance, which ranks a variable based on the expected decrease in predictive accuracy of the 

model were the variable randomly permuted. Finally, I visualize the per-pixel predictions and 

errors for all pixels on global maps to highlight how the performance of the models varies 

spatially. 

 The random forest method offers a flexible way to achieve high predictive accuracy with 

interacting inputs, but understanding the relationship between disparate variables and their effect 

on fire activity is more difficult. To accomplish this, I visualized how fire varies with seasonality 

metrics within regional climatic envelopes by conditioning on different climatic variables like 
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mean annual precipitation (MAP) and mean annual temperature (MAT). First conditioning on 

MAT and MAP is useful because seasonality metrics, such as amplitude or seasonality may be 

associated with average climate. Without first stratifying based on MAT and MAP, I could not 

be certain that patterns of fire activity are due to the changes in seasonality metrics rather than a 

spurious correlation with the underlying average temperature and rainfall. 

 

2.5 Results 

2.5.1 Global Seasonality Metrics 

 I first briefly report the global patterns of the computed seasonal metrics (Fig. 2.3). The 

precipitation amplitude is typically highest within the tropics (Fig 2.3c). Low rainfall amplitude 

dominates temperate continental regions. A long (>9 months) dry season is found in the Sahara 

and Horn of Africa (Fig 1.3e). Elsewhere, long dry seasons (>6 months) are consistently 

observed in southern Africa, continental Asia and Australia. High precipitation seasonality 

indices (SP) are observed in largely the same regions as high precipitation amplitude, 

approaching 1.0 (i.e. that a two-mean partition explains almost all of the intra-annual variability 

in precipitation) in southern Africa, central America and northern Australia. Precipitation 

seasonality indices less than 0.5 are observed consistently in the Horn of Africa. 

 Temperature amplitude is largest in high-latitude northern hemisphere and lowest in the 

tropics. The moderating influence of the ocean on near surface air temperature is observed in 

coastal regions, for example, in the coastal regions of southern Africa or Australia. Globally, the 

cool season tends to be shorter (<4 months) than the warm season, except in equatorial Africa 

and parts of Brazil. Spatial variability in the temperature seasonality index (ST) is less 

pronounced than for SP. Both the highest and lowest variability are observed in the tropics, where 
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both higher (ST>0.9) and lower (ST<0.6) show spatial variability on sub-regional (<1000 km) 

scales. Overall, the seasonal decomposition of temperature also captures a majority (> 50%) of 

the intra-seasonal variability across the globe. 

 The overlap between high and low seasons of temperature and precipitation, (OP,T), is 

typically high in South America, southern Africa, western Asia, central United States and 

Australia (Fig. 2.3i). Notable exceptions where the rainy season and the warm season are out of 

phase occur in equatorial climates and Mediterranean climates (i.e. the Mediterranean, Pacific 

coastal U.S., southwestern Australia).  



 34 

 

Figure 2.3. Global pattern of seasonality metrics. (a) Mean annual PERSIANN-CDR precipitation, (b) mean annual 

temperature. (c, d) Amplitude of precipitation and temperature. (e, f) duration of the low precipitation and low 

temperature season. (g, h) Seasonality index of precipitation and temperature. (i) Overlap (OP, T) showing the 

number of months of overlap between the wet and warm season and the dry and cool season.  
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2.5.2 Statistical Modeling Results 

 Models ranged in accuracy from 29.3% to 87% of variability explained (Table 2.1). Only 

two of the various models I built did not explain at least 50% of variability in global fire activity. 

A baseline model random forest model using MAT and MAP as predictors explained just 46%. 

The best model with only three variables, AP, AT and OP, T (i.e., the amplitude of precipitation and 

temperature seasonality and the seasonal overlap, respectively), correctly predicted 66% of the 

variability in fire activity in the testing set (Fig. 2.4). This represents a 44% improvement over 

the baseline model that used mean climate predictors. Amplitude in both precipitation and 

temperature were typically the most important predictors for models in which they were 

included. The importance of ST was greater than SP in all cases, indicating that the coherence of 

warm/cool seasons were more important than coherent wet/dry seasons for predicting global fire 

activity. The best model, containing all of the non-redundant variables (SP, ST, DP, 

DT,�̄�𝐿,�̄�𝐻,�̄�𝐿,�̄�𝐻, OP, T), predicted 87% of the global variability in fire activity (Fig. 2.5).  
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Table 2.1. Variable importance for different random forest models. Each row represents the results of a different 

random forest model built with the variables in occupied cells. Cell values indicate the normalized variable 

importance. The rightmost column (“score”) gives the proportion of variance (an analog to the R2 value) on a test set 

that the model was not built with. From left to right the variables are precipitation seasonality index (SP), duration of 

the dry season (DP), precipitation amplitude (AP), average dry season precipitation (�̄�𝐿), average wet season 

precipitation (�̄�𝐻), temperature seasonality index (ST), duration of the cool season (DT), temperature amplitude (AT), 

average cool season temperature (�̄�𝐿), average warm season temperature (�̄�𝐻), and synchrony (OP, T). The two most 

important variables for each model are highlighted in bold. 

SP DP AP �̄�𝐿 �̄�𝐻 ST DT AT �̄�𝐿 �̄�𝐻 OP, T Score 

 0.192     0.573    0.234 0.293 

0.415     0.464     0.121 0.446 

0.335 0.095    0.371 0.199     0.602 

0.319 0.079    0.344 0.169    0.088 0.642 

  0.396     0.510   0.095 0.663 

0.189  0.275   0.203  0.334    0.712 

0.170  0.251   0.172  0.304   0.103 0.793 

 0.090 0.341    0.125 0.444    0.750 

 0.068 0.335    0.104 0.422   0.072 0.769 

0.334 0.096    0.371 0.199     0.602 

0.318 0.080    0.345 0.169    0.088 0.644 

0.128   0.193 0.195 0.126   0.195 0.162  0.816 

0.109   0.189 0.189 0.110   0.177 0.142 0.084 0.852 

0.103 0.079  0.173 0.169 0.105 0.094  0.154 0.123  0.866 

0.099 0.065  0.167 0.159 0.097 0.085  0.146 0.121 0.060 0.870 
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Figure 2.4. Predicted average proportion burned for a simple model (variables AP, AT, O; top panel), and the 

difference between these predictions and GFED4 data (bottom panel). 
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2.6 Discussion 

2.6.1 Global Seasonality Metrics 

 The seasonality metrics capture known features of the climate system well. For example, 

monsoonal systems in Asia, Australia, West Africa and North America are visible in the global 

maps as spatially extended regions of high precipitation seasonality index and amplitude (Fig. 

2.3c, g). Long dry and warm seasons are visible in the subtropical deserts (Fig. 2.3e, f). The 

expected out-of-phase nature of Mediterranean climates, with the warm season out of phase with 

the wet season, is captured in the synchrony maps. Large temperature amplitudes are also visible 

in high-latitudes (Fig. 2.3b). The partitioning technique accurately and parsimoniously describes 

seasonal climate features in a way that can easily be fed into a statistical model. 

 The predictive performance of the model compares favorably to previous empirical-

statistical models of fire activity. For example, Bowman et al., [2014] found that a linear model 

that includes wet and dry season rainfall amounts and an interaction term could explain 49% of 

the variability in tropical fire activity. However, linear models are restricted in the way in which 

they model the underlying relationship between predictors and fire activity. Archibald et al. 

[2009] used a random forests approach similar to ours to model spatially varying fire activity in 

southern Africa. Their study used a larger number of sophisticated natural and anthropogenic 

proxies of fuel load, fuel flammability, ignition frequency and fuel continuity (11 predictors in 

total) and they were able to explain 68% of the variance in regional burned area. However, a 

drawback of using more specific predictors when scaling up to a global level is the availability of 

these datasets on global basis. For example, datasets on road density, percentage of communal 

land and grazing intensity were only available at the regional level and would have to be 
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compiled from multiple sources to achieve global coverage. Using my approach, the prediction 

of fire at the global scale does not require data inputs that may only be available on a regional 

basis. Instead, I only require gridded precipitation and temperature datasets, for which long term, 

global datasets are available. 

 

 

 

Figure 2.5. Predicted average proportion burned for a complex model (variables AP, AT, O; top panel), and the 

difference between these predictions and GFED4 data (bottom panel). 

 

 The current study represents a significant advance for two main reasons. First, the scope 

of my investigation on seasonality has been extended from the regional to the global scale. A 

global model requires predicting over many distinct biomes with different types of vegetation 
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and varying levels of fire intensity and I still achieve high accuracy. Second, I can explain the 

large variations in fire activity using very simple models. For example, just three predictors: (AT, 

AP, and O) can explain a substantial portion of average global burned area (66%) and capture the 

main geographic features of global fire such as the zonal bands of high fire activity in Africa and 

Australia (Fig. 2.5a-b). A more complex model including 9 predictors offers exceptional global 

performance, predicting 87% of the variability in global fire (Fig. 2.6, Table 2.1). This model is 

accurate even in high fire regions in Africa (Fig 2.5b). While other factors such as human 

proximity and activity, biome type, vegetation cover, and ignition rates may enhance this 

predictability regionally, I have demonstrated that they are not necessary for explaining a 

majority of the spatial variability in global fire. Seasonality metrics – amplitude, duration, 

coherence, seasonal averages and synchrony –can be used by themselves to achieve high 

accuracy in global maps of fire activity. These metrics are both simple and descriptive of the 

known underlying biophysical causes of fire. 

 My study extends the work of other researchers who have connected seasonality metrics 

to fire activity on a regional basis. For example, Mondal & Sukumar [2016] found both wet and 

dry season rainfall to be important in explaining fire across a regional rainfall gradient. My 

model also identifies these two variables as the two most important variables on a global basis 

(Table 2.1). This has important implications for understanding the data requirements of fire 

forecasting under a changing climate. Wet and dry season rainfall offer the most predictive value 

of global fire activity and these variables must be accurately modeled for future fire regimes to 

be properly predicted. On the other hand, the duration variables that I considered generally 

offered the lowest predictive value. This is in contrast to past studies that have found duration 

variables that add substantial predictive value to a regional model (such as dry season duration as 
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in Archibald et al. [2009]). This could indicate that results of models that incorporate variables 

such as length of wet/dry season, even if they achieve high accuracy in a specific region, may not 

be widely applicable to other regions. This also highlights the usefulness of the globally 

consistent approach that I take in this study. 

 The largest model bias is generally observed in the tropical regions with typically high 

fire activity, namely Africa and northern Australia (Fig. 2.4b, 2.5b). I offer two explanations for 

the underestimation of fire where fire frequency is the highest. The first is model dependent. 

Random forests generate predictions from known data and do not extrapolate estimates outside 

of the range of variables in the input (see, for example, Jeong et al. [2016]). This may affect the 

ability of the model to achieve high accuracy where fire is at the upper limit of the distribution of 

global observations. Another potential cause of the spatial clustering of lower-than expected 

burned area predictions in high fire regions may be region specific and involve the ecological 

legacy of fire on the land surface. There is evidence that the occurrence of certain biome types is 

driven by positive fire feedbacks, which can induce a hysteresis in the dependence between 

vegetation states and climatic variables [Staver et al., 2011]. I hypothesize that, because of such 

positive fire feedbacks, different vegetation types can exist in the same climate conditions and 

therefore vegetation types and the associated fire regimes cannot be deterministically predicted 

as a function of climatology. In these regions, the predictive capacity of the model tends to be the 

lowest. Future research will be needed to test whether the inclusion of historical fire or 

demographic variables would significantly improve the predictions in this region. Such evidence 

would support this hypothesis. 

 I now discuss some of the visualizations (Fig 2.6-2.9) that illustrate how the average fire 

activity (shading in figures) varies in a subset of data determined by average temperature and 
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rainfall. The darkest pixels indicate higher fire activity relative to other pixels in the same 

climate. The position of these darker pixels within each panel can elucidate the relationship 

between seasonality metrics and fire activity for a given average climate. In line with expected 

biophysical controls on fire, both temperature and precipitation amplitude were positively related 

to fire activity in different regions (Fig. 2.6). Precipitation amplitude was positively related to 

fire activity in warmer regions, regardless of overall moisture status (Fig. 2.6e-f, g-i). These 

regions correspond to tropical and subtropical regions. This finding is consistent with my 

hypothesis that in warm, dry environments, a higher precipitation amplitude is more likely to 

result in a lifting of moisture-based constraints on productivity and fuel accumulation. In warm, 

wet regions the high amplitude implies drier conditions during some part of the year that lift fuel-

moisture limitations on the ignition and spread of fire. At high average temperature and 

intermediate moisture (Fig. 2.6h), the climatic envelope is such that a range of precipitation 

amplitude values are sufficient to promote the seasonal cycle necessary for abundant fire. Indeed, 

high fire activity is more abundant overall and is observed over a larger range of amplitudes than 

in other regions (Fig. 2.6h). In cold climates, temperature amplitude is positively related to the 

fire activity over the whole moisture gradient. However, the range of temperature amplitudes 

observed in cold regions is low. This is consistent with a temperature constraint on fire in cold 

regions; for a given MAT, a larger temperature shift will result in a stronger warm season, 

potentially enhancing both growing season fuel accumulation and fire weather risk.  
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Figure 2.6. Average fire activity as a function of MAP, MAT, precipitation amplitude, and temperature amplitude. 

Global data are first divided into cold, mild and warm regions (left, middle and right panel, respectively), 

corresponding to the lower, middle and upper tertiles of the global distribution of MAT. Then I divided each of these 

samples into the lower, middle and upper tertiles of MAP, giving 9 sets of data all containing about the same 

number of pixels and corresponding to each panel. In each panel the data are further binned into 30 mm and 3 K 

precipitation and temperature and amplitude bins (horizontal and vertical axis, respectively) giving 13 bins along 

each axis. Shading depicts the average yearly proportion burned of all pixels in a given bin. Only the most populous 

bins that cumulatively represent more 95% of contributing pixels are shaded; excluded bins are shown in white. 

Note that the color scale is a logarithmic.  
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Figure 2.7. Average fire activity as a function of MAP, MAT, precipitation seasonality index, and temperature 

seasonality index. Global data are first divided into cold, mild and warm regions (top, middle and bottom panels, 

respectively), corresponding to the lower, middle and upper tertiles of the global distribution of MAT. Then I 

divided each of these samples into the lower, middle and upper tertiles of MAP, giving 9 sets of data all containing 

about the same number of pixels and corresponding to each panel. In each panel the data are further binned into 13 

equally spaced temperature and precipitation seasonality index bins (horizontal and vertical axis, respectively). 

Shading depicts the average yearly proportion burned of all pixels in a given bin. Only the most populous bins that 

cumulatively represent more than 95% of contributing pixels are shaded; excluded bins are shown in white. Note 

that the color scale is logarithmic.  
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 Locations with low within-season variability relative to total yearly variability (i.e. high 

seasonality) are expected to promote high fire activity due to a strong temporal partitioning 

between favorable growing and burning conditions. A positive relationship between high 

precipitation seasonality indices and fire is observed in all warm regions (Fig. 2.7d-i), 

particularly in fire prone-regions containing the highest absolute fire activity (Fig. 2.8f, h-i). This 

suggests that low within-season variability in precipitation promotes fire in warm and dry 

regions. In cold and dry regions, there is also a positive relationship between temperature 

seasonality (Fig. 2.9a-e; high relative fire activity is observed at the upper edge of respective 

climate envelopes). As with temperature amplitude, I infer a similar mechanism by which the 

lack of variability in the warm season is more favorable to either fuel accumulation or fuel curing 

because there is reduced risk of intermittent temperature limitations to these processes. 

 Synchrony is the total number of months of overlap between the respective low and high 

temperature and precipitation seasons. I hypothesized that in the subtropics where water is a 

potential limitation on plant growth, a wet season and warm season that are out of phase (i.e. 

low-synchrony) would increase average burned area due to temporal partitioning between the 

ideal cool, wet growing and warm dry burning seasons. The most fire prone regions show a 

preference for low overlap between the warm season and the wet season (i.e. OP, T is less than 6; 

Fig. 2.8f, h), partially confirming this hypothesis. The warmest, wettest regions do not exhibit a 

distinct difference in fire activity between high and low synchrony (Fig. 2.8i). This climate 

region corresponds to the wet tropical regions; I hypothesize that other factors have a stronger 

control on the average burned area in a given year. For example, climate oscillations such as 

ENSO are known to drive exceptional fire years in humid regions [Tacconi et al., 2007]. I do not 

account for this type of interannual variability of climate variables with seasonality metrics.  
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Figure 2.8. Average fire activity as a function of MAP, AP, synchrony and precipitation seasonality index. Global 

data are first divided into arid, semiarid/sub-humid, and wet regions (top, middle and bottom panels, respectively), 

corresponding to the lower, middle and upper tertiles of the global distribution of MAP. Then I divided each of these 

samples into the lower, middle and upper tertiles of AP, giving 9 sets of data all containing about the same number 

of pixels and corresponding to each panel. In each panel the data are further binned into 13 equally spaced 

synchrony and precipitation seasonality index bins (horizontal and vertical axis, respectively). Shading depicts the 

average yearly proportion burned of all pixels in a given bin. Only the most populous bins that cumulatively 

represent more than 95% of contributing pixels are shaded; excluded bins are shown in white.  
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Figure 2.9. Average fire activity as a function of MAT, AT, synchrony and temperature seasonality index. Global 

data are first divided into cold, mild and warm regions (top, middle and bottom panels, respectively), corresponding 

to the lower, middle and upper tertiles of the global distribution of MAT. Then I divided each of these samples into 

the lower, middle and upper tertiles of temperature amplitude (AT), giving 9 sets of data all containing about the 

same number of pixels and corresponding to each panel. In each panel the data are further binned into 13 equally 

spaced synchrony and temperature seasonality index bins (horizontal and vertical axis, respectively). Shading 

depicts the average yearly proportion burned of all pixels in a given bin. Only the most populous bins that 

cumulatively represent more than 95% of contributing pixels are shaded; excluded bins are shown in white.  
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 An exception to the positive AT-fire and negative synchrony-fire relationships exists at 

moderate temperatures and low temperature amplitudes (Fig. 2.9d). These regions feature 

heavily in southern hemisphere subtropics (southern Africa, central America, and the Atlantic 

coastal forest in southeastern Brazil). However, because the precipitation tends to occur during 

the warm season, there may not be a long season that is truly favorable for fires in these climates. 

This may explain why low (<0.75) seasonality in temperature is positively associated with fire. 

In this case productivity and fuel accumulation could be enhanced if the variability of 

temperature within the warm season is high (i.e. ST is low), leading to some periods when mild 

temperatures co-occur with rainfall. Similarly, during the cool, dry season fire may be enhanced 

if there is low coherence in the low temperature season and intermittent hot spells that increase 

chances of burning. However, this does not explain why fire shows a preference for high-

synchrony regions in the first place. More work is needed to fully elucidate the underlying 

drivers. 

 The relationship between different seasonality metrics and fire activity is not clear in all 

regions (as in Fig. 2.9d discussed above). This could be due to regionally varying importance of 

anthropogenic or plant demographic factors in determining fire. Seasonal crop burning occurs in 

regions with certain seasonality characteristics, for example burning in regions with two wet 

seasons [Korontzi et al., 2006]. This has the potential to confound the climate-fire relationships I 

have described. Humans also suppress fire at scales large enough to impact regional 

pyrogeography [Andela & Van der Werf, 2014]. Further research must be done in order to 

contextualize my findings across diverse ecosystems and understand how climate and humans 

interact to promote novel fire regimes. Nevertheless, despite substantial spatial variability in the 

non-climatic drivers and constraints of fire, I can successfully model global spatial variability in 
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fire activity using simple seasonality metrics. 

 

Conclusion 

 I have shown a simple way to describe the seasonal cycle of climate variables that 

directly aids the prediction of global fire activity. These metrics are conceptually simple, can be 

applied to time-series of various resolution, and capture the salient climate features that are 

known to be important for fire prediction from a biophysical standpoint. Generally, more fire is 

observed where the seasonal amplitude is greater and where there is less intra-seasonal 

variability. My statistical models achieve high accuracy over a range of biomes and fire regimes 

with only a handful of predictors. While the purpose of this was to demonstrate the extent to 

which seasonality alone could predict fire, these new metrics may be combined with other 

predictors of fire activity (spread, ignitions, fire history, vegetation type, moisture status) to 

further improve prediction and mechanistic understanding of fire on a global basis. This 

methodology may be useful hindcasting fire based on station data or predicting novel fire 

regimes based on the output of global climate models.  
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Chapter Three 

Suppression of Rainfall by Fires in African Drylands 
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3.1 Abstract 

Fire is a widespread agent of disturbance in African drylands, but the impact of fire on local 

precipitation remains poorly understood and large-scale observational evidence has been lacking. 

Here I link fire to a reduction in precipitation across African drylands. Using 15 years of satellite 

observations over continental sub-Saharan Africa, I find that more extensive and later dry season 

fires lead to wet season rainfall deficits of up to 30 mm (~10%). The effect is stronger in the 

southern hemisphere, a signal I attribute to the later timing of fires in the dry season. Given the 

coupling between rainfall, fuel loads and fire in African drylands, a negative interannual 

feedback may arise between fire and precipitation, whereby fires suppress precipitation, thereby 

reducing fuel load and fire in the subsequent season. The reduced fuel load would, in turn, 

increase precipitation, completing the feedback loop. This feedback may contribute to a 

pervasive negative autocorrelation observed in southern hemisphere annual rainfall. 

 

3.2 Introduction 

Fire is a ubiquitous component of the biosphere, burning up to 350 Mha annually 

[Flannigan et al., 2009]. It is especially prevalent in Africa, with up to 9% of the continent burnt 

on an annual basis [Barbosa et al., 1999]. Previous research has characterized the role of fires as 

determinants of plant community composition [Lehmann et al., 2014], cloud microphysical 

processes [Rosenfeld et al., 2008] and surface energy and moisture budgets [Beringer et al., 

2015], but possible rainfall modification at seasonal timescales is not well understood. Smoke 

aerosols from fires can inhibit rainfall [Rosenfeld et al., 2008; Tosca et al., 2015]. Wet season 

rainfall may be impacted by aerosols from late-dry season fires that are burning as the wet season 

starts. However, the lifetime of aerosols varies from days to weeks, and aerosols may be 
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advected away from the source site, limiting their long-term effect (e.g., the whole wet season). 

The impact of fire on the land surface is potentially important. By modifying vegetation 

[Montes-Helu et al., 2009; Beringer et al., 2015], albedo [Veraverbeke et al., 2012] and the 

partitioning of net radiation into sensible and latent heat fluxes [Wendt et al., 2007; Montes-Helu 

et al., 2009; Beringer et al., 2015], fire has the potential to mediate land-atmosphere feedbacks 

ranging from local to continental scales [Görgen et al., 2006; Findell et al., 2011; Beringer et al., 

2015; De Sales et al., 2016]. After fire, increased sensible heat fluxes may enhance atmospheric 

instability and promote the triggering of convective rainfall [Wendt et al., 2007; Beringer et al., 

2015]. Spatial patterning in burn scars may further enhance rainfall by promoting mesoscale 

convergence over burnt patches [Wendt et al., 2007; Beringer et al., 2015]. On the other hand, 

persistent reductions in soil moisture [Snyman, 2003], evapotranspiration [Montes-Helu et al., 

2009, Beringer et al., 2015] and net radiation due to increased albedo [Veraverbeke et al., 2012] 

may result in a drier, more stable planetary boundary layer that suppresses convective 

precipitation [De Sales et al., 2016]. 

There have been limited efforts to quantify the impact of fire on wet season rainfall 

[Görgen et al., 2006; Lynch et al., 2007; Notaro et al., 2011; De Sales et al., 2016; Hernandez et 

al., 2015]. These studies have relied on coupled land-atmosphere models and largely focus on 

regional changes in precipitation associated with the evolution of the monsoon. The sign and 

strength of the fire-rainfall relationship differs considerably across studies, and observational 

evidence in support of modeled results is lacking. For example, a modelling experiment of 

northern Australian fires reports a pre-monsoonal precipitation increase of 2.1 mm day-1 due to 

widespread and intense wildfires [Görgen et al., 2006]. However, another study over the same 

region but using a different modelling approach reports a significant 0.5 mm day-1 decrease in 
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pre-monsoonal precipitation [Notaro et al., 2011]. Similarly, a modeling experiment focusing on 

West Africa showed that fire strengthens atmospheric subsidence by increasing albedo and 

reducing net radiation, leading to a 3% reduction in wet season precipitation [De Sales et al., 

2016]. A case study [Hernandez et al., 2015] of local changes in precipitation after extensive 

wildfires in Portugal is less conclusive, showing either enhancement or suppression depending 

on the representation of rainfall processes in the model. The strength of land-atmosphere 

coupling varies geographically and discrepancies in modeled fire-rainfall relationships may be 

due in part to differing locations of study sites [Guillod et al., 2015]. 

I investigate the relationship between dry season fires and subsequent rainfall using over 

a decade of satellite data from sub-Saharan Africa. In particular I assess how the timing and 

amount of fire relates to total wet-season precipitation (PWS), which integrates both short-term 

effects (e.g., aerosol from late dry-season fires) and longer-lived modifications (e.g., albedo 

changes) to the land surface. I hypothesize that the timing of fire is especially important in 

governing the strength of land-atmosphere interactions; fires in the late dry season are to be more 

intense [Govender et al., 2006] and there is less time for recovery from land surface modification 

before the onset of the wet season. 
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3.3 Data and Methods 

3.3.1 Domain 

I focus on dryland areas of continental Africa below 20° N (excluding the Saharan desert, 

Northern Africa, and Madagascar). I define drylands as regions with mean annual precipitation 

(MAP) between 300 mm and 1000 mm, including arid, semi-arid and dry sub-humid regions. I 

perform all analyses at 0.25°, the original resolution of the rainfall dataset. Data were acquired 

from April 2000 through December 2015. 

 

3.3.2 Precipitation Data 

Rainfall retrievals from the Tropical Rainfall Measuring Mission 3B42 (TRMM) data set 

are used [Huffman et al., 2007]. These data are derived from merged satellite and gauge rainfall 

data. The wet season, which is distinct for each pixel, is defined as the minimal consecutive time 

period during which 95% of total annual rainfall occurs, on average (Fig. 3.1). Daily rainfall is 

then summed over the wet season to achieve a single rainfall value (the variable PWS) for each 

year. The dry season is defined as the period of time between each wet season. 

 

3.3.3 Fire Data 

The Moderate Resolution Spectroradiometer (MODIS) Burned Area Product 

(MCD45A1, version 5.1) was used to build a daily fire dataset [Roy et al., 2008]. The MODIS 

dataset provides daily estimates of whether each 500 m pixel has burned or not. For each day of 

the record, I calculated the fraction of burned 500 m MODIS cells whose centroid was within the 

larger 0.25°x0.25° TRMM pixel to obtain a single value of daily fire activity, proportion burned, 

at the same spatial scale as rainfall data. I then calculated the total dry season proportion burned 
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by aggregating daily proportion burned from the start of each dry season to the start of the 

following wet season. 

 

 

Figure 3.1. (a) The start of the wet season across the study region. (b) The length of the wet season across the study 

region. Excluded regions are shown in dark grey (see Methods). 

 

 I hypothesized that the amount and timing of fire could potentially impact rainfall. For 

each pixel and year, I calculated the total proportion of pixel area burned during the early and 

late dry season (which I call FE and FL, respectively). Here, early and late are defined as more 

than or less than 94 days before the wet season, where 94 days before the wet season is the 

average timing of fire across the whole domain. I chose to account for the timing of fire 

implicitly (i.e. by stratifying total fire into early and late) rather than explicitly (e.g. calculating 

the average day the dry season on which fire was sensed) because the latter variable is undefined 

for dry seasons with no fires. I excluded seasons when any fire data was unavailable during the 
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dry season. Most notably, missing MODIS data for May and July 2001 resulted in missing fire 

values for large parts of the southern hemisphere, resulting in 14, instead of 15 years of data. The 

northern hemisphere was largely unaffected due to the differing timing of the northern 

hemisphere dry season. 

 

3.3.4 Statistical Analysis 

I investigate the relationship between fire and subsequent rainfall using generalized 

additive models (GAMs), a flexible statistical framework that allows for modeling highly 

nonlinear relationships [Friedman et al., 2001; Wood, 2006]. Here, seasonal rainfall is modeled 

as a smooth, but otherwise unspecified, function of one or more covariates. My interpretation of 

model structure can be found in Appendix One. I fit PWS (yearly values) as a smooth function of 

the average wet season precipitation. This effectively removes the climatic trend from the 

spatially pooled yearly rainfall data, leaving interannual variability (anomaly) at each pixel to be 

explained by other predictor variables. I also included a bivariate smooth of MAP and each fire 

variable, hypothesizing that the possible fire-rainfall interactions will vary across climate zones. 

All model terms were significant (P<0.0001). I compared this model to a null model without FE 

and FL terms (details given in supplementary information), which justified the inclusion of fire 

variables as covariates in the model. In Figure 3.2 I explore how modeled PWS responds to 

differing levels of FE and FL when MAP is 400 mm. The response surface 900 mm MAP is 

shown in Figure 3.3. In Figure 3.4 I generate predictions of the average effect of fire on rainfall 

using temporally averaged values of FE and FL for each pixel. 
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Figure 3.2. The relationship between fire timing, fire extent and wet season rainfall. (a) PWS as a function of total dry 

season fire (FTotal) and percent of fire that is late (% FL) calculated for 400 mm MAP. By definition, the average amount 

of wet season rainfall for a given pixel is about 95% of MAP. There are substantial deficits when late (high % FL) and 

extensive (high FTotal) dry season fires occur. (b) Cross-sections of plot (a) at different levels of % FL. Line color refers to 

% FL values indicated by the triangles on the right margin of (a). (c) Cross-sections of plot (a) at different levels of F-

E+FL. Line color refers to FTotal values of colored triangles on the bottom margin of (a). Dotted lines in (b) and (c) depict 

1-standard error confidence intervals.  



 61 

 

Figure 3.3. (a) PWS as a function of total dry season fire (FTotal) and percent of fire that is late (% FL) calculated for 

900 mm MAP. There are substantial deficits when late (high % FL) and extensive (high FTotal) dry season fires occur. 

(b) Cross-sections of plot (a) at different levels of % FL. Line color refers to % FL values indicated by the triangles 

on the right margin of (a). (c) Cross-sections of plot (a) at different levels of FE+FL. Line color refers to FTotal values 

of colored triangles on the bottom margin of (a). Dotted lines in (a) and (b) depict 1-standard error confidence 

intervals. 

 

3.4 Results and Discussion 

I find a significant statistical relationship between fire and subsequent rainfall for both 

fire variables (F-test, F statistics: FE=8.48, FL=30.71, P<0.0001). Wet season precipitation 

decreases as the amount of fire increases and as the percentage of late fire increases (Fig. 3.2).  
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Figure 3.4. Fire-induced rainfall suppression in drylands. Rainfall change under average fire conditions for each 

pixel. (a) Rainfall lost is computed at each pixel as the difference between modeled wet season rainfall for 

temporally averaged FE and FL and modeled wet season rainfall with no fire. (b) Rainfall modification as in (a) but 

expressed as a percentage of MAP. 

 

There is a nonlinear relationship with amount and timing of fire, with the largest rainfall deficits 

produced by a combination of more extensive and later fires. FL was strongly associated with 

subsequent rainfall deficits across all values of MAP. The relationship between FE and rainfall is 

more complex, shifting from strongly negative at low MAP to slightly positive at 900 mm MAP 

(Fig. 3.1). In Fig. 3.4 I quantify average rainfall lost as the difference between modeled rainfall 

under average fire conditions and modeled rainfall when FE and FL are set to 0. Using the model 

to generate estimates of fire-induced rainfall changes under average conditions identifies large 

regions of the southern hemisphere where fire reduces rainfall in the subsequent wet season (Fig. 

3.4). However, this effect is subdued in the northern hemisphere. This can be attributed to the 
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timing of fire in the northern hemisphere, which tends to occur early in the dry season (Fig 3.5a-

b). This demonstrates the importance of fire timing on explaining hemispherical differences in 

rainfall suppression between hemispheres, despite their similar total burned area. 

 

 

Figure 3.5. (a) Average amount of total dry season fire (FE + FL) across the domain. (b) Average proportion of fire 

that is late, computed as <FL> / (<FL> + <FE>), where <> denote temporal averages using all available years of data. 

 

The overall negative relationship between fire and rainfall is consistent with several 

possible mechanisms of rainfall modification proposed in the literature. The observed rainfall 

deficits could result from altered moisture dynamics at the land surface. Previous research has 

shown consistent decreases in latent heat flux after fire, which may last on the order of months 

[Beringer et al., 2015]. These changes may have regional consequences for the formation of 

rainfall [Findell et al., 2011]. Furthermore, fire induces significant soil moisture deficits that can 

last for more than a wet season [Snyman, 2003]. This is caused by lower infiltration, increased 
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runoff and potentially higher bare soil evaporation over burn scars. That negative temporal 

anomalies in soil moisture contribute to reduced convective rainfall at the mesoscale has been 

demonstrated on a global basis, with strong observed effects in semiarid regions of Africa 

[Guillod et al., 2015]. Alternatively, feedbacks associated with increased albedo have been 

implicated as a cause of reduced precipitation at a variety of scales [Charney et al., 1975; Meng 

et al., 2014]. In this scenario the exposure of dry soils after vegetation is removed by fire leads to 

increased albedo, decreased net radiation and total heat flux into the atmosphere and a less 

energetic planetary boundary layer that inhibits convective processes, a finding supported by 

modelling [De Sales et al., 2016].  Evidence of long-term brightening has been found over 

semiarid burn scars but is dependent on the timing of fire and underlying soils [Veraverbeke et 

al., 2012; Gatebe et al., 2014]. Overall, studies reporting modeled rainfall reductions after fire 

suggest that the net effect of fire is a drier, more stable planetary boundary layer with stronger 

atmospheric subsidence and reduced moisture flux convergence [Notaro et al., 2011; De Sales et 

al., 2016]. Indirect mechanisms may also play a role in maintaining or amplifying early wet 

season rainfall deficits. Once a rainfall deficit is established early in the wet season, internal 

positive temporal feedbacks between soil moisture and precipitation may allow anomalies to 

persist even after the land surface has recovered to pre-fire conditions [D’Odorico and 

Porporato 2004; Guillod et al., 2015]. 

The role of fire in rainfall-generating processes depends on the location along a climatic 

moisture gradient. While the major effect of fire was a reduction in PWS, I observed slightly 

increased rainfall associated with high FE in the wettest regions of the study domain (Fig. 3.3, 

light blue areas in Fig.3.4). As the limitation on convective rainfall transitions from moisture at 

low MAP to energy limitation at higher MAP [Seneviratne et al., 2010], mesoscale features 
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formed by moderate levels of fire disturbance may enhance rainfall [Katul et al., 2012; Lawrence 

& Vandecar., 2015]. In these regions the timing of the disturbance is important, as there is still a 

negative relationship between FL and PWS. The importance of fire in promoting these land 

surface feedbacks is that persistent land surface modification is spatially fixed, allowing rainfall 

deficits to accumulate over the whole wet season at a single location. This is in contrast to the 

negative spatial soil moisture feedback that tends to homogenize moisture at the land surface 

over the course of multiple storms [Guillod et al., 2015]. 

Incorporating a well-described link between rainfall and subsequent fire in drylands - fuel 

limitation - has the potential to contribute to a biennial oscillation in rainfall (Fig 3.6). Fire in 

drylands is limited by plant productivity through fuel limitation, which in turn is controlled by 

rainfall [Andela et al., 2013; Fensholt et al., 2012; Zhu and Southworth, 2013]. When ignitions 

do not limit fire, rainfall positively correlates with fire in the following dry season [Van der Werf 

et al., 2008; Archibald et al., 2009]. I find strong evidence of this fuel limitation in drylands, in 

line with previous studies. More than 60% of drylands exhibit a positive correlation between wet 

season rainfall and fire the very next year. Over 40% of these correlations exceed 0.2 (compared 

to about 18% of pixels with Pearson correlation coefficients lower than -0.2, Fig. 3.6a).  

The new evidence of fire-induced rainfall suppression completes this feedback loop (Fig. 

3.6b & d), whereby a high rainfall year is more likely to be followed by an extensively burned 

landscape in the dry season and a low rainfall in the following wet season. The lower rainfall 

subsequently reduces fuel loads and the occurrence of fire, representing a fire-mediated negative 

feedback on rainfall anomalies. A strong enough relationship along each leg of the proposed 

feedback would lead to an oscillation between low and high rainfall years, measured statistically 

as a negative autocorrelation in PWS. 



 66 

 

 

Figure 3.6. A proposed fire-rainfall feedback. (a) Pearson correlation coefficient of wet season rainfall and following 

dry season fire in drylands. Cool colors are indicative of a fuel limitation on a year-to-year basis. Excluded regions are 

shown in dark gray (see Methods). (b) Pearson correlation between dry season fire and following wet season rainfall. 

Warm colors represent fire suppression of wet season rainfall. The central conceptual diagram outlines a possible fire-

rainfall feedback. The dotted line represents the temporal transition between the dry and wet seasons. (c) High rainfall 

increases fuel loads and subsequent fires, whereas low rainfall decreases fuel accumulation and subsequent fires. (d) 

Low fire activity results in more rainfall the next wet season, while extensive fire leads to less rainfall. (e) Lag-1 

autocorrelation in total wet season rainfall. A biennial oscillation, detected as a negative autocorrelation (shown here in 

warm colors), could be caused by the proposed feedback. 
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Figure 3.7. Dependence of yearly autocorrelation in rainfall on observed fire-rainfall relationships. Distribution of 

negative (red), neutral (gray) and positive (blue) yearly autocorrelation in PWS for all pixels as a function of the 

Pearson correlation between fire and subsequent rainfall (ρFPws), and rainfall and subsequent fire (ρPws,F). Normalized 

marginal histograms are depicted on axes margins. Colored lines in the marginal distributions indicate the 

distribution median. Negative autocorrelation in wet season rainfall tends to occur in regions where there is both a 

positive correlation between rainfall and subsequent fire (positive ρPwsF) and a negative correlation between fire and 

subsequent rainfall (negative ρFPws).  
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Indeed, I find strong negative correlations in inter-annual precipitation, generally limited to the 

southern Hemisphere (Fig 3.6e). Critically, the autocorrelation of annual wet season precipitation 

rainfall is dependent on the link between fire and rainfall, and is strongest in regions where the 

fire is linked with subsequent rainfall reductions (Fig. 3.7). 

This does not single out fire as the only cause of this statistical feature, as there is still a 

weak, negative autocorrelation in regions where the fire-rainfall relationship is neutral or 

positive. I note that my analysis does not consider exogenous drivers such as climate or ocean 

temperatures or how these might contribute to alternating low and high rainfall years (e.g., the 

quasi-biennial oscillation [Hastenrath, 1995; Jury et al., 2004]). However, my proposed 

feedback could help explain the differing modes of climate variability between the Kalahari and 

the Sahel, despite similar large-scale climatic controls [e.g. Nicholson, 2000; Cook et al., 2006].  
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Go write your message on the pavement 
Burn so bright I wonder what the wave meant 

 
Red Hot Chili Peppers 
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Albedo Changes After Fire as an Explanation of Fire-Induced Rainfall Suppression 
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4.1 Abstract 

Observational evidence of rainfall suppression by fire has recently been documented in African 

drylands, but the underlying mechanism remains poorly understood. Here I investigate the extent 

to which fire-induced changes in latent heat flux and albedo may inhibit boundary layer 

predisposition to convective rainfall. I use MERRA-2 reanalysis data from the Kalahari region 

of Southern Africa to drive a low-dimensional boundary layer growth model. I find that both 

increased albedo and, to a lesser extent, increased latent heat flux, could result in less convective 

rainfall. The sensitivity to land surface feedbacks is higher earlier in the dry season and at drier 

sites. Finally, using MODIS fire and albedo data, I present novel evidence that increases in 

albedo after fire, or brightening, is common in regions receiving less than 850 mm of 

precipitation annually. This supports the idea that fire-induced surface brightening is responsible 

for observed rainfall deficits after fire. 

 

4.2 Introduction 

 Fire is widespread in sub-Saharan Africa and has the ability to alter the land surface at 

frequent intervals and over large spatial scales [Barbosa et al., 1999]. Such disturbances modify 

the surface energy balance and local atmospheric conditions, which could in turn modify rainfall 

[Wendt et al., 2007]. Because fire scars are spatially fixed, preferential convective activity over 

burned or unburned areas could result in the accumulation of significant rainfall anomalies at 

seasonal time-scales [Beringer et al., 2003; Ichoku et al., 2016; Chapter Three]. Building 

understanding of seasonal rainfall deficits in regions where water resources are tightly linked to 

livelihoods has clear societal implications. Given the link between human activities and fire, 

fire-induced rainfall suppression may represent a novel anthropogenic influence on regional 
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climate. In Chapter Three I presented remotely-sensed observational and statistical evidence of 

significant rainfall suppression in African drylands after widespread fire. I demonstrated that 

extensive fire, particularly if late in the dry season, preceded lower than average wet season 

rainfall, especially in water limited regions. While the statistical relationship reported was 

robust, that study did not investigate the underlying mechanisms and did not attempt to explain 

the observed effect of fire-induced rainfall suppression. Indeed, to date a mechanistic 

understanding of the impact of fire on wet season precipitation is still missing. Developing a 

mechanistic understanding of these observed deficits is the goal of this current study. Aerosol-

mediated rainfall-fire feedbacks are known to occur during the dry season, when fires are 

burning [Tosca et al., 2015; Hodnebrog et al., 2016]. Land surface influences on energy balance 

and atmospheric development could be a possible, longer-enduring mechanism to explain how 

rainfall deficits accumulate over the entire wet season, when aerosol loading is limited. In this 

study, I specifically evaluate the hypothesis that land-surface feedbacks, caused by modification 

to the land surface by fire, could realistically explain observed rainfall suppression. Previous 

studies have investigated this question using coupled regional models, finding either 

enhancement or suppression of rainfall depending on the region and the parameterization of fire 

and convection in the model [Görgen et al., 2006; Lynch et al., 2007; Hernandez et al., 2015; De 

Sales et al., 2016]. For this reason, I use a conceptually simple boundary layer growth model, 

which allows us to isolate the various mechanisms that could produce suppression while 

parameterizing the effects of fire on land surface changes in a simple but realistic way. 

 The impacts of fire on the land surface vary and in some cases are heavily dependent on 

climate and ecosystem properties. Two well-described changes after fire are albedo modification 

and latent heat flux reductions [Gatebe et al., 2014; Beringer et al., 2015]. Albedo is a key 
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surface attribute that influences the amount of solar radiation that is available for turbulent heat 

fluxes originating at the land surface. Typically, fire results in instantaneous darkening due to 

char deposition on the land surface, which in turn enhances absorption of solar radiation and 

increases the amount of energy available to sensible and latent heat fluxes. Over longer time 

periods, however, this char may be removed by wind and precipitation, revealing a de-vegetated 

land surface with exposed dry and optically bright soils, thereby increasing in albedo. There is 

evidence of increased albedo relative to unburned areas (hereafter “brightening”) in semi-arid 

systems at temporal lags of years [Veraverbeke et al., 2012], but the extent to which this occurs 

over intermediate timescales has not been fully explored, particularly in the study region of 

southern Africa. For this reason, I model both increases and decreases in albedo after fire, and 

attempt to quantify the effect of fire on albedo over timescales relevant to the land-atmosphere 

interactions being investigated. 

While albedo modulates the total amount of available energy, damage to vegetation 

affects the way available energy is partitioned. Damage to plants occurs directly by removing 

plant biomass and indirectly through heat damage from fire, resulting in reduced photosynthetic 

activity and transpiration [Beringer et al., 2003]. The result is an overall reduction in latent heat 

fluxes and land surface contributions to atmospheric moisture while increasing sensible and 

ground heat fluxes. The severity and persistence of these changes is dependent on the intensity 

of the fire, but can result in a 400% reduction in latent heat fluxes, with accompanying increases 

in sensible heat flux [Beringer et al., 2003; Beringer et al., 2015]. 

 Geographic setting, climate and seasonality influence the sensitivity of the land surface 

to land-atmosphere coupling and atmospheric feedbacks [Koster et al., 2004; Guillod et al., 

2015]. Studies have identified transition zones, both spatial and temporal, as regions where 
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coupling is typically strong [Seneviratne et al., 2010; Nicholson, 2015]. Spatial transition zones 

include semi-arid landscapes along a rainfall gradient, and temporal transition periods include 

shifts from the dry to wet season [Koster et al., 2004; Notaro et al., 2011]. To investigate the 

influence of these factors, I consider different locations along a rainfall gradient and different 

times of the wet season in my analysis. 

 The specific goals of this study are to (1) investigate how land surface changes after fire 

could modify convective rainfall using a simple boundary layer model, (2) understand how these 

results vary over a climatic gradient and during different times of the wet season, and (3) use 

satellite data to assess the actual land surface modifications after fire in southern Africa and to 

see if this agrees with the model-derived mechanism for suppression of rainfall by fire. 

Achieving these goals will give a mechanistic explanation of observed rainfall suppression and 

build understanding of the role that fire plays in fire-rainfall feedbacks. 

 

4.3 Methods and Satellite Data  

4.3.1 Study Region 

 The focus of this study is the Kalahari region of southern Africa. Also known as the 

“Kalahari Transect”, this region features a strong north-south rainfall gradient that that is 

dominated by a November-April wet season during which ~90% of precipitation occurs [Koch et 

al., 1995; Nicholson, 2011]. Some of the strongest rainfall suppression presented in Chapter 

Three was observed here, and therefore focusing on this region may help to diagnose a land-

surface control on rainfall suppression. In the discussion that follows, November represents a 

transitional period, when the southward expansion of the inter-tropical convergence zone results 

in a shift from dry conditions to higher moisture availability and increased plant productivity. 
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The month of February represents the peak of the wet season. I run the model using reanalysis 

data from these two months (see Section 4.3.2 Reanalysis Data) on pixels located at 23°, 20°, 

17° and 14° S along a north-south transect fixed at 21.88° W longitude. These sites have a mean 

annual precipitation (MAP) of approximately 300, 400, 600, and 800 mm, respectively. 

 

4.3.2 Reanalysis Data 

 I use reanalysis data from MERRA-2 [Molod et al., 2015] to impose initial conditions 

(morning boundary layer height, potential temperature and specific humidity) and prescribe 

sensible and latent surface fluxes in the boundary layer growth model. MERRA-2 provides 

surface fluxes and atmospheric states using the GEOS-5 land surface model [Molod et al., 2015 

and references therein]. To complete these analyses, I compiled hourly data from the months of 

February and November over the period 1980-2015, with all times reported in local standard 

time (LST). The use of reanalysis data in this model is not meant to represent an accurate 

historical record of actual boundary layer dynamics, but rather to capture daily and synoptic 

variability in the drivers of boundary layer growth across many seasons. 

 

4.3.3 Boundary Layer Growth Model 

 Following Andersen et al. [2007], Van Heerwaarder et al. [2009] and others, I adopt the 

boundary layer growth model of McNaughton and Spriggs [1986] to simulate the response of the 

land surface to fire-induced changes in sensible and latent heat fluxes (the time-varying variables 

H and λE, respectively). This model tracks the evolution of height, potential temperature and 

specific humidity of a well-mixed layer over the course of a day. A detailed description of the 

model is provided in Appendix Two (section A2.1.1: Model Details) and other references 
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[Lhomme & Elguero, 1999]. To assess the effect of fire on boundary layer dynamics, I 

artificially modify the reanalysis input to reflect changes that typically occur after fire, namely 

albedo and latent heat flux modification. I parameterize fire as a proportional change in surface 

albedo and latent heat flux (the variables fα and fλE, respectively). These changes are then used to 

adjust the reanalysis time-series of H and λE as inputs into the boundary layer model. The 

approach used to modify H and λE for different values of fα and fλE is described in Appendix 

Two (section 3.1.2 Representing Fire in the Model). 

 

4.3.4. Assessing Boundary Layer Differences 

 I quantify the potential modification of convective rainfall using lifting condensation 

level (LCL) crossings, an approach that reflects the dominance of convection as a rainfall 

generating mechanism in southern Africa [Nicholson, 2011]. The equations used to calculate 

LCL height are described in the Supporting Information (Appendix Two, section A2.1.3 LCL 

Calculation, based on Bolton [1980]). An LCL crossing occurs at any model time-step when the 

boundary layer height, h exceeds the lifting condensation level, hLCL. While this does not 

measure the occurrence or depth of actual convective storms, it provides a simple indicator of 

whether the atmosphere is predisposed to convective rainfall at a given time and is considered a 

necessary condition for the occurrence of convective rainfall [Juang et al., 2007]. Using this 

method with simple boundary layer growth models has proven a useful tool for gaining insight 

into how competing mechanisms of boundary layer growth and entrainment can modify 

convective rainfall [Daly et al., 2004; Mande et. al., 2015; Manoli et al., 2016]. For example, 

using similar simple boundary layer growth model, Mande et al. [2015] found that all instances 

of measured convective rainfall at their semi-arid study site were preceded by an LCL crossing. 
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There is a strong empirical relationship between daily crossing statistics and bias-corrected 

rainfall rate and cumulative rainfall across all sites and both months (Appendix Two, section 

A2.1.3, Fig. 4.1-2; Reichle et al. [2016]), confirming the relevance of LCL crossings as a proxy 

of convective precipitation. This method will allow us to isolate the effect of surface 

modification by attributing changes in LCL crossings with changes in h, changes in hLCL, or 

both.  

 

Figure 4.1. Variability in daily afternoon (1200-2000 LST) rainfall amount for different durations of midday (1000-

1600 LST) crossings for (a) November and (b) February. The boxes depict the 25th, 50th and 75th percentiles of each 

distribution. Whiskers represent the 10th and 90th percentiles of each distribution. Bins with less than 5 elements are 

depicted with dots for each individual measurement. 

 

4.3.5. Fire and Albedo Satellite Data 

 To quantify the actual albedo changes caused by fires I used MODIS MCD45A1 

collection 5.1 burned area product at 500 m resolution over the Kalahari Transect between the 

southernmost and northernmost sites included in this study (latitude range 23° to 8° S; longitude 

range 22° to 25° W) [Roy et al., 2008]. I used 15 years of dry season (April-October) data, from 



 83 

2000 through 2015 (omitting 2001 because of missing data) to catalog the occurrence of dry 

season fire. I quantified albedo anomalies using the MODIS white sky albedo product 

(MCD43A3, collection 5.0) at the same resolution and over the same years. I obtained an 

average November albedo for each pixel and year of record by averaging available November 

measurements (3-4 scenes each year), ignoring missing values. Albedo anomalies due to fire 

were computed at each burned pixel as the difference between these yearly November albedo 

values and the average albedo of that same pixel during years when no fire occurred (a temporal 

anomaly). An additional spatial anomaly is also computed using the same data (details in 

Appendix Two, section A2.2.4). For comparison with fα, I present these temporal anomalies as a 

fractional deviation from the average albedo over all years. 

 

Figure 4.2. Variability in daily afternoon (1200-2000 LST) maximum rainfall rate for different durations of midday 

(1000-1600 LST) crossings for November (left panel) and February (right panel). The boxes depict the 25th, 50th and 

75th percentiles of each distribution. Whiskers represent the 10th and 90th percentiles of each distribution. Bins with 

less than 5 elements are depicted with dots for each individual measurement. 
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4.4 Results 

4.4.1 Comparison between model and reanalysis crossing statistics 

 For the month of November, hourly LCL crossings calculated from reanalysis data peak 

in the afternoon across all of the sites (Fig. 4.3a, solid lines). The frequency of crossings is 

dependent on the aridity of the site, with peak hourly crossings increasing from 54.1% of days at 

300 mm MAP to 94.3% of days at 800 mm MAP. In February, all sites show a higher proportion 

of days with crossings (Fig 4.3b) with a similar diurnal pattern. 

 

Figure 4.3. The proportion of days in (a) November or (b) February for which h exceeds hLCL during a given hour. 

Reanalysis data and control simulations are shown with a solid and dotted line, respectively. Colors represent 

different sites along the Kalahari Transect. 

 

 I compare these reanalysis values with the base case of the simulation in which both fα 

and fλE are set to 1, such that net radiation and heat fluxes are not modified from reanalysis 

values. This control case can be compared to crossing statistics derived from the reanalysis 

dataset and can be used to gauge the performance of my model. The control simulation largely 
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mirrors the diurnal dynamics observed in the reanalysis data, both in timing and overall 

magnitude (Fig. 4.3a, dotted lines). The model captures the temporal dynamics of boundary layer 

crossings well in all of the sites. The timing of the control simulation peak crossing is within an 

hour of the corresponding reanalysis value for all sites and the average difference between 

crossing peaks across sites is 2.18%. The performance of the control simulation is similar for the 

month of February (Fig. 4.3b). 

 

 

 

Figure 4.4. Changes in the frequency of LCL crossing associated with proportional changes in albedo and latent 

heat fluxes. Each column represents a site at a different position and MAP along the Kalahari Transect (from left to 

right: 300 mm, 400 mm, 600 mm, 800 mm) and each row represents different timings during the season (top: 

November, bottom: February). 
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Figure 4.5. Variation in simulated average 1500 LST boundary layer height (h) as a function of proportional 

changes in albedo and latent heat flux. The solid and dashed lines represent contours at 0 m and +/-150 m, 

respectively. Panels arranged as in Fig 4.1. 

 

4.4.2 Effect of experimental variables on h, hLCL crossings. 

 I now compare simulated crossings under experimental values of fα and fLE to the control 

scenario with fα and fLE equal to 1. Excluding the 800 mm site in which almost no variability is 

seen as a result of fα or fLE modification, I observe increases in the rate of crossings in 

simulations where fLE and fα are both high (Fig. 4.4). Suppression of crossings, on the other 

hand, is only observed where brightening occurs (fα > 1). For the range of experimental values of 

fLE (0.5 to 1.0) and fα (0.5 to 1.5) considered here, the deviation in the chance of crossings 

(calculated as the percent of days with crossings in the experimental case minus the percent of 

days with crossings in the control case) is about +/-6%. 
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Figure 4.6. Variation in simulated average 1500 LST hLCL as a function of proportional changes in albedo and latent 

heat flux. The solid and dashed lines represent contours at 0 m and +/-150 m, respectively. Panels arranged as in Fig 

4.1. 

 

 The diurnal variability in boundary layer growth and LCL growth represents a tradeoff in 

the growth of the boundary layer and the height of the LCL. On one hand, lower fα and fLE 

increase sensible heat fluxes and boundary layer growth, which could increase the chance of a 

crossing due to higher h. On the other hand, higher sensible heat flux increases mixed layer 

potential temperature, which could decrease the chance of a crossing due to a higher hLCL. My 

findings of rainfall enhancement at lower fα and fLE indicate that in the semi-arid Kalahari 

region, crossings are more heavily influenced by the first pathway (modified h growth) than by 

simultaneous modifications to hLCL. This can be seen by comparing Figures 4.5 and 4.6, which 

show that the magnitude of the h deviations (Fig. 4.5) are larger than changes in hLCL for the 

same point in parameter space (Fig. 4.6, compare respective panels). Similarly, where I see 

suppression at high values of fα and fLE, the decrease in boundary layer height due to reduced 
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sensible heat flux is of a larger magnitude than the decrease in LCL due to a moister boundary 

layer, in effect lowering the chance of a crossing. 

 

 

Figure 4.7. Fire, sensitivity to land surface feedbacks and rainfall suppression along the Kalahari Transect. Black 

points (left vertical axis) represent sensitivity of LCL crossings to albedo changes as a function of MAP. Grey 

points (right vertical axis) show the average percentage of the landscape burned annually. Orange sub-plot depicts 

the average change in wet season annual precipitation due to fire over the Kalahari Transect. Trends are highlighted 

in thick lines using a lowess smoother with bandwidth 0.5. Fire and rainfall suppression data are reproduced from 

Chapter Two over the Kalahari transect. 

 

4.4.3 Seasonal and spatial variability in the occurrence of h, hLCL crossings 

 I can interpret the deviation of the crossing rates per a given change in fα or fLE as the 

sensitivity of that site to land-atmosphere feedbacks. The largest deviations from the baseline 

crossing rate occurred at the driest site, indicating that more arid regions have a higher 
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sensitivity to a given increment in fα (Fig 4.4.; comparing across columns). Likewise, the 

sensitivity decreases from the transitional month of November to February (Fig. 4.4; comparing 

across rows). As the change in crossing rate is greater over the range of fα at constant fLE than for 

fLE at constant fα, I formally define the sensitivity in terms of fα as S=ΔP[h > hLCL] / Δfα, 

evaluated at fα = fLE = 1, where P[h > hLCL]  is the proportion of days with a simulated LCL 

crossing. I calculate sensitivity to understand how it changes across a finer gradient of MAP in 

Figure 4.7. Clearly, the sensitivity of LCL crossings to fractional changes in albedo increase 

with increased aridity. 

 

 

Figure 4.8. Changes in albedo after fires in southern Africa. Individual albedo anomalies for a given year and pixel 

are pooled into 50 mm wide MAP bins starting at 375 mm. The boxes depict the 25th, 50th and 75th percentiles. 

Whiskers represent the 10th and 90th percentiles of the bin samples. The thick gray line shows the percentage of 

pixels in each bin that have a positive albedo anomaly. Due to the large sample sizes all bins are significantly 

different than zero (α=0.001) as determined by the Wilcoxon signed-rank test with the sequential Bonferroni 

adjustment for multiple comparisons. 
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4.4.4 Satellite Evidence of Brightening 

 There is strong observational evidence of increased albedo after fires (brightening) below 

800 mm MAP that is manifested during the transition month of November (Fig. 4.8). The 

median albedo anomaly in the 350 – 400 mm range is a +7.36% above average, a significant 

positive bias. A high proportion of pixels undergo some brightening; at 425 mm MAP 72% of 

pixels show positive anomalies after fire. To a lesser extent, there is evidence of darkening 

between about 800 and 1200 mm MAP, with a minimum median anomaly of -1.74%. 

 

 

Figure 4.9. Distribution of spatial albedo anomalies as a function of MAP. Spatial albedo anomalies for each year 

are pooled into 50 mm wide MAP bins starting at 375 mm.  The boxes depict the 25th, 50th and 75th percentiles. 

Whiskers represent the 10th and 90th percentiles of the bin samples. The thick gray line shows the percentage of 

pixels in each bin that have a positive albedo anomaly. Due to the large sample sizes all bins are significantly 

different than zero (α=0.05) as determined by the Wilcoxon signed-rank test with the sequential Bonferroni 

adjustment for multiple comparisons. 
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4.5 Discussion 

4.5.1 Suitability and usefulness of the boundary layer growth model 

 I demonstrate a strong relationship between afternoon rainfall rates and the number of 

midday hours for which h > hLCL, as determined by reanalysis data (Fig. 4.1-2). This relationship 

suggests that LCL crossings are an appropriate proxy for investigating changes in convective 

rainfall. Increased variability at higher crossing durations is expected, as an LCL crossing is a 

necessary, but not sufficient condition for convective rainfall, and some days with sustained 

LCL exceedance will not experience rainfall due to factors not investigated here (such as 

convective inhibition). Nevertheless, the highest median rainfall rate is observed under the 

highest frequency of crossings in all months and over all sites. 

 There is an overall agreement between reanalysis and control simulation crossing 

statistics (Fig 4.3). This is encouraging given the simplistic nature of the model and the lack of 

site-specific tuning of parameters. The results are similarly encouraging for February data (Fig. 

4.3b). I found that the sensitivity of h, hLCL crossings to changes in albedo and LE are the 

strongest during the onset of the wet season. These findings are in line with the idea that 

coupling between the surface conditions and precipitation is strongest at times when water 

limitation and convective activity coincide [Seneviratne et al., 2010; Notaro et al., 2011; 

Nicholson, 2015]. Moreover, I found that sensitivity to land surface conditions was strongest in 

drier regions, for similar reasons. 

 

4.5.2 Causes of Rainfall Suppression 

 The chance of an h/hLCL crossing depends on non-linear interactions between boundary 

layer height, temperature, and moisture content and their influence on h and hLCL. My results 
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detail two possible mechanisms that could contribute to observed rainfall suppression after fire. 

The first mechanism of rainfall suppression is increased latent heat fluxes. There are some 

reports of rapid regrowth of herbaceous plants (a “green flush”) following fires in Africa 

drylands [Archibald et al., 2005]. Transpiration, a component of latent heat fluxes, increases as a 

function of green leaf area and could theoretically offset transpiration reductions stemming from 

damage to woody plants. However, studies that directly measure turbulent fluxes after fire tend 

to report decreases in latent heat flux [Beringer et al., 2003; Beringer et al., 2015], which would 

imply an increase in crossing frequency, are not consistent with the observed patterns of post-

fire rainfall suppression [Chapter Two]. 

 A second possible mechanism of convective rainfall suppression is through large-scale 

brightening of the land surface. The idea of an albedo-rainfall feedback is not new. Notably, 

Charney [1975] proposed albedo-rainfall feedbacks to explain severe, decadal drought in the 

Sahel. Albedo-rainfall interactions have been shown to operate on seasonal timescales as well 

[Meng et al., 2014; Vamborg et al., 2014]. Negative deviations in crossing frequency (red colors 

in Fig. 4.4) are observed over the whole ranges of fLE, but only if fα is positive. While higher fLE 

results in a lower rate of crossing, brightening (fα > 1) is a necessary condition for rainfall 

suppression. I note that this finding could change if a broader range of latent heat flux 

modification were included (specifically, fLE > 1), but as stated before, the evidence of LE 

increases is lacking. Therefore, I claim that albedo changes are more important than latent heat 

flux changes in explaining observed suppression. 

 

4.5.3 Evidence of Brightening After Fires 
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 My results indicate that over a range of typical changes in albedo and latent heat flux, 

albedo tends to have a stronger influence on boundary layer crossings than changes in latent heat 

flux. Specifically, my model results suggest that it is brightening after fires, not darkening as is 

commonly reported, that could be responsible for rainfall suppression. While studies of fire in 

African dryland commonly report instantaneous darkening, the possibility of brightening over 

longer timescales has not been previously studied in this region. I present evidence that, by the 

time of wet-season onset, the lagged, net effect of dry season fire is a brighter land surface (Fig. 

4.8). The evidence of brightening is robust, and is confirmed by calculating spatial albedo 

anomalies rather than temporal albedo anomalies (Fig. 4.9, compare pattern to Fig. 4.8). This 

suggests that the observed brightening is not an artifact of spurious correlations of both fire and 

albedo with interrannual climatic factors (such as drought, which may raise the albedo) that may 

confound a temporal-only comparison. Because brightening is almost certain to reduce sensible 

heat fluxes, taken together with evidence that reduced sensible heat flux reduces boundary layer 

crossings and convective rainfall, evidence of brightening provides a likely mechanism for the 

observed rainfall suppression. The cause of brightening is not yet known, but other studies have 

suggested some mechanisms. The revelation of optically bright soils by removing live and 

senescent vegetation could be one factor. Also, preferential drying of burnt soils may further 

increase albedo [Snyman, 2003], as drier soils are brighter than moist soil [Lobell & Asner, 

2002]. Further research is needed to better define the role of each of these mechanisms in 

producing large scale brightening. 

 There is minimal reporting of fire-induced brightening in Africa and semi-arid 

landscapes in general, with most studies focused on the instantaneous darkening that follows fire 

(e.g. Govaerts et al., [2002]; Myhre et al., [2005]). In a study on long-term albedo dynamics of 
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Sahelian fires, Gatebe et al. [2014] reported that some fire-affected regions in croplands 

exhibited brightening, but the majority of burnt pixels exhibit long-term darkening. Chapter Two 

reported substantial hemispheric differences in the timing of fires, with fires in the Kalahari 

region tending to occur much later in the dry season than in the Sahel. Late fires tend to be more 

intense, which could influence the level to which the surface is denuded after fire and potentially 

alter how much brightening or darkening occurs. Other factors, such as the optical properties of 

the underlying soil may also determine where brightening occurs after fire relative to a 

background vegetated state. For example, my study site is underlain by the homogeneous 

Kalahari sands, it is not clear if these findings are universally applicable over all soil types. 

Methodological differences prevent a direct comparison with previous studies; future research 

must resolve this discrepancy to understand where fire has the potential to locally suppress 

rainfall. 

 

4.5.4 Implications for Fire-Rainfall Interactions 

 The findings in this study shed light on the observations of fire-induced rainfall deficits 

in multiple ways. In Chapter Three I presented evidence that fire results in lower than-expected 

wet season precipitation. In that study I offered a mechanism to further explain these 

observations, namely, the presence of widespread brightening in the rainfall band where this 

suppression occurs. Chapter Three also showed that the relationship between fire and wet season 

rainfall was strongly negative (i.e. rainfall was suppressed) in drier regions (below 850 mm 

MAP) and weakly positive in more mesic regions (>850 mm MAP, Fig. 4.8, orange line). Not 

only does my model predict suppression where brightening occurs, but also more frequent 

crossings when darkening persists after fire. I find that the pattern of brightening as observed in 
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satellite data mirrors this pattern exactly; the strongest rainfall suppression occurs where 

brightening is the strongest and slight rainfall enhancement occurs above 850, where brightening 

shifts to darkening. The reduced effect of fire on rainfall above 850 mm MAP relative to the 

strong suppression that occurs below this threshold is a plausible combination of two 

observations. First, the magnitude of darkening is significantly lower than the relative magnitude 

of brightening observed at below 850 mm MAP, which my model suggests would reduce the 

impact on LCL crossings (Fig. 4.4). Second, my model-derived measure of sensitivity to land 

surface feedbacks indicates that drier regions are more sensitive to land-surface changes. 

Together, these results explain subdued enhancement where darkening is observed. My findings 

suggest that arid regions, which already face severe water limitation and strong interannual 

variability in water resources, may suffer the greatest adverse effects of rainfall suppression due 

to fire. 

 

4.5.5 Conclusion 

 There has been mixed observational and modeling evidence of both rainfall suppression 

and enhancement due to fire effects at the land surface including vegetation modification. This 

study builds on previous studies by providing a mechanistic explanation based on post-fire 

brightening, which could explain observational evidence of rainfall suppression. Furthermore, I 

present new observational evidence of brightening that occurs at timescales relevant to the 

rainfall suppression hypothesis. This finding challenges the idea that only darkening occurs after 

dryland fire. Future modeling efforts should incorporate these findings to fully assess the 

meteorological impacts of fire. The global extent of brightening and fire-induced rainfall 
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modification has not yet been quantified. If this phenomenon occurs in other regions and 

continents, it could mean that fire results in seasonal rainfall deficits on a globally relevant scale. 
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Chapter Five 

Land surface brightening following wildfires in sub-Saharan Africa 

  

Fully loaded satellites 
Wait for a sign 

 
Muse 
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5.1 Abstract 

Albedo is an important component of the Earth's energy budget. Fire can induce long-lived 

changes to land-surface albedo, but the temporal evolution of these anomalies is poorly 

understood. Due to the widespread presence of fire in Africa, this represents substantial 

uncertainty in the continental energy budget, which has important implications for regional 

climate and hydrologic cycling. In this study, I present the first object-based accounting of 

albedo anomalies induced by larger (>1 km2) individual fires in sub-Saharan Africa (SSA). I 

group spatially contiguous burnt pixels into fire objects and track the albedo anomaly for five 

years after the burn. I find that albedo anomalies all have the same general temporal signature: an 

immediate and short period of darkening followed by persistent brightening. The strongest 

brightening is found in the Kalahari region while more intense and persistent initial darkening is 

found in the Sahel region. The average albedo anomaly is +2.71 x 10-4 in the five years following 

fire, representing a statistically significant negative forcing on a continental scale. Over the 

Kalahari sands the albedo increases of ~0.02 represent approximately ~10 increase in the. This 

study challenges an existing paradigm surrounding the physical effects of fire on the landscape. 

These results suggest that models of albedo that assume a darkening and recovery to baseline are 

overly simplistic in almost all circumstances. Furthermore, the presumption that immediate 

darkening is the only meaningful effect on albedo is incorrect for at least half of the continent, 

and depending on the timing of fire, for Northern Hemisphere SSA as well. 

 

5.2 Introduction 

Albedo is a critical component of the Earth system and plays an important role in 

determining the terrestrial radiation budget. Changes to albedo can modify local atmospheric 
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conditions and instigate land-atmosphere feedbacks with continental repercussions. A canonical 

example of an albedo-atmosphere feedback is the classic hypothesis of Charney [1975] invoked 

to explain multi-decadal drought in the Sahel. Charney [1975] hypothesized that persistent 

brightening due to desertification and associated positive albedo anomalies would enhance 

regional atmospheric subsidence, thereby reducing rainfall and further promoting desertification. 

There more recent, observational and mechanistic evidence that links fire-induced albedo 

changes to observed reductions in precipitation in the following wet season [Chapter Three; 

Chapter Four; De Sales et al., 2018]. This pathway of fire-induced rainfall suppression hinges on 

the presence of widespread positive anomalies in albedo (brightening) following extensive 

wildfire. The basic premise is that in fire-prone regions dominated by convective rainfall systems 

such as tropical Africa, reduced energy available for boundary layer growth under brighter than 

normal albedo conditions decreases the likelihood that the boundary layer will cross the lifting 

condensation level, a necessary condition for the formation of convective rainfall. This pathway 

could explain reductions in rainfall in regions where access to water resources is tightly coupled 

to human livelihoods. Furthermore, given the strong linkage between humans and fire [Andela & 

Van Der Werf, 2014], this could represent a novel way in which humans modify regional 

hydrologic cycling. Understanding the scope and magnitude of brightening is key to assessing 

the viability of this pathway on a continental scale. 

Currently, there are inconsistent findings across Africa reporting how albedo anomalies 

after fire develop and recover over time, both in the sign and magnitude of anomalies. Ground 

based measurements of albedo change during and after fire are lacking in Africa. Therefore, 

many researchers have turned to long-term satellite reflectance datasets such as those derived 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) to investigate fire-induced 
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land surface changes. Previous studies have reported instantaneous decreases in albedo after fire 

by up to 50% [Govaerts et al. 2002; Gatebe et al. 2014]. Gatebe et al. [2014] reported significant 

darkening in Northern Hemisphere SSA that consistently lasted up to two years after fire for a 

majority of fire-affected pixels in the MODIS dataset. There was limited evidence of brightening 

in some cropland regions during the year following fire as well as in most regions when fire 

occurred outside of the fire season, but the number of pixels reporting brightening was 

statistically dominated by reports of extended darkening. Recently, Dwinte et al. [2017] 

measured widespread, immediate darkening after fires over all of Africa using a single pixel-

based measurement approach. 

On the other hand, in Chapter Four, I presented evidence of strong brightening (up to 

~+7% above baseline albedo) in the Kalahari region of Southern Hemisphere Africa in the 

months following dry season fire [Chapter Four]. The measured effect was more pronounced in 

more arid environments. Wetter regions showed slight darkening over the same timescale. 

Elsewhere on the globe there are reports of immediate halving of albedo following intense fires 

in Australia [Beringer et al., 2003] and significant brightening in the years following intense 

wildfires in Greece [Veraverbake et al., 2012]. Notably, all of these studies relied on data 

derived from MODIS reflectances, which suggests that data sources are not the driving factor 

between differences in fire-induced albedo change. 

The extent to which these studies differ because of geographic or methodological 

differences is unclear. Each of the aforementioned studies computes changes in albedo due to 

fire differently. Perhaps the main issue is in determining a reference baseline value for albedo so 

that an anomaly can be calculated after fire occurs. For example, if the anomaly were purely 

temporal (i.e. comparing the albedo in a burn scar to the albedo in that same region before or 
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well after it burned) then it is possible that the computed anomaly would capture factors like 

temporary drought that temporarily modify both albedo and the likelihood of fire. On the other 

hand, if only a spatial reference were used (i.e. comparing albedo in a burn scar to a different, 

unburned region at the same time) then I could not ensure that the surrounding pixels actually 

had a similar long-term baseline albedo.  

Part of this difficulty stems from the fact there is no standard way to calculate albedo 

anomalies using a spatial or temporal reference. Given the natural spatial covariance of a 

spreading process like fire, there is some difficulty in establishing a nearby, representative 

reference pixel because many potential reference pixels have also burned. Indeed, Gatebe et al. 

[2014] used a spatial window ranging from 2.5 km to 30 km in their reference pixel matching 

scheme to associate burnt pixels with similar reference pixels. There is a question of how truly 

representative a reference 500 m pixel that is ~30 km away from the burned pixel actually is. 

Dwinte et al. [2017] point out another potential issue with spatial references. The fact that a 

potential reference region didn’t burn in proximity to a burn scar could be indicative of 

underlying dissimilarity between the two pixels; making that an unsuitable reference to measure 

albedo anomalies. Without correcting for underlying biases between the two pixels, this 

comparison would be invalid. 

On the other hand, there are also potential issues with temporally-derived baselines. 

Regions with an active fire regime show a strong fuel buildup and burn cycle. Multiple studies 

have demonstrated how climatic correlates such as previous wet season rainfall modify fire in the 

following dry season [Mondal & Sukumar, 2016; Chapter Three]. Therefore, albedo anomalies 

calculated with only a temporal baseline might instead be capturing signals of temporal shifts in 

overall climate that are linked to both albedo and fire. For example, Dwinte et al. [2017] use an 
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albedo anomaly calculated using the average of the year before the fire and after the fire. By 

using a control baseline derived from data in the year following fire, there is an implicit 

assumption that full recovery has occurred in less than a year. However, if brightening lasting 

longer than a year were actually occurring past that window then their methodology would both 

(a) overestimate the darkening associated with fire, and (b) fail to sense the brightening 

occurring after the first year. However, there is ample evidence of fire-induced land surface 

effects that last on the order of years (e.g. Veraverbeke et al. [2012], Gatebe et al. [2014]), which 

challenges the assumptions of the other mentioned studies. Without ground-based evidence of 

limited temporal effects in Africa, anomaly calculations must be designed to incorporate this 

potential effect. 

Despite recognition of issues with both spatial- and temporal-only anomaly definitions, to 

date no study has attempted to account for both kinds of pitfalls on a continental scale. I  aim to 

fill this gap with an improved methodology. The specific temporal lags and apparent disparity in 

albedo anomalies across hemispheres clearly warrant further investigation. However, despite the 

common occurrence of fire in Africa and potential impact on the continental radiation budget, a 

holistic continental analysis that investigates the long-term evolution of fire-induced albedo 

changes using a unified framework has not yet been undertaken. That is the aim of the current 

study. 

 

5.3 Data & Methods  

5.3.1 Fire data 

The MODIS burned area product (MCD45A1, collection 6) gives global estimates of 

whether or not a given 500 m resolution pixel burned and, if so, estimates the time at which that 
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pixel burned [Roy et al., 2008]. I tracked fires from this dataset during the period April 2006 

through March 2011 (5 years of data). April was chosen as the start of the fire year due to a 

continental minimum of fire during the month of April. I reserved the period before this for use 

in the calculation of the baseline albedo. I stopped tracking new fires in 2011 to ensure that the 

anomalies could be calculated for a full 5 years after the fire occurred. 

 

5.3.2 Fire object characterization 

I defined fires using an object oriented, rather than a single pixel-based, approach. My 

object-oriented analysis groups individual burned pixels into discrete fire events based on their 

spatio-temporal connectivity. I used a Moore (8-neighbor) spatial connectivity and 5 days of 

temporal connectivity. After defining all individual objects, further analyses were then done on 

the aggregated values of the member pixels, rather than on the individual pixels themselves. 

Instead of comparing a single burnt pixel to other single burnt pixels, I defined a reference buffer 

to compare albedo values to. Similar to my fire objects, the reference buffer is a contiguous 

group of pixels to which I compare the albedo of fire objects against. To define the reference 

buffer, I first excluded a one-pixel buffer around each fire to exclude. These pixels were not 

considered in further analysis to reduce the potential of edge effects of partially burned pixels in 

my fire-reference comparison. After than I initialized the reference buffer as a one-pixel buffer 

outside the excluded edge pixels. Following initialization, the reference buffer was iteratively 

built up by incrementally adding a 1 pixel outer buffer to the external border until the number of 

pixels in the reference buffer contained at least the number of pixels in the fire object. In this 

way, I was comparing the fire object to a similar number of nearby pixels. 
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The linkage between fire and anthropogenic land use has the potential to affect the 

results. For example, if fire was used to clear forest that is then maintained as pasture, I may 

falsely associate the extended change in albedo with fire, even though the extended change in 

albedo is unrelated to the fact that a fire was observed and was being artificially maintained by 

human activity. For this reason, I focus on fires that do not overlap with human activities. I 

address this potential issue by omitting any pixels classified as either urban, cropland or cropland 

mosaic by the MODIS IGBP land cover dataset [Friedl et al., 2010]. 

I performed additional quality assurance steps to ensure a strong albedo signal. Most 

notably, I excluded fires with an area < 1 km2 (i.e. consisting of 4 or fewer MODIS pixels). This 

was to reduce the number of cases in which a small fire comprised a very small area of the 

burned pixel an lead to an overestimate of burned area. Indeed, the MODIS burned area product 

can routinely detect the fires smaller than 1000 m2 (or ~30 m x 30 m) within the larger ~500 m x 

500 m MODIS pixel. In these cases tracking the albedo over the larger pixel that is not 

substantially burned would result in a scale mismatch that could lead to reduced statistical power 

and an overly conservative anomaly estimate. 

 

5.3.3 Albedo anomaly calculation 

For each fire object, I tracked the average albedo of the fires and reference buffers for 

five years after the fire. For each point in time (specifically each 8-day period for which MODIS 

albedo data are available) I calculated the spatiotemporal albedo anomaly as 

(1) ∆αt = [αt,f - αh,f] - [αt,r – αh,r] 

where the subscript t denotes the albedo at a given time after fire, subscript h denotes the 

historical albedo at the same time of year averaged over the period April 2001 through March 
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2006. The subscripts f and r denote the average albedo within the fire object and the surrounding 

reference buffer, respectively. I believe that using both a spatial and a temporal reference for 

albedo anomaly computation is necessary to reduce the spurious effects of using a single method 

as discussed in the Introduction. This allows us to achieve higher quality estimates of fire 

performance that consider both underlying differences in the spatial and temporal heterogeneity 

of the landscape and represents an improvement upon previous studies. 

 

 

5.4 Results and Discussion 

I identified 1.54 M fires, amounting to 11.2 M km2 of burned area over the five-year 

period, or approximately 11% of the continental area of Africa. Due to the strict quality 

requirements for fire objects classification, the fire objects represent 88% of fire pixels in the 

MODIS dataset over my period of record. For this reason, the total impact of fire shown in 

results is likely to be an underestimate. Smaller fires dominated the dataset. Of the fires I 

identified, 65.4% exceeded 10 km2 and 31.0% exceed 100 km2. The average albedo anomaly in 

the year following fire was +6.51 x 10-4 for all of sub-Saharan Africa. The five-year continental 

average was +2.71 x 10-4. Overall, the return to baseline generally occurred within the first two 

years after fire (Fig. 5.1, black lines). 

I identified a general temporal signature of albedo anomaly development. First, there is a 

strong immediate darkening that recovers within about three months. After that there is less 

intense, but still significant, brightening up to about one year after fire. Depending on the region, 

there is some variability in this signature. For example, fires that occur in the Southern 

Hemisphere during the wet season show no immediate darkening but later substantial 
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brightening around 6 months after fire. These findings of dominant darkening in the Northern 

Hemisphere and dominant brightening in the southern Hemisphere unify seemingly conflicting 

reports of hemispheric differences in the physical effect of fire on the land surface (e.g. Chapter 

Two and Gatebe et al. [2014]). 

 

 

Figure 5.1. Evolution of albedo anomalies after fire for the Northern (dotted line) and Southern (solid line) 

Hemisphere. Different colors represent different times of year. The wet season months are JJAS for the Northern 

Hemisphere and DJFM for the Southern Hemisphere. October, November, April and May are considered transition 

months for both hemispheres. Each line is the average of all fires that occurred within the given time of year 

weighted by the area of each fire. The whole year average (black) closely tracks the dry season (orange) average 

because most fires occur during the dry season. 
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The amount of brightening is dependent on when and where the fire occurs. Wet season 

fires result in substantially more brightening than fires during other times of the year within each 

respective hemisphere (Fig. 5.1, blue lines). This is especially the case in the Northern 

Hemisphere. Gatebe et al. [2014] report similar findings after Northern Hemisphere fires but 

suggested a possible statistical anomaly due to low sample size. I believe that the observed effect 

is important and must be considered in future studies. I hypothesize that the severity of 

rarer wet season fires, when they do burn, tends to be greater, as they would occur only during 

extremely dry times such as intense drought. Additionally, during the wet season, the vegetated 

unburnt reference region may be substantially less reflective than the underlying soil, leading to 

an intensified brightening. If the relative contrast between the brighter burn scar and darker wet 

season vegetation more pronounces, then this could account for the stronger brightening 

observed in the wet season signal. Further research efforts should aim to decouple these two 

signals of darkening char deposition and potential brightening to gain a more complete 

understanding of fire-induced surface changes. Vegetation cover and species could play a large 

role in determining the magnitude of immediate darkening due to char. 



 114 

 

Figure 5.2. Average albedo anomaly in the year following fire. Individual albedo time series are binned into 1° 

latitude and longitude bins and averaged by weighting each fire by area before averaging. Bins with less than XX 

fires are shown in white. An outline of the Kalahari Sands is shown in fuschia. 

 

The Kalahari region exhibits a strong brightening that lasts for over a year, on average. I 

suggest that the soil color is important in explaining the brightening, as there is a significant 

contrast between the brightening observed over the Kalahari sands (arenosols) and the nearby 

darker luvisols and south-east Africa of the (Fig. 5.2; eastern border of purple line representing 

Kalahari sands; Dewitte et al. [2013]). The brightening is subdued in the northern half of the 

Kalahari sands. This could be an effect of spatial trends in soil moisture. The negative 

relationship between soil moisture and albedo across soil types is well described [Lobell & 

Asner, 2002]. It is likely that the revelation of wetter, darker soils has less of an effect on albedo 
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anomalies. This is supported by the fact that the highest average albedo anomalies following wet 

season fires (2.71 x 10-4 and 2.71 x 10-4 for the NH and SH, respectively), occur about 6 months 

after the burn (i.e. during the dry season). To the south of the Kalahari (i.e. the South African 

veld), the decreasing frequency of fire precludes us from drawing definitive conclusions about 

fire-induced albedo changes. The timing of brightening also shows differences from surrounding 

areas. The fastest brightening also occurs in the Kalahari sands, on average in 31 days after fire 

(Fig. 5.3). In the Northern Hemisphere brightening occurs after 107 days on average, compared 

to the 60 days for the Southern Hemisphere. 

This methodology represents an advancement over previous research for three reasons. 

First, this methodology addresses concerns raised about both temporal-only and spatial only 

comparisons. I account for both underlying differences between the burned pixels and reference 

pixels that might taint a purely spatial calculation and temporal factors such as drought that 

might affect a purely temporal calculation. Second, I do not assume the sign of the albedo 

anomaly will be either positive or negative. Previous research has typically assumed that 

darkening will be observed, and as such, some detection algorithms are modeled around finding 

the minimum albedo after fire (e.g. Gatebe et al. [2014], Dwinte et al. [2017]). Finally, I do not 

assume any set duration for the recovery of albedo after fire. Previous studies have focused on 

the immediate darkening that occurs after fire, and then measured the recovery to a baseline or 

assumed implicitly that meaningful albedo changes do not last longer than one year. Because of 

that, previous studies do not capture the extended brightening of which I have found convincing 

evidence across Africa. 
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Figure 5.3. Timing of first brightening following fire. Individual albedo time series are binned as in Figure 2 using a 

weighted average. The timing for the first observed brightening for these binned averages is depicted here. An 

outline of the Kalhari Sands is shown in fuchsia. 

 

Understanding the effect of fire on the overlying atmosphere through physical modeling 

is an active research area [e.g. Hernandez et al., 2015; De Sales et al., 2016; Chapter Three; De 

Sales et al., 2018]. The parameterization of fire in climate models is key to describing how burn 

scars modify regional climate and how this relationship may change under future fire regimes. 

This study contributes fundamental understanding to how the physical effects of fire should be 

parameterized for the most fire prone region on Earth. 
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Chapter Six 

Conclusions and Future Research 
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This dissertation advanced the states of knowledge of fire-climate interactions on 

multiple fronts. In Chapter Two, I demonstrated that strong seasonality in climate signal can 

greatly enhance the predictability of annual burnt area across the globe. This was done with 

simple, interpretable seasonality metrics that could be applicable beyond the field of fire science. 

Furthermore, this single, global model performed remarkably well across the different biomes on 

Earth. 

In Chapters Three through Five I developed the new concept of fire-induced rainfall 

suppression over seasonal timescales via land surface modification. First, I used satellite data to 

link observations of excessive dry season fire to subsequent reductions in wet season rainfall. 

This effect is estimated to be the strongest in the Kalahari region of southern Africa. Building on 

this finding, I employed a boundary layer model to investigate possible mechanisms of this 

observed suppression. The major finding was that increases in albedo after fire—or 

brightening—could potentially explain rainfall suppression. Finally, in Chapters Four and Five I 

used continental scale satellite data to demonstrate that there is overwhelming brightening after 

fire in the Kalahari. This provides strong evidence of brightening as a mechanistic explanation of 

rainfall suppression. However, while strong enough to drive a continental brightening effect, this 

has phenomenon not yet been explained. Finding the root causes will require a better 

understanding of the interplay between the immediate effect and extended recovery of vegetation 

and soil moisture and their respective albedos. Ground based measurements could be the key to 

understanding this why the Kalahari exhibits a uniquely strong effect. A necessary future 

research direction is to incorporate the evidence of brightening in fully coupled regional climate 

models. Recent studies have started this investigation, but a richer parameterization of fire-

induced albedo changes is still needed. These investigations are relevant on scientific and 
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societal levels because the land-surface changes due to fire are long-lasting and may affect 

precipitation for months. 

In addition to the knowledge gained, this dissertation represents advances in methodology 

that will be useful to future researchers. Firstly, in Chapter Two I developed a framework for 

calculating seasonality metrics over a general periodic signal. This framework is extensible to 

cyclical or seasonal patterns of arbitrary temporal resolution. One specific area of research where 

this could be useful is in the characterization of the seasonal cycle of fires in regions across the 

globe. The high seasonality of fire in many regions of the globe lends itself to a description using 

the seasonal metrics. This area of research could inform more accurate global yearly carbon 

accounting through a better understanding of the global fire cycle. Furthermore, these high-level 

metrics may help fire scientists establish baselines for shifting fire activity in a future, warmer, 

climate and detect yearly anomalies in the dryland carbon sink. 

The work presented in Chapter Four represents methodological advances on two fronts. 

The grouping of single pixels into spatially coherent fire objects and reference buffers presents 

advantages over pixel-centric approaches. I also presented a combined spatiotemporal anomaly 

computation that addresses the drawbacks of a purely spatial or temporal reference. In particular, 

this approach was used to reveal previously unreported findings of large scale brightening in 

southern Africa, a finding heretofore hidden from investigations using less sophisticated 

methodologies. Through the use of large scale satellite data and novel methodology, this 

dissertation provides a more holistic understanding of the role of fire in the Earth System. 
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Appendices A1 to A2 
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Appendix One  

A2.1 Statistical Modeling 

I fitted the GAM using the ‘mgcv’ package in R [Wood, 2006]. The model selection and 

assessment is largely based on ref. 33.  Across the study domain, PWS showed a positive mean-

variance relationship, violating the model assumption of constant variance in residuals. 

Additionally, the PWS shifted from highly right skewed in arid regions to an approximately 

symmetric distribution in wetter regions. I found that using a square root transformation of PWS 

with a normal distribution and identity link function resulted in appropriate model residuals 

(constant variance in residuals). Therefore, I used the square root transformation on the response 

variable for my model. My GAM was of the form: 

 

(1) PWS
1/2 ~ s(<PWS>, k) + te(FE, MAP, k) + te(FL, MAP, k) 

 

Where s is a univariate smooth, te is a bivariate smooth formed as the tensor product of two 

smooths, <PWS> is the temporal average of PWS for each pixel and k is a smoothness parameter. I 

used a thin plate regression spline smoother with shrinkage for all smooth terms. To prevent 

overfitting, I restricted k in each fire term to a low value and incrementally increased it until 

summary diagnostics indicated that the smoothing basis dimension was sufficient (i.e. k-index 

values were close to 1). Using this procedure, I selected k=4 for each tensor term. Additionally, I 

set the gamma term to 1.4 to reduce overfitting [Wood, 2006]. 

To assess model suitability, I fit a null model (M0) that excluded the two fire tensor terms 

in (1), I used the AIC to compare the model with fire as a predictor variable to a null model that 

only included a smooth of <PWS>. The AIC is a measure of model quality that takes into account 
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model fit and complexity. Here a lower value of AIC indicates a more parsimonious model. The 

AIC for the MF was lower than that of M0 (M0= 539611.2, MF=539120.3), which suggests that 

fire variables are relevant to explaining variance in rainfall. 

I note that the deviance explained, an analogue to the adjusted R2 for GAMs, differs little 

between each model (M0=65.6%, MF=65.7%) over the entire model domain. For this reason, MF 

is not likely to offer an improvement in predictive performance over M0. While other statistical 

techniques may perform better in this respect, they can lack the interpretability of the 

contribution of individual model terms and interactions that is afforded by GAMs. As my main 

goal was to describe the observed relationship between fire and subsequent rainfall, rather 

predict rainfall totals, I chose GAMs. Fig. 2A estimates the average rainfall ‘lost’ due to fire 

based on mean FE and FL for each pixel. The estimates presented in Fig 2A are calculated by 

subtracting model estimates of MF at average FE, and FL from estimates of MF at FE=0 and FL=0. 

In Fig. 2B, I show the values in Fig. 2A divided by <PWS>. 
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Appendix Two 

A2.1 Boundary Layer Growth Model 

A2.1.1 Model Details 

My modeling approach is adapted from McNaughton and Spriggs [1986]. In this model, the 

boundary layer is represented as a well-mixed layer with potential temperature θ and specific 

humidity q. Above the boundary layer the free-atmosphere profile of potential temperature (θFA) 

and specific humidity (qFA) changes linearly with height. The exact values of θFA and qFA are a 

function of height above the land surface, z. The undisturbed free atmosphere profiles are: 

(1) θFA(z) = γθ z +  θ0 

(2) qFA(z) =  γq z + q0, 

where γθ and γq are the slopes of the profiles, and θ0 and q0 the extrapolated intercepts at the z=0 

for potential temperature and specific humidity, respectively. I use the values presented in 

Lhomme and Elguero [1999] of γq=2.85 x 10-6 m-1, γθ=4.78 x 10-3 K m-1 which are based on a 

linear fit to a typical mid-latitude summer undisturbed free atmosphere profile. Then intercepts 

are uniquely determined for each day by extrapolating the initial (morning) boundary layer 

values of θ and q at the reanalysis-determined initial boundary layer height to z=0. Initial 

conditions are taken from reanalysis data at the time of model initialization. Boundary layer 

growth is promoted by sensible heat flux (H, units: W m-2) at the land surface. The change in 

height, h, of the boundary layer is expressed as: 

(3) 
𝑑ℎ

𝑑𝑡
=

𝐻

𝜌𝑐𝑝ℎ𝛾𝜃
, 

where ρ is the density of the air at the top of the boundary layer and cp is the specific heat 

capacity of dry air at constant pressure. Following Lhomme and Elguero [1999], these are taken 

to be constants with values 1.05 kg m-3 and 1005.7 J kg-1 K-1, respectively. The evolution of 
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specific humidity in the mixed layer is governed by the amount and characteristics of entrained 

free atmosphere air incorporated into the boundary layer: 

(4) 𝜌ℎ
𝑑𝑞

𝑑𝑡
= 𝐸 + 𝜌(𝑞𝐹𝐴 − 𝑞)

𝑑ℎ

𝑑𝑡
 

where E is the evaporation rate at the land surface (kg s-1 m-2) found by dividing latent heat flux 

(λE) by the latent heat of vaporization (λ). Likewise, changes in potential temperature can be 

expressed as: 

(5) 𝜌𝑐𝑝ℎ
𝑑𝜃

𝑑𝑡
= 𝐻 + 𝜌𝑐𝑝(𝜃𝐹𝐴 − 𝜃)

𝑑ℎ

𝑑𝑡
 

The only temporally variable parameters in the boundary layer growth model are H and E. For 

each day of reanalysis data, I start the simulation when H is consistently positive (daytime 

conditions) and run the simulation until H is no longer positive. The values of θ, q, and h are 

initialized from near surface reanalysis data at the beginning of each day. Equations (3-5) are 

solved explicitly with a small time-step (1 minute). Hourly modified flux data derived from 

reanalysis and used to drive this model (H and λE; see following section) are resampled to the 

simulation timescale using linear interpolation. For each latitudinal position along the latitudinal 

transect, the boundary layer growth model is run for all days during the months of November and 

February, 1980-2015. 

 

A2.1.2 Representing Fire in the Model 

 I represent fire in the model by artificially modifying the shortwave radiation budget and 

the partitioning between latent and sensible heat fluxes provided by the reanalysis data. I use the 

term simulation to refer to the group of model runs over all individual days in the reanalysis 

record for a given set of experimental variables. 
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A2.1.2.1 Albedo Modification 

 Fire tends to immediately darken the land surface, in some cases halving albedo 

[Beringer et al., 2003]. However, at longer time scales fire may result in an optically brighter 

land surface. Because of this uncertainty, I test both darkening and brightening in my 

experimental framework. The relevance of this choice is further explored in the Discussion 

section. I represent the change in albedo after fire as a fractional change, fα, so that the albedo 

value α that I use for a given simulation is: 

(6)  α = fα  αRA 

where αRA is the surface albedo in the MERRA-2 reanalysis data for the site. Values of fα less 

than and greater than 1 represent darkening and brightening of the land surface, respectively. The 

change in the shortwave energy budget due to this albedo change, ΔS, is given by the equation: 

(7)  ΔS = α Si -  αRA Si 

where Si is hourly downwelling shortwave radiation (W m-2; derived from RA). In this model, I 

assume that only the shortwave radiation budget is modified. After actual fires, generally there is 

an increase in land surface temperature, which presumably modifies the net long-wave radiation 

budget, but I do not consider that aspect in this study. This omission is not expected to be 

important; Beringer et al. [2003] found that despite halving of albedo after fire, the outgoing 

longwave radiation only increased by 10% after fire in an Australian savanna. With this 

assumption the proportional change in net radiation, p, is 

(8)  p = (ΔS + RRA) / RRA 

where RRA is hourly reanalysis net radiation. I assume that the changes in available energy result 

in proportional changes to the component heat fluxes at the surface:  

(9)  RN = p λERA + p HRA + p GRA 
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Where RN is the modified net radiation (=p RN) and λERA, HRA, and GRA are the hourly values of 

latent heat flux, sensible heat flux and ground heat flux taken from reanalysis data. The values of 

sensible and latent heat flux after albedo modification and associated shortwave radiation 

changes are given as 

(10)  H α =  p HRA 

(11)  λEα = p λERA 

respectively. 

 

A2.1.2.2 Latent Heat Flux Changes 

 In addition to modifying the radiative properties of the land surface, fire damages and 

removes plants. By destroying transpiring leaves, ecosystem latent heat flux may decline to one 

quarter of undisturbed values, resulting in significantly increased sensible heat fluxes [Beringer 

et al., 2003]. Here I consider a fractional change in latent heat flux, fλE, due to fire. I maintain the 

assumption that ground heat flux is a constant proportion of RN. Therefore, changes to λEα 

translate to proportional changes in Hα. The final values of H and λE used to drive simulations 

are: 

(12)  H =  H α + ΔλEα 

(13)  λE =  λEα -  ΔλEα 

where the value ΔλEα =  fλE λEα represents the component of latent heat flux that is converted 

into sensible heat flux. 

 To summarize, the main experimental variables in this study are fα and fλE, which 

represent fractional changes in albedo and latent heat flux, respectively. In this study, I consider 
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how changing these values results in boundary layer differences as compared to the control case 

in which fα and fλE are equal to 1 (and therefore H = HRA and λE = λERA). 

 

A2.1.3. LCL Calculation 

The height of the LCL, hLCL, is calculated by first determining the temperature of the LCL 

[Bolton, 1980]: 

 𝑇𝐿𝐶𝐿 =
2840

3.5𝑙𝑛(𝑇)−𝑙𝑛(𝑒)−4.805
 

where T (K) is the near surface air temperature calculated from θ and PS, and e (mbar) is the near 

surface vapor pressure calculated from q and T.  The pressure at the LCL, PLCL (Pa), is calculated 

as: 

 𝑃𝐿𝐶𝐿 = 𝑃𝑆 (
𝑇𝐿𝐶𝐿

𝑇
)
3.5

. 

Where PS (Pa) is the hourly surface pressure from the reanalysis dataset. Finally, the height of 

the LCL, hLCL (m) is found using 

 ℎ𝐿𝐶𝐿 =
𝑅𝑇

𝑀𝑔
𝑙𝑛 (

𝑃𝑆

𝑃𝐿𝐶𝐿
). 

Where R is the universal gas constant (8.314 J mol-1 K-1), M is the molecular weight of dry air 

(0.029 kg mol-1) and g is acceleration due to gravity (9.8 m s-2). At a given time-step LCL is 

determined by the temperature and moisture content of the mixed layer. To investigate the 

propensity of convective rainfall, I compute LCL heights at the 1-hour timestep of the original 

reanalysis data, noting when the condition h > hLCL is met during any time step. I report how 

varying the parameters fα and fλE contribute to differences in the average rate of crossings across 

the whole record. 
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A2.2. Details on the relationship between crossing statistics and rainfall characteristics 

 I use the bias-corrected rainfall data that is provided with MERRA to characterize how 

rainfall characteristics vary with the number of midday crossing hours at four sites along the 

Kalahari Transect. Afternoon rainfall is a proxy of convective rainfall due to common convective 

afternoon storms that dominate these regions. Afternoon rainfall has been successfully applied to 

diagnosing land-atmosphere interactions in previous studies [Guillod et al., 2015]. The corrected 

MERRA-2 rainfall product is a combination of reanalysis generated rainfall and observational 

datasets. Further details on the corrected MERRA-2 precipitation can be found in Reichle et al. 

[2017]. I investigate two rainfall characteristics: (1) the total afternoon rainfall amount and (2) 

maximum rate. In each case the independent variable is the duration (in hours) of for which hLCL 

exceeds h during midday (1000 LST to 1600 LST). The conditional distributions of these rainfall 

characteristics are presented in Fig. 4.4 and Fig. 4.5, respectively. 

 

A2.2. Details on the calculation of the spatial albedo anomaly 

 In addition to the temporal anomalies outlined in the main text (Section 4.3.5 Fire and 

Albedo Satellite Data), I calculate a spatial albedo anomaly that highlights the spatial differences 

in November albedo between burnt and unburnt regions. This addresses the issue of whether the 

temporal anomalies are due to and increases our confidence that brightening is not an artifact of 

spurious climate correlations. 

 Using the same spatial domain, study period and 500 m MODIS fire and albedo satellite 

products as the analysis presented in Section 2.5, I calculate, for each pixel and year, whether a 

pixel has burned in the dry season (April-October) and the average November albedo anomaly. 

For each year of record, I chunk the domain into 0.25 degree latitude/longitude blocks. I 
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calculate the spatial albedo anomaly for each pixel as the November albedo in each burnt pixel 

minus the average November albedo of unburnt pixels in the chunk for the same year. These 

anomalies are normalized by dividing by the average albedo of the chunk in the same year from 

which they were sampled and aggregated across all years. These distributions, pooled into bins 

based on each chunk's MAP and expressed as a percentage change, are presented in Fig.4.9. 
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