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Abstract

Current machine learning models require large amounts of labeled training data, which are often collected

from untrusted sources. Models trained on these potentially manipulated data points are prone to data

poisoning attacks. My research aims to gain a deeper understanding of the limits of two types of data

poisoning attacks: indiscriminate poisoning attacks, where the attacker aims to increase the test error on

the entire dataset; and subpopulation poisoning attacks, where the attacker aims to increase the test error

on a defined subset of the distribution. We first present an empirical poisoning attack that encodes the

attack objectives into target models and then generates poisoning points that induce the target models (and

hence the encoded objectives) with provable convergence. This attack achieves state-of-the-art performance

for a diverse set of attack objectives and quantifies a lower bound on the performance of the best possible

poisoning attacks. In the broader sense, because the attack guarantees convergence to the target model which

encodes the desired attack objective, our attack can also be applied to objectives related to other trustworthy

aspects (e.g., privacy, fairness) of machine learning.

Through experiments for the two types of poisoning attacks we consider, we find that some datasets in the

indiscriminate setting and subpopulations in the subpopulation setting are highly vulnerable to poisoning

attacks even when the poisoning ratio is low. But other datasets and subpopulations resist the best-performing

known attacks even without any defensive protections. Motivated by the drastic differences in the attack

effectiveness across datasets or subpopulations, we further investigate the possible factors related to the data

distribution and learning algorithm that contribute to the disparate effectiveness of poisoning attacks. In

the subpopulation setting, for the given learner, we identify the separability of the class-wise distributions

and the loss difference between models that misclassify the subpopulations and the clean models are highly

correlated to the empirical performance of state-of-the-art poisoning attacks and demonstrate them through

visualizations. In the indiscriminate setting, we conduct a more thorough investigation by first showing under

theoretical distributions that there are datasets that inherently resist the best possible poisoning attacks

ii
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when the class-wise data distributions are well-separated with low variance and the size of the constraint set

containing all permissible poisoning points is also small. We then demonstrate that these identified factors are

highly correlated to both the different empirical performances of the state-of-the-art attacks (as lower bounds

on the limits of poisoning attacks) and the upper bounds on the limits across benchmark datasets. Finally, we

discuss how understanding the limits of poisoning attacks might help in achieving stronger defenses against

poisoning attacks in the future.
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Chapter 1

Introduction

Machine learning models have achieved remarkable performance in various domains such as computer vision

(He et al., 2016; Radford et al., 2021) and natural language processing (OpenAI, 2023) as well as security-

critical domains such as the detection of spam email (Dada et al., 2019), network intrusions (Zhang et al.,

2022) and malware (Chang and Im, 2020). However, the success of these models often relies on collecting

massive amounts of data from unverified sources where there is a risk that some malicious adversaries can

inject a small fraction of carefully crafted poisoning samples to manipulate the behavior of the resultant

model (known as poisoned model) to achieve certain objectives. A typical application is in spam filtering,

where the spam detector is trained using data (i.e., emails) that are generated by users with labels often

provided implicitly by user actions. In this setting, spammers can generate spam messages that inject benign

words likely to occur in spam emails such that models trained on these spam messages will incur significant

drops in filtering accuracy as benign and malicious messages become indistinguishable (Nelson et al., 2008;

Huang et al., 2011). These kinds of attacks are known as poisoning attacks.

Depending on the attack goals, poisoning attacks can be categorized as: targeted poisoning attacks (Shafahi

et al., 2018; Koh and Liang, 2017), where the adversary’s goal is to induce a model that misclassifies a particular

known instance; indiscriminate poisoning attacks let the induced model incur larger test errors compared

to the model trained on the clean dataset (Biggio et al., 2011; Steinhardt et al., 2017); or subpopulation

poisoning attacks (Jagielski et al., 2021), where the adversary’s goal is to produce misclassifications on a

defined subset of the distribution. Historically, indiscriminate attacks received more attention from the

community and many successful attacks were demonstrated for the linear models (Biggio et al., 2011; 2012;

1
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Xiao et al., 2012; Mei and Zhu, 2015b;a; Steinhardt et al., 2017; Koh et al., 2022) with some recent progress

on achieving good performance against deep neural networks (Lu et al., 2022; 2023). Indiscriminate attacks

may not represent the stealthiest attack goals as significant drops in overall test accuracy would be detected

by the model trainer, who can reject models with abnormally low accuracies.

Compared to indiscriminate attacks, targeted and subpopulation poisoning attacks reflect stealthier attack

objectives, and many successful targeted attacks are demonstrated for the deep neural networks (Koh and

Liang, 2017; Shafahi et al., 2018; Zhu et al., 2019; Huang et al., 2020; Geiping et al., 2021; Guo and Liu,

2020; Aghakhani et al., 2021) in recent years. Exploration of subpopulation poisoning is rather limited,

despite being seemingly more relevant to security threats in practical applications (Jagielski et al., 2021)

among the three. In fact, the definition of “subpopulation” is general and can even cover the two extreme

goals of targeted (i.e., a subpopulation that only contains a single test instance) and indiscriminate (i.e., a

subpopulation that contains the entire dataset) attacks. Existing works on the three attack goals focus on

proposing algorithmic poisoning strategies that work well in some settings but do not provide explanations

on why the proposed attacks fail in other settings.

In this dissertation, we study subpopulation and indiscriminate poisoning attacks. We investigate subpopu-

lation attacks because they can capture stealthy attack objectives that might be more motivated and also

more general than the targeted attacks, as targeted attacks can be viewed as a special form of subpopulation

attacks that only contain one point in the subpopulation. We also study the less stealthy indiscriminate

attacks because they interfere with the underlying learning algorithms in the broader sense (Steinhardt et al.,

2017). Understanding the vulnerabilities of these algorithms in an adversarial environment can provide deeper

insights into their fundamental properties.

The goal of this dissertation, through a mix of theoretical and empirical work, is to gain a deeper understanding

of the limits of poisoning attacks that inject poisoning points into the clean training set in the considered two

types of poisoning attacks. Towards this goal, we first establish a lower bound on the limits of poisoning attacks,

especially for the underexplored subpopulation settings, by proposing empirical poisoning strategies that

achieve state-of-the-art performance (Chapter 3). Then, driven by the observation that the performance of the

best-known attacks varies drastically for different learning tasks in both the subpopulation and indiscriminate

settings, we identify properties of the subpopulation (Chapter 4) and the whole data distribution (Chapter 5)

under the given learner that contribute to the drastic variance on empirical attack effectiveness across

subpopulations in the subpopulation setting and across benchmark datasets in the indiscriminate setting

respectively. In the indiscriminate settings in Chapter 5, we also show the relation of the identified factors
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to the upper bound on the performance of best possible attacks and compute a non-trivial value for the

upper bound. These computed upper bounds, related to the identified distributional properties under the

given learner, still vary drastically across different datasets. Finally, we show how understanding the limits of

poisoning attacks can help in proposing stronger defenses against data poisoning attacks (Section 5.6).

1.1 Contributions

This dissertation makes the following main contributions:

Model-targeted poisoning attacks. To understand the limits of poisoning attacks, we first provide a

(tighter) lower bound on attack effectiveness of the best possible attacks by proposing an empirical poisoning

strategy (Chapter 3). In the literature, one way to generate effective poisoning points is to first generate a

target model using simple methods such as flipping the labels of existing training points and adding back

to the original training data (Koh et al., 2022) and then leveraging optimization strategies to generate

poisoning points that aim to induce the generated target model. We follow a similar procedure and propose

a model-targeted poisoning (MTP) attack in Section 3.2 that generates the poisoning points in an online

manner by leveraging information from the target model. This generation process can be modeled as an

online convex optimization and has guaranteed asymptotic convergence to the target model, while the

convergence guarantee is missing in prior model-targeted attacks (Koh et al., 2022; Mei and Zhu, 2015a).

With a guaranteed convergence to the target model, our attack can be applied for diverse objectives including

the considered indiscriminate and subpopulation settings (and even beyond security consequences), by simply

generating the corresponding target models. Empirically, our attack achieves state-of-the-art performance

in both the subpopulation and indiscriminate settings. Lastly, we also provide an improved target model

generation process over the method in Koh et al. (2022) that enables even stronger MTP attacks that achieve

similar attack objectives with fewer poisoning points (Section 3.4).

Understanding how subpopulation properties impact susceptibility. Next, in the more realistic

subpopulation poisoning settings, we find that given a fixed learner and a dataset, some subpopulations

of the dataset are significantly harder to poison than others under our state-of-the-art MTP attack. We

then identify distributional and subpopulation properties under the given learner that are related to the

different subpopulation susceptibilities by summarizing the observed patterns through extensive experiments

on the synthetic and benchmark datasets (Chapter 4). In particular, we find that the overall distributional

properties dominate the subpopulation susceptibility when the (sampled) datasets are less separable (i.e., all
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subpopulations are vulnerable to poisoning) while for well-separated datasets, the individual subpopulation

properties dominantly impact the susceptibility of subpopulations to poisoning attacks and more vulnerable

subpopulations tend to have smaller loss difference between clean model and the target model generated from

the simple label-flipping method that misclassifies the subpopulation, for both the synthetic (Section 4.3)

and benchmark Adult (Section 4.4) datasets.

Understanding how distributional properties impact susceptibility. To understand how the learning

algorithms will be impacted more broadly by data poisoning, we focus on investigating indiscriminate

poisoning attacks (Chapter 5). The observation of disparate susceptibility across subpopulations motivates

us to explore whether a similar variation of susceptibility also exists for different benchmark datasets against

the best indiscriminate attacks, as indiscriminate attacks can be treated as special forms of subpopulation

attacks that take the entire datasets as the subpopulations. By experimenting with existing state-of-the-art

indiscriminate poisoning attacks (including the proposed MTP in Chapter 3) on linear models for various

benchmark datasets, we observe that different datasets indeed have drastically different vulnerabilities to

the best-performing poisoning attacks (Section 5.2). We then identify the distributional properties under

the given learner that impact the performance of best possible optimal poisoning attacks on theoretical

distributions and discover that a larger projected constraint size (Definition 5.4.8) is associated with a

higher inherent vulnerability due to increased impact from the poisoning points, whereas projected data

distributions with a larger separability and smaller standard deviation (Definition 5.4.9) are fundamentally

less vulnerable to poisoning attacks due to the reduced sensitivity to misclassifications resulted from slight

changes in the decision boundary (Section 5.4). Further, we discover that the factors identified on the

theoretical distributions largely explain the drastic variation of best-performing empirical attacks across

benchmark datasets, and these factors are also highly correlated to the upper bound on the performance of

optimal data poisoning attacks for general distributions. We also show that minimizing the upper bound can

provide a non-trivial quantity that upper bounds the performance of the optimal poisoning attacks and these

upper bounds still vary significantly across different benchmark datasets (Section 5.5).

Implications for Improving Defenses. Understanding the limits of poisoning attacks in different poisoning

settings might eventually give us more insights when designing effective defenses against data poisoning

attacks. We first explain why certain data sanitization defenses work and then demonstrate how one might

leverage well-trained feature extractors to obtain better feature representations for the candidate datasets

and improve their resistance to indiscriminate poisoning attacks that inject additional poisoning points. We

finally discuss how such an improved feature representation might complement the existing data sanitization
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defenses proposed for the indiscriminate poisoning attacks, and also help develop better defenses for the

subpopulation settings (Section 5.6).

1.2 Dissertation Structure

Chapter 2 introduces the preliminaries and the threat model in this dissertation, and then reviews the most

relevant data poisoning attacks and data sanitization defenses. In Chapter 3, we provide details on the

proposed model-targeted poisoning (MTP) attack and show its competitive performance in diverse attack

objectives. In Chapter 4, we investigate subpopulation attacks and identify factors that are related to the

drastic differences in the attack effectiveness of the MTP attack on different subpopulations. In Chapter 5, we

study indiscriminate attacks and present factors that impact the performance of the optimal data poisoning

attacks in theoretical settings and also the correlation to attack effectiveness of existing empirical attacks

and the upper bound on the performance of optimal attacks for benchmark datasets. We also discuss the

implication of the identified factors in designing better defenses against poisoning attacks. Finally, Chapter 6

concludes with a discussion of open questions and directions for future work.



Chapter 2

Background and Related Work

In this chapter, we first provide the preliminaries of the dissertation that contains the notations and also

the problem setup (Section 2.1.1). Then we introduce the threat model considered in this dissertation

(Section 2.1.2). In Section 2.2, we introduce the details on the state-of-the-art indiscriminate poisoning

attacks, which also inspire the attack design in other attack goals (e.g., subpopulation and targeted) in the

literature. At the end of this section, we also introduce some representative data sanitization defenses against

poisoning (Section 2.2.3), which are used when we introduce how understanding the limits of poisoning

attacks in the no-defense setting might enhance these defenses in Section 5.6.

2.1 Preliminaries and Threat Model

In this section, we first provide preliminaries on the considered convex models in this dissertation and also

argue about the importance of studying them (Section 2.1.1). Then we discuss details on the considered

threat model in this dissertation (Section 2.1.2).

2.1.1 Preliminaries on Convex Models

In this dissertation, we focus on convex models (mainly linear models), and below, we first argue about

studying convex models and then provide related preliminaries on the notations and the problem setup for

poisoning attacks on convex models.

6
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Importance of studying convex models. We argue that studying convex models (or more precisely,

linear models) are still relevant today, because attacks on them are still not well understood, despite extensive

prior empirical work in this setting. Furthermore, insights obtained on the simpler convex models (Koh et al.,

2022) can inspire the design of effective poisoning attacks on the challenging non-convex models such as deep

neural networks (Lu et al., 2023). Besides the value in inspiring future research on complex models, linear

models continue to garner significant interest due to their simplicity and high interpretability in explaining

predictions (Liu et al., 2022; Ribeiro et al., 2016). In addition, these simple models also achieve competitive

performance in many security-critical applications for which poisoning is relevant, including training with

differential privacy (Tramèr and Boneh, 2021), recommendation systems (Ferrari Dacrema et al., 2019) and

malware detection (Chen et al., 2023; 2021; Salah et al., 2020; Demontis et al., 2016; Šrndic and Laskov,

2013; Arp et al., 2014). From a practical perspective, linear models continue to be relevant—for example,

Amazon SageMaker (Amazon, Inc., 2023), a scalable framework to train ML models intended for developers

and business analysts, provides linear models for tabular data, and trains linear models (on top of pre-trained

feature extractors) for images.

Notation. We use boldfaced lower letters such as x to denote vectors. For any set A, |A| and 1A(·) denote

the cardinality of A and the indicator function of A, respectively. For any distribution µ, let supp(µ) be the

support of µ and use S to denotes the dataset sampled from µ. Given a dataset S sampled from µ, denote

by µ̂S the empirical measure with respect to S. We use N (γ, σ2) to denote the one-dimensional Gaussian

distribution with mean γ and standard deviation σ. For any vector x ∈ Rd, denote by ∥x∥2 the ℓ2-norm of

x.

Convex surrogate loss. Throughout the dissertation, we mainly consider binary classification tasks using

convex machine learning models and leave the systematic exploration of non-convex models such as neural

networks for future work. The extension of our work to multi-class convex models is straightforward. Let

X ⊆ Rd be the input space and Y = {−1,+1} be the label space. Let µc be the joint distribution of clean

inputs and labels. For standard classification tasks, the goal is to learn a hypothesis h : X → Y that minimizes

Risk(h;µc) = P(x,y)∼µc

[
h(x) ̸= y

]
. However, directly minimizing the risk (or 0-1 loss) is computationally

hard as it is neither convex nor differentiable. Therefore, in practice, typical machine learning methods find

an approximately good hypothesis h by restricting the search space to a specific hypothesis class H, then

optimizing h by minimizing some convex surrogate loss that is efficient to optimize and the minimization of

surrogate loss implies the minimization of Risk(h;µc) (Bartlett et al., 2006). In particular, the optimization
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problem can be formulated in the distributional setting as:

hc = argmin
h∈H

[
L(h;µc) + CR ·R(h)

]
(2.1)

where the surrogate loss for h on a distribution µ is defined as L(h;µ) = E(x,y)∼µ
[
ℓ(h;x, y)

]
and ℓ(h;x, y)

denotes the non-negative individual loss of h incurred at (x, y). R(h) denotes the regularization function

for h (e.g., the ℓ2-norm of the weight parameter in h) and CR > 0 is the hyperparameter that balances the

surrogate loss and the regularization term. Correspondingly, the finite-sample (or empirical) counterpart of

the above optimization problem (also known as empirical risk minimization) can be similarly formulated

as:

ĥc = argmin
h∈H

[
L(h;Sc) + CR ·R(h)

]
(2.2)

where Sc denotes the clean training data i.i.d. sampled from the clean distribution µc. We slightly abuse

the notation and still use L(h;S) = 1
|S| ·

∑
(x,y)∈S

[
ℓ(h;x, y)

]
to denote the empirical estimate of L(h;µ)

using the dataset S sampled in an i.i.d. manner from µ. Throughout the dissertation, the usage of L(·) in

the finite-sample and distributional settings will be distinguished using S (i.e., L(h;S)) or µ (i.e., L(h;µ)).

We mostly use h for clarity in presentation throughout this dissertation, but will explicitly write out the

weight parameter θ of h as hθ when the usage of the weight parameters θ can improve the preciseness of the

presentation. Related to the empirical risk minimization, we also define the attainable model using some

training set S:

Definition 2.1.1 (Attainable models). We say a hypothesis ĥ ∈ H is CR-attainable with respect to loss

function L and regularization function R if there exists a training set S such that

ĥ = argmin
h∈H

L(h;S) + CR ·R(h)

and ĥ is the unique minimizer for the above.

Linear learners. The formulation above is for any convex loss functions and is used in the theoretical

analysis in Chapter 3. However, in Chapter 5, we also study the particular case of linear hypothesis class with

hinge loss, which is the most common setting considered in prior works (Biggio et al., 2011; 2012; Steinhardt

et al., 2017; Koh et al., 2022), but the theoretical results can also be easily extended to other linear methods

such as logistic regression (LR). A linear hypothesis parameterized by a weight parameter w ∈ Rd and a

bias parameter b ∈ R (i.e., θ = (w, b)) is defined as: hw,b(x) = sgn(w⊤x+ b) for any x ∈ Rd, where sgn(·)
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denotes the sign function. For any x ∈ X and y ∈ Y, the hinge loss of a linear classifier hw,b (when the

context is clear, we will still use h for simplicity) is defined as:

ℓ(hw,b;x, y) = max{0, 1− y(w⊤x+ b)} (2.3)

and the regularization term for h parameterized by a weight vector w and a bias parameter b is the ℓ2-norm

regularization and is defined as:

CR =
λ

2
and R(hw) = ∥w∥22 (2.4)

where λ ≥ 0 is the tuning hyperparameter and b is usually not regularized.

2.1.2 Threat Model

We consider injection-only poisoning attacks, which can be formulated as a game between an attacker and a

victim in practice (i.e., finite-sample setting) (Steinhardt et al., 2017; Koh et al., 2022):

1. A clean training dataset Sc is produced, where each data point is i.i.d. sampled from µc.

2. The attacker generates a poisoned dataset Sp using some poisoning strategy A, which aims to achieve

some attack goals on compromising the model performance on the defined subset of the distribution

(subpopulation setting) or the entire clean test data (indiscriminate setting) by injecting Sp into the

training dataset.

3. The victim minimizes empirical surrogate loss L(·) on Sc ∪ Sp and produces a poisoned model ĥp that

performs in factor of the adversary.

Our game-theoretic formulation assumes insertion-only attacks, where the attacker is only able to add crafted

poisoning points Sp into the clean training dataset Sc. This assumption is reasonable for many practical

scenarios where modifying existing training data points would require administrative access to the underlying

system (Steinhardt et al., 2017; Koh et al., 2022), and many prior works are also limited to insertion-only

attacks (Biggio et al., 2011; 2012; Steinhardt et al., 2017; Koh and Liang, 2017; Koh et al., 2022; Lu et al.,

2022; 2023). Depending on the considered settings, the attacker’s goal can be finding an effective poisoning

strategy A such that it achieves the encoded attack objective in a particular target model ĥtar (experiments

in Chapter 3 and Chapter 4) or to compromise the model performance as much as possible under a fixed

poisoning ratio ϵ (experiments in Chapter 5).
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Following prior work (Steinhardt et al., 2017; Koh et al., 2022), we assume the attacker has full knowledge

of the learning process, including the clean distribution µc (for theoretical analysis in Chapter 5) or the

clean training dataset Sc and clean test data Ste (for empirical evaluations in Chapter 3 and Chapter 4), the

hypothesis class H, the surrogate loss function ℓ, regularization terms CR, R(h) and the learning algorithm

adopted by the victim. This threat model is admittedly the strongest threat model in the injection-only

setting and is generous to the attacker, but it is widely considered a bad practice to rely on secrecy for

security (Kerckhoffs, 1883; Biggio et al., 2013; Steinhardt et al., 2017). Furthermore, as we will show in

Chapter 4 and Chapter 5, attacks even under the strongest threat model still cannot effectively render the

performance of poisoned models in certain settings and understanding the root causes for their ineffectiveness

might provide better insights for the future defenses.

As for the poisoning attack, we assume Sp ⊆ C where C ⊆ X × Y is a bounded subset that captures the

feasibility constraints for poisoned data. We assume that C is specified in advance with respect to different

applications (e.g., normalized pixel values of images can only be in the range [0, 1]). Note that, in general,

possible defenses the victim may choose (e.g., points that have larger Euclidean distance from the center will

be removed) (Steinhardt et al., 2017; Koh et al., 2022) will also impact the choice of C. However, in this

dissertation, we mainly explore the limits of poisoning attacks in the no-defense setting and therefore, we will

not consider the impact of defenses on C except in Section 5.6 when we discuss the implication of our results

on future defenses. If the considered poisoning setting is to compromise the model performance as much as

possible using a fixed poisoning ratio ϵ, as in the conventional indiscriminate poisoning setting, then we also

constrain |Sp| ≤ ϵ · |Sc|, where ϵ ∈ [0, 1] is the poisoning budget.

The above threat model is usually also formulated in the following bi-level optimization problem, and the

existing poisoning attacks in the literature substantiate the general formulation in different forms (shown in

Section 2.2):

Definition 2.1.2 (Worst Case Injection-only Poisoning Attacks). Given the information about the victim

regarding the clean training data Sc and clean test data Ste sampled in i.i.d. manner from a poison-free (but

usually unknown) distribution µc, the learning algorithm L(·) and regularization related terms CR and R(h),

we define a worst-case injection-only poisoning attack as an attack method A that leverages all information

about the victim to maximize a certain attack objective Obj(·) by injecting a poisoning set Sp into the clean

training set Sc, and in the conventional indiscriminate poisoning attacks, only a maximum ϵ fraction of
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poisoning points will be injected:

S∗p = argmax
Sp

Obj(ĥp,Ste,Sc,Sp, ℓ, CR, R) s.t. ĥp = argmin
h∈H

[
L(h;Sc ∪ Sp) + CR ·R(h)

]
,

Sp ⊆ C,

|Sp| ≤ ϵ · |Sc| (Optional for Conventional

Indiscriminate Settings)

Note that the bi-level optimization (due to the inter-dependence between Sp and ĥp) is in general NP-

hard (Steinhardt et al., 2017; Bard, 2013) and is also the main reason why poisoning attacks (especially

in indiscriminate settings) are still majorly limited to simple convex models (e.g., mostly linear models)

compared to attacks against fixed static models such as adversarial examples (Szegedy et al., 2014), where

state-of-the-art complex deep learning models can be easily evaded.

2.2 Indiscriminate Poisoning Attacks and Defenses

In this section, we provide details on the current indiscriminate poisoning attacks and representative data

sanitization defenses in the literature. For the poisoning attacks, we only choose to present the indiscriminate

attacks because state-of-the-art poisoning attacks for other attack goals majorly follow the ideas of attacks in

the indiscriminate setting.

But before diving into specific attack methods, we first restate Theorem 1 in Koh et al. (2022) (with slight

adaptation for our setting) so as to better illustrate the existing poisoning attacks to be introduced next.

This result is also related to the lower bound on the number of poisoning points needed to induce a given

target model when we introduce the MTP attack in Chapter 3.

Theorem 2.2.1 (2 points suffice for 2-class SVMs and logistic regression). Consider a learner that learns a

2-class SVM or logistic regression model by minimizing the average (regularized) training loss on Sc ∪ Sp.

Suppose that for each class y = −1,+1, the search space of poisoning points set C is a convex set. If a model

ĥp is CR-attainable by any set of n poisoned points Sp = {(x1
p, y

1
p), . . . , (x

n
p , y

n
p )} ⊆ C, then there exists a

set of at most n poisoned points S̃p (possibly with fractional copies) that also attains ĥp but only contains 2

distinct points, one from each class.



Background and Related Work 12

More generally, the above statement is true for any margin-based model with loss of the form ℓM (hw,b;x, y) =

c(−y(w⊤x+ b)), where c : R→ R is a convex, monotone increasing, and twice-differentiable function, and

the ratio of second to first derivatives c′′/c′ is monotone non-increasing.

Next, we will first show the canonical gradient attack that is based on the idea of influence function

(Section 2.2.1), which is also the main go-to methods when designing attacks for other attack goals (Jagielski

et al., 2021; Geiping et al., 2021). Then, we show the attacks that work with target models (Section 2.2.2),

which often avoids the drawbacks of local optimization strategies as in the gradient attack. At last, we review

some representative data sanitization defenses against indiscriminate poisoning attacks (Section 2.2.3).

2.2.1 Influence/Gradient Attacks

The influence (or gradient) attack is based on the idea of influence function (Rousseeuw et al., 2011) to

convert the bi-level optimization problem (Definition 2.1.2) into a single-level optimization problem (Biggio

et al., 2011; Mei and Zhu, 2015b;a; Koh and Liang, 2017). The influence attack usually aims to maximize the

test loss L(ĥp;Ste) (the Obj(·) in Definition 2.1.2) and iteratively updates the poisoning point (xp, yp) ∈ Sp

in the direction of the gradient ∂L
∂xp

(with label yp fixed in advance). The difficulty in computing the gradient

of the test loss L(ĥp;Ste) w.r.t. each xp in Sp is that L depends on xp only through the model parameters

θ̂p of ĥp (also written as ĥθ̂p
), which is a complicated function of Sp. Below is the detail on approximately

computing the gradients, which is slightly adapted from the description in Koh et al. (2022). We make a

special note here regarding the work by Koh et al. (2022): the original manuscript is published in 2018, which

is before all the proposed works in this dissertation. However, the official acceptance of the mentioned paper

(with slight updates) is in 2022, which is after the main work discussed in Chapter 3. However, for the sake

of consistency, throughout this dissertation, we will refer to the mentioned paper in its 2022 citation form

(i.e., Koh et al. (2022), (Koh et al., 2022)), but treat it as a prior work to this dissertation.

Computing the gradient. The influence attacks compute the desired gradient ∂L
∂xp

by the chain rule

of ∂L
∂xp

= ∂L
∂θ̂p

∂ĥθ̂p

∂xp
. The first term ∂L

∂θ̂p
is the average gradient of the test loss with respect to the weight

parameter θ̂p for the model ĥθ̂p
and it can be straightforwardly computed as

gĥp,Ste
def
=

∂L

∂θ̂p
=

1

|Ste|
∑

(x,y)∈Ste

∇θℓ(ĥθ̂p
;x, y). (2.5)

The second term
∂ĥθ̂p

∂xp
is complicated and cannot be directly computed due to inter-dependence between ĥθ̂p

and xp. Instead, it is estimated based on the influence function, which provides closed-form estimation for
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the model weights in ĥθ̂p
when xp is changed slightly (Koh and Liang, 2017). Specifically,

∂ĥθ̂p

∂xp
= −H−1

ĥp

∂2ℓ(ĥθ̂p
;xp, yp)

∂θ̂p ∂xp

, (2.6)

where Hĥp
is the Hessian of the training loss at ĥp:

Hĥp

def
= CR ·

∂R(ĥθ̂p
)

∂2θ̂p
+

1

|Sc ∪ Sp|
∑

(x,y)∈Sc∪Sp

∂2ℓ(ĥθ̂p
;x, y)

∂θ̂2
p

. (2.7)

For ĥθ̂p
with the commonly used ℓ2-regularization with λ as the hyperparameter, we have CR ·

∂R(ĥθ̂p
)

∂2θ̂p
= λI.

Combining equations (2.5) to (2.7), the gradient of the test loss w.r.t. an attack point xp is

∂L(ĥp)

∂xp
= −g⊤

ĥp,Ste
H−1

ĥp

∂2ℓ(ĥθ̂p
;xp, yp)

∂θ̂p ∂xp

.

With the defined ways to compute the gradients, the attack runs iteratively as outlined in Algorithm 1. One

major drawback of the influence attack is, because the non-convex bi-level optimization problem is solved

iteratively, the returned solution can sometimes get stuck into bad local optima, leading to underperformance

in some attack settings (Steinhardt et al., 2017; Koh et al., 2022). In addition, because of the involved inverse

Hessian in computation and the necessity to optimize ϵ|Sc| individual poisoning points, the gradient attacks

are usually very slow, even for the simple linear models. Using the result in Theorem 2.2.1, the efficiency of

the attack can be improved by only optimizing two distinct points with different fractional repetitions (Koh

et al., 2022).

Algorithm 1 The Influence Attack.
1: Input: clean data set Sc, poisoning fraction ϵ, learning rate lr.
2: Output: Sp
3: Initialize poisoned data set Sp ← {(x1

p, y
1
p), . . . , (x

ϵn
p , yϵnp )}.

4: for t = 1, 2, . . . do
5: Compute model parameters of ĥp ← argminh L (h;Sc ∪ Sp).
6: Pre-compute gĥp,Ste , H

−1
ĥp

as in (2.5) and (2.7).
7: for i = 1, . . . , ϵn do

8: Set xi
p ← xi

p − lr · g⊤
ĥp,Ste

H−1
ĥp

∂2ℓ(ĥθ̂p
;xi

p,y
i
p)

∂θ̂p ∂xi
p

.
9: end for

10: end for
11: return Sp.
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2.2.2 Attacks with Target Models

These attacks convert the bi-level optimization into single-level optimization by utilizing additional target

models and sometimes also utilize the min-max nature of the indiscriminate poisoning attacks (Koh et al.,

2022). Since attacks in this section can work with a given target model, we first describe the heuristic

approach to generate a target model and then introduce the individual attack methods that generate effective

poisoning points with the target model as an input.

Generating target models with label-flipping. Target models can be generated using some simple

heuristics such as label-flipping. With the generated target models, then different attacks can be designed to

achieve the encoded attack objectives in the target models or to maximally compromise the model performance,

potentially more efficiently using fewer poisoning points. The label-flipping method to generate a target

model, proposed by Koh et al. (2022), is outlined in Algorithm 2, where the loss threshold γ and the number

of repeats r are the two hyperparameters to tune. Koh et al. (2022) performs a grid search over a possible

combination of γ and r from a list of values and generates a candidate set of target models and finally filters

out target models that achieve similar or smaller test errors while having larger loss on the clean training

data. A theoretical justification for the last step of filtering will be given in the implication of Theorem 3.3.3

in Section 3.3.1. If the attacker also has a requirement on the test error of the target models, then it can also

additionally filter out target models that have smaller errors than the requirement, as these models will be

unlikely to be useful. The label-flipping approach can also be applied to the subpopulation settings by simply

replacing the Ste in Line 2 in Algorithm 2 with the test set Ssubte belonging to the subpopulation. Then, the

target classifier that satisfies the attacker goal (e.g., has similar or higher test errors than the requirement on

the subpopulation) and has the lowest loss on the clean training data will be returned.

Algorithm 2 Finding Target Model ĥtar

Input: Sc, Ste, the loss functions L, l, regularization strength CR, loss threshold γ, number of repeats r

Output: ĥtar

1: ĥc = argminL(h;Sc) + CR ·R(h)

2: Sflip = r copies of {(x,−y) : (x, y) ∈ Ste, l(ĥc;x, y) ≥ γ}

3: Scomb = Sc ∪ Sflip

4: ĥtar = argminL(h;Scomb) + CR ·R(h)

5: return ĥtar
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Next, we introduce different attach methods that generate the poisoning points with a target model as an

additional input.

KKT attack. KKT attack (Koh et al., 2022; Lu et al., 2023) is based on the fact that, if a target model

ĥtar with weight parameter θ̂tar (ĥθ̂tar
to be precise) is achieved using a poisoning set Sp by the ERM

algorithm given in (2.2), then it should satisfy the first order optimality condition for the target model ĥtar.

In particular, ĥtar should satisfy the equality problem of

ĥtar = argmin
h

L(h;Sc ∪ Sp) + CR ·R(h) = argmin
h

∑
(x,y)∈Sc

ℓ(h;x, y) +
∑

(xp,yp)∈Sp

ℓ(h;xp, yp) + CR ·R(h)

as well as the equivalent KKT optimality condition

∑
(x,y)∈Sc

∇θℓ(ĥθ̂tar
;x, y) +

∑
(xp,yp)∈Sp

∇θℓ(ĥθ̂tar
;xp, yp) + CR ·

R(ĥθ̂tar
)

∂θ̂tar
= 0. (2.8)

Given a target model ĥθ̂tar
, the KKT equality condition in (2.8) can be formulated as an optimization problem

to minimize the norm of the gradient given in (2.8) (i.e., related to −Obj(·) in Definition 2.1.2), relying on

the fact that the norm of a vector is minimized when the vector is 0. In particular, we have

min
Sp

∥∥∥ 1

|Sc|
∑

(x,y)∈Sc

∇θℓ(ĥθ̂tar
;x, y) +

1

|Sc|
∑

(xp,yp)∈Sp

∇θℓ(ĥθ̂tar
;xp, yp) + CR(1 + ϵ) ·

R(ĥθ̂tar
)

∂θ̂tar

∥∥∥2
2

(2.9)

s.t. |Sp| = ϵ|Sc|

Sp ⊆ C,

The above formulation is the original form of the KKT attack and is also successfully applied to neural

networks very recently (Lu et al., 2022)). However, by leveraging Theorem 2.2.1 for convex models, the

above optimization of the whole set of (possibly distinct) Sp points can be turned into the optimization of

two distinct points from each class in the binary classification case. Then the problem in (2.9) is simplified

to

min
x+
p ,x−

p ,ϵ+,ϵ−

∥∥∥ 1

|Sc|
∑

(x,y)∈Sc

∇θℓ(ĥθ̂tar
;x, y) + ϵ+∇θℓ(ĥθ̂tar

;x+
p , 1) + ϵ−∇θℓ(ĥθ̂tar

;x−
p ,−1) + CR(1 + ϵ) ·

R(ĥθ̂tar
)

∂θ̂tar

∥∥∥2

2

(2.10)

s.t. ϵ+ + ϵ− = ϵ

(x+
p , 1), (x

−
p ,−1) ∈ C.
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For general losses (e.g., logistic loss), this optimization problem is non-convex and requires local optimization

methods such as gradient descent, but for hinge loss, the problem is indeed convex. The algorithmic detail

is given in Algorithm 3, where ĥp is obtained by training on the poisoned set Sc ∪ Sp and Sp only consists

of two distinct points. We note that the KKT attack aims to exactly produce the target model ĥtar and

hence, can be applied beyond the indiscriminate attack goals by generating suitable target models, and we

will additionally test the KKT attack in the subpopulation setting in Section 3.4.

Algorithm 3 KKT attack with grid search.

Input: clean data set Sc, Ste, feasible set C, poisoning fraction ϵ, target model ĥtar, grid search size T .
Output: Sp.
for t = 0, . . . , T do

Set ϵ+ ← tϵ/T , ϵ− ← ϵ− ϵ+.
Obtain x+

p , and x−p by solving (2.10) with fixed values of ϵ+, ϵ−.
Train ĥp on the current poisoned dataset.
Evaluate test error L(ĥp;Ste).

end for
Pick x+

p ,x
−
p , ϵ

+, ϵ− corresponding to the highest test error L(ĥp;Ste) found in grid search.
return Sp = {ϵ+|Sc| copies of x−p and ϵ−|Sc| copies of x−p }.

Min-Max attacks. The Min-Max attack is tailored only for the indiscriminate setting because the

indiscriminate poisoning attack can be naturally formulated as a min-max optimization problem. Specifically,

one can approximate the average test loss with the average training loss (L(h;Ste) ≈ L(h;Sc)), given that

the model is properly regularized and does not have significant overfitting, while the training loss can be

further upper bounded by the following

L(h;Sc) ≤ L(h;Sc) + ϵL(h;Sp) = (1 + ϵ)L(h;Sc ∪ Sp) ≤ (1 + ϵ)
(
L(h;Sc ∪ Sp) + CR ·R(h)

)
, (2.11)

At this step, instead of directly optimizing for L(h;Ste) as the attacker, one can therefore optimize for

L(h;Sc ∪ Sp) + CR ·R(h) (i.e., the Obj(·) in Definition 2.1.2), which gives us

max
Sp⊆C

L(ĥp;Sc ∪ Sp) + CR ·R(h)

where ĥp
def
= argmin

h
L(h;Sc ∪ Sp) + CR ·R(h).

The above formulation contains outer maximization and inner minimization over the same function L(h;Sc ∪

Sp) + CR ·R(h), which leads to the saddle point problem

max
Sp⊆C

min
h

L(h;Sc ∪ Sp) + CR ·R(h). (2.12)
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When the loss ℓ is convex, we can solve (2.12) by swapping min and max and solving the resulting min-max

optimization (also how the name Min-Max comes from) problem minh maxSp⊆C L(h;Sc ∪ Sp) + CR ·R(h),

which expands out to

min
h

[
(1 + ϵ)CR ·R(h) + L(h;Sc) + ϵ max

(xp,yp)∈C
ℓ(h;xp, yp)

]
. (2.13)

Still, for the commonly used ℓ2-norm regularization, we can replace (1 + ϵ)CR · R(hθ) with λ(1+ϵ)
2 ∥θ∥22.

One can solve this problem by iteratively finding (xp, yp) ∈ C that maximizes ℓ(h;xp, yp), then taking the

subgradient of the outer expression using the obtained (xp, yp). Note that, the original min-max attack shown

above does not require target models. However, the drawback of the Min-Max attack without target models

is, the generated poisoning points that maximize ℓ(h;xp, yp) can be too extreme (especially in the case where

there is no defense deployed) and the models trained on them fit poorly on the poisoning points (i.e., high

loss) while fitting well on the clean points (i.e., low loss), leading to a poisoned model that still performs well

on the clean data points, which is not aligned with the attacker goal. To circumvent this issue, one can add

another term that constrains the loss of the poisoning points with respect to a given target model ĥtar (≤ τ ,

where τ is a preset threshold), so as to ensure the poisoning points are not too extreme. More formally, the

maximization of ℓ(h;xp, yp) now becomes:

max
xp

ℓ(h;xp, yp)

s.t. (xp, yp) ∈ C.

ℓ(ĥtar;xp, yp) ≤ τ

Algorithm 4 for the Min-Max attack is outlined below (using ℓ2 regularization as an example), where we

directly introduced the improved version of the Min-Max and call it i-Min-Max throughout this dissertation.

Upper bound on optimal poisoning. The formulation of the Min-Max attack (without target model) also

provides an upper bound to the maximum loss on Sc achievable from any indiscriminate poisoning attacks.

In particular, because the max-min problem is always upper bound by its min-max counterpart for convex



Background and Related Work 18

Algorithm 4 i-Min-Max attack.

Input: clean data Sc, poisoned fraction ϵ, burn-in nburn, feasible set C, learning rate lr, target model ĥtar.
Output: Sp.
Initialize: θ ∈ Rd for hθ, Sp ← ∅.
for t = 1, . . . , nburn + ϵn do

Pick(xp, yp) ∈ argmax(x,y)∈C ℓ(h;x, y), s.t. ℓ(ĥtar;xp, yp) ≤ τ .
θ ← θ − lr · ((1 + ϵ)λθ +∇θL(hθ) + ϵ∇θℓ(hθ;xp, yp))
if t > nburn then
Sp ← Sp ∪ {(xp, yp)}

end if
end for
return Sp.

losses, we have

max
Sp⊆C

L(ĥp;Sc) ≤ max
Sp⊆C

(1 + ϵ)

(
L(ĥp;Sc ∪ Sp) + CR ·R(ĥp)

)
= max
Sp⊆C

min
h

(1 + ϵ)

(
L(h;Sc ∪ Sp) + CR ·R(h)

)
≤ min

h
max
Sp⊆C

(1 + ϵ)

(
L(h;Sc ∪ Sp) + CR ·R(h)

)
= min

h

(
L(h;Sc) + ϵ max

(xp,yp)∈C
ℓ(h;xp, yp) + (1 + ϵ)CR ·R(h)

)
(2.14)

This upper bound also inspires us to establish the connection between the factors we identified for explaining

dataset susceptibilities and the upper bound on the maximum risk inducible from the (best possible) optimal

indiscriminate poisoning attacks in the distributional setting in Chapter 5. Note that (2.14) is for the

finite-sample setting and the surrogate loss on Sc always upper bounds the training error on Sc and for

well-regularized models, the training and test errors are similar. Therefore, by minimizing the upper bound

above, one can get an (approximate) upper bound on the maximum test error achievable by any poisoning

attacks, although this upper bound might be loose. The main idea behind the Min-Max attack (without

target model) is to gradually minimize the upper bound, but halt the optimization when there are some

number of poisoning points generated (to act as an empirical attack strategy). This can lead to a very loose

estimation on the upper bound, especially in the no-defense setting. In Section 5.5.2, we run the optimization

for significantly more number of iterations to achieve tighter upper bound on the (approximate) maximal test

error after poisoning.

2.2.3 Background on Data Sanitization Defenses

In this section, we briefly introduce the representative data sanitization defenses that will be relevant when

we discuss how understanding the limits of indiscriminate poisoning attacks can help future defenses. Two
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representative defenses called Slab and Sphere focus on filtering out a small fraction of outlier points that

are from their respective centroids. These attacks can be effective for datasets such as MNIST (LeCun

et al., 1998) digit pairs of 1 and 7, especially if one knows the true centroid of the data points in each class

(Steinhardt et al., 2017).

Slab and Sphere. The Slab measures the distance of a point (x, y), y ∈ {−1, 1} to its centroid (denoted as

µy) by the projected distance. In particular, Slab filters out points that satisfy ⟨x − µy,µy − µ−y⟩ ≥ sy,

where sy is set as the q-th quantile (e.g., 95-th quantile as in Steinhardt et al. (2017); Koh et al. (2022)).

Sphere works by filtering out points that satisfy ∥x−µy∥2 ≥ ry, where ry is similarly set as the q-th quantile

(still set as 95-th in Steinhardt et al. (2017); Koh et al. (2022)). We will use the combination of Slab and

Sphere defenses as an example in Section 5.6 to show how the effectiveness of data sanitization defenses can

be explained by the relevant factor we identified for poisoning effectiveness.

We choose Slab and Sphere as the representative sanitization defenses in this dissertation as they were most

commonly studied in prior works (Steinhardt et al., 2017; Koh et al., 2022; Diakonikolas et al., 2019), but

Koh et al. (2022) also discussed other sanitization defenses that filter out outliers based on certain criteria

pre- or post-model training. These defenses include loss defense that filters out points of higher loss with

respect to the model trained on the poisoned dataset; SVD defense that projects the data points onto the

top-k right singular vectors of the data feature matrix and filters out the outliers; k-NN defense that removes

points far away from their k nearest neighbors. A more detailed description of these defenses can be referred

from the original paper (Koh et al., 2022).



Chapter 3

Model-Targeted Poisoning Attack1

3.1 Introduction

To assess the practical risks from poisoning, different types of poisoning strategies are proposed for indiscrimi-

nate, subpopulation, and targeted attacks. Among the three, indiscriminate attacks are investigated with the

most versatile attack methods, ranging from the typical influence/gradient method that converts the original

bi-level optimization in Definition 2.1.2 into a single-level optimization using influence functions (Rousseeuw

et al., 2011), online convex optimization strategy that leverages the min-max nature of indiscriminate poison-

ing attacks (Steinhardt et al., 2017; Koh et al., 2022) to model-targeted attacks that additionally uses a given

target model to generate effective poisoning points efficiently with convex optimization (Koh et al., 2022).

Prior to our work in this chapter, the subpopulation attack only considers the weaker random label-flipping

attack (Jagielski et al., 2019). Later, a computationally efficient relaxation of the influence attack that is

adapted for the subpopulation setting is proposed (Jagielski et al., 2021). The targeted poisoning attacks still

mostly (Koh and Liang, 2017; Huang et al., 2020; Geiping et al., 2021) follow the idea of influence functions

with some computationally efficient relaxations.

The proposed poisoning attacks (see details of the representative indiscriminate attacks in Section 2.2) have

drawbacks in some aspects. The influence/gradient attacks can be slow due to the computation of inverse

Hessian, and can also easily get stuck into bad local optima and lead to poor performance because they

rely on local optimization techniques for the non-convex poisoning problems (Steinhardt et al., 2017; Koh
1This chapter is largely based on Fnu Suya, Saeed Mahloujifar, Anshuman Suri, David Evans, Yuan Tian, Model-Targeted

Poisoning Attacks with Provable Convergence, in the Thirty-eighth International Conference on Machine Learning (ICML 2021).

20
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et al., 2022). Furthermore, adapting gradient attacks to different poisoning settings might require redesigning

the loss functions (Jagielski et al., 2021). On the other hand, attacks that leverage the min-max nature of

indiscriminate poisoning attacks cannot be applied to other poisoning settings that do not naturally admit

the min-max formulation for poisoning. In contrast, model-targeted attacks are flexible because they can be

applied for diverse attack objectives (and maybe even beyond security-related attack objectives) simply by

generating the corresponding target models and typically avoid the problem of bad local optima because they

no longer rely on local optimization techniques (Koh et al., 2022). In particular, model-targeted poisoning

attacks can be divided into two stages: 1) generating the target model that satisfies a certain attack objective

(e.g., a specific error rate on the entire population or some target subpopulation) using simple heuristics

such as label-flipping attacks (Koh et al., 2022) (see details in Section 2.2.2); 2) with a given a target model,

attackers attempt to recover the target model by generating poisoning points, which can now be easier

to optimize as attackers have now additional leverage from the given target model. However, the current

model-targeted attacks (Koh et al., 2022; Mei and Zhu, 2015a) do not have convergence guarantee to the

target models, making it unclear how reliably the poisoning attacks can achieve the encoded attack objectives

in those target models.

Driven by the drawbacks of existing data poisoning attacks, in this chapter, we focus on designing an attack

strategy that naturally applies to different attack objectives, especially for the considered indiscriminate and

subpopulation settings, and hence follow the procedure of the model-targeted attacks. However, different from

the existing model-targeted poisoning attacks, we aim to design an attack that has guaranteed convergence

to the given target model (i.e., addressing the convergence problem of existing attacks in the second stage

described above), so as to reliably achieve the encoded attack objective in the target model.

This chapter is organized as follows: we first provide details on the proposed model-targeted poisoning attack

(Section 3.2) and then prove its convergence to the target model (Section 3.3.1). Next, we also provide a lower

bound on the number of poisoning points needed to induce a given target model and use this lower bound to

check the optimality of our attack (Section 3.3.3). Then, we validate the effectiveness of our proposed attack

in Section 3.4 by empirically demonstrating the convergence to the target models and also the effectiveness in

achieving their encoded attack objectives. In Section 3.5, we discuss the limitations and possible extensions

of our work and conclude the chapter in Section 3.6.
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3.2 Model-Targeted Poisoning Attacks

In this section, we focus on studying the attack strategy in the second stage of model-targeted poisoning

attacks. Therefore, when we compare our proposed attack to the state-of-the-art model-targeted poisoning

attack (Koh et al., 2022) in Section 3.4, we will use the current target model generation method by Koh et al.

(2022) for a fair comparison in terms of the attack strategy to generate effective poisoning points. At the end

of the section (Section 3.4.4), we will present a simple way to improve the target model generation method in

Koh et al. (2022), which then provides target models of higher quality to enable more efficient model-targeted

poisoning attacks.

The main idea of our attack, shown in Algorithm 5, is to sequentially add the poisoning point that has

the maximum loss difference between the intermediate model obtained so far (that is, the model induced

by training on the clean data and generated poisoning points from previous iterations) and the target

model. By repeating this process, we can gradually minimize the maximum loss difference between the

induced intermediate classifier and the target classifier, eventually inducing a classifier that has a similar

loss distribution as the target classifier. We show in Section 3.3.1 why similar loss distribution implies

convergence.

Algorithm 5 Model Targeted Poisoning (MTP)

Input: Sc, the loss functions (L and ℓ), target model ĥtar, regularization strength CR

Output: Sp

1: Sp = ∅

2: while stopping criteria not met do

3: ĥt = argminL(h;Sc ∪ Sp) + CR ·R(h)

4: (x∗, y∗) = argmax(x,y)∈C ℓ(ĥt;x, y)− ℓ(ĥtar;x, y)

5: Sp = Sp ∪ {(x∗, y∗)}

6: end while

7: return Sp

Algorithm 5 requires the input of clean training set Sc, the Loss function (L for a set of points and ℓ for

individual point), and the target model ĥtar. The output from Algorithm 5 will be the set of poisoning

points Sp. The algorithm is simple: first, adversaries train the intermediate model ĥt on the mixture of

clean and poisoning points Sc ∪ Sp with Sp an empty set in the first iteration (Line 3). Then, it searches for

the point that maximizes the loss difference between ĥt and ĥtar at iteration t (Line 4). After the point of
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maximum loss difference is found, it is added to the poisoning set Sp (Line 5). The whole process repeats

until the stopping condition is satisfied (Line 2). Algorithm 5 selects poisoning points in Sp sequentially in

order. However, we assume the adversary has no control over the training order, so when the victim trains a

model on Sc ∪ Sp the training set is shuffled randomly. We next provide details on the 3 possible stopping

conditions, which are used in later experiments in this dissertation.

Stopping conditions. The stopping condition in Line 2 is flexible and can take 3 different forms: 1)

the intermediate classifier ĥt is closer to the target classifier (below a preset threshold ζ) in terms of the

maximum loss difference, and more details regarding this distance metric will be introduced in Section 3.3.1; 2)

adversary has some requirement on the accuracy and the algorithm terminates when ĥt satisfies the accuracy

requirement; 3) adversary has a budget T on the number of poisoning points, and the algorithm halts when

the algorithm runs for total T iterations (e.g., when attacker has a fixed poisoning budget of T = ϵ|Sc|); In

this chapter, we focus on producing a classifier close to the target model so as to better achieve the encoded

objective in the given target model, and hence adopt the first stopping criterion that measures the distance

with respect to the maximum loss difference, and report results based on this criterion in Section 3.4. For

experiments in Chapter 4, we use the second criterion for convenience in visualizing the poisoning process

and comparing different subpopulations with a clear success metric. For experiments in Chapter 5, we use

the third criterion to better compare with the existing indiscriminate poisoning attacks (including but not

limited to model-targeted attacks) that are often evaluated at a given poisoning ratio ϵ (i.e., generates ϵ|Sc|

number of poisoning points).

A nice property of Algorithm 5 is that the classifier ĥp trained on Sc ∪ Sp asymptotically converges to

ĥtar. Details of the convergence will be shown in the next section. The algorithm may appear to be slow,

particularly for larger models due to the requirement of repeatedly training a model in line 3. However,

this is not an issue. First, as will be shown in the next section, the algorithm is an online optimization

process and line 3 corresponds to solving the online optimization problem exactly. However, people often

use the very efficient online gradient descent method to approximately solve the problem and its asymptotic

performance is the same (Shalev-Shwartz, 2012). Second, if we solve the optimization problem exactly, we

can add multiple copies of (x∗, y∗) into Sp each time. This reduces the overall iteration number and hence

reduces the number of times retraining models. For simplicity in interpreting the results (Section 3.4), we do

not use this in our experiments and add only one copy of (x∗, y∗) each iteration. However, we also tested the

performance by adding two copies of (x∗, y∗) and find that the attack results are nearly the same while the

efficiency is improved significantly. For example, for experiments on the MNIST 1–7 dataset, by adding 2
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copies of points, with the same number of poisoning points, the attack success rate decreases at most by 0.7%

while the execution time is reduced approximately by half.

3.3 Theorerical Results of the Proposed Attack

We first show the convergence of the proposed attack in Section 3.3.1, followed by its proof in Section 3.3.2.

We then present the lower bound on the minimum number of poisoning points needed to induce a target

model in Section 3.3.3 and then provide the proof in Section 3.3.4. We use this lower bound to check the

optimality of our attack in Section 3.4.3. Finally, we show the special properties of the loss-based distance

(Definition 3.3.1) for the commonly studied hinge loss in Section 3.3.5.

3.3.1 Convergence to the Target Model

In this section, we show the convergence of our proposed attack to the target model. But before proving

the convergence of Algorithm 5, we will first define a general closeness measure based on their prediction

performance to measure the distance of the induced model ĥp trained on Sc ∪ Sp to the target model ĥtar.

We will also use the definition of attainable models in Definition 2.1.1. Both definitions will be used to state

the convergence theorem in Theorem 3.3.3.

Definition 3.3.1 (Loss-based distance and ζ-close). For two models h1 and h2, a space X × Y and a loss

ℓ(h;x, y), we define loss-based distance Dℓ,X ,Y : H×H → R as

Dℓ,X ,Y(h1, h2) = max
(x,y)∈X×Y

ℓ(h1;x, y)− ℓ(h2;x, y),

and we say model h1 is ζ-close to model h2 when the loss-based distance from h1 to h2 is upper bounded by

ζ.

Measuring model distance. We use loss-based distance to capture the “behavioral” distance between two

models. Namely, if h1 is ζ-close (as measured by loss-based distance) to h2 and vice versa, then h1 and h2

would have an almost equal loss on all the points, meaning that they have almost the same behavior across

all the space. Note that our general definition of loss-based distance does not have the symmetry property of

metrics, and hence is not a metric. However, it has some other properties of metrics in the space of attainable

models. For example, if some model h is attainable using ERM, no model could have a negative distance to

it. For special loss function ℓ (e.g., hinge loss, see details in Corollary 3.3.15), two models can be close to

each other in both directions when measured by the loss-based distance, which can be useful in providing
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further analysis on the vulnerabilities to poisoning attacks. We formally define such notion as bi-directional

closeness as below.

Definition 3.3.2 (bi-directional closeness). For two models h1 and h2, a space X × Y and a loss ℓ(h;x, y),

we define model h1 and h2 has bi-directional closeness as if:

Dl,X ,Y(h1, h2) ≤ ζ and Dl,X ,Y(h2, h1) ≤ O(ζ).

When measuring the distance between two models h1 and h2, the loss-based distance can also be related to the

conventional distance metrics such as the Manhattan Distance for some special loss functions. In Section 3.3.5

(deferred to the end of the chapter for clarity in presentation), we demonstrate how the loss-based distance

is an O(ζ) upper bound to the ℓ1-norm of difference between two models that are ζ-close with respect to

loss-based distance for the special case of hinge loss, indicating that the loss based distance not only reflects

similar predictions between the induced and target models but also the parameter closeness in some special

cases such as hinge loss.

In the rest of the paper, we will use the terms ζ-close or ζ-closeness to denote that a model is ζ away from

another model based on the loss-based distance. Theorem 3.3.3 uses the loss-based distance to establish that

the attack of Algorithm 5 produces a model that converges to the target classifier:

Theorem 3.3.3. For υ > 0, if ĥtar is a CR(1 + υ)-attainable model, after at most T steps, Algorithm 5 with

C = X × Y will produce the poisoning set Sp so that a classifier trained on Sc ∪ Sp using the empirical risk

minimization algorithm shown in Eq. (2.2) is ζ-close to ĥtar, with respect to loss-based distance, Dl,X ,Y , for

ζ =
α(T ) + |Sc| ·

(
L(ĥtar;Sc)− L(ĥc;Sc)

)
T · υ/1+υ

where α(T ) is the regret of the Follow the Leader algorithm for a series of loss functions ℓi(·) = ℓ(·,xi, yi) +

CR ·R(·) and (xi, yi) is the i-th poisoning point.

Remark 3.3.4. Sublinear regret bounds for follow-the-leader can be applied to show the convergence. Here,

we adopt the regret analysis from McMahan (2017). Specifically, α(T ) is in the order of O(log T )) and we

have ζ ≤ O( log T
T ) when the loss function is Lipschitz continuous and the regularizer R(h) is strongly convex

and ζ → 0 when T → +∞. α(T ) is also in the order of O(log T ) when the loss function used for training is

strongly convex and the regularizer is convex. Strong convexity is critical for the convergence of our attack,

since the attack may not converge in the general setting of convex loss functions without a strongly convex
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regularizer. In the general case, the loss function can be “unstable” across iterations, and the learned model

weights in neighboring iterations can change drastically. The condition C = X × Y is also important because

the induced model is required to be similar to the target model in predicting any input from the space

X × Y. This condition can be easily satisfied in practice when there are no defenses deployed. However, in

the presence of defenses, C may exclude certain (clean) points and the induced model may never be able to

have similar predictions with the target model on those excluded points and hence the convergence property

might be broken.

Implications of Theorem 3.3.3. The theorem says that the loss-based distance of the model trained on

Sc ∪ Sp to the target model correlates to the loss difference between the target model and the clean model ĥc

(trained on Sc) on Sc, and correlates inversely with the number of poisoning points. Therefore, it implies

1) if the target classifier ĥtar has a lower loss on Sc, then it is easier to achieve the target model, and 2)

with more poisoning points, we get closer to the target classifier and our attack will be more effective. The

theorem justifies the motivation behind the heuristic method in Koh et al. (2022) to select a target classifier

with a lower loss on the clean training data. In addition, it also helps us find the subpopulation property

that is related to the subpopulation susceptibility in Chapter 4. For the indiscriminate attack scenario, we

also improve the current label-flipping method to generate a target model (Koh et al., 2022) by adaptively

updating the intermediate models and producing a (final) target classifier with a much lower loss on Sc, which

then enables more effective model-targeted attacks. This helps to empirically validate our theorem. Details

of the original and improved heuristic approach and their relevant experiments are in Section 3.4.4.

Another important (and broader) implication of our theorem is, the convergence to the target model in terms

of the maximum loss difference ensures the induced model has similar prediction behavior to the target model.

Therefore, in the broader sense, the proposed attack might be applicable to a wide set of attack objectives

in other trustworthy aspects of machine learning such as privacy and fairness. The attackers only need to

generate the target models that satisfy those broad sets of attack objectives.

3.3.2 Proof of the Convergence

In this section, we provide the proof of the convergence of the algorithm. Before proving the main theorem, we

first prove the following two lemmas that characterize the relationship between the maximum loss difference

and the difference of the regularization terms.
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Lemma 3.3.5. Let ĥ1 be a CR-attainable model for some CR > 0, then for any model h2 we have

sup
x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
> CR ·

(
R(ĥ1)−R(h2)

)
.

Proof. Consider an attainable model ĥ1 and any model h2, and let S1 to be the training set that leads the

training algorithm to produce ĥ1. Namely,

ĥ1 = argmin
h

L(h;S1) + CR ·R(h)

Since ĥ1 minimizes the loss on S1 uniquely, we have

L(h2;S1) + CR ·R(h2) > L(ĥ1;S1) + CR ·R(ĥ1)

By rearranging the above inequality and by an averaging argument, we have

sup
x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
≥ L(h2;S1)− L(ĥ1;S1) > CR ·

(
R(ĥ1)−R(h2)

)
.

Lemma 3.3.6. For υ > 0, let F be the family of all (CR(1 + υ))-attainable models. For any ĥ1 ∈ F and for

all h2 we have

sup
x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
+ CR(R(h2)−R(ĥ1)) >

υ

1 + υ
· sup
x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
.

Proof. By Lemma 3.3.5 we have

sup
x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
+ CR(1 + υ)(R(h2)−R(ĥ1)) > 0.

Now by adding υ supx,y
(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
to both sides we have

(1 + υ)
(
sup
x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
+ CR(R(h2)−R(ĥ1))

)
> υ sup

x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
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which implies

(
sup
x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)
+ CR(R(h2)−R(ĥ1))

)
>

υ

1 + υ
sup
x,y

(
ℓ(h2;x, y)− ℓ(ĥ1;x, y)

)

With Definition 2.1.1 and the lemmas, we are ready to prove Theorem 3.3.3 in Section 3.3.1 (restated below

for convenience):

Theorem 3.3.3. For υ > 0, if ĥtar is a CR(1 + υ)-attainable model, after at most T steps Algorithm 5 with

C = X ×Y will produce the poisoning set Sp so that the classifier trained on Sc ∪Sp using Eq. (2.2) is ζ-close

to ĥtar, with respect to loss-based distance, Dl,X ,Y , for

ζ =
α(T ) + |Sc| ·

(
L(ĥtar;Sc)− L(ĥc;Sc)

)
T · υ/1+υ

where α(T ) is the regret of the Follow the Leader algorithm for a series of loss functions ℓi(·) = ℓ(·,xi, yi) +

CR ·R(·) and (xi, yi) is the ith poisoning point.

The goal of the adversary is to get ζ-close to ĥtar (in terms of the loss-based distance) by injecting (potentially

few) number of poisoned training data. The algorithm is, in essence, an online learning problem, and we

transform Algorithm 5 into the form of a standard online learning problem. Specifically, we adopt the Follow

the Leader (FTL) framework to describe Algorithm 5 in the language of a standard online learning problem.

We first describe the online learning setting considered in this paper and the notion of regret.

Definition 3.3.7. Let L be a class of loss functions, H set of possible models, A : (H×L)∗ → H an online

learner and STG : (H×L)∗×H → L a strategy for picking loss functions in different rounds of online learning

(adversarial environment in the context of online convex optimization). We use Regret(A,STG, T ) to denote

the regret of A against STG, in T rounds. Namely,

Regret(A,STG, T ) =

T∑
j=0

ℓj(ĥj)−min
h∈H

T∑
j=0

ℓj(h)

where

ĥi = A
(
(ĥ0, ℓ0), . . . , (ĥi−1, ℓi−1)

)
and li = STG

(
(ĥ0, ℓ0), . . . , (ĥi−1, ℓi−1), ĥi

)
.
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With the online learning problem set up, we proceed to the main proof, which first describes Algorithm 5 in

the FTL framework.

Proof of Theorem 3.3.3. The FTL framework proceeds by solving all the functions incurred during the

previous online optimization steps, namely, AFTL((ĥ0, ℓ0), . . . , (ĥi, ℓi)) = argminh∈H
∑i

j=0 ℓi(h).

Next, we describe how we design the i-th loss function ℓi in each round of the online optimization. For the

first choice, AFTL chooses a random model ĥ0 ∈ H. In the first round (round 0), STGĥtar
uses the clean

training set Sc and the loss is set as

STGĥtar
(ĥ0) = ℓ0(h) = N · L(h;Sc) +NCR ·R(h), N = |Sc|.

According to the FTL framework, AFTL returns a model that minimizes the loss on the clean training set Sc

using the structural empirical risk minimization. For the subsequent iterations (i ≥ 1), the loss functions are

defined as, given the latest model ĥi, STGĥtar
first finds (x∗i , y

∗
i ) that maximizes the loss difference between

ĥi and a target model ĥtar. Namely,

(x∗i , y
∗
i ) = argmax

(x,y)

ℓ(ĥi;x, y)− ℓ(ĥtar;x, y)

and then chooses the ith loss function as follows:

STGĥtar

(
(ĥ0, ℓ0), . . . , (ĥi−1, ℓi−1), ĥi

)
= ℓi(h) = ℓ(h;x∗i , y

∗
i ) + CR ·R(h).

Now we will see how the FTL framework behaves when working on these loss functions at different iterations.

We use Sip to denote the set {(x∗1, y∗1), . . . , (x∗i , y∗i )}. We have

ĥi = AFTL((ĥ0, ℓ0), . . . , (ĥi−1, ℓi−1)) = argmin
h∈H

i−1∑
j=0

lj(h)

= argmin
h∈H

N · L(h;Sc) +NCR ·R(h)

+

i−1∑
j=1

ℓ(h;x∗j , y
∗
j ) + CR ·R(h)

= argmin
h∈H

(N + i− 1) · L(h;Sc ∪ Si−1p ) + (N + i− 1)CR ·R(h)

= argmin
h∈H

L(h;Sc ∪ Si−1p ) + CR ·R(h)
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This means that AFTL algorithm, at each step, trains a new model over the combination of clean data

and poison data so far (i − 1 number of poisons). Now we want to see what is the translation of the

Regret(AFTL, STGĥtar
, T ). If we can prove an upper bound on regret, namely if we show Regret(AFTL, STGĥtar

, T ) ≤

α(T ) for some function α, then we have

T∑
j=0

lj(ĥj)−
T∑

j=0

ℓj(ĥtar) ≤
T∑

j=0

ℓj(ĥj)−min
h∈H

T∑
j=0

lj(h) ≤ α(T )

which implies

T∑
j=0

lj(ĥj)−
T∑

j=0

ℓj(ĥtar) = N ·
(
L(ĥc;Sc)− L(ĥtar;Sc)

)
+NCR · (R(ĥc)−R(ĥtar))

+

T∑
j=1

lj(ĥj)−
T∑

j=1

ℓj(ĥtar)

= N ·
(
L(ĥc;Sc)− L(ĥtar;Sc)

)
+NCR · (R(ĥc)−R(ĥtar))

+

T∑
j=1

[
max
x,y

(
ℓ(ĥj ;x, y)− ℓ(ĥtar;x, y)

)
+ CR · (R(ĥj)−R(ĥtar))

]
≤ α(T ).

Therefore we have

T∑
j=1

[
max
x,y

(
ℓ(ĥj ;x, y)− ℓ(ĥtar;x, y)

)
+ CR · (R(ĥj)−R(ĥtar))

]
≤ α(T ) +N ·

(
L(ĥtar;Sc)− L(ĥc;Sc)

)
+NCR · (R(ĥtar)−R(ĥc))

Based on Lemma 3.3.6, we further have

T∑
j=1

υ

1 + υ
·
(
max
x,y

ℓ(ĥj ;x, y)− ℓ(ĥtar;x, y)
)
≤ α(T ) +N ·

(
L(ĥtar;Sc)− L(ĥc;Sc)

)
+NCR · (R(ĥtar)−R(ĥc))

The above inequality states that the average of the maximum loss difference in all previous rounds is bounded

from above. Therefore, we know that among the T iterations, there exists an iteration j∗ ∈ [T ] (with the

lowest maximum loss difference) such that the maximum loss difference of ĥj∗ is ζ-close to ĥtar with respect

to the loss-based distance where

ζ =
α(T ) +N ·

(
L(ĥtar;Sc)− L(ĥc;Sc)

)
+N · CR · (R(ĥtar)−R(ĥc))

T · υ/1+υ
.
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Theorem 3.3.3 characterizes the dependencies of ζ on α(T ) and the constant term N ·
(
L(ĥtar;Sc)−L(ĥc;Sc)

)
+

NCR · (R(ĥtar)−R(ĥc)). To show the convergence of Algorithm 5, we need to ensure ζ → 0 when T → +∞,

which implies we need to show α(T ) ≤ O(T ). The following remark (restating Remark 3.3.4 in Section 3.3.1)

and its proof shows the desired convergence.

Remark 3.3.4. Sublinear regret bounds for FTL can be applied to show the convergence. Here, we adopt the

regret analysis from McMahan (2017). Specifically, α(T ) is in the order of O(log T )) and we have ζ ≤ O( log T
T )

when the loss function is Lipschitz continuous and the regularizer R(h) is strongly convex and ζ → 0 when

T → +∞. α(T ) is also in the order of O(log T ) when the loss function used for training is strongly convex

and the regularizer is convex.

Our FTL framework formulation can utilize the existing logarithmic regret bound of the adaptive FTL

algorithm when the objective functions are strongly convex with respect to some norm ∥ · ∥, as illustrated

in Section 3.6 in McMahan (2017). For clarity in the presentation, we first restate their related results

below.

Setting 1 (Setting 1 in McMahan (2017)). Given a sequence of objective loss functions f1, f2, ..., fi and

a sequence of incremental regularization functions r0, r1, ..., ri we consider an algorithm that selects the

response point based on

θ1 = argmin
θ∈Rd

r0(θ)

θi+1 = argmin
θ∈Rd

i∑
j=1

fj(θ) + rj(θ) + r0(θ), for i = 1, 2, ...

We simplify the summation notation with f1:i(θ) =
∑i

j=1 fj(θ). Assume that ri is a convex function and

satisfies ri(θ) ≥ 0 for i ∈ {0, 1, 2, ...}, against a sequence of convex loss functions fi : Rd → R∪ {∞}. Further,

letting l0:i = r0:i + f1:i we assume dom l0:i is non-empty. Recalling θi = argminθ l0:i−1(θ), we further assume

∂fi(θi) is non-empty. We denote the dual norm of a norm ∥ · ∥ as ∥ · ∥∗.

Theorem 3.3.8 (Restatement of Theorem 1 in McMahan (2017)). Consider Setting 1, and suppose the ri

are chosen such that r0:i + f1:i+1 is 1-strongly-convex w.r.t. some norm ∥ · ∥(i)·. If we define the regret of the
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algorithm with respect to a selected point θ∗ as

RegretT (θ
∗, fi) ≡

T∑
i=1

fi(θi)−
T∑

i=1

fi(θ
∗).

Then, for any θ∗ ∈ Rd and for any T > 0, with gi ∈ ∂fi(θi), we have

RegretT (θ
∗, fi) ≤ r0:T−1(θ

∗) +
1

2
∥gi∥2(i−1),∗

Here, the θ ∈ Rd corresponds to the weight parameter of the hypothesis hθ in our poisoning setting.

Corollary 3.3.9 (Formalization of FTL result in Section 3.6 in McMahan (2017)). In the FTL framework

(no individual regularizer is used in the optimization procedure), suppose each loss function fi is 1-strongly

convex w.r.t. a norm ∥ · ∥, then we have

RegretT (θ
∗, fi) ≤

1

2

T∑
i=1

1

i
∥gi∥2∗ ≤

G2

2
(1 + log T )

with ∥gi∥∗ ≤ G.

Proof. The following proof is a restatement of the proof in Section 3.6 in McMahan (2017). The proof

follows from Theorem 3.3.8. Since we are considering the FTL framework, let ri(θ) = 0 for all i and define

∥θ∥(i) =
√
i∥θ∥. Observe that l0:i (i.e., f1:i) is 1-strongly convex with respect to ∥θ∥(i) (Lemma 3 in McMahan

(2017)), and we have ∥θ∥(i),∗ = 1√
i
∥θ∥∗. Then by applying Theorem 3.3.8, we have

RegretT (θ
∗, fi) ≤

1

2

T∑
i=1

∥gi∥2(i),∗ =
1

2

T∑
i=1

1

i
∥gi∥2∗

Based on the inequality of
∑T

i=1 1/i ≤ 1 + log T and if we further assume ∥gi∥∗ ≤ G, then we can have

1

2

T∑
i=1

1

i
∥gi∥2∗ ≤

G2

2
(1 + log T )

Proof of Remark 3.3.4. We will prove the logarithmic regret bound in Remark 3.3.4 utilizing Corollary 3.3.9.

First of all, our online learning process fits into Setting 1 using the considered loss functions in our setting.
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Specifically, we set ri(h) = 0 for all i. For fi(h), when 1 ≤ i ≤ N , we set fi(h) = L(h;Sc) + CR · R(h)

(evenly distributing the term N · L(h;Sc) +NCR · R(h) across N iterations) and when i ≥ N + 1, we set

fi(h) = ℓi−N (h). Details of ℓi can be referred from the proof of Theorem 3.3.3. Therefore, fi is 1-strongly

convex with respect to a norm ∥ · ∥ (the norm is determined by the regularizer R(hθ) and CR). Further,

ℓ0:i(h) = f1:N+i(h). In addition, the assumption that dom l0:i is non-empty in Setting 1 means if we train

a classifier on the poisoned data set, we can always return a model and hence the assumption is satisfied.

The assumption of the existence of subgradient ∂fi(hi) in Setting 1 is also satisfied by the poisoning attack

scenario.

The logarithmic regret of Regret(AFTL, STGĥtar
, T ) of our algorithm then follows from the result of RegretT (h∗, fi)

in Corollary 3.3.9. Specifically, ℓ0:i(hθ) = f1:N+i(hθ) is 1-strongly convex to norm ∥ · ∥i =
√
N + i∥ · ∥ and

since we assume the loss function is G-Lipschitz, we have ∥gi∥∗ ≤ G. Therefore, we have the logarithmic

regret bound as:

Regret(AFTL, STGĥtar
, T ) ≤ α(T ) =

1

2

T∑
i=1

1

i+N
∥gi∥2∗ ≤

1

2

T∑
i=1

1

i
∥gi∥2∗ ≤

G2

2
(1 + log T ) ≤ O(log T ).

3.3.3 Lower Bound on Necessary Number of Poisoning Points

In this section, we show how to compute a lower bound on the number of poisoning points that are needed to

induce a particular target model ĥtar.

We first provide the lower bound on the number of poisoning points required for producing the target classifier

in the injection-only setting (Theorem 3.3.10) and then explain how the lower bound estimation can be

incorporated into Algorithm 5. The intuition behind the theorem below is, when the number of poisoning

points added to the clean training set is smaller than the lower bound, there always exists a classifier h with

lower loss compared to ĥtar and hence the target classifier cannot be attained. The full proof of the theorem

and some extensions are in Section 3.3.4.

Theorem 3.3.10 (Lower Bound). Given a target classifier ĥtar, clean training data Sc with |Sc| = N , to

reproduce ĥtar by adding the poisoning set Sp into Sc, the number of poisoning points |Sp| cannot be lower

than

sup
h

z(h) =
N ·

(
L(ĥtar;Sc)− L(h;Sc)

)
+NCR(R(ĥtar)−R(h))

supx,y
(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
+ CR(R(h)−R(ĥtar))

.
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Corollary 3.3.11. If we further assume bi-directional closeness in the loss-based distance, we can also derive

the lower bound on the number of poisoning points needed to induce models that are ζ-close to the target

model. More precisely, if h1 being ζ-close to h2 implies that h2 is also k · ζ close to h1, then we have,

sup
h

z′(h) =
N ·

(
L(ĥtar;Sc)− L(h;Sc)

)
−NCR ·R∗ −Nkζ

supx,y
(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
+ CR ·R∗ + kζ

.

where R∗ is an upper bound on the regularizer R(h).

The formula for the lower bound in Theorem 3.3.10 (and also the lower bound in Corollary 3.3.11) can be

easily incorporated into Algorithm 5 to obtain a tighter theoretical lower bound. We simply need to check all

the intermediate classifiers ĥt produced during the attack process and replace h with ĥt, and the lower bound

can be computed for the pair of ĥt and ĥtar. Algorithm 5 then additionally returns the lower bound, which

is the highest lower bound computed from our poisoning procedure. When the loss function is Lipschitz

continuous and the data and model space are closed convex sets (all common in practice), the loss function is

bounded and the returned lower bound will often be nonzero. We empirically show this for linear SVM models

in Table 3.1 and Table 3.2 in Section 3.4. We note that, for unbounded loss difference, the lower bounds of

Theorem 3.3.10 and Corollary 3.3.11 will be 0. But, this doesn’t mean that our results are vacuous—it means

the attacker is very powerful, and our attack will converge with only a few poisoning points (possibly even

just one) and the lower bound of 0 is close to the number of poisoning points used by the adversary.

Our lower bound is generally applicable to any loss functions given that we are able to obtain the global

minimizer (which can be hard for non-convex losses in practice), but requires identifying proper models h,

which is usually obtained by iteratively training models in practice (e.g., using ĥt in Algorithm 5 as mentioned

above). If we further restrict the models to be linear models under special convex losses such as hinge loss

and logistic loss (and also leverage the first-order optimality condition with respect to the target model), the

lower bound can be computed in closed-form without repeatedly training models, which is demonstrated by

the follow-up work (Lu et al., 2023) to ours.

Implications of our lower bound. First, our lower bound complements Theorem 2.2.1 (proven in Koh et al.

(2022)), which states that any target model ĥtar that is attainable using a training set Sp (Definition 2.1.1)

can be similarly attained using a dataset consisting only two unique points with size less than or equal

to |Sp|. We complement this result by showing that the size of the training set that consists of only two
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unique points cannot be arbitrarily small, in fact, cannot be smaller than the lower bound provided in

Theorem 3.3.10.

This lower bound is also implicitly related to the effectiveness of data poisoning attacks that achieve a certain

attack goal: our theorem describes the necessary amount of poisoning points that are needed to induce a

target model and by checking all the target models that satisfy the attack goal, and taking the minimum over

all the necessary numbers of poisoning points for the considered target models, one can obtain the necessary

amount of poisoning points needed to achieve the attack goal.

3.3.4 Proof of the Lower Bound on Necessary Poisoning

In this section, we provide proof of the lower bound in Theorem 3.3.10 that characterizes the hardness in

inducing a particular target model. The main intuition behind the theorem is, when the number of poisoning

points added to the clean training set is lower than the certified lower bound, for the structural empirical risk

minimization problem (in (2.2)), the target classifier will always have higher loss than another classifier and

hence cannot be achieved.

Proof. We first show that for all models h, we can derive a lower bound on the number of poisoning points

required to get ĥtar. Then since these lower bounds all hold, we can take the maximum over all of them and

get a valid lower bound, which is also why in Algorithm 5, we return the highest lower bound computed. We

first show that for any model h, the minimum number of poisoning points cannot be lower than

z(h) =
N ·

(
L(ĥtar;Sc)− L(h;Sc)

)
+NCR(R(ĥtar)−R(h))

supx,y
(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
+ CR(R(h)−R(ĥtar))

.

Let us denote the point corresponding to the supremum of the loss difference between h and ĥtar as (x∗, y∗)

2. Namely, ℓ(h;x∗, y∗)− ℓ(ĥtar;x
∗, y∗) = supx,y

(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
. Now, suppose we can obtain ĥtar

with a lower number of poisoning points z < z(h). Assume there is a poisoning set Sp with size z such that

when added to Sc would result in ĥtar. Based on Lemma 3.3.5 we have

sup
x,y

(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
≥ L(h;Sc ∪ Sp)− L(ĥtar;Sc ∪ Sp) > CR ·

(
R(ĥtar)−R(h)

)
,

2In practice, the data space X is a closed convex set and hence, we can find (x∗, y∗) using convex optimization. In other
words, as we will see in experiments in Section 3.4, calculating the lower bound is possible in practical scenarios.
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implying supx,y
(
ℓ(h;x, y)−ℓ(ĥtar;x, y)

)
+CR ·(R(h)−R(ĥtar)) > 0. Based on the assumption that z < z(h),

and the fact that supx,y
(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
+ CR · (R(h)−R(ĥtar)) > 0, we have

z ·
(
ℓ(h;x∗, y∗)− ℓ(ĥtar;x

∗, y∗) + CR(R(h)−R(ĥtar))
)

< z(h) ·
(
ℓ(h;x∗, y∗)− ℓ(ĥtar;x

∗, y∗) + CR(R(h)−R(ĥtar))
)

= N ·
(
L(ĥtar;Sc)− L(h;Sc)

)
+NCR(R(ĥtar)−R(h)).

where the equality is based on the definition of z(h). On the other hand, by definition of (x∗, y∗) for any Sp

of size z, we have

z ·
(
L(h;Sp)− L(ĥtar,Sp)

)
+ z · (CR ·R(h)− CR ·R(ĥtar)) ≤ z ·

(
ℓ(h;x∗, y∗)− ℓ(ĥtar;x

∗, y∗)

+ CR(R(h)−R(ĥtar))
)
.

The above two inequalities imply that for any set Sp with size z we have

L(h;Sc ∪ Sp) + CR ·R(h) < L(ĥtar;Sc ∪ Sp) + CR ·R(ĥtar).

which indicates that adding Sp poisoning points into the training set Sc, the model h has lower loss compared

to ĥtar, which is a contradiction to the assumption that ĥtar has the lowest loss on Sc ∪ Sp and can be

achieved. Now, since ĥtar needs to have lower loss on Sc ∪ Sp compared to any classifier h ∈ H, the best

lower bound is the supremum over all models in the hypothesis space H.

Corollary 3.3.11. If we further assume bi-directional closeness in the loss-based distance, we can also derive

the lower bound on the number of poisoning points needed to induce models that are ζ-close to the target

model. More precisely, if h1 being ζ-close to h2 implies that h2 is also k · ζ close to h1, then we have,

sup
h

z′(h) =
N ·

(
L(ĥtar;Sc)− L(h;Sc)

)
−NCR ·R∗ −Nkζ

supx,y
(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
+ CR ·R∗ + kζ

.

where R∗ is an upper bound on the nonnegative regularizer R(h).
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Proof of Corollary 4.2.1. The lower bound for all ζ-close models to the target classifier is given exactly as

follows:

inf
∥h′−ĥtar∥Sℓ,X ,Y≤ζ

sup
h

(
z(h, h′) =

N ·
(
L(h′;Sc)− L(h;Sc)

)
+NCR(R(h′)−R(h))

supx,y
(
ℓ(h;x, y)− ℓ(h′;x, y)

)
+ CR(R(h)−R(h′))

)
,

where inf∥h′−ĥtar∥Sℓ,X ,Y≤ζ
denotes h′ is ζ-close to ĥtar in the loss-based distance. However, the formulation

above is a min-max optimization problem and hard to analytically compute the lower bound by plugging the

lower bound formula into Algorithm 5. Therefore, we need to make several relaxations such that the lower

bound is computable. For any model h′ that is ζ-close to ĥtar, based on the bi-directional assumption, then

ĥtar is kζ-close to h′. Therefore, we have

N
(
L(h′;Sc)−L(h;Sc)

)
= N

(
L(h′;Sc)−L(ĥtar;Sc)+L(ĥtar;Sc)−L(h;Sc)

)
≥ −Nkζ+N

(
L(ĥtar;Sc)−L(h;Sc)

)
and

sup
x,y

(
ℓ(h;x, y)− ℓ(h′,x, y)

)
≤ sup

x,y

(
ℓ(h;x, y)− ℓ(ĥtar,x, y)

)
+ sup

x,y

(
ℓ(ĥtar,x, y)− ℓ(h′;x, y)

)
≤ sup

x,y

(
ℓ(h;x, y)− ℓ(ĥtar,x, y) + kζ

and the inequalities are all based on ĥtar being kζ-close to h′.

Plugging the above inequalities into the formula of suph z(h, h′) for model h′, and with the assumption that

0 ≤ R(h) ≤ R∗,∀h ∈ H, we immediately have

sup
h

z(h, h′) ≥ sup
h

N
(
L(ĥtar;Sc)− L(h;Sc)

)
−Nkζ +NCR(R(h′)−R(h))

supx,y
(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
+ kζ + CR(R(h)−R(h′))

≥ sup
h

(
L(ĥtar;Sc)− L(h;Sc)−Nkζ −NCR ·R∗

supx,y
(
ℓ(h;x, y)− ℓ(ĥtar;x, y)

)
+ kζ + CR ·R∗

= z′(h)

)
.

Since the inequality holds for any h′, we have

inf
∥h′−ĥtar∥Sℓ,X ,Y≤ζ

sup
h

z(h, h′) ≥ sup
h

z′(h)

and hence suph z
′(h) is a valid lower bound.
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Remark 3.3.12 (Improving Results in Corollary 3.3.11). Assuming 0 ≤ R(h) ≤ R∗ is not a strong assumption

and actually can be satisfied by many common convex models. For example, for SVM model with ℓ2-

regularizer (in fact, applies to any regularizer R(h) with R(0) = 0), we have R(h) ≤ 1
CR

and hence R∗ ≤ 1
CR

.

Moreover, we can further tighten the lower bound by better bounding the term R(h′)−R(h). Specifically,

R(h′) − R(h) = R(h′) − R(ĥtar) + R(ĥtar) − R(h) and we only need to have a tighter upper and lower

bounds on R(h′)−R(ĥtar) utilizing some special properties of the loss functions. For the constant k in the

bi-directional closeness, we can also compute its value for some specific loss functions. For example, for hinge

loss, we can compute the value based on Corollary 3.3.15 in Section 3.3.5.

3.3.5 Loss-based Distance for Hinge Loss

In this section, we provide additional properties of the loss-based distance for the commonly studied hinge loss.

In Theorem 3.3.13, we show how one can relate the notion of ζ-closeness in Definition 3.3.1 to the closeness

of parameters in the specific setting of hinge loss. We use this as an example to show that our notion of

ζ-closeness can be tightly related to the closeness of the models in some cases. Then, in Theorem 3.3.14, we

show how the closeness directly in the model parameters can imply the closeness in the loss-based distance.

Finally, combining Theorem 3.3.13 and Theorem 3.3.14, In Corollary 3.3.15 we show how the ζ-closeness in

the loss-based distance for hinge loss implies the bi-directional closeness.

Theorem 3.3.13. Consider the hinge loss function ℓ(hθ;x, y) = max(1− y · ⟨x,θ⟩, 0) for θ ∈ Rd and x ∈ Rd

and y ∈ {−1,+1}. For θ,θ′ ∈ Rd, where θ′ is the weight parameter of the model hθ′ such that ∥θ∥1 ≤ r and

∥θ′∥1 ≤ r, if θ is ζ-close to θ′ in the loss-based distance, then, ∥θ − θ′∥1 ≤ r · ζ.

Proof of Theorem 3.3.13. We construct a point x∗ as follows:

x∗i =


− 1

r , if θi > θ′i, i ∈ [d]

+ 1
r if θi ≤ θ′i, i ∈ [d]

Then we have

⟨θ′ − θ,x∗⟩ = 1

r
· ∥θ − θ′∥1 (3.1)

Since ∥θ∥1 ≤ r we have

⟨x∗,θ⟩ ≥ −1 (3.2)



3.3 Theorerical Results of the Proposed Attack 39

and similarly since ∥θ′∥1 ≤ r we have

⟨x∗,θ′⟩ ≥ −1. (3.3)

Therefore by Inequalities (3.2) and (3.3) we have

ℓ(hθ;x
∗,−1)− ℓ(h′θ′ ;x∗,−1) = max(1 + ⟨x∗,θ⟩, 0)−max(1 + ⟨x∗,θ′⟩, 0) = ⟨θ − θ′,x∗⟩

which by (3.1) implies

ℓ(hθ;x
∗,−1)− ℓ(h′θ′ ;x∗,−1) =

1

r
· ∥θ − θ′∥1. (3.4)

Now since we know that, ∀x ∈ Rd, the loss difference between h and h′ is bounded by ζ, the bound should

also hold for the point (x∗,−1), meaning that

1

r
· ∥θ − θ′∥1 ≤ ζ.

which completes the proof.

Theorem 3.3.14. Consider the hinge loss function ℓ(hθ;x, y) = max(1 − y · ⟨x,θ⟩, 0) for θ ∈ Rd and

x ∈ Rd and y ∈ {−1,+1}. For X = {x ∈ Rd : ∥x∥1 ≤ q} and Y = {−1,+1}, For any two models hθ, h
′
θ′ if

∥θ − θ′∥1 ≤ ζ, then hθ is q · ζ-close to h′θ′ in the loss-based distance. Namely,

Dℓ,X ,Y(hθ, h
′
θ′) ≤ q · ζ.

Proof. For any given hθ and h′θ′ , by triangle inequality for maximum, we have

ℓ(hθ;x, y)− ℓ(h′θ′ ,x, y) = max(1− y · ⟨x,θ⟩, 0)−max(1− y · ⟨x,θ′⟩, 0) ≤ max(0, ⟨yx,θ′ − θ⟩).

Therefore, we have

max
(x,y)∈X×Y

ℓ(hθ;x, y)− ℓ(h′θ′ ;x, y) ≤ max
(x,y)∈X×Y

max(0, ⟨yx,θ′ − θ⟩).

Our goal is then to obtain an upper bound of O(ζ) for max(x,y)∈X×Y⟨yx,θ′ − θ⟩ when ∥θ − θ′∥1 ≤ ζ. To

maximize ⟨yx,θ′ − θ⟩ by choosing x and y, we only need to ensure that sign yxi = sign(θ′i − θi), i ∈ [d].
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Therefore, based on the assumption that 1
q∥x∥1 ≤ 1 (i.e., 1q |xi| ≤ 1, i ∈ [d]) we have

max
(x,y)∈X×Y

1

q
⟨yx,θ′ − θ⟩ =

d∑
i=1

1

q
|xi||θi − θ′i| ≤

d∑
i=1

|θi − θ′i| = ∥θ − θ′∥1 ≤ ζ,

which concludes the proof.

Corollary 3.3.15. For hinge loss, with Theorem 3.3.13 and Theorem 3.3.14, if h is ζ-close to h′, then h′ is

r · q · ζ-close to h.

3.4 Experiments

In this section, we first show how well the proposed attack converges to the target model as more poisoning

points are generated (Section 3.4.2). Then, we show how well the proposed attack performs in achieving the

encoded attack objectives in the target models. The first two sections leverage the heuristic label-flipping

method (Koh et al., 2022) to generate the target models so as to fairly compare with the existing baseline

and highlight the major contribution of this work in designing model-targeted attacks for any achievable

target models. In Section 3.4.4, we show our refined target model generation approach, which improves the

performance of the proposed MTP attack compared to the case of running it with target models generated

by the original method in Koh et al. (2022). This improved method also boosts the performance of other

poisoning attacks that leverage target models and hence is used as the target model generation method

in Chapter 5 when comparing against the (indiscriminate) influence attack that does not rely on target

models.

3.4.1 Experimental Setup

Datasets and Subpopulations. We experiment on both the practical subpopulation and the conventional

indiscriminate attack scenarios. We selected datasets and models for our experiments based on evaluations of

previous poisoning attacks (Biggio et al., 2012; Mei and Zhu, 2015a; Koh et al., 2022; Steinhardt et al., 2017;

Koh and Liang, 2017; Jagielski et al., 2019). For the subpopulation attack experiments, we use the Adult

dataset (Dua and Graff, 2017), which was used for evaluation by (Jagielski et al., 2019; 2021). Following the

prior work, we downsampled the Adult dataset to make it class-balanced and ended up with 15,682 training

and 7,692 test examples. Each example has a dimension of 57 after one-hot encoding of the categorical

attributes. For the indiscriminate setting, we use the Dogfish (Koh and Liang, 2017) and MNIST 1–7
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datasets (LeCun, 1998)3. The Dogfish dataset contains 1,800 training and 600 test samples. We use the same

Inception-v3 features (Szegedy et al., 2016) as in Koh and Liang (2017); Steinhardt et al. (2017); Koh et al.

(2022) and each image is represented by a 2,048-dimensional vector. The MNIST dataset contains 13,007

training and 2,163 test samples, and each image is flattened to a 784-dimensional vector.

We identify the subpopulations for the Adult dataset using k-means clustering techniques (ClusterMatch in

Jagielski et al. (2019)) to obtain different clusters (k = 20). For each cluster, we select instances with the

label “≤ 50K” to form the subpopulation (indicating all instances in the subpopulation are in the low-income

group). This way of defining subpopulation is rather arbitrary but enables us to simplify analyses. From the

20 subpopulations obtained, we select three subpopulations with the highest test accuracy on the clean model.

They all have 100% test accuracy, indicating all instances in these subpopulations are correctly classified

as low-income. This enables us to use “attack success rate” and “accuracy” without any ambiguity on the

subpopulation—for each of our subpopulations, all instances are originally classified as low-income, and the

simulated attacker’s goal is to have them classified as high-income. In Chapter 4, we will select semantically

more meaningful subpopulations based on demographic characteristics for the Adult dataset to have a deeper

investigation on subpopulation susceptibility.

Models. We conduct experiments on linear SVM and logistic regression (LR) models and set the hyperpa-

rameter CR = 0.09 for all settings, but our attack performance is not sensitive to the choice of CR. We use

the heuristic approach from Koh et al. (2022) to generate target classifiers for both model types. To better

assess the quality of induced models from different attacks in terms of their closeness to the target model and

also the encoded attack objective, we consider attack settings where the attackers are interested in inducing a

particular error rate on the whole test set or the defined subset for the indiscriminate and subpopulation

settings respectively. In the subpopulation setting, for each subpopulation, we generate a target model that

has 0% accuracy (100% attacker success) on the subpopulation, indicating that all subpopulation instances

are now classified as high-income. In the indiscriminate setting, for MNIST 1–7, we aim to generate three

target classifiers with overall test errors of 5%, 10%, and 15%. For Dogfish, we aim to generate target models

with overall test errors of 10%, 20%, and 30%.

To obtain target models of the desired errors, a range of candidate target classifiers are generated by

trying different combinations of hyperparameters γ and repetitions r for Algorithm 2, where the γ is

set as the q-th percentile when the clean margin for every point in Ste (Step 2 in Algorithm 2) is

sorted from the lowest to the highest. In particular, for experiments on the MNIST 1–7 and Dogfish
3MNIST 1–7 dataset is a subset of the well-known MNIST dataset that only contains digit 1 and 7.
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datasets, we use a range of values for q as [0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.6]

and a range of values for r as [1, 2, 3, 5, 8, 10, 12, 15, 20, 25, 30, 50, 60]. For experiments on the Adult

dataset, we use a range of values for q as [0.40, 0.45, 0.50, 0.55, 0.8, 1.0] and a range of values for r as

[1, 2, 3, 5, 8, 10, 12, 15, 20, 25, 30, 40, 50, 80, 100].

With the above configurations and also returning the target model that satisfies the attack goal and has the

lowest loss on Sc, for linear SVM on MNIST 1–7, we obtained target models of test accuracies of 94.0%,

88.8%, and 83.3%, and for LR on MNIST 1–7, the target models are of test accuracies of 94.7%, 89.0%, and

84.5%. For linear SVM on Dogfish, we obtained target models of test accuracies of 89.3%, 78.3%, and 67.2%

and for LR on Dogfish, we obtained target models of test accuracies of 89.0% 79.5%, and 67.3%. The test

accuracy of the clean SVM model is 78.5% on Adult, 98.8% on MNIST 1–7, and 99.2% on Dogfish. The test

accuracy of the clean LR model is 79.9% on Adult, 97.8% on MNIST 1–7, and 98.3% on Dogfish.

Baseline attacks. We compare our model-targeted poisoning attack in Algorithm 5 to the state-of-the-art

KKT attack (Koh et al., 2022) (details in Section 2.2.2). We omit the model-targeted attack from Mei and

Zhu (2015b) because there is no open source implementation and this attack (similar in spirit to the influence

attack (Koh et al., 2022)) is also reported underperforming the KKT attack (Koh et al., 2022). Our main

focus here is to compare with other model-targeted attacks in terms of achieving the target models and in

Chapter 5, we will compare with other data poisoning attacks that do not necessarily rely on target models

and show that our attack still achieves competitive or better performance.

Both our attack and the KKT attack take as input a target model and the original training data, and output

a set of poisoning points intended to induce a model as close as possible to the target model when the

poisoning points are added to the original training data. We compare the effectiveness of the attacks by

testing them using the same target model and measuring the convergence of their induced models to the

target model.

The KKT attack requires the number of poisoning points as an input, while our attack is more flexible and

can produce poisoning points in priority order without a preset number. Since we do not know the number

of poisoning points needed to reach some attacker goal in advance for the KKT attack, we first run our

attack and produce a classifier that satisfies the selected ζ-close distance threshold (enables us to approach

the target model closely when not knowing the required number of poisoning points in advance). The loss

function is hinge loss for SVM and logistic loss for LR. For the SVM model, we set ζ as 0.01 on Adult, 0.1 on

MNIST 1–7 and 2.0 on the Dogfish dataset. For the LR model, we set ζ as 0.05 on Adult, 0.1 on MNIST 1–7
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(a) Max Loss Difference (b) Euclidean Distance

Figure 3.1: Convergence to the target model. The results shown are for the first subpopulation (Cluster 0) of
the Adult dataset, and the model is linear SVM. The maximum number of poisoning points is set using the
0.01-close threshold to the target classifier.

and 1.0 on Dogfish. Then, we use the size of the poisoning set returned from our attack (denoted by np) as

the input to the KKT attack for the target number of poisons needed. We also compare the two attacks

with varying numbers of poisoning points up to np. For the KKT attack, its entire optimization process

must be rerun whenever the target number of poisoning points changes. Hence, it is infeasible to evaluate

the KKT attack on many different poisoning set sizes. In our experiments, we run the KKT attack on five

poisoning set sizes: 0.2 · np, 0.4 · np, 0.6 · np, 0.8 · np, and np. For our attack, we simply run iterations up to

the maximum number of poisoning points, collecting a data point for each iteration up to np, which means

the performance of our attack can also be smoothly plotted in each attack iteration that incrementally adds

a poisoning point.

3.4.2 Convergence to the Target Model

Figure 3.1 shows the convergence of Algorithm 5 using both the maximum loss difference and the Euclidean

distance to the target, and the result is reported on the first subpopulation (Cluster 0) of Adult and the

model is SVM. The maximum number of poisoning points (np) for the experiments is obtained when the

classifier from Algorithm 5 is 0.01-close to the target classifier. Our attack steadily reduces the maximum

loss difference and the Euclidean distance to the target model, in contrast to the KKT attack, which does not

seem to converge towards the target model reliably. Concretely, at the maximum number of poisoning points

in Figure 3.1, both the maximum loss difference and Euclidean distance of our attack (to the target) are less

than 2% of the corresponding distances of the KKT attack. From Figure 3.2, we see a similar trend in the

indiscriminate setting, and our attack still converges to the target model more reliably compared to the KKT
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(a) Max Loss Difference (b) Euclidean Distance

Figure 3.2: Convergence to the target model. The results shown are for the target classifier of error rate 10%
for the MNIST 1–7 dataset and the model is linear SVM. The maximum number of poisoning points is set
using the 0.1-close threshold to the target classifier.

attack. Comparing the performances of the KKT attack in the indiscriminate and subpopulation settings, we

can find that, it converges more reliably in the indiscriminate setting compared to the subpopulation setting,

and might be worth exploring the possible reasons behind this interesting observation in the future.

We believe our attack outperforms the KKT attack in convergence to the target model because it approaches

the target classifier differently. The foundation of the KKT attack is that for binary classification, for any

target classifier generated by training on a set Sc ∪ Sp with |Sp| = n, the (exact) same classifier can also be

obtained by training on the set Sc ∪S ′p with |S ′p| ≤ n. This poisoning set S ′p only contains two distinct points,

one from each class. In practice, the KKT attack often aims to induce the exact same classifier with much

fewer poisoning points, which may not be feasible and leads the KKT attack to fail. In contrast, our attack

does not try to obtain the exact target model but just selects each poisoning point in turn as the one with

the best-expected impact. Hence, our attack gets close to the target model with fewer poisoning points than

the number of points used to exactly produce the target model.

3.4.3 Achieving Encoded Objectives and the Attack Optimality

We first show how well the attack objectives can be achieved by the baseline KKT attack and the proposed

MTP attack. Then, we show the optimality of our attack by comparing the number of poisoning points used

by our attack and the lower bound empirically computed with Theorem 3.3.10.

Attack success. We compare the classifiers induced by the two attacks in terms of the attacker’s goal.

Table 3.1 summarize the results of the subpopulation attacks, where attack success is measured on the targeted
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Model/
Dataset

Target
Model np

Lower
Bound

0.2np 0.4np 0.6np 0.8np np

KKT Ours KKT Ours KKT Ours KKT Ours KKT Ours

SVM/
Adult

Cluster 0 1,866 1,667 96.8 98.4 65.4 51.6 14.9 35.6 1.1 2.7 15.4 0.5
Cluster 1 2,097 1,831.4 72.2 77.1 41.0 23.6 2.8 0.7 1.4 0.7 6.9 0.0
Cluster 2 2,163.3 1,863.0 94.9 24.3 15.9 20.3 34.3 12.1 21.6 0.3 20.3 0.3

LR/
Adult

Cluster 0 2,005 N/A 82.1 75.6 71.7 42.2 46.7 15.9 36.6 1.9 24.3 0.4
Cluster 1 1,630 N/A 98.1 94.9 97.2 79.0 96.7 34.1 95.8 6.1 95.8 0.5
Cluster 2 2,428 N/A 97.9 94.5 93.9 45.8 89.8 5.8 79.2 0.6 60.2 0.6

Table 3.1: Subpopulation attack on Adult: comparison of test accuracies on subpopulations (%). Target
models for the Adult dataset consist of models with 0% accuracy on the selected subpopulations (Cluster
0 - Cluster 2). np denotes the maximum number of poisoning points used by our attack, and xnp denotes
comparing the two attacks at xnp poisoning points. np is set by running our attack till the induced model
becomes 0.01-close to the target model. All results are averaged over 4 runs and standard errors are omitted
as they are almost negligible. We do not show the lower bound for LR because we can only compute an
approximate maximum loss difference and the lower bound will no longer be valid.

cluster. At the maximum number of poisoning points, our attack is much more successful than the KKT

attack, for both the SVM and LR models. For example, on Cluster 1 with LR, the induced classifier from

our attack has 0.5% accuracy compared to the 95.8% accuracy of KKT. Because of the better performance

of MTP over the KKT attack, we will use MTP as the new state-of-the-art subpopulation attack when

empirically measuring the susceptibilities of different subpopulations in Chapter 4.

Table 3.2 shows the results of indiscriminate attacks on MNIST 1–7 and Dogfish, and the attack success is the

overall test error. For the indiscriminate attack on SVM, both on MNIST 1–7 and Dogfish, the two attacks

have similar performance while for LR, our attack is much better than the KKT attack. KKT’s failure on LR

is that its objective function becomes highly non-convex and can be hard to optimize (see Section 2.2.2 for

details). For logistic loss, our attack also needs to maximize a non-concave maximum loss difference4 (Step

4 in Algorithm 5). However, this objective is much easier to optimize than that of the KKT attack. This

might explain the observation why our attack is much more effective than the KKT attack when tested on

LR models, compared to the original linear SVM models. We also make a note here that Dogfish can be

easily attacked using our method, especially for linear SVM, to achieve significantly high test errors. For

example, only using 1.8% (32/1800) of poisoning ratio, the test error can be increased from 0.8% to > 10%.

However, such a high test error is easily achieved because the target model overfits to the dataset, and it has

much higher error on the test data compared to the training data. Therefore, in this experiment, we only use

the Dogfish dataset to illustrate how well the encoded (and even overfitted) objective can be achieved in a

given target model. Details on how to assess the dataset vulnerability correctly (in terms of the actual risk

after poisoning) for the Dogfish dataset will be discussed in Section 5.2.1.
4We use Adam optimizer (Kingma and Ba, 2014) with random restarts to solve this maximization problem approximately.
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0.2np 0.4np 0.6np 0.8np npModel/
Dataset

Target
Model np

Lower
Bound KKT Ours KKT Ours KKT Ours KKT Ours KKT Ours

5% 1,737 874 97.3 97.1 96.4 96.1 95.7 95.7 94.9 94.9 94.3 94.6
10% 5,458 3,850.4 95.8 95.5 93.4 92.1 92.7 90.9 91.1 90.7 90.2 90.2SVM/

MNIST 1-7 15% 6,192 4,904 98.3 97.8 96.3 98.1 97.2 97.3 98.3 92.7 82.7 85.9

10% 32 15 97.0 95.8 94.0 93.3 92.2 91.2 90.7 90.2 90.3 89.8
20% 89 45 95.5 95.7 92.5 92.2 90.3 88.7 84.7 84.7 82.3 82.0SVM/

Dogfish 30% 169 83 95.5 95.7 93.5 90.7 88.3 82.5 78.3 75.2 71.8 71.7

5% 756 N/A 97.5 96.9 97.4 96.5 97.2 96.0 96.9 95.7 96.9 95.2
10% 2,113 N/A 97.0 95.7 96.9 93.8 96.8 92.3 96.2 91.4 96.4 90.4LR/

MNIST 1-7 15% 3,907 N/A 96.9 95.4 97.0 93.3 97.1 90.7 97.1 88.3 97.1 87.1

10% 62 N/A 98.8 93.0 98.5 89.7 98.8 89.2 98.8 89.2 98.8 89.0
20% 120 N/A 98.5 93.2 99.2 88.2 99.3 85.3 99.5 83.0 99.5 80.7LR/

Dogfish 30% 181 N/A 97.8 92.3 98.8 85.7 99.2 81.3 99.5 75.7 99.5 72.5

Table 3.2: Indiscriminate attack on MNIST 1–7 and Dogfish: comparison of overall test accuracies (%). The
target models are of certain overall test errors. np is set by running our attack till the induced model becomes
ζ-close to the target model, and we set ζ as 0.1 for MNIST 1–7 and 2.0 for the Dogfish dataset. All results
are averaged over 4 runs and standard errors are omitted as they are negligible. We do not show the lower
bound for LR because we can only compute an approximate maximum loss difference and the lower bound
will no longer be valid.

Optimality of our attack. To check the optimality of our attack, we calculate a lower bound on the number

of poisoning points needed to induce the model induced by the poisoning points found by our attack. We

calculate this lower bound on the number of poisons using Theorem 3.3.10 (details in Section 3.3.3). Note that

Theorem 3.3.10 provides a valid lower bound based on any intermediate model. To get tighter a lower bound

on the number of poisoning points, we only need to use Theorem 3.3.10 on the encountered intermediate

models and report the best (i.e., highest) one. We do this by running Algorithm 5 using the induced model

(and not the previous target model) as the target model, terminating when the induced classifier is ϵ-close to

the given target model. Note that for LR, maximizing the loss difference is not concave and therefore, we

cannot obtain the actual maximum loss difference, which is required in the denominator in Theorem 3.3.10.

Therefore, we only report results on SVM. For the subpopulation attack on Adult, we set ϵ = 0.01 and for the

indiscriminate attack on MNIST 1–7 and Dogfish, we set ϵ to 0.1 and 2.0, respectively. We then consider all

the intermediate classifiers that the algorithm induced across the iterations. Our calculated lower bound in

Table 3.1 (Column 3-4) shows that for the Adult dataset, the gap between the lower bound and the number of

used poisoning points is relatively small. This means our attack is nearly optimal in terms of minimizing the

number of poisoning points needed to induce the target classifier. However, for the MNIST 1–7 and Dogfish

datasets in Table 3.2, there still exists some gap between the lower bound and the number of poisoning points

used by our attack, indicating there might exist more efficient model-targeted poisoning attacks.
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Target Models Test Acc (%) Loss on Sc # of Poisons
Original Improved Original Improved Original Improved

5% Error 94.0 94.9 2,254.6 1,767.1 2,170 1,340
10% Error 88.8 88.9 4,941.0 3,233.1 5,810 2,432
15% Error 83.3 84.5 5,428.4 4,641.6 6,762 3,206

Table 3.3: SVM on MNIST 1–7: comparison of two target generation methods on the number of poisoning
points used by MTP to reach 0.1-closeness to the target. Original indicates the original target generation
process from Koh et al. (2022). Improved denotes our improved target generation process with adaptive
model updating. Better results are highlighted in bold.

3.4.4 Improved Target Model Generation Process

We first show how to improve the quality of the generated target models significantly by slightly modifying

the target generation method proposed in Koh et al. (2022), so that the returned target models can have much

lower loss on Sc. Then, compared to the original approach (Koh et al., 2022), we show that the proposed

MTP attack requires significantly fewer poisoning points to achieve similar attacker objectives using target

models generated from the modified approach.

Improved target model generation. In this section, we improve the quality of the generated target models

by slightly adjusting the target model generation process by Koh et al. (2022) (details in Algorithm 2). In

particular, we find that in the indiscriminate setting, when we are iteratively generating a list of target models

with more and more aggressive hyperparameters (i.e., gradually decreasing γ and gradually increasing r) that

lead to models with higher errors, at iteration i, if we replace the ĥc in Line 2 in Algorithm 2 with the model

ĥtar that is returned from iteration i− 1, then we are able to generate Sflip that helps to eventually produce

a target model with a lower loss on the clean training data while still satisfying the desired error.

We speculate the possible reason is, this way of adaptively updating ĥc in the iterative process helps to

identify more “critical” data points in Sflip that achieve even lower loss when their labels are flipped. This

slightly modified generation process can significantly reduce the number of poisoning points needed by our

MTP attack to reach the same ζ-closeness (with respect to the loss-based distance) to the target classifier,

consistent with the claims in Theorem 3.3.3 that using target models with a lower loss on the clean training

data Sc will improve the performance of the proposed MTP attack. We also find similar improvements for

the KKT attack and the i-Min-Max attack and hence use this improved target generation method when

comparing these attacks in the indiscriminate setting thoroughly in Chapter 5. We did not find a significant

difference in the subpopulation setting using the improved approach above, and hence leave its exploration as

future work.
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Results. We run experiments on the linear SVM and the MNIST 1–7 dataset. For both the original and

improved target generation methods, we generate three target classifiers with error rates of 5%, 10% and

15%. The original target classifier generation method returns classifiers with test accuracies of 94.0%, 88.8%,

and 82.3% respectively (these models are also used in earlier experiments in this section). The improved

target generation process returns target classifiers with approximately the same test accuracies (94.9%, 88.9%,

and 84.5%). However, for classifiers of (approximately) the same error rate returned from the two target

generation processes, the improved generation method produces classifiers with significantly lower losses on

Sc compared to the original one.

Table 3.3 compares the two target generation approaches by showing the number of poisoning points needed

to get 0.1-close to the corresponding target model of the same error rate. For example, for target models

of 15% error rate, the model from the original approach has a total clean loss of 5,428.4 on Sc while our

improved method reduces it to 4641.6. With the reduced clean loss, getting 0.1-close to the target model

generated from our improved process only requires 3,206 poisoning points, while reaching the same distance

to the target model produced by the original method would require 6,762 poisoning points, which gives more

than 50% reduction on the number of poisoning points.

3.5 Discussion

We first discuss the limitation of our work, and then the possible extension to other settings where poisoning

is relevant.

(a) Maximum Loss Difference (b) Euclidean Distance (c) Test Accuracy on Subpopulation

Figure 3.3: Maximum loss difference, Euclidean distance and test accuracy on target subpopulation across
iterations for our attack. Data is not batched, and the same weight-initializations for ĥt, ĥp are used. The
loss drops sharply within the first few iterations, but the accuracy fluctuates within a very small window,
even when |Sp| ∼ 0.5|Sc| is added.
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Limitation of our work. Our work focuses on inducing given target models but does not provide a

principled way to generate target classifiers such that the attacker objectives can be achieved efficiently using

our attack, other than slightly modifying the target model generation process in Section 3.4.4. A systematic

investigation on the generation of better target classifiers is the important next step to fully characterize the

limits of data poisoning attacks. A feasible approach is to generate the target models by directly formulating

it as an optimization problem with respect to the model weights (Sun et al., 2021), instead of just generating

the target model weights through training on a poisoned dataset obtained from simple heuristics. In fact,

the very recent model-targeted attack against deep neural networks (DNNs) shows the potential of using

optimization-based approaches to generate target models (Lu et al., 2023). We believe Theorem 3.3.3 may

also provide additional insights when leveraging optimization-based approaches to generate the target models

(e.g., the optimization should aim for minimizing the loss on Sc). For example, Lu et al. (2023) find that

scaling down the weight parameters of the target DNNs can help reduce the required number of poisoning

points, which might be explained by Theorem 3.3.3 because the scaled-down weights will lead to a lower loss

on Sc and hence, fewer poisoning points.

In terms of extending MTP to DNNs, our theoretical analysis only applies to convex losses, and it is unclear

how to extend the theory to non-convex models (e.g., DNNs). As for the empirical performance of the

MTP attack on DNNs, we tested it for the non-convex multilayer perceptrons (MLP) trained on MNIST

1–7, with non-linear activations and without convolutional layers. To generate this result, we unrealistically

assumed the same model weight initialization will be used in the training of the target model ĥtar and the

intermediate model ĥt, and the model training also does not split the training data into multiple batches.

The subpopulation is defined as all the points in class 1 and so, the adversary’s goal is to have test images

that would be correctly classified as 1s, classified as 7s. The target model has a 5% error on the selected

subpopulation and is generated by adding a large number of poisoning points from the subpopulation with

flipped labels.

The results are given in Figure 3.3 and we can see that the empirical performance of MTP is unstable and

ineffective, despite using two unrealistic assumptions that help eliminate the randomness involved in the

attack process, which otherwise will make the performance of the MTP attack even worse. It is clear that,

although the maximum loss difference (and partially the Euclidean distance) seem to converge, the encoded

attacker objective cannot be reliably achieved, as the test accuracy on the subpopulation after poisoning

still largely fluctuates above a very high value (>98%) most of the time. We speculate the ineffectiveness of

MTP on DNNs is because it uses a loss-based metric (i.e., maximum loss difference), which might not be

suitable for non-convex models. Note that, the KKT attack is based on the first-order optimality condition
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with respect to the target model (e.g., gradient-based metric), and the idea of KKT is successfully applied

to neural networks very recently Lu et al. (2023). Therefore, we hypothesize that replacing the loss-based

metric in our attack with a gradient-based metric might also improve the performance of MTP on DNNs. In

particular, the gradient-based MTP might work by finding the poisoning points that minimize the gradient

cosine similarity between the intermediate model ĥt and the target model ĥtar, and update the model weights

using the generated poisoning points. We leave the detailed exploration of this path as future work.

At last, in this work, we have not considered defenses, but it is an important and interesting direction to

study the effectiveness of our attack against common defenses. As an example, data sanitization defenses may

mainly impact the constraint set C and a significantly shrunk C will greatly hinder the convergence property

of the proposed MTP attack in Theorem 3.3.3, and lead to a significantly increased number of poisoning

points to achieve the given attack goal.

Extension of model-targeted attacks to other settings. We also believe the idea of model-targeted

attack and the proposed MTP attack with provable convergence can be applied to attacker objectives related

to other trustworthy aspects of machine learning, including privacy and fairness. In fact, the follow-up work

that uses the model-targeted approach to break the fairness of machine learning demonstrates the feasibility

of this extension (Jo et al., 2022).

3.6 Summary

We propose a general poisoning framework with provable guarantees to approach any attainable target

classifier, along with a lower (Theorem 3.3.10) and upper bound (the proposed poisoning attack) on the

number of poisoning points needed. Our attack is a generic tool that first captures the adversary’s goal as a

target model and then focuses on the power of attacks to induce that model. Our attack quantifies a tighter

lower bound on the limits of subpopulation and indiscriminate poisoning attacks and will also be used in

Chapter 4 and Chapter 5 to measure the susceptibility variations empirically.



Chapter 4

Explaining Subpopulation

Susceptibility1

4.1 Introduction

Subpopulation attacks might represent the most motivated poisoning attack goals, as these attacks can

broadly impact the targeted subpopulation while minimally impacting the overall performance of the model

(Jagielski et al., 2019; 2021). Therefore, understanding the limits of subpopulation poisoning attacks has

important consequences in understanding the realistic risks of poisoning attacks. Jagielski et al. (2019) first

demonstrated the feasibility of subpopulation attacks using a (relatively weak) random label-flipping attack

on the Adult dataset, and later extended the analysis to other benchmark datasets (Jagielski et al., 2021).

Both works also observe the existence of disparate vulnerabilities, measured by the absolute increase in test

errors on the subpopulation, across a few selected subpopulations and some subpopulations are indeed very

hard to poison. This seems to indicate that the effectiveness of subpopulation attacks might be inherently

limited in some cases. However, the factors of subpopulations that impact the attack effectiveness were not

explored. In addition, one might also question whether the empirical observation using the weaker random

label-flipping attack can well reflect the limits of subpopulation poisoning attacks.

In order to better understand the limits of subpopulation attacks and better assess realistic risks from

poisoning, in this chapter, we explore factors that are potentially related to subpopulation susceptibility by
1This chapter is largely based on Evan Rose, Fnu Suya, David Evans, Poisoning Attacks and Subpopulation Susceptibility, in

the 5th Workshop on Visualization for AI Explainability (VISxAI 2022).
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testing on a larger number of different subpopulations using stronger poisoning attack (i.e., the proposed

MTP attack in Chapter 3). Findings in this chapter also motivate us to further explore different dataset

susceptibility in Chapter 5. Another work that studies the inherent vulnerabilities of individual test samples

under targeted poisoning attacks may also be applied for the subpopulation setting (Wang et al., 2022).

However, a direct extension of targeted attacks to subpopulation settings might overestimate the power of

subpopulation attacks and cannot well reflect the inherent vulnerabilities of subpopulations to poisoning.

More detailed discussion on the relation of our work to Wang et al. (2022) is given in Section 5.7.

The published version (Rose et al., 2022) of the results in this chapter are presented in the form of an interactive

data visualization (presented at the VISxAI workshop that focuses on explaining AI through visualizations)

to help visually illustrate the data poisoning process and also demystify subpopulation properties that impact

their vulnerabilities to strong empirical attacks. We are not able to include interactive visualizations in this

format, and encourage readers to visit https://uvasrg.github.io/visualizing-poisoning/ to explore

the visualizations described here.

This chapter is organized as follows. In Section 4.2, we provide the details on the selected poisoning attack

and the evaluation metric. In Section 4.3, we first present the findings (including the related subpopulation

properties to susceptibility) on the synthetic dataset and then show that many findings also generalize to

the benchmark Adult dataset (Section 4.4). We then discuss the limitation of our work in Section 4.5 and

conclude the chapter in Section 4.6.

4.2 Poisoning Strategy and Evaluation Metrics

In this section, we first show how to measure the subpopulation susceptibility empirically given a poisoning

attack. Then, we provide details on using the MTP attack as the given poisoning attack to obtain an empirical

estimation of the subpopulation susceptibility.

Empirically measuring subpopulation susceptibility. Given a poisoning attack, we measure the

vulnerability of a subpopulation to poisoning by the number of poisoning points needed to achieve a particular

test error on the defined subpopulation (i.e., the attack difficulty), similar to the subpopulation experiments

in Chapter 3 where attackers also aim to achieve certain test error on the subpopulation by inducing the

corresponding target model. The only subtle difference is, in Chapter 3, we aim to well produce the attack

objective encoded in a given target model, while for experiments in this chapter, the interested attack

objective (e.g., 50% test error on the subpopulation) can be different from the exact encoded objective (e.g.,

https://uvasrg.github.io/visualizing-poisoning/
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100% test error on the subpopulation) in the target model. Also, there can be other ways to define the

vulnerability, such as the poisoned test error on the subpopulation after injecting a fixed ratio of poisoning

points with respect to the size of the subpopulation or the whole training data. However, from the perspective

of visualizing poisoning attacks, compared to other forms of vulnerability measurement, measuring the

subpopulation vulnerability (or the attack difficulty) based on the number of poisoning points needed can be

visually clearer when comparing different subpopulations that are successfully attacked (i.e., test errors on the

subpopulations exceed the set threshold). In addition, this susceptibility measurement also matches well with

the chosen MTP attack from Chapter 3 (see justification below) that adds the poisoning point incrementally

in each iteration, as we can clearly see how the poisoning points impact the learned model as more number of

poisoning points are added, which is again beneficial for visualizing the poisoning process.

Choosing MTP over other baselines. We choose the proposed MTP attack in Chapter 3 as the poisoning

strategy because it achieves state-of-the-art performance in achieving the attack objectives encoded in the

target models in the subpopulation setting (Section 3.4). In addition, MTP does not require the number of

poisoning points needed in advance, which suits our setting because we aim to induce similar test errors on

different subpopulations, but do not know their needed number of poisoning points in advance. We also did

not consider the random label-flipping attack by Jagielski et al. (2019; 2021) in the rest of the chapter because

the attack is relatively weak due to only randomly flipping the labels of existing points, not optimizing both

the data features and labels as in the MTP attack.

To see the performance gap between the random label-flipping and the MTP attacks, we compare their

attack effectiveness in achieving 100% test error on the subpopulation using the same number of poisoning

points, and we set this number by terminating our attack when the induced model has 100% test error on the

subpopulation, and the clean model without poisoning has 0% test errors on all the selected subpopulations.

Since the choice of target models can impact the performance of the MTP attack in achieving the target

attack objective (e.g., 100% test error on the subpopulation), we heuristically generate the desired target

models by ensuring that they 1) satisfy the attacker objective and 2) have larger losses on the training

data from the subpopulation, and 3) have relatively lower losses on the entire clean training set. We simply

generate the subpopulations by clustering, as in Section 3.4 to compare the two attacks.

Table 4.1 shows the result and across all settings, our attack is considerably more successful. However, the

random label-flipping attack is also relatively successful in some cases (e.g., Cluster 1 in the SVM experiment).

We believe the success of the label-flipping attack is due to the following two reasons: first, label-flipping

in the subpopulation setting can be successful because smaller subpopulations show stronger degree of
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SVM LR
Cluster 0 Cluster 1 Cluster 2 Cluster 0 Cluster 1 Cluster 2

MTP 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Label-Flipping 31.4% 2.8% 15.5% 15.9% 14.0% 19.1%

Table 4.1: Comparison of our attack to the label-flipping based subpopulation attack. The table compares
the test accuracy on subpopulation of Adult dataset under same number of poisoning points. The number of
poisoning points is determined when our attack achieves 0% test accuracy on the subpopulation. Cluster 0-3
in the logistic regression and SVM models denote different clusters. For logistic regression, the number of
poisoning points for Cluster 0-3 are 1,575, 1,336 and 1,649 respectively. For SVM, the number of poisoning
points for Cluster 0-3 are 1,252, 1,268 and 1,179 respectively.

locality. Hence, injecting points (from the subpopulation) with flipped labels can also strongly impact the

selected subpopulation. This is confirmed by the empirical evidence that increasing the subpopulation size

(i.e., reducing its locality) gradually reduces the label-flipping effectiveness and the attack becomes almost

ineffective in the indiscriminate setting (i.e., the subpopulation is the entire population). Second, the Adult

dataset only contains 57 features, where 53 of them are binary features with additional constraints. Therefore,

the benefit from optimizing the feature values is less significant, as the optimization search space of our attack

is fairly limited. Nevertheless, our attack still achieves the best performance in the subpopulation settings and

hence, we will empirically measure the subpopulation susceptibility by running the MTP attack next.

Details on running the MTP. To run the MTP attack, we first generate the target model of 100% error

rate with the lowest loss on the clean training data (similar to the generation process in Section 3.4), but then

terminate the MTP attack when the induced model misclassifies at least 50% of the target subpopulation

measured on the test set (i.e., the second stopping condition in Section 3.2), instead of achieving the encoded

objective of 100% test error in the target model. Then we record the set of poisoning points Sp generated

during the attack process. The susceptibility metric (will be referred to as difficulty in the following discussion)

will be set as the ratio between the size of the poisoning set Sp and the clean training set Sc as |Sp|/|Sc|.

This 50% of threshold was chosen to mitigate the impact of outliers in the subpopulations. In earlier

experiments requiring 100% attack success, we observed that attack difficulty was often determined by outliers

in the subpopulation. By relaxing the attack success requirement, we are able to capture the more essential

properties of an attack against each subpopulation. Since our eventual goal is to characterize attack difficulty

in terms of the properties of the targeted subpopulation (which outliers do not necessarily satisfy), this is a

reasonable relaxation.

Next, we will first show our findings on the correlated factors to subpopulation susceptibility with necessary

visualizations for the 2-dimensional synthetic dataset (Section 4.3) and then show the identified factors also
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generalize to the high-dimensional Benchmark Adult dataset (Section 4.4).

4.3 Synthetic Experiments

In this section, we first provide details on the experimental setup for the synthetic experiments (Section 4.3.1)

and then present the findings on the subpopulation properties that impact their susceptibilities to poisoning

attacks (Section 4.3.2).

4.3.1 Experiment Setup

Dataset generation. The synthetic datasets are generated using generation algorithms from Scikit-learn

(Pedregosa et al., 2011), which are adapted from the techniques used to generate the “Madelon” dataset

(Guyon et al., 2004). The global properties of each dataset are controlled by two dataset parameters. The first

dataset parameter is a class separation parameter α ≥ 0 and controls the separation between class centers.

Larger values of α correspond to an easier classification task. The second dataset parameter is a label noise

parameter β ∈ [0, 1] and controls the amount of label noise present in the data. Larger values of β result in a

less well-posed classification task, as the input features correlate less strongly with the assigned label.

The exact generation process is analogous to the following procedure. First, two clusters in a 2-dimensional

feature space are created by sampling from a Gaussian mixture with 2 components of parameters N (γ1,Σ1)

and N (γ2,Σ2), respectively, with equal mixture weights. The 2× 2 covariances Σ1 and Σ2 are determined

independently at random and correspond to multiplying non-translated points by a random matrix with

entries sampled uniformly at random. The distance between class centers ∥γ1 − γ2∥ is proportional to the

class separation parameter α. The label noise parameter β determines the fraction of points whose labels

are assigned uniformly at random from {−1,+1}; the remaining labels are determined according to the

corresponding component in the mixture: points sampled from N (γ1,Σ1) receive the label −1, and points

sampled from N (γ2,Σ2) receive the label +1.

Datasets are generated over a grid of dataset parameters (α, β). The class separation parameter α ranges over

13 equally spaced values in the range [0, 3], and the label noise parameter β ranges over 11 equally spaced

values in the range [0, 1]. For each dataset parameter combination, 10 datasets are generated by feeding

different random seeds into the generation algorithm. Seeds are reused between different dataset parameter

combinations. In total, 1,430 synthetic datasets are generated with this method. The linear SVM models are



Explaining Subpopulation Susceptibility 56

trained using the Scikit-learn package (Pedregosa et al., 2011) and the hyperparameter is set as CR = 5e− 4

for the synthetic dataset.

Subpopulation generation. We use the K-Means clustering algorithm with k = 16 to generate the clusters

and treat each cluster as a subpopulation, and further extract the negative-labeled instances from each

cluster to form the final subpopulation, similar to the experiments in Section 3.4. In total, we generate

1430× 16 = 22, 880 subpopulations but ended up with 21,908 non-empty subpopulations that contain at least

one point with the negative label. From these subpopulations, 9,591 subpopulations are trivial (i.e., the clean

model already satisfies the attack goals and no attack is needed), leaving 12,317 non-trivial subpopulations

where poisoning is needed to achieve the attack goal.

4.3.2 Visualizing Poisoning Attacks

In this section, we first show some visualizations that help understand poisoning attacks, especially the

proposed MTP attack, better. Next, we show the drastic variation of the subpopulation susceptibility when

tested on a large number of datasets and subpopulations. Then, we discuss our findings on the distributional

and subpopulation properties that contribute to disparate susceptibilities under linear SVM models.

Visualizing the poisoning process. As a visualization work, one contribution of our work is to visualize

the process of poisoning attacks and also some theoretical insights in an intuitive way. Towards this goal,

Figure 4.1 shows how the decision boundary is moved as more poisoning points are added to the original

training set to eventually misclassify 50% of the test points from the subpopulation (the training points

are visualized while the attack stops when the test error exceeds 50%). We can observe that, with the

existence of more positively labeled (i.e., blue color) poisoning points (marked as “+”) near the region of the

negative label (i.e., red color) points, the decision boundary is gradually shifted to fit those “wrongly" labeled

poisoning points, which in turn misclassifies the original subpopulation (i.e., orange colored points) into (blue)

positive label. The exact locations and the labels of the generated poisoning points are determined by the

maximization of the loss difference, as given in Line 4 in Algorithm 5. Interestingly, many of the poisoning

points reside on only 3 distinct locations, which roughly justifies Theorem 2.2.1 that for binary classification,

poisoning points from two distinct locations is sufficient to achieve the attack goals. Although our MTP

attack does not necessarily limit itself to finding only two distinct poisoning points, the poisoning points

found are naturally concentrated. Future poisoning attacks, at least for convex models, may just focus on

optimizing the poisoning points from only a few promising locations (in high dimensions), as optimization of

many distinct points may not be necessary.
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(a) 39/155 Poisoning Points (b) 78/155 Poisoning Points

(c) 78/155 Poisoning Points (d) 155/155 Poisoning Points

Figure 4.1: Visualization of the poisoning process to induce 50% test error on the selected subpopulation
(better viewed in color). The selected subpopulation is denoted by the orange-colored area. The labels of the
data points (including generated poisoning points marked as “+”) are represented with given colors, and the
blue color denotes the positive label and the red color denotes the negative label. The attack goal is to flip
the original negative label (i.e., red color) of the orange-colored area into the positive label (i.e., blue color).
The solid gray line denotes the clean decision boundary that is trained without poisoning. The dark solid line
denotes the poisoned model after adding x out of the total 155 poisoning points into the training set. The
dashed line denotes the target model that induces 100% test error on the selected subpopulation.

Importance of target model selection. Next, we provide the visualization on the importance of selecting

the proper target model when running the MTP attack. In particular, in Section 3.3.1, we show that we

desire a target model that satisfies the attack goal and also has a lower loss on Sc. The drawback of choosing
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87 Poisons

(a) Target Model with Lower Loss on Sc

674 Poisons

(b) Target Model with Higher Loss on Sc

Figure 4.2: Importance of choosing the proper target model for the MTP attack. The two figures compare
the number of poisoning points needed to misclassify 50% of the same subpopulation (orange region), but
using two different target models where Figure 4.2a shows the preferred model with a lower loss on Sc. The
solid gray line denotes the clean decision boundary that is trained without poisoning. The dark solid line
denotes the poisoned model after adding poisoning points into the clean training set. The dashed line denotes
the target model that induces 100% test error on the selected subpopulation.

a bad target model (i.e., a model with higher loss on Sc) is that, it introduces other properties irrelevant

to the attack goal on the subpopulation, while the proposed MTP attempts to induce the target model as

closely as possible and unavoidably spends more poisoning points to achieve those undesired properties, which

eventually increases the number of poisoning points used to achieve the relevant attack goal that matters.

Visually, we can view the above argument as, using target models with a higher loss on Sc, there will be

higher resistance from the rest of the subpopulation (irrelevant to the attack goal on subpopulation) when we

gradually move the decision boundary by adding poisoning points because the points from the rest of the

population are originally correctly classified, but are now forced to be misclassified. Figure 4.2a shows the

results of the target model that is generated by finding the model that has the lowest loss on Sc while also

satisfying the attack goals, and the MTP attack only needs 87 poisoning points to misclassify 50% of the

subpopulation. In comparison, a worse choice of target model as shown in Figure 4.2b will receive higher

resistance from the rest of the poisoning points and leads to MTP using 647 poisoning points to induce 50%

of test errors on the same subpopulation. Therefore, future exploration on model-targeted attacks should

also focus on finding target models that satisfy the attack objectives while having the lowest possible loss on

Sc.
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Figure 4.3: Comparison of the average subpopulation difficulty (of the total 16 subpopulations) of different
synthetic datasets. The difficulty is measured as |Sp|/|Sc|, where Sp is generated to let the induced model
misclassify 50% of the points in a subpopulation.

Next, we will first show the variation of subpopulation susceptibility and then characterize the subpopulation

properties that impact their vulnerabilities to the MTP attack.

4.3.3 Subpopulation Susceptibility Variation

In this section, we describe the variation in subpopulation susceptibility by first showing the (dataset-level)

average difficulty of subpopulations for each dataset and then providing a finer analysis of the variation across

individual subpopulations for different datasets.

Average subpopulation susceptibility across datasets. We first explore the impact of the overall

distributional properties on the vulnerabilities of the subpopulations, as these are high-level properties that

might provide some general insights before digging deeper into particular subpopulation properties. Figure 4.3

shows the average difficulty of the total k = 16 subpopulations in each dataset for all the synthetic datasets
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(a) Inaccurate Clean Models (b) Accurate Clean Models

Figure 4.4: Distribution of subpopulation susceptibilities for synthetic datasets of different clean accuracies
under linear SVM. The x-axis denotes the measured attack difficulty and the y-axis denotes the frequency.

generated with different fractions of label noise β and class separation α. For datasets that are easier to

classify (e.g., higher class separation α and lower fraction of label noise β from the distributional perspective),

the average difficulty of the subpopulations increases, and vice versa. This observation is expected as the

poorly separated datasets either already have high test errors on the subpopulations without poisoning or have

points that are close to the decision boundary and are highly sensitive to misclassification when the decision

boundary changes slightly, indicating that higher test errors on the subpopulations after poisoning can be

easily achieved with a limited number of poisoning points. In contrast, for datasets that are well-separated

by linear models, the subpopulations are far from the decision boundary with a lower number of misclassified

points, and more poisoning points are needed to move the decision boundary (significantly) to incur the

desired amount of test errors on the subpopulations. To conclude, the overall distributional properties of

class separation and label noise indeed have a major impact on the vulnerabilities of the subpopulations, and

subpopulations in less separable datasets are more vulnerable to poisoning.

Distribution of subpopulation susceptibilities. Once we have an understanding of the average difficulty

for the subpopulations in each dataset, we further explore the variation of subpopulation susceptibility

(measured by the attack difficulty) across different subpopulations for both the poorly- and well-separated

datasets. We plot the frequencies of subpopulations with respect to the range of difficulty scores, as shown

in Figure 4.4. From these experiments, we can clearly see that when the clean model accuracy is low (i.e.,

datasets are less separable under linear SVM), the majority of the subpopulations are easier to attack as the
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3 Poisons

(a) Easiest to Attack

14 Poisons

(b) Moderately Hard to Attack

44 Poisons

(c) Moderately Hard to Attack

70 Poisons

(d) Hardest to Attack

Figure 4.5: Variation of subpopulation susceptibilities in the non-linearly separable synthetic dataset. Each
figure contains the number of poisoning points needed to have the induced model misclassify (as blue) 50% of
the points in the subpopulation (colored in orange). The solid gray line denotes the clean decision boundary
that is trained without poisoning. The dark solid line denotes the poisoned model after adding poisoning
points into the clean training set. The dashed line denotes the target model that induces 100% test error on
the selected subpopulation.

distributional properties dominate the subpopulation susceptibility in these cases. However, when the overall

clean accuracy is high, the variation of the difficulty becomes more drastic and the impact of individual

subpopulations matters more for the susceptibility, and further exploration of these properties is needed. Below,

we provide initial insights on the possible subpopulation properties that impact the susceptibility by visualizing

the attacked results of selected subpopulations for both the poorly- and well-separated datasets.
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104 Poisons

(a) Easiest to Attack

210 Poisons

(b) Moderately Hard to Attack

412 Poisons

(c) Moderately Hard to Attack

716 Poisons

(d) Hardest to Attack

Figure 4.6: Variation of subpopulation susceptibilities in the linearly separable synthetic dataset. Each figure
contains the number of poisoning points needed to have the induced model misclassify (as blue) 50% of the
points in the subpopulation (colored in orange). The solid gray line denotes the clean decision boundary that
is trained without poisoning. The dark solid line denotes the poisoned model after adding poisoning points
into the clean training set. The dashed line denotes the target model that induces 100% test error on the
selected subpopulation.

Understanding subpopulation susceptibilities through visualization. Figure 4.5 shows 4 different

subpopulations that include the hardest, easiest, and moderately hard to attack subpopulations for a poorly-

separated dataset under linear SVM. One obvious finding is, although the less separable dataset makes all of

its subpopulations in general more vulnerable to poisoning (requires at most 70/2000 = 3.5% of poisoning to

attack all subpopulations), the individual subpopulation properties still lead to some minor variation in their
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susceptibilities to poisoning. Expectedly, this variation across subpopulations is amplified for well-separated

datasets, and Figure 4.6 shows 4 different subpopulations (hardest, easiest, and moderately hard to attack) in

the well-separated case. In terms of the possible subpopulation properties that lead to this drastic variation,

we can see visually from both Figure 4.5 and Figure 4.6 that, the relative position of the subpopulation to

the rest of the population seems to be relevant, and the concrete subpopulation property that captures this

“relative position” will be given next.

4.3.4 Characterization of Subpopulation Properties Impacting Susceptibility

So far, through extensive experiments, we have demonstrated that at the high level, the distributional

properties matter more when the sampled datasets are poorly separated by linear models (while the individual

subpopulations still contribute to minor variations) and the subpopulation properties that capture the

“relative positions” of the subpopulations contribute more towards the susceptibility when the datasets are

well-separated. In this section, we identify the relevant subpopulation properties. We tested four factors that

are explicitly related to the properties of the subpopulations and also the underlying model (i.e., linear SVM

in our case): 1) the model loss difference between the target model and the clean model on Sc, where the

target model has 100% error on the subpopulation with the lowest loss on Sc; 2) the training accuracy of the

clean model on the subpopulation; and 3) the training loss of the clean model on the subpopulation; 4) the

size of the subpopulation.

Figure 4.7 shows the correlation between the four factors and the subpopulation susceptibility. We can see

that only the model loss difference shows a strong correlation with the empirically observed susceptibility

using the MTP attack and other factors of clean accuracy and clean loss on subpopulation and the size

of the subpopulation all do not have a significant correlation. We believe the model loss difference is a

reliable indicator because it implicitly captures the “relative position” of the subpopulation to the rest of

the population using a target model that misclassifies the subpopulation, which otherwise might be hard

to quantify directly. A smaller loss difference is likely to indicate that the subpopulation is more isolated

compared to the rest and is closer to the clean decision boundary, which faces less resistance from the rest

when moving the decision boundary and enables more efficient poisoning. Other factors such as the clean

accuracy and clean loss are all related to the average margin of the clean points in the subpopulation to

the decision boundary, but these factors do not capture the distribution of the rest of the subpopulation. If

the subpopulation is very close to the decision boundary but is surrounded by the rest of the population,

then misclassifying the subpopulation will unavoidably misclassify points from the rest of the population and

require more number of poisoning points as there will be stronger resistance from other points. As for the
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(a) Model Loss Difference (b) Accuracy on Clean Subpopulation Points

(c) Loss on Clean Subpopulation Points (d) Subpopulation Size

Figure 4.7: Correlation between the properties of the subpopulation and the susceptibilities for the synthetic
dataset. Figure 4.7a shows the correlation of the model loss difference between the generated target model
(has 100% error on the subpopulation and also the lowest loss on Sc among the generated candidate target
models) and the clean model on Sc. Figure 4.7b shows the correlation of the subpopulation clean accuracy.
Figure 4.7c shows the correlation of the clean loss on the subpopulation. Figure 4.7d shows the correlation of
the subpopulation size.

subpopulation size, expectedly, it also cannot characterize the susceptibility well as the subpopulation size

may even fail to reflect the statistical properties of the subpopulation, not to mention the distribution of the

rest of the population.

In these experiments, we only measure the correlation of the factors individually and observe the latter three
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factors are not relevant. However, using more sophisticated ways to combine these irrelevant factors may still

have strong predictive power on the subpopulation susceptibility. In addition, these irrelevant factors may

still become relevant when we limit our scope to understanding the vulnerabilities of selected subpopulations.

We leave these explorations as future work.

4.4 Experiments on Adult Dataset

In this section, we first show the experimental setup for the Adult dataset (Section 4.4.1). Then we

show the generally descriptive subpopulation properties that are related to the subpopulation susceptibility

(Section 4.4.2). Finally, we show some semantically meaningful subpopulation properties that are related to

the susceptibility in selected settings (Section 4.4.3).

4.4.1 Experiment Setup

For the model training, as before, we use the Scikit-learn package to train the linear SVM models and

set the hyperparameter CR = 0.09. We use the FeatureMatch (Jagielski et al., 2019; 2021) approach that

combines different attributes to generate the subpopulations for the Adult dataset, which are semantically

more meaningful from the perspective of subpopulations that matter in practice and are also related to

fairness in machine learning. In particular, to generate a semantic subpopulation, first, a subset of categorical

features is selected, and specific values are chosen for those features. For example, the categorical features

could be chosen to be "work class" and "education level", and the features’ values could then be chosen to

be "never worked" and "some college", respectively. Then, every negative label ("≤ 50K") instance in the

training set matching all the (feature, label) pairs is extracted to form the subpopulation. The subpopulations

for our experiments are chosen by considering every subset of categorical features and every combination

of those features that is present in the training set. For simplicity, we only consider subpopulations with a

maximum of three feature selections. In total, 4,338 subpopulations are formed using this method. Each

of these subpopulations is attacked using the same attack as in the case of the synthetic dataset. Of these

attacks, 1,602 are trivial (i.e., the clean model already satisfies the attacker objective), leaving 2,736 nontrivial

attacks.

4.4.2 Variation of Subpopulation Susceptibility and Relevant Properties

We first show the drastic variation of subpopulation susceptibility in the Adult dataset in Figure 4.8. From the

figure, we can clearly see the variation among subpopulations still exists for the high-dimensional benchmark

dataset. Next, similar to the synthetic case studied in Section 4.3, we still proceed to explore the correlation of
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Figure 4.8: The distribution of the attack difficulties of subpopulations in the Adult dataset.

the 4 factors (i.e., model loss difference, accuracy on subpopulation, loss on subpopulation, and subpopulation

size) to the subpopulation susceptibility in the Adult dataset. From Figure 4.9 we can see that, the model

loss difference is a generalizable property and is still highly correlated to the susceptibility while other factors

again fail to show a strong correlation for the Adult dataset. We believe the underlying reason for this

observation is similar to the synthetic case, that the model loss difference well captures the relative position

of the subpopulation while others don’t.

4.4.3 Related Semantic Properties

Recall that for the Adult dataset, the subpopulations are generated using the FeatureMatch algorithm and

hence, each subpopulation has a semantic meaning, and we can explore if there are identifiable semantic

properties, rather than just the abstract description using the model loss difference, that can be related to

the subpopulation susceptibility.

Through experiments, we find that the number of nearby points with different labels to the subpopulations can

also be related to the subpopulation susceptibility. To show this, we first define ambient positivity. Specifically,

for a subpopulation under binary classification with a given property P , we define the set of all points

satisfying P the ambient subpopulation (since it also includes positive-label points), and call the fraction

of points in the ambient subpopulation with a positive label the ambient positivity of the subpopulation.

The relation of the ambient positivity and the subpopulation susceptibility is shown in Figure 4.10 for the
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(a) Loss Difference between Clean and Target Models (b) Accuracy on Clean Subpopulation Points

(c) Loss on Clean Subpopulation Points (d) Subpopulation Size

Figure 4.9: Correlation between the properties of the Subpopulation and the susceptibilities for the Adult
dataset. Model loss difference still denotes the loss difference between the generated target model (100%
error on the subpopulation with the lowest loss on Sc) and the clean model on Sc.

selected subpopulations: these subpopulations are chosen to have 100% test accuracy by the clean model and

are of similar sizes (ranges from 1% to 2% of the clean training set size |Sc|). In the above attacks, attack

difficulty is negatively correlated with the ambient positivity of the subpopulation. This makes sense since

positive-label points near the subpopulation work to the advantage of the attacker when attempting to induce

misclassification of the negative-label points (i.e., less resistance from the rest of the population). Stating in

terms of the model-targeted attack, if the clean model classifies the ambient subpopulation as the negative
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Figure 4.10: The correlation of ambient positivity on subpopulation susceptibility for selected subpopulations
in the Adult dataset

label, then the loss difference between the target and clean models is smaller if there are positive-label points

in that region. We did not test the ambient positivity for the synthetic case because subpopulations in

the synthetic case are generated from (semantically less meaningful) clustering algorithms and hence, the

majority of the subpopulations do not have many points with positive labels and the ambient positivity

is also impacted significantly by the label-noise β when generating the synthetic dataset, making it a less

significant factor related to the subpopulation susceptibility.

However, does the ambient positivity of a subpopulation necessarily determine attack difficulty for otherwise

similar subpopulations? We find the answer is “No”—if we restrict our view to subpopulations with similar

pre-poisoning ambient positivity (e.g., between 0.2 and 0.3), while still having 100% classification accuracy

and similar subpopulation size, we still find a significant spread of attack difficulties as shown in Figure 4.11.

This observation highlights the challenges in identifying generally applicable semantic properties for explaining

the different subpopulation susceptibility. Related to this challenge in identifying related semantic properties,

there are also subpopulations of different susceptibility that match on the same features but differ in the value

of only a single feature. In addition, these subpopulations are similarly sized and also are perfectly classified

by the clean model. For example, the two subpopulations that take similar values of “Clerical” for the feature

“Occupation” and “Female” for the feature “Sex” only differ in the value of the feature “Relationship Status”,

and yet the one with the value “Not In Family” has an attack difficulty score of 0.07 while the other one with

“Unmarried” has a difficulty score of only 0.02.
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Figure 4.11: Variation of subpopulation susceptibility for subpopulations with similar ambient positivity in
the Adult dataset.

4.5 Limitation and Discussion

Our results are limited because the subpopulation susceptibility is measured by the difficulty of the proposed

MTP attack, while MTP is just a lower bound to the best possible poisoning attacks. Since our empirical

observations are just proxies of the inherent susceptibility, future (stronger) poisoning attacks might also lead

to some new insights in terms of the inherent susceptibility. Besides, our analysis is limited to simple datasets

and a linear SVM model, and it is not yet clear how well they extend to more complex models. However,

as a step towards better understanding of poisoning attacks and especially in understanding how attack

difficulty varies with subpopulation characteristics, experiments in such a simplified setting are valuable

and revealing. Further, simple and low-capacity models are still widely used in practice due to their ease of

use, low computational cost, and effectiveness (Tramèr and Boneh, 2021; Ferrari Dacrema et al., 2019), and

so our simplified analysis is still relevant in practice. Second, kernel methods or feature extraction layers

in neural networks are powerful tools to handle non-linearly separable datasets by projecting them into a

linearly separable high-dimensional or low-dimensional space and are widely adopted in practice. Therefore,

if the important spatial relationships among the data points are still preserved after projection, then the

same conclusions obtained in our simplified settings may still apply to the more complex cases by examining

the spatial relationships in the transformed space. We leave these explorations as future work.
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4.6 Summary

Through extensive experiments and visualizations, we show for the synthetic case that the overall distributional

separability by linear models can dominate the subpopulation susceptibility when the sampled datasets are

poorly separated, leading to mostly vulnerable subpopulations and the individual subpopulation properties

only play some minor roles. In contrast, when the sampled datasets are well-separated, the subpopulation

properties majorly determine the subpopulation susceptibility. In terms of the relevant subpopulation

properties, we show the loss difference between the target model that misclassifies the subpopulation and the

clean model on Sc is highly correlated with the susceptibility. The correlation of this property is generalizable

and also holds for the benchmark Adult dataset. Other factors such as the subpopulation size and the average

margin-related factors are not strongly correlated to the susceptibility in general for both the synthetic and

benchmark datasets, due to the limitation in capturing the relative location of the subpopulation with respect

to the rest of the population. For the Adult dataset, besides the general property of model loss difference, our

experiments also identify a semantic property of the subpopulation that can be related to the susceptibility

of a selected group of subpopulations, and finally highlight the challenges in finding generally relevant

properties that are semantically meaningful. The observation of drastic variation of attack effectiveness across

subpopulations also motivates us to explore the possibly different dataset susceptibility against indiscriminate

attacks in Chapter 5, as the indiscriminate attacks can be treated as special subpopulation attacks that take

the entire dataset as the subpopulation.



Chapter 5

Explaining Dataset Susceptibility1

5.1 Introduction

In Chapter 4, we observe the effectiveness of the state-of-the-art poisoning attack varies drastically across

the subpopulations in a given dataset. This observation makes us wonder if the effectiveness of state-of-

the-art indiscriminate poisoning attacks can also vary drastically across different datasets. This is because

subpopulation attack is a very general concept and the indiscriminate attack can be interpreted as a

special case of subpopulation attack where the entire dataset is the subpopulation. From this perspective,

different datasets might correspond to different “subpopulations” and hence may still have drastically different

susceptibility.

In fact, some prior works have demonstrated that state-of-the-art poisoning attacks can have drastically

different effectiveness across datasets (Steinhardt et al., 2017; Koh et al., 2022; Lu et al., 2022; 2023), but these

attacks focus on designing various indiscriminate attack methods that achieve empirically strong poisoning

attacks in many settings (Steinhardt et al., 2017; Koh et al., 2022; Lu et al., 2022; 2023), but do not provide

reasons on why these attacks are sometimes ineffective. In addition, the evaluations of these attacks can

be deficient in some aspects (Biggio et al., 2011; 2012; Steinhardt et al., 2017; Billah et al., 2021; Koh

et al., 2022; Lu et al., 2022) (see Section 5.2) and hence, may not be able to provide an accurate picture

on the current progress of indiscriminate poisoning attacks on linear models. The goal of this chapter is to

understand the properties of the learning tasks (more precisely, the distributional properties under the given
1This chapter is largely based on Fnu Suya, Xiao Zhang, Yuan Tian, David Evans, When Can Linear Learners be Robust to

Indiscriminate Poisoning Attacks?, availabe online at: https://arxiv.org/abs/2307.01073.
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learners) that help render attack effectiveness on linear models, as we will show in Section 5.2 that the current

state-of-the-art attacks (including the MTP attack presented in Chapter 3) fail to effectively compromise the

performance of the linear models trained on datasets such as MNIST 1–7. An attack is considered ineffective

if the increased risk from poisoning is roughly equal to or smaller than the injected poisoning ratio (Lu et al.,

2022; Koh et al., 2022).

This chapter is organized as follows: we first test the performance of state-of-the-art poisoning attacks

(including the proposed MTP attack) on a variety of benchmark datasets (Section 5.2), and observe that all

tested attacks are effective on some datasets while being fairly ineffective on others. To understand if there

are data distributions that can be inherently robust to poisoning, we first define the optimal poisoning attack

that attains maximum increased risk from poisoning (Section 5.3). Then, based on the definition of optimal

poisoning attacks, we characterize the optimal attacks for the 1-D Gaussian distribution fully and partially

for the general distributions and identify properties of the distributions under linear learners that impact the

overall vulnerability to poisoning (Section 5.4). More importantly, we experimentally show that the identified

factors are also correlated to the empirically observed vulnerabilities obtained by state-of-the-art poisoning

attacks, on the synthetic (Section 5.5.1) and the benchmark datasets (Section 5.5.2). Then, we show how

the insights on the limits of poisoning attacks might benefit future defenses (Section 5.6). In Section 5.7,

we discuss the relationship of our work to other relevant works in the literature. Finally, we conclude the

chapter and discuss the limitations of our work and possible future directions in Section 5.8.

5.2 Disparate Poisoning Vulnerability of Benchmark Datasets

Prior evaluations of poisoning attacks on convex models are inadequate in some aspects, either being tested on

very small datasets (e.g., significantly subsampled MNIST 1–7 dataset) without competing baselines (Biggio

et al., 2011; Demontis et al., 2019; Mei and Zhu, 2015a;b), generating invalid poisoning points (Steinhardt

et al., 2017; Koh et al., 2022) or lacking diversity in the evaluated convex models/datasets (Lu et al., 2022;

2023). This motivates us to carefully evaluate representative attacks for linear models on various benchmark

datasets without considering additional defenses, as considering defenses might obfuscate the results regarding

the inherent vulnerabilities of the datasets under examination. By examining the state-of-the-art poisoning

attacks, we mainly want to see if the current best indiscriminate attacks still have different effectiveness

across datasets, similar to our observation across subpopulations in Chapter 4. The results in this section

provide lower bounds on the limits of indiscriminate attacks across datasets, while in Section 5.5.2 we provide

results on the upper bounds on the limits.
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5.2.1 Experimental Setup

In this section, we provide details on the benchmark datasets, models, and attacks used for evaluations.

Finally, we also discuss how to properly evaluate the vulnerability of the Dogfish (Koh and Liang, 2017)

dataset, which interestingly “overfits” to the test data after poisoning.

Datasets and models. We test on various public benchmark datasets, including MNIST (LeCun, 1998)

digit pairs of 1–7. 6–9, 4–9, Enron Metsis et al. (2006), Dogfish (Koh and Liang, 2017) Adult (Dua and

Graff, 2017) and IMDB (Maas et al., 2011), which are all used in the evaluations of prior works (Steinhardt

et al., 2017; Koh et al., 2022; Biggio et al., 2011; Jagielski et al., 2019; 2021) except for MNIST 6–9 and

MNIST 4–9. MNIST 4–9 and MNIST 6–9 are picked to represent MNIST digit pairs that are relatively

easier/harder to poison. We do not present the performance on IMDB in this section because running the

existing state-of-the-art poisoning attacks on it is computationally too slow. Instead, we will directly quote

the poisoned error of linear SVM from Koh et al. (2022) in Section 5.5.2 when demonstrating the correlation

between the error increase and the identified vulnerability factors. We also construct a new dataset called

Filtered Enron, which is obtained by filtering out 3% of near boundary points from Enron. The purpose is

to construct a dataset with the lowest base test error (without poisoning) but the highest increased error

after poisoning. For the Dogfish, Enron, and Filtered Enron datasets, we construct the constraint set C in

the no-defense setting by finding the minimum (ui
min) and maximum (ui

max) values occurred in each feature

dimension i for both the training and test data, which then forms a box constraint [ui
min, u

i
max] for each

dimension. This way of construction is also used in the prior work (Koh et al., 2022).

For the victim models, we only consider linear models (linear SVM and LR) and the training (Pedregosa

et al., 2011) of these models, and the attacks on them are stable (i.e., less randomness involved in the process)

and so, we get almost identical results when feeding different random seeds. Therefore, we directly report the

results in one run with one random seed. The regularization parameter CR for training the linear models are

configured as follows (unless specified next, the trained models include both the linear SVM and LR for the

benchmark datasets): CR = 0.09 for MNIST digit pairs, Adult, Dogfish, and SVM for Enron; CR = 0.01 for

IMDB, LR for Enron. Overall, the results and conclusions in this chapter are insensitive to the choice of

CR.

Attack details. We evaluate the state-of-the-art data poisoning attacks for linear models: Influence

Attack (Koh and Liang, 2017; Koh et al., 2022), KKT Attack (Koh et al., 2022), i-Min-Max Attack (Steinhardt

et al., 2017; Koh et al., 2022) (see details in Section 2.2), and our proposed MTP attack in Chapter 3. Many
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Poison Ratio ϵ (%) 0.0 0.1 0.2 0.3 0.5 0.7 0.9 1.0 2.0 3.0

Train Error (%) 0.1 0.8 1.2 1.8 2.6 3.1 3.3 3.6 5.3 6.5
Test Error (%) 0.8 9.5 12.8 13.8 17.8 20.5 21.0 20.5 27.3 31.8

Table 5.1: Comparisons of the poisoned training and test errors for the Dogfish dataset. The poisoned errors
are reported from the current best attacks.

of the attacks are evaluated by comparing the increased test errors at a fixed poisoning ratio ϵ and hence, the

MTP attack in Chapter 3 will adopt the third stopping condition and terminate the attack when ϵ|Sc| number

of poisoning points are generated. We set ϵ = 3% following previous works (Steinhardt et al., 2017; Koh et al.,

2022; Lu et al., 2022; 2023). For these attacks, the KKT, MTP and i-Min-Max attacks require a target model

as input and the target model is generated using the improved procedure described in Section 3.4.4 because

the improved method generates better target models that help achieve higher errors on the clean test data

after poisoning using the aforementioned three attacks, compared to the original method in Koh et al. (2022).

Because the goal here is to achieve as high as possible test errors at the fixed poisoning budget ϵ = 3%, for

attacks that require a target model as input, we first generate a set of candidate target models of different

test errors (ranging from 5% to 70% with 5% increment) as it is hard to predetermine the best target model

for the selected attack method. Then we run individual attacks separately to generate ϵ|Sc| poisoning points

for each of the generated target models and record the corresponding test errors after poisoning. Finally, for

each tested attack, we set its poisoned test error as the highest one from all the poisoned errors recorded for

the evaluated candidate target models.

Proper evaluation of the Dogfish dataset. Following the prior practice (Koh et al., 2022), in the threat

model in 2.1.2, we considered adversaries that have access to both the clean training and test data, and

therefore, adversaries can design attacks that can perform well on both the training and test data. This

generally holds true for the tested benchmark datasets, except for the Dogfish dataset. For Dogfish, we find

in our experiments that the attack “overfits” the test data heavily due to the small number of training and

test data and also the high dimensionality. More specifically, we find that the poisoned model tends to incur

significantly higher error rates on the clean test data compared to the clean training data. Since this high

error cannot fully reflect the distributional risk, when we report the results of Dogfish in the rest of the

chapter, we report the errors on both the training and the test data to give a better empirical sense of what

the actual risk may look like. This also emphasizes the need to be cautious about the potential “overfitting”

behavior when designing poisoning attacks. Table 5.1 shows the drastic differences between the errors of the

clean training and test data after poisoning for the Dogfish dataset.
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(a) MNIST 1-7 (b) Dogfish (c) Enron

Figure 5.1: Comparisons of the attack performance of existing data poisoning attacks on different benchmark
datasets. Poisoning ratios are 0.1%, 0.2%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, 2%, 3%.

5.2.2 Performance of the State-of-the-Art Poisoning Attacks

In this section, we first show the performance of all the selected state-of-the-art poisoning attacks on selective

datasets and linear SVM for clarity in presentation, and then report the best attack result from the tested

methods for all the benchmark datasets and linear models.

Performance of Different Attacks are Similar

We show the attack performance of different attacks on linear SVM models trained on the selected benchmark

datasets of MNIST 1–7, Dogfish, and Enron. Other datasets also have similar patterns. Figure 5.1 summarizes

the attack results of the tested attacks at different poisoning ratios of 0.1%, 0.2%, 0.3%, 0.5%, 0.7%, 0.9%,

1%, 2%, and 3%. The main observation is that different attacks perform mostly similarly for a given dataset,

but their performance varies a lot across datasets. Our proposed MTP attack still performs comparably with

or better than other attacks, especially for the more vulnerable Enron dataset.

Here, we tested different poisoning ratios instead of fixing the ϵ to 3% because, as can be seen from the

results of Enron in Figure 5.1c, the KKT, Influence, and i-Min-Max attacks actually perform worse at higher

poisoning ratios while we will prove in Theorem 5.3.8 that, under mild conditions (e.g., linear models), optimal

poisoning attacks should always have non-decreasing risk as the poisoning budget increases. While there

might be some chances that the attack performance can be improved by careful hyperparameter tuning, it

may also be suggesting that these state-of-the-art attacks are suboptimal in some settings, as the test errors

tend to decrease as the poisoning budget increases.
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Figure 5.2: Performance of the best current indiscriminate poisoning attacks with ϵ = 3% across different
benchmark datasets. Datasets are sorted from lowest to highest base error rate (trained on Sc) and the sorted
order is the same for linear SVM and LR.

Reporting the Best Attack Results

Figure 5.2 shows the highest error from across the tested poisoning attacks (in most cases, all the attacks

perform similarly). At the 3% poisoning ratio, the increased test errors of datasets such as MNIST 6–9

and MNIST 1–7 are less than 4% for both SVM and LR while for other datasets such as Dogfish, Enron,

and Filtered Enron, the increased error is much higher than the injected poisoning ratio, indicating that

these datasets are more vulnerable to poisoning. Dogfish is moderately vulnerable (≈ 8% increased error)

while Enron and Filtered Enron are highly vulnerable with over 30% of increased error. Consistent with

prior work (Steinhardt et al., 2017; Koh et al., 2022; Lu et al., 2023), throughout this paper, we measure

the increased error to determine whether a dataset is vulnerable to poisoning attacks. However, in some

security-critical applications, the ratio between the increased error and the initial error might matter more but

leave its exploration for future work. These results reveal a drastic difference in the robustness of benchmark

datasets to state-of-the-art indiscriminate data poisoning attacks which has not been explained in prior works.

A natural question to ask from the above observation is are datasets like MNIST digits inherently robust

to poisoning attacks or just resilient to state-of-the-art attacks? Since directly estimating the performance

of optimal poisoning attacks for benchmark datasets is very challenging, we first explore and characterize

optimal poisoning attacks for theoretical distributions and then study their partial characteristics for general

distributions in Section 5.4.

5.3 Defining Optimal Poisoning Attacks

In this section, we lay out formal definitions of optimal poisoning attacks and study their general implications.

For simplicity in presentation, for analysis in the remaining chapter, we incorporate the regularization term

CR ·R(h) into the loss function L(·) (the loss and regularization terms were originally split as given in (2.1)



5.3 Defining Optimal Poisoning Attacks 77

and (2.2)) and perform the risk or empirical risk minimization. Therefore, the individual loss of (x, y) with

respect to h also incorporates an additional term CR · R(h). For example, for any x ∈ X and y ∈ Y, the

hinge loss of a linear classifier hw,b now becomes:

ℓ(hw,b;x, y) = max{0, 1− y(w⊤x+ b)}+ λ

2
∥w∥22. (5.1)

With the setup above, we first introduce a notion of finite-sample optimal poisoning to formally define the

optimal poisoning attack in the practical finite-sample setting with respect to our threat model:

Definition 5.3.1 (Finite-Sample Optimal Poisoning). Consider input space X and label space Y. Let µc

be the underlying data distribution of clean inputs and labels. Let Sc be a set of examples sampled i.i.d.

from µc. Suppose H is the hypothesis class and ℓ is the surrogate loss function that is used for learning. For

any ϵ ≥ 0 and C ⊆ X × Y, a finite-sample optimal poisoning adversary Âopt is defined to be able to generate

some poisoned dataset S∗p such that:

S∗p = argmax
Sp

Risk(ĥp;µc) s.t. Sp ⊆ C and |Sp| ≤ ϵ · |Sc|,

where ĥp = argminh∈H L(h;Sc ∪ Sp) denotes the empirical loss minimizer.

Definition 5.3.1 suggests that no poisoning strategy can achieve a better attack performance than that

achieved by Âopt. If we denote by ĥ∗p the hypothesis produced by minimizing the empirical loss on Sc ∪ S∗p ,

then Risk(ĥ∗p;µc) can be regarded as the maximum achievable attack performance.

Next, we introduce a more theoretical notion of distributional optimal poisoning, which generalizes Definition

5.3.1 from finite-sample datasets to data distributions.

Definition 5.3.2 (Distributional Optimal Poisoning). Consider the same setting as in Definition 5.3.1.

A distributional optimal poisoning adversary Aopt is defined to be able to generate some poisoned data

distribution µ∗p such that:

(µ∗p, δ
∗) = argmax

(µp,δ)

Risk(hp;µc) s.t. supp(µp) ⊆ C and 0 ≤ δ ≤ ϵ,

where hp = argminh∈H {L(h;µc) + δ · L(h;µp)} denotes the population loss minimizer.

Similar to the finite-sample case, Definition 5.3.2 implies that there is no feasible poisoned distribution µp

such that the risk of its induced hypothesis is higher than that attained by µ∗p. Theorem 5.3.6 below connects
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Definition 5.3.1 and Definition 5.3.2.

Before introducing the main theorem, we first introduce the formal definitions of strong convexity and

Lipschitz continuity conditions with respect to a function, and the uniform convergence property with respect

to a hypothesis class. These definitions are necessary for the proof of Theorem 5.3.6.

Definition 5.3.3 (Strong Convexity). A function f : Rd → R is b-strongly convex for some b > 0, if

f(x1) ≥ f(x2) +∇f(x2)
⊤(x1 − x2) +

b
2∥x1 − x2∥22 for any x1,x2 ∈ Rd.

Definition 5.3.4 (Lipschitz Continuity). A function f : Rd → R is ρ-Lipschitz for some ρ > 0, if |f(x1)−

f(x2)| ≤ ρ∥x1 − x2∥2 for any x1,x2 ∈ Rd.

Definition 5.3.5 (Uniform Convergence). Let H be a hypothesis class. We say that H satisfies the uniform

convergence property with a loss function ℓ, if there exists a function mH : (0, 1)2 → N such that for every

ϵ′, δ′ ∈ (0, 1) and for every probability distribution µ, if S is a set of examples with m ≥ mH(ϵ
′, δ′) samples

drawn i.i.d. from µ, then

PS←µm

[
sup
h∈H

∣∣L(h; µ̂S)− L(h;µ)
∣∣ ≤ ϵ′

]
≥ 1− δ′.

Such a uniform convergence property, which can be achieved using the VC dimension or the Rademacher

complexity of H, guarantees that the learning rule specified by empirical risk minimization always returns a

good hypothesis with high probability (Shalev-Shwartz and Ben-David, 2014). Similar to PAC learning, the

function mH measures the minimal sample complexity requirement that ensures uniform convergence.

Theorem 5.3.6. Consider the same settings as in Definitions 5.3.1 and 5.3.2. Suppose H satisfies the uniform

convergence property with function mH(·, ·). Assume ℓ is b-strongly convex and Risk(h;µc) is ρ-Lipschitz

continuous with respect to model parameters for some b, ρ > 0. Let ĥ∗p = argminh∈H L(h;Sc ∪ S∗p ) and

h∗p = argminh∈H{L(h;µc) + δ∗ ·L(h;µ∗p)}. For any ϵ′, δ′ ∈ (0, 1), if |Sc| ≥ mH(ϵ
′, δ′), then with probability at

least 1− δ′,

∣∣Risk(ĥ∗p;µc)− Risk(h∗p;µc)
∣∣ ≤ 2ρ

√
ϵ′

b
.

Remark 5.3.7. Theorem 5.3.6 assumes three regularity conditions to ensure the finite-sample optimal poisoning

attack is a consistent estimator of the distributional optimal one (i.e., insights on poisoning from distributional

settings can transfer to finite-sample settings): the uniform convergence property of H that guarantees

empirical minimization of surrogate loss returns a good hypothesis, the strong convexity condition that
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ensures a unique loss minimizer, and the Lipschitz condition that translates the closeness of model parameters

to the closeness of risk. These conditions hold for most (properly regularized) convex problems and input

distributions with bounded densities. The asymptotic convergence rate is determined by the function mH,

which depends on the complexity of the hypothesis class H and the surrogate loss ℓ. For instance, if we choose

the hyperparameter λ carefully for the regularization term of ℓ2-norm, the sample complexity of the linear

hypothesis class for a bounded hinge loss is Ω(1/(ϵ′)2), where ϵ′ is the error bound parameter for specifying

the uniform convergence property (see Definition 5.3.5) and other problem-dependent parameters are hidden

in the big-Ω notation (see Section 15 of Shalev-Shwartz and Ben-David (2014) for details). We note the

generalization of optimal poisoning attack for the linear case is related to agnostic learning of halfspaces

(Kalai et al., 2008), which also imposes assumptions on the underlying distribution such as anti-concentration

assumption (Diakonikolas et al., 2020; Frei et al., 2021) similar to the Lipschitz continuity condition assumed

in Theorem 5.3.6.

Moreover, we note that δ∗ represents the ratio of injected poisoned data that achieves the optimal attack

performance. In general, δ∗ can be any value in [0, ϵ], but we show in Theorem 5.3.8 that optimal poisoning

can always be achieved with ϵ-poisoning under mild conditions. Below, we first prove Theorem 5.3.6.

Proof of Theorem 5.3.6. First, we introduce the following notations to simplify the proof. Recall that, for

any finite-sample set S, denote by µ̂S the empirical measure with respect to S. For any Sp, µp and δ ≥ 0, let

ĝ(Sp,Sc) = argmin
h∈H

L(h;Sc ∪ Sp),

g(δ, µp, µc) = argmin
h∈H

{L(h;µc) + δ · L(h;µp)}.

According to the definitions of ĥ∗p and h∗p, we know ĥ∗p = ĝ(S∗p ,Sc) and h∗p = g(δ∗, µ∗p, µc).

Now we are ready to prove Theorem 5.3.6. For any Sc sampled from µc, consider the empirical loss minimizer

ĥ∗p = ĝ(S∗p ,Sc) and the population loss minimizer g(δS∗
p
, µ̂S∗

p
, µc), where δS∗

p
= |S∗p |/|Sc|. Then S∗p ∪ Sc can

be regarded as the i.i.d. sample set from (µc + δS∗
p
· µ̂S∗

p
)/(1 + δS∗

p
). According to Definition 5.3.5, since H

satisfies the uniform convergence property with respect to ℓ, we immediately know that the empirical loss

minimization is close to the population loss minimization if the sample size is large enough (see Lemma 4.2 in

Shalev-Shwartz and Ben-David (2014)). To be more specific, for any ϵ′, δ′ ∈ (0, 1), if |Sc| ≥ mH(ϵ
′, δ′), then
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with probability at least 1− δ′, we have

L
(
ĝ(S∗p ,Sc);µc

)
+ δS∗

p
· L
(
ĝ(S∗p ,Sc); µ̂S∗

p

)
≤ argmin

h∈H
{L(h;µc) + δS∗

p
· L(h; µ̂S∗

p
)}+ 2ϵ′

= L
(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)
+ δS∗

p
· L
(
g(δS∗

p
, µ̂S∗

p
, µc); µ̂S∗

p

)
+ 2ϵ′.

In addition, since the surrogate loss ℓ is b-strongly convex and the population risk is ρ-Lipschitz, we further

know the clean risk of ĝ(S∗p ,Sc) and g(δS∗
p
, µ̂S∗

p
, µc) is guaranteed to be close. Namely, with probability at

least 1− δ′, we have

∣∣Risk(ĝ(S∗p ,Sc);µc

)
− Risk

(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)∣∣ ≤ ρ ·
∥∥ĝ(S∗p ,Sc)− g(δS∗

p
, µ̂S∗

p
, µc)

∥∥
2

≤ 2ρ

√
ϵ′

b
.

Note that δS∗
p
∈ [0, ϵ] and supp(µ̂S∗

p
) ⊆ C. Thus, according to the definition of h∗p = g(δ∗, µ∗p, µc), we further

have

Risk(h∗p;µc) ≥ Risk
(
g(δS∗

p
, µ̂S∗

p
, µc);µc

)
≥ Risk

(
ĝ(S∗p ,Sc);µc

)
− 2ρ

√
ϵ′

b

= Risk(ĥ∗p;µc)− 2ρ

√
ϵ′

b
. (5.2)

So far, we have proven one direction of the asymptotic for results Theorem 5.3.6.

On the other hand, we can always construct a subset S̃p with size |S̃p| = δ∗ · |Sc| by i.i.d. sampling from

µ∗p. Consider the empirical risk minimizer ĝ(S̃p,Sc) and the population risk minimizer h∗p = g(δ∗, µ∗p, µc).

Similarly, since H satisfies the uniform convergence property, if |Sc| ≥ mH(ϵ
′, δ′), then with probability at

least 1− δ′,we have

L
(
ĝ(S̃p,Sc);µc

)
+ δ∗ · L

(
ĝ(S̃p,Sc);µ∗p

)
≤ argmin

h∈H
{L(h;µc) + δ∗ · L(h;µ∗p)}+ 2ϵ′

= L
(
g(δ∗, µ∗p, µc);µc

)
+ δ∗ · L

(
g(δ∗, µ∗p, µc);µ

∗
p

)
+ 2ϵ′.

According to the strong convexity of ℓ and the Lipschitz continuity of the population risk, we further have

∣∣Risk(ĝ(S̃p,Sc);µc

)
− Risk

(
g(δ∗, µ∗p, µc);µc

)∣∣ ≤ ρ ·
∥∥ĝ(S̃p,Sc)− g(δ∗, µ∗p, µc)

∥∥
2

≤ 2ρ

√
ϵ′

b
.
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Note that S̃p ⊆ C and |S̃p| = δ∗ · |Sc| ≤ ϵ · |Sc|. Thus, according to the definition of ĥ∗p = ĝ(S∗p ,Sc), we have

Risk(ĥ∗p;µc) ≥ Risk
(
ĝ(S̃p,Sc);µc

)
≥ Risk

(
g(δ∗, µ∗p, µc);µc

)
− 2ρ

√
ϵ′

b

= Risk(h∗p;µc)− 2ρ

√
ϵ′

b
. (5.3)

Combining (5.2) and (5.3), we complete the proof of Theorem 5.3.6.

Theorem 5.3.8. The optimal poisoning attack performance defined in Definition 5.3.2 can always be achieved

by choosing ϵ as the poisoning ratio, if either of the following conditions is satisfied:

1. The support of the clean distribution supp(µc) ⊆ C.

2. H is a convex hypothesis class, and for any hθ ∈ H, there always exists a distribution µ such that

supp(µ) ⊆ C and ∂
∂θ
L(hθ;µ) = 0.

Remark 5.3.9. Theorem 5.3.8 characterizes the conditions under which the optimal performance is guaranteed

to be achieved with the maximum poisoning ratio ϵ. Note that the first condition supp(µc) ⊆ C is mild

because it typically holds for poisoning attacks against undefended classifiers. When attacking classifiers

that employ some defenses such as data sanitization, the condition supp(µc) ⊆ C might not hold, due to

the fact that the proposed defense may falsely reject some clean data points as outliers (i.e., related to

false positive rates). The second condition complements the first one in that it does not require the victim

model to be undefended, however, it requires H being convex. Following the proof of the main theorem,

we also prove that for linear hypothesis with hinge loss, such a µ can be easily constructed. The theorem

enables us to conveniently characterize the optimal poisoning attacks in Section 5.4.1 by directly using ϵ.

When the required conditions are satisfied, this theorem also provides a simple sanity check on whether a

poisoning attack is optimal. In particular, if a candidate attack is optimal, the risk of the induced model is

monotonically non-decreasing with respect to the poisoning ratio.

Proof of Theorem 5.3.8. We prove Theorem 5.3.8 by construction.

We start with the first condition supp(µc) ⊆ C. Suppose δ∗ < ϵ, since the theorem trivially holds if δ∗ = ϵ.

To simplify notations, define hp(δ, µp) = argminh∈H {L(h;µc) + δ · L(h;µp)} for any δ and µp. To prove the

statement in Theorem 5.3.8, it is sufficient to show that there exists some µ
(ϵ)
p based on the first condition
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such that

Risk
(
hp(ϵ, µ

(ϵ)
p );µc

)
= Risk

(
hp(δ

∗, µ∗p);µc

)
, and supp(µ(ϵ)

p ) ⊆ C. (5.4)

The above equality means we can always achieve the same maximum risk after poisoning with the full

poisoning budget ϵ. To proceed with the proof, we construct µ
(ϵ)
p based on µc and µ∗p as follows:

µ(ϵ)
p =

δ∗

ϵ
· µ∗p +

ϵ− δ∗

ϵ(1 + δ∗)
· (µc + δ∗ · µ∗p)

=
ϵ− δ∗

ϵ(1 + δ∗)
· µc +

δ∗(1 + ϵ)

ϵ(1 + δ∗)
· µ∗p.

We can easily check that µ(ϵ)
p is a valid probability distribution and supp(µ

(ϵ)
p ) ⊆ C. In addition, we can show

that

hp(ϵ, µ
(ϵ)
p ) = argmin

h∈H
{L(h;µc) + ϵ · L(h;µ(ϵ)

p )}

= argmin
h∈H

{
E(x,y)∼µc

ℓ(h;x, y) + ϵ · E
(x,y)∼µ(ϵ)

p
ℓ(h;x, y)

}
= argmin

h∈H

{
1 + ϵ

1 + δ∗
·
(
E(x,y)∼µc

ℓ(h;x, y) + δ∗ · E(x,y)∼µ∗
p
ℓ(h;x, y)

)}
= hp(δ

∗, µ∗p)

where the third equality holds because of the construction of µ(ϵ)
p . Therefore, we have proven (5.4), which

further implies the optimal attack performance can always be achieved with ϵ-poisoning as long as the first

condition is satisfied.

Next, we turn to the second condition of Theorem 5.3.8. Similarly, it is sufficient to construct some µ
(ϵ)
p for

the setting where δ∗ < ϵ such that

Risk
(
hp(ϵ, µ

(ϵ)
p );µc

)
= Risk

(
hp(δ

∗, µ∗p);µc

)
, and supp(µ(ϵ)

p ) ⊆ C.

We construct µ
(ϵ)
p based on µ∗p and the assumed data distribution µ. More specifically, we construct

µ(ϵ)
p =

δ∗

ϵ
· µ∗p +

ϵ− δ∗

ϵ
· µ. (5.5)

By construction, we know µ
(ϵ)
p is a valid probability distribution. In addition, according to the assumption of

supp(µ) ⊆ C, we have supp(µ
(ϵ)
p ) ⊆ C. According to the assumption that for any θ, there exists a µ such that
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∂
∂θ
L(hθ;µ) = 0, we know for any possible weight parameter θ∗p of hp(δ

∗, µ∗p), there also exists a corresponding

µ such that the gradient is 0 and therefore, we have

∂

∂θ∗
p

(
L(hp(δ

∗, µ∗p);µc) + ϵ · L(hp(δ
∗, µ∗p);µ

(ϵ)
p )
)

=
∂

∂θ∗
p

(
L(hp(δ

∗, µ∗p);µc) + δ∗ · L(hp(δ
∗, µ∗p);µ

∗
p)
)

= 0

where the last equality is based on the first-order optimality condition of hp(δ
∗, µ∗p) for convex losses. For

simplicity, we also assumed hp(δ
∗, µ∗p) is obtained by minimizing the loss on µc + δ∗ · µ∗p while in the case of

supp(µc) ⊈ C, the victim usually minimizes the loss on µ̄c + δ∗ · µ∗p, where µ̄c is the “truncated” version of µc

such that supp(µ̄c) ⊆ C. To conclude, we know hp(ϵ, µ
(ϵ)
p ) = hp(δ

∗, µ∗p) holds for any possible hp(δ
∗, µ∗p) and

we complete the proof of Theorem 5.3.8.

Proof of the Statement about Linear Models in Remark 5.3.9. We provide the construction of µ with respect

to the second condition of Theorem 5.3.8 for linear models and hinge loss. Since for any hw,b ∈ H and any

(x, y) ∈ X × Y, we have

ℓ(hw,b;x, y) = max{0, 1− y(w⊤x+ b)}+ λ

2
∥w∥22.

Let θ = (w, b), then the gradient with respect to w can be written as:

∂

∂w
ℓ(hw,b;x, y) =

 −y · x+ λw if y(w⊤x+ b) ≤ 1,

λw otherwise.

Similarly, the gradient with respect to b can be written as:

∂

∂b
ℓ(hw,b;x, y) =

 −y if y(w⊤x+ b) ≤ 1,

0 otherwise.

Therefore, for large input space X × Y, we can simply construct µ by constructing a two-point distribution

(with equal probabilities of label +1 and -1) that cancels out each other’s gradient (for both w and b), so

that y(w⊤x+ b) ≤ 1 and −y · x+ λw = 0.
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We may also generalize the construction of µ from linear models with hinge loss to general convex models if

the victim minimizes the loss on µ̄c + δ∗ · µ∗p to obtain hp(δ
∗, µ∗p), which is common in practice (e.g., training

models on filtered datasets from data sanitization defenses). In this case, we can simply set µ = µ̄c + δ∗ · µ∗p,

which guarantees

∂

∂θ∗
p

L(hp(δ
∗, µ∗p);µ) = 0.

5.4 Characterizing Optimal Poisoning Attacks

This section characterizes the distributional optimal poisoning attacks with respect to the linear hypothesis

class. We first consider a theoretical 1-dimensional Gaussian mixture model and exactly characterize optimal

poisoning attack, and then discuss the implications of the underlying factors that potentially cause the

inherent vulnerabilities to poisoning attacks for general high-dimensional distributions.

5.4.1 One-Dimensional Gaussian Mixtures

Consider binary classification tasks with one-dimensional inputs, where X = R and Y = {−1,+1}. Let µc be

the underlying clean data distribution, where each example (x, y) is assumed to be i.i.d. sampled according

to the following Gaussian mixture model:

 y = −1, x ∼ N (γ1, σ
2
1) with probability p,

y = +1, x ∼ N (γ2, σ
2
2) with probability 1− p,

(5.6)

where σ1, σ2 > 0 and p ∈ (0, 1). Without loss of generality, we assume γ1 ≤ γ2. Following our threat model,

we let ϵ ≥ 0 be the maximum poisoning ratio and C = Q(u) := [−u, u]× Y for some u > 0 be the constraint

set. Let H = {hw,b : w ∈ {−1, 1}, b ∈ R} be the linear hypothesis class with normalized weights. Note that we

consider a simplified setting where the weight parameter w ∈ {−1, 1}. Characterizing the optimal poisoning

attack under the general setting of w ∈ R is more challenging (even in the 1-D setting) since we need to

consider the effect of any possible choice of w and its interplay with the dataset and constraint set factors.

We leave the theoretical analyses of w ∈ R to future work. Since ∥w∥2 is fixed, we also set λ = 0 in the hinge

loss function (5.1). To begin with, we introduce two definitions that will be used when characterizing the

optimal poisoning attacks.
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Definition 5.4.1 (Two-point Distribution). For any α ∈ [0, 1], να is defined as a two-point distribution, if for

any (x, y) sampled from να,

(x, y) =

 (−u,+1) with probability α,

(u,−1) with probability 1− α.
(5.7)

Definition 5.4.2 (Weight-Flipping Condition). Consider the assumed Gaussian mixture model (5.6) and

the linear hypothesis class H. Let g be an auxiliary function such that for any b ∈ R,

g(b) =
1

2
Φ

(
b+ γ1 + 1

σ

)
− 1

2
Φ

(
−b− γ2 + 1

σ

)
,

where Φ is the cumulative distribution function (CDF) of standard Gaussian N (0, 1). Let ϵ > 0 be the

poisoning budget and g−1 be the inverse of g, then the weight-flipping condition is defined as:

max{∆(−ϵ),∆(g(0)),∆(ϵ)} ≥ 0, (5.8)

where ∆(s) = L(h1,g−1(s);µc)−minb∈R L(h−1,b;µc) + ϵ · (1 + u)− s · g−1(s).

Now we are ready to present our main theoretical results. The following theorem rigorously characterizes the

behavior of the distributional optimal poisoning adversary Aopt under the Gaussian mixture model (5.6) and

the corresponding optimal attack performance:

Theorem 5.4.3. Suppose the clean distribution µc follows the Gaussian mixture model (5.6) with p = 1/2,

γ1 ≤ γ2, and σ1 = σ2 = σ. Assume u ≥ 1 and |γ1 + γ2| ≤ 2(u − 1). There always exists some α ∈ [0, 1]

such that the optimal attack performance defined in Definition 5.3.2 is achieved with δ = ϵ and µp = να,

where να is defined by (5.7). More specifically, if h∗p = argminh∈H{L(h;µc)+ ϵ ·L(h; να)} denotes the induced

hypothesis with optimal poisoning, then

Risk(h∗p;µc) =

 Φ
(
γ2−γ1

2σ

)
if condition (5.8) is satisfied,

1
2Φ
(
γ1−γ2+2s

2σ

)
+ 1

2Φ
(
γ1−γ2−2s

2σ

)
otherwise,

where s = max{g−1(ϵ)− g−1(0), g−1(0)− g−1(−ϵ)} and g(·) is defined in Definition 5.4.2.

The proof of Theorem 5.4.3 is given in Section 5.4.2. Below, we provide a high-level proof sketch. We

first prove that in order to understand the optimal poisoning attacks, it is sufficient to study the family of
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two-point distributions (Definition 5.4.1) as the poisoned data distribution. Based on this reduction and a

specification of weight flipping condition (Definition 5.4.2), we then rigorously characterize the optimal attack

performance with respect to different configurations of task-related parameters.

Remark 5.4.4. Theorem 5.4.3 characterizes the exact behavior of Aopt for typical combinations of hyperparam-

eters under the considered model, including distribution-related parameters such as γ1, γ2, σ and poisoning

related parameters such as ϵ, u. A larger u suggests the weight-flipping condition (5.8) is more likely to be

satisfied, as an attacker can generate poisoned data with larger hinge loss to flip the weight parameter w.

Class separability |γ1 − γ2| and within-class variance σ also play an important role in affecting the optimal

attack performance. If the ratio |γ1 − γ2|/σ is large, then we know the initial risk Risk(hc;µc) = Φ(γ1−γ2

2σ )

will be small. Consider the case where condition (5.8) is satisfied. Note that Φ(γ2−γ1

2σ ) = 1−Φ(γ1−γ2

2σ ) implies

an improved performance of optimal poisoning attack, thus a higher inherent vulnerability to data poisoning

attacks. However, it is worth noting that there is an implicit assumption in condition (5.8) that the weight

parameter can be flipped from w = 1 to w = −1. A large value of |γ1 − γ2|/σ also implies that flipping

the weight parameter becomes more difficult, since the gap between the hinge loss with respect to µc for a

hypothesis with w = −1 and that with w = 1 becomes larger. Moreover, if condition (5.8) cannot be satisfied,

then a larger ratio of |γ1 − γ2|/σ suggests that it is more difficult to move the decision boundary to incur an

increase in test error, because the number of correctly classified boundary points will increase at a faster rate.

In summary, Theorem 5.4.3 suggests that a smaller value of u and a larger ratio of |γ1 − γ2|/σ increases the

inherent robustness to indiscriminate poisoning for typical configurations under our model (5.6). Empirical

verification of the above theoretical results is given in Section 5.5.1.

Moreover, Theorem 5.4.3 suggests a specific method for producing the optimal poisoned distribution/dataset

for the considered theoretical 1-D distribution/dataset, which we term as optimal poisoning (OPT) for the

distributional setting and Empirical OPT for the finite-sample setting. For OPT attack, να is the poisoning

distribution with α chosen from {0, 1, α0} depending on the property of µc and whether flipping w to -1

is feasible, where α0 = 1/2 + g(0)/(2ϵ). For the Empirical OPT attack, we just need to generate the i.i.d.

samples from να with the corresponding values of α to form the ϵ|Sc| poisoned set and measure the test error

after poisoning.

5.4.2 Proof of Theorem 5.4.3

To prove Theorem 5.4.3, we need to make use of the following three auxiliary lemmas, which are related

to the maximum population hinge loss with w = 1 (Lemma 5.4.5), the weight-flipping condition (Lemma



5.4 Characterizing Optimal Poisoning Attacks 87

5.4.6) and the risk behavior of any linear hypothesis under (5.6) (Lemma 5.4.7). For the sake of completeness,

we present the full statements of Lemma 5.4.5 and Lemma 5.4.6 as follows. In particular, Lemma 5.4.5

characterizes the maximum achievable hinge loss with respect to the underlying clean distribution µc and

some poisoned distribution µp conditioned on w = 1. The proofs of these technical lemmas are deferred to

the Appendix for better flow in presentation.

Lemma 5.4.5. Suppose the underlying clean distribution µc follows the Gaussian mixture model (5.6) with

p = 1/2 and σ1 = σ2 = σ. Assume |γ1 + γ2| ≤ 2u. For any ϵ ≥ 0, consider the following maximization

problem:

max
µp∈Q(u)

[
L(h1,bp ;µc) + ϵ · L(h1,bp ;µp)

]
, (5.9)

where bp = argminb∈R[L(h1,b;µc) + ϵ ·L(h1,b;µp)]. There exists some α ∈ [0, 1] such that the optimal value of

(5.9) is achieved with µp = να, where να is a two-point distribution with some parameter α ∈ [0, 1] defined

according to (5.7).

Lemma 5.4.5 suggests that it is sufficient to study the extreme two-point distributions να with α ∈ [0, 1] to

understand the maximum achievable population hinge loss conditioned on w = 1. Lemma 5.4.6, proven in

Appendix 1.2, characterizes the sufficient and necessary conditions in terms of ϵ, u and µc, under which there

exists a linear hypothesis with w = −1 that achieves the minimal value of population hinge loss with respect

to µc and some µp, and is where the weight-flipping condition in Definition 5.4.2 stems from.

Lemma 5.4.6. Suppose the underlying clean distribution µc follows the Gaussian mixture model (5.6) with

p = 1/2 and σ1 = σ2 = σ. Assume |γ1 + γ2| ≤ 2(u− 1) for some u ≥ 1. Let g be an auxiliary function such

that for any b ∈ R,

g(b) =
1

2
Φ

(
b+ γ1 + 1

σ

)
− 1

2
Φ

(
−b− γ2 + 1

σ

)
,

where Φ is the CDF of standard Gaussian. For any ϵ > 0, there exists some µp ∈ Q(u) such that

argminhw,b∈H[L(hw,b;µc) + ϵ · L(hw,b;µp)] outputs a hypothesis with w = −1, if and only if

max{∆(−ϵ),∆(g(0)),∆(ϵ)} ≥ 0,

where ∆(s) = L(h1,g−1(s);µc)−minb∈R L(h−1,b;µc) + ϵ(1 + u)− s · g−1(s), and g−1 denotes the inverse of g.

Lemma 5.4.6 identifies sufficient and necessary conditions when a linear hypothesis with flipped weight

parameter is possible. Note that we assume γ1 ≤ γ2, thus flipping the weight parameter of the induced model
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from w = 1 to w = −1 is always favorable from an attacker’s perspective. In particular, if the population

hinge loss with respect to µc and some µp achieved by the loss minimizer conditioned on w = 1 is higher

than that achieved by the loss minimizer with w = −1, then we immediately know that flipping the weight

parameter is possible, which further suggests the optimal poisoning attack performance must be achieved by

some poisoned victim model with w = −1.

Finally, we introduce Lemma 5.4.7, proven in Appendix 1.3, which characterizes the risk behavior of any

linear hypothesis with respect to the assumed Gaussian mixture model (5.6).

Lemma 5.4.7. Let µc be the clean data distribution, where each example is sampled i.i.d. according to the

data generating process specified in (5.6). For any linear hypothesis hw,b ∈ H, we have

Risk(hw,b;µc) = p · Φ
(
b+ w · γ1

σ1

)
+ (1− p) · Φ

(
−b− w · γ2

σ2

)
,

where Φ denotes the CDF of the standard Gaussian distribution N (0, 1).

Now we are ready to prove Theorem 5.4.3 using Lemmas 5.4.5, 5.4.6 and 5.4.7.

Proof of Theorem 5.4.3. According to Theorem 5.3.8 and Remark 5.3.9, we note that the optimal poisoning

performance in Definition 5.3.2 is always achieved with δ = ϵ. Therefore, we will only consider δ = ϵ in the

following discussions.

Since the optimal poisoning performance is defined with respect to clean risk, it will be useful to understand

the properties of Risk(hw,b;µc) such as monotonicity and range. According to Lemma 5.4.7, for any hw,b ∈ H,

we have

Risk(hw,b;µc) =
1

2
Φ

(
b+ w · γ1

σ

)
+

1

2
Φ

(
−b− w · γ2

σ

)
.

To understand the monotonicity of risk, we compute its derivative with respect to b:

∂

∂b
Risk(hw,b;µc) =

1

2σ
√
2π

[
exp

(
− (b+ w · γ1)2

2σ2

)
− exp

(
− (b+ w · γ2)2

2σ2

)]
.

If w = 1, then Risk(hw,b;µc) is monotonically decreasing when b ∈ (−∞,−γ1+γ2

2 ) and monotonically

increasing when b ∈ (−γ1+γ2

2 ,∞), suggesting that minimum is achieved at b = −γ1+γ2

2 and maximum is

achieved when b goes to infinity. To be more specific, Risk(h1,b;µc) ∈ [Φ(γ1−γ2

2σ ), 1
2 ]. On the other hand, if

w = −1, then Risk(hw,b;µc) is monotonically increasing when b ∈ (−∞, γ1+γ2

2 ) and monotonically decreasing
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when b ∈ (γ1+γ2

2 ,∞), suggesting that maximum is achieved at b = γ1+γ2

2 and minimum is achieved when b

goes to infinity. Thus, Risk(h−1,b;µc) ∈ [ 12 ,Φ(
γ2−γ1

2σ )].

Based on the monotonicity analysis of Risk(hw,b;µc), we have the following two observations:

1. If there exists some feasible µp such that h−1,bp = argminh∈H{L(h;µc) + ϵL(h;µp)} can be achieved,

then the optimal poisoning performance is achieved with w = −1 and b close to γ1+γ2

2 as much as

possible.

2. If there does not exist any feasible µp that induces h−1,bp by minimizing the population hinge loss, then

the optimal poisoning performance is achieved with w = 1 and b far from −γ1+γ2

2 as much as possible

(conditioned that the variance σ is the same for the two classes).

Recall that we prove in Lemma 5.4.6 a sufficient and necessary condition for the existence of such h−1,bp ,

which is equivalent to the condition (5.8) presented in Definition 5.4.2. Note that according to Lemma

1.1, b = γ1+γ2

2 also yields the population loss minimizer with respect to µc conditioned on w = −1. Thus,

if condition (5.8) is satisfied, then we know there exists some α ∈ [0, 1] such that the optimal poisoning

performance can be achieved with µp = να. This follows from the assumption |γ1 + γ2| ≤ 2(u− 1), which

suggests that for any (x, y) ∼ να, the individual hinge loss at (x, y) will be zero. In addition, we know that

the poisoned hypothesis induced by Aopt is h−1, γ1+γ2
2

, which maximizes risk with respect to µc.

On the other hand, if condition (5.8) is not satisfied, we know that the poisoned hypothesis induced by

any feasible µp has weight parameter w = 1. Based on our second observation, this further suggests that

the optimal poisoning performance will always be achieved with either µp = ν0 or µp = ν1. According to

the first-order optimality condition and Lemma 1.1, we can compute the closed-form solution regarding the

optimal poisoning performance. Thus, we complete the proof.

5.4.3 General Distributions

Recall that we have identified several key factors (i.e., u, |γ1 − γ2| and σ) for 1-D Gaussian distributions in

Section 5.4.1 which are highly related to the performance of an optimal distributional poisoning adversary

Aopt. In this section, we demonstrate how to generalize the definition of these factors to high-dimensional

distributions and illustrate how they affect an inherent robustness upper bound on indiscriminate poisoning

attacks for linear learners. In particular, we project the clean distribution µc and the constraint set C onto

some vector w, then compute those factors based on the projections.
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Definition 5.4.8 (Projected Constraint Size). Let C ⊆ X × Y be the constraint set for poisoning. For any

w ∈ Rd, the projected constraint size of C with respect to w is defined as:

Sizew(C) = max
(x,y)∈C

w⊤x− min
(x,y)∈C

w⊤x

According to Definition 5.4.8, Sizew(C) characterizes the size of the constraint set C when projected onto the

(normalized) projection vector w/∥w∥2 then scaled by ∥w∥2, the ℓ2-norm of w. In theory, the constraint

sets conditioned on y = −1 and y = +1 can be different, but for simplicity and practical considerations, we

simply assume they are the same in the following discussions.

Definition 5.4.9 (Projected Separability and Standard Deviation). Let X ⊆ Rd, Y = {−1,+1}, and µc be

the underlying distribution. Let µ− and µ+ be the input distributions with labels of −1 and +1 respectively.

For any w ∈ Rd, the projected separability of µc with respect to w is defined as:

Sepw(µc) =
∣∣Ex∼µ− [w

⊤x]− Ex∼µ+
[w⊤x]

∣∣.
In addition, the projected standard deviation of µc with respect to w is defined as:

SDw(µc) =
√
Varw(µc), Varw(µc) = p− ·Varx∼µ− [w

⊤x] + p+ ·Varx∼µ+
[w⊤x],

where p− = Pr(x,y)∼µc
[y = −1], p+ = Pr(x,y)∼µc

[y = +1] denote the sampling probabilities.

For finite-sample settings, we simply replace the input distributions with their empirical counterparts to

compute the sample statistics of Sepw(µc) and SDw(µc). Note that the above definitions are specifically for

linear models, but the insights can still be partially applicable to non-linear models such as neural networks,

and more discussion on this can be found in Section 5.7. Below, we provide justifications on how the three

factors are related to the optimal poisoning attacks. Theorem 5.4.10 and the techniques used in its proof in

Section 5.4.4 are inspired by the design of Min-Max Attack (Steinhardt et al., 2017).

Theorem 5.4.10. Consider input space X ⊆ Rd, label space Y, clean distribution µc and linear hypothesis

class H. For any hw,b ∈ H, x ∈ X and y ∈ Y, let ℓ(hw,b;x, y) = ℓM(−y(w⊤x + b)) + CR · R(hw,b) be a

margin-based loss adopted by the victim, where ℓM is convex and non-decreasing. Let C ⊆ X × Y be the

constraint set and ϵ > 0 be the poisoning budget. Suppose hc = argminh∈H L(h;µc) has weight wc and h∗p is



5.4 Characterizing Optimal Poisoning Attacks 91

the poisoned model induced by optimal adversary Aopt, then we have

Risk(h∗p;µc) ≤ min
h∈H

[
L(h;µc) + ϵ · L(h;µ∗p)

]
≤ L(hc;µc) + ϵ · ℓM(Sizewc(C)) + ϵCR ·R(hc). (5.10)

Remark 5.4.11. Theorem 5.4.10 proves an upper bound on the inherent vulnerability to indiscriminate

poisoning for linear learners, which can be regarded as a necessary condition for the optimal poisoning attack.

A smaller upper bound likely suggests a higher inherent robustness to poisoning attacks. In particular,

the right-hand side of (5.10) consists of two terms: the clean population loss of hc and a term related to

the projected constraint size. Intuitively, the projected separability and standard deviation metrics highly

affect the first term, since a data distribution with a higher Sepwc
(µc) and a lower SDwc

(µc) implies a

larger averaged margin with respect to hc, which further suggests a smaller L(hc;µc). The second term is

determined by the poisoning budget ϵ and the projected constraint size, or more precisely, a larger ϵ and a

larger Sizewc(C) indicate a higher upper bound on Risk(h∗p;µc). In addition, we set h = hc and the projection

vector as wc for the last inequality of (5.10), because hc achieves the smallest population surrogate loss with

respect to the clean data distribution µc. However, choosing h = hc may not always produce a tighter upper

bound on Risk(h∗p;µc) since there is no guarantee that the projected constraint size Sizewc(C) (and R(hc))

will be small. An interesting future direction is to select a more appropriate projection vector that returns a

tight, if not the tightest, upper bound on Risk(h∗p;µc) for any clean distribution µc.

Relation to the Min-Max attack. The upper bound on the risk of optimal poisoning attacks in (5.10) is,

in essence, similar to the upper bound in the Min-Max attack shown below, which plugs hc into (2.14) given

in Section 2.2.2 and considers the upper bound in the distributional setting:

Risk(h∗p;µc) ≤ min
h∈H

[
L(h;µc) + ϵ ·L(h;µ∗p)

]
≤ L(hc;µc) + ϵ · ℓM(max(x,y)∈C |w⊤c x+ bc|) + ϵCR ·R(hc). (5.11)

Notably, the only difference between the upper bound in (5.10) (projected constraint size) and (5.11) (max-

loss) is in the last term of ℓM(Sizewc(C)) or ℓM(max(x,y)∈C |w⊤c x+ bc|). For these two terms, the max-loss

term is upper-bounded by the term of the projected constraint size, and therefore, the provides a tighter upper

bound on the risk of optimal poisoning attacks compared to the latter. However, the projected constraint

size captures the two end points of the projected range of the candidate (optimal) poisoning distributions,

while the max-loss only captures the higher end point of the projected range. Because of this, the projected

constraint size may better reflect the (unknown) optimal poisoning distribution µ∗p because µ∗p does not

necessarily contain the extreme poisoning point (x, y) that maximizes ℓM(|w⊤c x+ bc|).
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In Section 5.5.2, we minimize the tighter upper bound given in (5.11) (by replacing hc with an optimizable h)

to provide a non-trivial and tighter estimation of the upper bound of the risk of optimal poisoning attacks

and demonstrate that these upper bounds also vary across benchmark datasets.

5.4.4 Proof of Theorem 5.4.10

The proof of Theorem 5.4.10 is inspired by the design of the Min-Max attack (Steinhardt et al., 2017) in the

indiscriminate setting.

Proof of Theorem 5.4.10. Consider linear hypothesis class H and the poisoned distribution µ∗p generated by

the optimal poisoning adversary Aopt in Definition 5.3.1. Given clean distribution µc, poisoning ratio ϵ, and

constraint set C, the inherent vulnerability to indiscriminate poisoning is captured by the optimal attack

performance Risk(h∗p;µc), where h∗p denotes the poisoned linear model induced by µ∗p. For any h ∈ H, we

have

Risk(h∗p;µc) ≤ L(h∗p;µc) ≤ L(h∗p;µc) + ϵ · L(h∗p;µ∗p) ≤ L(h;µc) + ϵ · L(h;µ∗p), (5.12)

where the first inequality holds because the surrogate loss is defined to be not smaller than the 0-1 loss, the

second inequality holds because the surrogate loss is always non-negative, and the third inequality holds

because h∗p minimizes the population loss with respect to both clean distribution µc and optimally generated

poisoned distribution µ∗p. Consider hc = argminh∈H L(h;µc) (with weight parameter wc and bias parameter

bc), which is the linear model learned from the clean data. Therefore, plugging h = hc into the right-hand

side of (5.12), we further obtain

Risk(h∗p;µc) ≤ L(hc;µc) + ϵ · L(hc;µ
∗
p) ≤ L(hc;µc) + ϵ · ℓM(Sizewc(C)) + ϵCR ·R(hc), (5.13)

where the last inequality holds because for any poisoned data point (x, y) ∼ µ∗p, the surrogate loss at (x, y) with

respect to hc is ℓM
(
y·(w⊤c x+bc)

)
+ϵCR·R(hc), and y·(w⊤c x+bc) ≤ max(x,y)∈C |w⊤c x+bc|. Under the condition

that min(x,y)∈C w
⊤
c x ≤ −bc ≤ max(x,y)∈C w

⊤
c x which means the decision boundary of hc falls into the

constraint set C when projected on to the direction of wc, we further have max(x,y)∈C |w⊤c x+ bc| ≤ Sizewc(C),

which implies the validity of (5.13). We remark that the condition min(x,y)∈C w
⊤
c x ≤ −bc ≤ max(x,y)∈C w

⊤
c x

typically holds for margin-based loss in practice, since the support of the clean training data belongs to

the constraint set for poisoning inputs (for either undefended victim models or models that employ some

data sanitization defense). Therefore, we leave this condition out in the statement of Theorem 5.4.10 for

simplicity.
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5.5 Experiments

We first introduce the experiments conducted on the synthetic dataset (Section 5.5.1) to study the impact

of the identified factors on the performance of optimal poisoning attacks. Then, we show how the factors

identified in theoretical settings are correlated to the empirical vulnerabilities observed for the benchmark

datasets (Section 5.5.2).

5.5.1 Experiments on Synthetic Datasets

According to Remark 5.4.4, there are two important factors to be considered: (1) the ratio between class

separability and within-class variance |γ1 − γ2|/σ; (2) the size of the constraint set u. We conduct synthetic

experiments to study the impact of these factors on the performance of (optimal) data poisoning attacks.

For our experiments, we generate 10,000 training and 10,000 testing data points according to the Gaussian

mixture model (5.6) with negative center γ1 = −10 and positive center γ2 = 0. Throughout our experiments,

γ1 and γ2 are kept fixed, whereas we vary the variance parameter σ and the value of u. The default value

of u is set as 20 if not specified. Evaluations of empirical poisoning attacks require training linear SVM

models, where we choose CR = 0.01. The poisoning ratio is still set as 3%, consistent with evaluations on the

benchmark datasets in Section 5.2.

Impact of separability/within-class variance ratio (|γ1 − γ2|/σ). First, we show how the optimal

attack performance changes as we increase the value of |γ1 − γ2|/σ. Here, we choose to report the actual risk

achieved by the OPT attack based on Theorem 5.4.3, not the increased risk (or test error) that is used for

the benchmark datasets in Section 5.2. This is because, the OPT attack is only characterized with respect

to the actual risk after poisoning in Theorem 5.4.3, not the increased risk. Furthermore, for convenience in

analysis, the OPT attack is only characterized for the restricted setting of w = {−1, 1} instead of taking a

real number in practice. We find that, in this restrictive setting, it is hard to find a dataset from the 1-D

Gaussian mixture that has low base error and high poisoned error (i.e., high increased error). If we relax w to

take real numbers, then finding such a dataset becomes easier and will be discussed in detail when measuring

the impact of u below.

When computing the risk of the OPT attack, we can only obtain approximations of the inverse function g−1

using numerical methods, which may induce a small approximation error for evaluating the optimal attack

performance. For the finite-sample setting, we also report the empirical test error of the poisoned models

induced by the empirical OPT attack and the best current poisoning attack discussed in Section 5.2, where
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Figure 5.3: Measuring the performance of optimal poisoning attacks with different values of separability ratio
|γ1 − γ2|/σ. Best Heuristic denotes the best-performing attack in the literature.

the latter is termed as Best Heuristic for simplicity. Since the poisoned models induced by these empirical

attacks do not restrict w ∈ {−1, 1}, we normalize w to make the empirical results comparable with our

theoretical results.

Figure 5.3 summarizes the attack performance as we vary the ratio |γ1 − γ2|/σ. As the ratio between class

separability and within-class variance increases, the risk of the OPT attack and empirical test errors of the

empirical OPT and best heuristic attacks gradually decrease. This is consistent with our theoretical results

discussed in Section 5.4.1, and interestingly, for the simple 1-D Gaussian mixtures, the optimal poisoning

attacks and the best heuristics have negligible gaps.

Impact of size of the constraint set (u). Our theoretical results assume the setting where w ∈ {−1, 1}.

However, this restriction makes the impact of the constraint set size u less significant, as it is only helpful in

judging whether flipping the sign of w (Condition 5.8 in Theorem 5.4.3) is feasible and becomes irrelevant to

the maximum risk after poisoning when flipping is infeasible. In contrast, if w is not this restricted, the impact

of u will be smoother and more significant. In particular, when w takes real numbers, it will be impacted

more by larger u as the poisoning points generated can be very extreme and force the poisoned model to

have reduced w (compared to clean model wc) in the norm so as to minimize the large loss introduced by

the extreme poisoning points. Figure 5.4 plots the relationship between u and w of the poisoned model and

supports the statement above. In terms of the impact of u on the poisoning effectiveness, when the norm

of w becomes smaller, the original clean data that are well-separated become less separable so that slight
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Figure 5.4: Impact of the (projected) constraint size u on the value of poisoned weight vector w after poisoning
in 1-D Gaussian distributions.

Figure 5.5: Impact of the (projected) constraint size u on poisoning effectiveness. u = 0 means the test error
without poisoning.

movement in the decision boundary can cause significantly increased test errors. This makes the existence of

datasets that have large risk gap before and after poisoning more likely.

Since relaxing w to take real numbers violates the assumption of our theory, the maximum risk after poisoning

can no longer be characterized based on Theorem 5.4.3. Instead, we use the poisoning attack inspired by our

theory to get an empirical lower bound on the maximum risk. Since γ1 + γ2 < 0, Theorem 5.4.3 suggests

that optimal poisoning should place all poisoning points on u with label −1 when w ∈ {1,−1}. We simply

use this approach even when the w can now take arbitrary values. We vary the value of u gradually and

record the test error of the induced hypothesis, We repeat this procedure for different dataset configurations

(i.e., fixing γ1, γ2, and varying σ). We still use the poisoned error (not increased error) to show poisoning

effectiveness for consistency in the evaluation of the synthetic dataset, but additionally include the base test

error without poisoning to provide a sense of the error increase after poisoning.
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Metric F. Enron MNIST 6–9 Dogfish MNIST 1–7 Enron MNIST 4–9 Adult

SVM
Upper Bound 64.5 21.4 34.9 20.1 64.7 40.8 65.1
Lower Bound 33.3 3.0 8.7 3.6 34.8 10.9 24.1
Base Error 0.2 0.3 0.8 1.2 2.9 4.3 21.5

LR
Upper Bound 64.8 35.1 46.9 35.9 64.9 54.8 64.1
Lower Bound 35.6 2.9 10.9 4.0 37.1 10.7 22.6
Base Error 0.3 0.6 1.7 2.2 2.5 5.1 20.1

Table 5.2: Non-trivial upper bounds on the limits of poisoning attacks across benchmark datasets. The Upper
Bound on the limits of poisoning attacks is obtained by minimizing the upper bound Equation (5.11). The
Lower Bound on the limit of poisoning attacks is obtained by reporting the highest poisoned error from the
best empirical attacks. The datasets are sorted based on the lowest and highest empirical base error.

The results are summarized in Figure 5.5, where u = 0 denotes the setting without poisoning and hence

the test error in this setting is the base test error. There are two key observations: (1) once w is no longer

constrained, the test errors of all the considered datasets (even the datasets with very low base test errors)

gradually increase (to a maximum of 50%) after poisoning when we gradually increase the value of u, and (2)

for a given u, datasets with smaller ratio |γ1 − γ2|/σ can be more vulnerable to poisoning and have larger

increased test error. Although not backed by our theory, it makes sense as a smaller separability ratio2 also

means more points might be closer to the boundary (smaller margin) and hence small changes in the decision

boundary can have significantly increased test errors.

5.5.2 Experiments on Benchmark Datasets

In this section, we first show the drastic differences in the upper bounds on the limits of any poisoning attacks,

which complements the drastic variation observed for the lower bounds on the limits in Section 5.2. Then

we show the correlation between the identified factors and the empirically observed vulnerabilities across

benchmark datasets, using the clean model weight as the projection vector.

Minimization of the Upper Bound

We first provide details on the upper bound minimization and then present the computed non-trivial upper

bounds. Finally, we provide reasons for the current large gap between the upper and lower bounds on the

limits of poisoning attacks.

Variation of the non-trivial upper bounds. The upper-bound minimization of (5.11) (by replacing hc

with general h and then optimizing it) corresponds to a min-max optimization problem. We solve it using the
2Note that a smaller separability ratio does not necessarily indicate higher base test error. This will be more obvious for

high-dimensional benchmark datasets such as Filtered Enron, which has the lowest base error and highest increased error. We
will show in Table 5.3 that this high increased error is partially because Filtered Enron has a low separability ratio.
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online gradient descent algorithm that alternatively updates the poisoning points and model weight, and the

risk is empirically estimated on the training set. Note that, this approach is similar to the one used by Koh et

al. for the i-Min-Max attack (Koh et al., 2022) without the target model ĥtar (details in Algorithm 4). The

subtle difference is, their method focuses on designing the practical attack and hence, stops the optimization

after ϵ|Sc| (or slightly more) poisoning points are generated in an online manner. These fewer iterations

of online optimization can generate quite loose upper bounds. In this experiment, we focus on finding the

tightest possible estimate using the online gradient descent and hence, choose to run the optimization for

30,000 iterations (which is much higher than the clean training set size for all the considered benchmark

datasets in this chapter) with a learning rate of 0.03 for the weight vector update and report the lowest

upper bound obtained in the process. It is important to note that, the empirically computed upper bound is

estimated on the training data and hence only provides an approximate upper bound to the maximal test

error after poisoning.

The minimized upper bounds at ϵ = 0.03 poisoning are summarized in Table 5.2. From the table, we can

easily see that the (approximate) upper bound on the limits of any poisoning attacks still vary significantly

across datasets, complementing the drastic variations in terms of the lower bound on the limits observed in

Section 5.2. In addition, the computed upper bounds are also mostly highly correlated with the observed

empirical lower bounds, especially for the linear SVM, and the empirically less vulnerable datasets also have

relatively smaller upper bounds. Here, we are presenting the correlation between the computed upper and

lower bounds of the final test error (not the error increase that we use to empirically measure the dataset

vulnerability in Section 5.2) after poisoning because the upper bound in (5.11) is for the maximum risk

after optimal poisoning, not the maximum increased risk. While for a dataset with low enough base error,

the final test error and the increased error are mostly similar, it is not the case for datasets with high

base errors (e.g., the Adult dataset) because the provided upper bound on the final test error may not well

capture the increased error. Nevertheless, we show that even the non-trivial upper bound on the limits of

poisoning attacks can vary drastically across datasets, and in some cases (e.g., MNIST 6–9, MNIST 1–7), the

(potentially loose) upper bound may still be limited in effectiveness to some degree (≈ 20% test error at 3%

of poisoning).

Reasons for the large gap between the lower and upper bounds. Another side observation from

Table 5.2 is, currently, the gaps between the lower and upper bounds for all the examined datasets are large,

and more in-depth analysis is needed to shrink the gap. We speculate the large gap exists because of two

reasons. The first is, we use the surrogate loss to upper bound the 0-1 loss and maximize the surrogate loss in
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Robust Moderately Vulnerable Highly Vulnerable
Metric MNIST 6–9 MNIST 1–7 Adult Dogfish MNIST 4–9 F. Enron Enron IMDB

SVM

Error Increase 2.7 2.4 3.2 7.9 6.6 33.1 31.9 19.1†
Base Error 0.3 1.2 21.5 0.8 4.3 0.2 2.9 11.9

Sep/SD 6.92 6.25 9.65 5.14 4.44 1.18 1.18 2.57
Sep/Size 0.24 0.23 0.33 0.05 0.14 0.01 0.01 0.002

LR

Error Increase 2.3 1.8 2.5 6.8 5.8 33.0 33.1 -
Base Error 0.6 2.2 20.1 1.7 5.1 0.3 2.5 -

Sep/SD 6.28 6.13 4.62 5.03 4.31 1.11 1.10 2.52
Sep/Size 0.27 0.27 0.27 0.09 0.16 0.01 0.01 0.003

Table 5.3: Explaining disparate poisoning vulnerability under linear models by computing the metrics on the
correctly classified clean test points. The top row for each model gives the increase in error rate due to the
poisoning, over the base error rate in the second row. The error increase of IMDB (marked with †) is directly
quoted from Koh et al. (2022) as running the existing poisoning attacks on IMDB is extremely slow. LR
results are missing as they are not contained in the original paper. Sep/SD denotes the ratio between the
projected separability and the projected variance onto the clean model weight. Sep/Size denotes the ratio
between the projected separability and the projected constraint size onto the clean model weight.

Models Metrics Robust Moderately Vulnerable Highly Vulnerable
MNIST 6-9 MNIST 1–7 Adult Dogfish MNIST 4–9 F. Enron Enron IMDB

SVM

Error Increase 2.7 2.4 3.2 7.9 6.6 33.1 31.9 19.1†
Base Error 0.3 1.2 21.5 0.8 4.3 0.2 2.9 11.9

Sep/SD 6.70 5.58 1.45 4.94 3.71 1.18 1.15 1.95
Sep/Size 0.23 0.23 0.18 0.05 0.13 0.01 0.01 0.001

LR

Error Increase 2.3 1.8 2.5 6.8 5.8 33.0 33.1 -
Base Error 0.6 2.2 20.1 1.7 5.1 0.3 2.5 -

Sep/SD 5.97 5.17 1.64 4.67 3.51 1.06 1.01 1.88
Sep/Size 0.26 0.26 0.16 0.08 0.15 0.01 0.01 0.002

Table 5.4: Explaining the different vulnerabilities of benchmark datasets under linear models by computing
metrics on the whole test data. The error increase of IMDB (marked with †) is directly quoted from Koh
et al. (2022).

the poisoning setting, which unavoidably introduces a (potentially large) gap and this gap might be hard, if

not impossible, to minimize. We may circumvent this issue if we no longer rely on the min-max formulation,

as in (5.11), to upper bound the performance of any indiscriminate poisoning attacks. Second, the upper

bound in (5.11) involves finding the (extreme) maximum loss for a given hypothesis h in the optimization

process of h while the optimal poisoning distribution µ∗p may not be that extreme to always maximize the

loss with respect to h∗p. A possible approach to handle this problem is to first identify the properties of µ∗p

(e.g., how extreme it can be). Then, when optimizing the h in (5.11), instead of finding the poisoning points

that maximize the loss on h, find less extreme points that still provide a valid upper bound by leveraging the

properties of µ∗p.

Explaining the Variation in Empirical Attack Effectiveness

Recall from Theorem 5.3.6 and Remark 5.3.7 that the finite-sample optimal poisoning attack is a consistent

estimator of the distributional one for linear learners. In this section, we demonstrate the theoretical insights
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gained from Section 5.4, despite proven only for the distributional optimal attacks, still appear to largely

explain the empirical performance of best attacks across benchmark datasets.

Given a clean training set Sc, we empirically estimate the three distributional metrics defined in Section 5.4.3

on the clean test data with respect to the weight wc of the clean model hwc
. Since ∥wc∥2 may vary across

different datasets while the predictions of linear models (i.e., the classification error) are invariant to the

scaling of ∥wc∥2, we use ratios to make their metrics comparable: Sepwc
(µc)/SDwc

(µc) (denoted as Sep/SD

in Table 5.3) and Sepwc
(µc)/Sizewc(C) (Sep/Size). According to our theoretical results, we expect datasets

that are less vulnerable to poisoning to have higher values for both metrics. For the IMDB dataset, we directly

quote the poisoned error on linear SVM from Koh et al. (2022) due to the extremely long computational time

to run the current attacks and only (actually) compute the related metrics identified in this chapter.

Table 5.3 summarizes the results, showing that the Sep/SD and Sep/Size metrics can largely explain why

datasets such as MNIST 1–7 and MNIST 6–9 are harder to poison than others. These datasets are more

separable and impacted less by the poisoning points. In contrast, datasets such as Enron, Filtered Enron and

IMDB are highly vulnerable because they are the least separable and also impacted the most by poisoning

points. The empirical metrics are indeed highly correlated to the error increase (and also the final poisoned

error) when the base error is small, which is the case for all tested benchmark datasets except Adult. The

results of Filtered Enron (low base error, high increased error) and Adult (high base error, low increased

error) demonstrate the poisoning vulnerability cannot be trivially inferred from the initial base error. When

the base error becomes high as it is for Adult, the empirical metrics are highly correlated to the final poisoned

error, but not the error increase. For the error increase, computing the metrics on clean test points that are

correctly classified by hwc
is more informative. Therefore, we report metrics based on correctly-classified test

points in Table 5.3 and provide results of the whole test data in Table 5.4. For datasets except Adult, both

ways of computing the metrics produce similar results. The Adult dataset is very interesting in that it is

robust to poisoning (i.e., small error increase) despite having a very high base error.

5.6 Implication on Future Defenses

We show how our results on understanding the limits of indiscriminate poisoning attacks suggest future

defenses by explaining why candidate defenses work and motivating future defenses to improve separability

and reduce projected constraint size. We present two ideas: 1) current data sanitization defenses reduce the

projected constraint size and future defenses should also focus on limiting the projected constraint size; 2)
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Dataset Error Increase Base Error Sep/SD Sep/Size
w/o w/ w/o w/ w/o w/ w/o w/

MNIST 1–7 (10%) 7.7 1.0 1.2 2.4 6.25 6.25 0.23 0.43
Enron (3%) 31.9 25.6 2.9 3.2 1.18 1.18 0.01 0.11

Table 5.5: Understanding the impact of data sanitization defenses on poisoning attacks. w/o and w/ denote
without defense and with defense respectively. MNIST 1–7 is evaluated at a 10% poisoning ratio due to its
strong robustness at ϵ = 3% and Enron is still evaluated at ϵ = 3% because it is highly vulnerable.

using better feature representations might improve separability (and potentially reduce projected constraint

size) to resist poisoning with and without defenses.

Explaining the impact of data sanitization defenses. Common data sanitization defenses work by

identifying and filtering out bad points. We speculate that such defenses work because they effectively limit

the projected constraint size of C. To test this, we picked the combination of Sphere and Slab defenses

considered in prior works (Koh et al., 2022; Steinhardt et al., 2017) to protect the vulnerable Enron dataset

at 3% poisoning ratio and the already robust MNIST 1–7 dataset at a higher 10% poisoning ratio. We

considered a significantly higher poisoning ratio for MNIST 1–7 because at the original 3% poisoning rate, as

shown in Section 5.2, the dataset can well resist known attacks and hence there is no point in protecting the

dataset with sanitization defenses. This attack setting is just for an illustration purpose, and attackers in

practice may not be able to manipulate such a large number of poisoning points.

The results are summarized in Table 5.5, and we can see that existing data sanitization defenses improve

the robustness to poisoning by majorly limiting Sizewc
(C). Following the main result in the paper, we still

compute the metrics based on the correctly classified samples in the clean test set, so as to better depict

the relationship between the increased errors and the computed metrics. For Enron, with defense, the test

error increases from 3.2% to 28.8% while without defense, the error can be increased from 2.9% to 34.8%.

Although limited in effectiveness, the defense still mitigates the poisoning to some degree, mostly by shrinking

the projected constraint size Sizewc(C). This leads to a higher value for the Sep/Size metric: 0.11 with

defense compared to 0.01 without defense. For MNIST 1–7, employing the data sanitization defense makes

the dataset even more robust (preserving robustness even at the high 10% poisoning rate), which is consistent

with the findings in prior work (Steinhardt et al., 2017), due to the reduced impact from poisoning (i.e.,

higher Sep/Size). To conclude, future defenses against poisoning attacks should also focus on developing

methods to effectively reduce the projected constraint size.

Better feature representation to resist poisoning. We consider a transfer learning scenario where the
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Figure 5.6: Impact of features on poisoning effectiveness. R-X denotes the feature representation of the
dataset obtained from the feature extractor of the ResNet18 model trained for X epochs. LeNet denotes the
feature representation of the dataset obtained from the feature extractor of the fully trained simple CNN
model.

victim trains a linear model on a clean pre-trained model. As a preliminary experiment, we train LeNet

and ResNet18 models on the CIFAR10 (Krizhevsky et al., 2009) dataset till convergence, but record the

intermediate models of ResNet18 to produce models with different feature extractors (R-X denotes ResNet18

trained for X epochs). We then use the feature extraction layers of these models (including the fully trained

LeNet) as the pre-trained models and obtain features of CIFAR10 images with labels “Truck” and “Ship”, and

train (binary) linear SVM models on them.

We evaluate the robustness of this dataset against poisoning attacks and set C as the dimension-wise box

constraints, whose values are the minimum and maximum values of the clean data points for each dimension

when fed to the feature extractors. This approach corresponds to the practical scenario where the victim has

access to a small number of clean samples so that they can deploy a simple defense of filtering out inputs

that do not fall into a dimension-wise box constraint that is computed from the available clean samples of

the victim. Figure 5.6 shows that as the feature extractor becomes better (either using deep architecture

or training it for more epochs), both the Sep/SD and Sep/Size metrics increase, leading to reduced error

increase even without any additional defenses. This indicates that better feature representations (trained on

the clean data) might help in resisting poisoning attacks even when there are no defenses deployed.

We believe the Sphere and Slab defenses mentioned above may also benefit from better representations because
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Datasets Base Error (%) Increased Error (%) Sep/SD Sep/Size

MNIST 0.8% 1.1% 4.58 0.10
CIFAR-10 31.0% 4.3% 0.24 0.01

Table 5.6: Results on simple CNN models for MNIST and CIFAR-10 datasets using 3% poisoning ratio. The
“Poisoned Error" of both datasets are directly quoted from Lu et al. (2022) as these are the only available
state-of-the-art results in the literature. Under similar neural network structures, the vulnerability factors
identified under linear models can also generalize to neural networks. The binary pair with the lowest Sep/SD
score also has the lowest Sep/Size score.

Datasets Base Error (%) Increased Error (%) Sep/SD Sep/Size

MNIST 0.8% 9.6% 4.58 0.10
CIFAR-10 4.8% 13.7% 6.36 0.24

Table 5.7: Results on simple CNN model for MNIST and ResNet18 model for CIFAR-10 datasets using a
3% poisoning ratio. The “Poisoned Error" of both datasets are directly quoted from Lu et al. (2023), which
represents the most recent progress on attacks on neural networks in the field. Under different neural network
structures, the vulnerability factors identified under linear models cannot explain observations on neural
networks. The binary pair with the lowest Sep/SD score also has the lowest Sep/Size score.

for the distributions with high Sep/SD and Sep/Size, the class-centroids will not be skewed much in the

presence of poisoning points, and hence increase the resistance of these defenses to poisoning attacks.

Implication for defenses against subpopulation attacks. We believe learning better representations

(e.g., compact representation with higher separability, or higher Sep/SD as in our analysis) might also help

in improving the resistance to subpopulation poisoning attacks. This is because feature representations

with higher separability might increase the average subpopulation difficulty, and densely clustered points in

compact feature representation might indicate that misclassifying any subpopulation will unavoidably face

strong resistance from the rest of the population and make the overall attack harder to succeed with a limited

number of poisoning points.

5.7 Comparison with Related Work

In this section, we first provide a more detailed comparison to the related works on understanding the inherent

vulnerabilities in targeted poisoning settings. All the aforementioned indiscriminate poisoning attacks on

linear learners that inject poisoning points (Biggio et al., 2011; Mei and Zhu, 2015b;a; Koh and Liang, 2017;

Steinhardt et al., 2017; Koh et al., 2022) focus on developing different indiscriminate poisoning algorithms,

but did not explain why certain datasets are seemingly harder to poison than others. Our work leverages these

attacks to empirically estimate the inherent vulnerabilities of benchmark datasets to poisoning but focuses

on providing explanations for the disparate poisoning vulnerability across the datasets. For indiscriminate
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poisoning attacks beyond linear learners (Lu et al., 2022; 2023), our work can also leverage these attacks

to empirically estimate the inherent vulnerabilities of different datasets under neural networks and provide

possible explanations, and some preliminary results on this are discussed below. Notably for Lu et al. (2023),

it also characterizes the limits of model-targeted poisoning attacks by proving a lower bound on the number of

poisoning points needed to induce a particular target model and can be related to our work in understanding

the limits of indiscriminate attacks. However, the hardness in inducing a particular target model may not

fully reflect the fundamental limits in maximizing the risk with ϵ fraction of poisoning points. Furthermore,

their results on the vulnerability variation across datasets are implicitly reflected through particular target

models while we can compute the related distributional properties under the given learner explicitly. Besides

injecting poisoning points, some other works consider a different poisoning setup in the indiscriminate setting

from ours by modifying up to the whole training data, also known as unlearnable examples (Huang et al.,

2021; Yu et al., 2022; Fowl et al., 2021).

We then provide the preliminary results in extending our insights beyond linear models. Note that extending

the insights from binary classification in linear models to multi-class classification in neural networks is

non-trivial and a detailed description of this extension can be found in the online version of this chapter (Suya

et al., 2023). At the high level, to extend binary classification to k-class classification (k > 2), we enumerate

over all k(k − 1)/2 binary pairs and use the pair(s) with the lowest Sep/SD and Sep/Size scores (report both

pairs when there are two unique pairs for the lowest Sep/SD and Sep/Size scores). For a neural network,

we view it as consisting of a fixed feature extractor and a linear classification layer. When computing the

related two vulnerability metrics, we first feed the dataset through the feature extractor and obtain a “new”

dataset in the transformed feature space, and then compute the metrics for the “new” dataset empirically.

Table 5.6 shows that the distributional properties obtained for the linear models can also generalize to neural

networks, given that the underlying learners are similar (simple CNN model in this experiment). However,

when the underlying learners (e.g., neural network structures) are drastically different, then the factors cannot

well-reflect the different effectiveness of the state-of-the-art poisoning attacks, as shown in Table 5.7. More

detailed investigations are needed for this interesting observation.

We believe our approach to analyzing indiscriminate attacks might also be extended to targeted attacks (Shafahi

et al., 2018; Zhu et al., 2019; Koh and Liang, 2017; Huang et al., 2020; Geiping et al., 2021) where the existing

attacks (potentially also including our proposed MTP attack) will still be used as tools to empirically estimate

the inherent vulnerability of a given test sample. As for the factors that contribute to the (potentially)

different susceptibilities of different test samples, we believe the learning task properties (e.g., properties of

the data distribution under the given learner) identified in this chapter may still be highly correlated, but the
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Scale Factor c Error Increase (%) Sep/Size

1.0 2.2 0.27
2.0 3.1 0.15
3.0 4.4 0.10

Table 5.8: Impact of scale factor c on poisoning effectiveness for C in the form of dimension-wise box-constraint
as [0, c]. The base error is 1.2%. The base error and the Sep/SD score will be the same for all settings because
the support set of the clean distribution is a strict subset of C, but Sep/Size will change as C changes.

additional factor(s) that describe the relative location of the individual test sample to the rest of the data

points with respect to the clean decision boundary will also play an important role. We leave the exploration

of the impact of individual test sample properties on the effectiveness of the optimal targeted attacks as

future work.

In the targeted poisoning scenario, a related recent work that studies the inherent vulnerabilities of datasets

to targeted data poisoning attacks proposed the Lethal Dose Conjecture (LDC) (Wang et al., 2022): given a

dataset of size N , the tolerable amount of poisoning points from any targeted poisoning attack generated

through insertion, deletion or modifications is Θ(N/n), where n is the sample complexity of the most

data-efficient learner trained on the clean data to correctly predict a known test sample. Compared to

our work, LDC is more general and applies to any dataset, any learning algorithm, and even different

poisoning setups (e.g., deletion, insertion). In contrast, our work focuses on injection-only indiscriminate

attacks for linear models. However, the general setting for LDC can result in overly pessimistic estimates on

the power of injection-only indiscriminate poisoning attacks. Specifically, extending the results in targeted

settings straightforwardly to indiscriminate (or subpopulation) settings will overestimate the power of these

poisoning attacks—the direct adaptation assumes individual test samples are independently impacted by the

poisoning points while in indiscriminate (or subpopulation) settings, the test samples are impacted by the

same set of poisoning points, which is a much weaker attack setting compared to the former. In addition,

the injection-only attack can also be much weaker than attacks that can delete existing points and inject

new points. Note that the problem of overestimating the power of indiscriminate or subpopulation poisoning

attacks also exists when adapting the optimal learning results in targeted poisoning scenario (Hanneke et al.,

2022) to optimal learning in indiscriminate or subpopulation settings. These also highlight the importance of

performing fine-grained analysis on the threat from poisoning attacks, as attacks in some restricted settings

may not be that detrimental.

In addition, the key factor of the sample complexity n in LDC is usually unknown and difficult to determine.

Our work complements LDC by making an initial step towards finding factors (projected separability and
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projected variance in our case) that can be related to n under a particular attack scenario to better understand

the power of indiscriminate data poisoning attacks. The projected constraint size identified in this paper can

also be independent of n when the support of the clean distribution is a strict subset of the constraint set

C. In particular, in this case, if we further enlarge C, it won’t impact the clean distribution and therefore,

the outcomes of learners trained on clean samples from the distribution will not change (including the most

data-efficient learner) and hence n will remain the same for different permissible choices of C, indicating that

the vulnerability of the same dataset remains the same even when C changes drastically without impacting

the clean distribution. However, changes in C (and subsequently, changes in the projected constraint size)

will directly impact the attack effectiveness, as a larger C is likely to admit stronger poisoning attacks. To

illustrate how much the attack power can change as C changes but without impacting the clean distribution,

we conduct experiments on MNIST 1–7 and show that scaling up the original dimension-wise box-constraint

from [0, 1] to [0, c] (where c > 1 is the scale factor) can significantly boost attack effectiveness. Table 5.8

summarizes the results, and we can observe that, as the scale factor c increases (enlarged C, increased

projected constraint size, and reduced Sep/Size), the attack effectiveness also increases significantly. Note

that this experiment is an existence proof and MNIST 1–7 is used as a hypothetical example. In practice, for

normalized images, the box constraint cannot be scaled beyond [0,1] as it will result in invalid images.

5.8 Summary

Motivated by the empirical observation that different datasets show disparate vulnerabilities to state-of-

the-art poisoning attacks for linear learners, we rigorously characterized the optimal poisoning attacks for

Gaussian distributions. The insights from the theoretical analysis can be used to explain the vulnerabilities

of benchmark datasets. We made an initial but important step towards understanding the learning task

properties that correlate with the inherent vulnerability to poisoning attacks. Our results also provide

suggestions for building more robust systems.

Limitation and future work. Our work has several major limitations, which point out interesting future

research directions. First, we only characterize the optimal poisoning attacks for theoretical distributions

under linear models, but the extension to general distributions in high-dimensions and non-linear models is

an important future work. Second, even for the linear models, the identified metrics cannot quantify the

actual increased errors from optimal poisoning attacks, which itself is an interesting future work and one

possible approach might be to tighten the upper bound in Theorem 5.4.10 using better optimization methods.

Third, the metrics identified in this paper are learner dependent, depending on the properties of the learning
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algorithm, dataset, and domain constraints (mainly reflected through C). In certain applications, one might

be interested in understanding the impact of learner-agnostic dataset properties on poisoning effectiveness—a

desired dataset has such properties that any reasonable learners trained on the dataset can be robust to

poisoning attacks. One likely application scenario is, the released data from the owner will be used by many

different learners in various applications and these applications can be prone to poisoning.



Chapter 6

Conclusion

This dissertation analyzes the limits of poisoning attacks in the subpopulation and indiscriminate settings.

We first quantify a tighter lower bound on the effectiveness of the best possible attacks by proposing a

model-targeted poisoning attack that can be conveniently applied for indiscriminate and subpopulation

settings (and beyond), and achieves comparable or better performance in comparison to the current state-of-

the-art, especially in the practically-motivated subpopulation settings. Through extensive experiments on

different subpopulations using our proposed attack, we observe drastically different susceptibilities across

subpopulations, which further motivate us to explore learning task properties that contribute to the drastic

variations. We then show that both the overall distributional separability and the loss difference between the

clean model and the target model that misclassifies the subpopulation are highly correlated with the different

attack effectiveness.

Driven by the fact that indiscriminate attacks are special forms of subpopulation attacks that take the entire

datasets as the “subpopulations”, we further test whether different datasets also have disparate vulnerabilities

similar to the observations in the general subpopulation settings, and find that best empirical indiscriminate

attacks indeed have drastically varied performances across datasets. We then explore distributional properties

under the given learner that contribute to the observed variations and show that the projected separability,

projected standard deviation, and projected constraint size onto the clean decision boundary can largely

explain this variation. Moreover, these factors are also related to the upper bound on the performance of the

(unknown) optimal indiscriminate poisoning attacks, and minimizing the upper bound can give a non-trivial

estimate on the performance of the optimal attacks, which again drastically varies across datasets. Finally,
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we discuss how our insights on the limits of poisoning attacks might help in designing better defenses against

data poisoning attacks.

Although this dissertation, through a line of work, advances our understanding of why known poisoning attacks

work in some settings and fail in others, our current understanding of the possible root causes of the different

susceptibility is still obtained through quantitative correlation of the identified factors to the empirical attack

performance. However, a more fundamental and perhaps practically more interesting question is to quantify

the maximum risk (or test error) increase from any poisoning attacks on the defined subpopulation or the

entire distribution by inspecting the related learning task properties. We made an initial step towards this

goal in the indiscriminate setting by showing the connection between the identified learning task factors and

the non-trivial upper bound on the performance of optimal poisoning attacks. However, a relatively large gap

between the quantitative upper bound and the performance of the best empirical attacks remains. This raises

the important question of whether the current upper bound estimation framework is limited or the existing

empirical attacks are still far from optimal. We speculate that there is room for reducing the upper bound,

as the current approach to compute the quantitative upper bound is limited. A tighter estimation might be

obtained by finding the possible characteristics of the optimal poisoning distribution µ∗p, which is again highly

dependent on the learning task properties (Chapter 5). The more practically-motivated subpopulation setting

is even more challenging, as it does not form a min-max formulation as in the indiscriminate setting to enable

the computation of a non-trivial upper bound on the limits of poisoning attacks. We leave the exploration of

tighter estimation on the optimal poisoning effectiveness for the indiscriminate and subpopulation settings

(and beyond) as future work.

Finally, all of our explorations on the poisoning effectiveness eventually serve the purpose of designing

more robust systems in an adversarial environment. This dissertation highlights the importance of feature

representations in defending against data poisoning attacks. Future work should perform a more systematic

exploration of better feature representations and their possible enhancements to data sanitization defenses. At

an even higher level, our work also advocates for performing fine-grained security analysis for the underlying

learning tasks so as to better understand the risks from poisoning in practice, as not all settings are lethally

prone to poisoning attacks.



Appendix

1 Proofs of Technical Lemmas Used in Section 5.4.2

In this section, we provide the technical lemmas that are used to characterize the optimal poisoning attacks

for the 1-D Gaussian distribution in Section 5.4.2.

1.1 Proof of Lemma 5.4.5

To prove Lemma 5.4.5, we need to make use of the following general lemma, which characterizes the population

hinge loss and its derivative with respect to clean data distribution µc.

Lemma 1.1. Let µc be data distribution generated according to (5.6). For any hw,b ∈ H, the population

hinge loss is:

L(hw,b;µc) = p

∫ ∞
−b−w·γ1−1

σ1

(b+ w · γ1 + 1 + σ1z) · φ(z)dz

+ (1− p)

∫ −b−w·γ2+1
σ2

−∞
(−b− w · γ2 + 1− σ2z) · φ(z)dz,

and its gradient with respect to b is:

∂

∂b
L(hw,b;µc) = p · Φ

(
b+ w · γ1 + 1

σ1

)
− (1− p) · Φ

(
−b− w · γ2 + 1

σ2

)
,

where φ and Φ denote the PDF and CDF of the standard Gaussian distribution N (0, 1), respectively.
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Proof of Lemma 1.1. We use similar notations such as µ1, µ2, and φ as in Lemma 5.4.7. For any hw,b ∈ H

with w = 1, then according to the definition of population hinge loss, we have

L(hw,b;µc)

= E(x,y)∼µc

[
max{0, 1− y(x+ b)}

]
= p

∫ ∞
−b−1

(1 + b+ z)φ(z; γ1, σ1)dz + (1− p)

∫ −b+1

−∞
(1− b− z)φ(z; γ2, σ2)dz

= p

∫ ∞
−b−1−γ1

σ1

(1 + b+ γ1 + σ1z)φ(z)dz + (1− p)

∫ −b+1−γ2
σ2

−∞
(1− b− γ2 − σ2z)φ(z)dz

= p(b+ γ1 + 1)Φ

(
b+ γ1 + 1

σ1

)
+ pσ1

1√
2π

exp

(
− (b+ γ1 + 1)2

2σ2
1

)
+ (1− p)(−b− γ2 + 1)Φ

(
−b− γ2 + 1

σ2

)
+ (1− p)σ2

1√
2π

exp

(
− (−b− γ2 + 1)2

2σ2
2

)
.

Taking the derivative with respect to parameter b and using simple algebra, we have

∂

∂b
L(hw,b;µc) = p · Φ

(
b+ γ1 + 1

σ1

)
− (1− p) · Φ

(
−b− γ2 + 1

σ2

)
.

Similarly, for any hw,b ∈ H with w = −1, we have

L(hw,b;µc)

= E(x,y)∼µc

[
max{0, 1− y(−x+ b)}

]
= p ·

∫ b+1

−∞
(1 + b− z)φ(z; γ1, σ1)dz + (1− p) ·

∫ ∞
b−1

(1− b+ z)φ(z; γ2, σ2)dz

= p ·
∫ b+1−γ1

σ1

−∞
(1 + b− γ1 − σ1z)φ(z)dz + (1− p) ·

∫ ∞
b−1−γ2

σ2

(1− b+ γ2 + σ2z)φ(z)dz

= p(b− γ1 + 1)Φ

(
b− γ1 + 1

σ1

)
+ pσ1

1√
2π

exp

(
− (b− γ1 + 1)2

2σ2
1

)
+ (1− p)(−b+ γ2 + 1)Φ

(
−b+ γ2 + 1

σ2

)
+ (1− p)σ2

1√
2π

exp

(
− (−b+ γ2 + 1)2

2σ2
2

)
.

Taking the derivative, we have

∂

∂b
L(hw,b;µc) = p · Φ

(
b− γ1 + 1

σ1

)
− (1− p) · Φ

(
−b+ γ2 + 1

σ2

)
.

Combining the two scenarios, we complete the proof.
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Next, let us summarize several key observations based on Lemma 1.1 (specifically for the setting considered

in Lemma 5.4.5). For any w ∈ {−1, 1}, ∂
∂bL(hw,b;µc) is a monotonically increasing with b, which achieves

minimum − 1
2 when b goes to −∞ and achieves maximum 1

2 when b goes to ∞. If w = +1, then L(hw,b;µc)

is monotonically decreasing when b ∈ (−∞,−γ1+γ2

2 ) and monotonically increasing when b ∈ (−γ1+γ2

2 ,∞),

reaching the minimum at b = b∗c(1) := −γ1+γ2

2 . On the other hand, if w = −1, then L(hw,b;µc) is

monotonically decreasing when b ∈ (−∞, γ1+γ2

2 ) and monotonically increasing when b ∈ (γ1+γ2

2 ,∞), reaching

the minimum at b = b∗c(−1) :=
γ1+γ2

2 .

As for the clean loss minimizer conditioned on w = 1, we have

L(h1,b∗c(1)
;µc) =

1

2

∫ ∞
γ2−γ1−2

2σ

(
γ1 − γ2

2
+ 1 + σz

)
· φ(z)dz

+
1

2

∫ γ1−γ2+2
2σ

−∞

(
γ1 − γ2

2
+ 1− σz

)
· φ(z)dz

=
(γ1 − γ2 + 2)

2
· Φ
(
γ1 − γ2 + 2

2σ

)
+

σ√
2π
· exp

(
− (γ1 − γ2 + 2)2

8σ2

)
,

whereas as for the clean loss minimizer conditioned on w = −1, we have

L(h−1,b∗c(−1);µc) =
1

2

∫ ∞
γ1−γ2−2

2σ

(
γ2 − γ1

2
+ 1 + σz

)
· φ(z)dz

+
1

2

∫ γ2−γ1+2
2σ

−∞

(
γ2 − γ1

2
+ 1− σz

)
· φ(z)dz

=
(γ2 − γ1 + 2)

2
· Φ
(
γ2 − γ1 + 2

2σ

)
+

σ√
2π
· exp

(
− (γ2 − γ1 + 2)2

8σ2

)
.

Let f(t) = t · Φ( t
σ ) +

σ√
2π
· exp(− t2

2σ2 ), we know L(h1,b∗c(1)
;µc) = f(γ1−γ2+2

2 ) and L(h−1,b∗c(−1);µc) =

f(γ2−γ1+2
2 ). We can compute the derivative of f(t): f ′(t) = Φ( t

σ ) ≥ 0, which suggests that L(h1,b∗c(1)
;µc) ≤

L(h−1,b∗c(−1);µc).

Now we are ready to prove Lemma 5.4.5.

Proof of Lemma 5.4.5. First, we prove the following claim: for any possible bp, linear hypothesis h1,bp can

always be achieved by minimizing the population hinge loss with respect to µc and µp = να with some

carefully-chosen α ∈ [0, 1] based on bp.
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For any µp ∈ Q(u), according to the first-order optimality condition with respect to bp, we have

∂

∂b
L(h1,bp ;µc) = −ϵ ·

∂

∂b
L(h1,bp ;µp) = −ϵ ·

∂

∂b
E(x,y)∼µp

[
ℓ(h1,bp ;µp)

]
∈ [−ϵ, ϵ], (1)

where the last inequality follows from ∂
∂bℓ(hw,b;x, y) ∈ [−1, 1] for any (x, y). Let Bp be the set of any possible

bias parameters bp. According to (1), we have

Bp =

{
b ∈ R :

∂

∂b
L(h1,b;µc) ∈ [−ϵ, ϵ]

}
.

Let b∗c(1) = argminb∈R L(h1,b;µc) be the clean loss minimizer conditioned on w = 1. According to Lemma 1.1

and the assumption |γ1 + γ2| ≤ 2u, we know b∗c(1) =
γ1+γ2

2 ∈ [−u, u]. For any bp ∈ Bp, we can always choose

α =
1

2
+

1

2ϵ
· ∂
∂b

L(h1,bp ;µc) ∈ [0, 1], (2)

such that

h1,bp = argmin
b∈R

[L(h1,b;µc) + ϵ · L(h1,b; να)],

where να is defined according to (5.7). This follows from the first-order optimality condition for the convex

function and the closed-form solution for the derivative of hinge loss with respect to να:

∂

∂b
L(h1,bp ; να) = α · ∂

∂b
ℓ(h+1,bp ;−u,+1) + (1− α) · ∂

∂b
ℓ(h+1,bp ;u,−1) = 1− 2α.

Thus, we have proven the claim presented at the beginning of the proof of Lemma 5.4.5.

Next, we show that for any bp ∈ Bp, among all the possible choices of poisoned distribution µp that induces

bp, choosing µp = να with α defined according to (2) is the optimal choice in terms of the maximization

objective in (5.9). Let µp ∈ Q(u) be any poisoned distribution that satisfies the following condition:

bp = argmin
b∈R

[L(h1,b;µc) + ϵ · L(h1,b;µp)].

According to the aforementioned analysis, we know that by setting α according to (2), να also yields bp.

Namely,

bp = argmin
b∈R

[L(h1,b;µc) + ϵ · L(h1,b; να)].

Since the population losses with respect to µc are the same at the induced bias b = bp, it remains to

prove να achieves a larger population loss with respect to the poisoned distribution than that of µp, i.e.,



1 Proofs of Technical Lemmas Used in Section 5.4.2 113

L(h1,bp ; να) ≥ L(h1,bp ;µp).

Consider the following two probabilities with respect to bp and µp:

p1 = P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = −1

]
, p2 = P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = 1

]
.

Note that the derivative of hinge loss with respect to the bias parameter is ∂
∂bℓ(hw,b;x, y) ∈ {−1, 0, 1}, thus

we have

P(x,y)∼µp

[
∂

∂b
ℓ(h1,bp ;x, y) = 0

]
= 1− (p1 + p2).

Moreover, according to the first-order optimality of bp with respect to µp, we have

∂

∂b
L(h1,bp ;µc) = −ϵ ·

∂

∂b
L(h1,bp ;µp) = ϵ · (p1 − p2),

If we measure the sum of the probability of input having a negative gradient and half of the probability of

having zero gradient, we have:

p1 +
1− (p1 + p2)

2
=

1

2
+

p1 − p2
2

=
1

2
+

1

2ϵ
· ∂
∂b

L(h1,bp ;µc) = α.

Therefore, we can construct a mapping g that maps µp to να: by moving any (x, y) ∼ µp that contributes

p1 (negative derivative) and any (x, y) ∼ µp that contributes p2 (positive derivative) to extreme locations

(−u,+1) and (u,−1), respectively, and move the remaining (x, y) that has zero derivative to (−u,+1) and

(u,−1) with equal probabilities (i.e., 1−p1−p2

2 ), and we can easily verify that the gradient of bp with respect

to µp is the same as να.

In addition, note that hinge loss is monotonically increasing with respect to the ℓ2 distance of misclassified

examples to the decision hyperplane, and the initial clean loss minimizer b∗c(1) ∈ [−u, u], we can verify that

the constructed mapping g will not reduce the individual hinge loss. Namely, ℓ(h1,bp ;x, y) ≤ ℓ(h1,bp ; g(x, y))

holds for any (x, y) ∼ µp. Therefore, we have proven Lemma 5.4.5.
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1.2 Proof of Lemma 5.4.6

Proof of Lemma 5.4.6. First, we introduce the following notations. For any µp ∈ Q(u) and any w ∈ {−1, 1},

let

b∗c(w) = argmin
b∈R

L(hw,b;µc), bp(w;µp) = argmin
b∈R

[L(hw,b;µc) + ϵ · L(hw,b;µp)].

According to Lemma 5.4.5, we know that the maximum population hinge loss conditioned on w = 1 is

achieved when µp = να for some α ∈ [0, 1]. To prove the sufficient and necessary condition specified in Lemma

5.4.6, we also need to consider w = −1. Note that different from w = 1, we want to specify the minimum loss

that can be achieved with some µp for w = −1. For any µp ∈ Q(u), we have

L(h−1,bp(−1;µp);µc) + ϵ · L(h−1,bp(−1;µp);µp) ≥ min
b∈R

L(h−1,b;µc) = L(h−1,b∗c(−1);µc). (3)

According to Lemma 1.1, we know b∗c(−1) =
γ1+γ2

2 , which achieves the minimum clean loss conditioned on

w = −1. Since we assume γ1+γ2

2 ∈ [−u + 1, u − 1], according to the first-order optimality condition, the

equality in (3) can be attained as long as µp only consists of correctly classified data that also incurs zero

hinge loss with respect to b∗c(−1) (not all correctly classified instances incur zero hinge loss). It can be easily

checked that choosing µp = να based on (5.7) with any α ∈ [0, 1] satisfies this condition, which suggests that

as long as the poisoned distribution µp is given in the form of να and if the w = −1 is achievable (conditions

on when this can be achieved will be discussed shortly), then the bias term that minimizes the distributional

loss is equal to b∗c(−1), and is the minimum compared to other choices of bp(−1;µp). According to Lemma

5.4.5, it further implies the following statement: there exists some α ∈ [0, 1] such that

να ∈ argmax
µp∈Q(u)

{
[L(h1,bp(1;µp);µc) + ϵ · L(h1,bp(1;µp);µp)]

− [L(h−1,bp(−1;µp);µc) + ϵ · L(h−1,bp(−1;µp);µp)]

}
.

For simplicity, let us denote by ∆L(µp; ϵ, u, µc) the maximization objective regarding the population loss

difference between w = 1 and w = −1. Thus, a necessary and sufficient condition such that there exists a

h−1,bp(−1;µp) as the loss minimizer is that maxα∈[0,1] ∆L(να; ϵ, u, µc) ≥ 0. This requires us to characterize

the maximal value of loss difference for any possible configurations of ϵ, u and µc. According to Lemma 1.1
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and the definition of να, for any α ∈ [0, 1], we denote the above loss difference as

∆L(να; ϵ, u, µc) = L(h1,bp(1;να);µc) + ϵ · L(h1,bp(1;να); να)︸ ︷︷ ︸
I1

−L(h−1,b∗c(−1);µc)︸ ︷︷ ︸
I2

.

The second term I2 is fixed (and the loss on να is zero conditioned on w = −1), thus it remains to characterize

the maximum value of I1 with respect to α for different configurations. Consider the auxiliary function

g(b) =
1

2
Φ
(b+ γ1 + 1

σ

)
− 1

2
Φ
(−b− γ2 + 1

σ

)
.

We know g(b) ∈ [− 1
2 ,

1
2 ] is a monotonically increasing function by checking with derivative to b. Let g−1

be the inverse function of g. Note that according to Lemma 1.1 and the first-order optimality condition of

bp(1; να), we have

∂

∂b
L(h+1,b;µc)

∣∣
b=bp(1;να)

= g
(
bp(+1; να)

)
= −ϵ · ∂

∂b
L(h+1,bp(1;να); να) = ϵ · (2α− 1), (4)

where the first equality follows from Lemma 1.1, the second equality follows from the first-order optimality

condition, and the last equality is based on the definition of να. This suggests that bp(1; να) = g−1
(
ϵ ·(2α−1)

)
for any α ∈ [0, 1].

Consider the following two configurations for the term I1: 0 ̸∈ [g−1(−ϵ), g−1(ϵ)] and 0 ∈ [g−1(−ϵ), g−1(ϵ)].

Consider the first configuration, which is also equivalent to g(0) /∈ [−ϵ, ϵ]. We can prove that if γ1 + γ2 < 0

meaning that b∗c(1) > 0, choosing α = 0 achieves the maximal value of I1; whereas if γ1 + γ2 > 0, choosing

α = 1 achieves the maximum. Note that it is not possible for γ1 + γ2 = 0 under this scenario. The proof is

straightforward since we have

I1 = L(h1,g−1(2ϵα−ϵ);µc) + ϵ · L(h1,g−1(2ϵα−ϵ); να)

= L(h1,g−1(2ϵα−ϵ);µc) + ϵ ·
[
1 + u+ (1− 2α) · g−1(2ϵα− ϵ)

]
= L(h1,t;µc) + ϵ · (1 + u)− t · g(t),

where t = g−1(2ϵα− ϵ) ∈ [g−1(ϵ), g−1(ϵ)]. In addition, we can compute the derivative of I1 with respect to t:

∂

∂t
I1 = g(t)− g(t)− t · g′(t) = −t · g′(t),

which suggests that I1 is a concave function with respect to t. If 0 ∈ [g−1(−ϵ), g−1(ϵ)], we achieve the global



Conclusion 116

maximum of I1 at t = 0 by carefully picking α0 = 1
2 + 1

2ϵ · g(0). If not (i.e., g−1(−ϵ) > 0 or g−1(ϵ) < 0), then

we pick t that is closer to 0, which is either g(−ϵ) or g(ϵ) by setting α = 0 or α = 1 respectively. Therefore,

we can specify the sufficient and necessary conditions when the weight vector w can be flipped from 1 to −1:

1. When g(0) ̸∈ [−ϵ, ϵ], the condition is

max{∆L(ν0; ϵ, u, µc),∆L(ν1; ϵ, u, µc)} ≥ 0.

2. When g(0) ∈ [−ϵ, ϵ], the condition is

∆L(να0
; ϵ, u, µc) ≥ 0, where α0 =

1

2
+

1

2ϵ
· g(0).

Plugging in the definition of g and ∆L, we complete the proof of Lemma 5.4.6.

1.3 Proof of Lemma 5.4.7

Proof of Lemma 5.4.7. Let µ1, µ2 be the probability measures of the positive and negative examples assumed

in (5.6), respectively. Let φ(z; γ, σ) be the PDF of Gaussian distribution N (γ, σ2). For simplicity, we write

φ(z) = φ(z; 0, 1) for standard Gaussian. For any hw,b ∈ H, we know w can be either 1 or −1. First, let’s

consider the case of w = 1. According to the definition of risk and the data generating process of µc, we have

Risk(hw,b;µc) = p · Risk(hw,b;µ1) + (1− p) · Risk(hw,b;µ2)

= p ·
∫ ∞
−b

φ(z; γ1, σ1)dz + (1− p) ·
∫ −b
−∞

φ(z; γ2, σ2)dz

= p ·
∫ ∞

−b−γ1
σ1

φ(z)dz + (1− p) ·
∫ −b−γ2

σ2

−∞
φ(z)dz

= p · Φ
(
b+ γ1
σ1

)
+ (1− p) · Φ

(
−b− γ2

σ2

)
.

Similarly, when w = −1, we have

Risk(hw,b;µc) = p ·
∫ b

−∞
φ(z; γ1, σ1)dz + (1− p) ·

∫ ∞
b

φ(z; γ2, σ2)dz

= p ·
∫ b−γ1

σ1

−∞
φ(z)dz + (1− p) ·

∫ ∞
b−γ2
σ2

φ(z)dz

= p · Φ
(
b− γ1
σ1

)
+ (1− p) · Φ

(
−b+ γ2

σ2

)
.
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Combining the two cases, we complete the proof.
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