
Xbox Streaming Hub App

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Ben Stansell

Spring, 2021

Technical Project Team Members

Cameron Woodward

On my honor as a University Student, I have neither given nor received

Unauthorized aid on this assignment as defined by the Honor Guidelines

For Thesis-Related Assignments

Signature__ Date_________

 Ben Stansell

Approved__ Date_________

 Miaomiao Zhang, Department of Computer Science

UVA’20, November, 2020, Charlottesville, Virginia USA C. Woodward et al.

Integrated Entertainment: Improving Video Streaming

Cameron Woodward
 Computer Science

 University of Virginia
 Charlottesville, VA

 cnw2bx@virginia.edu

Bendert Stansell
 Computer Science

 University of Virginia
 Charlottesville, VA

 bjs4sy@virginia.edu

ABSTRACT

With the continued proliferation of streaming services,

watching TV has become scattered across many

streaming services competing for your attention. When

deciding what to watch you sometimes find yourself

wandering through multiple different apps for different

streaming platforms, and it can be easy to forget where

the content you are looking for lives. In the days of cable

TV, there were helpful guides where you could see what

was playing on each channel in one place by simply

scrolling through. A centralized place to find all TV shows

from different streaming services exists on some

platforms (Amazon Firestick, Apple TV, Google TV), but

it is lacking on Xbox One. With this project we will

connect the streaming services so that Xbox users can

have a centralized location to find (and even have

suggested to them) what they’re looking for. Our app

takes a title and queries each platform to see where the

show is hosted and returns the results. As well as

connecting these platforms, our app uses Machine

Learning techniques to customize suggested shows for

the user. This app will improve not only the efficiency of

searching for shows, but the quality of service provided

to the user. By reducing the time for Xbox users to find

shows, it will give them more time to watch or do

whatever they please. This directly impacts the

streaming market because this enhanced and easy to use

experience will cause current viewers to watch more,

while simultaneously attracting additional viewers.

INTRODUCTION

With streaming subscriptions surpassing cable packages,
when deciding what to watch viewers often find
themselves wandering through multiple different apps
for different streaming platforms [3]. There are a couple
slightly different reasons that users meander across
streaming services. It could be that all of your friends
have been watching the show “Friends.” You want to
watch too. So you go to Netflix, but unbeknownst to you,

“Friends” recently had their contract with Netflix expire
and has moved to HBO Max. Another scenario is that you
sit down on a cold winter night wanting to watch a great
Sci-Fi Action movie that you’ve never seen before. You
first look through Amazon Prime, and you find a few that
you might want to watch but aren’t sure. You then
proceed to look through 4 other streaming services
looking for the perfect movie. In both of these common
scenarios, having one place to find all the streaming
content streamlines the process and saves the user
precious time. The improved convenience is obvious to
anyone who uses multiple streaming services on a
regular basis, and the benefits are even more dramatic
on an Xbox because the typing interface, voice control, or
other typing input are lacking. Typing input is slow
because most users manipulate an analog stick to find
each letter, which can compound to minutes or even
hours over many iterations. (keyboard support was
added by Microsoft in late 2019, but each Xbox app is
responsible for adopting support). Typing in a search
only one time will save not only the amount of time to
close and open multiple apps, but also the non-trivial
amount of time it takes to type out a search.

RELATED WORK

Right now, the market has products such as the
Amazon Firestick and Apple TV which provide a similar
service as our app. They provide a central “hub” of
different apps, but they lack integration across
platforms. It seems likely that these services will never
migrate over to any other platform. This is because they
are used as a headline feature for people to buy the
product that has them. For example you must buy an
Amazon Firestick, Apple TV, or chromecast (Google TV)
to access any of these incredibly useful services. There is
a similar service on some android smart TVs, but it is
often not as robust as these previously mentioned
services. For example, LG android TVs have a universal
search feature across streaming services, but the UI is
not great. Also this LG service only provides the
searching feature and does not have a central place that
displays content. In other words, this provides the
universal search feature that we are after, but does not

mailto:cnw2bx@virginia.edu
mailto:bjs4sy@virginia.edu

Integrated Entertainment: Improving Streaming UVA’20, November, 2020, Charlottesville, Virginia USA

provide the universal recommendation feature (as well
as not being on the same platform). Additionally, there
are some TVs that have one of these services “built-in.”
However, this feature is only on select TVs and is not an
app that can be downloaded. Admittedly, Google TV
launched only a few months ago, so the way they choose
to develop this product is unclear. It could be that they
try to have Google TV available everywhere in the future.
There is another service that is similar called Plex. Plex
does have an application for almost every platform,
including Xbox, but it is slightly different. Plex allows
users to stream a movie from any device to another
device, and is essentially a home media server. For
example, Plex allows the user to buy the new Star Wars
movie on google play, download it on their laptop, then
stream it to their smartphone or console at any time. So
while Plex does allow a streaming hub on Xbox, it does
not fulfill the same niche as our Xbox app will.

Our app is different from Apple TV, Google TV,
and Amazon Firestick because it reaches a new audience
by being available on the Xbox One. None of these apps,
aside from ours, are available on the Xbox One platform,
so users of the Xbox One would previously not be able to
have a similar experience. Plex does have an Xbox app,
but it does not provide the experience of combining
multiple streaming services. Plex offers the option to
watch downloaded content that you have explicitly
purchased and downloaded across devices rather than
stream anything from any streaming service you use in
one place.

1 SYSTEM DESIGN

The successful implementation of this project will

incorporate many computer science methods and

techniques. To contact individual stream providers (such

as Netflix, Amazon, etc.), we will use an Application

Programming Interface (API). This will allow us to query

each provider and see if they host the specific content

related to a search. In order to recommend shows for

users we will aggregate a lot of data and develop a

machine learning model to group movies. Preliminary

data will be sourced from Kaggle, which contains a

dataset of 45,000+ movies and TV shows with title, cast,

ratings, genre, and keywords. This will suffice for general

predictions, but once the customer has used the app, we

will apply their specific data to personalize

recommendations further. As for the model, we will use

a clustering algorithm. Specifically, we will use K-means

clustering, which will provide us with groups of movies

that are similar to each other.

1.1 Building the model

To create the K-means model, we first downloaded and

imported the dataset from Kaggle into Google Colab.

Then we took a deeper look into the data to understand

the problem more and see any patterns or trends we

could see. The dataset had 20 features with which we

could train our model on. Some of these features were

irrelevant, therefore we picked 9 features that were most

useful for grouping movies together. The nine categories

of features included were budget, genres, keywords,

popularity, revenue, runtime, title, vote average, and

vote count.

● budget: the money for the movie in dollars

● genres: a list of dictionaries of all the associated

genres

● keywords: a dictionary of the most common

strings in the movie and their frequency

● popularity: a score assigned by TMDB

● revenue: total money made from the movie in

dollars

● runtime: how long the movie is in minutes

● title: the name of the movie

● vote average: average rating of the movie from

TMDB users

● vote count: number of TMDB users that voted

Once we had these categories we plotted histograms of

each feature to see it’s distribution. Most were

approximately normally distributed, but popularity,

budget, and revenue were skewed to the right due to

outliers like Marvel and other extremely big budget

movies. After we saw the individual data, we moved on

to examining the correlation between each feature. We

started by creating a correlation matrix and found that

vote average, vote count, and popularity all had a strong

positive correlation. To visualize these correlations we

UVA’20, November, 2020, Charlottesville, Virginia USA C. Woodward et al.

graphed scatter plots of all the features in combination

with every other feature. These graphs showed us that

revenue and budget were also correlated positively. Our

next step was to calculate general statistics of the data.

These are summarized below:

Figure 1: basic statistics of the movies dataset

Our last step of preprocessing was to clean our data and

prepare it for training our model. We first split our data

into training, testing, and validations sets. In order to

start cleaning the data we looked for any rows that were

null. There ended up being a few rows where the runtime

was null. In an effort to deal with this and make our data

uniform, we created a pipeline. We added layers to this

pipeline to deal with numerical and categorical data. For

the numerical pipeline we used an imputer to fix the

issue of null runtimes as well as a standard scaler to

normalize our data to produce better results. The

categorical pipeline called the numerical one and then

used OneHotEncoder to transform our categorical data

to numbers so that we can operate on it. Lastly, we broke

up the training and testing sets into categorical and

numerical and ran them through the pipeline to produce

clean and prepared data.

After we successfully cleaned our data it was time to

build our model. Using Sci-kit learn KMeans

implementation we initialized a model with an arbitrary

amount of clusters to see what was returned and what

we could do with it. We found out that after running fit

and predict on our model with the cleaned dataset we got

the centroids of each cluster back. We decided to plot

those to see where each cluster is. After this we decided

to employ a strategy of “finding the elbow” to optimize

the number of clusters to use. We did this by training

models with cluster size equal to 4 all the way up to 50.

We then plotted the inertia from each of the models to

find the one that caused the sharpest change in inertia.

This ended up being a cluster size of 17 which was seen

from the elbow and supported by silhouette scores as see

below:

Figure 2: plots of the inertia and the silhouette scores on
the top and bottom, respectively

We then trained a separate model with the optimum

number of clusters and plotted it’s centroids as seen

below:

Figure 3: centroids output from the optimized model

Integrated Entertainment: Improving Streaming UVA’20, November, 2020, Charlottesville, Virginia USA

In order to finalize our clustering model, we had to test it
and evaluate its performance. To do this we visualized
the clusters as in figure 3. This showed us that distinct
groups were being formed, which was a good sign for the
recommendations. We obtained a quantitative number
of the models performance by summing up all of the
instances that the model got correct as compared to our
training set. This gave us a concrete number for how well
it performed in clustering the movies into groups. It got
over 93% of the training examples right as shown in
figure 4. The real strength of the model is shown in
performing the same test on the testing set. The model
was correct on 91% of the testing data, which implies
little to no overfitting of the model.

Figure 4: Performance of the model shown by the
percentage of predictions correct on training and test sets

1.2 Using API’s

In order to communicate with the stream providers and

see if the desired content is hosted on their servers, we

used RapidAPI. This allowed us to query Hulu, Amazon,

and Netflix which don’t have publicly available API’s. We

first created a free account on RapidAPI. Then we found

the closest endpoint to communicate with, which was

/api.cgi for Netflix. From there we utilized the requests

library in Python to create and send GET requests to this

endpoint. We successfully received response codes of

200 along with a JSON response. This JSON response

included the title, its NetflixID, ratings, runtime, and type.

We also tried to request titles that weren’t hosted and got

back 404 responses. This allowed us to create a python

script that takes a search from a user and creates a GET

header, sends the request to our connected endpoint,

and then returns whether it was found or not.

1.3 Xbox App

For the frontend of the Xbox app, we are able to use the

Xbox One development mode. The interface of the app

mimics that of any modern streaming service, where the

majority of the screen is filled with rows of movies and

TV shows sorted in categories that can be scrolled

through, such as “Sci-Fi” or “Popular in the US.”

Additionally there is a search bar at the top to look up a

specific title. When a user selects the content that they

want to play, the app will redirect them to the player

from the necessary app. Of course, content from a

specific provider will only be included if the user is

logged in to that provider on this device.

PROCEDURE

The app is used almost exactly the same as any singular

streaming app currently available on Xbox. To use our

app, users must download it from the Microsoft store

onto their Xbox. From there they can create an account,

which will help with the recommendations. When in the

app, the user can input a title of a show or movie they

want to watch and our app handles the rest. The result of

the query is displayed on the screen. It is possible that

the exact title will not exist on any streaming platform, in

which case there will be similar titles that will be

displayed. There will also be a browse section where the

user can simply scroll through the recommended titles

until they find one that they would like. This will be

broken into sections such as genres, recently watched,

titles similar to liked titles, and most popular. Once a title

is selected, the user will then be seamlessly redirected to

the player from the streaming service providing the

desired content. For any particular streaming service to

be included, the user will have to be logged into their

account on this device.

Other stakeholders of our app are the stream providers

themselves. They may not directly interact with our

users, but our app does affect them. If our app was used

by many people then that will imply more traffic and

users to the providers. This may lead to future

partnerships where we work directly with the providers

to update content and data to improve both apps. They

will still get the data generated from the users interacting

with their content because our app will be interacting

with the content using APIs.

RESULTS

UVA’20, November, 2020, Charlottesville, Virginia USA C. Woodward et al.

This project aims to enhance the individual streaming

experience by increasing efficiency and personalization.

Having a central location will save users the valuable

time it takes to type and search for a title across many

different platforms. When searching for a specific show,

the user saves about 5 to 10 minutes per show. When

browsing, the time saved varies widely per user, ranging

from about 5 to 30 minutes saved each time. Using

machine learning to personalize the content will

encourage the user to watch programs they enjoy which

they may not have found or searched for independently.

A centralized platform coupled with customized

recommendations will achieve the goal of enhancing the

overall experience by making it easier, efficient, and

tailored.

The end product will be an Xbox app that streamlines

video searching, providing the user with an easier and

customized experience. This will be a relief to users, but

the stream providers will also benefit. Increased

customer satisfaction added with extra time to watch

shows instead of searching will drive subscription and

retention rates up. Better quality of service and

increased subscription rates may open the door for

potential partnerships with the providers.

CONCLUSION

We designed an Xbox One app that simplifies and

improves the video streaming experience. Instead of

rotating through multiple separate apps searching for

content, users can find anything they would like in this

one place. They will save time when searching for a

specific title or when browsing to see what new show

they would like to watch. This is a central hub to find all

streaming content from any services that the user enjoys.

Content will be recommended to the user based on items

that they have previously enjoyed. This content is

recommended based on a K means algorithm that filters

all of the content into separate groups. Once a particular

show is selected, the app will open up the player from the

appropriate provider (if you clicked on The Mandalorian,

the Disney+ player would open). The UI is not

revolutionary, the machine learning algorithm is not

revolutionary, but the convenience is revolutionary.

FUTURE WORKS

There is no reason that this product should be limited to

the Xbox One. Ideally this app could be expanded for use

on Windows, MacOS, Android (with special integration

with android TVs), iOS, and Playstation. Virtually

everyone could benefit from this service because of the

universality of streaming. It is not hard to imagine a

market for some sort of similar application on each of

these markets. A successful implementation of this

project would also likely require special access to each of

these streaming services, which is difficult to obtain

(note that the parties who have been able to do this are

Amazon, Google, and Apple). Given more time, it is

possible that the companies would buy into the idea of

this hub for streaming services. On top of expanding into

other platforms, with extra time additional features

could be added. One potential addition could be separate

profiles on a single device, which is common with

streaming services. Another feature could be censorship

of certain material as well as kid accounts. A benefit that

comes with more time is an improved machine learning

model, the longer it runs and the more data it receives

will constantly improve it. Deploying a strategy similar

to Netflix, we could hold public competitions each year

to improve upon or create a better model for

recommendations [4]. This would not only inspire

innovation and competition, but also provide a great way

to notice fellow computer scientists for their hard work.

ACKNOWLEDGMENTS

We would like to give a big thank you to Professor

Miaomiao and Professor Worthy of the Computer

Science department at UVA for helping us along the way.

They helped us find a direction for this project from the

beginning and gave us advice and ideas when we were

unsure of what to do next. Their creative solutions

coupled with their extensive experience gave us a much

needed perspective.

REFERENCES
[1] https://tv.google/
[2] https://www.apple.com/tv/
[3] Miller, J. (2019, March 23). Streaming subscriptions surpassed cable
worldwide in 2018. https://www.techspot.com/news/79333-streaming-
subscriptions-surpassed-cable-worldwide-2018.html
[4] Chen, E. (2011). Winning the Netflix Prize: A Summary.
https://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-
summary/

