Identyti: Digital Storage of Personal Identification Documents
A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia * Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree
Bachelor of Science, School of Engineering

Amanda Murray
Spring 2020.

Technical Project Team Members
Eric Burbach
Chris Han
Sri Jayakumar
Samantha Kostleni
Gio Lee
Amanda Murray

On my honor as a University Student, | have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature MWW”W Date 4/26/2020

Amanda Murray

Approved W e Date g|2§ hac2s

Dr/Ahmed Ibrahim, Department of Computer Science

Table of Content

Abstract 4
List of Figures 6
1. Introduction 8

1.1 Problem Statement 8

1.2 Contributions 10

2. Related Work 1

o

3. System Design

IS

3.1 System Requirements 13

(&)}

3.2 Wireframes 15

3.3 Sample Code 1

»

3.3.1 Models

=

3.3.2 Views

|

3.3.3 Forms

|

3.3.4 ML Model 26

3.4 Sample Tests28

3.5 Code Coverage 30

3.6 Installation Instructions 31

3.6.1 Setting up the Repo: 31

3.6.2 Deploying with Heroku: 39

3.6.3 Configure the Database: 44

3.6.4 Configure OAuth: 49

4.6.5 Setting up AWS 57

3.6.6 Setting up email with SendGrid 69

3.6.7 Setting up Tesseract for local testing 72

4. Results 75

5. Conclusions 76

6. Future Work 77

7. References78

Abstract

The purpose of the Identyti capstone project was to build a proof-of-concept for a business idea
that Darden School of Business student, James Henderson, had. The idea is that all personal
identity documents can be stored safely online in a centralized location where they can be
accessed by anyone who needs them. Possible use cases for the application would be applying
for a driver’s license, filling out and providing documents for a W-4 form, and filling out
insurance paperwork at a doctor’s office. Identyti would make these processes easier for both the
customer and the organization involved by eliminating the need to keep hard copies of

paperwork.

The proof of concept was built as a web application using the Django web framework with the
important documents stored on Amazon Web Services Simple Storage Service. Some other
libraries used in the application were Google OAuth, SendGrid, and Tesseract OCR. Some

unique features of the app include secure storage of the documents, mobile responsiveness, and a

Machine Learning model used to categorize the document being uploaded as either
Identification, Insurance, Financial, Medical, Academic/Work, or Legal. The most important
feature that this app requires is security of a user’s documents. This key feature is what separates

Identyti from other digital storage applications currently available.

The product delivered to Henderson was a web application with the desired requirements
specified at the beginning of the project completed and fully functional. The purpose of this
product is to give Henderson a proof-of-concept that he can test with customers in order to get
information on the viability of his business. The data collected by Henderson is out of the scope

of this capstone project.

List of Figures

Figure 1: Wireframe of Homepage 13
Figure 2: Wireframe of Category Page 13
Figure 3: Github homepage 21

Figure 4: Creating a github repo 21
Figure 5: Your repositories list on github 22

Figure 6: Screenshot of setting up repo 1 23
Figure 7: Screenshot of setting up repo 2 23
Figure 8: Screenshot of setting up repo 3 24
Figure 9: Screenshot of setting up repo 4 25

Figure 10: Screenshot of setting up repo 5 25

Figure 11: Screenshot of deploying with Heroku 1 25
Figure 12: Screenshot of deploying with Heroku 2 26
Figure 13: Screenshot of deploying with Heroku 3 26
Figure 14: Screenshot of deploying with Heroku 4 27
Figure 15: Screenshot of deploying with Heroku 5 27
Figure 16: Screenshot of deploying with Heroku 6 28
Figure 17: Screenshot of deploying with Heroku 7 28
Figure 18: Screenshot of configuring the database 1 28
Figure 19: Screenshot of configuring the database 2 29
Figure 20: Screenshot of configuring the database 3 29
Figure 21: Screenshot of configuring the database 4 30
Figure 22: Screenshot of configuring the database 5 30
Figure 23: Screenshot of configuring the database 6 31
Figure 24: Screenshot of configuring the database 7 31
Figure 25: Screenshot of configuring OAuth 1 32

Figure 26: Screenshot of configuring OAuth 2 32
Figure 27: Screenshot of configuring OAuth 3 33
Figure 28: Screenshot of configuring OAuth 4 33
Figure 29: Screenshot of configuring OAuth 5 34
Figure 30: Screenshot of configuring OAuth 6 34
Figure 31: Screenshot of configuring OAuth 7 34
Figure 32: Screenshot of configuring OAuth 8 35
Figure 33: Screenshot of configuring OAuth 9 35
Figure 34: Screenshot of configuring OAuth 1036
Figure 35: Screenshot of configuring OAuth 1136
Figure 36: Screenshot of setting up AWS 1 37
Figure 37: Screenshot of setting up AWS 2 37
Figure 38: Screenshot of setting up AWS 3 38
Figure 39: Screenshot of setting up AWS 4 38
Figure 40: Screenshot of setting up AWS 5 39
Figure 41: Screenshot of setting up AWS 6 39
Figure 42: Screenshot of setting up AWS 7 40
Figure 43: Screenshot of setting up AWS 8 40
Figure 44: Screenshot of setting up AWS 9 41
Figure 45: Screenshot of setting up AWS 10 41
Figure 46: Screenshot of setting up AWS 11 42
Figure 47: Screenshot of setting up AWS 12 42
Figure 48: Screenshot of setting up AWS 13 43
Figure 49: Screenshot of setting up AWS 14 43
Figure 50: Screenshot of setting up AWS 15 44

Figure 51: Screenshot of setting up email with SendGrid 1 45
Figure 52: Screenshot of setting up email with SendGrid 2 45
Figure 53: Screenshot of setting up email with SendGrid 3 50

1. Introduction

The average wait time at the DMV is 45 minutes, most doctor’s appointments start with filling
out paperwork, and most companies require new employees to come in to present their Passport
before they can start working. These are all just a few examples of places where Americans
waste time dealing with paper copies of personal identification documents. The internet could be

used to host all of these documents and save people time and money.

1.1 Problem Statement

Identyti is a Darden School of Business start-up seeking to change the way the world shares and
receives identification documents. Currently, most identification documents (drivers license,
passport, insurance card, etc) are handled as strictly hard copies, and the process for getting those

documents can be difficult.

While there are currently some ways to verify the validity of someone’s driver’s license online,
those are predominately used for the sale of alcohol and other restricted substances and not for
any official government identification (Larson, 2019). This means that people must keep hard
copies of these documents and all the documents they need to apply for them, which can be
burdensome. One could digitize their own documents, but that leads to another problem; there is
no system designed for digital storage of sensitive personal documents. WIRED magazine
recently published a “Guide to Your Personal Data (and Who Is Using It)” in which they detailed
how companies like Google are collecting and storing every click and keystroke made in their
web browser, store this data along with user identities, and use it to serve targeted ads to the
users (Matsakis, 2019). In other words, major document storage companies (Google, Dropbox)
collect data on their users and leverage that data for capital gain. Storing private documents on

those servers makes users vulnerable.

This means people have no choice but to retain hard copies of all of their personal documents
which can be difficult for those who move around a lot (i.e., college students and those in the
military). Simple tasks like going to the DMV are so complicated that there are articles online
like ‘How to Get Through the DMV with your Sanity Intact’ that include steps like ‘Gather All

the Paperwork You Need’ highlighting the fact that both going to the DMV and gathering

paperwork are much more difficult than they need to be (Klosowski 2013). The Identyti system
will be beneficial because it will allow for the simplification of processes such as renewing a

driver’s license, giving people back the free time to focus on what is important in life.

Identyti also provides benefits for enterprise clients. A major problem that large enterprises face
is the sheer size of information they have to process and handle. Using Identyti, enterprises have
the ability to create an account in order to manage all of their employees’ data. For example,
when onboarding a new employee, an enterprise client could request the necessary documents,
such as identification and tax reports, from the new employee through Identyti. In this way,
Identyti creates a secure and simple path of communication between enterprises and employees
for personal, confidential documents. Instead of requiring users to carry physical documents and

submit them to enterprises, Identyti creates a channel to share these documents electronically.

1.2 Contributions

The product, created as part of this capstone project, allows users to upload personal documents
to the site and access them whenever needed; the site also allows enterprises to create accounts
and access documents from users with their approval. The rest of this thesis is organized into
four sections. In Section 2, the current options for online document storage are discussed.
Section 3 shows our approach to address the aforementioned problem stated, our web-based
application, as well as the system design. The results of our work are discussed in Section 4.
Finally, Section 5 concludes this thesis and section 6 discusses the future of the work performed

for this class and how Henderson may use the application built.

10

2. Related Work

There are file storage systems that already exist, like Google Drive and Dropbox. Those
systems have carved out a niche for themselves in the world of sharing files in order to work on
them concurrently. These systems, that are already in place, do not focus on storage of important
and personal documents like Identyti. This is a key distinction, where an important gap in
electronic file storage systems can be filled by Identyti. Current file storage systems do not have
the ability to securely and conveniently organize and store personal documents with the intention
to share those files with the necessary parties when necessary. As more and more of daily life is
overtaken by technology, there is a growing need for personal documents to be stored
electronically. Employee onboarding and DMV applications, for example, can all happen online
now. Normally, these processes are convoluted and vary greatly from case to case. When these
processes are ported online, they are made much more straightforward and case-specific very
easily. With this conversion growing in popularity, it is also important to have the ability to
access and share personal documents online to complete these processes. Currently, there is no
system in place that can handle these specific use cases with ease. Identyti provides a clean and

obvious solution to this problem.

3. System Design

Identyti seeks to help users keep their private documents private, and to make everyone’s life a
little bit easier. Our deliverable is a proof-of-concept showing documents that can be stored
securely on the internet, which will be used when meeting with investors and potential
stakeholders to garner support for this technology. As such, the fundamental goal of our project

was to build a document storage service that is secure, easy to navigate, and allows users to

11

access the product on mobile and desktop devices. We accomplished this by creating a Django
application that had a flexible user interface for being accessed on mobile devices. Users are able
to upload, view, and download their documents on demand. This product also supports enterprise
accounts which can issue personal documents and tell users what they need to have to apply for

such documents.

Because the documents uploaded to this platform are typically highly sensitive, data security was
a critical challenge to tackle. Login authentication is performed by AuthO which already provides
an array of mitigating web-app security tools such as anomaly detection and force email
verification (Poza 2018). Additionally, in order to allow clients to access their data from
anywhere, the documents they upload will be stored in the cloud, specifically in an AWS S3
bucket. When uploading the documents, the application will save certain metadata associated
with the document allowing the client to easily search/sort/categorize the document, making it
convenient and faster to find it later. The International Data Corporation, is a provider of market
intelligence, conducted a study on their workers to gauge how much time they spend weekly
looking for physical documents. In a group of 1200 workers, IDC found that “they spend an
average of 4.5 hours a week looking for documents” (Biddle, 2017). Since Identyti is targeted at
both consumers and enterprise clients alike, searching for these documents on Identyti, whether
the client is an individual or a business, will be much faster than searching for physical

documents.

One concern for storing sensitive data in the cloud is that these services can be compromised.
However, in order to mitigate this issue, data stored in S3 is encrypted. This ensures that even if

the bucket is compromised, only encrypted data can be recovered. By storing these encrypted

12

files in the cloud, Identyti offers a secure and fast solution for clients, allowing them to easily

share their documents with enterprises.

3.1 System Requirements

Requirements were very important in our design of this product because they helped us
communicate with our customer and ensure that we were on the same page about what needed to
be developed. They also helped us communicate as a team to ensure that we were all working

towards the same goals; they were also useful for dividing up the work on system features.

To fulfill our goals we’ve identified these requirements:

Minimum (Completed by the end of Fall 2019)

e Asauser, [should be able to create a customer account, so that I can access persisted
data.

e Asauser, I should be able to login to my account, so that I can access persisted data.

e Asauser, [would like to be able to upload my documents, so that I can store them for
future use.

e Asauser, [would like my documents to be stored, so that I can access them for future
use.

e Asauser, [should be able to view my documents, so that I feel confident my documents
are stored.

e Asauser, [would only like my documents to be accessed by those I have authorized, so
that I feel confident in the security of my personal information.

e Asauser, [would like to be able to easily locate my documents, so that I can find what I
need when I need it.

e Asauser, [should be able to retrieve my documents, so that I can use them when I need
them.

e Asauser, [should be able to access the application from a mobile device, so that I can
upload or share documents on the go.

13

Desired (Completed by the end of Spring 2020)

e Asauser, I should be able to search for my documents, so that I can easily find
documents when I need them.

e Asauser, I should have different options for sorting and filtering my documents, so that I
can easily find relevant documents when I need them.

e Asauser, I would like the app to recognize what type of document I am uploading
(identification, medical, etc) , so that it is easy for me to organize and find my documents
later.

e Asauser, [should be able to create an enterprise account.

e Asauser, I should be able to authorize other users to view my documents, so that I can
provide my documents when necessary.

e As an enterprise client, I should be able to request documents from other users, so that I
can validate their identity and provide access to appropriate resources.

Optional Requirements (not completed)

e Asauser, [should be able to limit the time another user can view my document

e As an enterprise client, I should be able to create a new type of document with a list of
required documents needed

e Asauser, I should be able to identify which required documents I am missing
e Asauser I should be able to delete my documents

e Asan admin, I should not be able to view user’s documents

3.2 Wireframes

Wireframes were another important tool in communicating with our client. Our client had a
background in Product Management at a tech company and already had an image in mind for the
product, so he provided wireframes for us. Below are wireframes he gave us for the customer

views.

14

A Web Page

(‘ -) e ‘Q https://www.identytiio/profile/henderson

Identytiic

Q search i
. O - —
I n Financial Insurance
Insurance
. Financial
m
Medical Academic / Work History Legal Medical
Academic
Legal
Q search .
Figure 1
A Web Page

(- -" c ‘Q\hllpsNwwwwﬂenlyli\ciprufi!e/hendersun

Identytiio

Driver's License

-

Passport

Birth Certificate

Social Security Card
Alert

You are missing one

Military 1D

decument for your Driver's
License. Upload now?

o 1

Figure 2

Driver's License

Passport

Birth Certificate

Social Security Card

Military ID

Alert

You are missing one document for your Driver's
License. Upload now?

No Yes

|

Q search L]

L A

15

3.3 Sample Code

3.3.1 Models

Each model corresponds to a table in the database.

#database entry for enterprise client

class Enterprise (models.Model) :

name models.TextField(primary key=True)

code models.TextField (blank=True)

email contact = models.EmailField() # primary contact for the client

The enterprise model contains a field for the name of the enterprise, a unique code that enterprise
can use to sign up (stored as a sha256 hash), and an email for the primary contact at that

company.

class Document (models.Model) :

document = models.FileField(upload to=user directory path,
storage=MediaStorage ())

datetime = models.DateTimeField (default=now)

name = models.CharField(max length=256, default="xxxx')

size = models.IntegerField(default=-1)
IDENTIFICATION = 'ID'

LEGAL = "LG"

MEDICAL = "MD"

INSURANCE = "IN"

16

FINANCIAL = "FN"

WORK_ACADEMIC = "WA"

TYPEOF DOCUMENT CHOICES = (

(IDENTIFICATION,

(LEGAL, 'Legal'),

(MEDICAL, 'Medical'),

(INSURANCE, 'Insurance'),

(FINANCIAL, 'Financial'),

(WORK_ACADEMIC,

type of document

max_ length=2,

default=IDENTIFICATION,

owner

models.ForeignKey (Profile,

'Identification'),

'Work & Academic'),

models.CharField(

choices=TYPEOF DOCUMENT CHOICES,

on_delete=models.SET NULL, null=True)

The document model stores key information about the document that helps us access it in AWS

S3, where it is stored. The main details we store are the owner, type of document, uploaded time,

filename, and size. It also has a foreignkey of a profile which is the owner of the document.

When saving this model, it uploads the document’s content to our specified S3 bucket under the

owner’s name and type of document.

class Profile (models.Model) :

user

models.OneToOneField (User,

on_delete=models.CASCADE)

17

is_enterprise = models.BooleanField(default=False)

enterprise = models.ForeignKey (Enterprise,
on_delete=models.CASCADE,null=True, blank=True)

The profile model has a one to one relationship with the Django user model which we used for
authentication. There is also a field that distinguishes whether it is a customer account or an
enterprise account. Ifit is an enterprise account, there will be a foreign key that corresponds to

an entry in the enterprises database.

3.3.2 Views

These are some of our more important and more complicated view functions. These function as

the controller, which handles all the intense logic, in Django.

Uploading a document from index.html
def upload file(request):
current category = request.POST['current category']
if current category:
form = DocumentForm(request.POST, request.FILES)
if form.is valid():
document = form.save (commit=False)
document.user = request.user
document.owner = Profile.objects.get (user=request.user)
document.save ()
form = DocumentForm(initial={'type of document': current category})

docs =
Document.objects.all () .filter (owner=Profile.objects.get (user=request.user))

return render (request, 'identyti app/category file view.html',
{'form': form, 'cat': current category, "docs": docs})

if request.method == 'POST':
form = DocumentForm(request.POST, request.FILES)

if form.is valid():

doc = form.save (commit=False)

doc.user = request.user

doc.owner = Profile.objects.get (user=request.user)
doc.name = doc.document.name

doc.size = doc.document.size

doc.save ()

form = DocumentForm/()
else:
form = DocumentForm/()

return render (request, 'identyti app/index.html', {'form': form})

The upload_file view first checks for a current category. If there is a current category, this means
we must render a current category page rather than the index page after uploading a given file.
Once this is determined, the file is taken from the request object. From the request, a Document
model is created for the file and the file’s info is stored in this model object. The object is
assigned to the user who has uploaded it. After this, the response is rendered according to the

determination of the current category at the beginning.

Search for documents for a user

def search (request):

19

if request.method == 'GET':

query = request.GET.get ('search-bar')

docs =
Document.objects.all () .filter (owner=Profile.objects.get (user=request.user))
if query != None:

results = docs.filter (document icontains=query)

return render (request, "identyti app/search.html",
{"results":results})

else if filter tags
elif "namebtn" in request.GET:
show name elements
results = docs.order by ('name')

return render (request, "identyti app/search.html",
{"results":results})

elif "datebtn" in request.GET:
show date elements
results = docs.order by('datetime')

return render (request, "identyti app/search.html",
{"results":results})

elif "sizebtn" in request.GET:
show size elements
results = docs.order by('size')

return render (request, "identyti app/search.html",
{"results":results})

elif "showallbtn" in request.GET:
show all elements
results = docs

return render (request, "identyti app/search.html",
{"results":results})

Else return blank

20

else:
return render (request, "identyti_app/search.html", {1
Incorrect render
else:
print ("error")

return render (request, "identyti_app/search.html", {})

The search view handles searching and filtering documents. First, the query is taken. If a filter
button was clicked on, the query will have the value ‘None.’ If there was a search, the query will
be the content of that search. Then the user’s documents are represented by the variable docs.
The view checks if there is a search query. If there is, the view returns a filtered list that matches
the search query. If there is no search query, the view checks which button was clicked.
Whichever button was clicked will sort the docs by the specified button, then return the filtered

docs.

def enterprise sign up(request) :
if request.method == 'POST':
form = EnterpriseSignUpForm(request.POST)
if (form.is valid):

#Check if the confirmation code 1is correct

raw_code = request.POST.get('code','")
encoded code = sha256(str(raw_code) .encode('utf-8"))
enterprise = request.POST.get ('enterprise', '')
try:
actual = Enterprise.objects.get (name = enterprise)

21

except ObjectDoesNotExist:

return render (request,
'identyti app/enterprise sign up.html', {'form': form, 'no query':True})

if (encoded code.hexdigest() == actual.code):

#Creates a user object and attaches it and an Enterprise to
an EnterpriseProfile

user = User.objects.create user(

username = request.POST.get('username',''),
password = request.POST.get ('password','"'),
email = request.POST.get ('email','"'")

user.save ()

profile = user.profile
profile.is enterprise = True
profile.enterprise = actual
profile.save ()

login (request, user,
backend='django.contrib.auth.backends.ModelBackend"')

#Rediects to index page.
return redirect('/")
else:

return render (request,
'identyti app/enterprise sign up.html', {'form': form, 'try again': True})

#Create a USER that has an Enterprise object and the
attributes

else:

form = EnterpriseSignUpForm ()

22

The enterprise sign up view function contains the code that creates an enterprise account and
associates it with the correct enterprise. This is done through verifying that the 4 digit code

provided by the user attempting to sign up matches the hashed code stored in the database.

3.3.3 Forms

class DocumentForm(forms.ModelForm) :
class Meta:
model = Document
<field in model> : <name you want displayed>
labels = {
"document": "Document",

"type of document": "Type of Document"

fields = (labels)

The document form is used to create a document object in the database when a user uploads a
document from the app. The Document entry has the information needed to retrieve the

document from S3.

class EnterpriseSignUpForm (forms.Form) :

username = forms.CharField(widget=forms.TextInput (attrs={'placeholder':
'JaneDoe'}))

enterprise =
forms.CharField (widget=forms.TextInput (attrs={'placeholder': 'My
Enterprise'}))

23

email = forms.CharField(widget=forms.TextInput (attrs={'placeholder':
'"Email'}))

password = forms.CharField(required = True,
widget=forms.PasswordInput ())

confirm Password = forms.CharField(required = True,
widget=forms.PasswordInput ())

code = forms.CharField(required = True,
widget=forms.TextInput (attrs={'placeholder': '0123'}))

This form is the one that is displayed when enterprise users are signing up. The information
collected by this form is passed to the enterprise_sign up view function to create a new

enterprise account.

class EnterpriselLogin (forms.Form) :

username forms.CharField (widget forms.TextInput ())

password = forms.CharField(widget = forms.PasswordInput())

The enterprise login form is used to collect the username and password of enterprise users in

order to authenticate them.

3.3.4 ML Model

Using sci-kit learn, the machine learning model was developed to be capable of categorizing
documents that users upload. In Identyti, there are six main categories that a document can be

classified as: Identification, Financial, Insurance, Medical, Work/Academic, and Legal.

class Classification:

def init (self):

24

def classify(self, file):

predicted = self.loaded model.predict (X new tfidf)
return self.doc_ types|[predicted[0]]
except:

return self.doc types[1]

try:
docs = []
docs.append (pytesseract.image to string(Image.open (file)) .strip(
))
X new counts = self.count vect.transform(docs)
X new tfidf = self.tf transformer.transform(X new counts)

By leveraging Google’s Tesseract OCR, which parses text information from images, the
Classification class first extracts the text information from the document the user uploads,
prepares the text information, runs it through the model, and returns the category. This simple

process is run every time a user uploads a document, making the process more streamlined.

The model was built using hundreds of test documents unique to each category. The text
information was extracted and input into the Naive Bayes classifier, which classifies based on

discrete features between the data.

count vect = CountVectorizer ()

X train counts = count vect.fit transform(info)

tf transformer TfidfTransformer ()

X train tfidf = tf transformer.fit transform(X train counts)

25

clf = MultinomialNB() .fit (X train tfidf, categories)

This small snippet of the code highlights the main building blocks of the model. Using the given
“info”, which is the text information extracted from the test data, this data is transformed to
prepare it for building the machine learning model. Finally, we combine this with “categories”,
which contains the labels for the given data (i.e. document 35 is an Identification document,
document 36 is a Financial document, ...) and fit this with the Naive Bayes classifier. This final

“clf” is the classifier used in Identyti.

3.4 Sample Tests

Tests are essential to developing and maintaining any application. They help us ensure that we
are implementing things correctly and they will also be important for the customer to verify that

the app is still working as expected.

This test verifies that when two enterprises are created, they do not have the same secret code:

def testCodeStored(self):

enterprisel = Enterprise.objects.create (name="Test Inc",
email contact="test@virginia.edu")

enterprise?2 = Enterprise.objects.create (name="Test2 Inc",
email contact="test@virginia.edu")

assert enterprisel.code is not None
assert enterprise2.code is not None

assert enterprisel.code != enterprise2.code

26

This test uploads a file to S3 and saves it as an entry in the test database, then verifies that the file

path was saved correctly.

def test document filepath ID(self):
num = random.random ()
form data = {
'type of document': "ID",
}
form files = {

'document': SimpleUploadedFile("test{0}.png".format (num), b'content
of the file'),

}

form = DocumentForm(data=form data, files=form files)
document = form.save (commit=False)

document.user = User.objects.get (pk=1)

document.owner = Profile.objects.get (pk=1)
document.save ()

assert str(document) == "testuser/ID/test{0}.png".format (num)

3.5 Code Coverage

We used coverage.py to measure our code coverage. To install it we ran ‘pip install coverage’
and ran ‘coverage run manage.py test’ to run the tests and ‘coverage html’ to create an html

report.

Our product reached 99% code coverage, only missing a few lines that are untestable due to their

random/secure nature or the fact they only are used on the heroku deployment.

27

3.6 Installation Instructions

Our source code can be found here: https://drive.google.com/file/d/1fAAG--

VXZQa3cmP4ZXUsMYIU8vhFrAiu/view?usp=sharing

This code uses Django, social-auth-app-django, boto3, django-storages, gunicorn, django-

heroku, and django-crispy-forms. These will automatically be installed by Heroku.

3.6.1 Setting up the Repo:

Skip this section entirely if you’ve been provided the code base within a non-organization
Github repo. You can also skip to the Create Repo and Upload section if you already have

a Github account.

Git and Github are important tools in software development. They allow for version control and
give an integrated system to back up code and restore it in case of computer failures. As such,
it’s good practice to store code in a github repo. This will also make CI/CD(Constant integration
and constant deployment) possible. This section outlines how to take a zipped folder and

upload it to github.

Begin by creating an account on https://github.com/ . Enter your desired username, email, and

password and solve the puzzle to confirm you are not a robot. Your password must be either at
least 15 characters long, or 8 characters with a number, an uppercase, and a lowercase. Once this
is filled in click the “Select Plan” button. This will move you forward to a plan selection page.

Select the ‘Individual’ and ‘Choose Free’ options:

28

On the next page select “skip this step.” Check your email for your github account verification
email and follow the instructions in the email. Sign in and go to the github Homepage by

clicking on the cat-like icon in the top left corner.

Create Repo and Upload: start here if you already have a Github account

On the home page select the “Start Project” button:

Learn Git and GitHub without any code!

Figure 3

You should now be seeing the form to create a new repository. Enter in the name of the
project(ie “Identyti”’) and a brief description. Select the “Private” option. Leave “Initialize this

repository with a README” unchecked. Click create.

29

Create a new repository

A repository contains all project files, including the revision history. Already have a proj
Import a repository.

Owner Repository name *
i FakeAccountd51~ / Identyti v

Great repository names are short and memorable. Need inspiration? How about turbo-

Description (optional)

Public

“#— Anyone can see this repository. You choose who can commit.

o [Private

) You choose who can see and commit to this repository.
Skip this step if you're importing an existing repository.

Initialize this repository with a README
This will let you immediately clone the repository to your computer.

Add .gitignore: None ~ Add a license: Nonev = (@)

Create repository

Figure 4

You now have a repository on Github! Congratulations!

Now on your own computer, find your zip folder and extract its contents to a location you can

find. The steps for this will vary based on your operating system.

Now choose one of the following two methods to upload your extracted files to the Github

Repository.

Github CLI(Linux): skip if using Windows or Mac and you are not familiar with the command

line

Use apt-get or a similar package manager to install git. Clone the repo and copy and paste the project

files into the folder created. Git add and commit those changes back to the repo.

Github Desktop(Windows, Mac): THIS IS THE PREFERRED OPTION FOR THOSE WITH

NO PRIOR TECHNICAL EXPERIENCE

We are now going to install Github Desktop. This is a tool which allows you to interact with github from
your desktop. If you already have, and are familiar with Github Desktop, Git CLI, or any
tool that lets you interact with Github remotely, feel free to skip these steps and use those

tools.

Navigate to https://desktop.github.com/ and click on the download link for your OS. Run the

downloaded executable file. If prompted click “Install Anyway” on Windows.

If prompted to sign in, sign in to the github account you just made. If not, sign in by going to the “File”
dropdown, and selecting “Options”. In the window that opens, click account(if necessary) and
enter your information to sign in. On the page that opens select the repo we just created and click

clone.

31

Q

Filter your repositories

Your repositories

e] FakeAccount451/Identyti

Clone FakeAccount451/ldentyti

Figure 5

Click show your files of your repository in Explorer. This will open a file explorer window that shows

your repo files. There should not be any files in the repo yet.

32

No local changes

There are no uncommitted changes in this repository. Here are some friendly suggestions for

what to do next

Open the repositary in your external editor
Select your editor in Options Open in Visual Studio Code

ository menu or Ctd| Shift A

View the files of your repository in Explorer

- Show in Explorer
Repository menu or Ctrl Shift|

Open the repository page on GitHub in your browser
pository menu or Ctrl| Shift| G

View on GitHub

Figure 6

In a separate file explorer window, navigate into the folder we extracted earlier. Click into the folders

until you see a list of files such as the following:

33

| ™~ ¥ | C\Users\amm2x\OneDrive\Documents\GitHub\ldentyti — O X
- Home Share View A e
i [-
f LJ Moveto > X Delete ~ o v Open o selectaall
.l Copy path = Edit Select none
t ick C Past = 1 N P rti
nacc:::izlc Ry R [#] Paste shortcut Copyito i Rename folii\gr ropf e & History o Invert selection
Clipboard Organize New Open Select
T » This PC » Documents *» GitHub » Identyti v O Search Identyti P
Custom Office 1™ [Name Date modified Type Size
el idea 2/8/2020 7:24PM File folder
engleeesh backlog 2/8/2020 7:24PM File folder
Game Design docs 2/8/2020 7:24 PM File folder
GitHub first_team_task 2/8/2020 7:24 PM File folder
Klei src 2/8/2020 7:24 PM File folder
League of Lege ' travis 2/4/2020 5:42 PM Yaml Source File
| Aptfil 2/4/2020 5:42 PM Fil
My Kindle Cont ,J R /41 e
< | deploy_rsa 2/4/2020 5:42 PM ENC File
0ss N
hfi deploy_rsa 2/4/2020 5:42 PM Microsoft Publishe...
Sent_To_BTI ¥| LICENSE 2/4/2020 5:42PM Markdown Source ...
ST | Procfile 2/4/2020 5:42 PM File
Testing ¥/ README 2/4/2020 5:42 PM Markdown Source ...
UiPath] requirements 2/4/2020 5:42 PM Text Document
Visual Studio 2(. 3
13 items ==

Figure 7

If you don’t see a “src” folder, you’re in the wrong section. My file path is along the lines of

Desktop/identyti_master/identyti _master/.

Copy all the files from this folder into the empty folder opened by Github Desktop. You can do this in
windows by clicking the explorer window with files, hitting ctrl+A, ctrl+c, switching explorers,

and hitting ctrl+v.

Return to github desktop. You should now see a long list of changes on the left like this:

34

Changes 300+ History

L 695 changed files

¢ idea\gitignore [#
¥ ideavidentytiiml
¥ idea\inspectionProfiles\profiles_settings.xml [+
z scxml 3]
¥ idea\modules xm|
? ideawesxml
4 travisymi [+
¥ Aptfile 2]
backlog\sprint1.md 2]
¥ backlogisprint10.md
¥ backlogisprint11.md
@ backlog\sprint12md [#
@ backlog\sprint13.md
¥ backlog\sprint2.md

¥ backlog\sprint3.md
¢ backlag\sprintd.md 3]
backlogisprints.md ¥
¥ backloghsprinte.md 3]
¥ backlogisprint?.md [+
¥ backlog\sprintd.md 3]
backlogisprint9.md [#
D e A (=]
[B) summary (requirca)

Description

1+

Figure 8

At the bottom of that list, enter into the summary box and type “First Commit.” Click “Commit to

master.”

#l acldlaml evrtamn ramniramaante rad

ral
B Escorit |

Description

i+

Commit to master

Figure 9

Click “Publish Branch”

C) rile Edit View Repository Branch Help

-

|5 Current repository Current branch & Publish branch
Identyti master Publish this branch to GitHub

Changes History

0 changed files

Figure 10

You now have successfully created a repo with all the files we need for deployment.

3.6.2 Deploying with Heroku:

Navigate to https://www.heroku.com/ and sign up for an account.

Click Create a new app on the homepage

36

to Heroku

account has been set up, here's how to get started.

Create a new app

Create your first app and deploy
your code to a running dyno.

Create new app

n

Create a team

Create teams to collaborate on
your apps and pipelines.

Looking for help getting started with your language?

Get started by reading one of our language guides in the Dev Center

Figure 11

Choose a unique app name and place it into the name box. Click create app

Create New App

App name

capstoned

capstone6 is available
Choose a region

BE= United States

@® Addto pipeline...

37

Figure 12

Heroku should navigate you to your app’s dashboard. If not already there, click “Deploy” at the
top. Next to “Deployment method”, click “Connect to Github”. In the section that opens, click

“Connect to GitHub”.

i this app to a pipeline Add this app to a stage in a pipeline to enable additional features

ite a new pipeline or choose an existing

Pipelines let you connect multiple apps n @ Pipelines connected to GitHub can en
and add this app to a stage in it . 0 . B
8 - together and promote code between them apps, and create apps for new pull rec
[] Learn more ® ® Learn more

@ Choose a pipeline

sloyment method GitHub

; roki Container Reg
v Connect to GitHub oo

nect to GitHub View your code diffs on GitHub

nect this app to GitHub to enable code Connect your app to a GitHub repository to see commit diffs in the activity log

and deploys

Deploy changes with GitHub

Connecting to a repository will allow you to deploy a branch to your app.

Automatic deploys from GitHub

Select a branch to deploy automatically whenever it is pushed to.

Create review apps in pipelines

Pipelines connected to GitHub can enable review apps, and create apps for new pull requests, Learn more.

‘Connect to GitHub

Figure 13

This should open a prompt that asks you to authorize Heroku to access your GitHub. If this
window does not open your browser may be blocking pop-ups. Click Authorize in this new

window.

38

9 Authorize application - Google Chrome

@ github.com/login/oauth/authorize?response_type=code&client_id=2... &

B o ()

Authorize Heroku Dashboard

Heroku Dashboard by heroku c
wants to access your FakeAccount451 account

Repositories v

Public and private

Authorize heroku

Authorizing will redirect to
https://dashboard.heroku.com

@ Not owned or operated by GitHub
(® Created 6 years ago

28 More than 1K GitHub users

Learn more about OAuth

Figure 14

Heroku should now show you a search bar. Enter your repo name in that search bar and search

for your. Click “Connect” next to your repo when it shows up

Click connect

O Personal ¢ > (@ capstoneé

Overview Resources Deploy Metrics

Add this app to a pipeline

Create a new pipeline or choase an existing
one and add this app 1o a stagein it.

Deployment method

Connect to GitHub

Connect this app to GitHub to enable code
diffs and deploys.

Activity Access Settings

Open app

Add this app to a stage in a pipeline to enable additional features

Pipelines let you connect multiple apps

v together and promote code hetween them

® Learn more.

@ Choose a pipeline

GitHub

Connect to GitHub

Search for a repository to connect to

@

—

® Pipelines connected to GitHub can enable review
apps, and create apps for new pull requests.

L ® Learn more

Con

Use Heroku CLI

wd FakeAccount451 2 I iden

Missing a GitHub organization? Ensure Heroku Dashboard has team access.

I FakeAccount451/Identyti

Figure 15

Click the box “Enable Automatic Deploys”

Automatic deploys

Enables a chesen branch to be automatically
deployed to this app

Enable automatic deploys from GitHub

More ¢

Every push to the branch you specify here will deploy a new version of this app. Deploys happen automatically: be sure that this

branch is always in a deployable state and any tests have passed before you push. Le

Choose a branch to deploy
¥ master

Wait for CI to pass before deploy

rn more,

Only enable this option if you have a Continuous Integration service configured on your repo.

Enable Autom: Deploys

Figure 16

Next to the Manual deploy section click “Deploy Branch”

40

Manual deploy Deploy a GitHub branch

Deploy the current state of a branch to this This will deploy the current state of the branch you specify below. Learn more.

app. Choose a branch to deploy

P master ¢z Deploy Branch

Figure 17

After a few minutes, you should get the message that your app was successfully deployed. Click

View! You should see a working app.
3.6.3 Configure the Database:

Next we need to set our database. Heroku provides a free Postgres Database for projects to use,
which is what we’ll use. On your Application’s Dashboard click “Overview” and then “Heroku

Postgres”

O Personal ¢ > [capstoneb

GitHub O FakeAccount451/Identyti EOEuFBTlg

Qverview Resources Deplo Metrics Activity Access Settings
POy y B

Installed add-ons @XSJEERN Configure Add-ons @

1] | Heroku Postgres 2 Hobby Dev
L

postgresql-corrugated-19303

Figure 18

41

On the new page click “Settings”

@ Datastores > 'P postgresql-corrugated-19303

SERVICE heroku-postgresql PLAN hobby-dev B

Settings

Figure 19

Next to Database Credentials click “View Credentials”

wsiores > WD posagresa comugated 19000

ADMINISTRATION

Jet crecheryiahs for mrarud conmections 5o tha detatune = .

Figure 20

You should see something like this:

Database Credentials

Get credentials for manual connections to this database. Cancel

Please note that these credentials are not permanent.

Heroku rotates credentials periodically and updates applications where this database is attached.

Host ec2-54-197-34-207 compute-1.amazonaws.com

Database d94226p88jackq

User xmhajeebjywknx

Port 5432

Password 5497¢6d51ebe9901793c5e241d877db531504cc095275M9a88b3c15(b4c3708 s
URIL postgres: [[xmhajeebiywknx: 5697 c6d51ebeS20f793c5e 24 1d877db5 3504cc99527519a88b9c 15fb4c3708@ec2-54-197-34-207 compute- 1.amazonaws.com: 5432 d94226p88jackq &
Heroku CLI heroku pg:psql postgresql-corrugated-19303 --app capstone6

42

Open Github in a new tab and navigate to your repo. Inside the repo go to the “src/identyti”

folder, and then “identyti” folder, then “settings.py”. Hit the small pencil icon on the top right of

the file to edit the file.

FakeA nt451 / Identyti © Unancr ~ * S

witer » |dentyti wettings py

Figure 21

Scroll to the “Database” section of the code. If you want, you can use your browser’s find

function to search, or you may look yourself. It looks like this:

if "HEROKU' in os.environ:
DATABASES = {
‘default': {
8: "ENGINE': 'django.db.backends.postgresgl_psycopg2’,
84 "NAME': 'd35rolpv2jjgpg’,
5 'USER": 'zsdpylesfkfkre',

'PASSWORD': '95e2ee896550c76aae8ad549e2be89cb54ddase48c487787a2574df9bfal722e”,

"HOST": 'ec2-174-129-253-157.compute-1.amazonaws.com’,
"PORT': '5432°',

}
}
else:
DATABASES = {
o3 ‘default': {
94 '"ENGINE': 'django.db.backends.sqlite3’,
S 'NAME': os.path.join(BASE_DIR, 'db.sglite3'),
¥
7 }
Figure 22

43

Now, we’re going to copy and paste values from our Heroku credentials into this file. Replace
the NAME, USER, PASSWORD, and HOST sections under the if ‘HEROKU?’ line. Name will
be called “Database” in your credentials. It is important to place these values within a set of

single quotation marks when you change them.

if 'HEROKU' in os.environ:
DATABASES = {
‘default’: {
'ENGINE': 'django.db.backends.postgresql_psycopg2’,
—"'NAME': 'd3Srolpv2jijapg’,
— 'USER': ‘zsdpylesfkfkre’,
= "PASSWORD": '95e2ee896550c76aae8ad54%e2be89¢cb54ddas5ed48c487787a2574df9bfal722e"’,
———'HOST': 'ec2-174-129-253-157.compute-1.amazonaws.com’,
'PORT': '5432°,

)
}
else:
DATABASES = {
‘default”: {
'ENGINE': ‘django.db.backends.sqlite3’,
‘NAME*': os.path.join(BASE_DIR, ‘db.sqlite3’),
}
)
Figure 23

Hit “commit changes” at the bottom of the file

sl Commit changes

& O Commt dwrectly to the ssster branch

11 Create a new branch for this commt and start 3 pull request. Lea

C.’n(d

44

Figure 24

We’ve now configured our database to use Heroku’s provided Postgres Database.

3.6.4 Configure OAuth:

We use Google OAuth to sign in most users for this application. We’ll have to make some small

changes to the code to configure OAuth for this new deployment.

Begin by going to https://console.cloud.google.com/ and signing in with google.

Confirm your country and agree to the Terms of Service.

Home » Products > Google Identity Platform > Guides ﬁjﬁ(ﬁﬁj
Using OAuth 2.0 to Access Google APIs

Google APIs use the OAuth 2.0 protocol [for authentication and authorization. Google supports common OAuth 2.0
scenarios such as those for web server, client-side, installed, and limited-input device applications.

To begin, obtain OAuth 2.0 client credentials from the Google API Console [4. Then your client application requests an
access token from the Google Authorization Server, extracts a token from the response, and sends the token to the
Google APl that you want to access. For an interactive demonstration of using OAuth 2.0 with Google (including the
option to use your own client credentials), experiment with the OAuth 2.0 Playground.

Figure 25

45

) Google Cloud Platform

Welcome Amanda!

Create and manage your Google Cloud Platform instances, disks, networks, and other
resources in one place.

Country

United States

Terms of Service

| agree to the Google Cloud Platform Terms of Service, and the terms of
service of any applicable services and APlIs.

AGREE AND CONTINUE

Figure 26

Click Credentials -> Create . This will open a dialogue that will allow you to create a project that

uses Google’s Services.

© Toview this page, select a project. CREATE

Figure 27

46

Enter a project name and click create.

New Project

You have 12 projects remaining in your quota. Request an increase or
delete projects. Learn more

MANAGE QUOTAS

Project name *
myProject &

Project ID: black-caster-267700. It cannot be changed later. EDIT

E Location *
~ " Bh No organization BROWSE

Parent organization or folder

CREATE CANCEL

Figure 28

Next select the menu button in the top left corner, select API’s & Services, then Credentials.

47

Google Cloud Platform & myProject v

ﬂ Home
g{ Marketplace
& Biling
—iP] APls & Services >

Dashboard

¥ Support > Library
- Cradenti

O 1AM &admin >

OAuth consent screen
= BEttifg Atarted Domain verification
e Security » Page usage agreements
COMPUTE
‘® App Engine >
{5} Compute Engine >
@ Kubernetes Engine >

(] Cloud Functions

)) Cloud Run

STORAGE

@ Bigtable

Figure 29

First you will need to confirm ownership of your domain, click domain verification on the left,
enter your domain name and click Add Domain. Copy your heroku domain into the box. It will

ask you if you would like to verify, choose ‘take me there.” This will open a new tab.

On the new page, click “Add a Property” and then “Alternate methods”. Choose the “HTML

tag” option. This will open a box that has a tag that looks like this:

Verify your cwnership of https: com/. Learn more.

Your Geogle Account will be recorded in Google's systems as an official owner of this property.
Note - your ewnership information will be stored and be visible to other owners (both current and future).

Recommended method Alternate methods

@ HTML tag
Add a meta tag to your site's home page.

1. Copy the meta tag below, and paste it into your site's home page. It should go in the <head> section, before the first <body> section.
-site-veri ation" ent="i- sw4TwUg3nNQt

» Show me an example
2. Click Verify below.

To stay verified, don't remove the meta tag, even after verification succeeds

Figure 30

In a separate tab, open Github and then navigate into the “src/identyti” folder, than
“templates/identyti_app”, and finally “base.html” and click the pencil to edit. There should

already be a line there that looks like this

<meta name="google-site-verification" content="Y12J7ZCfapFtXQy3tXZQ7iRMBkUs3-J1Yhz2sHqo4DI" />

Figure 31

Replace that line with your new one, making sure to keep the indentation the same. Click
“Commit changes” at the bottom. Wait for a few minutes as Heroku creates and deploys a new

build. You can check the logs on your heroku dashboard to see when these changes are deployed.

Return to the “Webmaster Central” tab and hit “Verify.” You should see a screen like this:

Webmaster Central -

p Great job. https:/icapstone6.herokuapp.com/ is now verified! You can now use Google services for your property such as Search Console

\ars to hitps:/capstones,herokuapp.com/

Figure 32
49

You can close out of this tab now, and return to your Domain Verification tab.

Chose OAuth consent screen from the left menu. Choose external and then fill in your

application name and homepage and click save.

Add scope

Authorized domains

To protect you and your users, Google only allows applications that authenticate using
OAuth to use Authorized Domains. Your applications' links must be hosted on Authorized
Domains. Learn more

mydomain.com]

example.com

Type in the domain and press Enter to add it

Application Homepage link
Shown on the consent screen. Must be hosted on an Authorized Domain.

l https://fnydomain.com

Application Privacy Policy link
Shown on the consent screen. Must be hosted on an Authorized Domain.

https:// or http://

Application Terms of Service link
Shown on the consent screen. Must be hosted on an Authorized Domain.

https:// or http://

| | su for verification | Cancel

Figure 33

Next click on the credentials tab, click + CREATE CREDENTIALS at the top and select OAuth
Client ID. On the next page select Web Application and in the Authorized URI’s section add
your domain (using https://) and in the authorized redirect URIs section add your domain with
/google-oauth2/ on the end of it and /complete/google-oauth2/. It should look like the ones below

except you will not need localhost on yours

50

URIs

URIs
http://localhost:8000/complete/google-oauth2/
http://localhost:8000
http://localhost:33106/complete/google-oauth2/
http://localhost:33106

https://cpteamé-identyti.herokuapp.com/google-oauth2/

https://cpteamé-identyti.herokuapp.com
ps://cpteamé-identyti.herokuapp.com/complete/google-oauth2/

http://cpteamé-identyti.herokuapp.com 1tp://cpteamé-identyti.herokuapp.com/complete/google-oauth2/
-+ ADD URI + ADD URI
Figure 34

Now click the Create button at the bottom of the page. You will get a pop up with a set of

credentials. Leave that open.

Now in your Github tab, find the settings.py file again, and click to edit. Scroll until you find the
lines with “SOCIAL_AUTH_GOOGLE OAUTH2 KEY” and

“SOCIAL_ AUTH GOOGLE OAUTH2 SECRET”.

LOGIN_URL = '/auth/login/google-oauth2/"
LOGIN_REDIRECT_URL = '/*

LOGOUT_REDIRECT_URL = */'
SOCTAL_AUTH_URL_NAMESPACE = ‘'social’
AUTH_PROFILE_MODULE = 'identyti_app.Profile’

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = '2846@3850335-fpcvmpreuo21869h7081ho6@sdlams51.apps.googleusercontent.com’

SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = 'kR@97Al1N1BBxMkXhbHI8WAS'
django_heroku.settings(locals(), test_runner=False, staticfiles=False)
Figure 35

Change those values to match the credentials provided by Google.
SOCIAL_AUTH GOOGLE OAUTH2 KEY will hold the value Google calls “Your Client ID”

and SOCIAL_AUTH _GOOGLE OAUTH2 SECRET will hold “Your Client Secret”. Be

51

careful place these values inside a set of single quotes. Once you’ve made your changes, click

“Commit changes.”

Once Heroku deploys these changes you should be able to log in to your application with

Google.

4.6.5 Setting up AWS

We use AWS to host user’s sensitive files. We made this decision because AWS has tried-and-
true security solutions, and are a safe bet to keeping private data private. As such, you’ll have to
configure an S3 bucket to hold important data in and an IAM account to upload that data. We’ll

do that here.

Start by going to https://aws.amazon.com/ . Click “Create an AWS Account” in top the right.

aWS Contact Sales Support = English ~ My Account = © Create an AWS Account

—

Products Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer Enablement Events Explore More Q

Figure 36

Follow the steps to create an account. You will have to provide a credit card-- AWS should not

charge you beyond a basic “test charge” that will be quickly refunded.

When prompted choose the “Basic” plan.

52

AWS offers a selection of support plans to meet your needs. Choose the support plan that
best aligns with your AWS usage. Learn more

Basic Plan

Free

« Included with all
accounts

o 24x7 self-service access

to AWS resources

» For account and billing
issues only

= Access to Personal
Health Dashboard &
Trusted Advisor

]

Developer Plan
From $29/month

For early adoption,
testing and development

Email access to AWS
Support during business
hours

1 primary contact can
open an unlimited
number of support cases

12-hour response time
for nonproduction
systems

Lo ‘ J
Business Plan

From $100/month

For production workloads
& business-critical
dependencies

24/7 chat, phone, and
email access to AWS
Support

Unlimited contacts can
open an unlimited
number of support cases

1-hour response time for
production systems

Need Enternrise level siinnort?

Figure 37

This gives you access to AWS’s free tier. AWS gives you 12 months of free tier usage, which
should work for early stages of the product. After that, you’ll need to look into using paid

options.

JUMP HERE IF YOU ALREADY HAVE AN AWS ACCOUNT

Click “Sign into the Console”. Follow the steps to sign in. This will take you to your AWS

console dashboard. Click “Services”

53

Services ~ Resource Groups v *

AWS Management Cons

Figure 38

This will open up a Ahuge selection of services. We only care about s3 right now. Click the S3
button under “Storage”

{‘ﬁs rvic Resource Groups ~ *

History

Console H

—
: 4 L
At

EC: AWS IQ @

LIghisa s Support

Managed Services

K
" (= = o)
1 a0
3ot Amazon Managed Blockchain
} 3¢)
' A 1 Re _
AV
(ind Station
we B
" Amazon Brakel (7
S3
SX =
S o rr
S3 Glace e
AWS Organizations
Storage Gateway " ia
. CloudWatch
AV ckup —

AWS Auto Scaling

54

Figure 39

Click “Create bucket”

*

Resource Groups ~

Amazon S3

83 buckets

| Buckets

Batch operations

Q Search for buckels
Access analyzer for
83

+ Create bucket

Block public access
(account settings)

Prevent S3 objects from being deleted for a predefined retention period with S3 Object Lock. Learn more »

All access types

0 Buckets O Regions c

Feature spotight @) You do not have any buckets. Here is how to get started with Amazon

g
|]

Create a new bucket

Buckets are globally unique containers for
everything that you store in Amazon S3.

Leamn more

83

|
Upload your data

After you create a bucket, you can upload your
objects (for example, your photo or video files)

Leam mere

o

Set up your permissions
By default, the permissions on an object are private.

but you can set up access control palicies ta grant
permissions o others

Learn more

Figure 40

Enter a name for this bucket. AWS requires all bucket names to be unique across a region, so
you may have to try a few names. Once you have a name, choose US-east-1(US East N.
Virginia) as your region. THE CODE IS NOT GUARANTEED TO WORK ON OTHER
REGIONS. Click “Next”. Click “Next” again without selecting anything on the Configure
Options page. The first box on the “Set Permissions” page should be checked. If it is not, check
it. Make sure the drop down at the bottom is marked “Do not grant Amazon S3 Log Delivery

group write access to this bucket”. Click “Next”. Your review should look something like this:

55

Create bucket

@ Name and region @ Configure options @ Set permissions

Versioning Disabled
Server access logging Disabled
Tagging 0 Tags
Object-level logging Disabled
Default encryption None
CloudWatch request metrics Disabled
Object lock Disabled

Permissions

Block all public access
On

— Block public access to buckets and objects granted through new access control lists (ACLs)
On

— Block public access to buckets and objects granted through any access control lists (ACLs)
On

— Block public access to buckets and objects granted through new public bucket or access point policies
On

— Block public and cross-account access to buckets and objects through any public bucket or access point policies
On

System permissions Disabled

Create bucket

Figure 41

Click create bucket.

Inside the bucket click “Create Folder” and create a folder titled “media”. Don’t worry about

encryption(stick with “None(use Bucket Settings)”).

Next we’re going to create an IAM user so we can add and remove things from this bucket.

Click the Services button in the top left again, search for “IAM”

Resource Groups ~

History ‘ 1AM Group A-Z
Consocle Home
M @ Compute [:C Customer Enablement @ Machine Learning Application Integration
83 EC2 AWsIQ @ Amazon SageMaker Step Functions
Lightsail (& Support Amazon CodeGuru Amazon EventBridge
ero D o PRI S ——— Ao A

56

Figure 42

Click “Users” on the left hand side. Then click “Add User”

AW 2 Services ~ Resource Groups v * J Capston6
Identity and Access '
Management (IAM) 1
Q Find users by username or access key

Dashboard
v Access management User name + Groups Acgess key

Groups There are no IA

Users

Roles

Policies

Identity providers

Account settings

« Access reports
Access analyzer
Archive rules

Analyzer details
Credential report
Organization activity
Service control policies (SCPs)

Q, Search IAM

AWS account ID:

155675403186

Figure 43

57

Choose a username for this user, and check the box next to “Programmatic access.” Click “Next:

Permissions”.

wiltiple users at once with the same access type and permissions. Learn more

User name* Amanda

© Add another user

3 access type
:se users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Access type* « Programmatic access
Enables an access key ID and secret access key for the AWS API, CLI, SDK, and
other development tools.

AWS Management Console access
Enables a password that allows users to sign-in to the AWS Management Console.

Cancel Next: Permissions|

Figure 44

We will now need to create a new user group and add our user to it. Do this by clicking “Add

User to Group” on the next page, and then clicking “Create Group”.

58

+ Set permissions

!.“ ol DD Copy permissions from E Attach existing policies

aml existing user directly

©® Get started with groups

access, or your custom permissions. Get started by creating a group. Learn more

Create group

You haven't created any groups yet. Using groups is a best-practice way to manage users' permissions by job functions, AWS service

» Set permissions boundary

Figure 45

Cancel

Previous Next: Tags

Choose a name and then search “AmazonS3FullAccess” in the search box. Select the policy that

comes up and click “Create group”.

59

Create group x

Creale a group and select the policies to be attached to the group. Using groups is a best-practice way to manage users' permissions by job functions, AWS service access, or your custom permissions. Learn more
Group name | Group?
Create policy | & Refresh

Filter policies « Q AmazonS3Fullccess Showing 1 result

Policy name = Type Usedas Description

@ » &8 AmazonS3FullAccess AWS managed None Provides full access to all buckets via the AWS Management Console

[UT Create group

Figure 46

Click “Next: Tags” and “Next: Review”. Your Review should look similar to this:

Review

Review your choices. After you create the user, you can view and download the autogenerated password and access key.

User details

User name
AWS access type

Permissions boundary

Amanda
Programmatic access - with an access key

Permissions boundary is not set

Permissions summary

The user shown above will be added to the following groups.

Type Name
Group Group1
Tags

No tags were added.

Figure 47

60

If everything is correct, click Create User. This will take you to a new page which has

information such as your new User’s Access key ID and Secret access key. It should look like

this:

Add user

© @

® Success

you can create new credentials at any time.

You successfully created the users shown below. You can view and download user security credentials. You can also email users
instructions for signing in to the AWS Management Console. This is the last time these credentials will be available to download. However,

Users with AWS Management Console access can sign-in at: https://155675403186.signin.aws.amazon.com/console

& Download .csv

User

» & Amanda

Access key ID

AKIASIPX2EOZDXKMMUPX

Figure 48

Secret access key

rkaeser Ghow

In a separate tab open Github and navigate back to the settings.py file we used earlier. Click the

pencil to edit again.

£ FakeAccount451 / Identyti private

<> Code Issues 0 Pull requests 0 Actions Projects 0

Branch: master «

Identyti / src / identyti / identyti / settings.py

ke FakeAccountd51 Update settings.py

2 contributors el

178 lines (136 sloc) 5.87 KB

® Code navigation is available for this repository but data for this commit does not exist.

Django settings for identyti project.

Generated by 'django-admin startproject’ using Django 2.1.7.

For more information on this file, see

https://docs.djangoproject.com/en/2.1/topics/settings/

Security

® Unwatch~ 1 % Star 0 Yrork | O

Insights Settings

Find file = Copy path

46fe8@3 14 hours ago

b S

Raw Blame | History

Learn more or give us feedback

61

Figure 49

Find the lines that have AWS_ACCESS_KEY ID, AWS SECRET ACCESS KEY, and

AWS STORAGE BUCKET NAME.

' AKIAWCX62H57YSBGL20A"
= 've+aOLyKtBwebauub/T1vzC6+jGqHW2Gi7SG2UTA"

ME = 'identyti-media’
AIN = '%s.s3.amazonaws.com' % AWS_STORAGE_BUCKET_NAME

AWS_DEFAULT_ACL = 'private’

3_OBJECT_PARAMETERS = {
‘CacheControl': 'max-age=86400",

Figure 50

Replace the AWS ACCESS KEY ID value with the AWS access key ID for your user, replace
AWS SECRET ACCESS KEY with the AWS secret access key for your user, and

AWS STORAGE BUCKET NAME with the name of the bucket we created earlier.

After you’ve made these changes click “Commit changes”.

You’ve successfully completed the AWS set up! Yay!

3.6.6 Setting up email with SendGrid

From your app dashboard on Heroku, choose the resources tab and in the search box search for
SendGrid. Next click on SendGrid and you will be redirected to the SendGrid Dashboard. You

62

may be prompted to “Verify your account” by Heroku. This will involve you adding a credit
card. Heroku should only charge you a test-charge. After this verification return to

https://app.sendgrid.com/ .

If prompted, enter an email address to send a confirmation email to. This is so sendgrid can

contact you if needed.

From the dashboard select Click “Sender-Whiz” and then Setup guide.

63

Heroku Add-ons
F Sender Whiz W He 05

Account Details

Setup Guide

REQUESTS
Help & Support
Sign Out of Account O

) Marketing v
&R

2« Design Library

Stats e

E

< - :
71 Activity

~2 Suppressions e

Settings ¥

Figure 51

Click “Integrate using our Web API or SMTP Relay” then “SMTP Relay.” Name your api key

whatever you would like. Next, copy api keys to settings.py .

This is what the API keys will look like on SendGrid:

64

2 Configure your application

Configure your application with the settings below.

Server smtp.sendgrid.net

25,587 (for unencrypted/TLS connections)
Ports

465 (for SSL connections)
Username apikey

SG.7Bzlo_qRQI-JZePcOWebDg. SUtL7Td1-TIiI1ISmJY-
Password

vOyBpe QvBIpWveBpSABtANeg

Figure 52

This is what they should look like in the settings.py file:

EMAIL_HOST
EMAIL_PORT 587
EMAIL_HOST_USER =

EMAIL_HOST_PASSWORD =
EMAIL_USE_TLS =

Figure 53

Your application should now be ready to send emails.

3.6.7 Setting up Tesseract for local testing

In order to test the machine learning model locally you first need to download Google’s

Tesseract OCR. Navigate to this link, https://github.com/tesseract-ocr/tesseract/wiki, and

download the necessary files for your operating system. For example:

65

If you are a windows user, you would download this executable file: https://digi.bib.uni-

mannheim.de/tesseract/tesseract-ocr-w64-setup-v5.0.0-alpha.20200328.exe and go through the

setup process. The tesseract executable file should be located in c: \Program

Files\Tesseract-OCR\tesseract.exe oOr somewhere similar.

If you are a mac user, you would need to run the command brew install tesseract ,then
your tesseract file should be located in
/usr/local/Cellar/tesseract/3.05.02/share/tessdata/ or a similar location.

After downloading tesseract, find the path to the executable file as shown above and copy that
location. Next, navigate to the settings.py file in Identyti. You will see this line near the top:

BASE DIR os.path.dirname (os.path.dirname (os.path.abspath(file)))

if 'T ! os.environ:
pytesseract.pytesseract.tesseract cmd =

Change it like so:

os.path.dirname (os.path.dirname (os.path.abspath(file)))
RAVIS os.environ:
pytesseract.pytesseract.tesseract cmd =

Replace {insert your path here} with the path you found in the previous step (remember to

remove the brackets). Similarly, in the middle of settings.py you will find this:

DATABASES =
'default':

os.environ:
pytesseract.pytesseract.tesseract cmd

Here, do the same thing as before and change replace the value of
pytesseract.pytesseract.tesseract cmd to r'{your path here}', where {your path here} is the path

you found two steps ago.

66

After this you should be able to test the machine learning model locally.

IMPORTANT NOTE:

When deploying to Heroku change these paths back to /app/.apt/usr/bin/tesseract so it works on

the publicly accessible site

4. Results

The early stages of starting a business are not that different from a science experiment. A
business idea is like a hypothesis; the person starting the business is making an educated guess
that people will use his product of service. In order to seek funding for this business, they need
to prove to some degree that this hypothesis is correct. This is where a system like the one built
for this capstone comes into play. It is too expensive to build the entire system before knowing
with a certain level of confidence whether or not it will succeed, but the Identyti web application
built for this capstone was relatively inexpensive to build. This application provides an interface
in which “users can simply scan & upload their documents - and then access them easily for
future use without having to worry about finding them or losing them” (Henderson 2020). This
system can prove the hypothesis: people will be willing to store their personal documents online

if there is a clear benefit of convenience for them.

For Identyti founder, James Henderson, the benefit is clear: “The system solves the primary
problem of creating a way to systematically and efficiently organize all important user
documents, while also enabling enterprise clients to issue digital documents directly to users"

Henderson said in a phone interview. Identyti has the potential to change the way people use and

67

acquire documents, saving them trips to the DMV and the stress of searching through stacks of
paper, “by automatically labeling and sorting user docs, the system condensed an average task of
4 hours to 15 minutes” and “alleviates user anxiety that they may not be able to find their

important documents when they need them” (Henderson 2020).

5. Conclusions

Identyti will change the way people use and obtain personal documents if the company is able to
get off of the ground. The need has already been identified; the current way that people store
personal documents, paper copies, is inconvenient, especially for those who move around a lot.
Mailing these documents or gathering them up in order to make a trip to the DMV is
inconvenient and nobody enjoys doing it. Identyti just needs to demonstrate that people are
willing to use an internet hosting service to store their documents. Once this has been proven,

Identyti can expand in order to solve this problem for everyone in the US.

With Identyti used around the US, there would be far-reaching impacts through many industries.
First, government regulation through documents like passports, driver’s licenses, and social
security numbers would be more streamlined. Wherever these documents are needed could be
made digital, accelerating the slow processes that are currently in place. For example, the long,
slow lines at the DMV could be made much faster using Identyti to store, share, and edit
government documents. Identyti may even eliminate the need to go to these establishments in-
person, as major enterprises can share, request, and receive important documents directly from
the site. Businesses can also improve their hiring and payment processes through Identyti,

automatically checking personal documents and sending pay stubs through Identyti. There are an

68

endless number of use cases. With services like Identyti, we take one step closer from a slow and

inefficient system to a more secure and streamlined world.

6. Future Work

The next step is for Henderson to start looking for customers in order to prove the
business idea. Once he has acquired enough users, he will start looking for funding. This
funding will make it possible to hire developers who will likely start building a better version of
our app from scratch. That is not to say that our app will not play a valuable role in the growth
of this business; this application will give the idea a chance to be tested. Data can also be
collected from users of our application in order to help make decisions associated with the
building of the new application. The application that was built over the past year provides an
important tool to gauge user interest and prototype a final product. In the future, this application
can be further developed to accommodate larger scale use and test more features. In order for
this project to succeed in the future, a consistent user base must be found. Once there is a solid
foundation of users, feedback from these users can be gathered to improve upon the current idea.
With these improvements, more users would join and the cycle would repeat itself. Through this

process, the application will gain in popularity and grow more successful.

7. References

Biddle, P. (2017, July 26). Productivity, Lost Time, and the Power of Al to Make Search Easier.
Retrieved from Medium: https://medium.com/@diamond_io/productivity-lost-time-and-the-
power-of-ai-to-make-search-easier-a59d4cd85a26

Henderson, J. (2020, March 24). Phone interview.

69

Klosowski, T. (2013, January 8). How to Get Through the DMV with your Sanity Intact.
Retrieced from Lifehacker: https://lifehacker.com/how-to-get-through-the-dmv-with-your-sanity-
intact-5974078

Larson, G. (2019). Verifying Identity In Today's Digital Economy: A Look At Regulated Retail.
Retrieved from Forbes: https://www.forbes.com/sites/forbestechcouncil/2019/09/06/verifying-
identity-in-todays-digital-economy-a-look-at-regulated-retail/#245461551e62

Matsakis, L. (2019). The WIRED Guide to Your Personal Data (and Who Is Using It). Retrieved
from WIRED: https://www.wired.com/story/wired-guide-personal-data-collection/

Poza, D. (2018, July 19). How AuthO Makes Your Apps More Secure. Retrieved November 20,
2019, from AuthO: https://auth0.com/blog/how-auth0-makes-your-apps-more-secure/

70

