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Abstract

Many natural and engineering systems can be characterized as a collection of interacting

agents each having access to local information, making local decisions, having local interac-

tions with neighbors, and seeking to optimize local objectives. The analysis and design of

such systems falls under the broader framework of “multi-agent control and optimization”.

Here depending on the context, “agents” could be animals, autonomous vehicles, power

plants, etc. Multi-agent systems have the potential for solving problems that are di�cult or

impossible for an individual agent or monolithic system to solve. However, the complexity

associated with a potentially large number of interacting agents brings about challenging

control and optimization problems for system designers and coordinators. Such di�culty is

often enhanced by the presence of noise/uncertainty that is pervasive in both biological and

engineering systems.

In this dissertation, we focus on the analysis and design of several multi-agent con-

trol/optimization algorithms for various problems under uncertainty. Swarming, flocking,

schooling and other aggregations of organisms in groups have been studied extensively in

biology (see [64, 65, 74]). Organisms in swarms can exploit several advantages of staying

close to each other for more e↵ective foraging. For example, in [38] Grünbaum explains how

social foragers more successfully perform chemotaxis over noisy gradients than individuals.

Such biological advantage is also demonstrated in Passino [76] by modeling the behavior of

E. coli and M. xanthus bacteria. In our first line of work, we develop a mathematical model

for analyzing the benefits of social foraging in a noisy environment. We identify conditions
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on the nutrient profile ensuring that local agent actions will lead to cohesive foraging. For

convex, smooth nutrient profiles we formalize the way in which swarming for social foraging

is better at handling the e↵ects of noise when compared to the average of individual foraging

strategies. Under a swarming discipline, observational noise realizations that induce trajec-

tories di↵ering too much from the group average are likely to be discarded because of each

individual’s need to maintain cohesion. As a result, the group trajectories are less a↵ected

by noise. Simulation experiments indicate that our theoretical results are also robust to

inter-agent communication constraints and non-convex nutrient profiles.

The above results suggest that swarming-like approaches for the control and/or optimiza-

tion of networked agents may provide an additional level of robustness. This is precisely

the gist of our second line of work in which we consider a distributed computing algorith-

mic scheme for stochastic optimization which relies on modest communication requirements

amongst processors and most importantly, does not require synchronization. Specifically, we

analyze a scheme with N > 1 independent threads each implementing a stochastic gradient

algorithm. The threads are coupled via a perturbation of the gradient (with attractive and

repulsive forces) in a similar manner to mathematical models of flocking. We show that

a flocking-like approach for distributed stochastic optimization provides a noise reduction

e↵ect similar to that of a centralized stochastic gradient algorithm based upon the average

of N gradient samples at each step. When the overhead related to the time needed to gather

N samples and synchronization is not negligible, the flocking implementation outperforms

the centralized algorithm.

In our last line of work, we consider one of the most important multi-agent systems in any

modern economy: the electric power infrastructure. Specifically, we consider the problem

of designing the rules by which market dispatch and payment to participants are gradually

adjusted while taking into account network and reliability constraints so as to ensure the

market clears with an e�cient outcome. We propose a class of iterative mechanisms and show

this class exhibits many desirable properties (approximately): incentive compatibility, e�-

ciency, individual rationality and (weak) budget balance. In addition, we analyze an iterative
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mechanism for stochastic market clearing, a pressing need given the increasing penetration

of highly intermittent renewable generation technologies. In this case, the marginal cost of

adjustments may only be estimated with some error. We show that truthful reporting is a

Nash equilibrium and the resulting dispatch converges almost surely to the e�cient dispatch.

Keywords: Multi-agent systems, collective animal behavior, swarming, flocking, social for-

aging, noise reduction, distributed stochastic optimization, electricity markets, mechanism

design
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CHAPTER 1

Overview

Many natural and engineering systems can be characterized as a collection of interacting

agents each having access to local information, making local decisions, having local inter-

actions with neighbors, and seeking to optimize local objectives. A representative sampling

includes animal groups, social networks, autonomous vehicle teams, robot teams, sensor net-

works, and interconnected power systems. The analysis and design of such systems falls under

the broader framework of “multi-agent control and optimization”. Here depending on the

context, “agents” could be animals, autonomous vehicles, power plants, etc. Multi-agent sys-

tems have the potential for solving problems which are di�cult or impossible for an individual

agent or monolithic system to solve. For instance, swarming behavior in nature is advanta-

geous for avoiding predators and increasing the odds of finding food (see Grünbaum [38]).

However, the complexity associated with a potentially large number of interacting agents

brings about challenging control and optimization problems for system designers and co-

ordinators. Such di�culty is often enhanced by the presence of noise/uncertainty that is

pervasive in both biological and engineering systems.

In this dissertation, we focus on the analysis and design of several multi-agent con-

trol/optimization algorithms for various problems under uncertainty. Specifically, we first

develop a theory of noise reduction by swarming in the context of animal social foraging,

which suggests that swarming-like approaches may provide an additional level of robustness

for the control and/or optimization of networked agents. The theory is then applied to

the problem of stochastic optimization, for which we propose a distributed swarming-like
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computing algorithmic scheme that relies on modest communication requirements amongst

processors and most importantly, does not require synchronization. At last, we propose a

class of iterative mechanisms to identify the optimal design in electricity markets under pos-

sibly noisy inputs from market participants. This class is shown to exhibit many desirable

properties. In what follows, we present the background, motivation, and main results of each

problem, respectively.

Swarming, flocking, schooling and other aggregations of organisms in groups has been

studied extensively in biology (see [64,65,74] for examples). There is empirical evidence that

swarming is a useful strategy for social foraging in a noisy environment (see Grünbaum [38]).

However, to our knowledge, there is no mathematical formalization of noise reduction prop-

erties of swarming in social foraging. In Chapter 3, we develop a mathematical model for

analyzing the benefits of social foraging in a noisy environment. We identify conditions on

the nutrient profile ensuring that local agent actions will lead to cohesive foraging. For con-

vex, smooth nutrient profiles we formalize the way in which swarming for social foraging is

better at handling the e↵ects of noise when compared to the average of individual foraging

strategies. Under a swarming discipline, observational noise realizations that induce trajec-

tories di↵ering too much from the group average are likely to be discarded because of each

individual’s need to maintain cohesion. As a result, the group trajectories are less a↵ected

by noise. Simulation experiments indicate our theoretical results are robust to inter-agent

communication constraints and non-convex nutrient profiles. These results suggest that

swarming-like approaches for the control and/or optimization of networked agents may o↵er

an additional level of robustness.

In operations research, optimization is the selection of a best element (with regard to

some criteria) from some set of available alternatives. In the optimization process, noise

is present whenever physical system measurements or computer simulations are used for

approximation. Examples include problems where data are collected while the system is

operating, or problems where estimates are formed by computer-based Monte Carlo sampling

according to a statistical distribution (see [85, 89]). The performance of the single-thread
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stochastic gradient algorithm is highly sensitive to noise. Thus, there is a literature on

estimation techniques leading to better gradient estimation often involving increasing sample

size (see [27,89] for a survey of gradient estimation techniques). When sampling is undertaken

in parallel, synchronization is needed to execute the tasks that can not be executed in parallel.

The speed-up obtained by parallel sampling and centralized gradient estimation is limited by

overhead related to (i) time spent gathering samples (which could be significant for example

in the simulation of complex systems) and (ii) synchronization. When sampling times are

not negligible and exhibit large variation, synchronization may cause significant overhead so

that real-time performance of stochastic gradient algorithm based upon the average of N

samples obtained in parallel is highly a↵ected by large sampling time variability.

Inspired by the aforementioned theory on noise reduction property of social foraging,

in Chapter 4 we propose a distributed computing algorithmic scheme for stochastic opti-

mization which relies on modest communication requirements amongst processors and most

importantly, does not require synchronization. Specifically, we analyze a scheme with N > 1

independent threads implementing each a stochastic gradient algorithm. The threads are

coupled via a perturbation of the gradient (with attractive and repulsive forces) in a similar

manner to mathematical models of flocking, swarming and other group formations found

in nature with mild communication requirements (see Gazi and Passino [33]). When the

objective function is convex, we show that a flocking-like approach for distributed stochas-

tic optimization provides a noise reduction e↵ect similar to that of a centralized stochastic

gradient algorithm based upon the average of N gradient samples at each step. The dis-

tributed nature of flocking makes it an appealing computational alternative. We show that

when the overhead related to the time needed to gather N samples and synchronization

is not negligible, the flocking implementation outperforms a centralized stochastic gradient

algorithm based upon the average of N gradient samples at each step. When the objective

function is not convex, the flocking-based approach seems better suited to escape locally

optimal solutions due to the repulsive force which enforces a certain level of diversity in the

set of candidate solutions. Here again, we show that the noise reduction e↵ect is similar to
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that associated to the centralized stochastic gradient algorithm based upon the average of

N gradient samples at each step.

Electricity is a complex bundle of services involving multiple power plants and consumers

in various locations over a capacity constrained network. A particular feature of many elec-

tricity markets is that market clearing is carried out by solving an optimization problem

using input information (e.g., bids to buy and/or sell electricity) from market participants.

The optimal design can be identified through a mechanism (see Silva et al. [87]), i.e., the

rules by which market dispatch and payment to participants in an electricity market are

determined while taking into account network and reliability constraints. In a direct mech-

anism, market participants (i.e., generators and retailers) report their private information

(i.e., costs and willingness to pay) to the ISO or RTO which in turn clears the market and

determines the associated market compensation and/or charges for each market participant.

A mechanism is said to be incentive compatible in dominant strategies (or strategy-proof) if

it is optimal for every market participant to truthfully report their private information re-

gardless of the reporting strategies of other participants. A mechanism is said to be e�cient

if the market clears with the e�cient market outcome. A weaker form of incentive compati-

bility is related to the implementation in a Bayes-Nash equilibrium. This concept relies on a

common knowledge assumption on the market participants’ private information (see Borgers

et al. [8]). While direct mechanisms only require one round of interaction, the nature of the

information exchange between market participants and the market-maker is quite complex.

For example, in many designs currently in place, each generator (respectively, each retailer)

must report their complete cost function (respectively, their willingness to pay) over the set

of individual market outcomes. In this rich strategy space, equilibrium strategic behavior

can be quite complex often inducing ine�cient market outcomes (see for example, Anderson

et al. [2] and Holmberg and Newbery [41]).

In Chapter 5, we propose a class of iterative mechanisms where market participants are

asked to report the cost and willingness to pay for small adjustments at each iteration. A ten-

tative market dispatch is marginally adjusted ensuring network constraints are satisfied, and
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a stopping criteria is checked. Small adjustments requiring minimal information from market

participants at each iteration facilitate the identification of incentives for ensuring truthful

reporting of private information. At each iteration, each market participant is charged (or

compensated) according to the marginal change in surplus to all other market participants

(see [17, 37]). We show that truthful reporting is (approximately) a dominant strategy and

that when the mechanism stops, the resulting economic dispatch is approximately e�cient.

Individual participation constraints are satisfied as the net surplus from trade is approxi-

mately shared equally by all participants and the mechanism is approximately weakly budget

balanced.

The inherent intermittency of renewable technologies poses new challenges for ensuring a

reliable and secure operation of electricity markets. As the marginal cost of renewable elec-

tricity is negligible, purely economic considerations would dictate a market clearing outcome

in which most renewable output is cleared. However, intermittency may compromise the

secure operation of the power grid infrastructure supporting the market. The incorporation

of reliability and/or security constraints in market clearing further complicates the task of

market design. In the second part of Chapter 5, we consider an iterative mechanism for

stochastic market clearing (see [10,78,107,113]). This is an important feature as the share of

renewable (intermittent) capacity in most electricity markets around the world is increasing

at a steady pace and ex-post adjustments to market dispatch are the norm. In this case,

the marginal cost of adjustments may only be estimated with some error. We show that

truthful reporting is a Nash equilibrium and the resulting dispatch converges almost surely

to the e�cient dispatch.

1.1 Main Contributions

To summarize, we restate the main contributions of the dissertation as follows.

• We develop a mathematical model for analyzing the benefits of social foraging in a

noisy environment, and identify conditions on the nutrient profile ensuring that local
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agent actions will lead to cohesive foraging.

• We formalize the way in which swarming for social foraging is better at handling the

e↵ects of noise when compared to the average of individual foraging strategies. These

results suggest that swarming-like approaches for the control and/or optimization of

networked agents may provide an additional level of robustness.

• We propose a distributed flocking-like computing algorithmic scheme for stochastic

optimization which relies on modest communication requirements amongst processors

and most importantly, does not require synchronization.

• We show that a flocking-like approach for distributed stochastic optimization provides

a noise reduction e↵ect similar to that of a centralized stochastic gradient algorithm

based upon the average of N gradient samples at each step. When the overhead

related to the time needed to gather N samples and synchronization is not negligible,

the flocking implementation outperforms a centralized stochastic gradient algorithm

based upon the average of N gradient samples at each step.

• We propose a class of iterative mechanisms for electricity markets and show this class

exhibits many desirable properties (approximately): incentive compatibility, e�ciency,

individual rationality and (weak) budget balance.

• We analyze an iterative mechanism for stochastic market clearing, in which the marginal

cost of adjustments may only be estimated with some error. We show that truthful

reporting is a Nash equilibrium and the resulting dispatch converges almost surely to

the e�cient dispatch.

1.2 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce in more

detail some background of the concepts used in this dissertation. In Chapter 3, we develop a

mathematical model for analyzing the benefits of social foraging in a noisy environment and
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formalize the way in which swarming for social foraging is better at handling the e↵ects of

noise when compared to the average of individual foraging strategies. The results are then

applied to the problem of stochastic optimization in Chapter 4 where we propose and analyze

a distributed computing algorithmic scheme. In Chapter 5, we propose a class of iterative

mechanisms to identify the optimal design in electricity markets under possibly noisy inputs

from market participants. We conclude this dissertation in Chapter 6 with a discussion on

future directions.
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CHAPTER 2

Background

In this chapter, we present some background of the concepts used in this dissertation in more

detail. In particular, we review the literature on swarming in Section 2.1. In Section 2.2

we discuss some of the classical methods used in stochastic optimization. In Section 2.3 we

present an introduction of electricity markets and the related mechanism design problem.

2.1 Swarming

In this section, we present a review of the literature on swarming. In biology, swarming

is often referred to as the aggregation of organisms in groups. It can be found in many

organisms ranging from simple bacteria to mammals. Examples of swarms include schools

of fish, flocks of birds, herds of animals and colonies of bacteria (see Okubo [72]). Swarms

have been studied extensively in biology (see [11, 19, 22, 25, 64, 65, 67, 68, 72, 92]), physics

(e.g., [29, 100,101]) and engineering (e.g., [3, 30, 42,46, 61,73,80,94, 109]).

2.1.1 Swarming in Biology and Physics

Various models have been proposed to describe the swarming phenomena in biology and

physics. Breder [11] is one of the earliest work to study swarming behavior mathematically.

Inspired by earlier field work, the author proposed that within fish schools there exist at-

traction and repulsion forces depending on the distance between fish and fish. The repulsion

is more e↵ective at short distances, and the attraction dominates at greater distances. A
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simple model was given to represent such e↵ects based on a “school” of two fishes. In the

model, cohesiveness of a group is determined by the number of animals, distances between

individuals or groups, and the attraction/repulsion forces. The author also discussed the

masking or shadowing e↵ects, that is, when the fish school is beyond a certain size, an indi-

vidual cannot see all the other school members since some of them are “hidden” and out of

sight. Therefore, the model is more suitable for small groups. Data from di↵erent species of

fish were compared to validate the model.

In [72], Okubo introduced a random walk model and approximated it by an advection-

di↵usion process. He then demonstrated a kinetic distinction between di↵usion (random

walk) and the motion of swarming or grouping individuals. By applying Newton’s laws of

motion, the author constructed ordinary di↵erential equations to represent the dynamics of

individual animals. In addition, various aspects of animal grouping were studied including

group formation processes, grouping around multiple centers, and group size distributions.

Finally, the presented mathematical models were compared with data of animal groupings

such as insect swarms, zoo-plankton swarms, fish schools, bird flocks, and mammal herds.

In Vicsek et al. [100], a model with simple dynamics was introduced to investigate the

emergence of self-ordered motion in systems of particles with biologically motivated inter-

actions. In this model, particles are driven with a constant absolute velocity, which equals

the average moving direction of the particles in their neighborhood along with some random

perturbation. A continuous kinetic phase transition was observed in some of the numeri-

cal simulations. The observed behaviors were later theoretically explained by Jadbabaie et

al. [46], who also derived convergence results for several other similarly inspired models. It

was proved there that the Vicsek model is a graphic example of a switched stable linear

system.

Swarming is often driven by the advantage of such collective and coordinated behavior

in avoiding risk and foraging for food. Grünbaum presented evidence in [38] that schooling

behavior can improve the ability of animals performing taxis to climb gradients, while asocial

taxis would possibly be ine↵ective. In this paper, it was assumed that each swarming agent
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performs a biased random walk in a periodic domain, while its motion is a↵ected by the

behaviors and positions of its neighbors. The author argued that swarming facilitates taxis

because the alignment tendency results in tight angular distributions within groups, thereby

weakening the e↵ects of individual sampling errors. As a result, more school members orient

up-gradient than in the asocial case. This finding provided a mathematical reason why

schooling and swarming is so frequently observed in nature.

Mogilner and Edelstein-Keshet [64] proposed continuum models for swarming behav-

ior when non-local interactions exist. The model consists of integro-di↵erential advection-

di↵usion equations where convolution terms are used to describe long range attraction and

repulsion. It was shown that the swarm of organisms can be long-lasting, though not globally

stable. True locally stable solutions occur only when density dependence is included in the

di↵usion term. If the density dependence in the repulsion term is of a higher order than in

the attraction term, then the swarm profile agrees with observations in biological examples,

i.e., the swarm has a constant interior density with sharp edges.

Couzin et al. [19] introduced a self-organizing model of group formation in three di-

mensional space and used it to investigate the spatial dynamics of animal groups, e.g., fish

schools and bird flocks. It was revealed that minor changes in individual-level interactions

may result in major group-level behavioral transitions. The authors also presented the first

evidence that “collective memory” exists in such animal groups during the transition of a

group between distinct types of collective behaviors. The authors then used the model to

show how individual di↵erences influence group structure, and how individuals employing

local rules accurately change their spatial position within a group.

Cucker and Smale [22] provided a model describing the evolution of a flock for both

continuous and discrete time. In the model, every bird adjusts its velocity by adding to it

a weighted average of the di↵erences between its velocity and those of the other birds. A

constant model parameter � captures the rate of decay of the influence between birds in

the flock. The authors gave conditions to ensure that the birds’ velocities converge to a

common one and the distances between birds remain bounded. In particular, when � < 1/2
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convergence of the flock to a common velocity is guaranteed, while for � � 1/2 convergence

is ensured under some condition on the initial positions and velocities of the birds. Some of

the follow-up studies on the model can be found in [1, 15, 20,21,39].

Strömbom [92] proposed a self-propelled particle model in which attraction is the only

force between individuals. The model was shown to generate three di↵erent phases: swarms,

undirected mills and moving aligned groups. In the zero noise limit, these phases depend

on the relative strength of attraction and individual inertia. By restricting the individuals’

fields of vision and increasing the noise level in the system, the groups were found to generate

both directed mills and three dynamically moving, “rotating chain” structures.

In Gazi [29], a Lagrangian dynamics based approach for modeling swarm dynamics was

proposed. Di↵erent from the commonly used Newton dynamics that is based on forces,

this approach is based on energy. The author introduced the concept of biological potential

energy along with its various components, e.g., swarming potential energy, environmental

potential energy and predator potential energy. Example kernel functions were discussed

and numerical simulations were provided.

Finally, some general references on collective motion of organisms and mathematical

models in biology include the review by Vicsek [101], the books by Parrish and Hamner [74],

Edelshtein-Keshet [25], Murray [67, 68], Britton [12] and Robeva [83].

2.1.2 Swarming in Engineering

Swarms have also been studied widely in the context of engineering applications, particularly

in developing distributed cooperative control for autonomous multi-agent systems (see [3,

30,32,54, 59,73,80,94]).

Reynolds in his seminal work [80] explored a new approach to present the aggregate

motion of a flock in computer animation. This approach was based on simulation, which

is an alternative to scripting the paths of each bird individually. The simulated flock was

regarded as an elaboration of a particle system with the simulated birds being the particles.

The group motion of the simulated flock was realized utilizing a distributed behavioral model
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in which each bird choses its own course. Reynolds gave three rules to prescribe the flock

behaviors, i.e., collision avoidance, velocity matching, and flock centering. The animations

seem to correspond to an observer’s intuition of “flock-like motion”.

Significant swarm-related work has been done on formation control of multi-robot teams.

In Balch [3], reactive behaviors for four formations and three formation reference types were

presented. The desired behaviors were successfully demonstrated in both laboratory exper-

iments and field tests. Suzuki and Yamashita [94] studied a multi-robot system where no

global x-y coordinate system exists. The authors investigated a number of formation prob-

lems of geometric patterns in the plane by robots. Algorithms were presented for converging

and moving the robots to a single point in a finite number of steps. In addition, the paper

characterized the class of geometric patterns that the robots can form given their initial

configurations.

Vehicle groups may be regarded as another type of swarm. Leonard and Fiorelli [54]

presented a framework for coordinated and distributed control of multiple autonomous vehi-

cles using artificial potentials and virtual leaders. Artificial potentials inspired by biological

models were designed to define interaction control forces between neighboring vehicles and

enforce a desired inter-vehicle spacing. A virtual leader is a moving reference point that

were used to manipulate group geometry and direct the motion of the group. The authors

constructed a Lyapunov function to prove the stability of the system.

Early work on swarm stability include Gazi and Passino [30,32]. In [30] the authors spec-

ified an “individual-based” continuous-time model for swarm aggregation in N -dimensional

space and studied its stability properties. It was shown that the individuals (autonomous

agents or biological creatures) will form a cohesive swarm in a finite time. The authors also

obtained an explicit bound on the swarm size, which depends only on the parameters of the

swarm model. In [32], an additional factor determining the motion of each individual was

introduced, that is, each individual is attracted to the more favorable regions and repulsed

from the unfavorable regions. Hence the emergent behavior of the swarm motion is the result

of a balance between inter-individual interactions and the environmental e↵ects. Conditions
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for convergence to more favorable regions were provided.

Moreau [66] studied a model of network of agents interacting via time-dependent com-

munication links. The model could be applied to various fields including synchronization,

swarming and distributed decision making. In the model, agents update their states based

on the information received from neighbors. The author provided necessary and/or suf-

ficient conditions for the convergence of the individual agents’ states to a common value,

thus extending earlier results including those obtained in Jadbabaie et al. [46]. The stability

analysis was done by using a blend of graph-theoretic and system-theoretic tools with the

notion of convexity being crucial.

Olfati-Saber [73] presented a theoretical framework for design and analysis of distributed

flocking algorithms. Three algorithms were proposed in both free space and in the presence

of obstacles. It was shown that the first algorithm embodies all three rules of Reynolds

[80], while leading to regular fragmentation. The second and third algorithm both lead

to flocking. The author provided a systematic method for the construction of collective

potentials for flocking. These potentials were used to penalize deviation from desired lattice-

shaped objects. Moreover, it was shown that migration of flocks can be preformed using a

peer-to-peer network of agents.

Some more recent work on swarm stability and multi-agent control can be found in

[33, 56–59, 62, 93, 96, 112]. For a general review of multi-agent coordination and control we

refer the readers to Cao et al. [14] and Bullo et al. [13].

Particle swarm optimization (PSO) [18,86] is a stochastic population-based optimization

technique motivated by the swarming behavior in nature. PSO searches a space by adjusting

the trajectories of individual vectors that are called “particles”. Each particle is defined

within the context of a topological neighborhood, and its movement is influenced by its

own best known position as well as its neighbors’ best results. Shi [86] studied the e↵ects of

certain parameters on the performance of PSO. In Clerc and Kennedy [18], various properties

of the algorithm were investigated and a generalized model was presented. For a review on

the recent progress of PSO we refer readers to Bonyadi and Michalewicz [7].
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2.2 Stochastic Optimization

In this section, we review some of the methods used in stochastic optimization (optimization

in the presence of noisy observations).

Noise is present whenever physical system measurements or computer simulations are

used for approximation. Examples include problems where data are collected while the

system is operating, or problems where estimates are formed by computer-based Monte

Carlo sampling according to a statistical distribution (see [85, 89]). The presence of noise

might mislead an optimization algorithm throughout the entire process and result in false

optimal solutions.

Sample average method is a widely accepted approximation approach in the presence

of noisy observations (see [27, 52, 85]). The basic idea of such methods is that after a ran-

dom sample is generated, the expected value is approximated by the corresponding sample

average. The obtained sample average optimization problem is solved, and the procedure

is repeated several times until a stopping criterion is satisfied. For instance, Kleywegt et

al. [52] studied a Monte Carlo simulation-based approach to stochastic discrete optimization

problems. It was shown that when the sample size increases, the optimal solution obtained

from the sample average approximation problem provides the “exact” optimal solution with

probability increasing at an exponential rate in the sample size N .

Stochastic approximation (SA) schemes have been popular for solving stochastic opti-

mization problems. In 1951, Robbins and Monro in their seminal work [82] proposed a

classical SA algorithm for solving a root finding problem, where the function M(x) is repre-

sented as an expected value. It was assumed that there is a constant ↵, such that the equation

M(x) = ↵ has a unique root at x = ✓. Though M(x) cannot be directly observed, measure-

ments of the random variable N(x) can be obtained where E[N(x)] = M(x). The structure

of the algorithm is to then generate iterates of the form: x
n+1�x

n

= a
n

(↵�N(x
n

)). Under

suitable conditions, x
n

converges in L2 (and hence also in probability) to ✓. A major insight of

the algorithm was that, if the step-size sequence a
n

> 0 are chosen to satisfy
P

n

a
n

= 1 and
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P

n

a2
n

< 1, then there is an implicit averaging that eliminates the noise e↵ects in the long

run. Various modified SA algorithms have been proposed thereafter (see [35, 69, 77, 88, 111]

for examples). These methods have been shown to be competitive with the sample average

approach. For a comprehensive review of SA algorithms and applications we refer readers

to [9, 53].

Recently there has been considerable interest in distributed implementation of stochastic

gradient/subgradient algorithms (see for examples [16, 90, 98]). Srivastava and Nedić [90]

considered the problem of reaching agreement on a set of local variables and the problem of

minimizing the sum of local objective functions when the local variables are constrained to

local convex sets. Two types of diminishing step size sequences were employed to account

for communication noise and subgradient errors. In addition, asymptotic error bounds were

established for the constant step size policy. Towfic and Sayed [98] studied distributed opti-

mization over a network of learners in which each learner possesses a convex cost function. It

was shown that when small constant step-sizes are employed, the expected distance between

the optimal solution vector and that obtained at each node in the network can be made

arbitrarily small. Dynamic convex optimization problems under noisy information exchange

were investigated in Cavalcante and Stanczak [16]. It was assumed there that each agent

has access to a local time-varying cost function, and the objective is to find a time-invariant

minimizer of the sum of these local functions. The authors provided su�cient conditions for

almost sure convergence of the algorithm as the number of iterations tend to infinity.

2.3 Mechanism Design for Electricity Markets

In this section, we present an introduction of electricity markets and the related mechanism

design problem.

Electricity is a complex bundle of services involving multiple power plants and consumers

in various locations over a capacity constrained network. A particular feature of many elec-

tricity markets is that market clearing is carried out by solving an optimization problem

using input information (e.g., bids to buy and/or sell electricity) from market participants.
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This type of clearing is needed because other more traditional clearing protocols (e.g., bilat-

eral trading) may not reliably or timely satisfy physical constraints. Market clearing is thus

akin to a “black box” since the underlying optimization model is not necessarily transparent

to market participants. The use of relatively sophisticated “black box” optimization models

for clearing has important implications for market design. Some market participants be-

cause of their relative size, location or cost may have the ability to significantly alter market

clearing outcomes by manipulating the information they provide to the ISO/RTO in charge

of clearing. Depending upon the pricing rules in place, some market participants may find

it advantageous to manipulate market clearing outcomes. This could possibly result in in-

e�cient outcomes as well as distorted prices which provide incorrect investment incentives.

Because of the “black box” nature of market clearing, it may be exceedingly hard to detect

and/or identify certain types of market power abuse.

The history of electricity markets is fundamentally di↵erent from most commodity mar-

kets which gradually evolved towards standard terms of trade and institutions that helped

increase liquidity and reduce transaction risks (see for example McMillan [63]). Most elec-

tricity markets evolved from the coordinated or pooled operation of vertically integrated

(and highly regulated) utilities. This evolution was rather artificial in that it was imposed

by governments intent on bringing an element of competition to an industry no longer con-

sidered a natural monopoly. Not surprisingly many alternative designs for the operation

of electricity markets have been tried out by di↵erent countries. At times, concerns over

economic e�ciency have motivated comprehensive reforms. This was the case of the NETA

reform in the UK (see [26, 48]) according to which a uniform pricing rule was replaced by

pay-as-bid pricing rule (among other important changes). More than thirty years after the

first electricity market began operating, the task of properly tuning market rules to en-

sure economically e�cient outcomes (i.e., market design) seems far from complete (see for

example the discussion prompted by FERC’s Notice of Proposed Rulemaking Docket No.

RM16-5-000 regarding the relaxation of the price cap).

The identification of the optimal design for an electricity market can be formulated as a
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mechanism design problem (see Silva et al. [87]). Mechanism design is a field of game theory

in which the rules of a game are designed in order to induce a desired equilibrium outcome

resulting from the interaction of rational agents with private information (see Borgers et

al. [8]). In a directmechanism, market participants (i.e., generators and retailers) report their

private information (i.e., costs and willingness to pay) to the ISO or RTO which in turn clears

the market and determines the associated market compensation and/or charges for each

market participant. A mechanism is said to be incentive compatible in dominant strategies

(or strategy-proof) if it is optimal for every market participant to truthfully report their

private information regardless of the reporting strategies of other participants. A mechanism

is said to be e�cient if the market clears with the e�cient market outcome. A weaker

form of incentive compatibility is related to implementation in a Bayes-Nash equilibrium.

This concept relies on a common knowledge assumption on the market participants’ private

information (see Borgers et al. [8]).
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CHAPTER 3

Noise Reduction by Swarming in Social Foraging

In this chapter, we develop a mathematical model for analyzing the benefits of social foraging

in a noisy environment. We identify conditions on the nutrient profile ensuring that local

agent actions will lead to cohesive foraging. For convex, smooth nutrient profiles we formalize

the way in which swarming for social foraging is better at handling the e↵ects of noise when

compared to the average of individual foraging strategies. Under a swarming discipline,

observational noise realizations that induce trajectories di↵ering too much from the group

average are likely to be discarded because of each individual’s need to maintain cohesion. As

a result, the group trajectories are less a↵ected by noise. Simulation experiments indicate

that our theoretical results are robust to inter-agent communication constraints and non-

convex nutrient profiles. These results suggest that swarming-like approaches for the control

of networked agents may provide an additional level of robustness.

3.1 Introduction

Swarming, flocking, schooling and other aggregations of organisms in groups have been

studied extensively in biology (see [64, 65, 74]). Organisms in swarms can exploit several

advantages of staying close to each other for more e↵ective foraging. For example, in [38]

Grünbaum explained how social foragers more successfully perform chemotaxis over noisy

gradients than individuals. Such biological advantage was also demonstrated in Passino [76]

by modeling the behavior of E. coli and M. xanthus bacteria.
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There exists a growing literature on mathematical models for swarming behavior aimed

at formalizing the delicate balance between inter-individual interactions and the individual

interaction with the environment. For example, in [32, 59] the authors developed a model

in which the motion of each individual is a↵ected by an attraction potential to the other

individuals (over long distances), a repulsion potential from the other individuals (on short

distances) and lastly, attraction to locations with more favorable nutrient profiles. Swarms

have also been studied in physics (see [97,100]) where the collective behavior of “self-propelled

particles” is studied, and in the context of engineering applications for developing distributed

cooperative control, coordination, and learning strategies for autonomous multi-agent sys-

tems (see [42, 61,94,108,109] for examples).

Sensing or observational noise/error makes foraging a more di�cult task (see [102,103]).

Liu and Passino [59] investigated a model on foraging in a noisy environment, but the

observation noise was assumed to be bounded, and only a specific nutrient profile (i.e., a

“plain” resource profile) was considered. The advantage of social foraging over individual

action was not formalized either. Noise e↵ects have also been considered in the context

of bio-inspired extremum seeking (see [91, 109, 114]). In Stanković and Stipanović [91], a

stochastic-approximation type protocol was proposed to attenuate noise e↵ects, while Zou

et al. [114] adopted a modified PSO (particle swarm optimization) method. Wu and Zhang

[109] analyzed a bio-inspired scheme for robotic sensing agents which was shown to reduce

noise. Agents share all measurements so that an H1 filter can be implemented. They

switch from cooperative exploration to individual exploration when a significantly improved

signal-to-noise ratio (SNR) is obtained. In our setting to be described below, agents do not

attempt to explicitly cooperate in order to filter out noise. Instead, each agent moves in a

response to independent noisy measurements of the underlying nutrient potential which is

further perturbed by a swarming (or flocking) potential (a function of relative coordinates

of neighboring agents).

Collective behaviors other than swarming may also reduce noise in a system. For ex-

ample, Tabareau et al. [95] explains mathematically why synchronization may help protect
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interconnected nonlinear dynamic systems from noise. Specifically, synchronization makes

the state trajectories of the noisy system approach that of a noise-free one. Nevertheless,

swarming is distinct from synchronization in that swarm agents tend to keep a distance from

each other. Moreover, the group objective of foraging is fundamentally di↵erent from that

of synchronizing an interconnected nonlinear dynamic system.

There is empirical evidence that swarming is a useful strategy for social foraging in a noisy

environment (see Grünbaum [38]). However, to our knowledge, there is no mathematical

formalization of noise reduction properties of swarming in social foraging. In this chapter

we develop a mathematical model for analyzing the benefits of social foraging in a noisy

environment. We identify conditions on the nutrient profile ensuring that local agent actions

will lead to cohesive foraging. For convex, smooth nutrient profiles we formalize the way in

which swarming for social foraging is better at handling the e↵ects of noise when compared

to the average of individual foraging strategies. Under a swarming discipline, observational

noise realizations that induce trajectories di↵ering too much from the group average are

likely to be discarded because of each individual’s need to maintain cohesion. As a result,

the group trajectories are less a↵ected by noise. We report results of a simulation test-

bed in which many of our standing assumptions are relaxed. The simulation experiments

indicate that our theoretical results are robust to inter-agent communication constraints and

non-convex nutrient profiles.

The remainder of this chapter is organized as follows. In Section 3.2 some preliminaries

are provided. Section 3.3 introduces the model for agents, mutual interactions, and the

foraging environment. In Section 3.4, swarm cohesion analysis is performed under conditions

satisfied by a wide class of nutrient profiles. We analyze social foraging properties within

the swarm in Section 3.5 assuming that the nutrient profile is strongly convex. Simulation

examples are provided in Section 3.6. We conclude this chapter in Section 3.7.
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3.2 Preliminaries

In the analysis, we shall make use of certain concepts in graph theory and Brownian motion

which we briefly review below.

A graph G is a pair (V , E), where V is a set of vertices and E is a subset of V ⇥ V called

edges (see Godsil and Royle [36]). The adjacency matrix [↵
ij

] 2 R of a graph is a matrix

with nonzero elements satisfying the property ↵
ij

> 0 , (i, j) 2 E . Self-joining edges are

excluded, i.e., ↵
ii

= 0, 8i.

A one-dimensional Brownian motion is a real-valued stochastic process B(t), t � 0 that

has the following properties (see Durrett [23]):

(i) If t0 < t1 < · · · < t
n

, then B(t0), B(t1)� B(t0), . . . B(t
n

)� B(t
n�1) are independent.

(ii) If s, t > 0, then

P(B(s+ t)� B(s) 2 A) =

Z

A

(2⇡t)�1/2 exp(�x2/2t)dx

where A ⇢ R and P(·) denotes the probability function.

(iii) With probability 1, t ! B(t) is continuous.

Notice that (ii) indicates that B(s + t) � B(s) has a normal distribution with mean 0

and variance t.

The Kronecker product of matrices A 2 Rn⇥n and B 2 Rl⇥l is an nl ⇥ nl block matrix

defined as follows:

A⌦ B =

0

B

B

B

B

B

B

@

a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . . · · ·

a
n1B a

n2B . . . a
nn

B

1

C

C

C

C

C

C

A

.

|·| denotes the absolute value function.
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3.3 The Swarm Model

We adopt a similar swarm model as in Gazi and Passino [32] and consider a swarm composed

of an interconnection of N “agents” moving in an m-dimensional space. The equation of

motion we consider for agent i is given by

dx
i

= u
i

dt,

where x
i

2 Rm is the state of agent i and u
i

2 Rm is its control input. This is a kinetic

model since it ignores the lower-level dynamics of the individual agents. Nevertheless, a

kinetic model can be viewed as an approximation of a model with point mass swarm member

dynamics for some organisms such as bacteria (see Gazi and Passino [32]).

We consider a control input given by

u
i

=
N

X

j=1,j 6=i

↵
ij

g(x
i

� x
j

)�r�(x
i

) +
p
2T

dB
i

dt
,

where g(·) represents the function of mutual attraction and repulsion between the individuals

and is an odd function of the form (see Gazi and Passino [31])

g(y) = �y[g
a

(kyk)� g
r

(kyk)], (3.1)

where g
a

: R+ ! R+ represents (the magnitude of) the attraction term and it has long range,

whereas g
r

: R+ ! R+ represents (the magnitude of) the repulsion term and it has short

range, and k · k is the Euclidean norm. Assume that there exists an equilibrium distance

⇢ > 0 such that g
a

(⇢) = g
r

(⇢). For kyk > ⇢ we have g
a

(kyk) > g
r

(kyk), and for kyk < ⇢

we have g
a

(kyk) < g
r

(kyk). In this work we will consider linear attraction functions, i.e.,

g
a

(kyk) = a for some a > 0 and all kyk, and repulsion functions satisfying

g
r

(kyk)kyk2  b (3.2)

uniformly for some b > 0.

The term �r�(x
i

) represents the motion of the individuals toward regions with higher

nutrient concentration and away from regions with high concentration of toxic substances.
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Note that the implicit assumption that the individuals know the gradient of the profile

(with noise/sensing errors) at their positions is not very restrictive since it is known that

some organisms such as bacteria are able to construct local approximations to gradients (see

Passino [76] for instance). In particular, �(x) is assumed to be di↵erentiable everywhere and

attains its minimum at x = 0, i.e., the nutrient concentration peaks at the origin.

A = [↵
ij

] 2 RN⇥N denotes the coupling matrix with ↵
ij

2 {0, 1}. ↵
ij

= 1 indicates that

agent i interacts with agent j. We assume that the corresponding graph G is undirected

(A = AT ) and connected, that is, there exists a path between any two di↵erent vertices in

V .

Unlike the model studied in [32, 59], we are assuming that the measurement of gradient

is subject to white noise
p
2TdB

i

/dt of uniform strength
p
2T , and B

i

is an m-dimensional

Brownian motion. This noise term is essentially the continuous-time counterpart of Gaussian

white noise sequence in discrete time (see Cucker and Mordecki [21], Section 4.1 for reference).

It follows that {x
i

(t)|t � 0} is a stochastic process governed by the stochastic di↵erential

equation (3.4). Notice that white noise is widely used in the literature (see [21, 39, 95]). Its

structure allows us to quantify the e↵ects of swarming on the social foraging process.

In the following sections, we will first perform cohesion analysis for the swarm under

conditions satisfied by a wide class of nutrient profiles. Then we will study social foraging

properties of the swarm under noise and compare them with the average performance of

individuals.

3.4 Swarm Cohesion Analysis

3.4.1 Preliminaries: Macro-micro Decomposition

To facilitate analysis, we introduce a “macro-micro” decomposition which disintegrate the

system into two parts: one system that describes the macroscopic dynamics and a second

system that describes the microscopic dynamics. We start by setting the macroscopic part
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for the solution as the system’s center of mass:

x =
1

N

N

X

i=1

x
i

. (3.3)

The microscopic variables are then taken as the fluctuations with respect to the center of

mass:

e
i

= x
i

� x.

Recall that

dx
i

= u
i

dt =
N

X

j=1,j 6=i

↵
ij

g(x
i

� x
j

)dt�r�(x
i

)dt+
p
2TdB

i

, (3.4)

where g(·) is an odd function. The macroscopic and microscopic parts of (3.4) can be written

as

dx =
1

N

N

X

i=1

"

N

X

j=1,j 6=i

↵
ij

g(x
i

� x
j

)dt�r�(x
i

)dt+
p
2TdB

i

#

= � 1

N

N

X

i=1

r�(x
i

)dt+

p
2T

N

N

X

i=1

dB
i

, (3.5)

and

de
i

=
N

X

j=1,j 6=i

↵
ij

g(x
i

� x
j

)dt�r�(x
i

)dt+
1

N

N

X

i=1

r�(x
i

)dt

+
p
2TdB

i

�
p
2T

N

N

X

i=1

dB
i

, (3.6)

respectively. In light of (3.1),

g(x
i

� x
j

) = �(x
i

� x
j

)[g
a

(kx
i

� x
j

k)� g
r

(kx
i

� x
j

k)] = �(x
i

� x
j

)[a� g
r

(kx
i

� x
j

k)].

We have

N

X

j=1,j 6=i

↵
ij

g(x
i

� x
j

) = �a
N

X

j=1,j 6=i

↵
ij

(x
i

� x
j

) +
N

X

j=1,j 6=i
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ij

g
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� x
j

k)(x
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� x
j

).
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Consequently, (3.6) becomes

de
i

= �a
N

X

j=1,j 6=i

↵
ij

(x
i

� x
j

)dt+
N

X

j=1,j 6=i

↵
ij

g
r

(kx
i

� x
j

k)(x
i

� x
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)dt�r�(x
i
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+
1

N

N

X

j=1

r�(x
j

) +
p
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i

�
p
2T

N

N

X

j=1

dB
j

.

3.4.2 Swarm Cohesion

We begin our study of the swarm behavior by investigating the cohesiveness of the swarm

under some general conditions. To this end, let

V
i

= (1/2)ke
i

k2,

and define a Lyapunov function

V = (1/N)
N

X

i=1

V
i

to indicate the group’s cohesiveness. We then define asymptotic swarming for the stochastic

system (3.4):

Definition 1. (Swarming) System (3.4) has a (time-asymptotic) swarming if and only if

the ensemble average of the Lyapunov function V is uniformly bounded in time t.

Applying Ito’s formula1 to V
i

= (1/2)ke
i

k2,

dV
i

=de
i

· e
i

+
1

2
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g
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j

k)(x
i

� x
j
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i

dt

�
"
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i

)� 1

N
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X

j=1

r�(x
j

)

#

T

e
i

dt+

"

p
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i

�
p
2T

N

N

X

j=1

dB
j

#

T

e
i

+mT

✓

1� 1

N

◆

dt. (3.7)

1
See Øksendal [71] for a reference on stochastic di↵erential equations.
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It follows that

dV =
1

N
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i
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↵
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)T e
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1

2N

N

X

i=1

N

X

j=1,j 6=i

↵
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g
r

(kx
i

� x
j

k)kx
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� x
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� 1

N

N
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rT�(x
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)e
i

dt+

p
2T

N

N

X
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dB
i

T e
i

+mT
(N � 1)

N
dt. (3.8)

Let L = [l
ij

] be the Laplacian matrix associated with the adjacency matrix A, with

l
ii

=
P

j

↵
ij

and l
ij

= �↵
ij

when i 6= j. Denote by Tr(L) the trace of L. For an undirected

graph, the Laplacian matrix is symmetric positive semi-definite (see Godsil and Royle [36]

for reference). Notice that

�
N

X

i=1

N

X

j=1,j 6=i

↵
ij

(e
i

� e
j

)T e
i

=
N

X

i=1

N

X

j=1

l
ij

(e
i

� e
j

)T e
i

=
N

X

i=1

N

X

j=1

l
ij

eT
j

e
i

. (3.9)

Let e = [eT1 , . . . , e
T

N

]T . Since graph G is connected, �2(L) > 0. We have (refer to Godsil and

Royle [36])

N

X

i=1

N

X

j=1

l
ij

eT
j

e
i

= eT (L⌦ I
m

)e � �2e
Te = �2

N

X

i=1

ke
i

k2, (3.10)

where �2 := �2(L) is the second-smallest eigenvalue of L. It is also called the algebraic

connectivity of G.

In conclusion,

dV  �a�2
N

N

X

i=1

ke
i

k2dt+ 1

2N

N

X

i=1

N

X

j=1,j 6=i

↵
ij

g
r

(kx
i

� x
j

k)kx
i

� x
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k2dt

� 1

N

N

X

i=1

rT�(x
i

)e
i

dt+

p
2T

N

N

X

i=1

dB
i

T e
i

+mT
(N � 1)

N
dt. (3.11)

We now make the following standing assumptions.
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Assumption 1. (Strong convexity) The gradient of the resource profile satisfies

(r�(y)�r�(x))T (y � x) � ky � xk2

for some  > 0 and for all x, y.

Assumption 2. (Bounded gradient) There exists ⌘ > 0 such that kr�(y)k  ⌘, for all y.

Assumption 2 requires only that the gradient of the profile is bounded. This is a fairly

mild assumption which is satisfied by most nutrient profiles used in biological models. The

following result provides a characterization of the swarm cohesiveness.

Theorem 1. Suppose that either Assumption 1 or Assumption 2 hold. Then, the ensemble

average of V is uniformly bounded in t.

1. If Assumption 1 is satisfied, then

E[V ] e�2(+a�2)tV (0) +



b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)

�

⇥

1� e�2(+a�2)t
⇤

. (3.12)

In the long run,

E[V ]   ⇤
1 =

b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)
. (3.13)

2. If Assumption 2 is satisfied, then

E[V ]  e�c1tV (0) +
c2
c1
(1� e�c1t).

where

c1 2 (0, 2a�2) is arbitrary, and c2 =
⌘2

2(2a�2 � c1)
+

b|Tr(L)|
2N

+mT
(N � 1)

N
.

In particular,

E[V ]  max{V (0), ⇤
2}.

and in the long run, E[V ]   ⇤
2. Here

 ⇤
2 =

1

2a�2

2

4

s

⌘2

4a�2
+

b|Tr(L)|
2N

+mT
(N � 1)

N
+

s

⌘2

4a�2

3

5

2

.
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Proof. Case 1: Refer to Equation (3.11). Notice that

N
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)e
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=
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i

)�rT�(x))(x
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where the inequality follows from Assumption 1. By (3.2),

g
r
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j

k2  b.

It follows that
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.

We then have

d
⇥

e2(+a�2)tV
⇤

= e2(+a�2)tdV + 2(+ a�2)e
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dB
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.

Integrating both sides,

V  e�2(+a�2)tV (0) +



b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)

�

⇥

1� e�2(+a�2)t
⇤
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dBT
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(s)e
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.

Taking ensemble average yields

E[V ]  e�2(+a�2)tV (0) +



b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)

�

⇥

1� e�2(+a�2)t
⇤

.

In the long run,

E[V ]   ⇤
1 =

b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)
.
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Case 2: Assumption 2 holds. By Equation (3.11) and (3.2),
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+
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dt+
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(3.14)

where

c1 2 (0, 2a�2) is arbitrary, c2 =
⌘2

2(2a�2 � c1)
+

b|Tr(L)|
2N

+mT
(N � 1)

N
.

Applying Ito’s formula to ec1tV ,

d(ec1tV ) = ec1tdV + c1e
c1tV dt  c2e

c1tdt+

p
2T

N
ec1t

N

X

i=1

dB
i

T e
i

.

Integrating the stochastic di↵erential inequality,

V
t

 e�c1tV (0) +
c2
c1
(1� e�c1t) + e�c1t

Z
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⌧

N
ec1s

N

X

i=1

dB
i

T e
i

.

Taking an ensemble average on both sides yields

E[V ]  e�c1tV (0) +
c2
c1
(1� e�c1t).
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It follows that

E[V ]  (V (0)� c2
c1
)e�c1t +

c2
c1



8

>

>

>

>

<

>

>

>

>

:

V (0) if V (0) �
c2

c1
,

c2

c1
if V (0) <

c2

c1
.

Therefore

E[V ]  max{V (0),
c2
c1
}, 8t,

In the long run,

E[V ]  c2
c1

=
⌘2

2c1(2a�2 � c1)
+

b|Tr(L)|
2c1N

+mT
(N � 1)

c1N
. (3.15)

Notice that the above inequality is valid for all c1 2 (0, 2a�2), of which we look for the

minimum over all possible c1’s. Define

 2(c1) =
⌘2

2c1(2a�2 � c1)
+

b|Tr(L)|
2c1N

+mT
(N � 1)

c1N

=



⌘2

4a�2
+

b|Tr(L)|
2N

+mT
(N � 1)

N

�

1

c1
+

⌘2

4a�2

1

(2a�2 � c1)
.

By Cauchy-Schwarz inequality, when

1

c1
=

1

2a�2

✓

1 +

r

c4
c3

◆

,

 2(c1) attains its minimum

 ⇤
2 =

1

2a�2
(
p
c3 +

p
c4)

2
.

Here

c3 =
⌘2

4a�2
+

b|Tr(L)|
2N

+mT
(N � 1)

N
, c4 =

⌘2

4a�2
.

Since (3.15) is valid for all c1 2 (0, 2a�2), it holds true that E[V ]   ⇤
2 in the long run.

Remark 1. Since the ensemble average of V is uniformly bounded in t, (time-asymptotic)

swarming is achieved in both cases.
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Remark 2. We may expect that if V (0) is large, i.e., agents are widely dispersed initially,

V will decrease and agents get closer from the beginning. If V (0) is small compared to the

upper bound, V may increase first due to the inter-agent repulsion force, but still remains

bounded. In Case 1, the speed of swarming depends on 2( + a�2), i.e., larger algebraic

connectivity, stronger attraction and stronger convexity of � facilitate swarming. In Case 2,

2a�2 determines the speed.

Remark 3.  ⇤
1 is a tight bound. Supposing that the inequality in Assumption 1 is indeed an

equality and graph G is complete (every two agents directly interact with each other), then

 ⇤
1 is exactly the ensemble average of V in the long run (See Fig. 3.1(c) for a reference).  ⇤

2

is a looser bound compared to  ⇤
1. Nevertheless, as �2 ! 1  ⇤

2 approaches the exact swarm

size.

Remark 4. The resulting swarm size depends on the inter-individual attraction/repulsion

parameters (a and b) and the parameters of the nutrient profile ( and ⌘). The noise

strength T also plays a role. The dependence of the swarm size on these parameters could

be explained as follows: larger attraction (larger a) leads to a smaller swarm size, while

larger repulsion (larger b) leads to a larger swarm size. In Case 1, stronger convexity of �

(larger ) leads to a smaller swarm size. In Case 2, a fast changing landscape (larger ⌘) leads

to a larger swarm size. Stronger noise (larger T ) results in a larger swarm in both cases,

which is intuitively true.

Remark 5. The algebraic connectivity �2 plays a crucial role in determining  ⇤
1 and  ⇤

2.

When N is fixed, larger �2 leads to smaller bounds. In a complete graph, �2 = N and

Tr(L) = N(N � 1), in which case

lim
N!1

 ⇤
1 = lim

N!1



b(N � 1)

4(+ aN)
+

mT (N � 1)

2N(+ aN)

�

=
b

4a
,

lim
N!1

 ⇤
2

= lim
N!1

1

2aN

"

r

⌘2

4aN
+

b(N � 1)

2
+

mT (N � 1)

N
+

r

⌘2

4aN

#2

=
b

4a
.
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This result implies that in a large group, the ultimate bound of swarm size depends only on

the interplay between inter-individual attraction and repulsion.

3.5 Social Foraging Properties

In this section, we investigate how swarming behavior a↵ects social foraging under Assump-

tion 1 and an additional Lipschitz condition.

Let F
i

= (1/2)kx
i

k2, a function of the distance between agent i and the optimum. Let

F = (1/N)
P

N

i=1 Fi

to indicate the social foraging properties: smaller F implies a prior group

foraging condition. Hence we define successful social foraging for the stochastic system (3.4)

as following:

Definition 2. (Social Foraging) System (3.4) achieves a successful social foraging if and

only if the ensemble average of the Lyapunov function F can be made arbitrarily small.

Assumption 3. (Lipschitz continuity) kr�(y) �r�(x)k  µky � xk for some µ �  and

for all x, y.

Theorem 2. Suppose that Assumption 1 and Assumption 3 hold. The ensemble average of

F is uniformly bounded. More precisely,

E[F ]

 e�2t



U(0) +
(µ� )

a�2
V (0)

�

+



mT

2N
+

(µ� )(b|Tr(L)|+ 2mT (N � 1))

4a�2N

�

(1� e�2t)

+

�

�

�

�

1� (µ� )
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�

�

�

�

⇢

e�2(+a�2)tV (0) +



b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)

�

⇥

1� e�2(+a�2)t
⇤

�

.

(3.16)

Here U := (1/2)kxk2. In the long run,

E[F ]  �⇤ =
mT

2N
+

(µ� )(b|Tr(L)|+ 2mT (N � 1))

4a�2N

+

�

�

�

�

1� (µ� )

a�2

�

�

�

�



b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)

�

.
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Proof. Notice that
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According to Equation (3.5) and Ito’s lemma,
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Since �(·) attains its minimum at the origin, r�((0, 0)) = 0. By Assumption 1 and (3.17),
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By Assumption 3,
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We have
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= �2Udt+ 2(µ� )V dt+
mT

N
dt+

p
2T

N

N

X

i=1

dB
i

Tx. (3.20)

Recalling (3.11) and (3.2),
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Define

W = U +
(µ� )
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By (3.19) and (3.21), we obtain
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Applying Ito’s lemma to e2tW ,

d(e2tW ) = e2tdW + 2e2tWdt 


mT

N
+

(µ� )(b|Tr(L)|+ 2mT (N � 1))

2a�2N

�

e2tdt

+

p
2T

N
e2t

"

N

X

i=1

dB
i

Tx+
(µ� )

a�2

N

X

i=1

dB
i

T e
i

#

.

Integrating both sides and taking ensemble average, we get

E[W ]  e�2tW (0) +



mT

2N
+

(µ� )(b|Tr(L)|+ 2mT (N � 1))

4a�2N

�

(1� e�2t).

By (3.12) and (3.17),

E[F ] = E[W ] +



1� (µ� )

a�2

�

E[V ]

 e�2t



U(0) +
(µ� )

a�2
V (0)

�

+



mT

2N
+

(µ� )(b|Tr(L)|+ 2mT (N � 1))

4a�2N

�

(1� e�2t)

+

�

�

�

�

1� (µ� )

a�2

�

�

�

�

⇢

e�2(+a�2)tV (0) +



b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)

�

⇥

1� e�2(+a�2)t
⇤

�

.

In the long run,

E[F ]  �⇤ =
mT

2N
+

(µ� )(b|Tr(L)|+ 2mT (N � 1))

4a�2N

+

�

�

�

�

1� (µ� )

a�2

�

�

�

�



b|Tr(L)|
4N(+ a�2)

+
mT (N � 1)

2N(+ a�2)

�

.
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Remark 6. Theorem 2 shows that social foraging is successful since for either b = 0 (i.e., no

repulsive force) or b/a ⇠ 1/N (i.e., increasing relative attractive force with increasing group

size), distances between agents and the optimal location can be made arbitrarily small. The

speed of group foraging depends on  and a�2. Agents move faster towards the optimum in

a field with larger gradients, larger inter-agent attraction, and when graph connectivity is

strong.

Remark 7. �⇤ is exact when  = µ (See Fig. 1(e) for a reference). When  < µ, the tightness

of �⇤ depends on detailed information of r�(·).

Remark 8. �⇤ implies the ultimate social foraging properties. It is determined by inter-

individual attraction/repulsion (a and b), gradient of the nutrient profile ( and µ), algebraic

connectivity �2, the number of agentsN , and the noise strength T . Larger repulsion (larger b)

and stronger noise (larger T ) impedes social foraging. Larger gradient (large  and smaller

µ), stronger algebraic connectivity (larger �2), larger group size (larger N) and stronger

attraction (larger a) makes for foraging success. The dependence of �⇤ on a,�2 and N

demonstrates the benefit of swarming behavior. Furthermore, when G is complete,

lim
N!1

�⇤ = lim
N!1

⇢

mT

2N
+

(µ� )(N � 1)

2aN

✓

b

2
+

mT

N

◆

+

�

�

�

�

1� (µ� )

aN

�

�

�

�



b(N � 1)

4(+ aN)
+

mT (N � 1)

2N(+ aN)

��

=
µb

4a
.

In a large group, the ultimate foraging properties depends only on two factors: the interplay

between inter-individual attraction and repulsion, and the gradient of the nutrient profile.

As this limit is not a function of T , the e↵ect of noise disappears altogether.

3.5.1 Noise Reduction Property

Let us now compare the performance of a swarming discipline with individual foraging (i.e.,

no interaction exists between agents). In this scenario,

dx
i

= �r�(x
i

)dt+
p
2TdB

i

.
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Let H
i

= (1/2)kx
i

k2. We have

dH
i

=dx
i

· x
i

+ (1/2)dx
i

· dx
i

=�rT�(x
i

)x
i

dt+
p
2TdB

i

Tx
i

+mTdt

�� 2µH
i

dt+mTdt+
p
2TdB

i

Tx
i

.

Resembling the proof of Theorem 2, we conclude that:

E[H
i

] � e�2µtH
i

(0) +
mT

2µ
(1� e�2µt),

and in the long run,

lim inf
t

E[H
i

(t)] � mT

2µ
.

The noise reduction property by swarming in social foraging can be formalized as follows.

Corollary 1. Suppose that graph G is complete. If either b = 0 or b/a ⇠ 1/N , there exists

an N⇤ > 0 and a t⇤ < 1 such that E[F ] < E[H
i

] for all t > t⇤.

Proof. Given that G is complete, �2 = N and |Tr(L)| = N(N � 1). The ultimate upper

bound obtained in Theorem 2 is

�⇤ =
mT

2N
+

(µ� )(N � 1)

2aN

✓

b

2
+

mT

N

◆

+

�

�

�

�

1� (µ� )

aN

�

�

�

�



b(N � 1)

4(+ aN)
+

mT (N � 1)

2N(+ aN)

�

.

If b = 0 or b/a ⇠ 1/N , �⇤ is strictly monotonically decreasing to 0 in the group size. Thus,

there exists an N⇤ > 0 such that

�⇤ <
mT

2µ
 lim inf

t

E[H
i

]

for all N > N⇤. Since the upper bound of E[F ] converges to �⇤ in t, there exists a t⇤ < 1

such that E[F (t)] < E[H
i

(t)] for all t > t⇤.

Remark 9. This result can be extended to the case that �2 ⇠ N while G need not be complete.
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Corollary 1 demonstrates that when b = 0 (i.e., no repulsive force) or b/a ⇠ 1/N (i.e.,

increasing relative attractive force with increasing group size) a swarming discipline for

foraging exhibits better performance than individual foraging. For convex, smooth nutrient

profiles a large realization of noise leads to a large perturbation of the gradient which in

turn induces a trajectory that is too dissimilar from that of the group. The swarming

discipline forces individuals to discard large noise perturbations of the gradient in their

e↵ort to maintain cohesion. As a result, the group trajectories are less a↵ected by noise. It

is important to emphasize here that this noise reduction e↵ect is not related to averaging.

3.6 Simulation Examples

In this section, we provide some simulation examples to relax the assumptions used in the

theory developed in the preceding sections.

3.6.1 Quadratic Resource Profile

First we consider a quadratic resource profile satisfying Assumption 1 and 3. For the example,

we choose an m = 2 dimensional space for ease of visualization of the results and use the

region [50, 150] ⇥ [50, 150] in the space. In the simulations we use a complete network

with N = 15 individuals. The attraction/repulsion function g(y) = �y[a � c exp(�kyk2)]

is adopted with parameters a = 0.01 and c = 0.05. The equilibrium distance for g(·) is

⇢ =
p

ln(c/a) = 1.27. Notice that g
r

(kyk)kyk2 = c exp(�kyk2)kyk2  ce�1 ' 0.136 =

b. Initially, all the agents are distributed randomly in the [50, 200] ⇥ [50, 200] interval.

We consider noise level T = 2. Simulations are run for agents with and without mutual

interactions. This allows us to analyze how swarming a↵ect foraging in the presence of

noise. Note that in the no-interaction case, each individual could be regarded as a single

foraging group (N = 1).

The particular nutrient profile we consider in this example is �(y) = 0.01kyk2, whose

gradient is given by r�(y) = 0.02y. Simulation running time is 500s.
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(f) F (no interaction).

Figure 3.1: Social foraging with and without mutual interactions with quadratic resource

profile.
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Fig. 3.1(a)(b) plots the trajectories of the individuals. With mutual interactions, the

agents form a cohesive group and collectively move towards the global minimum (nutrient

center). By contrast, individuals’ movements look more random without mutual interactions,

and they cannot get as close to the optimum as when they form a swarm. This simulation

example suggests that swarming (for social foraging) provides a noise reduction e↵ect.

Cohesive properties are further illustrated in Fig. 3.1(c)(d) that plots the average fluc-

tuations V . When agents interact, V decreases at first and remains at a level around  ⇤
1 as

expected. By contrast, when agents do not interact, fluctuations stay large, and the foraging

group is dispersed.

Foraging properties are shown in Fig. 3.1(e)(f). In the presence of mutual interaction, F

decreases to a level around �⇤ which is lower than when individuals do not interact.

3.6.2 Non-convex Resource Profile

It was assumed that resource function �(·) is strongly convex in Section 3.5 and in the above

example. Our results are likely to hold for non-convex nutrient profiles as well. To illustrate,

we consider nutrient profile �(y) = ln(kyk2 + 1), whose gradient is given by

r�(y) = 2y/(kyk2 + 1).

Notice that kr�(y)k first increases and then decreases in kyk. Other settings stay the same

as in Section 3.6.1 except that running time is 7500s.

In this case, agents are still able to reach and stay close to the optimum when they form

a swarm. On the contrary, without mutual interactions their motions are almost random.

In Fig. 3.2(d) we observe that even when an individual gets close to the nutrient center,

it will go away because of noise. Therefore, swarming is critical for foraging success in this

scenario.
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(c) Distance to optimum with swarming.
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(d) Distance to optimum without interaction.

Figure 3.2: Social foraging with and without mutual interactions with non-quadratic resource

profile.
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(a) Sample paths within an incomplete graph.
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Figure 3.3: Social foraging within an incomplete graph with quadratic resource profile.

3.6.3 Incomplete Graph

We have been running simulations within a complete network. However, in a large group,

an individual usually communicate with a few neighbors. In this example we consider the

case in which each agent communicates with his 6 nearest neighbors. Our setting here agrees

with Ballerini et al. [4] where evidence was given to prove that collective animal behavior

(swarming) depends on topological rather than metric distance.

Aside from network connectivity we follow the settings used in Section 3.6.1. Compared

with Fig. 3.1(a)(b), we find that the group foraging behavior shown in Fig. 3.3 falls between

the previous two. Agents form a swarm that is more cohesive than in the interaction-free

case. Nonetheless it is more dispersed than in a complete network.

3.7 Conclusions of This Chapter

There is empirical evidence that swarming is a useful strategy for social foraging in a noisy

environment. To our knowledge, there is no mathematical formalization of noise reduction

properties of swarming in social foraging. In this chapter we develop a mathematical model

for analyzing the benefits of social foraging in a noisy environment. We identify conditions
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on the nutrient profile ensuring that local agent actions will lead to cohesive foraging. For

convex, smooth nutrient profiles we formalize the way in which swarming for social foraging

is better at handling the e↵ects of noise when compared to the average of individual for-

aging strategies. Under a swarming discipline, observational noise realizations that induce

trajectories di↵ering too much from the group average are likely to be discarded because

of each individual’s need to maintain cohesion. As a result, the group trajectories are less

a↵ected by noise. In a limited test-bed we relax the main assumption in our analysis. The

results indicate that the noise reduction properties of swarming in social foraging are robust

to inter-agent communication constraints and non-convex nutrient profiles. These results

suggest that swarming-like approaches for the control of networked agents may provide an

additional level of robustness.
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CHAPTER 4

A Flocking-based Approach for Distributed Stochastic

Optimization

Inspired by the forementioned theory on the noise reduction property of social foraging, in

this chapter, we consider a distributed computing algorithmic scheme for stochastic opti-

mization which relies on modest communication requirements amongst processors and most

importantly, does not require synchronization. Specifically, we analyze a scheme with N > 1

independent threads implementing each a stochastic gradient algorithm. The threads are

coupled via a perturbation of the gradient (with attractive and repulsive forces) in a similar

manner to mathematical models of flocking, swarming and other group formations found in

nature with mild communication requirements. When the objective function is convex, we

show that a flocking-like approach for distributed stochastic optimization provides a noise

reduction e↵ect similar to that of a centralized stochastic gradient algorithm based upon the

average of N gradient samples at each step. The distributed nature of flocking makes it an

appealing computational alternative. We show that when the overhead related to the time

needed to gather N samples and synchronization is not negligible, the flocking implementa-

tion outperforms a centralized stochastic gradient algorithm based upon the average of N

gradient samples at each step. When the objective function is not convex, the flocking-based

approach seems better suited to escape locally optimal solutions due to the repulsive force

which enforces a certain level of diversity in the set of candidate solutions. Here again, we

show that the noise reduction e↵ect is similar to that associated to the centralized stochastic
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gradient algorithm based upon the average of N gradient samples at each step.

4.1 Introduction

Swarms, flocks and other group formations can be found in nature in many organisms rang-

ing from simple bacteria to mammals (see [72, 75, 80] for references). Such collective and

coordinated behavior is believed to be e↵ective for avoiding predators and/or for increasing

the chances of finding food (foraging) (see [38,79]). In this chapter we introduce a novel dis-

tributed scheme for stochastic optimization wherein multiple independent computing threads

implement each a stochastic gradient algorithm which is further perturbed by repulsive and

attractive terms (a function of the relative distance between solutions). Thus, the updating

of individual solutions is coupled in a similar manner to mathematical models of swarming,

flocking and other group formations found in nature (see Gazi and Passino [33]). We show

that this coupling endows the flocking scheme with an important robustness property as

noise realizations that induce trajectories di↵ering too much from the group average are

likely to be discarded.

The performance of the single-thread stochastic gradient algorithm is highly sensitive to

noise. Thus, there is a literature on estimation techniques leading to better gradient estima-

tion often involving increasing sample size (see [27, 89] for a survey of gradient estimation

techniques). When sampling is undertaken in parallel, synchronization is needed to execute

the tasks that can not be executed in parallel. The speed-up obtained by parallel sampling

and centralized gradient estimation is limited by overhead related to (i) time spent gathering

samples (which could be significant for example in the simulation of complex systems) and

(ii) synchronization. In contrast, the noise reduction obtained in a flocking-based approach

with N > 1 threads does not require synchronization since each thread only needs the in-

formation on the current solution identified by neighboring threads (where the notion of

neighborhood is related to a given network topology). When sampling times are not neg-

ligible and exhibit large variation, synchronization may cause significant overhead so that

real-time performance of stochastic gradient algorithm based upon the average of N sam-
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ples obtained in parallel is highly a↵ected by large sampling time variability. In contrast,

the real-time performance of a flocking-based implementation with N > 1 threads may be

superior as each thread can asynchronously update its solution based upon a small sample

size and still reap the benefits of noise reduction stemming from the flocking discipline.

To illustrate the noise reduction property, consider the minimization of the function

f(x) = ln(kxk2 +1) where x 2 R2. The unique optimal solution is x⇤ = (0, 0). Suppose that

the gradient rf(x) is observed with noise so that the basic iteration in a stochastic gradient

descent algorithm can be written as:

x(k + 1) = x(k) + �(k)(�rf(x(k)) + "(k)),

where �(k) > 0 is the step size, and the collection {"(k) : k > 0} is i.i.d (independent and

identically distributed) with mean zero and variance �2. The stochastic gradient method

with constant step size �(k) = 0.02 and normally distributed noise with �2 = 0.18 is unable

to approximate the optimal solution given the large magnitude of noise (relative to the

gradient). One solution to this conundrum is to implement an improved version based upon

the average of N = 10 samples of the gradient at each step. Then, the variance of noise is

reduced to �2/N = 0.018. Supposing that each step takes 0.02s, the performance of this

approach is shown in Figure 4.1(a)1.

In this dissertation we advocate a di↵erent tack. We introduce an additional perturbation

to the gradient so that the basic iteration for thread i is:

x(i, k + 1) = x(i, k) + �̃(i, k)[�rf(x(i, k)) + "(i, k)�
N

X

j=1,j 6=i

↵
ij

r
x(i)J(kx(i, k)� x(j

i

, k)k)],

where J(kx(i, k)�x(j
i

, k)k) is the flocking potential between threads i and j. ↵
ij

= 1 if thread

i has access to the current solution x(ji, k) by thread j and ↵
ij

= 0 otherwise. The term

r
x(i)J(kx(i, k) � x(ji, k)k) is a combination of repulsive and attractive “forces” depending

upon the relative distance kx(i, k)� x(ji, k)k (see Gazi and Passino [30] for reference).

The performance of the flocking-discipline of N = 10 fully connected threads (again

with constant step size �̃(i, k) = 0.02 and �2 = 0.18) is depicted in Figure 4.1(b). The

1
In this illustration example we assume zero variance among sampling times.
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performance of the flocking scheme (as measured by the average solution) can be seen to be

comparable with the scheme based upon the average of N = 10 samples at each step (see

Figure 4.1(b)). The times needed for the solutions identified by each scheme to reach the

ball B0.1(x⇤) = {x 2 R2 | kx� x⇤k < 0.1} are fairly similar. For a total of 100 sample paths

the mean time and standard deviation of the centralized scheme and the flocking scheme are

(992.6, 1454.6) and (969.1, 1223.4), respectively.

This noise reduction e↵ect can be succinctly explained as follows. Under a flocking dis-

cipline, noise realizations that induce trajectories di↵ering too much from the group average

are likely to be discarded because of the attractive potential e↵ect on each individual thread

which leads to cohesion. The noise reduction enabled by a flocking-discipline is fundamen-

tally di↵erent from that associated with averaging of independent gradient samples.

Our work is related to the extensive literature in stochastic approximation method dating

to Robbins and Monro [82] and Kiefer and Wolfowitz [50]. These work includes the analysis

of convergence (conditions for convergence, rates of convergence, proper choice of step size)

in the context of diverse noise models (see Kushner and Yin [53]). Recently there has

been considerable interest in parallel or distributed implementation of stochastic gradient

algorithms (see [16,60,90,98,104] for examples). However, they mainly aim at minimizing a

sum of convex functions which is di↵erent from our objective.

Our work is also linked with population-based algorithms for simulation-based optimiza-

tion. In these approaches, at every iteration, the quality of each solution in the population is

evaluated and a new population of solutions is randomly generated according to a given rule

designed to achieve an acceptable trade-o↵ between “exploration” and “exploitation” e↵ort.

Recent e↵orts have focused on model-based algorithms (see Hu et al. [44]) which di↵er from

population-based approaches in that candidate solutions are generated at each iteration by

sampling from a “model” which is a probability distribution over the solution space. The

basic idea is to modify the model based on the sampled solutions in order to bias the future

search towards regions containing high quality solutions (see Hu [43] for a recent survey).

These approaches are inherently centralized in that the updating of populations (or models)
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(c) Distance to optimum for sample average

scheme with N samples.
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(d) Distance between the average flocking solution

and the optimum.

Figure 4.1: Performance comparison between the scheme based upon the average of N = 10

gradient samples per step and the flocking-based approach with 10 fully connected threads.
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is undertaken after the quality of all candidate solutions is evaluated.

The structure of this chapter is as follows. Section 4.2 introduces the optimization prob-

lem of interest. In Section 4.3, we perform cohesion analysis of the flocking-based approach.

Section 4.4 formalizes the noise reduction properties of the flocking-based algorithmic scheme

for convex optimization. In Section 4.5, we apply the flocking-based algorithm to the opti-

mization of general non-convex functions. Section 4.6 concludes the chapter.

4.2 Setup

4.2.1 Preliminaries

In the analysis of this chapter we shall make use of certain graph theoretic concepts which

we briefly review below. A graph G is a pair (V , E), where V is a set of vertices and E is a

subset of V ⇥ V called edges. A graph (V , E) is called undirected if (i, j) 2 E , (i, j) 2 E .

The adjacency matrix A = [↵
ij

] 2 R of a graph is a matrix with nonzero elements satisfying

the property ↵
ij

> 0 , (i, j) 2 E . Self-joining edges are excluded, i.e., ↵
ii

= 0, 8i. The

Laplacian matrix L associated with a graph (V , E) is defined as L = [l
ij

], where l
ii

=
P

j

↵
ij

and l
ij

= �↵
ij

where i 6= j. For an undirected graph, the Laplacian matrix is symmetric

positive semi-definite (see Godsil and Royle [36]).

4.2.2 Problem Statement

We consider the problem

min
x2Rm

f(x) (4.1)

where f : Rm ! R is a di↵erentiable function that is not available in closed form. To solve

this problem, a black-box noisy simulation model is used. In this context, noise can have

many sources such as modeling and discretization error, incomplete convergence, and finite

sample size for Monte-Carlo methods (see for instance Kleijnen [51]). Assume that we have

N computing threads that can generate gradient samples in parallel. Every gradient sample
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is subject to i.i.d noise " 2 Rm of mean zero and variance �2 in each dimension.

In the rest of this section, we present two algorithms for solving the problem. First, we

introduce a centralized stochastic gradient-descent algorithm. Then we propose the flocking-

based approach. In both cases, we assume that the step size is a constant value (� and �̃,

respectively).

A Centralized Algorithm

A centralized stochastic gradient-descent algorithm is of the form:

x(k + 1) = x(k) + �u(k), k 2 N (4.2)

where u(k) = �rf(x(k))+ ✏(k), with ✏(k) being the random simulation noise. Assume that

sampling takes place through N parallel computing threads, where each thread contributes

one sample in a single step. Then, ✏(k) is given by an average of N i.i.d random vectors:

✏(k) = (1/N)
P

N

i=1 "(i). Each "(i) has m i.i.d components of mean zero and variance �2.

In what follows, we approximate the discrete-time process (4.2) by a continuous-time

system. Let �t(k) be the time needed to gather N samples for calculating u(k). Then in

continuous-time t, x(k) is obtained at t(k) =
P

l<k

�t(l). Denote by x
t

be the identified

solution at time t. We get x
t(k) = x(k) and x

t

= x
t(k�1) for all t 2 (t(k � 1), t(k)), i.e., the

continuous-time solution changes only upon updates. By (4.2),

x
t

= x0 �
X

t(l)<t

rf(x
t(l))�+

X

t(l)<t

✏(l)�.

For ease of analysis, we define a new variable y
t

:= x
t/�. It follows that

y
t

=x0 �
X

t(l)<t/�

rf(x
t(l))�+

X

t(l)<t/�

✏(l)�

=y0 �
X

�t(l)<t

rf(y�t(l))�+
X

t(l)<t/�

✏(l)�.

Assume that all �t(k)’s are i.i.d with mean E(�t(k)) = �t, and let n
t

be the cardinality of

{l : �t(l) < t}. By the (strong) law of large numbers, for small � > 0,

�n
t

t
=

n
t

t/�
' 1

�t
, and

n
t

t
� 0. (4.3)
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Hence,

X

�t(l)<t

rf(y�t(l))� =
�n

t

t

2

4

X

�t(l)<t

rf(y�t(l))
t

n
t

3

5 ' �n
t

t

Z

t

0

rf(y
t

)dt ' 1

�t

Z

t

0

rf(y
t

)dt.

Note that
P

t(l)<t/� ✏(l)� has mean zero and variance �2n
t

�2/N in each dimension. In

light of (4.3),

�2n
t

�2

N
=

�n
t

t
�t

��2t

N�t
' ��2

N�t
t.

We have

X

t(l)<t/�

✏(l)� ' �

r

�

N�t
B

t

,

where B
t

is the standard m-dimensional Brownian motion.

Define � = 1/�t and ⌧
N

= �
p

��t/N . Then y
t

approximately satisfies the following

stochastic Ito integration:

y
t

= y0 � �

Z

t

0

rf(y
t

)dt+

Z

t

0

⌧
N

�dB
t

.

which is usually written in its di↵erential form:

dy
t

= �rf(y
t

)�dt+ ⌧
N

�dB
t

. (4.4)

A Flocking-based Algorithm

A flocking-based implementation also hasN computing threads. In contrast to the centralized

approach, each thread i independently implement a stochastic gradient algorithm based on

only one sample at each step:

x(i, k + 1) = x(i, k) + �̃u(i, k), k 2 N (4.5)

where

u(i, k) = �rf(x(i, k)) + "(i, k)�
N

X

j=1,j 6=i

↵
ij

r
x(i)J(kx(i, k)� x(j

i

, k)k).
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Here x(j
i

, k) denotes the current solution of thread j 6= i at the time of thread i’s update,

and noise term "(i, k) comes from one sampling. Thus each "(i, k) is i.i.d. with m i.i.d

components of mean zero and variance �2.

The additional term �
P

N

j=1,j 6=i

↵
ij

r
xiJ(kx(i, k) � x(j

i

, k)k) represents the function of

mutual attraction and repulsion between individual threads (see Gazi and Passino [31] for

reference). A = [↵
ij

] 2 RN⇥N is the coupling matrix with ↵
ij

2 {0, 1}. ↵
ij

= 1 indicates that

thread i is informed of the solution identified by threads j. We assume that the corresponding

graph G is undirected (A = AT ) and connected.

Denote by �t(i, k) the time needed by thread i to gather one sample for u(i, k), then

x(i, k) is obtained at t(i, k) =
P

l<k

�t(i, l) in continuous-time. Let x
i,t

be the solution of

thread i at time t, satisfying x
t(i,k) = x(i, k) and x

i,t

:= x
t(i,k�1) for all t 2 (t(i, k�1), t(i, k)).

Then for each thread i 2 {1, . . . , N}, the scheme can be written as follows:

x
i,t(i,k+1) = x

i,t(i,k) + �̃

"

�rf(x
i,t(i,k)) + "(i, k)�

N

X

j=1,j 6=i

↵
ij

r
xiJ(kxi,t(i,k) � x

j,t(i,k)k)
#

.

Define function g(·) as g(x) = �r
x

J(kxk). Let y
i,t

= x
i,t/�̃ and assume that all �t(i, k)’s

are i.i.d with E(�t(i, k)) = �̃t. Similar to (4.4), the dynamics of y
i,t

can be approximated

by

dy
i,t

=

"

�rf(y
i,t

) +
N

X

j=1,j 6=i

↵
ij

g(y
i,t

� y
j,t

)

#

�̃dt+ ⌧ �̃dB
i,t

, (4.6)

where �̃ = 1/�̃t and ⌧ = �
p

�̃�̃t.

Remark 10. In what follows, we shall use the same specification for g(·) as in Chapter 3 (see

Gazi and Passino [31]), i.e., g(·) is an odd function of the form:

g(x) = �x[g
a

(kxk)� g
r

(kxk)], (4.7)

where g
a

: R+ ! R+ represents (the magnitude of) the attraction term and it has long

range, whereas g
r

: R+ ! R+ represents (the magnitude of) the repulsion term and it has

short range, and k · k is the Euclidean norm. We assume that J(·) has a unique minimizer,

and there is an equilibrium distance ⇢ > 0 such that g
a

(⇢) = g
r

(⇢), and for kxk > ⇢ we have
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g
a

(kxk) > g
r

(kxk), and for kxk < ⇢ we have g
a

(kxk) < g
r

(kxk). In this work we consider

linear attraction functions, i.e., g
a

(kxk) = a for some a > 0 and all kxk, and repulsion

functions satisfying g
r

(kxk)kxk2  b uniformly for some b > 0.

The choice of parameters a (i.e. attraction) and b (i.e. repulsion) reflects the emphasis

on exploration (higher values of b) versus exploitation (higher values of a). The potential

function is reminiscent of penalty function methods for constrained optimization in which

the gradient of the objective function is perturbed so as to ensure updated solutions remain

within the feasible region. The di↵erence is that in the flocking approach, potential-induced

attraction/repulsion forces keep the updated solutions in a moving ball with fixed size rather

than a rigid region. In light of its functionality, the analysis would not change much if we

had adopted a di↵erent potential function.

4.3 Analysis

In this section we study the stochastic processes {y
i,t

: t � 0} associated with each one of

the N > 1 threads in the flocking-based approach. The average solution ȳ
t

= (1/N)
P

N

i=1 yi,t

will be of particular importance in characterizing the performance of the flocking approach.

The first part of the analysis pertains to a characterization of cohesiveness of the solutions

identified by the di↵erent threads. To this end, we will analyze the process {V
t

: t > 0}

defined as

V
t

=
1

N

N

X

i=1

1

2
ky

i,t

� ȳ
t

k2.

4.3.1 Preliminaries

We consider the stochastic di↵erential equation governing V
t

. Let V
i,t

= (1/2)ke
i,t

k2 with

e
i,t

= y
i,t

� ȳ
t

. We have V
t

= (1/N)
P

N

i=1 Vi,t

. Applying Ito’s formula,

dV
i,t

= de
i,t

· e
i,t

+
1

2
de

i,t

· de
i,t

,

where de
i,t

= dy
i,t

� dy
t

.
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Lemma 1.

dV
t

=� a

N

N

X

i=1

N

X

j=1,j 6=i

↵
ij

(e
i,t

� e
j,t

)T e
i,t

�̃dt+
1

2N

N

X

i=1

N

X

j=1,j 6=i

↵
ij

g
r

(ky
i,t

� x
j,t

k)ky
i,t

� y
j,t

k2�̃dt

� 1

N

N

X

i=1

rTf(y
i,t

)e
i,t

�̃dt+
⌧

N
�̃

N

X

i=1

dB
i,t

T e
i,t

+
m⌧ 2�̃2(N � 1)

2N
dt. (4.8)

Proof. See Appendix 4.7.1.

4.3.2 Cohesiveness

Let L = [l
ij

] be the Laplacian matrix associated with the adjacency matrix A. Notice that

�
N

X

i=1

N

X

j=1,j 6=i

↵
ij

(e
i,t

� e
j,t

)T e
i,t

=
N

X

i=1

N

X

j=1

l
ij

(e
i,t

� e
j,t

)T e
i,t

=
N

X

i=1

N

X

j=1

l
ij

eT
j,t

e
i,t

. (4.9)

Let e
t

= [eT1,t, . . . , e
T

N,t

]T . Since graph G is connected, �2(L) > 0 (see Godsil and Royle [36])

and

N

X

i=1

N

X

j=1

l
ij

eT
j,t

e
i,t

= eT (L⌦ I
m

)e � �2e
Te = �2

N

X

i=1

ke
i

k2, (4.10)

where �2 := �2(L) is the second-smallest eigenvalue of L, or the algebraic connectivity of G.

The following result provides a characterization of degree of cohesiveness of sample paths

associated with di↵erent individual threads.

Theorem 3. Assume there exists ⌘ > 0 such that krf(x)k  ⌘ for all x. Then the ensemble

average of V
t

is uniformly bounded in t:

E[V
t

]  e�c1�̃tV 0 +
c2
c1
(1� e�c1�̃t). (4.11)

where c1 2 (0, 2a�2) is arbitrary, and

c2 =
⌘2

2(2a�2 � c1)
+

b|Tr(L)|
2N

+
m⌧ 2(N � 1)

2N
�̃.
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In particular,

E[V
t

]  max{V 0, 
⇤(N)},

and in the long run, E[V
t

]   ⇤(N) where

 ⇤(N) =
1

2a�2

2

4

s

⌘2

4a�2
+

b|Tr(L)|
2N

+
m⌧ 2(N � 1)

2N
�̃ +

s

⌘2

4a�2

3

5

2

.

Proof. See Appendix 4.7.2.

Remark 11. Note that the upper bound on the ensemble average of V
t

is decreasing in a

(attraction potential) and increasing in b (repulsive potential). Hence, the relative strength

of these parameters implies a trade-o↵ between exploration (less cohesive solutions) and

exploitation (more cohesive solutions).

Remark 12. Note further that the algebraic connectivity �2 is critical in determining the

upper bound of V
t

. When N is fixed, a larger �2 leads to a smaller upper bound. In a

complete graph, �2 achieves its maximum value N . In this case,

lim
N!1

 ⇤(N) = lim
N!1

1

2aN

"

r

⌘2

4aN
+

b(N � 1)

2
+

m⌧ 2(N � 1)

2N
�̃ +

r

⌘2

4aN

#2

=
b

4a
.

With a large number of threads, cohesiveness is ensured by the choice of b/a governing the

interplay between inter-individual attraction and repulsion.

4.4 Noise Reduction in Convex Optimization

In this section we formalize the noise reduction properties of the flocking-based algorithmic

scheme for convex optimization. Repulsion amongst threads prevents duplication of search

e↵ort which may arise for instance, when there are multiple locally optimal solutions. Thus,

for convex optimization problems, there is no need for a “repulsion” amongst individual

threads and in this section we set b = 0. As we shall see below, when the underlying problem
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is not convex, repulsion amongst threads does facilitate the identification of a globally optimal

solution.

We make the following standing assumptions:

Assumption 4. (Strong convexity) (rf(x)�rf(x0))T (x�x0) � kx�x0k2 for some  > 0

and for all x, x0.

Assumption 5. (Lipschitz) krf(x) � rf(x0)k  µkx � x0k for some µ �  and for all

x 6= x0.

Since b = 0, Equation (4.8) can be simplified to

dV
t

= � a

N

N

X

i=1

N

X

j=1,j 6=i

↵
ij

(e
i,t

� e
j,t

)T e
i

�̃dt� 1

N

N

X

i=1

rTf(y
i,t

)e
i,t

�̃dt+
⌧

N
�̃

N

X

i=1

dB
i,t

T e
i,t

+
m⌧ 2�̃2(N � 1)

2N
dt. (4.12)

Let us introduce a measure U
t

= (1/2)kȳ
t

� x⇤k2, of the distance between the average

solution identified by all threads at time t/� and the unique optimal solution x⇤. Let

F
i,t

= (1/2)ky
i,t

� x⇤k2 and F
t

= (1/N)
P

N

i=1 Fi,t

. Notice that

F
t

=
1

N

N

X

i=1

1

2
(y

i,t

� ȳ
t

+ ȳ
t

� x⇤) · (y
i,t

� ȳ
t

+ ȳ
t

� x⇤)

=
1

N

N

X

i=1

1

2
ky

i,t

� ȳ
t

k2 + 1

N

N

X

i=1

1

2
kȳ

t

� x⇤k2 + 1

N

N

X

i=1

(y
i,t

� ȳ
t

) · (ȳ
t

� x⇤)

= V
t

+ U
t

. (4.13)

The following result provides a characterization of the performance of the flocking-based

approach to stochastic optimization under Assumptions 1 and 2.

Theorem 4. Suppose that Assumptions 1 and 2 hold. The ensemble average of U
t

is

uniformly bounded:

E[U
t

] =
1

2
E[kȳ

t

� x⇤k2]

e�2�̃t



U0 +
(µ� )

a�2
V 0

�

+
m⌧ 2�̃

4N



1 +
(µ� )(N � 1)

a�2

�

(1� e�2�̃t). (4.14)
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In the long-run the upper bound is:

lim sup
t!1

1

2
E[kȳ

t

� x⇤k2]  �⇤(N) =
m⌧ 2�̃

4N



1 +
(µ� )(N � 1)

a�2

�

. (4.15)

Proof. See Appendix 4.7.3.

Corollary 2. Let x̄
t

= (1/N)
P

N

i=1 xi,t

. We have

1

2
E[kx

t

� x⇤k2]  e�2�̃�̃t



U0 +
(µ� )

a�2
V 0

�

+
m⌧ 2�̃

4N



1 +
(µ� )(N � 1)

a�2

�

(1� e�2�̃�̃t).

(4.16)

Proof. Since y
i,t

= x
i,t/�̃, E[kxt

� x⇤k2] = E[U�̃t]. The above result follows immediately from

Theorem 4.

Note that if we choose a such that a�2 ⇠ N , �⇤(N) ⇠ 1/N , then the long-run upper

bound of E[kx
t

� x⇤k2] is monotonically decreasing in N . In what follows, we will show that

the flocking-based approach exhibits a noise reduction property that is similar to that of a

stochastic gradient algorithm based upon the average of N gradient samples.

Let us assume there is no time overhead in the centralized algorithm so that �t = �̃t.

Also assume � = �̃. It follows that � = �̃, ⌧
N

= �
p

�/(�N) and ⌧ = �
p

�/�.

The stochastic di↵erential equation for the algorithm based upon the average of N gra-

dient samples is:

dy
t

= �rf(y
t

)�dt+ ⌧
N

�dB
t

.

Let G
t

= (1/2)ky
t

� x⇤k2. It follows that

dG
t

= dy
t

· y
t

+
1

2
dy

t

· dy
t

= �rTf(y
t

)y
t

�dt+ ⌧
N

�dB
t

Ty
t

+
1

2
m⌧ 2

N

�2dt. (4.17)

Then,

dG
t

 �2�G
t

dt+
1

2
m⌧ 2

N

�2dt+ ⌧
N

�dB
t

Ty
t

.

As in the proof of Theorem 2, it can be shown that

E[G
t

]  e�2�tG0 +
m⌧ 2

N

�

4
(1� e�2�t) = e�2�tG0 +

m�2�

4N
(1� e�2�t).
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Therefore,

1

2
E[kx

t

� x⇤k2] = E[G�t]  e�2��tG0 +
m�2�

4N
(1� e�2��t).

In the long run,

lim sup
t!1

1

2
E[kx

t

� x⇤k2]  m�2�

4N
.

Since ⌧ = �
p

�/�, a comparison with the upper bound obtained in Corollary 2 (when

a�2 ⇠ N) readily indicates that the flocking-based approach exhibits a noise reduction

property that is similar to that of a stochastic gradient algorithm based upon the average ofN

gradient samples. In the next section, we show that the flocking-based approach outperforms

(in real-time) stochastic gradient algorithm based upon the average of N gradient samples

when overhead due to synchronization is taken into account.

4.4.1 Real-time Performance Comparison

When sampling is undertaken in parallel, synchronization is needed to execute the tasks that

can not be executed in parallel. Hence, the improvement obtained by parallel sampling and

centralized gradient estimation is limited by overhead related to (i) time spent gathering

samples and (ii) synchronization. See for example Hill and Marty [40] for a discussion on

Amdahl’s law in multi-core processing. In what follows we will account for overhead by

assuming the total time needed to implement an iteration of stochastic gradient algorithm

with N samples obtained in parallel is monotonically increasing in N , i.e., �t ⇠ N1/��̃t

where � > 1. The parameter � > 1 encapsulates the relative burden of overhead so that

when � � 1, the burden is relatively weak but increases with values closer to 1.

In a way similar to the analysis presented in the previous section, we get

dG
t

� �2µ�G
t

dt+
1

2
m⌧ 2

N

�2dt+ ⌧
N

�dB
t

Ty
t

.

A lower bound could then be obtained:

E[G
t

] � e�2µ�tG0 +
m⌧ 2

N

�

4µ
(1� e�2µ�t). (4.18)
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Then,

1

2
E[kx

t

� x⇤k2] = E[G�t] � e�2µ��tG0 +
m⌧ 2

N

�

4µ
(1� e�2µ��t), (4.19)

and in the long run,
1

2
E[kx

t

� x⇤k2] � m⌧ 2
N

�

4µ
=

m�2�

4µN
.

In what follows we consider two specific scenarios.

In the case that the two algorithms use the same step size � = �̃, recalling that � = 1/�t

and �̃ = 1/�̃t, we have � = (�̃t/�t)�̃ ⇠ N�1/��̃. It follows that 2µ��/(2�̃�̃) ⇠ N�1/�.

Hence the convergence speed of the centralized scheme is slower than that of a flocking-based

scheme. The long-run performance of the centralized implementation is bounded below by

m�2�/(4µN) ⇠ 1/N, which is on the same level of the flocking-based algorithm.

In the case that the two algorithms use stepsizes proportional to the average sampling

times, i.e., �/�t = �̃/�̃t, E[kx̄
t

� x⇤k2] and E[kx
t

� x⇤k2] have the same convergence speed

since

2µ�̃�̃ = 2µ�̃/�̃t = 2µ�/�t = 2µ��.

However,
m⌧ 2

N

�

4µ
=

m�2�

4µN
=

m�2�̃

4µN

�t

�̃t
⇠ N1/��1.

We formalize the claim that the flocking approach (each thread with a single gradient sample)

outperforms the stochastic gradient approach based upon N samples per step in finite time.

Proposition 1. Suppose �t = N1/��̃t for some � > 0 and �/�t = �̃/�̃t. Then there

exists N⇤ < 1 and t⇤ < 1 such

E[kx
t

� x⇤k2] > E[kx̄
t

� x⇤k2]

for all N > N⇤ and t > t⇤.

Proof. See Appendix 4.7.4.
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4.5 Application to Non-Convex Optimization

In this section, we apply the flocking-based algorithm to the optimization of general non-

convex functions. We will provide some motivating simulation examples first and then discuss

the global asymptotic properties of this scheme.

4.5.1 Simulation Examples

In this part, we illustrate with a limited simulation testbed the performance benefits of a

flocking-based approach when the objective function is not convex. The results indicate that

the noise reduction property is maintained. They also suggest that a flocking-based approach

seems better suited to escape locally optimal solutions than a stochastic gradient descent

based upon the average of N samples. This is likely due to the repulsive force which enforces

a certain level of diversity in the set of candidate solutions. The flocking based-gradient

descent dynamics are thus more likely to lead to globally optimal solutions. We assume that

�/�t = �̃/�̃t in the following simulation examples.

Ackley’s Function (Case 1)

We first consider Ackley’s function

f(x, y) = �20 exp
⇣

�0.2
p

0.5 (x2 + y2)
⌘

� exp (0.5 (cos (2⇡x) + cos (2⇡y))) + e+ 20.

(4.20)

It has a global minimum at x⇤ = (0, 0) and various local optima.

We use N = 20 parallel threads, and the attraction/repulsion function g(x) = �x[4 �

800 exp(�kxk2)] is adopted. In the flocking-based approach, each thread is randomly con-

nected with 8 other threads. Overhead parameter � = 5. Sampling times are constant with

�̃t = 1 and �t = N1/��̃t ' 1.82, respectively. Noise level is � = 0.5. Initially, all the

sampling points were distributed randomly in the [10, 15]⇥ [10, 15] interval. Simulations run

10 times (60s each). Performances of the centralized algorithm are shown in Figure 4.2(a). It
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Figure 4.2: Performance comparison for Ackley’s function (Case 1).

is clear that all independent threads got trapped in local optima. By contrast, we can see in

Figure 4.2 that x
t

in the flocking-based scheme approaches the global optimum successfully.

This is likely due to the repulsive force which enforces a certain level of diversity in the set

of candidate solutions.

Ackley’s Function (Case 2)

In this case we assume that the noise level is � = 7. We use N = 30 computing threads, and

the attraction/repulsion function g(x) = �x[3�0.01 exp(�kxk2)] is adopted. In the flocking-

based approach, each thread randomly communicates with 8 other threads. Overhead pa-

rameter � = 1.5. Sampling times are constant with �̃t = 0.02 and �t = N1/��̃t ' 0.092,

respectively. Initially, the sampling points were distributed randomly in the [10, 12]⇥ [10, 12]

interval. Simulations run for 36s.

We can see in Figure 4.3(a) that individual threads operating in parallel are not able

to approach the globally optimal solution. On the contrary, the flocking discipline allows

convergence to the global optimum successfully (see Figure 4.3(b)).
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Figure 4.3: Performance comparison for Ackley’s function (Case 2).

4.5.2 Asymptotic Noise Reduction

We now discuss the asymptotic noise reduction properties of the flocking-based algorithmic

scheme for non-convex optimization. We start by reviewing the asymptotic performance of

the centralized algorithm based upon the average of N samples per step. Recalling (4.4),

dy
t

= �rf(y
t

)�dt+ ⌧
N

�dB
t

,

The limiting density of y
t

(which solves a related Fokker-Planck equation (see [28, 81])) is

⇡̂(y
t

) =
exp{�2f(x)/(⌧ 2

N

�)}
R

exp{�2f(y)/(⌧ 2
N

�)}
=

exp{�2Nf(y)/(�2�̃)}
R

exp{�2Nf(y)/(�2�̃)}

assuming that � = �̃.

We return now to the flocking scheme. By Equation (4.6) and the relation g(x) =

�r
x

J(kxk), we have

dy
i,t

=

"

�rf(y
i,t

)�
N

X

j=1,j 6=i

↵
ij

r
xiJkyi,t � y

j,t

k
#

�̃dt+ ⌧ �̃dB
i,t

. (4.21)

Let y
t

= [yT1,t, . . . , y
T

N,t

]T 2 RN⇥m, B
t

= [BT

1,t, . . . , B
T

N,t

]T 2 RN⇥m. Define

H(y
t

) =
N

X

i=1

f(y
i,t

) +
1

2

N

X

i=1

N

X

j=1,j 6=i

↵
ij

J(ky
i,t

� y
j,t

k). (4.22)
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We can rewrite (4.21) in a compact form:

dy
t

= �rH(y
t

)�̃dt+ ⌧ �̃dB
t

. (4.23)

The Fokker-Planck equation related to the stochastic di↵erential equation (4.23) is:

@p
t

@t
= �r · (rH(y)�̃p

t

) +
⌧ 2�̃2

2
r2p

t

(4.24)

where p
t

:= p(y
t

, t | y0, 0) is the probability density of y
t

.

Proposition 2. Assume that
R

exp{�2H(y)/⌧ 2}dy is finite. Then y
t

weakly approaches a

unique equilibrium, which is a Gibbs distribution with density

⇡(y) =
1

K
exp{�2H(y)/(⌧ 2�̃)}, (4.25)

where

K =

Z

exp{�2H(y)/(⌧ 2�̃)}dy.

Proposition 2 comes from the standard theory of di↵usion (see [28,81]). The assumption

is required for the distribution (4.25) to be well-defined. It is satisfied when H(y) grows

rapidly enough, or when the feasible region X has reflected boundaries.

We now show that for large values of the parameter a (attractive force) the asymptotic

noise reduction properties of the flocking-based algorithmic scheme is the same to that of a

centralized algorithm based upon the average of N samples per step.

Theorem 5. The asymptotic probability distribution of y
t

has density:

⇡⇤(y) =
exp

n

�2Nf(y)/(�2�̃)
o

R

exp
n

�2Nf(y)/(�2�̃)
o

dy
,

as a ! 1.

Proof. See Appendix 4.7.5.

Remark 13. The asymptotic probability distribution of x
t

is the same as that of y
t

as a ! 1.
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Remark 14. The limiting probability density of x
t

as a ! 1 does not depend on the specific

network topology as long as �2 > 0, i.e., the network is connected. This is a very mild

networking requirement satisfied by many simple topologies (e.g. ring, line, bus, mesh).

Remark 15. As N ! 1, ⇡⇤(x) concentrates on the global minima of f , in which case the

average solution of the flocking scheme is guaranteed to approximate a global minimum (see

Geman and Hwang [34] for a reference).

4.6 Conclusions of This Chapter

In recent years, the paradigm of cloud computing has emerged as an architecture for com-

puting that makes use of distributed (networked) computing resources. In this chapter, we

analyze a distributed computing algorithmic scheme for stochastic optimization which relies

on modest communication requirements amongst processors and most importantly, does not

require synchronization. The proposed distributed algorithmic framework may provide sig-

nificant speed-up in application domains in which sampling times are non-negligible. This

is the case, for example, in the optimization of complex systems for which performance may

only be evaluated via computationally intensive black-box simulation models.

The scheme considered in this chapter has N > 1 computing threads operating under

a connected network. At each step, each thread independently computes a new solution

by using a noisy estimation of the gradient, which is further perturbed by a combination of

repulsive and attractive terms depending upon the relative distance to solutions identified by

neighboring threads. When the objective function is convex, we showed that a flocking-like

approach for distributed stochastic optimization provides a noise reduction e↵ect similar to

that of a centralized stochastic gradient algorithm based upon the average of N gradient

samples at each step. When the overhead related to the time needed to gather N samples

and synchronization is not negligible, the flocking implementation outperforms a centralized

stochastic gradient algorithm based upon the average of N gradient samples at each step.

When the objective function is not convex, the flocking-based approach seems better suited

to escape locally optimal solutions due to the repulsive force which enforces a certain level
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of diversity in the set of candidate solutions. Here again, we showed that the noise reduction

e↵ect is similar to that associated to the centralized stochastic gradient algorithm based

upon the average of N gradient samples at each step.

4.7 Appendix

4.7.1 Proof of Lemma 1

Since A = AT and g(·) is odd,

dy
t

=
1

N

N

X

i=1

dy
i,t

=
1

N

N

X

i=1

"

�rf(y
i,t

)�̃dt+
N

X

j=1,j 6=i

↵
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g(y
i,t

� y
j,t

)�̃dt+ ⌧ �̃dB
i,t

#

= � 1

N

N

X

i=1

rf(y
i,t

)�̃dt+
⌧

N
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N

X

i=1

dB
i,t

. (4.26)

It follows that

de
i,t

=dy
i,t
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t

=
N

X

j=1,j 6=i

↵
ij

g(y
i,t

� y
j,t

)�̃dt�rf(y
i,t
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1
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i,t

)�̃dt+ ⌧ �̃dB
i,t

� ⌧

N
�̃

N

X

i=1

dB
i,t

. (4.27)

From Equation (4.7),

g(y
i,t

� y
j,t

) = �(y
i,t

� y
j,t

)[g
a

(ky
i,t

� y
j,t

k)� g
r

(ky
i,t

� y
j,t

k)]

= �(y
i,t

� y
j,t

)[a� g
r

(ky
i,t

� y
j,t

k)].

We then have

N

X

j=1,j 6=i

↵
ij

g(y
i,t

� y
j,t

) = �a
N

X

j=1,j 6=i

↵
ij

(y
i,t

� y
j,t

) +
N

X

j=1,j 6=i

↵
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g
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(ky
i,t

� y
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k)(y
i,t
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).
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Consequently, Equation (4.27) becomes

de
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= �a
N

X
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N
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Then,
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=de
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In conclusion, the stochastic di↵erential equation is
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4.7.2 Proof of Theorem 3

By Equation (4.30),

dV
t
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Noticing that g
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k2  b, by (4.9) and (4.10),
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where c1 2 (0, 2a�2) is arbitrary, and

c2 =
⌘2

2(2a�2 � c1)
+

b|Tr(L)|
2N

+
m⌧ 2(N � 1)

2N
�̃.
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Applying Ito’s formula to ec1�̃tV
t

,

d(ec1�̃tV
t

) = ec1�̃tdV
t
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.

Integrating the stochastic di↵erential inequality,

V
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Taking an ensemble average on both sides yields

E[V
t

]  e�c1�̃tV 0 +
c2
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(1� e�c1�̃t). (4.31)

It follows that
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Therefore
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}, 8t, (4.32)

In the long run,
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Notice that the above inequality is valid for all c1 2 (0, 2a�2), of which we look for the

minimum over all possible c1’s. Define
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By Cauchy-Schwartz inequality, when
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,
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 (c1) attains its minimum

 ⇤ =
1

2a�2
(
p
c3 +

p
c4)

2
.

Here
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4a�2
+

b|Tr(L)|
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�̃, c4 =

⌘2
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.

Since (4.33) is valid for all c1 2 (0, 2a�2), it holds true that E[V
t

]   ⇤ in the long run.

4.7.3 Proof of Theorem 4

Preliminaries

According to Equation (4.26) and Ito’s lemma,
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Since f(·) attains its minimum at x⇤, rf(x⇤) = 0. Then by Assumption 4 and Equation

(4.13),
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Therefore,
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Lemma 2.
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Proof. By Equation (4.12),
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where the inequality follows from Assumption 4. In light of (4.9) and (4.10),
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Proof of Theorem 4
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By (4.35) and (4.36),
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Then,
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Integrating both sides yields
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Taking ensemble average, we get
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4.7.4 Proof of Proposition 1

By (4.16) and (4.19),
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It follows that
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From the discussion in Section 4.4.1, d1 ⇠ 1/N (1/�)�1 and d3 ⇠ 1/N . Therefore, there exists

N⇤ such that when N > N⇤, d3 < d1. In this case, Let t⇤ be such that

d1 � d3 = |G0 � d1|e�2µ��t⇤ + |d2 � d3|e�2�̃�̃t⇤ .

Then for all t > t⇤,
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4.7.5 Proof of Theorem 5

We start by looking for the joint density of (yT , eT1 , . . . , e
T

N�1). Notice that (y
T , eT1 , . . . , e

T

N�1) =

(D ⌦ I
m

)y
t

, where D is a N ⇥ N matrix. It is easy to verify that D has full rank, so that
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)�1 exists. It follows that (see Jacod and Protter [45])
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where K̃ is a normalizing factor. The density of y is calculated as
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in the equation above. We rewrite the potential function J as
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Godsil and Royle [36])
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Given that graph G is connected, zT (L ⌦ I
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This completes the proof.
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CHAPTER 5

Iterative Mechanisms for Electricity Markets

In this chapter, we consider the problem of designing the rules by which market dispatch

and payment to participants are gradually adjusted while taking into account network and

reliability constraints so as to ensure the market clears with an e�cient outcome. Small

adjustments (which require minimal information from market participants at each iteration)

facilitate the identification of incentives for ensuring truthful reporting of private informa-

tion. We propose a class of iterative mechanisms and show this class exhibits many desirable

properties (approximately): incentive compatibility, e�ciency, individual rationality and

(weak) budget balance. In the second part of this chapter, we analyze an iterative mech-

anism for stochastic market clearing, a pressing need given the increasing penetration of

highly intermittent renewable generation technologies. In this case, the marginal cost of

adjustments may only be estimated with some error. We show that truthful reporting is a

Nash equilibrium and the resulting dispatch converges almost surely to the e�cient dispatch.

5.1 Introduction

Electricity is a complex bundle of services involving multiple power plants and consumers in

various locations over a capacity constrained network. A particular feature of many electric-

ity markets is that market clearing is carried out by solving an optimization problem using

input information (e.g., bids to buy and/or sell electricity) from market participants. This

type of clearing is needed because other more traditional clearing protocols (e.g., bilateral
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trading) may not reliably or timely satisfy physical constraints. Market clearing is thus akin

to a “black box” since the underlying optimization model is not necessarily transparent to

market participants. The use of relatively sophisticated “black box” optimization models for

clearing has important implications for market design. Some market participants because of

their relative size, location or cost may have the ability to significantly alter market clear-

ing outcomes by manipulating the information they provide to the ISO/RTO in charge of

clearing. Depending upon the pricing rules in place, some market participants may find it

advantageous to manipulate market clearing outcomes. This could possibly result in inef-

ficient outcomes as well as distorted prices which provide incorrect investment incentives.

Because of the “black box” nature of market clearing, it may be exceedingly hard to detect

and/or identify certain types of market power abuse.

A cursory look at the history of commodity markets highlights the ways in which the

history of electricity markets is fundamentally di↵erent. Most commodity markets gradu-

ally evolved towards standard terms of trade and institutions that helped increase liquidity

and reduce transaction risks (see for example McMillan [63]). In contrast, most electricity

markets artificially evolved from the coordinated or pooled operation of vertically integrated

(and highly regulated) utilities. This evolution was rather artificial in that it was imposed

by governments intent on bringing an element of competition to an industry no longer con-

sidered a natural monopoly. Not surprisingly many alternative designs for the operation

of electricity markets have been tried out by di↵erent countries. At times, concerns over

economic e�ciency have motivated comprehensive reforms. This was the case of the NETA

reform in the UK (see [26, 48]) according to which a uniform pricing rule was replaced by

pay-as-bid pricing rule (among other important changes). More than thirty years after the

first electricity markets began operating, the task of properly tuning market rules to ensure

economically e�cient outcomes (i.e., market design) seems far from complete.1

The identification of the optimal design for an electricity market can be formulated as a

mechanism design problem (see Silva et al. [87]). Mechanism design is a field of game theory

1
See for example the discussion prompted by FERC’s Notice of Proposed Rulemaking Docket No. RM16-

5-000 regarding the relaxation of the price cap.
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in which the rules of a game are designed in order to induce a desired equilibrium outcome

resulting from the interaction of rational agents with private information (see Borgers et

al. [8]). In a directmechanism, market participants (i.e., generators and retailers) report their

private information (i.e., costs and willingness to pay) to the ISO or RTO which in turn clears

the market and determines the associated market compensation and/or charges for each

market participant. A mechanism is said to be incentive compatible in dominant strategies

(or strategy-proof) if it is optimal for every market participant to truthfully report their

private information regardless of the reporting strategies of other participants. A mechanism

is said to be e�cient if the market clears with the e�cient market outcome. A weaker

form of incentive compatibility is related to implementation in a Bayes-Nash equilibrium.

This concept relies on a common knowledge assumption on the market participants’ private

information (see Borgers et al. [8]).

While direct mechanisms only require one round of interaction, the nature of the in-

formation exchange between market participants and the market-maker is quite complex.

For example, in many designs currently in place, each generator (respectively, each retailer)

must report their complete cost function (respectively, their willingness to pay) over the set

of individual market outcomes. In this rich strategy space, equilibrium strategic behavior

can be quite complex often inducing ine�cient market outcomes (see for example, Anderson

et al. [2] and Holmberg and Newbery [41]). In this chapter, we consider the problem of de-

signing a mechanism, i.e., the rules by which market dispatch and payment to participants

in an electricity are determined while taking into account network and reliability constraints.

Our approach di↵ers from Silva et al. [87] and the more recent work of Xu and Low [110] and

Jofré et al. [47] in that we consider iterative mechanisms. In an iterative mechanism, market

participants are asked to report the cost or willingness to pay for small adjustments at each

iteration. A tentative market dispatch is marginally adjusted ensuring network constraints

are satisfied and a stopping criteria is checked. At each iteration, each market participant is

charged (or compensated) according to the marginal change in surplus to all other market

participants. This pricing rule can be seen as a marginal implementation of Clarke-Groves
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mechanism (see [17, 37]). Small adjustments requiring minimal information from market

participants at each iteration, facilitate the identification of incentives for ensuring truthful

reporting of private information. To see why this is the case, consider the case of a demand

aggregator. Reporting a lower than truthful marginal valuation leads to a marginal reduc-

tion in the tentatively dispatched demand. The compensation for this reduction is equal to

the cost savings associated to marginally decreased generation net of any increased marginal

surplus for other demand aggregators. Similarly, reporting a higher than truthful marginal

valuation leads to a marginal increase in the tentatively dispatched demand. The payment

for this increase is equal to the cost increase associated to marginally increased generation net

of any reduced marginal surplus for other demand aggregators. Thus, for small adjustments,

the incentives of the individual demand aggregator are aligned with those of the market-

maker which aims to locally improve the e�ciency of the tentative dispatch. However, this

marginal incentive compatibility property may not be robust to the possibilities of dynamic

strategic behavior that an iterative mechanism o↵ers. We address this concern by incorpo-

rating two design features. First, we assume the information regarding the tentative schedule

adjustments are privately communicated by the market-maker to each market participant.

This information flow precludes the possibility of statistical learning by any given participant

regarding the likely types of other market participants. Secondly, in the class of iterative

mechanisms proposed, the market-maker checks (at every iteration) an activity rule for each

market participant. This ensures that the reporting strategies by a generator (respectively,

demand aggregator) must be consistent over time with some convex cost function (respec-

tively, concave valuation function). These design features allow the extension of the local

incentive compatibility property to a more complex (infinite dimensional) strategy space. We

show that truthful reporting is (approximately) a dominant strategy. Upon stopping, the

resulting economic dispatch is approximately e�cient. Individual participation constraints

are satisfied as the net surplus from trade is approximately shared equally by all participants

and the mechanism is approximately weakly budget balanced. Interestingly, the mechanism

may potentially be suitably altered in various ways as its main properties are not dependent
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upon the closed-form representation of network constraints but rather on the convexity of

the set of feasible solutions. For example, the proposed mechanism may potentially be used

in conjunction with convex approximations to AC power flow (see [84], [24]).

In the second part of the chapter we consider an iterative mechanism for stochastic

market clearing. The inherent intermittency of renewable technologies poses new challenges

for ensuring a reliable and secure operation of electricity markets. As the marginal cost of

renewable electricity is negligible, purely economic considerations would dictate a market

clearing outcome in which most renewable output is cleared. However, intermittency may

compromise the secure operation of the power grid infrastructure supporting the market. The

incorporation of reliability and/or security constraints in market clearing further complicates

the task of market design. In the second part of the chapter, we consider an iterative

mechanism for stochastic market clearing (see [10,78,107,113]). This is an important feature

as the share of renewable (intermittent) capacity in most electricity markets around the world

is increasing at a steady pace and ex-post adjustments to market dispatch are the norm. In

a direct mechanism for stochastic market clearing, the market-maker selects both a nominal

dispatch and (ex-post) dispatch adjustments based upon the reports by market participants

regarding their cost and valuation structure (including the cost of adjustments). In this

context, equilibrium strategic behavior can be quite complex so that a comparison between

di↵erent direct mechanism designs is not straightforward (see Khazaei et al. [49]). We propose

an iterative mechanism for stochastic market clearing. In this context, participants may

report incorrect values for the marginal expected cost while still being truthful. This is due

to estimation error. We show that truthful reporting is a Nash equilibrium and the resulting

dispatch converges almost surely to the e�cient dispatch.

The structure of this chapter is as follows. In Section 2 we introduce the basic economic

dispatch problem with network constraints. In Section 3, we introduce an iterative mecha-

nism design and discuss its main features. In Section 4 we analyze the mechanism’s main

properties: convergence, e�ciency, incentive compatibility and budget balance. We also

discuss other iterative mechanisms that could exhibit similar properties. In Section 5 we
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introduce an iterative mechanism for stochastic market clearing and analyze its properties.

Finally we close in Section 6 with conclusions and a discussion of further work.

5.2 Preliminaries

5.2.1 Constrained Economic Dispatch

We consider a stylized description of the day-ahead market clearing for a given hour in an

electricity market. For ease of exposition, we will assume in what follows that there is a single

demand aggregator (e.g. retailer) at each node i 2 I in the network. We shall denote by d
i

(in MW/hr) demand aggregator i’s demand and v
i

(d) is demand aggregator i’s valuation for

consumption level d � 0. We also assume there is at most one generator per node with total

cost C
i

(x) for a production level x � 0. The assumption of a single retailer and generator at

each node will be relaxed later (see Appendix B) so that both retailers and generators may

simultaneously operate in several nodes.

The shift-factor formulation of optimal DC power flow is given by:
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(5.1)

where ⌘
`,i

2 [�1, 1] is the power shift factor from node i to line `, z
`

is the capacity of line `

and x
i

, x̄
i

are the lower and upper limits for generator i.

5.2.2 Mechanism Design

Information on the functions v
i

and C
i

is private to demand aggregators and generators.

In a typical market design, market participants report functions v̂
i

and Ĉ
i

to the market-
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maker (ISO or RTO) so that locational marginal prices are identified by solving problem

(5.1). However, there is no guarantee that v̂
i

= v
i

and Ĉ
i

= C
i

, i.e. market participants

may not truthfully reveal their private information. This implies the resulting dispatch is not

necessarily e�cient. In what follows we will present and analyze a mechanism that guarantees

market participants (demand aggregators and generators) report truthful information to the

market maker in order to identify the optimal solution to problem (5.1).

To model private information, let V
i

denote the type space for demand aggregator located

in node i 2 I. Similarly, let C
i

denote the type space for generator located in node i 2 I.

We make the following standing assumption:

Assumption 6. For each node i, C
i

(respectively, V
i

) is the set of strictly convex (respec-

tively, strictly concave) Lipschitz functions with continuous derivatives.

Denote the total number of nodes by I = |I|. Let x = [x1, x2, . . . , xI

] and d =

[d1, d2, . . . , dI ]. In a direct mechanism, each generator reports a type Ĉ
i

2 C
i

and each

retailer reports a type v̂
i

2 V
i

. Let Û
i

= (v̂
i

, Ĉ
i

) and Û = [Û1, Û2, . . . , ÛI

]. Then, generation

dispatch x(Û) and demand d(Û) are identified. Each demand aggregator i is charged ⌧
i

(Û)

and each generator is compensated ⇡
i

(Û).

Assuming quasi-linear preferences, a direct mechanism is incentive compatible in domi-

nant strategies (or strategy-proof ) if for each demand aggregator

v
i

(d(v
i

, Û�i

))� ⌧
i

(v
i

, Û�i

) � v
i

(d(v̂
i

, Û�i

))� ⌧
i

(v̂
i

, Û�i

), 8 v̂
i

2 V
i

, Û�i

2 U�i

,

and for each generator

⇡
i

(C
i

, Û�i

)� C
i

(x(C
i

, Û�i

)) � ⇡
i

(Ĉ
i

, Û�i

)� C
i

(x(Ĉ
i

, Û�i

)), 8 Ĉ
i

2 C
i

, Û�i

2 U�i

,

where Û�i

(similarly U�i

) represents the information reported by all market participants ex-

cept demand aggregator (respectively, generator) located in node i. In other words, this says

that reporting the true function v
i

(respectively, C
i

) is optimal regardless of the announce-

ments made by other users, say Û�i

. It is worth recalling here incentive compatibility in

dominant strategies (strategy-proofness) is a stronger property than incentive compatibility
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in Bayes-Nash equilibrium strategies which is the solution concept used in Silva et al. [87]

and Jofré et al. [47].2

Direct mechanisms require complex information exchange between market participants

and the market-maker. Strategic behavior induced by direct mechanisms can be quite com-

plex (see for example, Anderson et al. [2] and Holmberg and Newbery [41] for the case of

discriminatory auctions). In the next section we introduce an iterative mechanism that relies

on simpler informational exchange. The basic idea is to introduce marginal adjustments to

a tentative power flow solution while making sure the pricing incentives for marginal adjust-

ment are strategy-proof. As we shall show in what follows, this allows the market-maker to

identify the optimal solution to problem (5.1).

5.3 An Iterative Mechanism

The iterative mechanism proposed works as follows. At the beginning of iteration t � 0, each

demand aggregator has a tentative schedule for consumption profile dt
i

� 0. Similarly, each

generator i is tentatively scheduled to deliver xt

i

units. The tentative schedule is a feasible

solution to problem (5.1). Each demand aggregator and each generator respectively submit

information ut+1
i

and ct+1
i

on the value and cost respectively associated to small changes to

the tentative schedule. A market-maker takes these inputs and solves for an economically

e�cient adjustment to the tentative schedule ensuring that the network constraints are

satisfied. Then, the tentative schedules for demand and production are updated to dt+1
i

and

production xt+1
i

. The mechanism closes when a given stopping rule is met. Formally, the

iterative mechanism proposed is as follows.

1. Initialization. Start with any feasible pair (x0,d0).

2. Demand and Generation updates. At each round (or iteration) t � 0, each

demand aggregator and each generator respectively submit information ut+1
i

2 R+ and

2
See Wilson [106] for a critique of a common knowledge assumption on a joint distribution for private

information.
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ct+1
i

2 R+. The market maker solves

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

max
P

i

(ut+1
i

d
i

� ct+1
i

x
i

)

s.t
P

i

(x
i

� d
i

) � 0

�z
`


P

i

⌘
`,i

(x
i

� d
i

)  z
`

x
i

 x
i

 x̄
i

d
i

� 0

(5.2)

Let (x̂t+1, d̂t+1) denote a solution to the linear program (5.2). The tentative schedules

for production and consumption are updated as follows:

xt+1 = xt + ↵
t

(x̂t+1 � xt), (5.3)

and

dt+1 = dt + ↵
t

(d̂t+1 � dt), (5.4)

where {↵
t

: t � 0} is a sequence of stepsizes that satisfy ↵
t

2 (0, 1), ↵
t

! 0+, and

1
P

t=1
↵
t

= 1,
1
P

t=0
↵2
t

= M < 1.

3. Incentive Payment: Each demand aggregator i 2 I is assessed a payment of �⌧ t+1
i

which is computed as follows

�⌧ t+1
i

= �
X

k 6=i

(dt+1
k

� dt
k

)ut+1
k

+
X

k

(xt+1
k

� xt

k

)ct+1
k

. (5.5)

Each generator i 2 I is assessed a compensation of �⇡t+1
i

which is computed as follows

�⇡t+1
i

=
X

k

(dt+1
k

� dt
k

)ut+1
k

�
X

k 6=i

(xt+1
k

� xt

k

)ct+1
k

. (5.6)

The total payment and compensation accrued after t+ 1 rounds is given by:

⌧ t+1
i

= ⌧ t
i

+�⌧ t+1
i

, ⇡t+1
i

= ⇡t

i

+�⇡t+1
i

.
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4. Activity Rule: The market-maker checks that

(dt̃
i

� dt
i

) · (ut̃+1
i

� ut+1
i

) < 0 (xt̃

i

� xt

i

) · (ct̃+1
i

� ct+1
i

) > 0

for all t̃ < t and for each generator and demand aggregator located in node i. A

participant is removed from market-clearing when this activity rule is violated.

5. Stopping Rule: If complementary slackness between the tentative schedule and La-

grange multipliers in the optimal solution to problem (5.2) is approximately verified,

then STOP. Otherwise, a new iteration (steps 2 and 3) takes place.

5.3.1 Remarks

Information Flow

The information regarding the tentative schedule adjustments xt+1
i

�xt

i

(respectively, dt+1
i

�

dt
i

) and associated compensation �⇡t+1
i

(respectively, �⌧ t+1
i

) are privately communicated

by the market-maker to each generator (respectively demand aggregator) located in node i.

This information flow precludes the possibility of learning by any given participant regarding

the likely types of other market participants.3

Pricing Rule

The pricing rule can be seen as an implementation of Groves-Clarke pricing for small adjust-

ments (see [17,37]). To gain an intuition note that not reporting the true marginal cost can

only reduce a generator’s marginal surplus. By reporting a higher marginal cost, the opti-

mal solution implies the production levels of other less e�cient generators will be marginally

increased and there will be a marginal reduction in consumption by demand aggregators.

Since the compensation is proportional to the marginal change in surplus to other generators

and all demand aggregators, reporting a higher marginal cost is not in the given generator’s

3
The implications of strategic learning are examined in dynamic mechanism design (see Bergemann and

Pavan [5]).
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best interest when the tentative schedule is not e�cient. A similar argument can be made

to show reporting a lower marginal cost is not optimal.

Activity Rule

The activity rule is equivalent to checking that the reporting strategies {ut+1
i

: t > 0} for

a demand aggregator (respectively, {ct+1
i

: t > 0} for a generator) must be consistent with

some concave valuation function (respectively, convex cost function). Hence, to check that

the iterative design proposed is strategy-proof one needs only check that it is not optimal for

any demand aggregator (respectively, generator) to report information in a manner consistent

with some concave valuation function (respectively, convex cost function).

Denote by v0
i

(·) (respectively, C 0
i

(·)) the derivative function of v
i

(respectively, C
i

). In

what follows we say that demand aggregators are truthful if ut+1
i

= v0
i

(dt
i

). Similarly, gener-

ators are truthful if ct+1
i

= C 0
i

(xt

i

).

5.4 Analysis

The strategy for analysis is as follows. First, assuming that demand aggregators and gener-

ators are truthful we will show convergence to optimal dispatch. Then we will show that it

is optimal for every participant (demand aggregator or generator) to be truthful regardless

of the reporting strategies implemented by other market participants. In what follows we

assume that Assumption 6 holds.

5.4.1 Convergence

Consider the objective function:

F(x,d) :=
X

i2I

[v
i

(d
i

)� C
i

(x
i

)].

Lemma 3. The sequence {F(xt,dt) : t > 0} converges.
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Proof. By Assumption 6, v0
i

(·) and C 0
i

(·) are Lipschitz continuous for all i 2 I. Hence F(x,d)

has Lipschitz continuous gradient, so that (see Nesterov [70])

F(xt+1,dt+1) � F(xt,dt) +r
d

F(xt,dt) · (dt+1 � dt) +r
x

F(xt,dt) · (xt+1 � xt)

� 1

2
Lkdt+1 + xt+1 � dt � xtk2

for some Lipschitz constant L > 0. Given that xt+1 = xt + ↵
t

(x̂t+1 � xt) and dt+1 =

dt + ↵
t

(d̂t+1 � dt), the inequality above can be rewritten as

F(xt+1,dt+1) � F(xt,dt) + ↵
t

r
d

F(xt,dt) · (d̂t+1 � dt) + ↵
t

r
x

F(xt,dt) · (x̂t+1 � xt)

� ↵2
t

2
Lkd̂t+1 + x̂t+1 � dt � xtk2.

Notice that the feasible region specified by the constraints in (5.2) is both convex and

compact. Since d̂t+1 and x̂t+1 are feasible, dt+1 = (1 � ↵
t

)dt + ↵
t

d̂t+1 and xt+1 = (1 �

↵
t

)xt + ↵
t

x̂t+1, a simple induction shows that dt+1 and xt+1 are also feasible. Therefore,

kd̂t+1 + x̂t+1 � dt � xtk2  D for some D > 0. We have

F(xt+1,dt+1) � F(xt,dt) + ↵
t

X

i

(d̂t+1
i

� dt
i

)v0
i

(dt
i

)� ↵
t

X

i

(x̂t+1
i

� xt

i

) · C 0
i

(xt

i

)� ↵2
t

2
LD

= F(xt,dt) + ↵
t

[
X

i

(ut+1
i

d̂t+1
i

� ct+1
i

x̂t+1
i

)�
X

i

(ut+1
i

dt
i

� ct+1
i

xt

i

)]� ↵2
t

2
LD

� F(xt,dt)� ↵2
t

2
LD, (5.7)

where the last inequality is due to the fact that (x̂t+1, d̂t+1) is the solution to (5.2) for which

(xt,dt) is feasible.

Since the sequence (xt,dt) is bounded and F(x,d) is Lipschitz continuous, F(xt,dt) is

also bounded. Now assume by contradiction that {F(xt,dt) : t > 0} does not converge. Then

lim supF(xt,dt) > lim inf F(xt,dt). There exists F̄ > F such that both F(xt,dt) > F̄ and

F(xt,dt) < F infinitely often. But F(xt+1,dt+1)�F(xt,dt) � �(↵2
t

/2)LD and
P

t

↵2
t

< 1

implies that such up-crossings and down-crossings cannot take place infinitely often. We

conclude that the sequence {F(xt,dt) : t > 0} converges.
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Theorem 6. Assuming that generators and demand aggregators are truthful, (xt,dt) con-

verges to the unique solution of problem (5.1).

Proof. See Appendix A.

5.4.2 Incentive Compatibility

Unlike direct mechanisms, dynamic strategic behavior must be taken into account when

analyzing the incentive compatibility properties of an iterative mechanism. As mentioned

before, the proposed design features bilateral information exchange regarding the tentative

dispatch the payment or compensation for adjustments between market-maker and each

market participant. This information architecture precludes the possibility of statistical

learning by any given participant regarding the likely types of other market participants.

Another important design feature corresponds to the activity rule. This test ensures that

the reporting strategies by a generator (respectively, demand aggregator) must be consistent

over time with some convex cost function (respectively, concave valuation function). These

design features play an important role in ensuring the iterative mechanism is approximately

strategy-proof. That is to say, truthful reporting is arbitrarily close to being an optimal

strategy regardless of the reporting strategies of other market participants.

Theorem 7. Truthful reporting is a �M > 0 dominant strategy where �M = 1
2LDM .

Proof. We start by showing that truthful reporting is a �M -Nash equilibrium. Then we

show that truthful reporting is �M -optimal regardless of the reporting strategies of other

market participants. We start with estimating the total payment for demand aggregator i

(respectively, generator i) under truthful reporting assuming all other demand aggregators

and generators are truthful. Referring to (5.5), after T rounds the total payment for demand

aggregator i is

⌧T
i

= ⌧ 0
i

�
T�1
X

t=0

X

k 6=i

(dt+1
k

� dt
k

)ut+1
k

+
T�1
X

t=0

X

k

(xt+1
k

� xt

k

)ct+1
k

.
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On one hand, notice that for all k 2 I,

v
k

(dt+1
k

)� v
k

(dt
k

)  v0
k

(dt
k

)(dt+1
k

� dt
k

) = (dt+1
k

� dt
k

)ut+1
k

by concavity of v
k

and the truthful reporting assumption, and

C
k

(xt+1
k

)� C
k

(xt

k

) � (xt+1
k

� xt

k

)C 0
k

(xt

k

) = (xt+1
k

� xt

k

)ct+1
k

by convexity of C
k

and the truthful reporting assumption. We have

⌧T
i

 ⌧ 0
i

�
T�1
X

t=0

X

k 6=i

(v
k

(dt+1
k

)� v
k

(dt
k

)) +
T�1
X

t=0

X

k

(C
k

(xt+1
k

)� C
k

(xt

k

))

= ⌧ 0
i

� (
X

k 6=i

v
k

(dT
k

)�
X

k

C
k

(xT

k

)) +
X

k 6=i

v
k

(d0
k

)�
X

k

C
k

(x0
k

). (5.8)

On the other hand,

⌧T
i

= ⌧ 0
i

�
T�1
X

t=0

X

k

(dt+1
k

� dt
k

)ut+1
k

+
T�1
X

t=0

X

k

(xt+1
k

� xt

k

)ct+1
k

+
T�1
X

t=0

(dt+1
i

� dt
i

)ut+1
i

� ⌧ 0
i

�
T�1
X

t=0

X

k

(v
k

(dt+1
k

)� v
k

(dt
k

)) +
T�1
X

t=0

X

k

(C
k

(xt+1
k

)� C
k

(xt

k

))

�
T�1
X

t=0

1

2
Lkdt+1 + xt+1 � dt � xtk2 +

T�1
X

t=0

(v
i

(dt+1
i

)� v
i

(dt
i

))

= ⌧ 0
i

� (
X

k 6=i

v
k

(dT
k

)�
X

k

C
k

(xT

k

)) +
X

k 6=i

v
k

(d0
k

)�
X

k

C
k

(x0
k

)

�
T�1
X

t=0

1

2
Lkdt+1 + xt+1 � dt � xtk2,

where the inequality comes from the Lipschitz condition. Recalling that xt+1�xt = ↵
t

(x̂t+1�

xt) and dt+1 � dt = ↵
t

(d̂t+1 � dt),

⌧T
i

� ⌧ 0
i

� (
X

k 6=i

v
k

(dT
k

)�
X

k

C
k

(xT

k

)) +
X

k 6=i

v
k

(d0
k

)�
X

k

C
k

(x0
k

)� 1

2
LDM. (5.9)

Analogously, ⇡T

i

satisfies

⇡T

i

� ⇡0
i

+
X

k

v
k

(dT
k

)�
X

k 6=i

C
k

(xT

k

)�
X

k

v
k

(d0
k

) +
X

k 6=i

C
k

(x0
k

), (5.10)
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and

⇡T

i

 ⇡0
i

+
X

k

v
k

(dT
k

)�
X

k 6=i

C
k

(xT

k

)�
X

k

v
k

(d0
k

) +
X

k 6=i

C
k

(x0
k

) +
1

2
LDM. (5.11)

Hence the net surplus for demand aggregator i satisfies

v
i

(dT
i

)� ⌧T
i

2
⇥

F(xT ,dT )� F(x0,d0) + v
i

(d0
i

)� ⌧ 0
i

,

F(xT ,dT )� F(x0,d0) + v
i

(d0
i

)� ⌧ 0
i

+
1

2
LDM

�

.

In the limit as T ! 1,

v
i

(dT
i

)� ⌧T
i

� F(x⇤,d⇤)� F(x0,d0) + v
i

(d0
i

)� ⌧ 0
i

.

Now assume that demand aggregator i engages in untruthful reporting consistently with

some convex value function ṽ
i

, i.e. ut+1
i

= ṽ0
i

(dt
i

). We can invoke Theorem (6) to show that

this untruthful behavior leads to the optimal solution of problem (5.1) where in the function

v
i

is replaced by ṽ
i

. Let (x̃⇤, d̃⇤) be the optimal solution. Then,

v
i

(dT
i

)� ⌧T
i

�F(x⇤,d⇤)� F(x0,d0) + v
i

(d0
i

)� ⌧ 0
i

�F(x̃⇤, d̃⇤)� F(x0,d0) + v
i

(d0
i

)� ⌧ 0
i

�v
i

(d̃T
i

)� ⌧̃T
i

� 1

2
LDM,

where ⌧̃T
i

is defined correspondingly. Therefore, it is �M -optimal for demand aggregator i to

be truthful when all other market participants are truthful. Similarly, to see that it is also

�M -optimal for generator i to be truthful (when all other participants are truthful) note that

the net surplus for generator i satisfies

⇡T

i

� C
i

(xT

i

) 2
⇥

F(xT ,dT )� F(x0,d0)� C
i

(x0
i

) + ⇡0
i

,

F(xT ,dT )� F(x0,d0)� C
i

(x0
i

) + ⇡0
i

+
1

2
LDM

�

.

As T ! 1,

⇡T

i

� C
i

(xT

i

) �F(x⇤,d⇤)� F(x0,d0)� C
i

(x0
i

) + ⇡0
i

�F(x̃⇤, d̃⇤)� F(x0,d0)� C
i

(x0
i

) + ⇡0
i

�⇡̃T

i

� C
i

(d̃T
i

)� 1

2
LDM.
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Now consider the case in which market participants other than demand aggregator i report

consistently according to concave value functions ṽ
k

, k 6= i and convex functions c̃
i

, i.e.,

ut+1
k

= ṽ0
k

(dt
k

) and ct+1
i

= C̃ 0
i

(xt

i

). If demand aggregator i is truthful then Theorem (6)

ensures that (xt,dt) ! (x̂, d̂) where this limit point is the solution to problem (5.1) with

the value functions for all demand aggregators k 6= i and generators are substituted by ṽ
k

and c̃
i

. Similarly when demand aggregator i consistently reports according to some concave

value function ṽ
i

Theorem (6) ensures that (xt,dt) ! (x̃, d̃) where this limit point is the

solution to problem (5.1) with the value and cost functions ṽ
i

and c̃
i

. Let

F
i

(x,d) := v
i

(d
i

) +
X

k 6=i

ṽ
k

(d
k

)�
X

i2I

C̃
i

(x
i

).

Then,

v
i

(d̂T
i

)� ⌧̂T
i

�F
i

(x̂, d̂)� F
i

(x0,d0) + v
i

(d0
i

)� ⌧ 0
i

�F
i

(x̃, d̃)� F
i

(x0,d0) + v
i

(d0
i

)� ⌧ 0
i

�v
i

(d̃T
i

)� ⌧̃T
i

� 1

2
LDM,

Therefore, truthful reporting is a �M -dominant strategy for demand aggregator i. A similar

argument can be made for generator i.

Note that �M can be made arbitrarily small by ensuring adjustments at each iteration

are small though the condition
P

t

↵
t

! 1 must be satisfied. This indicates that there is

an inverse relationship between convergence speed and the strength of the incentive com-

patibility property. Faster convergence requires not so small adjustments (at least early in

the process). Without so small adjustments, the pricing rule only provides a rough approx-

imation to the change in surplus so that the incentive compatibility property is necessarily

weakened.

5.4.3 Participation Constraints and Budget Balance

Let F denote a lower bound of F(x⇤,d⇤) such that F � 2I�1
2I F(x⇤,d⇤). Let

⌧ 0
i

= F , ⇡0
i

= �F .
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Assume that (x0,d0) = (0, 0) and v
i

(0) = C
i

(0) = 0 so that F(x0,d0) = 0. If �M ' 0 it

follows from the inequalities obtained in the proof of Theorem 7 that:

v
i

(dT
i

)� ⌧T
i

' F(x⇤,d⇤)� ⌧ 0
i

> 0, ⇡T

i

� C
i

(xT

i

) ' F(x⇤,d⇤) + ⇡0
i

> 0.

It can be seen that market participants share equally (approximately) the net surplus from

trade. This implies that individual rationality constraints are met (assuming an outside

option yielding zero surplus). To see that the mechanism is weakly budget balanced (ap-

proximately) note that

⌧T
i

' ⌧ 0
i

� (
P

k 6=i

v
k

(dT
k

)�
P

k

C
k

(xT

k

)), ⇡T

i

' ⇡0
i

+
P

k

v
k

(dT
k

)�
P

k 6=i

C
k

(xT

k

).

The margin for the market maker is

P

i2I(⌧
T

i

� ⇡T

i

) '
P

i2I(⌧
0
i

� ⇡0
i

)� (2I � 1)F(x⇤,d⇤) = 2I(F � 2I�1
2I F(x⇤,d⇤)) � 0.

5.4.4 Variations on a Theme

Other Iterative Mechanisms

In the iterative mechanism proposed above, there is an inverse relationship between con-

vergence speed (a function of the schedule {↵
t

: t > 0}) and the strength of the incentive

compatibility property (a function of M =
P

t

↵2
t

). Faster convergence requires not so small

adjustments (at least early in the process). However, when the adjustments are not so small

the pricing rule only provides a rough approximation to the change in surplus so that the

incentive compatibility property is necessarily weakened. A more sophisticated adjustment

rule involving a smoothening term may provide a better tradeo↵ at the expense of addi-

tional computational e↵ort. Specifically, Step 2 (Demand and Generation Updates) may be

replaced by the following:

20 Demand and Generation updates. Each demand aggregator and each generator

90



respectively submit bids ut+1
i

and ct+1
i

. The market maker solves
8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

max
P

i

(ut+1
i

d
i

� ct+1
i

x
i

)� 

2 (kx� xtk2 + kd� dtk2)

s.t
P

i

(x
i

� d
i

) � 0

�z
`


P

i

⌘
`,i

(x
i

� d
i

)  z
`

x
i

 x
i

 x̄
i

d
i

� 0

Let (x̂t+1, d̂t+1) be a solution this problem. The tentative schedules for production and

consumption are updated as follows:

xt+1 = xt + ↵(x̂t+1 � xt) dt+1 = dt + ↵(d̂t+1 � dt)

where ↵ > 0 is a fixed stepsize and  > 0.

In comparison, at each iteration according to Step 20 a quadratic program must be solved

(as opposed to a linear program in Step 2). Also, the step size is fixed which enables faster

convergence. Indeed, for the strongly convex and Lipschitz di↵erentiable case, this variation

to the basic iterative mechanism may be shown to exhibit finite convergence guarantees

(see Nesterov [70]). However, such result critically relies on having complete information

on the Lipschitz constants for the cost and valuation functions, so as to properly tune the

smoothening parameter  > 0.

AC Power Flow

The network constraints used in Section 5.2.1 are based upon a DC power flow model which

ignores reactive power and voltage stability concerns. In general, linearized versions of

power flow equations are not necessarily suitable for operational security assessment wherein

nonlinear e↵ects may play an important role. The feasibility region for AC power flow is

non-convex (see Lesieutre et al. [55]). However, in a recent series of papers, several authors

have developed computationally tractable approximations of the power flow feasibility re-

gion with constraints in terms of ellipsoids in injection space (see for example Saric and
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Stankovic [84], Dvijotham and Turitsyn [24]). The properties of the iterative mechanism

design proposed are not dependent upon the closed-form representation of the constraints in

the constrained economic dispatch problem (5.1). Rather, the key assumption is convexity.

Thus, the iterative mechanism may potentially be suitably adjusted for use in conjunction

with convex approximations to AC power flow. This is a subject of future research.

5.5 Iterative Mechanism for Stochastic Market Clear-

ing

In this section, we analyze an iterative mechanism for stochastic market clearing. This is

an important feature as the share of renewable (intermittent) capacity in most electricity

markets around the world is increasing at a steady pace and ex-post adjustments to market

dispatch are the norm. Recall, that in a direct mechanism for stochastic market clearing,

the market-maker selects both a nominal dispatch and (ex-post) dispatch adjustments based

upon the reports by market participants regarding their cost and valuation structure (in-

cluding the cost of adjustments). Under uncertainty it is exceedingly di�cult for generators

to estimate their adjustment costs which may vary significantly depending upon the nominal

dispatch. We shall show that the iterative mechanism allows for estimation error by market

participants.

5.5.1 Preliminaries

As in Section 5.2.1, we assume that there is a single demand aggregator at each node i 2 I

in the network. Denote by d
i

node i’s demand and v
i

(d) its valuation for consumption level

d � 0. There is at most one generator per node with total cost C
i

(x) for a production level

x � 0. Let C̄
i

(�x, x) denote the cost associated to adjusting production in short notice to

x + �x and �x 2 R. Suppose that for each node i 2 I, there is a stochastic amount of

power generated µ
i

� !
i

. Here µ
i

is constant, assumed known from the forecast, and !
i

is

a zero mean independent random variable with known distribution. Let ⌦ :=
P

i

!
i

. Since
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the power injections at each node are fluctuating, we use an a�ne control scheme (as in

Bienstock et al. [6]) to ensure that generation is equal to demand at all times within the

time window of interest. We assume that all generators respond to input fluctuations in a

proportional way (a�ne control), however, with possibly di↵erent proportionality coe�cients

�
i

satisfying
P

i2I �i = 1. We leave these coe�cients to the optimization step to decide the

optimal value.

Chance Constraints

The a�ne control scheme creates the possibility of power overflow on certain lines and

requiring a generator to produce power beyond its limits. With large scale penetration

from renewables (e.g. wind, solar) these events may be likely. However, the probability of

occurrence can be restricted to arbitrarily small value as in Bienstock et al. [6]. Formally,

we consider the following constraints:
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:

P

i

(x
i

+ µ
i

� d
i

) � 0 (a)

P(
P

i

⌘
`,i

(x
i

+ µ
i

� !
i

+ �
i

⌦� d
i

) > z
`

)  ✏
`

(b1)

P(
P

i

⌘
`,i

(x
i

+ µ
i

� !
i

+ �
i

⌦� d
i

) < �z
`

)  ✏
`

(b2)

P(x
i

+ �
i

⌦ > x̄
i

)  ✏
i

(c1)

P(x
i

+ �
i

⌦ < x
i

)  ✏
i

(c2)

P(�
i

⌦ > r̄
i

)  ✏
ir

(d1)

P(�
i

⌦ < �r̄
i

)  ✏
ir

(d2)
P

i

�
i

= 1 (e)

�
i

� 0 (f)

d
i

� 0 (g)

Here (b1) � (d2) are chance constraints, where P(·) denotes the probability function, and

✏
`

, ✏
i

, ✏
ir

are small positive numbers. The parameter r̄
i

is the limit for short-run adjustments

for generator i.

We show below that (b1) � (d2) can be reformulated into deterministic forms. First,
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consider (b1) and (b2). Given that

X

i

⌘
`,i

(x
i

+ µ
i

� !
i

+ �
i

⌦� d
i

) =
X

i

⌘
`,i

(x
i

+ µ
i

� !
i

� d
i

) +
X

i

⌘
`,i

�
i

⌦,

We can rewrite (b1) as

P(
X

i

⌘
`,i

(x
i

+ µ
i

� !
i

+ �
i

⌦� d
i

) > z
`

) = P

0

@

X

i

⌘
`,i

�
i

>

z
`

�
P

i

⌘
`,i

(x
i

+ µ
i

� !
i

� d
i

)

⌦

1

A

 ✏
`

.

Denote the distribution function of (z
`

�
P

i

⌘
`,i

(x
i

+µ
i

�!
i

� d
i

))/⌦ by F̄
`

. Thus, constraint

(b1) is equivalent to
X

i

⌘
`,i

�
i

 F̄�1
`

(✏
`

).

Similarly, (b2) yields
X

i

⌘
`,i

�
i

� F�1
`

(1� ✏
`

),

where F
`

is the distribution function of (�z
`

�
P

i

⌘
`,i

(x
i

+µ
i

�!
i

�d
i

))/⌦. By (c1) and (c2),

P(x
i

+ �
i

⌦ > x̄
i

) = P
✓

⌦ >
x̄
i

� x
i

�
i

◆

 ✏
i

,

P(x
i

+ �
i

⌦ < x
i

) = P
✓

⌦ <
x
i

� x
i

�
i

◆

 ✏
i

.

Let F be the distribution function of ⌦. We can write (c1) and (c2) as:

x̄i�xi
�i

� F�1(1� ✏
i

), xi�xi

�i
 F�1(✏

i

),

which is equivalent to

x
i

+ F�1(1� ✏
i

)�
i

� x̄
i

, x
i

+ F�1(✏
i

)�
i

� x
i

.

Finally, note that (d1) and (d2) give

P(�
i

⌦ > r̄
i

) = P(⌦ > r̄i
�i
)  ✏

ir

, P(�
i

⌦ < �r̄
i

) = P(⌦ < � r̄i
�i
)  ✏

ir

,
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which is equivalent to

r̄i
�i

� F�1(1� ✏
ir

), � r̄i
�i

 F�1(✏
ir

),

or

F�1(1� ✏
ir

)�
i

 r̄
i

, F�1(✏
ir

)�
i

� �r̄
i

.

Chance Constrained Economic Dispatch

Node i’s expected cost associated with adjustments is given by E⌦[C̄i

(�
i

⌦, x
i

)], where E(·)

denotes the function of expected value. Hence the optimal economic dispatch is the solution

to:

max
(x,d,�)

X

i

[v
i

(d
i

)� C
i

(x
i

)]�
X

i

E⌦[C̄i

(�
i

⌦, x
i

)], (5.12)

with constraints
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P

i

(x
i

+ µ
i

� d
i

) � 0 (a)

P

i

⌘
`,i

�
i

 F̄�1
`

(✏
`

) (b1)

P

i

⌘
`,i

�
i

� F�1
`

(1� ✏
`

) (b2)

x
i

+ F�1(1� ✏
i

)�
i

� x̄
i

(c1)

x
i

+ F�1(✏
i

)�
i

� x
i

(c2)

F�1(1� ✏
ir

)�
i

 r̄
i

(d1)

F�1(✏
ir

)�
i

� �r̄
i

(d2)
P

i

�
i

= 1 (e)

�
i

� 0 (f)

d
i

� 0 (g)

. (5.13)

5.5.2 Iterative Mechanism Design

The constrained economic dispatch problem in (5.12) and (5.13) can not be solved by a

benevolent intermediator such as an independent system operator because the information

on v
i

, C
i

and C̄
i

is private to demand aggregators and generators. In what follows we will
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present and analyze a mechanism that guarantees market participants (demand aggregators

and generators) truthfully interact with a benevolent system operator in order to identify

the optimal solution to problem (5.12).

Let x = [x1, x2, . . . , xI

], � = [�1, �2, . . . , �I ] and d = [d1, d2, . . . , dI ]. The iterative mecha-

nism proposed is as follows.

1. Initialization. Start with any feasible pair (x0, �0,d0).

2. Schedule and Price updates. At each round (or iteration) t � 0:

(a) Price update: Each demand aggregator submits bids ut+1
i

, and each generator

submits ct+1
i

and c̄t+1
i

. The market maker solves

max
(x,�,d)

X

i

(ut+1
i

d
i

� ct+1
i

x
i

� c̄t+1
i

�
i

) (5.14)

subject to constraints (5.13).

(b) Demand and Generation updates: Let (x̂t+1, �̂t+1, d̂t+1) denote the optimal solu-

tion to (5.14). The tentative schedules are updated as follows:

xt+1 = xt + ↵
t

(x̂t+1 � xt) (5.15)

�t+1 = �t + ↵
t

(�̂t+1 � �t) (5.16)

dt+1 = dt + ↵
t

(d̂t+1 � dt) (5.17)

where {↵
t

: t � 0} is a sequence of stepsizes that satisfy ↵
t

2 (0, 1), ↵
t

! 0+ and

1
P

t=1
↵
t

= 1,
1
P

t=0
↵2
t

< 1.

3. Incentive Payment: Each demand aggregator i 2 I is assessed a payment of �⌧ t+1
i

which is computed as follows

�⌧ t+1
i

= �
X

k 6=i

(dt+1
k

� dt
k

)ut+1
k

+
X

k

(xt+1
k

� xt

k

)ct+1
k

+
X

k

(�t+1
k

� �t
k

)c̄t+1
k

. (5.18)

Each generator i 2 I is assessed a compensation of �⇡t+1
i

which is computed as follows

�⇡t+1
i

=
X

k

(dt+1
k

� dt
k

)ut+1
k

�
X

k 6=i

(xt+1
k

� xt

k

)ct+1
k

�
X

k 6=i

(�t+1
k

� �t
k

)c̄t+1
k

. (5.19)
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The total payment and compensation accrued after t+ 1 rounds is given by:

⌧ t+1
i

= ⌧ t
i

+�⌧ t+1
i

, ⇡t+1
i

= ⇡t

i

+�⇡t+1
i

.

4. Stopping Rule: The resource manager checks if complementary slackness is approx-

imately verified. A new iteration takes place (step 2) if this condition is not met.

5.5.3 Analysis

Let CE

i

(�
i

, x
i

) := E⌦[C̄i

(�
i

⌦, x
i

)]. The computation the partial derivatives of the expected

adjustment cost with respect to �
i

and x
i

can be an extremely demanding computational

task. To account for this fact, we shall relax our definition of truthful participation. In

what follows we assume the distribution function of ⌦ is common knowledge among demand

aggregators and generators. We say that demand aggregators are truthful if ut+1
i

= v0
i

(dt
i

),

and that generators are truthful if

ct+1
i

= C 0
i

(xt

i

) +
@CE

i

(�t
i

, xt

i

)

@x
i

+ ⇠t
x,i

,

c̄t+1
i

=
@CE

i

(�t
i

, xt

i

)

@�
i

+ ⇠t
�,i

,

where ⇠t
x,i

and ⇠t
�,i

represent the errors in estimating the partial derivatives of CE

i

(�t
i

, xt

i

).

We assume that they are independent random variables with zero mean and finite variance.

Note that a participant may still be truthful even if reporting an incorrect value of marginal

expected cost of adjustment. This flexibility comes at a cost in that it is no longer straight-

forward to design an activity rule (which in this case is tantamount to a statistical test) so

as to obtain incentive compatibility in dominant strategies (see Varian [99]). As a result we

only obtain incentive compatibility in Nash equilibrium. We now formally state the standing

assumptions:

Assumption 7. For each node i, C
i

and C̄
i

are the sets of strictly convex Lipschitz functions

with continuous derivatives, and V
i

is the set of strictly concave Lipschitz functions with

continuous derivatives.
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Assumption 8. The distribution function of ⌦ is common knowledge among demand ag-

gregators and generators.

Convergence

The strategy for analysis is as follows. First, we will show convergence to optimal dispatch

assuming that demand aggregators and generators are truthful. Then we will show that

truthful reporting for every participant (demand aggregator or generator) is a Nash equilib-

rium.

Consider the objective function:

F(x, �,d) :=
X

i

[v
i

(d
i

)� C
i

(x
i

)� CE

i

(�
i

, x
i

)].

Lemma 4. The sequence {F(xt, �t,dt) : t > 0} converges almost surely.

Proof. See Appendix C.

Theorem 8. (xt, �t,dt) converges to the unique solution of problem (5.12) with constraints

specified in (5.13) almost surely.

Proof. The proof resembles that of Theorem 6 and is omitted here.

Incentive Compatibility

As the mechanism no longer has an activity rule, it is conceivable that a participant may

engage in time-varying reporting strategies not consistent with a concave valuation or convex

cost function. This implies that mechanism may fail to close in finite time. This type of

behavior seems self-defeating as without market clearing there are no transactions and thus

no gains from trade. In what follows we will show that truthful reporting is approximately

a Nash equilibrium under the following assumption.

Assumption 9. The net surplus for any demand aggregator or generator is null whenever

the mechanism fails to close in finite time.

Theorem 9. Truthful reporting is a �M -Nash equilibrium, where �M = 1
2LDM .

Proof. See Appendix C.
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Participation Constraints and Budget Balance

Let F denote a lower bound of F(x⇤, �⇤,d⇤) such that F � 2I�1
2I F(x⇤, �⇤,d⇤). Let

⌧ 0
i

= F , ⇡0
i

= �F .

Assume that (x0, �0,d0) = (0, 0, 0) and v
i

(0) = C
i

(0) = CE

i

(0) = 0. Then F(x0, �0,d0) = 0.

If �M ' 0 it follows from the inequalities obtained in the proof of Theorem 9 that:

E
⇠

[v
i

(dT
i

)� ⌧T
i

] ' F(x⇤, �⇤,d⇤)� ⌧ 0
i

> 0, E
⇠

[⇡T

i

� C
i

(xT

i

)] ' F(x⇤, �⇤,d⇤) + ⇡0
i

> 0.

It can be seen that market participants share equally (approximately) the net surplus from

trade. This implies that individual rationality constraints are met (assuming an outside

option yielding null surplus). To see that the mechanism is approximately budget balanced

note that

E
⇠

[⌧T
i

] ' ⌧ 0
i

� (
P

k 6=i

v
k

(dT
k

)�
P

k

C
k

(xT

k

)�
P

k

CE

k

(�T
k

, xT

k

)),

E
⇠

[⇡T

i

] ' ⇡0
i

+ (
P

k

v
k

(dT
k

)�
P

k 6=i

C
k

(xT

k

)�
P

k 6=i

CE

k

(�T
k

, xT

k

)).

The margin for the market maker is

X

i2I

(⌧T
i

� ⇡T

i

) '
X

i2I

(⌧ 0
i

� ⇡0
i

)� (2I � 1)F(x⇤, �⇤,d⇤) � 0.

5.6 Conclusions of this Chapter

More than thirty years after the first electricity market began operating, the task of properly

tuning market rules to ensure economically e�cient outcomes (i.e., market design) still seems

far from complete. A lot of attention has been paid to direct mechanisms. While direct

mechanisms only require one round of interaction, the nature of the information exchange

between market participants and the market-maker is quite complex. In such rich strategy

space, equilibrium strategic behavior can be quite complex so that it is not easy to find

closed-form designs that limit the extent of strategic behavior.
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In this chapter, we have analyzed a di↵erent class of mechanisms, namely, iterative mech-

anisms. In an iterative mechanism, market participants are asked to report the cost or will-

ingness to pay for small adjustments at each iteration and a tentative market dispatch is

marginally adjusted ensuring network constraints are satisfied. Small adjustments require

less information from market participants at each iteration and this facilitates the identifi-

cation of incentives for ensuring truthful reporting of private information. At each iteration,

each market participant is charged (or compensated) according to the marginal change in

surplus to all other market participants (see [17, 37]). We show that truthful reporting is

(approximately) a dominant strategy and that when the mechanism stops, the resulting eco-

nomic dispatch is approximately e�cient. Individual participation constraints are satisfied

as the net surplus from trade is approximately shared equally by all participants and the

mechanism is approximately weakly budget balanced. Interestingly, the mechanism may

potentially be suitably altered in various ways as its main properties are not dependent

upon the closed-form representation of network constraints but rather on convexity of the

set of feasible solutions. Thus, the proposed mechanism may potentially be used in conjunc-

tion with convex approximations to AC power flow (see [24, 84]). Additionally, to speed up

convergence, adjustments may be computed on the basis of an augmented Lagrangian (see

Nesterov [70]). We shall analyze these extensions in our future work.

In the second part of this chapter we analyzed an iterative mechanism for stochastic

market clearing. The inherent intermittency of renewable technologies poses new challenges

for ensuring a reliable and secure operation of electricity markets. In this context, due to

estimation error, participants may report incorrect values for the marginal expected cost

while still being truthful. We show that truthful reporting is a Nash equilibrium and the

resulting dispatch converges almost surely to the e�cient dispatch.
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5.7 Appendix A: Proof of Theorem 6

5.7.1 Preliminary Results

Let

Bt =
X

i

(ut+1
i

d̂t+1
i

� ct+1
i

x̂t+1
i

)�
X

i

(ut+1
i

dt
i

� ct+1
i

xt

i

). (5.20)

We want to show now that Bt converges to 0. Noticing that
P

i

(ut+1
i

d̂t+1
i

� ct+1
i

x̂t+1
i

) is the

optimal outcome of problem (5.2) with bids ut+1
i

= v0
i

(dt
i

) and ct+1
i

= C 0
i

(xt

i

), let’s define

f̂(x,d) :=
X

i

(v0
i

(d
i

)d̂
i

� C 0
i

(x
i

)x̂
i

),

with d̂
i

and x̂
i

being the optimal solution to problem (5.2) given inputs v0
i

(d
i

) and C 0
i

(x
i

).

Similarly, let

f(x,d) :=
X

i

(v0
i

(d
i

)d
i

� C 0
i

(x
i

)x
i

).

Lemma 5. Function f̂ and f are Lipschitz continuous on the feasible region of problem

(5.2).

Proof. Given two arbitrary pairs (x1,d1) and (x2,d2),

f̂(x1,d1) =
X

i

(v0
i

(d1
i

)d̂1
i

� C 0
i

(x1
i

)x̂1
i

)

=
X

i

[(v0
i

(d1
i

)� v0
i

(d2
i

) + v0
i

(d2
i

))d̂1
i

� (C 0
i

(x1
i

)� C 0
i

(x2
i

) + C 0
i

(x2
i

))x̂1
i

]

=
X

i

[(v0
i

(d1
i

)� v0
i

(d2
i

))d̂1
i

� (C 0
i

(x1
i

)� C 0
i

(x2
i

))x̂1
i

] +
X

i

(v0
i

(d2
i

)d̂1
i

� C 0
i

(x2
i

)x̂1
i

)


X

i

[(v0
i

(d1
i

)� v0
i

(d2
i

))d̂1
i

� (C 0
i

(x1
i

)� C 0
i

(x2
i

))x̂1
i

] + f̂(x2,d2).

The inequality is due to the fact that f̂(x2,d2) is the optimal outcome given v0
i

(d2
i

) and

C 0
i

(x2
i

). Similarly,

f̂(x2,d2) 
X

i

[(v0
i

(d2
i

)� v0
i

(d1
i

))d̂2
i

� (C 0
i

(x2
i

)� C 0
i

(x1
i

))x̂2
i

] + f̂(d1,x1).

101



Since v0
i

(·) and C 0
i

(·) are Lipschitz continuous by Assumption 6, Lipschitz continuity of f̂

follows. Analogously, we can show that f is Lipschitz continuous too.

The convergence result of Bt = f̂(xt,dt)� f(xt,dt) is given by the following lemma.

Lemma 6. The sequence {Bt : t > 0} converges to 0.

Proof. In light of (5.7) and (5.20),

F(xt+1,dt+1) � F(xt,dt) + ↵
t

Bt � ↵2
t

2
LD.

It follows that

lim
t

F(xt,dt) �
X

t

↵
t

Bt � 1

2

X

t

↵2
t

LD.

Since Bt � 0,
P

t

↵2
t

< 1 and the sequence {F(xt,dt) : t > 0} converges by Lemma 3,

X

t

↵
t

Bt < 1. (5.21)

By Lemma 5, f̂ and f are Lipschitz continuous. Hence,

Bt+1 � Bt = [f̂(xt+1,dt+1)� f(xt+1,dt+1)]� [f̂(xt,dt)� f(xt,dt)]

 L
B

(|dt+1 � dt|+ |xt+1 � xt|)

= ↵
t

L
B

(|d̂t+1 � dt|+ |x̂t+1 � xt|)

 ↵
t

K

(5.22)

for some L
B

, K > 0.

Assume by contradiction that Bt does not converge to 0. Then there exists ✏ > 0 such

that Bt > ✏ infinitely often. Since
P1

t=1 ↵t

Bt is finite, Bt < ✏/2 for infinite t’s too. We select

a subsequence {Bt(k) : k > 0} of {Bt : t > 0} as follows.

(i) t(1) = 1.
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(ii) 8m > 0,

t̃(2m) = inf{t > t(2m� 1) : Bt < ✏/2},

t(2m+ 1) = inf{t > t̃(2m) : Bt > ✏},

t(2m) = sup{t < t(2m+ 1) : Bt < ✏/2  Bt+1}.

It is implied that Bt(2m) < ✏/2, Bt(2m+1) > ✏, and for all t with t(2m) < t < t(2m + 1),

2/✏  Bt  ✏. Now in light of (5.22),

✏/2 < Bt(2m+1) � Bt(2m) 
t(2m+1)
X

t=t(2m)+1

↵
t

K.

It follows that

t(2m+1)
X

t=t(2m)+1

↵
t

>
✏

2K
.

Therefore,

t(2m+1)
X

t=t(2m)+1

↵
t

Bt � ✏/2
t(2m+1)
X

t=t(2m)+1

↵
t

>
✏2

4K
,

and
X

t

↵
t

Bt �
X

m

t(2m+1)
X

t=t(2m)+1

↵
t

Bt = 1.

This contradicts (5.21).

We are now in a position to show the convergence of (xt,dt).

5.7.2 Proof of Theorem 6

By Weierstrass theorem, (xt,dt) has a converging subsequence (xt(k),dt(k)), k = 1, 2, . . ..

Denote its limit by (x⇤,d⇤). Then

Bt(k) = f̂(xt(k),dt(k))� f(xt(k),dt(k))
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converges to 0 as a subsequence of Bt. Since f̂ and f are continuous,

lim
k

Bt(k) = lim
k

f̂(xt(k),dt(k))� lim
k

f(xt(k),dt(k)) = f̂(x⇤,d⇤)� f(x⇤,d⇤) = 0.

We now have f̂(x⇤,d⇤) = f(x⇤,d⇤), i.e., (x⇤,d⇤) is a solution to problem (5.2) with inputs

v0
i

(d⇤
i

) and C 0
i

(x⇤
i

). In other words,

X

i

(v0
i

(d⇤
i

)(d⇤
i

� d
i

)� C 0
i

(x⇤
i

)(x⇤
i

� x
i

)) � 0

for all x
i

and d
i

satisfying the constraints in (5.1). This is su�cient for (x⇤,d⇤) to be a

solution of the original problem (5.1) (see Nesterov [70] Theorem 2.2.5).

Assuming by contradiction that (xt,dt) does not converge, then it has at least two sub-

sequences converging to two di↵erent limiting points, both of which are optimal. Since

the original problem admits a unique solution, this is a contradiction. Therefore, (xt,dt)

converges and its limiting point (x⇤,d⇤) is exactly the unique solution to problem (5.1).

5.8 Appendix B: Demand Aggregator and Generator

Associated with Multiple Units

In this section, we show that the previous results can be generalized to the case that each

demand aggregator/ generator is associated to multiple units/nodes. For ease of exposition,

we consider a one-stage market model. LetA and G denote the set of demand aggregators and

generators, respectively. The optimal economic dispatch constrained by the power balance

and line power flow limits in this case is the solution to:

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

max
P

a2A
v
a

(
P

i2Na
d
i

)�
P

g2G
C

g

(
P

i2Ng
x
i

)

s.t
P

i

(x
i

� d
i

) � 0 (1)

�z
`


P

i

⌘
`,i

(x
i

� d
i

)  z
`

(2)

x
i

 x
i

 x̄
i

(3)

d
i

� 0 (4)

(5.23)
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Here N
a

and N
g

denote the set of nodes associated with demand aggregator a and generator

g, respectively.

5.8.1 Mechanism Design

The mechanism works as follows.

1. Initialization. Start with any feasible pair (x0,d0).

2. Schedule and Price updates. At each round (or iteration) t � 0:

(a) Price update: Each demand aggregator and each generator respectively submit

bids ut+1
a

and ct+1
g

. The market maker solves

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

max
P

a2A
ut+1
a

P

i2Na
d
i

�
P

g2G
ct+1
g

P

i2Ng
x
i

s.t
P

i

(x
i

� d
i

) � 0

�z
`


P

i

⌘
`,i

(x
i

� d
i

)  z
`

x
i

 x
i

 x̄
i

d
i

� 0

(5.24)

(b) Demand and Generation updates: Let (x̂t+1, d̂t+1) denote the optimal solution to

(5.24). The tentative schedules for production and consumption are updated as

follows:

xt+1 = xt + ↵
t

(x̂t+1 � xt) (5.25)

and

dt+1 = dt + ↵
t

(d̂t+1 � dt) (5.26)

where {↵
t

: t � 0} is a sequence of stepsizes that satisfy ↵
t

2 (0, 1), ↵
t

! 0+ and

1
P

t=1
↵
t

= 1,
1
P

t=0
↵2
t

= M < 1.
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3. Incentive Payment: Each demand aggregator a 2 A is assessed a payment of ⌧ t+1
a

which is computed as follows

�⌧ t+1
a

= �
X

k 6=a,k2A

ut+1
k

X

i2Nk

(dt+1
i

� dt
i

) +
X

h2G

ct+1
h

X

i2Nh

(xt+1
i

� xt

i

). (5.27)

Each generator g 2 G is assessed a payment of ⌧ t+1
g

which is computed as follows

�⌧ t+1
g

=
X

k2A

ut+1
k

X

i2Nk

(dt+1
i

� dt
i

)�
X

h 6=g,h2G

ct+1
h

X

i2Nh

(xt+1
i

� xt

i

). (5.28)

The total payment and compensation accrued after t+ 1 rounds is given by:

⌧ t+1
a

= ⌧ t
a

+�⌧ t+1
a

, ⇡t+1
g

= ⇡t

g

+�⇡t+1
g

.

4. Activity Rule: The market-maker checks that

[(
X

i2Na

dt̃
i

)� (
X

i2Na

dt
i

)] · (ut̃+1
a

� ut+1
a

) < 0,

[(
X

i2Ng

xt̃

i

)� (
X

i2Ng

xt

i

)] · (ct̃+1
i

� ct+1
g

) > 0

for all t̃ < t and for each generator and demand aggregator located in node i. A

participant is removed from market-clearing when this activity rule is violated.

5. Stopping Rule: The resource manager checks if complementary slackness is approx-

imately verified. A new iteration takes place (step 2) if this condition is not met.

Truthful Participation

We say that demand aggregators are truthful if

ut+1
a

= v0
a

(
P

i2Na
dt
i

).

Also, generators are truthful if

ct+1
g

= C 0
g

(
X

i2Ng

xt

i

).
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5.8.2 Analysis

The strategy for analysis resembles that in Section 5.4. First, assuming that demand aggre-

gators and generators are truthful we will show that convergence to optimal dispatch. Then

we will show that it is optimal for every participant (demand aggregator or generator) to be

truthful.

Convergence

Define

D
a

:=
P

i2Na
d
i

,

X
g

:=
P

i2Ng
x
i

.

Assumption 10. In the set of solutions to problem (5.23), {D
a

: a 2 A} and {X
g

: g 2 G}

are unique.

In the following analysis we assume that Assumption 6 and 10 hold. Consider the objec-

tive function

Fm(x,d) :=
X

a2A

v
a

(
X

i2Na

d
i

)�
X

g2G

C
g

(
X

i2Ng

x
i

).

Lemma 7. {Fm(xt,dt) : t > 0} converges.

Proof. Since Fm(x,d) has a Lipschitz continuous gradient,

Fm(xt+1,dt+1) �Fm(xt,dt) + ↵
t

r
d

Fm(xt,dt) · (d̂t+1 � dt) + ↵
t

r
x

Fm(xt,dt) · (x̂t+1 � xt)

� ↵2
t

2
LD

=Fm(xt,dt) + ↵
t

X

a2A

X

i2Na

[(d̂t+1
i

� dt
i

) · v0
a

(
X

j2Na

dt
j

)]

� ↵
t

X

g2G

X

i2Ng

[(x̂t+1
i

� xt

i

) · C 0
g

(
X

j2Ng

xt

j

)]� ↵2
t

2
LD

=Fm(xt,dt) + ↵
t

(
X

a2A

ut+1
a

X

i2Na

d̂t+1
i

�
X

g2G

ct+1
g

X

i2Ng

x̂t+1
i

)
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� ↵
t

(
X

a2A

ut+1
a

X

i2Na

dt
i

�
X

g2G

ct+1
g

X

i2Ng

xt

i

)� ↵2
t

2
LD

�Fm(xt,dt)� ↵2
t

2
LD,

where the last inequality is due to the fact that (x̂t+1, d̂t+1) is optimal solution to (5.24) for

which (xt,dt) is a feasible solution. The convergence of {Fm(xt,dt) : t > 0} now follows.

Theorem 10. Assuming that generators and demand aggregators are truthful, (Xt,Dt)

converges to the unique solution of problem (5.23).

Proof. The proof resembles that of Theorem 6 and is omitted here.

Incentive Compatibility

We first show that truthful reporting is approximately a dominant strategy.

Theorem 11. Truthful reporting is a �M > 0 dominant strategy where �M = 1
2LDM .

Proof. We start by showing that truthful reporting is a �M -Nash equilibrium. Recall that

ut+1
a

= v0
a

(
P

i2Na
dt
i

) = v0
a

(Dt

a

),

ct+1
g

= C 0
g

(
P

i2Ng
xt

i

) = C 0
g

(X t

g

).

After T rounds the total payment for demand aggregator a is

⌧T
a

= ⌧ 0
a

�
T�1
X

t=0

X

k 6=a,k2A

ut+1
k

X

i2Nk

(dt+1
i

� dt
i

) +
T�1
X

t=0

X

h2G

ct+1
h

X

i2Nh

(xt+1
i

� xt

i

)

= ⌧ 0
a

�
T�1
X

t=0

X

k 6=a,k2A

v0
k

(Dt

k

)(Dt+1
k

�Dt

k

) +
T�1
X

t=0

X

h2G

C 0
h

(X t

h

)(X t+1
h

�X t

h

),

and the total compensation for generator g is

⇡T

g

= ⇡0
g

+
T�1
X

t=0

X

k2A

ut+1
k

X

i2Nk

(dt+1
i

� dt
i

)�
T�1
X

t=0

X

h 6=g,h2G

ct+1
h

X

i2Nh

(xt+1
i

� xt

i

)

= ⇡0
g

+
T�1
X

t=0

X

k2A

v0
k

(Dt

k

)(Dt+1
k

�Dt

k

)�
T�1
X

t=0

X

h 6=g,h2G

C 0
h

(X t

h

)(X t+1
h

�X t

h

).
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In light of Assumption 6,

⌧T
a

� ⌧ 0
a

� (
X

k 6=a,k2A

v
k

(DT

k

)�
X

h2G

C
h

(XT

h

)) + (
X

k 6=a,k2A

v
k

(D0
k

)�
X

h2G

C
h

(X0
h

)), (5.29)

and

⌧T
a

 ⌧ 0
a

� (
X

k 6=a,k2A

v
k

(DT

k

)�
X

h2G

C
h

(XT

h

))+ (
X

k 6=a,k2A

v
k

(D0
k

)�
X

h2G

C
h

(X0
h

))� 1

2
LDM. (5.30)

Analogously,

⇡T

g

� ⇡0
g

+
X

k2A

v
k

(DT

k

)�
X

h 6=g,h2G

C
h

(XT

h

)�
X

k2A

v
k

(D0
k

) +
X

h 6=g,h2G

C
h

(X0
h

), (5.31)

and

⇡T

g

 ⇡0
g

+
X

k2A

v
k

(DT

k

)�
X

h 6=g,h2G

C
h

(XT

h

)�
X

k2A

v
k

(D0
k

) +
X

h 6=g,h2G

C
h

(X0
h

) +
1

2
LDM. (5.32)

It follows that the net surplus for demand aggregator a satisfies

v
a

(DT

a

)� ⌧T
a

2
⇥

Fm(xT ,dT )� Fm(x0,d0) + v
a

(D0
a

)� ⌧ 0
a

,

Fm(xT ,dT )� Fm(x0,d0) + v
a

(D0
a

)� ⌧ 0
a

+
1

2
LDM

�

.

As T ! 1,

v
a

(DT

a

)� ⌧T
a

� Fm(x⇤,d⇤)� Fm(x0,d0) + v
a

(D0
a

)� ⌧ 0
a

.

Consistently untruthful behavior leads to a suboptimal solution say (x̃⇤, d̃⇤). Then,

v
a

(DT

a

)� ⌧T
a

�Fm(x⇤,d⇤)� Fm(x0,d0) + v
a

(D0
a

)� ⌧ 0
a

�Fm(x̃⇤, d̃⇤)� Fm(x0,d0) + v
a

(D0
a

)� ⌧ 0
a

�v
a

(D̃T

a

)� ⌧̃T
a

� 1

2
LDM.

It is �M -optimal for demand aggregator i to be truthful when all other market participants

are truthful.
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The net surplus for generator g satisfies

⇡T

g

� C
g

(XT

g

) 2
⇥

Fm(xT ,dT )� Fm(x0,d0)� C
g

(X0
g

) + ⇡0
g

,

Fm(xT ,dT )� Fm(x0,d0)� C
g

(X0
g

) + ⇡0
g

+
1

2
LDM

�

.

In the limit as T ! 1,

⇡T

g

� C
g

(XT

g

) � Fm(x⇤,d⇤)� Fm(x0,d0)� C
g

(X0
g

) + ⇡0
g

� Fm(x̃T , d̃T )� Fm(x0,d0)� C
g

(X0
g

) + ⇡0
g

� ⇡̃T

g

� C
g

(X̃T

g

)� 1

2
LDM.

Therefore, It is also �M -optimal for generator g to be truthful when all other market partic-

ipants are truthful.

Similar to the analysis in Section 5.4.2, we can generalize the previous result to show

that truthful reporting is a �M -dominant strategy for all market participants.

Participation Constraints and Budget Balance

Let Fm denote a lower bound of Fm(x⇤,d⇤) such that Fm � |A|+|G|�1
|A|+|G| Fm(x⇤,d⇤). Let

⌧ 0
a

= F , ⇡0
g

= �F .

Assume that (x0,d0) = (0, 0) and v
i

(0) = C
i

(0) = 0 so that Fm(x0,d0) = 0. If �M ' 0 it

follows from the inequalities obtained in the proof of Theorem (11) that:

v
a

(DT

a

)� ⌧T
a

' Fm(x⇤,d⇤)� ⌧ 0
a

> 0, ⇡T

g

� C
g

(xT

g

) ' Fm(x⇤,d⇤) + ⇡0
g

> 0.

It can be seen that market participants share equally (approximately) the net surplus from

trade. This implies that individual rationality constraints are met (assuming an outside

option yielding null surplus). To see that the mechanism is approximately budget balanced

note that

⌧T
a

' ⌧ 0
a

� (
X

k 6=a,k2A

v
k

(DT

k

)�
X

h2G

C
h

(XT

h

)),

⇡T

g

' ⇡0
g

+
X

k2A

v
k

(DT

k

)�
X

h 6=g,h2G

C
h

(XT

h

).
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The margin for the market maker is

X

a2A

⌧T
a

�
X

g2G

⇡T

g

'
X

a2A

⌧ 0
a

�
X

g2G

⇡0
g

� (|A|+ |G|� 1)Fm(x⇤,d⇤) � 0.

5.9 Appendix C: Proofs for Stochastic Market Clear-

ing

5.9.1 Proof of Lemma 4

By Assumption 6, v0
i

(·), C 0
i

(·) and rC̄
i

(·, ·) are Lipschitz continuous for all i 2 I. Hence

F(x, �,d) has Lipschitz continuous gradient so that

F(xt+1, �t+1,dt+1) � F(xt, �t,dt)+r
d

F(xt, �t,dt)·(dt+1�dt)+r
x

F(xt, �t,dt)·(xt+1�xt)

+r
�

F(xt, �t,dt) · (�t+1 � �t)� 1

2
Lkdt+1 + �t+1 + xt+1 � dt � �t � xtk2

for some Lipschitz constant L > 0. Given that xt+1 = xt + ↵
t

(x̂t+1 � xt), �t+1 = �t +

↵
t

(�̂t+1 � �t) and dt+1 = dt + ↵
t

(d̂t+1 � dt), the inequality can be rewritten as

F(xt+1, �t+1,dt+1) �F(xt, �t,dt) + ↵
t

r
d

F(xt, �t,dt) · (d̂t+1 � dt)

+ ↵
t

r
x

F(xt, �t,dt) · (x̂t+1 � xt) + ↵
t

r
�

F(xt, �t,dt) · (�̂t+1 � �t)

� ↵2
t

2
Lkd̂t+1 + x̂t+1 + �̂t+1 � dt � xt � �tk2.

The constraints in (5.13) give a compact feasible region, implying that d̂t+1 and x̂t+1

are bounded. Noticing that dt+1 = (1 � ↵
t

)dt + ↵
t

d̂t+1, xt+1 = (1 � ↵
t

)xt + ↵
t

x̂t+1 and

�t+1 = (1 � ↵
t

)�t + ↵
t

�̂t+1, a simple induction indicates that dt+1, xt+1 and �t+1 are also

bounded. Therefore, kd̂t+1 + x̂t+1 + �̂t+1 � dt � xt � �tk2  D for some D > 0. It follows

that

F(xt+1, �t+1,dt+1) �F(xt, �t,dt) + ↵
t

X

i

(d̂t+1
i

� dt
i

)v0
i

(dt
i

)

� ↵
t

X

i

(x̂t+1
i

� xt

i

) · [C 0
i

(xt

i

) +
@CE

i

(�t
i

, xt

i

)

@x
i

]
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� ↵
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X

i

(�̂t+1
i

� �t
i

) · @C
E

i

(�t
i

, xt

i

)

@�
i

� ↵2
t

2
LD

=F(xt, �t,dt) + ↵
t

X

i

[ut+1
i

d̂t+1
i

� (ct+1
i

� ⇠t
x,i

)x̂t+1
i

� (c̄t+1
i

� ⇠t
�,i

)�̂t+1
i

]

� ↵
t

X

i

[ut+1
i

dt
i

� (ct+1
i

� ⇠t
x,i

)xt

i

� (c̄t+1
i

� ⇠t
�,i

)�t
i

]� ↵2
t

2
LD (5.33)

�F(xt, �t,dt) + ↵
t

X

i

[⇠t
x,i

(x̂t+1
i

� xt

i

) + ⇠t
�,i

(�̂t+1
i

� �t
i

)]� ↵2
t

2
LD,

where the last inequality is due to the fact that (x̂t+1, �̂t+1, d̂t+1) is an optimal solution to

(5.14) for which (xt, �t,dt) is a feasible solution.

Recalling that
P

t

↵2
t

< 1, {↵
t

P

i

[⇠t
x,i

(x̂t+1
i

� xt

i

) + ⇠t
�,i

(�̂t+1
i

� �t
i

)] : t � 0} is a sequence

of zero mean independent random variables with finite total variance. Then

X

t

↵
t

X

i

[⇠t
x,i

(x̂t+1
i

� xt

i

) + ⇠t
�,i

(�̂t+1
i

� �t
i

)]

converges almost surely (see Williams [105]). Since (xt,dt) is bounded and F(xt, �t,dt)
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Hence the expected net surplus for demand aggregator i satisfies
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Untruthful behavior either results in divergent solutions, in which case the expected net

surplus for demand aggregator i is null, or leads to a suboptimal solution say (x̃⇤, �̃⇤, d̃⇤). In

the latter situation,
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We will show in Section 5.5.3 that E
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. Therefore,

it is �M -optimal for demand aggregator i to be truthful when all the other participants are

truthful.

The net surplus for generator i satisfies
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As T ! 1,

E
⇠

[⇡T

i

� C
i

(xT

i

)� CE

i

(�T
i

, xT

i

)] �F(x⇤, �⇤,d⇤)� F(x0, �0,d0)� C
i

(x0
i

)� CE

i

(�0
i

, x0
i

) + ⇡0
i

� F(x̃⇤, �⇤, d̃⇤)� F(x0, �0,d0)� C
i

(x0
i

)� CE

i

(�0
i

, x0
i

) + ⇡0
i

� E
⇠

[⇡̃⇤
i

+ ⇡̃E

i

� C
i

(d̃⇤
i

)� CE

i

(�̃⇤
i

, x̃⇤
i

)]� 1

2
LDM.

Hence it is also �M -optimal for generator i to be truthful when all the other participants are

truthful.
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CHAPTER 6

Conclusions

In this dissertation, we analyzed several multi-agent control/optimization algorithms for

various problems under uncertainty. We now summarize them with a discussion on future

work.

6.1 Summary of the Dissertation

Firstly, we developed a mathematical model for analyzing the benefits of social foraging in a

noisy environment. We identified conditions on the nutrient profile ensuring that local agent

actions will lead to cohesive foraging. For convex, smooth nutrient profiles we formalized

the way in which swarming for social foraging is better at handling the e↵ects of noise when

compared to the average of individual foraging strategies. Under a swarming discipline,

observational noise realizations that induce trajectories di↵ering too much from the group

average are likely to be discarded because of each individual’s need to maintain cohesion. As

a result, the group trajectories are less a↵ected by noise. Simulation experiments indicate

our theoretical results are robust to inter-agent communication constraints and non-convex

nutrient profiles. These results suggest that swarming-like approaches for the control and/or

optimization of networked agents may provide an additional level of robustness.

Secondly, inspired by the noise reduction property of swarming in social foraging, we

proposed a distributed computing algorithmic scheme with N > 1 computing threads op-

erating under a connected network. At each step, each thread independently computes a
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new solution by using a noisy estimation of the gradient which is further perturbed by a

combination of repulsive and attractive terms depending upon the relative distance to so-

lutions identified by neighboring threads. This scheme resembles the mathematical models

of flocking, swarming and other group formations found in nature. When the objective

function is convex, we showed that a flocking-like approach for distributed stochastic opti-

mization provides a noise reduction e↵ect similar to that of a centralized stochastic gradient

algorithm based upon the average of N gradient samples at each step. When the overhead

related to the time needed to gather N samples and synchronization is not negligible, the

flocking implementation outperforms a centralized stochastic gradient algorithm based upon

the average of N gradient samples at each step. When the objective function is not convex,

the flocking-based approach seems better suited to escape locally optimal solutions due to

the repulsive force which enforces a certain level of diversity in the set of candidate solutions.

Here again, we showed that the noise reduction e↵ect is similar to that associated to the

centralized stochastic gradient algorithm based upon the average of N gradient samples at

each step.

Lastly, we proposed a class of iterative mechanisms for electricity markets. In an itera-

tive mechanism, market participants are asked to report the cost or willingness to pay for

small adjustments at each iteration and a tentative market dispatch is marginally adjusted

ensuring network constraints are satisfied. Small adjustments require less information from

market participants at each iteration and this facilitates the identification of incentives for

ensuring truthful reporting of private information. At each iteration, each market partici-

pant is charged (or compensated) according to the marginal change in surplus to all other

market participants. We show that truthful reporting is (approximately) a dominant strat-

egy and that when the mechanism stops, the resulting economic dispatch is approximately

e�cient. Individual participation constraints are satisfied as the net surplus from trade is

approximately shared equally by all participants and the mechanism is approximately weakly

budget balanced.
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6.2 Future Directions

There remains several interesting and challenging directions for future research.

In the foraging model, we were assuming that the measurement of gradient is continuous

and subject to i.i.d white noises. It would be interesting to explore the situation in which

gradient signals are intermittent, and/or the random e↵ects are state-dependent. These are

practical concerns in both nature and engineering applications, e.g., when the signal of a

nutrient profile is transmitted through turbulent fluids. In such complex environments, we

may expect the repulsion force to play a crucial role in the foraging success.

In the presented flocking-type optimization algorithm, only constant stepsizes and fixed

attraction/repulsion functions were considered. An important research direction is to design

adaptive algorithms where stepsizes and attraction/repulsion functions vary in time depend-

ing upon the solutions obtained. This is crucial for ensuring convergence to the optimal

solution when the variance of noise is great and when the objective function is potentially

non-convex. Some work has been done in this respect on single-thread algorithms utiliz-

ing adaptive stepsizes (see [111] for instance) that may o↵er reference for improving the

flocking-type algorithm.

The proposed iterative mechanisms for electricity markets may potentially be suitably

altered in various ways as its main properties are not dependent upon the closed-form rep-

resentation of network constraints but rather on convexity of the set of feasible solutions.

Thus, the proposed mechanism may potentially be used in conjunction with convex approx-

imations to AC power flow. Additionally, to speed up convergence, adjustments may be

computed on the basis of an augmented Lagrangian.
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[47] Alejandro Jofré, Nicolas Figueroa, and Benjamin Heymann. Mechanism design and

allocation algorithms for network markets with piece-wise linear costs and quadratic

externalities. Technical report, IPAM Workshop in Optimization and Equilibrium in

Energy Economics., 2016.

[48] Alfred E Kahn, Peter C Cramton, Robert H Porter, and Richard D Tabors. Uniform

pricing or pay-as-bid pricing: a dilemma for california and beyond. The Electricity

Journal, 14(6):70–79, 2001.

[49] Javad Khazaei, Golbon Zakeri, and Shmuel S Oren. Market clearing mechanisms

under uncertainty. Technical report, Working Paper, Princeton University, University

of Auckland, University of California at Berkeley, 2014.

[50] Jack Kiefer, Jacob Wolfowitz, et al. Stochastic estimation of the maximum of a re-

gression function. The Annals of Mathematical Statistics, 23(3):462–466, 1952.

122



[51] Jack PC Kleijnen. Design and analysis of simulation experiments, volume 20. Springer,

2008.

[52] Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample av-

erage approximation method for stochastic discrete optimization. SIAM Journal on

Optimization, 12(2):479–502, 2002.

[53] Harold Kushner and G George Yin. Stochastic approximation and recursive algorithms

and applications, volume 35. Springer Science & Business Media, 2003.

[54] Naomi Ehrich Leonard and Edward Fiorelli. Virtual leaders, artificial potentials and

coordinated control of groups. In Decision and Control, 2001. Proceedings of the 40th

IEEE Conference on, volume 3, pages 2968–2973. IEEE, 2001.

[55] Bernard C Lesieutre and Ian A Hiskens. Convexity of the set of feasible injections and

revenue adequacy in ftr markets. IEEE Transactions on Power Systems, 20(4):1790–

1798, 2005.

[56] Wei Li. Stability analysis of swarms with general topology. Systems, Man, and Cyber-

netics, Part B: Cybernetics, IEEE Transactions on, 38(4):1084–1097, 2008.

[57] Wei Li and Mark W Spong. Stability of general coupled inertial agents. Automatic

Control, IEEE Transactions on, 55(6):1411–1416, 2010.

[58] Wei Li and Mark W Spong. Analysis of flocking of cooperative multiple inertial agents

via a geometric decomposition technique. Systems, Man, and Cybernetics: Systems,

IEEE Transactions on, 44(12):1611–1623, 2014.

[59] Yanfei Liu and Kevin M Passino. Stable social foraging swarms in a noisy environment.

Automatic Control, IEEE Transactions on, 49(1):30–44, 2004.

[60] Ilan Lobel and Asuman Ozdaglar. Distributed subgradient methods for convex

optimization over random networks. Automatic Control, IEEE Transactions on,

56(6):1291–1306, 2011.

123
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[90] Kunal Srivastava and Angelia Nedić. Distributed asynchronous constrained stochastic

optimization. Selected Topics in Signal Processing, IEEE Journal of, 5(4):772–790,

2011.
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[111] Farzad Yousefian, Angelia Nedić, and Uday V Shanbhag. On stochastic gradient and

subgradient methods with adaptive steplength sequences. Automatica, 48(1):56–67,

2012.

[112] Wenwu Yu, Guanrong Chen, and Ming Cao. Distributed leader–follower flocking con-

trol for multi-agent dynamical systems with time-varying velocities. Systems & Control

Letters, 59(9):543–552, 2010.

[113] Jinye Zhao, Tongxin Zheng, and Eugene Litvinov. Variable resource dispatch through

do-not-exceed limit. Power Systems, IEEE Transactions on, 30(2):820–828, 2015.

128



[114] Rui Zou, Vijay Kalivarapu, Eliot Winer, James Oliver, and Sourabh Bhattacharya.

Particle swarm optimization based source seeking. arXiv preprint arXiv:1501.06622,

2015.

129


