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Abstract 

 

 New technology in motion sensing has allowed for an advance in gait analysis 

and cerebral palsy diagnostics. Body sensors networks have emerged as a promising tool 

for gait analysis and activity recognition, and orthotic treatment is prevalent among those 

with cerebral palsy. In this work, a framework for activity classification using inertial 

sensors mounted on ankle foot orthoses (AFOs) is presented. A hybrid decision tree-

nearest neighbor algorithm classifies activities and postures using subject-specific 

training. To evaluate sensitivities, eight volunteer subjects wore modified bilateral AFOs 

with shank and foot mounted triaxial accelerometers and gyroscopes. The AFOs were 

fitted with hardware to induce different gait perturbations: free rotation of the ankle, 

plantarflexion or “equinus” gait, and locked ankle joint. For each condition, the subject 

performed eight gait activities at varied slopes and standing, sitting, and lying postures.  

Using data from the test protocols, the classification framework was performed to assess 

training data and number of nearest neighbor effects on classification sensitivity. These 

tests showed high sensitivity levels even with training data which did not outsize the test 

data, and that the highest sensitivities were obtained using only one nearest neighbor for 

comparison. Using optimal training data size and one nearest neighbor methods, forced 

activity classification was performed using the classification framework to assess 

sensitivity results for each activity. The results from these tests indicated high levels of 

sensitivity in recognizing predefined gait events for all perturbed conditions, and that 

semi-natural movement could be classified to some degree using annotated, predefined 
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movement for training. Subsequently, feature selection using cluster analysis was 

explored, indicating that feature reduction based on significance thresholds improved 

results for semi-natural activity classification. Finally, a declassification metric was 

examined, and results showed increased specificity results using declassification. Our 

results indicate that AFOs are a suitable sensor platform for future research in activity 

classification and gait monitoring in AFO users with perturbed gait using limited training 

data. 
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1.0 Introduction: Diagnosis, Assessment, and Treatment of Cerebral 

Palsy 

 

1.1 Cerebral Palsy and Treatment Options 

Individuals with walking disabilities due to neuromuscular disorders such as 

cerebral palsy have recently benefitted from the development of new medical 

technologies which improve diagnostic capability. In particular, motion capture systems 

have provided clinicians with a diagnostic tool to quantitatively assess gait abnormalities 

in these individuals, and prescribe treatment in the form of surgical intervention, orthotic 

use, and/or physical therapy.  

Cerebral palsy (CP) is a non-progressive disorder which affects movement and 

posture due to abnormal development or trauma of the motor control centers of the 

immature brain1. The disorder is characterized by a loss of gross motor function due to 

tightness of the muscles, muscle spasticity, and involuntary movement. This loss of 

motor control leads to gait abnormality. The presentation of gait abnormalities among 

those with CP is remarkably heterogeneous, however, and abnormalities characterized by 

the disorder are not limited to losses in motor function1. The United Cerebral Palsy 

Research and Education Foundation estimates between 1.5-2.0 million children and 

adults in the United States have CP, and around 11,000 are newly diagnosed each year2. 

Many with CP deal with spasticity, an increase in the muscular stretch reflex 

which creates muscle tightness. Spasticity causes abnormalities in muscle tone, loss of 

coordination and balance, and impairment of selective motor control. Conservative 
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treatments include physical therapy, occupational therapy, oral medication, and orthoses. 

These may be accompanied by invasive treatments such botulinum neurotoxin injection 

or surgeries such as orthopaedic surgery, intrathecal baclofen administration, or selective 

dorsal rhizotomy3. Different techniques have varied in their levels of success, though 

orthoses are generally regarded as successful and non-invasive treatment for those with 

spastic diplegia4–7.  

 

1.2 Motion Capture for Assessing CP Gait 

Children with CP have benefitted from recent developments in medical 

technology as diagnostic approaches and interventions can be specifically tailored to 

individuals with unique disabilities. Treatments for spastic CP have been aimed at 

improving functionality while preventing the development of secondary problems such as 

contracture and bony deformity. Due to the heterogeneity of the disorder, however, 

treatment modalities must be considered through careful diagnostic methods8.  

Currently, most clinical analysis of CP gait is accomplished by trained observers 

or physical therapists in a laboratory with optical motion-capture equipment. Motion 

capture systems provide physicians, therapists, and researchers a detailed description of a 

patient’s gait kinematics including joint angles and range of motion, center of mass 

displacement, stride length, and cadence. The inclusion of force plates and EMG can 

provide kinetic measures of gait through the analysis of ground reaction forces. Though 

they provide clinicians with detailed information of patients’ condition, infrared camera 

systems such as those made by Vicon® can cost hundreds of thousands of dollars and are 
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generally not portable. They do not offer a long term assessment of the patient, but 

instead provide only a small sample of gait events per patient visit. Additionally, clinical 

analysis within a laboratory environment can restrict a patient’s ability to reproduce a 

typical gait pattern over varied terrain. Children can be especially non-compliant in 

unfamiliar settings.  

The difficulties that arise during motion capture analysis of CP gait led 

researchers at the Motion Analysis and Motor Performance Laboratory to assess the 

feasibility of employing mobile activity monitoring systems for studying CP gait. A 

mobile activity monitoring system using non-interfering, wireless, body-worn sensors 

could provide clinicians with a reliable long-term method for monitoring physical activity 

and gait patterns in patients outside of the clinic and give a realistic account of the 

patient’s typical activity. Like optical motion capture systems, this system would still 

allow doctors to assess the results of intervention and therapy. 

 

1.3 Ankle-Foot Orthoses in CP Treatment 

Ankle-foot orthoses (AFOs) are frequently prescribed to those with spastic CP to 

improve motor function and stability and prevent the development of contractures. AFOs 

discourage abnormal gait patterns such as ankle plantarflexion or “equinus” gait and 

improve foot clearance during swing phase. Because they range in functional effect and 

can be custom fitted to patients, they are ideal for treating a variety of abnormalities 

caused by CP. Their use amongst ambulatory CP patients is widespread; over 50% of 

children with CP are prescribed AFOs9. Because they are a very common treatment for 
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CP, AFOs can provide a suitable platform for integrating treatment and diagnostics, 

providing feedback on functional improvement to the clinician.  

This research evaluates the use of AFOs as a sensor mounting platform to be used 

for activity monitoring. The project aims to develop an activity classification routine 

capable of identifying periods of activity and posture in AFO users through the use of 

discreet sensors mounted on the AFO. This research could provide a significant 

improvement in out-of-laboratory analysis and diagnostics of gait in those with CP, 

reducing the cost of analysis and improving patient quality of life. 

 

1.4 Overview 

 Following this introduction, Chapter 2 provides background information on gait 

biomechanics, gait pathology in cerebral palsy, and activity classification using inertial 

measurement units. Chapter 3 describes the framework for activity classification using 

nearest neighbor methods, including feature reduction from raw lower limb kinematic 

data acquired through TEMPO sensors, training data selection effects, forced 

classification, feature selection effects, declassification metrics, and sub-classification 

clustering. Chapter 4 provides a summary of the research with conclusions about the 

impact of this work and recommendations for future research. 
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2.0 Background: Gait Biomechanics in Cerebral Palsy and Activity 

Classification using Inertial Measurement Units 

 

2.1 Gait Biomechanics 

 The activity classification routine discussed in this thesis work is designed to 

examine kinematic features from the movement of the user. The routine will use 

quantitative characteristics of gait and postures to classify the user’s activity. This section 

presents information on the biomechanics of human gait, the gait pathologies that 

commonly present in CP and their effect on gait biomechanics, and how AFOs contribute 

to reduce the effect of these pathologies. 

2.1.1 The Gait Cycle 

 The “gait cycle” is a term which describes the repetitive mechanical processes of 

the lower body which propel the body center of mass (COM) forward during walking or 

running. Because walking is the most efficient form of locomotion on level terrain, most 

humans have very similar gait patterns. The gait cycle encompasses a full stride, or a 

single step by both the left and right limbs, and consists of phases of double support, 

stance, and swing. Figure 1 shows a full human gait cycle. Double support phases are 

defined by periods when both feet contact the ground. The stance phase for a limb is 

defined by the period when the foot touches the ground. The stance phase for each limb 

encompasses both the double support phase and the swing phase of the opposite limb. 

Swing phase for a limb is defined by the period when the foot is not in contact with the 

ground, and it coincides entirely with the stance phase of the opposite limb. Most 
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clinicians choose the beginning of the gait cycle to be defined by foot contact of the 

forward limb. In this discussion, the initial forward limb will be the right leg. At this 

point the rearward (left) limb will still be in contact with the ground, so the gait cycle 

begins in an initial double support phase. During the initial double support phase, the 

anchoring of the right leg results in a deceleration of the COM, with most of the weight 

of the body shifting to the right leg10. As the weight shifts forward, the left leg supports 

less and less weight, and the left ankle alternates from dorsiflexion to plantarflexion. This 

plantarflexion of the rear foot provides the majority of the propulsive power in the gait 

cycle.  

Figure 1. The complete human gait cycle10 

 The initial double support phase ends when the left foot loses contact with the 

ground. The swing phase of the left leg follows the initial double support phase. As the 

left foot lifts from the ground, the left knee flexes and the COM is raised as the 

supporting leg becomes more vertical. The lift off of the left leg initiates the single 
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support phase for the right leg and the swing phase for the left leg. Once the left leg has 

swung through and contacts the ground the second, or terminal, double support phase 

begins. This phase is identical to the initial double support phase, but the limb mechanics 

are switched to the opposite limbs. The COM is again decelerated, this time by the 

anchoring of the left leg. Weight shifts forward as the right ankle switches from 

dorsiflexion to plantarflexion, again providing propulsive power. This phase ends when 

the right foot loses contact with the ground and begins its swing phase. 

 The swing phase of the right leg is identical to the swing phase of the left leg. The 

right knee flexes as the COM is raised through pelvic tilt and extension of the left knee to 

provide clearance for the right foot to swing forward. When the right foot leaves the 

ground, the single support phase for the left leg is initiated along with the swing phase for 

the right foot. When the right foot makes contact with the ground following swing phase, 

the gait cycle is completed. 

2.1.2 Gait Abnormalities in CP and the Effects of AFO Use 

 Although the diagnosis of CP blankets a range of gait abnormalities, there are a 

few that are most common, especially among candidates for AFO prescription. A study 

by Wren et al. compares the prevalence of specific abnormalities in subjects with CP11. 

61% of all CP patients in the study exhibited equinus gait, a condition which involves 

excessive plantarflexion of the ankle due to contraction of the posterior calf muscles. CP 

patients with equinus gait walk on their toes, with minimal or no heel contact with the 

ground. This presents several problems, including loss of power during push-off, 

instability during stance, and an overall loss of walking efficiency12. Another abnormality 
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in CP is crouch gait. In the Wren et al. study, 69% of subjects exhibited crouch gait, a 

condition defined by excessive knee flexion during the gait cycle. This excessive flexion 

can cause weakness in the ankle due to excessive dorsiflexion and may lead to secondary 

deformities12. In both equinus and crouch gait conditions, patients are typically 

prescribed AFOs to provide support to the ankle and foot to preserve the lever forces 

required to propel the COM forward during walking12. 

 

2.2 Accelerometry and Inertial Measurement Units 

 Activity recognition systems using body-worn sensors have been shown to allow 

for the detection and classification of a wide range of activities, in both supervised and 

unsupervised settings13–19. Most of these studies tested healthy subjects with normal gait 

cycles, but a few have used subjects with atypical gait. Classification schemes have been 

developed for the elderly13,16,20, trans-tibial amputees21, spine injury patients22,23, those 

with neurological disorders such as Parkinson’s24,25, multiple sclerosis26, and CP27,28, or 

those with stimulation-assisted walking25,29. All of these studies used some combination 

of accelerometers and gyroscopes for activity classification or movement monitoring. 

This section describes the use of IMUs, including TEMPO 3 sensors, to acquire 

kinematic data. 

2.2.1 Accelerometers and Gyroscopes 

 Inertial measurement units (IMUs) have typically been composed of 

accelerometers and/or gyroscopes. When coupled, these sensors provide measures of 
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angular velocity and linear acceleration with as many as 6 degrees of freedom. IMUs can 

provide an improvement over traditional laboratory motion capture equipment, both for 

their mobility and low cost. They provide portable motion tracking at a minute fraction of 

the cost of motion capture equipment. They can be mounted discreetly within existing 

products or devices, and in some case provide real time feedback. 

Despite these improvements, IMUs do introduce some challenges. 

Accelerometers and gyroscopes are sensitive to noise and drift errors. These errors can 

present significant issues when extracting gait features from the raw data, and they must 

be accounted for through filtering or data fusion techniques. For instance, we may desire 

to determine joint angle from a pair of IMUs. This would require integration of the 

gyroscope angular velocity signal. Even if the drift error in the gyroscope is small, it will 

be compounded through integration. So while IMUs appear to be the optimal means of 

mobile motion tracking, there are significant challenges to overcome. 

2.2.2 TEMPO 3 Inertial Measurement Units 

 TEMPO (Technology-Enabled Medical Precision Observation) 3.1 and 3.2 are 

custom body sensor platforms designed and built by researchers at the University of 

Virginia’s Center for Wireless Health. TEMPO body sensor networks (BSNs) incorporate 

sensors with tri-axis acceleromery and tri-axis gyroscopy for 6 degrees of freedom in the 

form factor of a wristwatch to enable kinematic data collection. TEMPO BSNs are 

attractive for use with AFOs because they are entirely wireless, capable of Bluetooth real-

time data receiving (TEMPO 3.1), as well as long-term Flash memory storage (TEMPO 

3.2f). Their small form factor allows them to be discreetly mounted within modified 
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AFOs with no discomfort to the wearer. TEMPO 3.1 sensors incorporate a mixed-signal 

processor (TI MSP430F1611) to facilitate digital signal processing and a Bluetooth 2.0 

transceiver (Roving Networks RN-41) for wireless communication to a PC or smart 

phone. Linear accelerations are captured with a Freescale MMA7261 three-axis, 

monolithic, micro-machined accelerometer. Figure 2 shows a TEMPO 3.1 sensor 

strapped to the subject ankle, and demonstrates the component axes of the accelerometer 

and gyroscope signals. 

 
Figure 2. TEMPO 3.1 sensor30 

The accelerometer features selectable sensitivity between ±2.5 g and ±10 g to 

accommodate a wide range of human movement applications. Two micro-machined 

gyroscopes, the InvenSense IDG-300 and Analog Devices ADXRS610, capture triaxial 

angular velocity to at least ±300 degrees per second. Sensor outputs are conditioned by 

single-pole low-pass filters with 60 Hz cutoff frequencies. The six signals are captured by 

12-bit analog to digital converter (ADC) channels. Conditioned signals are sampled by 
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the ADC at 128 Hz – a bandwidth far exceeding the characteristic response of human 

movement. The MSP430 processor operates at 4 MHz by a digitally-controlled oscillator 

synchronized to a low-power 32 kHz crystal. The node is supplied by a rechargeable 3.7 

V, 250 mAh lithium-ion coin cell battery. For a complete introduction to TEMPO 3.1 

BSNs, see the seminal work by Barth et al31. TEMPO 3.2f uses the same sensors and 

signal processes as TEMPO 3.1 but allows long-term data storage supplied via Flash 

memory.  

TEMPO BSNs have been previously used in assessing human motion and gait 

pathology. TEMPO sensors have been used for clinical assessment of tremor in 

individuals with Parkinson’s disease32, differentiating normal and “shuffling” gait33, fall 

detection34, and spatio-temporal gait feature extraction30,35. These studies have 

demonstrated success in using TEMPO sensors to quantify and classify normal and 

pathological movement and gait, and provide additional support to the concept of AFO 

sensor mounting as a means of quantifying and classifying gait in AFO users such as 

children with CP.  

 

2.3 Data Mining and Activity Classification 

Most activity recognition schemes using IMUs involve comparing periods of data 

in which the activity is unknown to a set of training data. Algorithms are trained by 

selecting representative periods of activity data, usually collected by a supervisor, with 

annotated periods of known activities or postures such as walking, running, sitting or 

standing, etc. For these known activity periods, a set of kinematic features are reduced 
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from the sensor data. Accelerometers and gyroscopes can provide a number of features 

such as orientation components, velocities, acceleration magnitudes and directions, and 

FFT components. Feature sets of future test data collections are then compared to the 

training data using data mining techniques, and periods of activity and posture are 

identified. The studies cited above have used several different classification algorithms. 

Promising statistical techniques include hierarchical decision trees14,16, Gaussian mixture 

models13, hidden Markov models36,37, support vector machines38,39, nearest neighbor 

models14,40, and artificial neural networks41, as well as hybrid models incorporating 

multiple techniques15. This section describes the advantages and disadvantages of several 

common data mining techniques used in activity classification and outlines the technique 

used for this work.  

2.3.1 Hierarchical Decision Trees 

A decision tree is a simple form of classification which involves a series, or “tree” 

of classifications, in which an unknown period of data is categorized into increasingly 

specific subsets based on threshold values of a particular feature. For instance, the first 

node of an activity classification decision tree may separate periods of human activity 

data into either a static or active subset based on the average magnitude of acceleration of 

the shank. If the mean acceleration magnitude is above a certain threshold value, the 

period will be classified as active; otherwise it will be classified as static. 

Decision trees can be constructed either manually, based on human intuition or 

heuristic measures, or automatically by examining training data to determinine 

appropriate features for decision making. Popular automatic decision tree algorithms 
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include ID342, C4.543, and CART44. Figure 3 shows the structure of a custom decision 

tree. Decision trees have several advantages. They are intuitive and simple to understand 

and perform well on large sets of data with high computational efficiency. The 

disadvantage is that manually constructed trees may not choose optimal  decision nodes 

or thresholds, while automatically constructed trees may overcomplicate decisions and 

decrease computational efficiency or accuracy. 

 
Figure 3. Example of a custom decision tree for activity classification18 

 

Decision trees also tend to overclassify, that is, all periods of movement data 

introduced to the tree will be classified as one of the available decision subsets, even if 

the period of data does not resemble any of the final subsets. For instance, if the available 

subsets within a tree were all gait activities such as walking, running, and stair climbing, 
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and a period of static posture such as sitting or lying were introduced to the tree, it must 

be classified as one of the gait activities. To get around this, many advanced decision tree 

algorithms include the option to create new decision “branches.”  

2.3.2 Gaussian Mixture Models 

 Gaussian mixture models (GMMs) are a form of classification using probability 

density functions which have gained popularity in speech recognition algorithms. These 

models assume that each observation, or feature, within a subset follows a Gaussian 

distribution. In activity classification, GMMs assign classifications by appropriately 

examining the features of an unknown period of activity, and determining for each 

training subset the probability that the unknown period falls within that subset. The 

unknown period is assigned to the subset for which it has the highest probability. GMMs 

have several advantages. The probability distributions provide accurate classification by 

differentiating distinct peaks between clusters, assuming the training clusters are “tight,” 

and the semi-parametric nature allows gaps from sparse training data to be filled45. In 

addition, outliers can be easily identified. Unlike decision trees, if the probability for any 

subset does not meet a certain threshold, the unknown period can be defined simply as an 

outlier, or undefined activity. These models assume, however that observations follow 

Gaussian distributions. Features must be chosen carefully to ensure that this assumption 

is appropriate. In addition, GMMs are not as computationally efficient as decision trees, 

since a new probability density must be calculated for each data point.  
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2.3.3 Hidden Markov Models 

 Like GMMs, Hidden Markov models (HMMs) were popularized by their use in 

speech recognition algorithms. HMMs are essentially a fusion of Markov chains and 

mixture models. HMMs are advanced mixture models; they make classifications based on 

the given “state” of observation probability distributions. Figure 4 demonstrates the 

structure of the HMM. 

 
Figure 4. A Hidden Markov model of 5 states, with aij representing transition 

probabilities between states46. 
  

Whereas in GMMs there is only one “state,” a Gaussian distribution, HMMs have 

multiple states, where for each new data point there may be a transition between states 

depending on the transition probability distribution between the states (the Markov 

chain)47. In activity classification, HMMs provide a distinct advantage over GMMs. One 

of the problems with GMMs is that they do not incorporate transition probabilities 
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between several states. For instance, if a subject is riding an elevator, it is highly likely 

that when the elevator stops and the doors open, the subject will begin walking. HMMs 

account for this transition probability. This helps to smooth continuous activity data by 

making reasonable assumptions about the subjects future states based on past states, or 

vice versa. The issue with HMMs is that they are particularly computationally expensive 

when compared to other routines, given that they require multiple probability densities 

depending on the state, or activity, as well as probability densities for transitioning 

between states. Increasing the number of identifiable activities will significantly increase 

the computational cost.  

2.3.4 k-Nearest Neighbor Models 

 k-Nearest neighbor (kNN) models provide a simple, intuitive machine learning 

technique for activity classification. A set of observations, or features, are selected to 

represent each period of activity. Periods of defined activity are used to train the model, 

and the features of the training data occupy a feature space. kNN models classify an 

unknown activity period by calculating its distance within the feature space from the 

known activity periods of the training data, and assigning it to the class of its “k” nearest 

neighbors. A value of k =1 would use only the nearest neighbor, while a value of k = 5 

would consider the 5 nearest neighbors. The distances may be calculated by a variety of 

metrics, including Euclidean, standardized Euclidean, and Chebychev distances. Figure 5 

illustrates kNN classification. 

kNN models can be highly accurate when compared to other routines14, and their 

biggest advantage is simplicity. Because they require a distance calculation for each point 
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in the feature space however, they can be computationally expensive, especially as the 

amount of training data increases.  

 
Figure 5. A k = 1 NN model. The test data point is assigned to the class of its nearest 

neighbor. 
 

2.3.5 Artificial Neural Networks 

   Artificial neural networks (ANNs) were developed to mathematically model the 

processes of the human nervous system. The human brain is highly capable of instantly 

recognizing types of activity, even with limited information. The ANNs behave by 

simulating the interconnection of neurons in the brain. ANNs consist of three neuron 

layers: input, hidden, and output neurons. They generally use a feed-forward approach, 

and connection between an artificial neuron is given a threshold value for “firing” that 

neuron. This value is determined from the model functions defining the relationships 

between each of the neurons. Figure 6 shows the basic decision structure of the ANN. 
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Figure 6. Multilayered artificial neural network48. 

 

 What makes ANNs attractive is their ability to engage in unsupervised learning. 

They seek the most efficient path between layers to maximize numerical reward. In the 

case of activity classification, this allows unsupervised use without previous definition of 

activity classes. The classes, however, must at some point be labeled in order to provide a 

descriptive classification. 

 

2.4 Selection of Data Mining Technique for This Work 

For this work, we used a hybrid technique consisting of a 6-level “decision” tree 

and kNN models for activity classification. When choosing from available models, we 

considered that the goals of this research were to provide a simple and efficient means 

which gave the most comprehensive view of subject activity with only shank and foot 

kinematic features, and to do so with minimal subject-specific training data. Figure 7 

shows a schematic flowchart of the framework process. 
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Figure 7. Classification Structure. Diamonds represent kNN routines, ovals represent 

intermediate classifications, and rectangles represent final classifications. 

The framework was designed with kNN models for several reasons. The clearest 

advantage to using kNN models is their simplicity to implement and program. The bulk 

of the classification framework was developed in Matlab®, and the software includes a 

statistic toolbox with kNN classifiers which are easy to modify and incorporate into a 

larger classification structure.  

In this framework, the nearest neighbor classification replaced the traditional 

threshold based classifications at each level of the decision tree. This provided 

comprehensive classification while maintaining the tree structure. As discussed in 

Section 2.3.4, kNN models are intuitive and do not require complex training routines as 
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those that may be required for GMMs, HMMs, or ANNs. Additionally, classification 

routines using kNN have been shown to be equally or more accurate than their more 

complex counterparts14,49. 

The custom decision tree provides the advantage of classifying at several levels. 

For instance, at the first level, a period of data will be classified as active or static. Even 

with this data alone, a measure of activity level in the user can be determined. The routine 

could also classify periods of walking even if it is incapable of classifying the grade. If 

the framework consisted of only one level of kNN classification, no intermediate 

information would be available. By designing the framework with classification levels, 

we hoped to provide a picture of the user’s activity even where complete classifications 

could not be made.  

The goal of this research was not to develop a complex, novel data mining 

technique. Rather, we focused on implementing simple systems which allowed us to 

assess the efficacy of AFO-mounted TEMPO IMUs in activity classification. Nearest 

neighbor models within a decision tree structure provided the best combination of 

simplicity, adaptability, and accuracy. They allowed us to proficiently accomplish the 

goal of classifying activity using shank and foot kinematics from perturbed, AFO gait.  
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3.0 Activity Classification of Healthy Subjects Wearing Test AFOs 

 The overarching purpose of this work is to assess the use of AFOs as a TEMPO 

sensor mounting platform for the means of classifying long-term activity in AFO users. 

This initial study examined healthy subjects wearing AFOs capable of perturbing their 

gait in conditions similar to those found in individuals with CP. The primary goal of this 

initial study was to determine an accurate means for activity classification using only 

shank and foot kinematic data as would be available from AFO mounted sensors. The 

secondary goal of the study was to assess how perturbations in gait affect activity 

classification, and make a recommendation for future studies which will seek to classify 

activity in children with CP and assess spatio-temporal gait parameters using IMU data. 

This chapter examines the methods and results of this work, bearing in mind the aims of 

the study in assessing the efficacy of AFO-mounted IMUs for activity classification. 

 

3.1 Custom AFOs Modified to Induce Gait Perturbation 

  This study used the modified AFOs designed for a previous study at the UVa 

Motion Analysis and Motor Performance Laboratory. For a complete description of this 

study, refer to “Center of Mass Motion and the Effects of Ankle Bracing on Metabolic 

Cost during Submaximal Walking Trials” by Herndon et al.50. This study examined the 

relationship between metabolic expenditures and vertical center of mass excursion in 

healthy adults who experienced perturbed gait via the use of the custom AFOs.  
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 The custom AFOs used in the Herndon study and the present study were designed 

in order to evaluate the reduction in ankle power as is caused by excessive plantarflexion 

or ankle stiffness. The AFOs were manufactured with a hinge at the ankle joint, which 

when uninhibited allowed up to 30° rotation in either plantar- or dorsiflexion, enough to 

accommodate the normal range of motion during walking. The hinge was equipped with 

screws which could set the joint into a locked position at a neutral state, that is, a 90° 

ankle angle which held the line of the shank orthogonal to the line of the foot.  The AFO 

was also equipped with loops on the posterior of the AFO for mounting springs. To 

imitate equinus gait as found in many children with CP, steel springs could be attached 

via the loops to connect the posterior of the shank with the posterior of the foot-plate, 

forcing the wearer into a state of plantarflexion and resisting dorsiflexion moments. 

These AFOs enabled the researchers to assess both the primary and secondary 

goals of the study, serving as TEMPO mounting platforms and inducing perturbations of 

gait similar as those which may be found in individuals with CP. Indeed, Herndon et al. 

showed the AFO perturbations did affect the gait dynamics of the user, as shown in 

Figure 8. The results indicate significant increases in the metabolic cost and vertical 

center of mass displacement during walking at multiple speeds for the conditions when 

compared to walking wearing only shoes, with the most significant increases being found 

in the equinus gait condition50. The increases in vertical center of mass displacement and 

decrease in early peak ankle moment found by Herndon et al. for the equinus condition 

mirror results from past experiments examining those with actual pathological equinus 

gait from CP pathology51. 
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Figure 8. Results of Herndon et al. (A) shows an increases in net O2 cost of braced and 

perturbed walking, while (B) shows increases in vertical center of mass excursion. 
 
 
 
3.2 Activity Test Protocol 

For the initial study, eight (8) healthy, college-aged student volunteers (7 male, 1 

female, weight 165.4 ± 11.8 lbs, height 71.4 ± 2.5 in) were recruited to participate in a 

data collection session to acquire shank and foot kinematic data for a set of gait activities 

and postures. Each of the subjects was fitted with the test AFOs described above and 

carried out an activity protocol under the three induced conditions: Free, Locked and 

Equinus. Free allowed free rotation of the ankle hinge up to ±30°, Locked set the ankle 

joint at the neutral position, and Equinus used the posterior spring attachments to force 
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the ankle into 30° plantarflexion and resist dorsiflexion moments. Using tight-fitting 

Velcro®, TEMPO 3.1 sensors were attached to the lateral side of each AFO, about 10 cm 

inferior to the knee, and to the top of each shoe, about 15 cm anterior to the malleoli. The 

sensors were aligned on the shank such that the X-plane roughly corresponded to the 

frontal plane of the body, the Y-plane to the transverse plane, and the Z-plane to the 

sagittal plane. The sensors were aligned on the foot so that the X-plane roughly 

corresponded to the sagittal plane, the Y-plane to the frontal plane, and the Z-plane to the 

transverse plane. Subjects were also fitted with a set of fifteen lower body reflective 

markers to allow the collection of kinematic motion data via a Vicon® 8-camera motion 

capture system. Figure 9 pictures a subject wearing the AFOs with TEMPO 3.1 sensors 

and Vicon® markers attached, and the necessary hardware placed to induce the gait 

perturbations. Video and Vicon® data were used to create ground truth descriptions of 

the activity collection protocols as well as validate feature reduction from kinematic data 

collected via the TEMPO 3.1 sensors. 

 Under each gait condition, the subjects performed, in pseudo-random order, the 

following activities: walking (4 km/hr) and running (7 km/hr) on a Biodex® treadmill at 

a level grade (0%), decline (-15%), and incline (15%), overground level walking, walking 

up and down a flight of four wooden stairs, sitting on a stool, standing, and lying down 

on a foam pad. During the activity protocols, the researchers collected video from two 

cameras set orthogonally to view the entire lab space. All subjects signed a University of 

Virginia IRB approved consent form. 
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Figure 9. Test AFOs a) [1] and [2] indicate the shank and foot mounted TEMPO sensors, 
respectively. b) [3] indicates the shank-foot spring arrangement. c) 4 indicates the ankle 

hinge, which could be locked via the two small screws seen just above the hinge 

Kinematic data from the TEMPO 3.1 accelerometers and gyroscopes was 

collected at 128 Hz on a Bluetooth-equipped PC and annotated using a graphic interface 

developed in Labview, while kinematic Vicon® data and video were collected at 60 Hz 

using Vicon® Workstation software. Figure 10 presents a sample of the TEMPO 3.1 data 

from the shank and foot during a transition from walking to running. Each period of 

defined activity or posture was annotated with start and stop timestamps in order to 

synchronize TEMPO 3.1 data with Vicon® and video data. Timestamps provided a 

means of developing ground truth descriptions throughout the entirety of each trial. In 

between annotated periods, the subject moved freely within the laboratory while 

researchers prepared equipment for the next activity (treadmill, stairs, etc).  

2

1

3

4
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Figure 10. Sample Data from Walking-Running Transition. Axis labels represent sensor 

axes as shown in Figure 2. 

For five of the subjects, video was also collected continuously throughout each 

trial. This gave the ability to test the algorithm’s sensitivity when the subject moved 

about freely, demonstrating framework performance when analyzing semi-natural 

movement of greater than a few minutes. In the description of this thesis work, all data 

windows which contain predefined activity will be termed “annotated,” while all data 

windows which contain semi-natural activity outside of the annotated periods will be 

termed “non-annotated.” All three AFO conditions from seven subjects were tested, 

excluding the Equinus condition for two subjects, giving a total of 19 different gait 

presentations. The data from the eighth subject and the Equinus from two subjects were 

unusable due to Bluetooth miscommunication and/or TEMPO 3.1 malfunction. The 
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average time of annotated activity for each trial was 4 minutes and 42 seconds. The 

average total duration of each trial was 24 minutes. 

3.3 Signal Processing and Data Reduction 

Before classifications could be made, raw data signals from the TEMPO nodes 

were processed so a relevant set of data features could be reduced. Trial data was divided 

into discrete data windows, and for each window a feature vector was compiled to enable 

activity classification. 

3.3.1 Data Windowing 

To enable feature reduction, data streams from the TEMPO 3.1 sensors were 

partitioned into 2-second windows, with 1 second of overlap between windows. The 

window size of 2 seconds was sufficient for capturing a complete gait cycle in the healthy 

subjects of this study. Waters et al. has demonstrated that healthy humans walk with a 

cadence of approximately between 100 and 120 steps per minute52. Since a gait cycle 

consists of a complete stride, or two steps, this corresponds to between 1.0 – 1.2 seconds 

per gait cycle. Future studies will examine how atypical or pathological gait patterns 

necessitate a change in window size for the capture of a complete gait cycle, though 

studies have indicated that cerebral palsy and AFO use do not significantly lessen 

cadence53. Damiano and Abel demonstrated that gross motor function (GMFM) scores in 

children with CP are highly correlated with cadence, and that even those with severe 

GMFM limitation exhibited a cadence of more than 80 steps/min54. Regardless, the 
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window size can be adjusted on an individual basis in order to capture the gait cycle of 

the specific AFO user.  

Data windows allow the extraction of discrete time-independent features of the 

gait cycle such as maximum shank angles or frequency domain features such as fast 

Fourier transform (FFT) coefficients. The window size and overlap provide one window 

for every second of data, and an average of 1,426 windows per trial, of which an average 

of 282 contained annotated activity. Each sensor data window consisted of six 256-

sample data column vectors representing the three orthogonal axes of both accelerometer 

and gyroscope signal. 

3.3.2 Kinematic Feature Reduction 

 Nearest neighbor classification models assign data windows to the class of their 

nearest neighbor window, chosen by the minimal distance within the feature space. A set 

of n kinematic features populate the n-dimensional feature space, and a feature vector for 

each window provides a kinematic “snapshot” of the activity data. For this study, a set of 

23 features were reduced from the accelerometer and gyroscope data, listed in Table 1. 

Table 1. List of feature descriptions and number of degrees of freedom (DOF) for each 
window of data.  
Feature Description DOF
Standard deviation (SD) of the acceleration magnitude for both Shank and Foot 2 
SD of the tri-axial components of acceleration for both Shank and Foot 6 
Gravitational orientation components for both Shank and Foot 6 
Maximum rotational velocity components for both Shank and Foot 6 
Maximum angle of the Shank in the sagittal plane 1 
Maximum + Minimum translational velocity of the foot in the vertical direction 1 
Fast Fourier transform (FFT) coefficient of vertical foot acceleration 1 
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The selection of features has a significant effect on the accuracy of the 

classification routine; selecting too few features or features which are indistinct between 

events will obstruct accurate classification. Conversely, selecting more features than is 

necessary for classification will increase computational costs and may lead to feature 

confusion. The list of features for this study was compiled based on results from previous 

work in IMU activity classification, as well as heuristically based on an understanding of 

gait patterns and human movement analysis. The justification for the inclusion of each 

feature is indicated below. 

 

Standard Deviations of Acceleration Components 

 The standard deviations of the acceleration components over the 2-second data 

window have been found to be one of the simplest metrics for differentiating static 

posture from activity55. Figure 11 shows standard deviations for acceleration signals 

during walking and during standing.  

At rest, the raw accelerometer output magnitude will equal approximately 1 g (9.8 

m/s2) in the vertical direction, accounting for the force of gravity. The low frequency 

gravitational component of the acceleration can be suppressed with high-pass filtering, 

providing a filtered acceleration of 0 g during completely static activities. While overall 

acceleration magnitude can provide a reasonable differentiation between periods of 

activity and posture, standard deviations of the acceleration provide a description of 

acceleration change magnitude while maintaining robustness to outliers in a window, 

such as a twitch during a period of standing. This feature was acquired by calculating the 

standard deviation of each axis component of filtered accelerometer data as well as for 
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the magnitude of the acceleration for both the shank and foot sensors. The accelerometer 

signal was band pass filtered with a bidirectional 3rd order Butterworth filter between 0.3 

Hz and 17 Hz. This filtering process suppressed the low-frequency gravitational 

components of the accelerometer signal and the high frequency noise characteristics, 

while passing signals within the frequencies of human motion. Several other 

accelerometry studies have indicated that these frequencies are appropriate for human 

motion analysis17,19,35. 

 
Figure 11. Standard deviations of the acceleration signal during walking (top) and 

standing (bottom). Note the slight twitch at the end of the standing window. 

 

Gravitational Orientation Components 

 The gravitational orientation components of the acceleration signal provide a low 

frequency definition of the orientation of the IMU and the body segment to which it is 

attached. These features are reliable means of differentiating static postures via changes 

in shank and foot position. They are less applicable for cyclic gait activities since they 
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sample at a frequency much less than that of a typical gait cadence. For static posture 

differentiation, however, they are more reliable than angles derived from filtered 

gyroscope signal integration, due to integration errors caused by the presence of noise 

and drift in the gyroscopes signal. Figure 12 shows the change in the gravitational 

orientation components during a transition from standing to lying. 

 
Figure 12. a) Gravitational Orientation Components of the SHANK node during 

transition from an upright standing position to a supine lying position. b) Diagram of 
gravitational components with mounted sensors. 

The gravitational orientation components were calculated by applying a low pass 

3rd order bidirectional Butterworth filter with a cutoff frequency of 0.5 Hz to the 

accelerometer signal. This suppressed all but the gravitational component of the 

accelerometer signal to provide a measure of the orientation of the IMU. The low pass 

filter cutoff also reduced errors from high frequency noise characteristics of the 

accelerometer signal. 
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Maximum Rotational Velocity Components 

 The maximum rotational velocity components can be used to differentiate gait 

events at varied inclines. They have specifically been useful in recognizing stair climbing 

events56. They were calculated by finding the maximum rotational velocity of each 

component (X, Y, and Z) of the filtered gyroscope signal in each 2-second data window. 

A 3rd order bidirectional Butterworth high pass filter with a cutoff frequency of 0.3 Hz is 

used to suppress errors caused by low frequency sensor drift. Figure 13 pictures the 

maximum rotational velocity components of the shank for various gait activities, showing 

distinctions in the shank rotational velocity components between walking and running 

events as well as for stair use. 

 
Figure 13. a) Maximum rotational velocity components for various gait activities. 

 b) Diagram of rotational velocities during leg swing. 

 

Maximum Angle of the Shank in the Sagittal Plane 

 The maximum angle of the shank in the sagittal plane can provide a distinction 

between inclines during gait activities, as well as stair use. The angles were calculated by 

a) b) 
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integrating the gyroscope signal, high pass filtered at 0.3 Hz to remove the low frequency 

drift errors associated with gyroscope sensors. Figure 14 shows the maximum shank 

angles in the sagittal plane for various gait activities.  

 
Figure 14. Maximum shank angle, θ, in the sagittal plane for different activities. The 
results show some separation for incline gait activities, and a large separation for stair 

climbing.  

The integration was performed numerically in the manner described by Chen et al.: 

 ߮ሺ݊ሻ ൌ ߮ሺ݊ െ 1ሻ ൅ ∆/2 כ ሾ߱ሺ݊ െ 1ሻ ൅ ߱ሺ݊ሻሿ (1)  
 

where φ is the angle, ∆ is the sampling period (1/128 s), and ω is the rotational velocity 

from the filtered gyroscope signal35. This method was validated using Vicon optical data 

to ensure that the filtering process to remove drift error did not adversely affect the angle 

integration. The TEMPO ankle angle was calculated as the difference between the 

integrated sagittal plane shank (Z-axis) and foot (X-axis) filtered gyroscope signals. The 

TEMPO ankle angle was compared to the Vicon® data collected during a period of level 
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treadmill walking, as shown in Figure 15. The RMSE for the two angles measurements 

was 2.547 degrees, which is within the error margin of the Vicon® reference system (~3 

degrees). 

 
Figure 15. Ankle angle during walking. Solid blue line is TEMPO ankle angle and dotted 
green line is Vicon® reference system ankle angle. Maximum values from TEMPO are 

largely consistent with those from Vicon®. RMSE = 2.547 degrees 

 The angle computation is dependent on the value chosen as the initial angle. For 

the activity protocol tested, the data collection always began when the subject was 

standing, and defining a zero angle at this point provided some cross-subject consistency. 

Future studies which consider cross subject training or classification of natural movement 

must take care to define the initial angle, or correct the angle at a point of reference. This 

can be done easily if a period of standing can be identified. 

 

Sum of the Maximum and Minimum Vertical Foot Velocities 

The sum of the maximum and minimum values of the vertical foot velocity was 

determined heuristically to be a useful metric for differentiating stair ascent and descent. 
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During gait, the vertical velocity of the foot alternates between positive and negative 

values as the foot is raised and lowered. It was often found that during stair descent the 

sum of the maximum and minimum velocities was negative, while during ascent this 

value was positive or near zero. A chart of this feature for stair ascent and descent is 

provided in Figure 16.  

 
Figure 16. Sum of maximum and minimum foot velocities during stair ascent and 

descent. 

Vertical foot velocity was calculated by integrating the vertical z component of 

band pass filtered accelerometer signal from the foot node over each window assuming 

zero initial velocity in the same manner as demonstrated above for the angle integrations: 

௭ሺ݊ሻݒ  ൌ ௭ሺ݊ݒ  െ 1ሻ ൅ ∆/2 כ ሾܽ௭ሺ݊ െ 1ሻ ൅ ܽ௭ሺ݊ሻሿ (2)  
 

where vz is the vertical velocity, ∆ is the sampling period (1/128 s), and az is the vertical 

foot acceleration. Moments of foot contact were then located by indexing periods where 

foot accelerations and changes in acceleration were at or near zero, a threshold defined by 
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a quarter of the standard deviation of the acceleration signal for the data window.  Figure 

17 provides a graphical interpretation of this process.  

 
Figure 17. Velocity correction process. The routine integrates the acceleration signal and 

then corrects the velocity to zero at the midpoint of foot contact. 

 

Fast Fourier Transform Coefficients for Vertical Foot Acceleration 

 The FFT coefficients from kinematic sensors have been shown to provide a 

distinction between rate-dependent cyclic events such as walking and running14,57. For 

this study, the FFT coefficients of the vertical foot acceleration were used as an indicator 

of gait cadence. To acquire the coefficients, the Z-axis acceleration signal of the foot 

node was low-pass filtered with a 3rd order bidirectional Butterworth filter at a cutoff 

frequency of 17 Hz. The discrete Fourier transform (DFT) of the filtered signal was 

computed, and the frequency associated with the highest response coefficient was 

returned. 



37 
 
3.3.3 Notes on the Feature Set 

The feature space provided a kinematic view of the subjects’ activity during each 

trial. For perturbed conditions, we found that the variability within the features generally 

increased. The standard deviations for the training feature sets of Equinus and Locked 

conditions increased by an average of 33% and 24%, respectively, over those of the Free 

condition. This presentation of gait variability in the study feature space was consistent 

with the results of other studies which examined variability in gait of AFO users and 

those with CP7,49,50. 

It should be noted that all 23 features were calculated for each data window 

regardless of the presence of a gait activity. As such, certain features only provided 

meaningful distinctions when certain activities or postures were actually present. For 

instance, FFT coefficients are irrelevant when differentiating between static postures. 

Feature selection methods based on significance within subclassifications will be 

discussed in Section 3.6. 

It should also be noted that integrating the signal of either a gyroscope or 

accelerometer is prone to error. Non-filtered signals retain low-frequency drift and 

gravitational components which can cause significant accumulation of error even over 

relatively short periods of data. Filtering to remove or suppress low-frequency sources of 

error strips the signal of some descriptive kinematic data, even if the cutoff frequency and 

roll off of the filter are selected carefully. Often times special techniques such as Kalman 

filtering and quaternion sensor fusion are employed to overcome these errors58–60. For 

this study, however, high levels of accuracy were not required in integration calculations. 

Activity classification relies on distinction between features; the relative values are more 
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important than the absolute magnitudes. Band pass filtering the IMU signals provided 

accelerations and rotational velocities with suppressed low frequency error and high 

frequency noise, making integration without error inflation feasible. Over short data 

periods (~2 s), integration errors remained small, and permit the level of accuracy 

required for this study.  

 

3.4 Data Training and Distance Calculation 

 Data was partitioned from each trial to train the classification algorithm on each 

activity and posture. For nearest neighbor classifications, the distances from test data 

windows to training data windows within the feature space were calculated. This section 

describes the training data partitioning process and the distance method used for 

classification.   

3.4.1 Partitioning Training Data 

One of the goals of this study was to evaluate how training data size affects 

accuracy in nearest neighbor classifications. Collecting training data can be time 

consuming, and for the purposes of this research must be done within a laboratory setting. 

The computational cost of nearest neighbor classification routines is proportional to the 

size of the training data; the distance between the test data windows and each training 

data window must be calculated. Since the future of this research is aimed at monitoring 

gait and classifying activity in natural settings during everyday activity, it will be 
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important to understand the effects of relative training data size on classification 

accuracy. 

For training, a percentage of data was removed from the full trial data set, 

dividing the data into a training data set and test data set. Only annotated data was 

considered for the purposes of training, since one of the aims of this study is to examine 

classification of semi-natural activity using predefined activity for training. The data was 

selected such that for each level of training data selection, the same percentage of training 

data was partitioned for each annotated activity. For example, at a training data selection 

level of 50%, if 20 annotated windows were collected for level walking and 8 for 

standing, 10 training windows would be selected for walking and 4 for standing. At least 

one window for each activity and posture was included in the training data. 

Training data selection was randomized to reduce bias present in different stages 

of annotated activity. For instance, during stair climbing, the first step onto the stairs and 

the last step at the top will look kinematically different than steps while on the stairs. 

When training data was partitioned, a sample was chosen to incorporate data windows 

from random stages of the annotated activity. When results were assessed, twenty 

iterations were performed, each with a different random training set. The mean 

sensitivities and their standard deviations were observed. 

3.4.2 Nearest Neighbor Distance Calculation 

At each of the six tree levels, a nearest neighbor classification was performed. 

The training data was represented in an wr-by-m matrix X and the test data in a ws-by-m 

matrix Y, where wr and ws were the number of training windows and test windows, 
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respectively, and m was the number of features calculated, 23 in the case of this study. 

The coordinate distance, d, between a test window (rows in X) and a training window 

(rows in Y) was weighted by the square of the standard deviation (variance) of each 

feature column in the training data (columns in X). That is, 

 
݀௜

ᇱ ൌ
ሺݔ௜ െ ௜ሻݕ
ሺ݅ሻࡿ  (3)  

 

where di’ is the standardized distance, xi is the scalar value of the ith feature in the training 

data window, yi is the scalar value of the ith feature in the test data window, and S is the 

vector of the variance of the each column in X, defined by 

ࡿ  ൌ ሾߪሺ࢏ࢄሻሿଶ                                         (4)  
 

where Xi is the column vector containing the scalar values of the ith feature for the entire 

training data set and σ is its standard deviation. By this process, feature vectors with large 

variance were given less weight than feature vectors with small variance. The distance, 

D, between the test window and training window was then calculated by: 

 

ܦ ൌ ඩ෍ሺ݀௜Ԣሻଶ
௠

௜ୀଵ

 (5)  

 

A total of wr distances between each test window and the training windows were 

calculated. The test window was classified to the group of the training window for which 

the minimal distance was found.  
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 The weighting process minimized the effect of feature magnitude on variance 

importance. Specifically, the variances of those features with larger magnitudes were not 

considered more important than those of the features with smaller magnitudes. Without 

standardization, features with larger absolute magnitude (e.g. rotational velocities, 

angles) would have more weight than those with small magnitude (e.g. standard 

deviations, orientation components), as their variances would be intrinsically larger. 

Other distance metrics were considered, specifically: Euclidean, Chebychev, correlation, 

cosine, and city block distances. Table 2 shows the average sensitivity results using each 

distance metric. 

Table 2. Mean Sensitivities for various nearest neighbor distance metrics 
Distance 
Metric Euclidean Standardized 

Euclidean Chebychev Correlation Cosine City 
Block 

Mean 
Sensitivity 

(%) 
91.4 94.2 90.2 88.6 88.6 92.2 

 

The standardized Euclidean distance clearly provided the best sensitivity results 

for the study. 

 

3.5 Results for Forced Classification 

  For this study, a value of k = 1 was chosen for the nearest neighbor 

classifications. This decision was made for several reasons, the key factor being a limited 

amount of training data. This will be discussed in more detail in Section 3.5.2. The initial 

assessment of the framework performance used forced classification, that is, all data 
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windows were classified as one of the eleven predefined activities. For the purpose of this 

preliminary evaluation, results are expressed in terms of sensitivity, defined as 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ  ൌ
ܶܲ

ܶܲ ൅   (6) ܰܨ

  

where TP is the number of true positives and FN is the number of false negatives. Since 

classifications were forced into one of the predefined activity or posture groups, 

performance metrics which consider false positives, such as specificity or positive 

predictive value, were not calculated. Specificity will be introduced in Section 3.6, where 

a distance-based declassification threshold will be considered. 

 When examining the classification of annotated data, the results for all activities 

and postures were included. For non-annotated results, only walking and standing were 

considered in the results. This is due to the fact that no subject engaged any other of the 

defined activities or postures for a significant amount of time (>2 seconds) during non-

annotated periods, even though they were not constrained by the researchers to do so. 

This fact illustrates a key distinction between semi-natural and natural movement; even 

when subjects are not physically or verbally restrained from certain activities, unfamiliar 

clinical settings may deter normal subject behavior. 

3.5.1 Sensitivity as a Function of Training Data Size 

To assess the effects of training data size, the classification scheme was trained 

using a variable-sized training data set. The researchers specified a percentage of 

annotated data to be used for training, ranging from 5% to 90% in 5% increments. This 

corresponded to ~15 seconds (5%) to ~250 seconds (90%) training data. At each level of 
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training data size, 20 classification iterations were run for each subject and condition 

using a new, random training data selection. The mean classification sensitivities for both 

annotated and non-annotated activities were recorded for each level of training data size. 

The results of these classifications are demonstrated in Figure 18. 

The results in Figure 18 indicate that increases in training data size generally 

correspond to an improvement in classification performance. For annotated activities, 

training data sizes less than 60 seconds corresponded to low mean classification 

sensitivities. As training data size increased to ~90 seconds, all mean classification 

sensitivities regardless of condition were greater than 90%.  

 
Figure 18. Mean sensitivities as a function of the amount of data used for training for 

both annotated (a) and non-annotated (b) activity. 
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At ~140 seconds of training data, the framework performance began to plateau, 

with less than a 2% increase in mean sensitivity at the maximal inclusion of training data, 

~250 seconds. Limited training data appeared to have a greater effect in the perturbed 

conditions, as the gaps in sensitivity for Equinus and Locked conditions are larger at 

minimal training data than at maximal training data. Equinus shows nearly 10% decrease 

in sensitivity from Free at 5% training data, but the discrepancy decreases to less than 4% 

at near 59% training data. Sensitivity for Locked shows less decrease from Free 

sensitivity at minimal training data, but nearly matches Free at 50% training data. For 

non-annotated walking and standing, lower levels of training data led to sporadic results, 

though apparent leveling occurred around 150 to 190 seconds of training data. This result 

indicates that training data selection may be more significant when attempting to classify 

natural movement using lab acquired training data in the form of predefined, controlled 

movement. 

3.5.2 Sensitivity as a Function of k 

 The value of k = 1 for this study was chosen primarily due to the limited training 

data for stair use and sitting available. Under the collection protocol, certain activities or 

postures were underrepresented in the data. Increasing the value of k would increase the 

likelihood of including neighbors from incorrect classes, especially if the value of k 

exceeded the number of available neighbors from the correct class. The value of k should 

be examined more closely, however, since previous work has demonstrated that larger 

values can provide higher levels of accuracy49. For this analysis, 20 iterations for each 

subject in each condition were run for values of k = 1, 3, and 5. Figure 19 shows how the 
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value of k affects mean sensitivity values for the recognition of each activity or posture in 

each condition.  

 
Figure 19. Mean sensitivities of each activity and posture for k values of 1, 3, and 5. LW 
– level walk; LR – level run; UW – uphill walk; UR – uphill run; DW – downhill walk; 
DR – downhill run; US – upstairs; DS – downstairs; SI – sitting; ST – standing; LY – 
lying, Mean – Mean of all activities and postures, Mean* - mean without stairs and 

sitting. 

As expected, Figure 19 shows that stair use and sitting recognition suffer as the 

value of k increases. Certain activities such as standing show increased recognition in 

some cases, and several gait activities show peak classifications for a value of k = 3. 

Despite this, mean classification sensitivity decreases with an increasing value of k, even 

when stair use and sitting are not considered. 

As data becomes larger in future studies, the value of k should be heuristically 

optimized to provide the best results. Generally a higher value of k should provide better 

results so long as training data size for each activity is larger than k. Additionally, 

returning the indices of additional nearest neighbors does not significantly increase 
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computational costs, since the distance to each neighbor will have already been 

calculated in order to determine the nearest neighbor. 

3.5.3 Forced Classification at k = 1, 50% Training Data 

Considering the results discussed in the previous two sections, the classification 

routine was performed over 20 iterations for all subjects and conditions at k = 1 and a 

random partition of half the annotated data for training (~140 seconds per trial) for each 

iteration. The value of k = 1 provided the best sensitivity results, and using half of the 

annotated data for training allowed near maximal sensitivity results while maintaining a 

training data set which did not outsize the test data set. The results indicate that this 

framework is highly successful at recognizing annotated activities and postures. The 

framework also possesses some ability to classify non-annotated walking and standing 

using annotated training data. Table 3 provides the mean and standard deviation 

classification sensitivities for each activity or posture, both annotated and non-annotated, 

under each condition, while Figure 20 visually presents classification sensitivities and 

standard deviations for both annotated and non-annotated events.  

The classification scheme showed the ability to classify atypical gait with a 

relatively small amount of training data. Many other studies using machine learning 

algorithms use subsets of training data which significantly outsized the test data14,18,55.  

The classification sensitivities from this study showed that training data sizes which 

exceeded test data sizes (i.e. > 50% training data) are not required in order to make 

accurate classifications, especially for gait activities. 
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Table 3. Mean and standard deviation classification sensitivities for annotated and non 
annotated activities and postures. 

Activity 

Sensitivity (%) - Annotated Sensitivity (%) - Non-Annotated 
Equinus Free Locked Equinus Free Locked 

M SD M SD M SD M SD M SD M SD 
Level Walk 96.5 1.6 99.1 0.5 99.1 0.8 49.0 5.4 73.1 3.9 71.4 4.8 
Level Run 91.9 5.0 96.8 4.0 98.8 2.3       

Uphill Walk 96.6 1.8 99.9 0.4 99.4 0.7       
Uphill Run 89.8 5.3 99.1 1.3 96.6 3.4       

Downhill Walk 96.8 1.4 99.9 0.4 98.9 0.9       
Downhill Run 91.5 5.2 96.3 3.8 95.8 2.9       

Upstairs 78.3 15.4 71.7 9.9 80.0 9.5       
Downstairs 67.5 21.3 74.5 15.4 87.8 11.3       

Sitting 68.3 17.0 77.1 11.4 79.5 14.3       
Standing 86.2 5.6 92.8 5.1 78.0 8.7 75.0 13.7 77.7 7.1 65.0 5.3 

Lying 94.5 6.0 94.5 3.6 91.4 6.3       
 

The results also indicate that the framework possesses a strong ability to classify 

gait activities at various inclines. Mean sensitivities and standard deviations for all 

activities at ~140 s training data are shown in Figure 20. All annotated gait events, not 

including stair use, classified at ≥90% sensitivity, with walking events having the highest 

sensitivities. The mean classification sensitivity for all walking events regardless of 

condition and incline was 98.5 ± 1.9%. Classification of running events was also highly 

successful, with an overall mean classification sensitivity of 95.1 ± 3.7%.  

At mean sensitivities of 77% and 78% respectively, stair climbing and descending 

events were most poorly recognized, a result consistent with other studies57,61. Low 

sensitivities for these events could be explained in part by limited training data 

availability. The laboratory staircase only had 4 steps, and subjects generally spent about 

10 s per trial on the stairs. Using 50% training data provided only 5 windows for training 

in this case. The results on training data size show in Figure 18 confirm that limited 

training data compromises sensitivity. Table 3 shows large standard deviations for stair 

use recognition, at between 9.9% and 21.3%., indicating that training data selection has a 
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significant effect on sensitivity. Coley et al., which was successful in differentiating stair 

climbing from level walking and stair descending, did not specify how many stair steps 

were used56. Foerster et al. showed difficulty in classifying stair use with 60 steps61. 

Future research should examine if increasing the time of stair use improves sensitivity in 

classification. 

Mean annotated posture recognition sensitivities ranged from 65% - 95%, with 

sitting being generally the most poorly classified. Postures also showed large standard 

deviations. Annotated sitting and standing were classified at mean sensitivities of 75% 

and 87%, respectively. This was largely due to confusion between the two. 

Differentiations in posture are made by comparing shank and foot orientations, and these 

are often similar for non-reclined postures. Table 4 shows a conglomerate confusion 

matrix for forced classification of annotated and non-annotated activity and demonstrates 

how sitting and standing were often confused. Thigh, waist, or sternum markers have 

improved posture recognition, but they are outside the scope of this study13,14,61. 

Table 4. Conglomerate confusion matrix for all annotated and non-annotated activities. 
Includes summation over 20 iterations for all subjects and conditions. 
 LW LR UW UR DW DR US DS SI ST LY 

LW 9136 9 44 0 47 0 41 31 3 14 1 
LR 0 1463 0 18 0 63 0 0 0 0 0 

UW 31 0 6721 63 0 0 12 5 1 22 0 
UR 0 3 20 2159 0 0 0 0 0 0 0 

DW 34 12 0 0 5729 27 0 4 0 0 0 
DR 0 31 0 0 0 1740 0 0 0 0 0 
US 12 0 0 0 11 0 415 52 8 43 3 
DS 13 0 0 0 0 0 23 388 7 14 4 
SI 3 0 0 0 3 0 2 6 426 108 36 

ST 45 0 9 0 0 0 47 14 107 1460 25 
LY 0 0 0 0 0 0 0 0 8 9 951 
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Decreases in sensitivity in annotated activity for perturbed conditions as 

compared to the Free condition were most prevalent in running and standing events for 

Equinus and standing events for Locked, as seen in Figure 20. Equinus showed decreases 

in running sensitivities by an average of 6.2% from the other two conditions, with an 

increase in running standard deviation by an average of 2.4%.  Figure 20 indicates that 

Equinus had overall higher standard deviations in sensitivity than Free and Locked. This 

may be due to excessive “wasteful” movements as those discussed by Herndon et al50.  

 
Figure 20. Means and standard deviations of classification sensitivities for annotated and 

non annotated activities and postures. LW – level walk; LR – level run; UW – uphill 
walk; UR – uphill run; DW – downhill walk; DR – downhill run; US – upstairs; DS – 

downstairs; SI – sitting; ST – standing; LY – lying.  
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For standing, Locked showed a decrease in sensitivity by up to 14.8% from the 

other conditions, with increases in standard deviation of up 3.6%. This result was 

consistent with expectation since the Locked condition by its nature confined the shank 

and foot angles. Decreases in the mean sensitivities for classification of perturbed 

activities and postures suggests that the prescribed AFO conditions create a wider array 

of typical movements for a particular activity. The increased standard deviations in 

classification sensitivity mirror the higher standard deviation in the training feature sets 

for the perturbed conditions discussed in Section 3.3.3. These results suggest that training 

selection was more important for perturbed conditions, especially in Equinus gait 

activities and Locked postures.  

The framework also showed some ability to classify semi natural movements. 

Sensitivity levels for non-annotated data walking and standing were lower than for 

annotated data, but were high enough to indicate that the algorithm can potentially 

classify natural movement using predefined activity for training. For non-annotated 

walking, mean sensitivity was around 70% for both Free and Locked, but fell to around 

50% for Equinus. Mean sensitivity for non-annotated standing was around 70% for all 

conditions.  

Standard deviations in sensitivity for non-annotated events were between 3 and 7 

times larger than those for annotated events. The large standard deviations seen in Figure 

20 suggest that the selection of training data largely effects how well non-annotated 

events can be recognized. The large variability in classification of natural movement has 

been previously discussed in a study by Tapia et al., in which classification accuracies of 

many natural movements ranged from 7% to 89%62.  
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The subjectivity in ground truth definitions must be discussed when considering 

semi-natural or natural movement. Recognition of human activity is limited by the 

continuous nature of human movement. Unlike more discrete areas such as human speech 

recognition, human movement classification relies on subjective distinction between 

events in order to enable categorization. For instance, during non-annotated periods, 

subjects frequently shuffled or milled about in ways that resembled walking or standing, 

but the distinction between the two was often unclear. How much must a person move to 

be considered walking? Must a person be completely still to be considered standing? 

Perhaps “milling around” could be classified as an activity in its own right. Subjectivity 

of the observer presents a challenge when assessing sensitivity of classifying non-

annotated events, and future research must look to refine the boundaries of activity and 

posture. For clinical cases, the recommendations of the supervision physician or physical 

therapists may help define classification boundaries. 

 

3.6 Feature Selection Using Cluster Analysis 

 The 23 features described in Section 3.3.2 were all included to provide as 

complete a physical description of the lower limb kinematics of the AFO user. Some 

features, however, are irrelevant in certain classification levels. For instance, the FFT 

coefficients are ineffective when attempting to recognize various postures, and the 

orientation coefficients may not be suitable for differentiating activity periods, since they 

show positional changes only at frequencies less than 0.5 Hz. As such, this work 

considered how the removing certain features at each level of the framework could 
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promote accurate classification. This section will describe a feature selection routine 

which considers the clustering precision of each feature within the training data. 

 
3.6.1 Clustering in the Training Data 

 In a 2005 paper, Huynh and Schiele analyzed the cluster distribution for one-

dimensional accelerometer derived features, defining a cluster precision for each 

feature63. This thesis work used a similar method to Huynh and Schiele in order to 

determine which features were most significant at each of the six levels of classification. 

 For each level of classification, the 23 features were analyzed for cluster precision 

in the training data. Based on its particular feature magnitude, each training data window 

was placed into one of a number of clusters, defined by the number of potential 

classifications in the framework level. For instance, training data for the Active/Static 

classification level were partitioned into two clusters for each feature, one for activities 

and one for postures.  

The clusters were defined using the standardized Euclidean distance as described 

in Section 3.4.2. The cluster centers were selected so as to minimize the within-cluster 

sum of squares distances of the data windows to the cluster centers, that is minimizing 
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where xi is the feature magnitude of the ith data window and cj is the feature magnitude of 

the proposed cluster center, σj is the standard deviation of the 1-by-wc feature vector for 

each proposed cluster, l is the number of clusters, and wc is the number of data windows 
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in each cluster. Ideally, each cluster would exclusively represent one of the available 

classifications. 

 The weighted cluster precision, p, of each feature is defined as 
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where ௤ܰ௝
 is the number of data windows accurately grouped within the jth cluster; ௕ܰ௝ is 

the total number of training data windows which belong to a particular classification, 

defined by ground truth; vj is the weight prescribed to each cluster, defined as 
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where ௕ܰ௝ is defined as above, giving Σ ௕ܰ௝ as the total number of training data windows 

analyzed. The weighting was performed so that the clustering precision favored those 

activities that had a representatively small number of training data windows, such as stair 

use or sitting, since these activities were more difficult to classify. The precision values 

were normalized from 0 to 1, where a feature with a p = 1 was able to classify every 

training data window into its appropriate cluster, and a feature with p = 0 was unable to 

correctly classify a single data window. 

3.6.2 Results with Feature Selection   

 The researchers evaluated the sensitivity of the framework using the feature 

selection methods described above. A threshold value, t, was set such that any feature 
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with a p ≥ t would be used for classification at the particular level. The results were 

compiled by running 20 iterations of the framework with randomized training data 

selection at threshold levels ranging from 0 to 1 in increments of 0.1. The sensitivity and 

the average number of times each feature was used at a particular threshold were 

recorded. 

 As discussed in Section 3.3.2, certain features are more or less important 

depending on which intermediate classification is being performed. Figure 21 shows the 

usage percentage of each feature over 20 iterations of random training data selection at 

each selection threshold.  

 
Figure 21. Usage percentage for each of the 23 features at each level of classification as a 

function of the selection threshold 
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It is apparent that for certain levels of classification, certain features carry more 

significance than others. Figure 21a shows that the differentiation between activity and 

static posture can largely be determined by a subset of seven different activities, almost 

all of which are measures of sensor acceleration, while Figure 21b shows that posture 

recognition depends largely on the orientation components of the accelerometers. For 

each subsequent level of classification, certain features are used with higher frequently as 

the precision threshold increases. The importance of feature selection depends heavily on 

if classifications are being performed on supervised or unsupervised movement data. As 

can be seen in Figure 22, sensitivity for classification of annotated activity steadily 

declined as features were removed for all conditions. For non-annotated walking and 

standing, however, the results indicate that feature selection may be useful.  

 
Figure 22. Mean sensitivities for annotated activities and non-annotated walking and 

standing walking as compared to the precision threshold for feature selection. 

Maximum sensitivities were obtained at different points for each condition, with 

the Equinus condition preferring the most selective feature threshold of the three 
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conditions, with sensitivity maximized at t = 0.9. The Locked condition showed maximal 

sensitivity at t = 0.6. The Free condition had maximal mean sensitivity at t = 0.4, and 

showed the smallest increase in sensitivity of the three from t = 0 to the point of maximal 

sensitivity. 

The results indicate that feature selection can provide better results when 

attempting to classify natural movement using predefined movement for training, 

especially for conditions like Equinus which show inconsistencies in gait parameters. 

Maurer et al. showed similar results, indicating that features which are highly correlated 

within classification groups can be removed without reducing accuracy57. Huynh and 

Schiele similarly showed that for classification of specific activities, removal of non-

descriptive features could improve recognition63.  

 

3.7 Introducing a Declassification Distance Metric 

 While the results discussed in Sections 3.5 and 3.6 provide a comprehensive view 

of the sensitivity of the classification framework, they are based entirely on the 

occurrence of true positives in classification. They do not consider the rate of false 

positives. In clinical applications of this framework, false positives can misinform 

diagnosticians as to the overall activity level or particular ability of the AFO user. This 

can have very serious implications when treatment options are considered. To reduce the 

incident of false positives during classification, a distance metric was designed which 

would enable the framework to declassify events which did not closely resemble any of 

the predefined movements. 
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3.7.1 Calculation of the Distance Metric 

The distance metric was designed to reduce the incidence of false positives 

without upsetting true positive recognition. In order to assess classification results using 

the distance metric, specificity is introduced in the results, defined as 

ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ  ൌ
ܶܰ

ܶܰ ൅   (1) ܲܨ

 

where TN is the number of true negatives and FP is the number of false positives. The 

addition of the distance metric to the framework allowed for the declassification of any 

test data window whose distance from its nearest neighbor was a statistical outlier from 

the training data. At each of the six levels in the framework, the set of training data for 

that classification, represented by Xb, the wb-by-m matrix where wb is the particular 

number of windows in that set, and m is the number of features (23). Each level contained 

a number of classification subsets, Ns (e.g. in the Active/Static level, all activity periods 

were split into one subset and all static periods into another, Ns = 2). For each subset, the 

coordinate standardized Euclidean distances were calculated between each training data 

window and all remaining training data windows in the same manner as in equations (3) 

– (5). For each classification level, the number of distances, Nd, calculated was: 
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Outliers for each subset were defined by using the interquartile range of the 

distances. Any test data window whose distance was found to be a statistical outlier in 

this sense was declassified:  

௢௨௧௟௜௘௥ܦ  ൐ ܳଷ ൅ ݄ሺܳଷ െ ܳଵሻ (3)  
 

where Q1 and Q3 are the 25th and 75th percentile, respectively, of the training data 

distances and h is a scaling constant. A low scaling constant generates more 

declassifications. Different values of h were considered, and the optimal scaling constant 

was determined heuristically at each level in a manner which maximized the sensitivity 

and specificity of the classifications.  

3.7.2 Results with Varied Scaling Constant 

 The value of the scaling constant has a direct effect on the classification accuracy. 

A scaling constant which is too small will generate a large number of false negatives, 

reducing sensitivity, while a scaling constant which is too large will generate a large 

number of false positives, reducing specificity. The scaling constants must be chosen to 

optimize the results in a clinically beneficial manner. If false negatives are deemed less 

consequential than false positives, a lower scaling constant should be selected to 

maximize specificity. Otherwise a larger scaling constant should be selected to maximize 

sensitivity. 

 Figure 23 shows the changes in mean sensitivity and specificity as the scaling 

factor was adjusted for non-annotated walking and standing. Results in terms of 

specificity were particularly useful when considering the non-annotated data 
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representative of semi-natural movement, as annotated data was generally not prone to a 

high rate of false positives. It is seen from Figure 23 that, as expected, specificity 

decreases as the declassification threshold increases, as this will allow a greater number 

of false positives. Conversely, sensitivity increases with the threshold, since a low 

threshold promotes the occurrence of false negatives. 

 
Figure 23. Mean sensitivity and specificity values for non-annotated standing and 

walking with varying declassification threshold scaling factor. ‘Mean’ represents the 
mean of the sensitivity and specificity. 

Examining the mean of sensitivity and specificity, a peak is observed when the 

scaling factor is at a value of 3, though the mean remains relatively constant with an 

increasing scaling factor. This suggests that any declassification threshold greater than Q3 

plus three times the IQR can be used, depending on the sensitivity or specificity 

requirements of the case.  

3.7.3 Intermediate Classification 

 The distance metric also allows intermediate classifications. In some cases, 

especially when considering semi-natural movement, the coordinate distance of the test 
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window may remain under the declassification threshold for only 1 or 2 classification 

levels. For instance, the framework may recognize that the subject is static, but cannot 

discern the posture. Or perhaps the subject is walking, but the grade is unknown. 

Intermediate classifications can provide at least some description of activity even 

if a full picture is unavailable. In addition, intermediate classifications can lead to the 

formation of new semi-classified clusters within the feature space. These clusters can be 

considered as new activity or posture forms in which the subject frequently engages. 

Figure 24 displays what intermediate classifications may look like, and where new 

clusters can potentially be found.  

 
Figure 24. Example of intermediate classifications. The most basic classification of 

Active/Static is followed by intermediate classifications of posture recognition and/or gait 
activity, which are further classified into inclines or stair use. The hashed areas represent 

places where classifications could not be made at a particular level, and only an 
intermediate classification or no classification is made. 

 

 In places where sub-level classifications cannot be made, marked by the hashed 

areas in Figure 24, new data clusters may arise which represent activity or posture 

previously undefined within the framework. The recognition of new clusters can allow 

researchers to expand the framework include new sub-classifications. This will be 
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particularly important when assessing natural movement in different subjects, where 

pathology or personal preference characterize a variety of activity and posture forms. 
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4.0 Conclusions and Recommendations for Future Work 

The prevalence of AFO use in CP patients has opened the door for an advance in 

mobile, unsupervised gait analysis using lower limb kinematics. The University of 

Virginia’s Center for Wireless Health has created in TEMPO a device which can be 

discreetly integrated into an AFO to provide a comprehensive kinematic description of 

the foot and shank movement. This research introduced a framework for accurately 

classifying gait activities and postures using AFO-mounted TEMPO sensor data. 

 

4.1 Summary of Research 

 The present research began by carrying out an activity test protocol for eight 

healthy subjects with perturbed gait through to the use of the custom AFOs. With the data 

from this test protocol, a set of kinematic features were derived based on 

recommendation from previous studies and a heuristic analysis of the kinematic test data. 

Following the compilation of the 23 kinematic features, a classification routine was 

developed to maximize sensitivity during forced classification of the eleven prescribed 

gait activities and postures. The framework, consisting of six levels of 1-nearest neighbor 

classification, was first used to assess sensitivity results in classification using varying 

amounts of training data. The results of this test showed that optimal sensitivities could 

be obtained using training data sets which did not outsize the test data, and that using as 

little as 140 s of training data could provide mean classification sensitivities of greater 

than 90% for more than 4.5 minutes of annotated data, and up to 75% for non-annotated 
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data of more than 15 minutes. After assessing training data size effects, the number of 

nearest neighbors was varied at k = 1, 3, 5. The results indicated that a 1-NN 

classification consistently provided the best sensitivity for classification. The results of 

this analysis are difficult to interpret, however, since small training data sizes for a 

number of activities limited the efficacy of larger k classifications. Following the analysis 

of training data size and k-value, a forced classification routine was carried out using the 

23 feature, 1-NN framework with a 50% random training data partition (~140 s per trial). 

The forced classification showed very high sensitivity results for annotated gait activities, 

with decreases in sensitivity for posture recognition and stair use detection. The forced 

classification routine also showed only a small decrease in mean sensitivity of 

classification for the atypical conditions, Equinus and Locked, but showed a significant 

increase in the standard deviation of the classifications for these conditions. The results 

also indicated that assessing non-annotated data using annotated training data is feasible, 

though decreases in sensitivity were found. The work specifically highlighted how 

atypical gait conditions can limit classification of semi-natural movement using 

predefined activity for training. Feature selection using clustering means was then tested, 

indicating that classification of semi-natural or natural movement using predefined 

training data can benefit from selecting features which are most relevant to intermediate 

classifications, especially for inconsistent gait patterns. The work then introduced a 

declassification metric which weighed the results in terms of sensitivity and specificity, 

showing that the declassification of activity outliers can increase specificity of the 

framework. 
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4.2 Recommendations for Future Work 

Body sensor networks using IMUs have incredible diagnostic potential. This work 

studied the capability of lower limb mounted IMUs in the application of activity 

recognition of AFO users. The results of this thesis provide a valuable stepping stone for 

future work in implementing AFO mounted sensor networks.  

The system has shown the ability to use subject-specific training data to classify 

atypical gait patterns, but other studies have developed algorithms for healthy subjects 

which do not require subject-specific training, often making use of Bayesian 

adaptations13,14. With the large amount of variability present in pathological gait, 

however, inter-subject training may not be feasible. Therefore, this study focused on 

activity classification using subject-specific training. Future work should study gait 

pattern variability in AFO users to potentially develop a cross-subject training algorithm. 

It has yet to be shown how the classification algorithm would perform in a 

completely natural setting, where the number and permutation of gait activities and 

postures notably increase. Particular challenges may appear in marking various postures 

using only shank and foot mounted sensors and in noting the presence of incline at 

variable grades. Future studies must focus on classification of activity in actual AFO 

users in natural environments.  

Data collection protocols should be altered to include more training data windows 

for each activity. Specifically, future studies should ensure protocols allow for sufficient 

collection of annotated activity periods so that the value of k can be adjusted to maximize 

sensitivity and specificity results without being limited by small training data size. 
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Remarkably, kNN algorithms do not scale well to large training data sizes since 

the distances between each test datum and all training data must be calculated. They 

become more computationally expensive as the amounts of training data and feature size 

grow. With the recommendation described in the above paragraph, training data size 

should be monitored with computational costs in mind. While this work showed that 

classifications with high sensitivity cold be made even with small sets of training data, 

future work should explore regression-based algorithms, such as random forest, which 

are less affected by data size, as it is yet unclear how much training data is necessary to 

classify daily natural activity. 

This research was an integral step in the enabling of mobile gait monitoring in CP 

patients. It provides a basis for activity classification in AFO users, and the classification 

framework can be used in several applications. In the immediate future, the framework 

should be used and optimized for classifying natural movement in healthy individuals 

wearing custom AFOs using annotated predefined activity for training. The framework 

can be used to assess the efficacy of training data collection protocols in natural activity 

situations. The next step will be to optimize the framework for actual CP patients who 

wear AFOs. Special consideration should be given to training methods and recognition of 

previously undefined gait and posture forms. This research is most significant in that it 

enables the determination of the spatio-temporal parameters of gait which inform the 

diagnostic choices of the patient’s care givers. Periods of walking must be identified 

within a patient’s regular daily movement to enable the acquisition of relevant parameters 

such as stride length, cadence, and foot contact time. Future work should seek to use the 

activity classifications and AFO mounted sensor data to determine these relevant gait 
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parameters. A robust mobile system which could identify periods of walking and 

accurately define gait parameters would enable caregivers and patients to confidently 

assess the costs and benefits of available treatment options, and at a fraction of the cost of 

optical motion capture systems.  
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