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UVA was the last PhD program I applied to, and I only applied because of Ken Elzinga.

His chapter on the Spirit and Northwestern Airlines merger in The Antitrust Revolution

made me think I would enjoy being an antitrust economist. While I did not become an

antitrust economist, serving as Head TA under Mr. Elzinga and Lee Coppock was the most

rewarding experience of my time at UVA. Thank you both for showing me how to be a

proper Professor. Thank you to Bella Hicks for keeping the train running during those two

years. Thank you to the hundreds of students in our classes who helped make me a better

economist and teacher.

I would not have been able to survive the past six years without the support of my family

and I cannot thank them enough. Mom and Dad for supporting me endlessly, always being

there help me decompress, and generally being the best parents one could ask for. Austin

and Alana for being great pandemic housemates and a relief to be around whenever I came

home. And Errington for being the fun new addition to the family.

My friends, old and new, were with me through the highest of highs and the lowest of

lows. Cody, Andrew, and Pablo have been there for me for what now seems like my entire

life. Thankfully we don’t seem to be sick of each other yet. Aspen, thanks for always being

down for a hike, terrible movie, ice cream, or vent session. Every summer I would count

iv



down the days to the next body-of-water trip with the Coastal Grandmas: Erin, Max and

Val, Alex, and David. I’d be remiss to not thank Savannah, Elizabeth, and Hadley for their

friendship. I am grateful to so many of my fellow students who helped me learn, listened

to my half-baked ideas, and were generally lovely companions. In no particular order, Max,

Camille, Joe, Diego, Sasha, Avantika, Pallavi, Daniel, Anirban, DeShawn, and everyone in

the Public and Labor Student Group were all helpful in someway shape or form. You were

a lovely group to trauma bond with. There are many, many others I could include in my list

of people to thank, but that would be another essay in and of itself.

The American Economic Association Mentoring Program (AEAMP) has been an incred-

ible resource. I thank them for supporting my trips to conferences and introducing me to

a group of incredibly talented economists. I received invaluable feedback during each of the

summer mentoring meetings I attended as well. Thank you in particular to my mentor in the

program, Colin Cannonier. The work AEAMP has done to help underrepresented minorities

thrive the economics profession is so valuable, as is the community of diverse economists

they have developed.1

There are a number of other entities and such that feel worthy of acknowledgement. I

lived my life one 48-page Field Notes memo book at a time. Many of the words here were

conceived on Amtrak trains. The Northeast Regional and Crescent 20 lines will always hold

a special place in my heart. The inevitable delays just gave me more time to work. Finally,

the artists behind the Bridgerton soundtrack were also the artists behind many late night

writing sessions. I thank them for their talents.

I benefited financially from the Dean’s Doctoral Fellowship and Marshall Jevons Fund.

Chapter 1 was made possible by SpyCloud’s generous provision of data. For that I thank

Pablo Maceda, Ronak Patel, Wallis Romzek, and Trevor Hilligoss. The conclusions and views

expressed herein do not reflect those of SpyCloud or any persons affiliated with SpyCloud.

Syrell Greer and Jalen Mui provided excellent research assistance on chapter 2.

All remaining mistakes are my own.

Hook ’Em ’Hoos

Anderson J. Frailey

Spring 2025

Charlottesville, VA

1See Antman et al. (2025) for evidence of the program’s impact.

v



Abstract

It next to impossible to participate in the modern economy without involving data. Whether

a person is online shopping or applying for a loan, data is being collected and used to make

inferences. This shift to a data rich world has had a number of benefits, but it has also raised

many questions about privacy, the use of information, and data protection. The amount and

quality of available data directly impacts markets, while the organizations holding valuable

data are constantly at risk of suffering a cyberattack. This dissertation examines three topics

at the intersection of cybercrime, privacy, and information.

In chapter 1, I study how data privacy regulations affect the market for stolen data. I

propose a model of the stolen data economy to show how privacy regulations may affect the

market. I then introduce a novel dataset of data breaches to study the effects of the European

Union’s General Data Protection Regulation (GDPR), a policy governing the collection and

storage of user data, on the quantity of data available in the illicit market. Using a difference-

in-differences design, I find that the GDPR caused a 60 percent reduction in the number of

data breaches traded, but no reduction in the aggregate amount of data available. Analyzing

the contents of the individual breaches, I find a nearly 70 percent increase in the amount of

data they contain. These results are consistent with the model’s prediction that low-value

hacking targets becoming disproportionally less valuable after the GDPR, which in turn

causes higher-value targets to make up a larger portion of post-GDPR data breaches.

Chapter 2 continues with the study of cybercrime but with a focus on how it affects

targeted firms, and how those effects depend on whether the firm discussed their risk prior

to the event. I create a framework for understanding the effects of risk disclosure both at the

initial stages and when the risky event actually occurs. Using a collection of cybersecurity

incidents affecting publicly traded firms, I test the predictions of the framework by analyzing

the market’s reaction to the incidents and how it varies by disclosure status. I find that prior

risk disclosure is not in and of itself predictive of how the market will respond to an event,

but how the market reacts to the initial risk disclosure is. This chapter focuses on the role

of information in markets, which transitions into my final chapter

In chapter 3, I shift my focus to the role of information in consumer credit markets,

specifically studying how signal noise affects the credit constraints of borrowers and the

risks faced by lenders. In consumer credit markets, credit scores are used as a signal of

the creditworthiness of a borrower. Higher credit scores send a positive signal, increasing

access to credit. As part of the federal response to the COVID-19 pandemic, the Coronavirus

Aid, Relief, and Economic Security Act (CARES Act) paused collection on student loans

and suspended collections on delinquent loans. The latter provision of the legislation lead

vi



to beneficiaries of the policy seeing large increases in their credit score despite not taking

personal action to rectify their delinquencies. This added noise to the signal sent by the

credit scores. This paper studies the impact of that noise on consumer credit markets. I

show that beneficiaries of the policy were more likely to open auto and credit card loans,

and more likely to go delinquent on auto loans relative to two distinct control groups.
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Chapter 1.

The Effects of Privacy Regulation on the

Market for Stolen Data

1.1 Introduction

When individuals interact with businesses, schools, and almost any other modern organiza-

tion, they generate streams of data containing their names, financial information, address,

religious and political views, and more. While producing all of this information has the

presumed benefit of allowing the organizations collecting it to provide better services or

more relevant advertising, it has also subjected those whose data are collected to the risk of

that data being improperly accessed and misused. One study found that the average digital

identity appeared in nine separate data breaches and over one billion emails and passwords

could be found online in 2023 alone (SpyCloud, 2024).

Exposed data is a valuable commodity for cyber criminals. It can be used to commit

identify theft, fraud, and as the starting ground for future data breaches. Online markets

for the trade of stolen data have developed where bundles of data are swapped for money,

reputation, and bragging rights. Trades are conducted in Telegram channels, on the dark

web, and niche forums on the clear web, making it possible for even those who lack technical

skills to gain access to stolen data.1

In this chapter, I propose a model of the stolen data economy to show how data privacy

regulations may affect the market. I then estimate how the European Union’s General Data

Protection Regulation (GDPR)—one of the most comprehensive data privacy laws in the

world—changed aggregate outcomes in the market and the size and contents of the data

1The dark web is the portion of the web that is intentionally obfuscated and only accessible through
specialized internet browsers. The clear web consists of websites that can be reached by anyone and will be
indexed by search engines. Clear web forums that facilitate the trade of stolen data typically require a user
creating an account to view and participate in the market, technically making them part of the deep web.
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packages sold.

The GDPR is a broad reaching regulation that governs the collection and processing of

personal data by covered organizations. It explicitly states when data collection is considered

lawful, and prohibits the processing of sensitive data with few exceptions. Additionally, the

GDPR gives individuals the right to have their data deleted, transferred, or rectified; requires

detailed record keeping on data collection, impact assessments prior to data processing,

and the designation of a Data Protection Officer; and increases cybersecurity investment

requirements. Data breach notification requirements and large fines also significantly increase

the cost of suffering a data breach. Previous research estimates the GDPR increased the cost

of data storage by 20 percent, resulting in a 26 percent decrease in data storage among firms

in the EU relative to comparable American organizations by (Demirer et al., 2024). In the

context of the stolen data market, the GDPR is a negative supply shock. By reducing the

amount of data collected and requiring increased cybersecurity, it reduces the availability of

the market’s primary input good: data.

At a high level, the stolen data supply chain can be broken down into two components:

legal data collection and data theft. The organizations we interact with regularly collect

data on their customers, employees, and users for marketing, internal efficiency, and general

day-to-day operations. By reducing the amount of data that is collected, the GDPR also

reduces the amount of data that can be stolen.

Data is stolen by cyber criminals through a variety of means. Phishing attacks attempt

to trick members of targeted organizations into revealing login information. Ransomware at-

tacks have shifted to threatening victims with data exposure, in addition to the encryption

of their data, if they do not pay the ransom (Cong et al., 2023). Software vulnerabili-

ties or improperly configured databases may unknowingly expose databases to the outside

world, making it possible for those outside the organization to access data on customers and

employees. Privacy regulations impact this section of the supply chain through minimum

security requirements, which, if binding, decrease the probability of successfully breaching a

compliant organization.

For hackers, each potential target has an expected value and cost of hacking. Assuming

they are profit maximizers, hackers will only try to hack those with a positive net value

of hacking. This creates a set of profitable targets that is a subset of all potential targets.

By reducing the amount of data collected and requiring organizations to invest in security,

privacy regulations should decrease the value and increase the cost of breaching regulated

organizations. This will shrink the profitable target set, and change the expected value of

breaches that still occur. Depending on the relative changes in value and cost, relatively

low-valued targets may be disproportionally removed from the profitable target set. As a
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result, the expected value of the targets that remain could increase.

Actions taken by the agents throughout the supply chain manifest themselves in the

stolen data market. In this market, sellers are at least semi-anonymous and there is some

degree of opaqueness regarding product quality, creating significant risk of adverse selection

in the market.2 I model this market following Akerlof (1970) and show that, under the right

conditions, the GDPR may actually alleviate the adverse selection problem by causing higher

quality products to be sold in the market.

Empirically, I employ a unique dataset of stolen data packages traded in the market. Each

observation is of an individual data package and contains information on the organization

the data originated from, as well as the amount and types of data included. It is important

to note that these data only cover what is available online, not necessarily everything that

was stolen in a given data breach. The two may differ if a hacker decides to keep some

data for themselves or that some of the data is not worth selling. Each package is labeled

as being available before or after the GDPR, and whether the data it contains should have

been protected by the GDPR. To the best of my knowledge, this is the first use of such data

in the economics literature.

To determine aggregate effects, I combine the individual data packages to create a

country-quarter level panel spanning from January 2017 to November 2023 that tracks the

number of data breaches and records available that originate in a given country. I use this

panel to estimate a difference-in-differences model measuring the effect of the GDPR on

those two outcomes. I also break the post-GDPR period into short-run and long-run periods

to measure if and how the effects changed overtime. Short-run is defined as one year after

the regulation went into effect and long-run is anytime after that.

I find that the GDPR caused the number of data breaches originating from regulated

countries to decrease by approximately 60 percent overall, with the long-run decrease being

slightly larger than the short-run (61 percent versus 54 percent). Despite this, I find no

statistically significant change in the number of records available. The granularity of my

data allow me to estimate how the composition of the individual data packages changes to

explain the lack of change in number of records.

At the individual data package level, I estimate how the contents of the data packages—

the number of records, amount of personally identifiable information (PII), and number of

unique types of data—changes after the GDPR. As with the aggregate effects, I estimate

both an overall change and separate short-and long-run changes. I find that the size of data

packages, in terms of number of records, originating in regulated countries increases nearly

2For a discussion on how online illicit markets attempt to solve this issue with contracts and reputation
building tools, see Vu et al. (2020).
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70 percent in the long-run, while there is no statistically significant short-run change. The

fraction of those records that are considered PII and number of unique data types in these

packages do not change in any measured time period.

The increase in size of the data packages explains how the number of data packages could

fall without an accompanying decrease in the number of records. The theoretical model I

present suggests this is due to a shift towards more data rich targets after the GDPR changed

the viable target set. Additional empirical evidence of a shift towards larger targets is in the

UK cyber security breach survey, which shows that small organizations (those with fewer

than 50 employees) make up 95 percent of reported breaches in the 2017 survey, but only 48

percent in the 2022 survey. Large organizations (those with 250 or more employees) increase

their share from less than one percent to approximately 24 percent (Department for Digital,

Culture, Media and Sport, 2022).

The effects of data privacy and security legislation have been studied in a number of

contexts including healthcare (Miller and Tucker, 2009, 2011, 2018) and online advertising

(Goldfarb and Tucker, 2011). The GDPR specific literature covers its effects on firm per-

formance (Koski and Valmari, 2020; Chen et al., 2022; Goldberg et al., 2024), competition

(Johnson et al., 2023), investment (Jia et al., 2021; Kircher and Foerderer, 2021; Janßen

et al., 2022), and data collection (Aridor et al., 2021; Lukic et al., 2023; Demirer et al.,

2024). These papers typically find negative effects of the regulation: decreases in compe-

tition, investment, and firm performance. Or changes whose net welfare effects are more

ambiguous, such as decreased data storage. While I do not attempt to calculate the over-

all welfare effects of the policy, this chapter is the first to show a seemingly unambiguous

benefit of the GDPR: the reduction in the number of data packages online. But even with

this reduction, the extent to which individuals benefit is unclear given that there was not

an accompanying reduction in the number of records available. It is possible that, while

there are fewer breaches, those that remain contain enough information to leave the affected

individuals no better off than before.

Significant work studying stolen data markets has been conducted by criminologists, who

have derived some estimates of their sizes and products offered (Franklin et al., 2007; Holt

and Lampke, 2010; Holt et al., 2016). These papers conduct in depth, descriptive studies of

a handful of individual forums where data is sold. They do not study how public policy and

new technologies can have trickle-down effects on these markets. My unique dataset allows

me to fill that gap in this are of the criminology literature, and extend the contribution into

the economics of crime.

The model I present conceptually aligns with Becker (1968). The decisions of the hackers

to attempt a data breach is based on the perceived costs and benefits of doing so. When the
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costs increase and the benefits decrease, there are fewer breaches. The costs and benefits

are not perfectly observable, requiring hackers to base their actions on their beliefs of data

collection practices and how well potential targets have protected themselves. This is similar

to the mechanisms in Ayres and Levitt (1998) and Braakmann et al. (2024). In Ayres and

Levitt, car thieves could not observe which vehicles had tracking devices installed, but were

aware of which areas had higher installation rates. The higher likelihood of stealing a car

that could be tracked caused them to steal fewer cars in those areas. In Braakmann et al.,

the price of gold increasing motivated burglars to target homes in areas where homeowners

were expected to store more gold. The GDPR has the opposite effect of Braakmann et al.,

but a similar effect to Athey et al.. By causing a reduction in the expected value and increase

in the expected cost of breaching European organizations, the regulation incentivizes hackers

to change who they target.

The remainder of this chapter is structured as follows. Section 1.2 formally presents the

model of the stolen data market discussed earlier. In Section 1.3 I describe the data used in

this study. My empirical strategy is defined in Section 1.4 and the results are presented in

Section 1.5. I provided concluding remarks and paths for future research in Section 1.6.

1.2 A Model of Stolen Data Production

The production of stolen data can be described by a two-part “supply chain”, depicted

in figure 1.1. It begins with data collectors deciding what information to collect. Data

collectors are companies, schools, governments, and any other entity that holds customer,

user, and employee data. Collecting data comes at a cost. They must pay to gather it, keep

it stored, and respond to user requests regarding their data. There is also the persistent risk

that they suffer a data breach and incur additional costs as a result. These include sending

notifications to those affected, offering credit monitoring, performing security audits, legal

costs, and fines imposed by governments. To mitigate this risk, organizations can invest in

security measures. Some are technical, such as consistently patching software vulnerabilities

and encrypting data. Others are non-technical, such as teaching employees to detect phishing

emails or improve their password management. For both types, the goal is to make it more

difficult for data to fall into the wrong hands.3

In the second stage, data theft, hackers target a subset of data collecting organizations

based on the expected cost and benefit of doing so. Assuming that they are profit maximizing

agents, they will only want to hack an organization if the expected profit from doing so is

3This goal is not always achieved. Miller and Tucker (2011) find that use of encryption technology is
actually associated with an increase in reports of data loss.
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Figure 1.1: The Stolen Data Supply Chain

positive. Once they have the data, they can either keep it for themselves or sell it in the

market.

Stolen data is traded in Telegram channels and other online black markets. Suppliers may

advertise their products by describing what is in the data package and where it originated

from (Holt and Lampke, 2010). Because they are anonymous, online, and illegal, these

markets are vulnerable to adverse selection problems.4 I model this part of the market

following Akerlof (1970) and describe the conditions necessary for the market to exist.

Privacy regulations are a negative supply shock along two dimensions. First, they reduce

the amount of data stored by organizations, as discussed in Demirer et al. (2024). Second,

they typically require increased investment in cybersecurity, making it more difficult to

breach a regulated organization. Data from the United Kingdom Cyber Security Breaches

Survey shows that nearly two thirds of respondents made operational changes in response to

the GDPR. Among those that made changes, 100 percent reported making changes related

to the cybersecurity policies and practices (table 1.1). Both effects increase the cost of

acquiring the key input to the market: the data itself.

4Users and platforms now rely heavily on reputation to facilitate trade. Some platforms have created
contract systems that set expectations for the parties involved in a transaction and help build supplier’s
reputation (Vu et al., 2020). Often, suppliers will give away their stolen data rather than sell it to help build
their reputation.
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Table 1.1: Percentage of Organizations Reporting Operational
Changes in Response to the GDPR

Any Change Change in Cybersecurity

Survey Year 2018 2019 2018 2019

Overall 12.75% 63.71% 100.00% 100.00%
Small 9.91% 61.56% 100.00% 100.00%
Medium 28.71% 90.66% 100.00% 100.00%
Large 52.91% 95.81% 100.00% 100.00%

Source: Department for Digital, Culture, Media and Sport (2022),
author’s calculations. Respondents were asked “Has your organisa-
tion made any changes or not to the way you operate in response to
GDPR?” and “Have any of these changes been related to your cyber
security policies or processes, or not?” The fraction of respondents
answering yes to the first question is in the first two columns. The
fraction answering yes to the second question, among those answer-
ing yes to the first, is in the last two columns.

This changes the incentives of the attackers. The marginal value of the data that can be

extracted from a regulated organization decreases, while the marginal cost of breaching one

has increases, encouraging changes in the optimal effort allocation. In equilibrium, this may

increase or decrease the expected value of the data packages still sold, which will influence

demand for the goods. In the remainder of this section, I present a model that describes the

behavior of both agents, and the effects of privacy regulation on their choices and the final

market equilibrium.

1.2.1 Legal Data Collection—Organizational Behavior

Organizations in this framework choose what types and how much data to collect. With J

total types of data available, each individual type of data, j, is used to generate information.

Denoting the total amount of each type of data collected as dj, the function I(d1, . . . , dJ)

determines the total information generated. The total cost of collecting these data is given

by the function C(d1, . . . , dJ). I assume that the information function takes the form:

I(d1, . . . , dJ) = A (α1d
ρ
1 + . . .+ αJd

ρ
J)

ν
ρ

where ν determines returns to scale and ρ the level of substitutability between data types.

A is an organization specific productivity term.5

5Demirer et al. (2024) use a similar information function. Rather than include a term for each type of
data, they use a singular term for the total amount of data stored and add the amount of computation used
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For simplicity, I assume linear data collection cost: C(d1, . . . , dJ) =
∑J

j=1 ωjdj, where ωj

is the cost of collecting a unit of type j data. Cost of collection can vary between data types

due to laws governing how certain types of data are stored. Examples include additional

encryption or security requirements for data that are particularly sensitive such as health

and financial information. Additionally, some privacy regulations give individuals the right

to have their data corrected for mistakes or deleted upon request. The frequency with which

those requests are made may vary by data type. For example, a customer of a credit rating

agency is more likely to notice and request correction of an error that greatly affects their

credit score than they are a smaller error, such as an in incorrect address.

Each organization also invests some amount in security, S, to prevent data breaches. A

unit of security costs ωS to purchase and directly reduces the probability of suffering a breach.

Regardless of the size of the investment, breach probability never reaches zero because, no

matter how much security an organization has, there is always the possibility for human

error or a previously unknown software vulnerability that could expose their data. I adopt

the breach probability function introduced in Gordon and Loeb (2002). Given an intrinsic

level of risk r, the probability of a breach after accounting for security investment is:

P(S) =
r

S + 1
, r ∈ [0, 1].

Security investment decreases the probability of a breach, but at a decreasing rate.6

If they suffer a data breach, the organization will incur losses L(d1, . . . , dJ). These dam-

ages include lost sales, restoring their computer systems, lawsuits, and fines. Again for

simplicity I assume that total losses are linear in data collection and include a fixed loss ℓ:

L(d1, . . . , dJ , ℓ) = ℓ +
∑J

j=1 γjdj. Like the ω terms, the γ terms vary by data type because

some data will result in bigger losses than others if stolen.

The organization faces the optimization problem:

max
d1,··· ,dJ ,S

A (α1d
ρ
1 + . . .+ αJd

ρ
J)

ν
ρ −

J∑
j=1

(ωjdj)− ωsS − r

S + 1

(
ℓ+

J∑
j=1

γjdj

)
.

As an example, assume there are just two data types, making the problem:

a choice variable.
6The more general form in Gordon and Loeb includes measures for security productivity, making the

function r
(ςS+1)β

. I have assumed that ς = β = 1. This does not meaningfully change the interpretation of

my results.
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max
d1,d2,S

A (α1d
ρ
1 + α2d

ρ
2)

ν
ρ − ω1d1 − ω2d2 − ωSS − r

S + 1
(ℓ+ γ1d1 + γ2d2) . (1.1)

Taking the first order conditions with respect to S, d1, and d2 yields:

r

(S + 1)2
(ℓ+ γ1d1 + γ2d2) = ωS (1.2)

α1d
ρ−1
1 νA (α1d

ρ
1 + α2d

ρ
2)

ν−ρ
ρ = ω1 +

r

S + 1
γ1 (1.3)

α2d
ρ−1
2 νA (α1d

ρ
1 + α2d

ρ
2)

ν−ρ
ρ = ω2 +

r

S + 1
γ2 (1.4)

Simply put, they will invest in security until the marginal benefit, the reduction in expected

losses due to a data breach, equals the cost of an additional unit of security (equation

1.2). Similarly, they will collect data until the marginal benefit—the additional information

generated—equals the marginal cost—the cost of collecting and the increased cost of a breach

(equations 1.3 and 1.4).

Rearranging equation 1.2 reveals that the optimal S is:

S∗ =

√
r (ℓ+ γ1d∗1 + γ2d∗2)

ωS

(1.5)

Intuitively, optimal security investment will be increasing in fundamental risk and the various

costs associated with a breach.

Using equations 1.3 and 1.4, the optimal levels of data collection are described by the

equations:

d∗1 = (νA)
1

1−ν

(
α1

ω1 +
r

S∗+1
γ1

) 1
1−ρ

α1

(
α1

ω1 +
r

S∗+1
γ1

) ρ
1−ρ

+

α2

(
α2

ω2 +
r

S∗+1
γ2

) ρ
1−ρ


ν−ρ

ρ(1−ν)

(1.6)

and:
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d∗2 = (νA)
1

1−ν

(
α2

ω2 +
r

S∗+1
γ2

) 1
1−ρ

α1

(
α1

ω1 +
r

S∗+1
γ1

) ρ
1−ρ

+

α2

(
α2

ω2 +
r

S∗+1
γ2

) ρ
1−ρ


ν−ρ

ρ(1−ν)

.

(1.7)

Full derivations are in section A.1.1 of the appendix. The primary takeaway from the above

equations is that data collection decreases as the cost of collection increases.

Privacy regulations increase the cost of collecting data in numerous ways. In the case

of the GDPR, criteria that must be met for any data collection to be legal are defined in

Article 6, and Article 9 prohibits the collection of particularly sensitive data. Also on the

cost of collection side, the GDPR gives individuals the right to have their data deleted,

transferred, or rectified (Articles 12-13); requires record keeping of data processing (Article

30), conducting impact assessments prior to processing data (Article 35), and the designation

of a Data Protection Officer (Article 37). Each of these provisions increases the costs of

collecting data, ωj, for each type of data and the size of that increase may vary by type.

Finally, the cost of being breached increases because of notification requirements (Article

33) and the potential for fines after the breach (Article 83). This increases both the fixed

costs of a breach ℓ, and the costs associated with each type of data stolen, γj.

In addition to governing when data collection is legal, the GDPR requires implementing

a minimum level of cybersecurity appropriate for the organization’s risk level (Article 32),

effectively setting a lower bound, S, on security investment. If S∗ < S, organizations will

need to increase their spending on security beyond their unregulated choice. Together, the

organizational decisions derived in this section will determine their value as targets in the

next section.

1.2.2 Data Theft

Once data has been collected, organizations become potential targets for breaches. Each

target i has an expected value of the data that can be stolen from them and cost of hacking

denoted Vi and Ci, respectively. Quality is based on the amount and type of data they

collect, and cost is a function of their security investment. The expected profit of hacking

target i is

πi = Vi − Ci.
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A profit maximizing hacker will only target a given organization if πi ≥ 0, or Vi ≥ Ci. This

creates a threshold that splits targets into those that get hacked and those that do not,

shown by the 45 degree zero-profit line in figure 1.2. Targets that fall above the line, the

profitable set, will be hacked, those below will not. With this delineation, the expected value

of a hacked target is

E [Vi|Vi ≥ Ci] =

∫ C̄

C

∫ V̄

Ci

VidF (Vi, Ci)

where C, C̄, and V̄ are the lower and upper bounds for Ci and Vi.

Privacy regulations will both decrease the value and increase the cost of hacking regulated

entities. For target i, the new value and cost are

V Post
i = (1− ϕ)Vi 0 < ϕ < 1

CPost
i = ξCi ξ ≥ 1

creating a new zero-profit condition: (1−ϕ)Vi = ξCi that must be satisfied for the target to

be hacked. The new expected value of breaches is then:

E
[
Vi

∣∣∣∣ ξ

1− ϕ
C ≤ Vi

]
=

∫ C̄

C

∫ V̄

ξ
(1−ϕ)

Ci

VidF (Vi, Ci).

The total number of breaches decreases for all valid values of ξ and ϕ, but whether the

post-GDPR expected value is higher or lower than pre-GDPR expected value depends on

the correlation of ϕ and ξ with V and C, and the joint distribution of V and C.

Suppose that (V,C) ∼ Uniform[0, 1]2. If ϕ and ξ are constants, then each potentially

targeted organization experiences the same proportional decrease in value and increase in

cost. They will fall out of the profitable target set proportionately, and the expected breach

value is unchanged.

If instead ϕ or ξ are correlated with V or C, the slope of the zero profit line will no longer

be constant and either high or low value targets will be disproportionally removed from the

profitable target set.

In the case where ξ is positively correlated with V , the marginal return to security

investment will be higher for high-value targets than low. This will cause the zero profit line

to become steeper at high values of V , disproportionally removing high-value targets from

the subset of targets that are worth hacking. The same is true if ϕ were to be positively

correlated with V . A positive correlation between V and ϕ would mean that the decrease

in value caused by the GDPR would be larger for high-value targets than low. In either

case, high-value targets are disproportionally removed from the profitable target set and the
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expectation of V falls.

If ξ is negatively correlated with V , the marginal return to security investment is lower

for high-value targets than low. Similarly, if ϕ is negatively correlated with V , the GDPR

reduced value less for high-value targets than low. In either case, the zero profit line flattens

out at higher realizations of V and low-value targets are disproportionally removed from

the set of hacked targets. The expectation of V will be higher post-GDPR than prior to

the regulation because fewer low-value organizations are in the profitable target set. This is

shown by the curved line in figure 1.2.

Equation 1.5 in the previous section shows that a data collector’s optimal security invest-

ment is increasing in the amount and value of data they collect. Since the value of a breach is

an increasing function of the amount and value of data that are collected, high-value targets

will also have more and better security than low-value targets pre-GDPR under this model.

Assuming the marginal return to security is decreasing, the increase in hacking cost caused

by the GDPR’s security requirements will be relatively smaller for high-value targets than

low, meaning ξ and V are negatively correlated.

If there is a correlation between ϕ and V , it is likely to also be negative. Demirer

et al. (2024) find that IT-intensive industries have a smaller response—in terms of reducing

data collection—to the GDPR that less IT-intensive industries. They also find the increase

in data collection costs the GDPR caused was smaller for larger organizations. Assuming

that IT-intensive and large organizations make for high-value targets, ϕ and V will also

be negatively correlated. This causes the slope of the zero-profit line to flatten more as V

increases, resulting in an even more disproportionate removal of low-quality targets.

1.2.3 The Stolen Data Market

After stealing data from the original data collectors, hackers have the option of keeping or

selling it in the market. Participants in this market are at least semi-anonymous and only

the sellers know the true quality of the data they hold until it is sold, making it ripe for

issues of adverse selection. I use the lemons model from Akerlof (1970) as the foundation of

this section of the model.

Suppose hacker utility is given by

UH =M +
BH∑
i=1

Vi

where M is non-data consumption, whose price is normalized to one, and BH is the set of

data packages, which come from the individual breaches, they hold. This is not the entire
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Figure 1.2: Conceptual Model

Notes: Both pre-and post-GDPR the zero-profit lines split the potential target
set into groups that are and are not hacked. Those to the right of the line
would be unprofitable due to high costs and low qualities, while those to the
right are worth breaching. After the GDPR, low-quality targets get dispropor-
tionally excluded from the target set, increasing the expected quality of those
still breached.

set of potential targets, only those that are breached. Vi is the value of the data from breach

i, as described in the previous section.

Hackers will only sell the data they have stolen if the price they get is higher than the

utility they gain from holding it: Vi ≤ p. Market supply is then:

S(p) = BP
(
Vi ≤ p

∣∣∣∣C ≤ V

)
(1.8)

where B is the set of all hacked targets.

Buyers have a similar utility function:

UB =M +
BB∑
i=1

κVi.

The parameter κ allows for buyers and sellers to have different values of the same bundle of

data. This can occur if the skill sets needed to steal the data and profit from it are different,

meaning there are comparative advantages between buyers and sellers. If κ > 1, the buyers

of stolen data are more productive in their use of stolen data than those who steal it. The
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larger κ, the larger that gap in ability. BB is the set of data packages held by the buyer, and

all other parameters in the buyer’s utility function are the same as in the hacker’s

Buyers cannot observe the true quality of the data packages sold and thus make their

purchase decisions based on the expected value: µ ≡ E [V |C ≤ V ≤ p]. They will only

purchase data packages if κµ ≥ p. With an income of Y , total demand for stolen data is

D(p) =

Y
p

if κµ ≥ p

0 Otherwise

The expected value of the data provided at a given price is mechanically less than the price,

meaning a market will only exist if κ is sufficiently large. The difference in ability to obtain

and exploit stolen data leads to labor specialization in the market. Those who are most adept

at stealing data sell at least a portion of their data to those who are better at exploiting

the information in it. With a sufficiently large κ, there will be an equilibrium price p∗ that

clears the market.

After the GDPR, hacker utility becomes

UH,Post =M +
BH,Post∑

i=1

(1− ϕ)Vi

where BH,Post ≤ BH is the number of breaches the hold post-GDPR. They will now sell if

(1− ϕ)Vi ≤ p. Which creates the new supply curve:

SPost(p) = BPostP ((1− ϕ)Vi < p)

where BPost is the set of targets hacked post-GDPR.

On the buyer side, their new expected value of the packages sold is

µPost = E
[
V

∣∣∣∣ ξ

1− ϕ
C ≤ V ≤ p

1− ϕ

]
.

Where it exists, demand remains unchanged, but the minimum κ needed for it to exist

changes to satisfy κ(1− ϕ)µPost ≥ p.

If lower-value targets disproportionally fall out of the target set, µPost may be higher than

µ, depending on the exact value of ϕ. This will lower the minimum κ needed for demand

to exist. The decrease in supply will also increase the price, making hackers more willing to

sell their higher-value breaches. As a result, even though there are fewer breaches, the value

of what is traded may increase. Given that the amount of data is one aspect of value, it is
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theoretically possible that the GDPR actually increases the amount of data traded online.

1.2.4 Stylized Example

To demonstrate how expected value and the size of the market change in response to privacy

regulations, suppose again that (V,C) ∼ Uniform[0, 1]2. Prior to the GDPR,

E
[
V

∣∣∣∣C ≤ V

]
=

2

3
.

Hackers will only sell their data if the price they get is higher than their utility gain should

they keep it, making supply:

S(p) = BP(V ≤ p)

= Bp2
(1.9)

The expected quality of a breach given that it is being sold, µ, is

E [V |C ≤ V ≤ p] =
2

3
p.

Demand only exists in this market if κµ ≥ p, so the minimum κ required is κ = 3/2 and the

demand curve is:

D(p) =

Y
p

if κ ≥ 3
2

0 Otherwise
(1.10)

Equations 1.9 and 1.10 yield the pre-GDPR equilibrium:

p∗ =

(
Y

B

) 1
3

Q∗ = Y
2
3B

1
3

(1.11)

Full derivations can be found in section A.1.2 of the appendix.

Post-GDPR, let ξi = θV σ
i and for simplicity assume that ϕ is constant. The zero profit

line is now

V =

(
θ

1− ϕ
C

) 1
1−σ

And the expectation of V in this range is

E

[
V

∣∣∣∣ ( θ

1− ϕ
C

) 1
1−σ

≤ V

]
=

2− σ

3− σ
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As can be seen, the change in expected quality depends entirely on σ. If σ = 0, then

ξ = θ and is constant across all values of V . While hackers will be worse off than before

because their utility from each hack is (1 − ϕ)V , E[V ] will be unchanged. In other words,

the composition of the remaining breaches, in terms of the distribution of value, will remain

the same. There will just be fewer of them. If σ is positive, ξ grows with V and the expected

value of breaches will fall. Finally, if σ is negative, ξ is smaller for high levels of V , and the

expectation of V will be higher than pre-GDPR levels.

Given that the utility they attain from holding onto any given data package has fallen,

hackers will be more willing to sell what they steal. Specifically, they will now sell if (1 −
ϕ)V ≤ p. The expected value of goods sold in the market at any given price is now

E

[
V

∣∣∣∣ ( θ

1− ϕ
C

) 1
1−σ

≤ V ≤ p

1− ϕ

]
=

2− σ

3− σ

p

1− ϕ
. (1.12)

The supply of data packages on the market also changes:

SPost(p) = BPostP

(
V ≤ p

1− ϕ

∣∣∣∣ ( θ

1− ϕ
C

) 1
1−σ

≤ V

)

= BPost

(
p

1− ϕ

)2−σ
(1.13)

Although the total number of packages sold will fall because fewer organizations are hacked,

the portion of hacks being sold at a given price will increase.

While hackers are more willing to sell their goods, for buyers κ must now be large enough

for κ(1 − ϕ)µPost ≥ p to hold true. Given the expectation of V in equation 1.12, the new

minimum κ required for the market to exist is

κ ≥ 3− σ

2− σ
.

Demand is now

DPost(p) =

Y
p

if κ ≥ 3−σ
2−σ

0 Otherwise
(1.14)

Figure 1.3 shows how the minimum κ needed for a market to exist changes with σ. When

σ is negative, low-value targets are disproportionally removed from the profitable target set.

This increases the expected quality of the remaining targets in the set, which also increases

buyer’s quality expectations, µpost. As a result, the market can be supported with a smaller κ.

The opposite is true when σ is positive. In this case, high-value targets are disproportionally
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Figure 1.3: Minimum κ

Notes: The above figure shows the minimum κ needed for a market to
exist given σ.

removed from the profitable target set, reducing µ. For a market to exist, κ must be large

enough to counteract this change.

If κ is sufficiently large, the new post-GDPR equilibrium price and quantity are

p∗Post =

(
Y

BPost

) 1
3−σ

(1− ϕ)
2−σ
3−σ

Q∗
Post = Y

2−σ
3−σ

(
BPost

(1− ϕ)2−σ

) 1
3−σ

.

(1.15)

How the post-GDPR equilibrium compares to the pre-GDPR equilibrium will depend on

the values of ϕ and σ. To demonstrate, I simulate the model under pre-GDPR conditions

and two potential post-GDPR states of the world. In the first, Corr(ξ, V ) < 0, i.e., there

are diminishing returns to security investment. In the second, Corr(ξ, V ) > 0, i.e., there are

increasing returns to security investment. For simplicity, I make ϕ a constant equal to 0.26.7

Table 1.2 lists the full set of parameters in the simulation. The pre-GDPR parameters are

set to create the original, linear, zero-profit line, while both sets of post-GDPR parameters

create non-linear zero-profit lines. In all cases, I assume κ is at least 1.5 since that is the

smallest value possible for the market to have existed prior to the GDPR. If κ must be larger

7I chose ϕ = 0.26 because Demirer et al. (2024) find the GDPR reduced data storage by 26 percent in
the long-run. This number could be changed and the general findings of the model would remain the same.
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than 1.5 for the market to exist, I set it equal to (3− σ)/(2− σ).

Table 1.2: Simulation Parameters

Pre-GDPR Baseline Post-GDPR

Parameter Corr(ξ, V ) < 0 Corr(ξ, V ) > 0

Y 55,000 55,000 55,000
N 1,000,000 1,000,000 1,000,000
ϕ 0 0.26 0.260
θ 1 1 1 + ( 1

V σ )
σ 0 -3.0 0.200

With (V,C) ∼ Uniform[0, 1]2, half of all the potential targets are breached pre-GDPR,

and the expected quality of those breaches is 2/3. In this market, the price equals κµ as

buyers will pay up to their expected utility gain (table 1.3, column one).

Table 1.3: Simulation Outcomes

Pre-GDPR Post-GDPR

Corr(ξ, V ) < 0 Corr(ξ, V ) > 0

% Targets Hacked 0.501 0.148 0.194
E[V |Hacked] 0.666 0.833 0.655
Minimum κ 1.500 1.250 1.667
% of Hacked Data Packages Sold 0.230 0.564 0.522
Equilibrium Price 0.479 0.660 0.525
Equilibrium Quantity 115,353 83,446 101,363
E[V |Sold] 0.320 0.742 0.465
E[(1− ϕ)V |Sold] 0.320 0.549 0.344
UB 55,056 68,693 59,960
UH 351,797 100,336 112,434

Notes: This table presents the results of the main simulation exercise in section 1.2.4. The
simulations in columns one and two use κ = 1.5 while in column three κ is increased to
1.667 in order for demand to exist.

In the first post-GDPR simulation, where Corr(ξ, V ) < 0, the expected profitability of

hacking falls for all value levels, resulting in only 15 percent of all targets being hacked. But

because of the diminishing returns to security investment, the increase in hacking cost is

smaller for high-value targets than low. As a result, a higher portion low-value targets fall

out of the profitable target set than high-value. This raises the value buyers expect to receive,

which lowers the minimum κ needed for the market to exist to 1.25. As is expected with a

decrease in supply, equilibrium price rises while equilibrium quantity falls. The increase in
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price incentivizes hackers to sell higher quality data packages, as shown in figure 1.5, further

increasing E
[
V

∣∣∣∣Sold]. The results from this simulation are in the second column of table

1.3. Figure 1.4a plots this market equilibrium relative to the pre-GDPR period.

The second post-GDPR simulation sets θ and σ to make ξ increase with V . The results

of this simulation are in column three of table 1.3 and plotted in figure 1.4b. As before,

there is a decrease in supply with a higher equilibrium price and quantity. The expected

value of the targets that are still hacked with their breaches being sold is lower than that in

column two, requiring a higher κ for the market to exist. To run the model, it is necessarily

to raise κ to 1.667 to satisfy this condition. In table 1.4 I instead leave κ equal to 1.5 for

all simulations. While that is sufficient for a pre-GDPR and the first post-GDPR market to

exist, demand will be zero in the second post-GDPR condition.

Figure 1.4: Simulated Equilibrium

(a) Corr(ξ, V ) < 0 (b) Corr(ξ, V ) > 0

These simulations show that under the right conditions privacy regulations may actually

increase the expected value of data packages stolen and traded. This reduces the adverse

selection problem in the market and increases buyer utility.

1.3 Stolen Data Market Observations

Data for this study come primarily from SpyCloud, a private cybersecurity company spe-

cializing in identity threat protection. They have constructed a catalog of data breaches

gathered from a number of online stolen data marketplaces. Each observation is of a data

package traded in the market, containing information on which organizations the data were

taken from, what types of data were stolen, and the total number of records included. The
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Figure 1.5: Data Packages Sold and Not Sold

(a) Pre-GDPR (b) Post-GDPR

Table 1.4: Simulation Outcomes: Fixed κ

Pre-GDPR Post-GDPR

Corr(ξ, V ) < 0 Corr(ξ, V ) > 0

% Targets Hacked 0.501 0.148 0.194
E[V |Hacked] 0.666 0.833 0.655
κ 1.500 1.500 1.500
% of Hacked Data Packages Sold 0.230 0.564 0
Equilibrium Price 0.479 0.660 -
Equilibrium Quantity 115,353 83,446 0
E[V |Sold] 0.320 0.742 -
E[(1− ϕ)V |Sold] 0.320 0.549 -
UB 55,056 68,693 55,000
UH 351,797 100,336 94,118

Notes: This table presents the results of the second simulation exercise in section 1.2.4.
For each simulation κ = 1.5, which results in there being no demand in the model in column
three.

data packages were available online between 2015 and 2023, though the breaches they origi-

nate from may have occurred as early as 2002. To the best of my knowledge, this is the first

time such a dataset has been used to quantitatively study the effect of any policy change on

the stolen data market. The details of the data allow me to go deeper than the aggregate and

summary statistics previous research has depended on to see what is actually being traded.

Unfortunately, I do not observe prices for all but a handful of data packages, restricting this

chapter to measuring just quantity effects.

Table 1.5 displays summary statistics for the three outcomes of interest in the study at
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Table 1.5: Data Package Summary Statistics

Number of Records PII Fraction # of Data Types

Observations 4,394 4,394 4,394
Mean 3,544,186 0.690 6.220
Std. Dev. 28,996,342 0.191 5.208
Min. 1 0 1
25% 5,164 0.500 2
50% 46,748 0.667 4
75% 288,555 0.855 9
Max. 716,409,393 1 55

Notes: PII fraction is the fraction of records in a data package that are
considered PII. A discussion of what constitutes PII is in the appendix.

the data package level: the total number of records in a data package; the fraction of the

data in a data package that is personally identifiable information (PII); and the number of

data types in each package. A data type is, tautologically, a type of data. Examples are

email addresses, credit card information, or whether the identified person owns a cat. PII

has multiple legal definitions, but can be thought of as information that can identify and

individual and may not be publicly known. A more in depth discussion of the definition of

PII is in section A.2 of the appendix.

Data packages vary greatly in terms of size, measured by the number of records. The

largest contains over 700 million data points, while the smallest only one. Similarly, they

range from having only one type of data to 55. Where they are more alike is in the fraction

of records in the breach that are personally identifiable information. The 25th percentile

breach is 50 percent PII, and 75th percentile breach has 85 percent PII. Emails, considered

PII under the GDPR, are the most common type of data in these breaches, closely followed

by passwords (figure 1.6).

Because the GDPR applies to any entity collecting data on EU residents, not just those

in the EU, identifying treatment and control groups is difficult. For each data package, I

observe either the country from which the data originate or the name of organization that

was breached, and both for a subset of the observations. When I observe only the originating

country, I assign the breach to that country. This makes treatment categorization simple: if

the data originates in the EU, the package is treated. In the cases where I only observe the

organization from which the data were stolen, I use one of two processes. First, I determine

where the organization is headquartered. If they are an EU-based organization, the package

is treated. If they are not, I search their privacy policy (where available) to see whether it

has a section on European privacy laws. Those that do are categorized as treated. In cases
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Figure 1.6: Fraction of Data Packages Containing Each Data Type

Notes: The password category includes both individual passwords themselves,
and information related to passwords, such as the salt used to help obscure
them. Financial information includes bank, credit card, and loan data, Treated
refers to all data packages originating in the EU, untreated to those originating
outside the EU.

where the organization is based outside the EU and lacks any indicators that they conduct

business in the EU, I use a method similar to Demirer et al. (2024), who use firm’s data

server locations to categorize them into treatment and control units. I cannot observe data

center locations, so instead I use the server locations for where they host their websites, as

that location is endogenous to the location of an organization’s users and customers.

Although it has largely been abstracted away, the internet is fundamentally a physical

network. Data flows through fiber optic cables that span across oceans and continents to

deliver content to users. This means the further a user is physically located from the server

hosting the content, the longer it takes content to be delivered. The difference in time

may only be fractions of a second, but that can still have a noticeable effect on outcomes

organizations care about. Previous research has found that a 0.1 second improvement in

website load time can increase spending on retails sites by almost 10% (Deloitte, 2020). For

streaming and gaming sites, decreasing lag time improves user experience and can be used

as a differentiating factor. Together, this creates an incentive for organizations to host their

website on servers that are physically near their users to minimize load time.
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There are two pieces of the internet’s architecture key to connecting users with websites

that allow me to observe where sites are physically located: DNS and GeoDNS. A Domain

Name System (DNS) is essentially a phonebook for the internet. When a user types a domain

name (e.g., www.fangraphs.com) into their web browser, it sends a query to the DNS, which

then finds the IP address of the server hosting that website and connects it to the user. A

GeoDNS does the same while taking into account the location of the user sending the initial

query. For websites hosted in multiple locations, it will respond with the IP address of the

server hosting the requested website that is closest to the user. As an example, suppose a

website is hosted on one server in San Francisco, California and another Berlin, Germany. A

user in Los Angeles will be connected with the San Francisco server, and a user in Frankfurt

will be connected to the Berlin server.

To find where an organization hosts their website, I use the GeoNet API tool from Shodan,

an internet devices research company.8 The GeoNet API allows me to send GeoDNS queries

from six locations around the world to any website and record the IP addresses that respond

to each request.9 I conduct these queries for the website of each organization with a data

package in my sample. After collecting the IP addresses of the responding servers, I use

Shodan’s IP address lookup tool to find the physical location of each one. Under this method,

I categorize a breach as having come from a regulated entity if the organization hosts their

website on at least one server in the EU. An organization that hosts their websites both

in and outside the EU will also be considered regulated. For those packages that have not

been manually assigned to a specific country, they are assigned to the country in which their

originating organization hosts a majority of their servers. Table 1.6 breaks down the number

of data packages that fall into each category before and after the GDPR.

Table 1.6: Group Counts

Pre-GDPR Post-GDPR
N=1,621 N=2,773

Non-EU EU Non-EU EU

N 1,175 446 2,293 480

Data packages are only included in the final dataset if I can determine whether the

originating organization is subject to the GDPR (or was in the cases where the organization

is no longer active), and when the data are available online (pre- or post-GDPR). This

8https://geonet.shodan.io
9Requests are sent from servers in the United States, England, the Netherlands, Germany, India, and

Singapore
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sample represents only data that are posted online, not necessarily all data that is collected

or stolen. It is possible that some stolen data packages are not traded, in which case I cannot

observe them.10 There are many reasons why a package may be unobservable. The hacker

may decide they can profit more from using the data themselves than from publishing it.

Or the hacker may have full access to the organization’s data, but decide only a subset is

worth taking and selling. In the case of ransomware, the victim organization may decide to

pay the ransom to prevent their data from being leaked.

Using the country assigned to each package and the date it was available online, I aggre-

gate the individual packages into a country-quarter level panel. The panel spans January

2017 to November 2023. Each country can be thought of as a market in the theoretical

model in Section 1.2. The value and cost of hacking organizations in regulated countries will

be affected by the GDPR, and remain unchanged in unregulated countries. Choosing Jan-

uary 2017 to November 2023 as the study’s time frame means that data packages available

online prior to 2017 are not included in the panel, even though I can observe full information

on them. I make the choice to exclude pre-2017 periods because SpyCloud was started in

2016. This padding removes any bias that may occur if the packages collected early in their

operation are fundamentally different from the ones discovered later. For consistency in the

sample I also exclude these observations from the primary data package level analysis. To

control for population in the analysis, I add annual population data from the World Bank

to the panel.

For robustness checks, I construct additional panels excluding any period after March

2020—to remove any bias introduced by the COVID-19 pandemic, and any data package

originating from a multinational organization. The latter removes any bias that may arise

due to partially treated organizations.

Not every country experiences a breach in every period. For those observations, I assign a

value of zero to the two outcome variables: number of data breaches and number of records.

As shown in figures 1.7 and 1.8, this creates mass points at zero for both variables. I discuss

the implications of this for my estimation strategy in section 1.4.

Roughly 27 percent of all country-quarters have a positive number of breaches (table 1.7),

but among the positive observations there are an average of six breaches and 21.6 million

records stolen (table 1.8). There is a large variation in both outcomes with as many as 245

breaches occurring and over one billion records being available in a quarter. Figures 1.9a

and 1.9b show how the number of data breaches and number of records trended over time.

There is a clear decline in the number of data breaches immediately after the GDPR went

into effect, but no obvious and persistent change in the number of records becoming available

10If only part of a data package is traded, I only observe what is traded, not everything that was stolen.
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Figure 1.7: Distribution of the Aggregate Number of Data Breaches Per Country and Period

(a) Logged Using All Observations (b) Logged Using Only Positive Observations

(c) In Levels Using All Observations (d) In Levels Using Only Positive Observa-
tions

in each quarter.

Table 1.7: Panel Summary Statistics

Number of Breaches Number of Records (M) > 0 Breaches

Observations 2,716 2,716 2,716
Mean 1.618 5.73 0.265
Std. Dev. 9.522 49.73 0.442
Min. 0 0.00 0
25% 0 0.00 0
50% 0 0.00 0
75% 1 0.00 1
Max. 245 1,009.74 1
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Figure 1.8: Distribution of the Aggregate Number of Records by Country

(a) Distribution of Log(Number of Records)
Using All Observations

(b) Distribution of Log(Number of Records)
Using Only Positive Observations

(c) Distribution of Number of Records Using
All Observations

(d) Distribution of Number of Records Using
Only Positive Observations

Table 1.8: Panel Summary Statistics - Non-Zero Periods Only

Number of Breaches Number of Records (M)

Observations 721 721
Mean 6.094 21.60
Std. Dev. 17.735 94.78
Min. 1 0.00
25% 1 0.04
50% 2 0.26
75% 4 1.90
Max. 245 1,009.74
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(a) Number of Data Breaches (b) Number of Records Online

Figure 1.9: Number of Breaches and Records Time Series

The observations dropped from the final datasets because either their country of origin

or breach date could not be determined tend to contain fewer records than those included

in the study (figure 1.10). There are three periods where a large number of breaches were

dropped: The first and second quarters of 2018, and the fourth quarter of 2020. In each of

these periods there was a data breach whose contents were an amalgamation of data from

many other smaller breaches. The 2020 breach specifically, known as the Cit0Day breach,

was a collection of over 23,000 breaches websites bundled together. The Cit0Day website

collected each of those smaller breaches and offered access to the information they contained

for a fee. These observations are dropped because it is not possible to identify when these

smaller breaches occurred. It is possible they were breaches that occurred years prior to the

larger breach, or right before. Figure 1.11 plots the number of breaches and records included

and excluded from the final sample over time.

1.4 Empirical Strategy

I estimate the effects of the GDPR on aggregate quantities in the stolen data market, and the

contents of the individual data packages traded. This allows me to test both predictions of

my model. The model predicts there will be an unambiguous decrease in the number of data

breaches after the GDPR—which will be tested by the aggregate analysis—and that any

observed changes in the expected value of a breach will depend on whether the GDPR had

a larger effect on high or low-valued targets. If the GDPR changed the costs and benefits

of hacking low-valued targets more than high-valued, the expected value of a breach will

increase. If high-valued targets are more affected, the expected value of a breach will fall.

The individual data package analysis will test this by examining the effect of the GDPR on
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Figure 1.10: Distribution of Records Per Breach: Dropped vs. Included

Figure 1.11: Comparison of Dropped and Included Breaches Over Time

(a) Number of Breaches (b) Number of Records

the amount and types of data included in the packages.

Treatment status in all cases is determined by where the data was originally collected, as

discussed in Section 1.3, and the date the data package was available online. A data package

is in the treatment group if it originated in the EU or was stolen from an organization

subject to the GDPR and became available in June 2018 or later. This definition includes

multinational organizations, such as large social media organizations, as treated if they have

any users in the EU. As discussed in Demirer et al. (2024), this may complicate identification

because these organizations may respond differently to the GDPR. The data they hold is

partially treated since they likely hold information on individuals inside and outside the
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EU.11

1.4.1 Aggregate Effects

Aggregate effects are estimated using the country-quarter panel described in section 1.3.

Each observation of country i is the aggregate of the individual data packages originating

from that country in time period t. Most countries do not have a positive number of breaches

in each period, creating a mass point at zero (figures 1.7 and 1.8). The model I present in

Section 1.2 suggests that privacy regulations could affect the extensive margin because they

change the relative value of breaching organizations in regulated countries, making them less

likely to have a positive number of breaches in a given period. To measure the extensive

margin effect, I estimate the linear probability model:

Positiveit = γi + τt + δDi × Post-GDPRt + εit.

where γi and τt are country and quarter fixed effects. Di equals one if the country is in

the EU, and Post-GDPRt equals one if the period is after the second quarter of 2018. The

dependent variable, Positiveit, is an indicator for whether country i has at least one breach

in period t.

To measure the impact of the GDPR on the number of breaches and total number of

records available, I estimate the average treatment effect in levels as a percentage of the

baseline mean:

δAgg% =
E[Y (1)− Y (0)|D]

E[Y (0)|D]

where Y (1) and Y (0) are the outcomes with and without treatment, respectively. This is

interpreted as the percentage change in the average outcome between regulated and unreg-

ulated countries.

The parameter δAgg is found using a Poisson model:

Yit = exp
(
γi + τt + δAggDi × Post-GDPRt − log(populationit)

)
εit (1.16)

where γi, τt, Di, and Post-GDPRt are all defined as in the extensive model. To explicitly

obtain the percentage change in the outcome, δAgg must be transformed: δAgg% = exp(δAgg)−
1. Standard errors are clustered at the country level. The offset, log(population) is used to

account for difference in sizes among the countries.

11Robustness checks excluding data packages from multinationals are in section A.3.2 of the appendix,
and their findings are discussed in sections 1.5.1 and 1.5.2.
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To test whether the effect changes over time, I break the Post-GDPRt term into short-

and long-run effects, estimating:

Yit = exp
(
γi + τt + δAgg

SR Short-Runt ×Di + δAgg
LR Long-Runt ×Di − log(populationit)

)
εit

(1.17)

where Short-Runt equals one when t ∈ {June 2018 – May 2019} and Long-Runt equals one

for all periods after May 2019.12

The identifying assumptions underlying these models are conditional no anticipation, and

that the growth rate between periods the treated group would have realized in the absence

of treatment is the same as that experienced by the control group, i.e., there are parallel

trends in the ratio of outcomes between periods (Wooldridge, 2023):

E[Y Post(0)|D = 1]

E[Y Pre(0)|D = 1]
=
E[Y Post(0)|D = 0]

E[Y Pre(0)|D = 0]
.

To test this assumption, I estimate an event study model:

Yit = exp

(
γi + τt +

∑
t̸=−1

δAgg
it Di × Post-GDPRt − log(population)

)
εit (1.18)

where all notation is defined as before and standard errors are once again clustered at the

country level.

Under the model in section 1.2, the increase in cost and decrease in value of breaching

regulated organizations caused by the GDPR should cause the number of data breaches

originating in regulated countries to decrease. All else equal, the number of records should

decrease as well, but changes in which targets are hacked and which data packages are

subsequently sold may blunt this effect. If high-value targets are less affected by the GDPR

than low-value, the expected value of the remaining breaches increases, which could result

in more data being available despite the decrease in the number of breaches.

I use a Poisson model rather than a log-like transformation because of the mass points

at zero. In order to use log-like transformations on the outcomes, it would be necessary to

either add a constant to each observation or use a transformation that is defined at zero,

such as the inverse hyperbolic sine, to include the full sample in the estimation.

Mullahy and Norton (2024) show that log-like transformations significantly change the

estimated marginal effects when zero mass points are present. Further, Chen and Roth (2023)

12The short and long-run definitions follow Demirer et al. (2024)
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find that, in the presence of zero mass points, if the treatment has extensive margin effects,

the estimated average treatment effect is sensitive to the units of the outcome variable,

making the interpretation of the estimates difficult. The framework I present in section 1.2

makes clear that privacy regulations should affect the extensive margin as it changes the

relative value of breaching organizations in regulated countries, making them more or less

likely to experience a positive number of breaches.

1.4.2 Data Package Effects

Effects on individual data packages are estimated using the linear model:

yi = γi + τt + δDPDi × Post-GDPRt + ϵit (1.19)

whereDi equals one if the package originated from a regulated organization, and Post-GDPRt

indicates whether the data package was available June 1, 2018 or later. I use June 1, 2018

as the beginning treatment date, rather than the day the GDPR was enforced, to allow for

a lag between when data became available online and when it was stolen.

The three outcomes of interest are the log of the total number of records in the package,

amount of personally identifiable information (PII), and the number of unique types of data

in the package. The parameter of interest is δDP .

I once again break the Post-GDPR term into short- and long-run effects and estimate:

yi = γi + τt + δDP
SRDi × Short-Runt + δDP

LRDi × Long-Runt + εi (1.20)

where Short-Runt and Long-Runt are defined as they were in the aggregate effects section.

This allows for changes in the behavior of both those collecting and stealing data. The

former may increase their compliance with the regulation. The latter may change who they

decide to target in response to changes in data collection and security practices.

The expected effects on individual data packages are ambiguous under the model in

section 1.2. All breaches are expected to be less valuable after the GDPR, This would imply

they contain fewer records, PII, and data types. However, if the GDPR disproportionally

drives low-value targets out of the profitable target set, then the expected value of a breach

may increase, even if the total number of data breaches falls. Given the restrictions on

collecting PII, the fraction of all records that are PII might be expected to decrease, but

that will also depend on the effects of the regulation on non-PII data collection as well.
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1.5 Results

The main results are presented in sections 1.5.1 and 1.5.2. I discuss the results in the context

of the model along with the limitations of this chapter in section 1.5.3. Robustness checks

and alternative model specifications are discussed in section 1.5.4.

1.5.1 Aggregate Effects

On the extensive margin, I find the GDPR is associated with a roughly 21 percent decline

in the probability of finding a data breach that originates from a regulated country online

(table 1.9). This effect is larger in the long-run than short-run (-22 percent versus -17

percent, respectively).

Table 1.9: Extensive Margin Effects

Dependent Variable: Positive Number of Breaches

(1) (2)

Post x Treatment -0.209***
(0.040)

SR x Treatment -0.171***
(0.051)

LR x Treatment -0.218***
(0.040)

Observations 2,716 2,716
R2 0.469 0.469

Period Fixed Effects Y Y
Country Fixed Effects Y Y

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level.

The aggregate treatment effects on the number of breaches and total amount of data being

taken from a country are presented in table 1.10. I find that the number of data breaches fell

approximately 54 percent and 61 percent in the short and long run, respectively. This result

is consistent with the predicted effects of both a decrease in the amount of data collected

and an increase in security investment by regulated organizations on the market. Fewer

organizations are worth hacking, so there is a decrease in the number of data breaches. The

same logic applies to my extensive margin findings.

Despite the large decrease in the number of breaches, I find no statistically significant

change in the number of records in the market. Mechanically this only possible if the
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Table 1.10: Aggregate Effects

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -0.921*** 0.345
(0.265) (0.430)

SR x Treatment -0.782*** -0.217
(0.299) (0.590)

LR x Treatment -0.934*** 0.410
(0.283) (0.430)

δ̂ -0.602 0.412
(0.105) (0.606)

δ̂SR -0.543 -0.195
(0.137) (0.475)

δ̂LR -0.607 0.507
(0.111) (0.647)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 2,716 2,716 2,716 2,716
Pseudo R2 0.792 0.792 0.847 0.847

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level.

remaining breaches contain significantly more data, which my data package-level analysis

finds. This could be caused by higher-value targets with more data becoming a larger share

of the breaches traded in the market.

Event study plots to provide evidence that the parallel trends assumption holds are in

figure 1.12. For number of data breaches, the coefficient estimates for each period prior to

the GDPR have zero in the 95 percent confidence interval, while post GDPR there is a clear

decrease in the number of data breaches (figure 1.12a). Each period of the event study shows

no statistically significant effect on the number of records traded (1.12b).

1.5.2 Individual Data Package Content Effects

At the individual breach level, I find that data packages originating in regulated organizations

increased in size nearly 70 percent, as measured by number of records they contain (column

four of table 1.11). This effect is driven by long run changes, with there being a positive but

statistically insignificant change in the number of records in the short run. An increase in the
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Figure 1.12: Aggregate Effect Event Studies

(a) Number of Data Breaches (b) Number of Records Available

Notes: The figures present estimates of the δAgg
it coefficients in equation 1.18 converted to

percentage changes using exp(δAgg
it )− 1. The bars are the 95 percent confidence intervals

with standard errors clustered at the country level. Period t = −1, the first quarter of
2018, is normalized to be zero.

size of the data packages is counterintuitive on its face. If data privacy legislation successfully

reduces data collection, which it appears to do, then it seems natural that there would be

a corresponding reduction in the number of records included in the packages. Less data

collected means there is less data to steal. But if, as discussed in section 1.2.4, the GDPR

drives low-value breaches out of the market and brings more high-value breaches into the

market, then the expected value of the remaining breaches increases even after accounting

for the change in value caused by the GDPR. These breaches would contain larger amounts

of data, increasing the expected number of records in any given breach. Figure 1.13 shows

that the distribution of the number of records in a breach shifted right after the GDPR.

Looking specifically at the amount of PII in a breach, I find that the number of records

that constitute PII increased by 63 percent in the long-run (table 1.12). Given that most of

the data in the packages qualifies as PII (table 1.5), this is expected with the increase in the

overall number of records per package.

These are the only statistically significant change at the data package level. I find no

change in the fraction of records that are PII (table 1.13) or number of unique types of data

in the packages (table 1.14). One potential explanation for this is that only certain types

of data have value in the stolen data market. If the data no longer collected by regulated

organizations is not considered valuable in this other market, it is unlikely that there would

be an effect on data package contents beyond their size. Higher-value targets becoming a

larger share of the market also explain these findings.
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Figure 1.13: Number of Records Density

Table 1.11: Data Package Effects: Number of Records

Dependent Variable: Log(Number of Records)

(1) (2) (3) (4)

Post x Treatment 0.959** 0.513*
(0.427) (0.260)

SR x Treatment 0.470 0.090
(0.379) (0.266)

LR x Treatment 0.931** 0.508**
(0.398) (0.249)

Multinational 1.380*** 1.398***
(0.248) (0.253)

δ̂ 1.610 0.670
(1.114) (0.435)

δ̂SR 0.600 0.095
(0.606) (0.291)

δ̂LR 1.538 0.662
(1.011) (0.413)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 4,394 4,394 4,394 4,394
R2 0.268 0.268 0.276 0.276

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level.
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Table 1.12: Data Package Effects: Number of PII Records

Dependent Variable: Number of PII Records

(1) (2) (3) (4)

Post x Treatment 0.937** 0.486*
(0.424) (0.266)

SR x Treatment 0.571 0.190
(0.409) (0.282)

LR x Treatment 0.914** 0.490*
(0.392) (0.255)

Multinational 1.394*** 1.402***
(0.268) (0.270)

δ̂ 1.552 0.626
(1.082) (0.432)

δ̂SR 0.770 0.210
(0.723) (0.341)

δ̂LR 1.495 0.632
(0.978) (0.417)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 4,394 4,394 4,394 4,394
R2 0.270 0.270 0.277 0.277

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level.
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Table 1.13: Data Package Effects: PII Fraction

Dependent Variable: PII Fraction

(1) (2) (3) (4)

Post x Treatment -0.010 -0.013
(0.010) (0.016)

SR x Treatment -0.006 -0.008
(0.023) (0.021)

LR x Treatment -0.008 -0.010
(0.013) (0.018)

Multinational 0.009 0.008
(0.020) (0.020)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 4,394 4,394 4,394 4,394
R2 0.415 0.415 0.415 0.415

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. PII
fraction is the number of records in a data packages considered PII
divided by the total number of records in the data package.

Table 1.14: Data Package Effects: Number of Data Types

Dependent Variable: Number of Unique Data Types

(1) (2) (3) (4)

Post x Treatment 0.383 0.350
(0.238) (0.264)

SR x Treatment 0.397 0.376
(0.512) (0.506)

LR x Treatment 0.426 0.403
(0.270) (0.285)

Multinational 0.102 0.077
(0.234) (0.228)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 4,394 4,394 4,394 4,394
R2 0.280 0.280 0.280 0.280

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level.
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1.5.3 Discussion and Limitations

The above results are consistent with what the model in section 1.2 predicts should happen

after a privacy policy goes into effect. On the aggregate side, the GDPR reduces the value

and increases the cost of hacks, causing there to be fewer breaches. At 60 percent, the

reduction I find is large, suggesting the combined value and cost effects are substantial. The

model predicts that, if the change in value and cost of hacking disproportionally affects

low-value targets, high-value targets will make up a larger share of post-GDPR breaches,

resulting in an increase in the expected value of the breaches that remain. My data package-

level findings support this. The value of a breach is a function of both the types of data

and size of the breach. Given that I find no change in the fraction of records that are PII or

number of unique data types in these breaches, and a large increase in the number of records

they include, the results suggest that value increased on average. While I cannot directly

estimate the parameters of the model, this would imply that the change in breach cost, ξ, is

smaller among high-value targets than low. If the change in value ϕ also varies with V , the

two are likely to be negatively correlated as well.

Implicit in my model is the assumption that hacker skill remains constant. If hackers were

to become more productive, the cost of hacking would decrease, resulting in more breaches,

but the expected value may decrease as relatively low-value targets become viable marks

now that they are cheaper to hack. That I find a decrease in the number of and increase

in the quality of breaches suggests this is not a concern. However, I do not observe any

direct measure of hacker ability and therefore cannot fully rule out the possibility that it has

changed.

Finally, estimating the overall welfare impact of the GDPR with regard to its effects on

cyber crime is beyond the scope of this chapter. That said, reducing the number of data

breaches is likely beneficial to those not looking to buy or sell them. The extent of that

benefit may be limited given that the number of records did not change. With the same

amount of data available, individuals may be no better off than they were before. To test

this, one would need to calculate how the probability of a person’s data being online has

changed, or at least count the number of unique individuals with data in each breach, which

I am unable to do with my data.

Another factor that will determine individual welfare effects is by whom their stolen

data are used. Returning to the model, this market only exists if buyers have a sufficiently

high comparative advantage over sellers in exploiting data. Reducing the number of traded

breaches may therefore also reduce data access for those who are particularly adept at data

exploiting it. If each person only appears once in each data package, then even as the data
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packages grow larger and include more people, each individual is made better off because of

this.

On the cyber criminal side of the problem, the GDPR may have made them better off

in some cases. As shown in my simulated experiment, if the GDPR alleviates part of the

adverse selection problem in the market, buyers of stolen data are actually better off after

the policy. Hackers are universally worse off after the GDPR, though they do receive a higher

price for what they sell. If more detailed price data become available, future research could

attempt to assess whether reality matches the simulation.

1.5.4 Robustness

To check the robustness of my results, I re-estimated the aggregate effects using a number

of alternative samples and model specifications.

On the extensive margin, to test whether the extensive margin findings are driven by small

countries with few breaches, I split the analysis into two groups: countries with populations

below the median in 2018 and countries with populations above the median. I find that the

extensive margin effect is slightly larger in the small country panel than the large country

panel. The former experiences a 22 percentage point decrease in the probability of having

a positive number of breaches while the latter has a 17 percent decrease (column one of

appendix tables A.6 and A.7). The short-run extensive margin effects for large countries are

also statistically insignificant while there was a 23 percent decrease among small countries in

this period (column two of appendix tables A.6 and A.7). These results suggest that some

of the extensive margin effects are driven by smaller countries.

In my main specification, I use the log of the country’s population as an offset in the

Poisson model to account for differences in population size. Appendix table A.17 shows

that removing the offset has no effect on the estimation. Using population to weight the

model in lieu of the offset increases the estimated decrease in the number of breaches to 67

percent, still within the standard error of the main results, while there is still no statistically

significant change in the number of records.

Converting the two outcome variables to be in per capita terms (breaches per capita and

number of records per capita) increases the estimated decrease in the number of breaches to

76 percent overall and 77 percent in the long-run. However, converting the outcomes to per

capita terms changes them from discrete to continuous variables, making a Poisson model

inappropriate to use.

Using the same panel, I compare the Poisson difference-in-differences results to those of

linear models with log-like transformations of the outcomes of interest the outcomes in levels

39



in appendix tables A.11-A.16. The two log-like transformations used are Log(Y +1) and the

inverse hyperbolic sine. When the outcome is in levels, I use number of breaches per million

and number of records per thousand to make the coefficients more interpretable.

Across all models and outcome specifications, there is a negative and significant effect on

the number of breaches. The effect falls from a 61 percent decrease to as low as a 10 percent

decrease in the number of breaches when using the Log(Y +1) transformation and breaches

per capita as the outcome. Chen and Roth (2023) show that when log-like transformations

are used on data with a mass point at zero, the coefficient estimates will be arbitrarily

sensitive to the units of the outcome variable, explaining this discrepancy. For all other

models where the outcome is not in per capita terms, the estimated treatment effects fall

between my estimated extensive margin effects and the treatment effect estimated with the

Poisson model. Mullahy and Norton (2024) show that log-like transformations with mass

points at zero will be a weighted average of the extensive and intensive margins effects, which

likely explains these differences. Finally, the levels outcomes are not directly comparable to

the Poisson since they are not percentage changes, but they are negative and significant.

The Poisson estimates are the levels change as a percentage of the control mean, so this

result simply confirms that the Poisson effect is valid.

Where model selection matters is in estimating the treatment effect on number of records.

The Poisson and levels models show no statistically significant change in the number of

records across all specifications. When a log-like transformation is applied to the outcome

variable I consistently find large and significant decreases in the number of records. However,

as previously discussed, log-like transformations are unreliable when the outcome has a mass

point at zero. Additionally, given that there is no effect in levels (table A.12) and there is

no obvious change in the number of records available overtime (figure 1.9b), it is unlikely

that the results with log-like transformations are dependable.

In the remaining robustness analysis, I change how to panel is constructed. First, I remove

all observations from Brazil and China from the panel. Brazil and China implemented data

privacy regulations of their own near the end of the study. Removing these observations

slightly lowers the estimated treatment effect on the number of breaches to a 56 percent

decrease, though this still falls within the standard error of the original estimates. There is

still no significant effect on the number of records (table A.8).

Next, I excluded all periods after the first quarter of 2020 to remove any noise brought

on by the COVID-19 pandemic. During the pandemic, organizations may have been more

vulnerable to cybersecurity incidents if they did not have the proper infrastructure in place

to safely operate remotely. For example, they may have lowered some of the barriers needed

to access company databases in order for their employees to work from home, making it
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easier for those databases to be improperly accessed. While the pandemic was a global

shock, differences in lock down dates and enforcement may have caused some country-level

variation that would not be accounted for by the time or country fixed effects. Without the

COVID era observations, I find a 48 percent decrease in the number of data breaches. This is

still large and statistically significant, but smaller than the result in my main specification.

As in the main results, I still find that there is no statistically significant change in the

number of records available. The parameters estimated are presented in appendix table A.9.

Multinational organizations introduce a challenge to this study because it is not immedi-

ately obvious which country to assign their breaches and data. Because the GDPR extends

beyond EU borders and applies to all organizations that collect data on EU residents, those

who collect data on individuals both in and outside the EU are effectively partially treated.

To the best of my knowledge, there is no definitive research on whether these organizations

treat all of their data equally, giving the same protections the GDPR provides to EU resi-

dents to their non-EU users, or whether they have distinct processes for handling EU data.13

To test whether these organizations are significantly influencing the aggregate outcomes, I

remove all breaches of multinational organizations from the data prior to aggregating the in-

dividual breaches into the panel. I find a 60 percent decrease in the number of data breaches,

roughly the same as my main specification. For the number of records, the total and short-

run effects are once again statistically insignificant, but in the long-run I find a 124 percent

increase in the number of records, significant at the ten percent level. The full results are in

appendix table A.10.

Finally, to check whether the results are driven by any one country in the EU, I repeatedly

re-estimate the model removing one EU country at a time. As shown in appendix figures A.3

and A.4, the treatment effect estimates are well within the 95 percent confidence interval of

the main model estimates each time.

At the data package level, I removed emails from the definition of PII to see if there was a

change in the amount of non-email data as a portion of all the records in a package. I still find

no change. Next, I re-estimated the model for each outcome variable using the full sample of

breaches, rather than just breaches from 2017 and beyond. These early period breaches were

dropped from the main analysis because they happened either before SpyCloud’s founding

or early in their lifetime, and may be different from the breaches collected after SpyCloud’s

monitoring infrastructure was well established. I find once again the number of records in a

package increases in the long-run. The point estimate shows an 80 percent increase versus 67

13In the course of writing this chapter I have read the privacy policies of many multinational organizations.
Some have a single privacy that applies to all users. These typically include a section specifically for EU
residents. Others have different privacy policies for every country they operate in. The European policies
detail the rights those users have over their data, the non-European ones do not.
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percent in the main model, though is still within the standard error (table A.27). There is

once again no effect on the fraction of records in a breach that are PII, but now the number

of data types increases by 0.56 post-GDPR (tables A.28 and A.29). Though statistically

significant, a half of a data type increase holds little economic value.

1.6 Conclusion

As organizations continue to collect large amounts of data, the risk of that data being stolen

and sold with be ever-present. In this chapter I have shown that data protection regulations

can have a significant effect on the illicit market for data.

I estimate that the GDPR is associated with a 60 percent reduction in the number of data

breaches originating in EU countries available in stolen data markets. There is however no

accompanying reduction in the number of individual records in these markets, as the size of

data packages increased nearly 70 percent as well. I find no other changes in the contents of

the data packages. The model of stolen data production I propose shows that one potential

explanation of these effects is low-value targets disproportionally falling out of the profitable

target set, increasing the expected value of all remaining breaches.

This chapter partially fills the gap in the literature on privacy regulation, and the GDPR

in particular, regarding potential benefits of these regulations. It is the first to study the

effects of privacy regulation on the stolen data market and show a causal impact.

There are many paths forward for future research on this topic. My model can be

generalized and solved with alternative distributions of target value and hacking cost, or

assumptions about how privacy regulations affect both. Additionally, my model suggests

only one of many possible explanations for my empirical findings. Qualitative and quantita-

tive work on the abilities and behaviors of hackers could provide insights into whether the

effects I observe empirically are driven strictly by the changes in hacker incentives and buyer

expectations I propose, or if there are other factors, such as changes in hacker still, at play.

This chapter is missing a key component of the market: prices. Although there are many

hurdles to collecting quality price data in these markets, doing so would open the door to a

more complete analysis of their inner workings and the value hackers place on certain types

of information.

Finally, while there have been a number of studies on the effects of the GDPR on specific

firm outcomes, changes in data collection, and now cyber crime, there is still no overarching

study of its overall welfare effects or how individual components of the policy influence

outcomes of interest. With more countries considering and adopting data privacy regulations,

research on this subject would have high returns in the debate over how to design future
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policy.
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Chapter 2.

Information and the Market Reaction to

Cybersecurity Incident Disclosures

2.1 Introduction

When markets are efficient, the risk of an adverse event will be priced into firm market

values when it becomes public knowledge. Upon realization of the event, firm share prices

should change to reflect both the fully realized loss and any new information gained from

the event. The total size of this change will therefore depend in part upon how much of the

risk was priced in, and the accuracy of the prior loss expectations. Both of these factors

can be influenced by the amount and type of information previously known about the firm’s

risk profile. One avenue companies will use to communicate these risks is their annual and

quarterly filings to the Securities and Exchange Commission (SEC) where there are sections

specifically dedicated to discussing risks to the firm.

Cybersecurity risks—ransomware attacks, data breaches, and other computer crimes—

have become a particularly persistent threat to businesses big and small as the world has

shifted to increasingly relying on digital infrastructure to operate. The cost of these incidents

include repairing computer systems, lost revenue from forced downtime, and lost reputation.

Cybersecurity risk has become so pervasive that in 2023 the SEC adopted a rule requiring

firms dedicate a new section of their annual 10-K filings to discussing it.1 Even before this

new regulation, it was becoming increasingly common for firms to discuss cybersecurity risks

in the risk factors section of their annual 10-K and quarterly 10-Q financial filings.

This chapter examines the role of those prior information disclosures in determining

how the market responds to news of a cybersecurity incident. I first present a framework

describing the effects of risk disclosure on firm stock price and the market’s response to

1United States Code of Regulations Title 17 Chapter II Part 229 Subpart 229.100 §229.106.
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the realization of an adverse event. Using a set of publicly traded firms who disclosed

cyberattacks, I then test the predictions of the framework. I begin by analyzing each firm’s

10-K and 10-Q filings to determine whether they disclosed cybersecurity risks, then estimate

abnormal returns around each filing and the cybersecurity incidents themselves. I find that

whether a firm disclosed risk prior to suffering a cyberattack is not by itself predictive of

how the market will respond to the attack. However, the details of the market’s response to

the initial risk disclosure is.

The framework herein begins with the simple assumption that publicly known risks faced

by firms will be priced in to their market value. When the risk is revealed, the firm’s market

value falls by the expected loss. The framework centers around this risk being determined

primarily through firm disclosures in SEC filings, but its principle implications will apply

regardless of whether the information is provided directly by the company or gleaned from

outside sources such as investor research or the experiences of comparable firms.

When the event occurs, firm market value again falls. This fall has two components: the

unrealized expected losses and a learning effect (Kamiya et al., 2021). Unrealized losses are

the remainder of the actual loss less the expected loss already priced in, The learning effect

is a result of investors adjusting their beliefs over the loss distribution faced by the firm from

that type of risk. If the loss distribution worsens, the learning effect is negative, causing a

larger loss of market value.

I show that whether risk disclosure raises or lowers firm market value depends on whether

the firm is low or high-risk, relative to prior expectations. Upon realization of the event,

the market’s response will be more negative for high-risk firms than low-risk firms if the

information revealed in the disclosure is about the size of the losses that would be incurred,

rather than the probability of the event. In both cases, the size of the response to the event

relative to had they not disclosed will differ for high and low-risk firms. With high-risk firms,

the disclosure gave the market an opportunity to price in more of the risk prior to the event

than if they had not disclosed. Signaling low-risk in the disclosures, however, makes it more

surprising when the event occurs, causing a more negative response.

The framework has three implications that can be tested empirically. First, the response

to disclosure should be more negative for high-risk (relative to prior expectations) firms than

low-risk. In fact, low risk firms should actually see an increase in value because they revealed

their risk is lower than what investors expected prior to disclosure. Second, whether the firm

discloses risk is predictive of the size of the response to the event itself, but that effect works

in opposite directions for low and high-risk firms. Third, the response to disclosure reveals

whether investors view the firm as high- or low-risk relative to non-disclosers, which in turn

reveals information on the relative size of the response to the event. The details of this
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last point depend on whether the firm is disclosing potential losses or the probability of the

event.

To test these implications, I conduct event studies around firm 10-K and 10-Q filings

and cybersecurity incidents. Filing data are accessed via the SEC EDGAR portal and

incidents are both manually collected from news reports and drawn from the Privacy Rights

Clearinghouse Data Breach Chronology. For each filing I observe whether the firm discussed

cybersecurity risk in the filing’s risk-factors section by conducting a keyword search for a

number of cybersecurity-related words and phrases. For each incident, I observe the targeted

firm and the first date it became public knowledge.

I calculate cumulative abnormal returns around each filing and regress this result on

indicator variables for whether the firm discussed cybersecurity risk in the filing. I find that

on average there are no abnormal returns around each filing, and that the initial mention

of cybersecurity risk is not predictive of the market’s response to the filing. Subsequent

mentions of risk, however, increase abnormal returns by just under one percent. In the

context of the framework, this may imply that the effects of high and low-risk disclosure are

simply offsetting, rather than being evidence that there is no effect at all.

Around each incident, I find negative and significant abnormal returns of slightly less

than one percent. This is almost entirely driven by the market’s response the day the event

becomes public knowledge. Regressing these returns on a set of covariates that include an

indicator for whether the firm had previously disclosed cybersecurity risk in a filing, I find

that whether a firm disclosed their risk prior to the attack seems to have no influence on

the market’s response. However, when I remove the disclosure indicator from the regression

and instead including the actual abnormal returns around the first filing to discuss the firm’s

risks, I find that the response to the initial filing is highly predictive of the response to the

event itself. That the indicator alone is not predictive of the event response but the response

to the initial filing is suggests that there may be offsetting effects between firms. As I will

show in my framework, the market’s response after a high-risk firm suffers an incident will

be smaller in magnitude if they had previously disclosed their high-risk status than it would

be if they had not. The opposite is true for low-risk firms. The market’s response to the

event will be larger in magnitude if they disclosed their risk level than if they had not. In

expectation, the size of the market’s response for disclosing firms relative to if they had not

may appear to be zero, depending on the relative portion of each type of firm in the sample.

So while the firm-specific filing response will be indicative of the eventual response to the

event itself, simply stating whether the firm did or did not disclose their risk may not be.

This chapter joins a series of prior literature on how the stock market responds to an-

nouncements of cybersecurity incidents (Acquisti et al., 2006; Spanos and Angelis, 2016;
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Smith et al., 2018; Makridis and Dean, 2018; Makridis, 2021; Tosun, 2021; Kamiya et al.,

2021; Akyildirim et al., 2024). As with these previous works, I find that the market does

respond negatively to news of an incident. While the negative response is both intuitive and

well established, there is still much to be learned about what factors determine the size of the

response. This is the first paper to extend the analysis to the role prior risk disclosure plays

in determining the response magnitude. More broadly, this work contributes to the policy

debate over what constitutes sufficient risk disclosure on the part of firms. My finding that

the market’s response to the initial risk disclosure is positively correlated with its response

to the event itself suggests that the information firms disclose even prior to the SEC’s new

disclosure rules provided valuable information to investors.

Previous research has also studied how the market consumes information. Feroz et al.

(1991) for example find that news of SEC enforcement action against a firm for reporting

errors cause -13 percent abnormal returns, but even if the firm had previously announced

their errors there are still abnormal returns of -6 percent. These results suggest that the full

cost of a risk action, even when realization is likely, is not fully incorporated into firm stock

prices until it actually happens.

Li and Ramesh (2009) focus specifically on information learned in quarterly reports,

finding that there are only abnormal returns if those reports coincide with, or are themselves,

the first time earnings information is revealed to the public. Stice (1991) also suggests that

investors may not rely on the 10-K and 10-Q filings themselves to learn about companies.

Stice finds evidence to suggest that the information contained in these reports was not fully

priced in until it was also reported in the media. This result may have been a product of its

time. Asthana and Balsam (2001) show that the SEC’s adoption of the EDGAR reporting

system sped up the diffusion of information after a 10-K filing. That said, an extensive review

of the literature by Blankespoor et al. (2020) finds that learning from these disclosures is an

“active economic choice”, rather than a costless process.

This chapter adds to this section of the literature by showing that the market does

seem to be partaking in that active choice to learn about cyber risk from formal filings.

Additionally, my finding that the market’s response to these incidents is abnormal returns

of -0.88 percent is similar in size to previous research opens the door to future work on how

exactly the market is learning about cybersecurity risk. As Kamiya et al. (2021) propose,

much of the negative response in the market to cybersecurity events can be attributed to

investors updating their beliefs about the loss distribution firms face. Overtime, it would not

be unreasonable to expect that investors eventually converge on the true loss distribution,

reducing the size of the market’s response to these events. That I find a similar market

response as Kamiya et al. despite using a sample of events that occurred well after the last
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of their events calls into question whether that convergence is happening. Future research

can explore whether that expectation is simply wrong, if, as in Feroz et al. (1991), they wait

until the event actually happens to react, or if the loss distribution has continued to evolve

overtime.

The remainder of the paper is structured as follows. My conceptual framework of the

influence of risk disclosure in the market reaction to adverse events is presented in section

2.2. Data used for the study are described in section 2.3. My empirical strategy is detailed

in section 2.4, and the results presented in section 2.5. I conclude with a discussion of the

results, their implications, and future research in section 2.6.

2.2 Risk Disclosure Framework

This framework modifies the model in Kamiya et al. (2021) to show how the market’s response

to an adverse event still vary based on information the firm previously disclosed. Events occur

with probability p ∈ (0, 1) and cause firms to incur a loss of L. When firms disclose their

risk, they are specifically disclosing information on p and/or L. I discuss the implications of

each type of disclosure below.

2.2.1 Loss Disclosure

Under this disclosure regime, firm-specific losses from the event, Li, are announced. For

simplicity, I assume that the probability of the event, p, is a constant.

The presence of risk reduces the firm’s stock price, P , to

P = Vi − pL̃

where Vi is their risk-free value. For disclosing firms, L̃ = Li. For non-disclosing firms,

L̃ = L̄, the expected losses for non-disclosing firms.

There are two types of firms in the model, high-risk firms where Li = Lh, and low-

risk firms where Li = Lℓ. The designation between high and low-risk is relative to prior

expectations, rather than a specific threshold value. The loss values are set such that Lℓ <

L̄ < Lh. When a firm switches from not disclosing to disclosing, their market value will

change to reflect the change in risk:

∆Pd = −p
(
Li − L̄

)
. (2.1)

For low-risk firms, this disclosure will cause investors to view them as less risky than before,
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increasing their share price. The opposite is true for high risk firms. Denoting the share of

disclosing firms that are low-risk as π, the expected market response will be dependent on

the weighted average of the response to each firm type’s disclosures:

E [∆Pd] = π
[
−p
(
Lℓ − L̄

)]
+ (1− π)

[
−p
(
Lh − L̄

)]
= pL̄− [πpLℓ + (1− π) pLh] .

(2.2)

In words, if the disclosing group has a similar risk composition as the non-disclosing group

so that the weighted average response is the same as the non-disclosed expected loss, the

expected response to disclosure will be zero. Even though both types of firm have a non-

zero response to disclosure, positive in the case of low-risk firms and negative in the case of

high-risk firms, the two may cancel each other out in expectation unless one type of firm is

more likely to disclose than the other.

When the event occurs, it will trigger a second price change to account for the unrealized

losses:

∆Pe = − (1− p) L̃. (2.3)

Given that Lℓ < Lh, high-risk firms will once again see a larger loss than low-type firms.

The expectation, however, will once again depend on the composition of the disclosing firms.

This value will be:

E
[
∆Pe

∣∣∣∣discloser] = π [− (1− p)Lℓ] + (1− π) [− (1− p)Lh]

= − (1− p) [πLℓ + (1− π)Lh] .

(2.4)

For firms that did not disclose, the expected response to the event is simply

E
[
∆Pe

∣∣∣∣non-discloser] = − (1− p) L̄.

As with the expected response to disclosure, the expected response to the event given the

firm did disclose will be close to that of the expected response of non-disclosers if πLℓ +

(1− π)Lh = L̄.

The above assumes that investors do not update their loss expectations after an event.

However, Kamiya et al. (2021) show that, in the case of cybersecurity incidents, there is

evidence that much of the market’s reaction to the even is a result of learning more about

the losses firms face. Learning will affect the previously disclosing firms and non-disclosing

firms differently.

Accounting for the possibility of learning requires a slight change in notation. Event
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probability before and after the initial occurrence is pt, t ∈ {0, 1}. The distinction between

p0 and p1 allows for the possibility that investors learn the event probability is higher or lower

than previously believed. For simplicity, I continue to assume that, even if it is updated, the

event probability is the same for both types of firms. The losses for each type of firm are

Li,t, i ∈ {ℓ, h}, t ∈ {0, 1}.
The change in price after the event with learning is

∆P l
e = − (1− p0)Li,0 + (p0Li,0 − p1Li,1)︸ ︷︷ ︸

Learning Effect

. (2.5)

The expectation of the price change among disclosing firms will now be:

E
[
∆P l

e

∣∣∣∣discloser] = π [− (1− p0)Li,0 + (p0Lℓ,0 − p1Lℓ,1)]

+ (1− p0) [− (1− pℓ,0)Li,0 + (p0Lh,0 − p1Lh,1)]

=− [π (1− p0)Lℓ,0 + (1− π) (1− p0)Lh,0]

+ πp0Lℓ,0 + (1− π) p0Lh,0

− [πp1Lℓ,1 + (1− π) p1Lh,1]

(2.6)

For non-disclosing firms, the event itself will reveal their type. Denoting the portion of

previously non-disclosing firms that are revealed to be low-risk as πn, the expected response

among non-disclosing firms is:

E
[
∆P l

e

∣∣∣∣non-discloser] = πn
[
− (1− p0) L̄0 +

(
p0L̄0 − pℓ,1Lℓ,1

)]
+ (1− πn)

[
− (1− p0) L̄0 +

(
p0L̄0 − ph,1Lh,1

)]
=− (1− p0) L̄0 + p0L̄0 −

[
πnp0L̄0 + (1− πn) p1Lh,1

] (2.7)

Comparing equations 2.6 and 2.7, shows that the difference between the expected price

change between firms that disclose and firms that do not will still depend on how similar

the two pools are in terms of risk composition, even with learning.

The same logic can be applied to determine whether the market’s response to an incident

will be larger or smaller had the firm decided to disclose versus not disclose. For either type

of firm,

E
[
∆P l

e

∣∣∣∣discloser] > E
[
∆P l

e

∣∣∣∣non− discloser

]
if Li,0 > L̄0.

Again using the assumption that Lℓ < L̄ < Lh, high-risk firms that disclose will have a larger

response relative those that do not while low-risk firms have a smaller response. Because the
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expected response to the event is likely to be negative, this actually means that the response

to a known high-risk firm is smaller in magnitude—i.e., less negative—than the market

response for a known low-risk firm relative to a world in which they had not disclosed their

risk.

2.2.2 Probability Disclosure

If firm disclosures instead center around p, the implications of the framework change slightly.

Assume now that L is constant. As before, firm market value is lower with risk than without

it

P = Vi − p̃L

where Vi is once again their risk-free value, but now p̃ = pi, firm specific risk, if they disclose

and p̃ = p̄, the expected probability of the event among non-disclosers, if they do not.

With L held constant, high and low-risk firms are now distinguished by their values of

p. The values of p are set so that: pℓ < p̄ < ph. As before, there will be an initial change in

price when firms disclose their risk level:

∆Pd = − (pi − p̄)L.

The expectation of this value will once again be a weighted average of the expected losses:

E [∆Pd] = π [− (pℓ − p̄)L] + (1− π) [− (ph − p̄)L] (2.8)

When the event occurs, the change in price will still be the unrealized costs

∆Pe = − (1− p̃)L.

Unlike the loss disclosure case, the response to the event will actually be smaller for high-risk

firms than low-risk firms. This is due to a greater share of the losses being priced in prior

to the event. Empirically, the size of the market’s response to the event will be inversely

related to the size of the response to the initial filing. High-risk firms draw a more negative

response upon initial disclosure, but because a larger share of the losses are priced in at that

point, the secondary change is smaller. The opposite is true for low-risk firms.

With an expected loss without learning of

E [∆Pe] = π [− (1− pℓ)L] + (1− π) [− (1− ph)L]

= − [1− (πpℓ + (1− π) ph)]L
(2.9)
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and expected loss with learning of

E
[
∆P l

e

]
= π [− (1− pℓ,0)L0 + (pℓ,0L0 − pℓ,1L1)]

+ (1− π) [− (1− pℓ,0)L0 + (pℓ,0L0 − pℓ,1L1)]

= − L0 + 2L0 [πpℓ,0 + (1− π) ph,0]− L1 [πpℓ,1 + (1− π) ph,1] ,

(2.10)

the expected losses of disclosures relative to non-disclosers will again depend on the relative

portion of each type of firm. If they appear in a proportion such that πpℓ,1+(1− π) ph,1 = p̄,

there will be no difference between them.

2.2.3 Empirical Predictions

This framework has three implications that can be tested empirically. First, the response

to the initial risk disclosure will depend on whether they are high or low-risk. For high-risk

firms, disclosure reduces their stock price. For low-risk firms, disclosure increases their stock

price. The expected market response to disclosure will ultimately depend on which type

of firm is most likely to disclose (equation 2.2). If they disclose in similar proportions, the

effects will offset.

Second, whether a firm discloses their risk is predictive of the direction of the market’s

reaction to the event itself. However, that relationship goes in opposite directions for high

and low-risk firms. As a result, the actual observed effects may also cancel each other out

unless one type of firm dominates the disclosures.

Finally, the market’s response to individual firm disclosures is predictive of its response to

the event realizations, but depends on whether they are disclosing the losses they would face

or the probability the event occurs. If the former, the response to the event will be smaller

for low-risk firms than high-risk. If the latter, the response will be smaller for high-risk than

low-risk firms.

2.3 Incident, Stock Price, and Company Data

Data on cybersecurity incidents come from two sources. First, events were manually collected

by searching filings with the Securities and Exchange Commission (SEC) and news outlets

for reports of attacks on publicly traded firms. Beginning with the SEC’s EDGAR tool,

I searched for form 8-K filings that included terms to suggest there had been an incident
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such as “cybersecurity attack.”23 If the form disclosed that the firm had been a victim of

cybercrime, or provided an update on a previously announced attack, I then searched for the

first news articles related to the attack to determine the day that the news became public.

If the 8-K filing date and original news date were different, I used the earliest of the two

for the event date in my study. To find events that were not announced via an 8-K filing, I

searched major news outlets such as Reuters, The Wall Street Journal, and CNBC; as well

as specialty websites such as Bleeping Computer, for reports of cybersecurity incidents. I

once again defined the event date as the day of the earliest public reporting on the attack.

The second source is the Privacy Rights Clearinghouse’s (PRC) Data Breach Chronology

Database. The PRC chronology lists cybersecurity incidents disclosed to state and federal

government agencies between 2005 and 2023. The entire chronology covers breaches of

businesses, healthcare providers, nonprofits, educational institutions and governments. I

search among just the breaches that were classified as hacks against businesses. After this

initial filtering, I further culled the data to only businesses that were publicly traded at the

time of the breach, and with breaches whose announcement dates I could verify through

news reports, government disclosures, or firm statements.

In total, I observe 166 events with sufficient information to identify the date the news

became public information. A full list of the events used is in appendix table ??. Table 2.1

shows the number of firms in each industry in both the event sample and among all firms

registered with the SEC.

Company and stock market data were accessed via the Wharton Research Data Services

(WRDS) platform. Individual stock data were retrieved from the CRSP database. I observe

the daily return of each asset along with their trading volume. To estimate the market

model discussed in section 2.4.1, I also use the market return, risk-free return (measured

as the return on a one-month US Treasury bond), and returns on the small-minus-big and

high-minus-low portfolio returns, as defined in Fama and French (1993). These data are

obtained from the WRDS Fama-French Factor database.

In the event studies, I use the daily excess return as the outcome of the market model

used to calculate expected returns. This is calculated by subtracting the risk-free return

from the overall return for each asset on each day. The distributions of excess return on the

days used to estimate the market model and during the event period are plotted in figure

2.1 and described in table 2.2. As can be seen in figure 2.2, the mean excess return during

the event window is generally similar to that of the market mean, except for the day of the

2https://www.sec.gov/edgar/search/
3Form 8-K filings are used to announce significant events that would be of interest to shareholders. This

would include unexpected events such as a cyberattack.
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Table 2.1: Victim Firm Industry’s

Treated Firms Overall

N % N %

Energy 1 0.68 1,111 7.28
Materials 3 2.04 991 6.50
Industrials 28 19.05 1,766 11.58
Consumer Discretionary 27 18.37 1,907 12.50
Consumer Staples 7 4.76 643 4.22
Health Care 20 13.61 2,433 15.95
Financials 16 10.88 2,496 16.36
IT 22 14.97 2,645 17.34
Communication Services 16 10.88 651 4.27
Utilities 2 1.36 248 1.63
Real Estate 5 3.40 363 2.38

Notes: This table shows the number and fraction of firms in
each industry. The first two columns are firms in the sample,
the third and fourth are among all firms registered with the
SEC.

event where it is noticeably lower.

Other firm characteristics, such as their total assets, industry, and number of employees

are obtained through the Compustat database, also via WRDS. Summary statistics for each

variable from the fiscal year prior to the event are in table 2.3. They are compared to the

means of the never treated firms, also in the year prior to each event. All dollar figures are

adjusted to be in 2021 dollars.
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Table 2.2: Returns Above the Risk Free Rate

Estimation Window Event Window

Count 36,520 1,826
Mean 0.057 -0.090
St. Deviation 3.071 3.307
Min. -43.006 -19.932
25% -1.090 -1.247
50% 0.045 0.019
75% 1.194 1.200
Max. 67.234 32.268

Notes: This table shows the unconditional mean return on
stocks above the risk-free rate in the sample for the market
model estimation period prior to the event and during the
event window. These are not the estimated abnormal re-
turns, simply the average.

Figure 2.1: Distribution of Returns Above the Risk Free Rate
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Figure 2.2: Average Daily Return Above Risk-Free Rate

Note: These are the average returns of both the market and affected firms
around the event. This is not the CAR, just the average of the raw returns.
The shaded areas around the lines show the 95 percent confidence interval of
the mean each day.
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Table 2.3: Summary Statistics

Assets Market Value Revenue Tobin’s Q Intangible Ratio ROA Sales Growth Employees

Obs. 166 166 166 166 166 166 141 166
Mean 56,524.13 51,983.92 20,775.61 2.48 0.27 0.02 0.10 52.33
Std. Dev. 226,219.65 142,572.20 41,727.31 2.37 0.24 0.10 0.25 83.94
Min. 20.60 19.98 15.70 0.58 0 -0.55 -0.50 0.06
25% 1,564.57 1,833.36 911.43 1.15 0.07 -0.01 0 3.29
50% 7,566.82 7,286.03 4,045.63 1.60 0.21 0.04 0.00 13.95
75% 31,105.81 37,619.15 20,673.25 2.87 0.47 0.07 0.12 65.13
Max. 2,760,475.34 1,085,179.08 276,644 14.28 0.91 0.24 1.44 400

Notes: Total assets, market value, and total revenue are in millions of 2021 dollars. Employees are measured in
thousands. These statistics are taken from the annual filing in the fiscal year prior to a firm’s attack.
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Company risk disclosure status was determined using their annual 10-K and quarterly

10-Q SEC filings in the years prior to each event. I used the SEC’s EDGAR API to download

and analyze each firm’s 10-K and 10-Q filings.4 I excluded all tables, figures, and headings

from the text analysis. For each company, I performed a keyword search in the risk factors

section of their filing for mentions of cybersecurity risk. I marked a filing as discussing

cybersecurity risk if at least one of those words was found in section 1A, the risk factors

section, of the filing. A firm is designated a discloser if they discuss cyber risk in at least

one filing prior to their incident. A list of the keywords used is in table B.1 of the appendix.

Figure 2.3: Fraction of Filings Mentioning Cybersecurity Risk

As shown in figure 2.3, the portion of firms that discuss cyber risk in their annual filings

has increased to nearly 100 percent over time. The strategic disclosure framework in section

2.2 does result in all firms disclosing risk, however that happens immediately rather than

over nearly two decades as observed in the data. This is the first evidence that in reality firms

behave according to the threshold disclosure framework, rather than strategic disclosure.

Almost all firms in the sample discuss their risk in a filing prior to suffering from a

cyberattack (table 2.4). There are some firms who discuss their cyber risk in one filing, then

decline to do so in a subsequent filing, as seen by the differences in the prior risk mentions

columns of panels A and B in table 2.4. Interestingly, while some firms who had not included

the risk of a cyberattack in their filings prior to their incident begin to afterward, not all do.

4To access the API, I used the EDGARTools Python package developed by Dwight Gunning. https:

//edgartools.readthedocs.io/en/latest/
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Table 2.4: Mentions of Cyber Risk

Panel A: All Forms

Prior Post Switch

All Forms 0.813 0.873 0.078
10-K 0.807 0.873 0.084
10-Q 0.416 0.602 0.253

Panel B: Forms Nearest Event

Prior Post Switch

All Forms 0.380 0.554 0.247
10-K 0.789 0.837 0.054
10-Q 0.253 0.404 0.193

Notes: Panel A summarizes the percentage of firms who discussed cyber risk in filings prior to
and after their attack. The Switch column is the percentage that had not discussed risk prior to
the event, but began to in any period afterward. Panel B. shows the same, but limits the sample
to the forms filed closest to the event date. There are differences because some firms mention
cybersecurity risk in one filing, then do not in a subsequent filing.

The number of events I observe in each year is listed in table 2.5. The second, third, and

fourth columns count the number of that year’s targeted firms who had disclosed cyberse-

curity risk in a filing prior to their incident.

One of the control variables I use when analyzing the response of the market to discussion

of cyber risk in an SEC filing is the overall sentiment of the document. I measure the

sentiment of the filing using a bag-of-words approach. Using the negative words list developed

by Loughran and Mcdonald (2011) for sentiment analysis of financial filings, I define the

sentiment of the document as the weighted count of negative words divided by the total

word count. Words as weighted using term frequency-inverse document frequency (tf-idf),

which attenuates the influence of common words on the overall sentiment. The weight of

word i in document j is

wij =

(1 + log(tf))×
(
log
(

1+N
1+dfi

)
+ 1
)

if tfij > 0

0 if tfij = 0

where tfij is the number of times word i appears in filing j, N is the number of filings, and

dfi is the number of times word i appears in all filings. Sentiment distributions for both

types of filings are shown in figure 2.4.
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Table 2.5: Number of Events Each Year and Disclosure Status

Prior Cyber Risk Disclosure

Year Number of Events Any Filing 10-K Filing 10-Q Filing

2006 1 0 0 0
2007 1 0 0 0
2010 2 0 0 0
2012 2 2 2 0
2013 2 2 2 2
2014 6 3 3 1
2015 4 2 2 1
2016 6 5 5 3
2017 9 7 7 2
2018 12 11 11 6
2019 33 28 28 9
2020 51 41 41 24
2021 29 26 25 16
2022 8 8 8 5

Notes: This table contains the number of events in each year, and the
number of those events that discuss cyber risk in an SEC filing prior to
the event.

2.4 Measuring and Examining Market Reactions

There are two parts to the empirical analysis. First, I estimate the abnormal returns in the

market after SEC filings discussing cyber risk and cybersecurity incidents. Next, I analyze

the influence of cybersecurity risk disclosures on each set of returns.

2.4.1 Cumulative Abnormal Returns

To measure the market’s reaction to firm filings and incident disclosures, I first calculate the

abnormal returns, defined as:

ARit = Rit − E [Rit] (2.11)

where Rit is their realized return on day t and E[Rit] is their expected return. E[Rit] is

estimated using the Fama-French three-factor model (Fama and French, 1993):

Rit = Rft + α + βi1(Rmt −Rft) + βi2SMBt + βi3HMLt + εit. (2.12)

where Rft and Rmt are the return on a risk-free asset and market return, respectively. Small-

minus-big, SMBt, and high-minus-low, HMLt returns are the excess return on small-cap
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Figure 2.4: Sentiment Distribution

companies and value stocks, as defined in Fama and French (1993).

Daily abnormal returns are summed over the window t1 to t2 to get cumulative abnormal

returns:

CARi(t1, t2) =

t2∑
t=t1

ARit. (2.13)

Finally, the reported effect is the average cumulative abnormal response:

CAR(t1, t2) =
1

N

N∑
i=1

CAR(t1, t2). (2.14)

Statistical significance is tested using the t-ratio from Kolari and Pynnönen (2010):

t statistic =
CAR

√
n

SCAR

√
1 + (n− 1)r̄

where r̄ is average of the cross-correlations of model residuals from the estimation period, and

SCAR is the standard deviation of the scaled CAR.5 Using this test statistic has the advantage

5Scaled CAR are the sum of the scaled abnormal returns. The scaled abnormal return for firm i on day t
is SARit =

ARit

si
√
1+dt

. Here, si is the standard deviation of the residual from the model fit for firm i, and dt is

a correction term equal to x′
t (X

′X)
−1

xt. In this correction term, xt is a vector of the values of the model’s
independent variables on day t, and X is the matrix of those values throughout the estimation period. For
a detailed discussion of this test statistic, see Kolari and Pynnönen (2010).
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of adjusting for any correlation present due to events happening in similar windows.

2.4.2 Risk Disclosure Effects

After estimating the mean CAR surrounding each filing and cybersecurity incident, I estimate

the effects of risk disclosure.

The framework in section 2.2 presented three testable implications. First, the expected

response to risk disclosure will depend on whether high or low-risk types are more likely to

disclose. If the former, disclosure should result in negative abnormal returns in expectation.

If the latter, disclosure should result in positive returns. When the proportions of each type

are equal, the two effects cancel out. To estimate the effect of cyber risk disclosure in 10-K

and 10-Q filings on abnormal returns around the filing date, I estimate the linear model:

CARfiling
i = α + φFirsti + ϕRiski + θSentimenti + ΓX + µi + τ + ϵ (2.15)

where CARfiling is the cumulative abnormal return after filing i. First equals one if the filing

was the first time the firm discussed cyber risk. Risk indicates whether the firm discussed

cyber risk in the filing, regardless of whether it was the first mention. Sentiment is the

filing’s sentiment score, as defined in section 2.3. Filing and firm specific controls are in the

matrix X. These include an indicator for whether the filing is a 10-Q and firm age. µ and τ

are firm and calendar year fixed effects, respectively. As a robustness check, I also estimate

this model on 10-K and 10-Q filings separately, removing the 10-Q indicator from the list of

covariates.

The second implication is that the market’s response to the event will depend on whether

they previously disclosed their risk, but whether that is detectable will depend on whether

the disclosing group is predominately high or low-risk firms. The disclosure effect goes in

opposite directions for each group so it is possible that the two cancel each other out. At

the event level, I estimate:

CARevent = α + ψRisk + βX + γ + τ + ϵi (2.16)

where Risk is equal to one if the firm involved had any mention of cybersecurity risk in a

10-K or 10-Q filed prior to their incident. The firm and event specific attributes in X are the

logs of firm market value and total liabilities; the portion of their assets that are intangible

(intangible ratio); Tobin’s Q in the fiscal year prior to their event; and indicators for whether

the event included ransomware and whether the firm had had a prior incident. Industry,

γ, and year τ fixed effects control for attitudes towards cyber risk that are shared across
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industry and time. I use industry fixed effects rather than firm fixed effects as in equation

2.15 because most firms appear in the sample only once.

Finally, I test whether the market’s response to risk disclosure is predictive of its response

to the event itself. Recall from section 2.2 that a firm’s market value will fall if they disclose

themselves to be high-risk, and increase if they reveal they’re low-risk. Additionally, when

the event happens, there should be a larger (in magnitude) response for high-risk firms than

low-risk if the disclosures focus on loss rather than probability. While it is not possible

to isolate the portion of the filing response that is attributable to the risk disclosure, the

abnormal returns around that filing will incorporate it. At the incident level, I estimate

CARevent
i = α + θCARfiling

i + βXi + γi + τ + ϵi (2.17)

CARfiling
i is the abnormal return for each firm around the first filing in which they discuss

cybersecurity risk. For those that never discuss cybersecurity risk, this will be zero. All

other variables are defined as before. For robustness, I also estimate this equation using only

firms that disclosed risk and using a dummy variable equal to one if CARfiling was negative

after their initial risk disclosure.

2.5 Results

Results are presented in two parts. First, I focus on the SEC filings. I show that there is no

systematic response, positive or negative, to a 10-K or 10-Q release. Additionally, whether

the firm discussed cyber risk for the first time in those filings is not predictive of CARfiling.

Second, I find the cybersecurity incidents cause a slightly less than one percent decline in firm

market value. This is also not affected by whether the firm had previously discussed their

cyber risk in a 10-K or 10-Q. However, CARfiling is positively correlated with CARevent.

2.5.1 Market Response to Filing Disclosures

I find no significant abnormal returns around SEC filing dates (table 2.6). This result holds

both whether the effect is estimated among the full population of filings or estimated for

10-K and 10-Q filings separately (column 1 versus columns 2 and 3 of table 2.6).

The results of estimating equation 2.15, the regression of CARfiling on risk disclosure

indicators, are in table 2.7. The framework in section 2.2 shows that the market’s reaction

to the initial risk disclosure will vary based on whether the firm is low or high-risk. For low-

risk firms, their price will increase, and it will decrease for high-risk firms. In expectation,

these effects may cancel each other out. Figure 2.5 shows the distribution of CARfiling.

63



Table 2.6: Filing Abnormal Returns

All Filings 10-K Filings 10-Q Filings

t (1) (2) (3)

-1 0.015 0.068 -0.005
(0.041) (0.071) (0.049)

0 0.006 -0.054 0.028
(0.060) (0.097) (0.074)

1 -0.051 -0.079 -0.041
(0.051) (0.078) (0.064)

CAR -0.030 -0.064 -0.017
(0.089) (0.144) (0.110)

Observations 7,098 1,911 5,187
Model Three Factor Three Factor Three Factor

*p<0.1, **p<0.05, ***p<0.01

Notes: This table contains abnormal returns after each filing.
This is CARfiling. The first column contains the mean abnor-
mal and cumulative abnormal returns after all filings. The second
two columns separately estimate the mean abnormal and cumula-
tive abnormal returns for 10-K and 10-Q filings, respectively.

There are close to an even number of firms who had positive and negative filings. It is

possible that the effects of each are offsetting.

Figure 2.5: CARfiling Distribution

Interestingly, there is a positive and significant effect for just mentioning cybersecurity
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Table 2.7: Disclosure Effect on the Market Response to Filings

Dependent Variable: CAR(-1, 1)

(1) (2)

Intercept -2.733 5.186
(215.880) (371.233)

First Cyber Risk Mention -0.316 -0.312
(0.589) (0.591)

Mentions Cyber Risk 0.901*** 0.906***
(0.335) (0.342)

10-Q 0.522* 0.616**
(0.266) (0.292)

Age -0.282
(0.411)

Sentiment -0.011
(0.142)

Year Fixed Effects Yes Yes
Firm Fixed Effects Yes Yes

Observations 7,098 7,098
R2 0.026 0.026
F Statistic 1.207** 1.207**
Model OLS OLS

*p<0.1, **p<0.05, ***p<0.01

Notes: This table shows the results of regressing CARfiling on an
indicator for whether the filing discussed cybersecurity risk. Both 10-
K and 10-Q filings are included in the sample. Estimates splitting
the sample by form type are in section B.3 of the appendix.

risk of 0.9 percent. This is consistent with the strategic disclosure framework where low-risk

firms use their disclosures to signal that they are low-risk. Though, as previously discussed,

the lack of immediate disclosure by all firms suggests that strategic disclosure is unlikely to

be reality. Additionally, unless new information is being revealed in subsequent filings, the

response should still be concentrated on the first disclosure, where there are no significant

results. This result disappears when I limit the sample to just 10-K filings (appendix table

B.5). It remains and grows larger when I limit the sample to 10-Q filings (appendix table

B.6). This suggests that there is some specific information derived from disclosing risk in

the 10-Q filing that may be valuable. As shown in figure 2.3, it is significantly less common

to discuss these risks in 10-Qs than 10-Ks.
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2.5.2 Market Response to Events

When the event is realized, there is a clear negative response in the market. The average

CAR ranged from -0.880 to -1.539 percent depending on the length of event window (table

2.8). This finding is similar in magnitude to previous literature.

Table 2.8: Incident Abnormal Returns

(-1, 1) (-2, 2) (-5, 5)

t (1) (2) (3)

-5 -0.014
(0.200)

-4 -0.203
(0.182)

-3 -0.155
(0.194)

-2 0.037 0.037
(0.179) (0.179)

-1 -0.126 -0.126 -0.126
(0.153) (0.153) (0.153)

0 -0.507** -0.507** -0.507**
(0.231) (0.231) (0.231)

1 -0.247 -0.247 -0.247
(0.297) (0.297) (0.297)

2 -0.041 -0.041
(0.218) (0.218)

3 -0.176
(0.208)

4 -0.098
(0.295)

5 -0.010
(0.174)

CAR -0.880*** -0.884** -1.539*
(0.391) (0.537) (0.791)

Observations 166 166 166
Model Three Factor Three Factor Three Factor

*p<0.1, **p<0.05, ***p<0.01

Notes: This table contains abnormal returns after cy-
bersecurity incidents, CARevent. The numbers above
each column represent the start and end date for the
event windows. Each row in the table is the abnormal
return on day t. CAR is the sum of the abnormal re-
turns over the event window. The standard errors of
the means are in parentheses.

Estimating equation 2.16, I find that prior risk disclosure is not predictive of CAR around

a cybersecurity event (table 2.9). Along with the results in table 2.7, this suggests that high

and low-risk firms are offsetting.

It is possible that my findings are influenced by there being very few firms who had not

disclosed risk prior to their incidents. Only about 20 percent of firms in my sample did not

discuss cybersecurity risk in a filing prior to their incident (table 2.4). This is a product of

my sample time period, which contains more recent event than the previous literature. The
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majority of my events occur after 2018, after it became common for firms to discuss cyber

risk in the filings (figure 2.3). Additionally, by 2018 all 50 states also had a law requiring

organizations to notify customers when they suffered a data breach.6 Data breach disclosure

laws may increase the likelihood of firms discussing cybersecurity risks in their SEC filings

as they impose an additional cost that would be incurred in the event of an incident.

Table 2.9: Disclosure Effect on the Market Response to Incidents

Dependent Variable: CAR(-1, 1)

(1) (2) (3) (4)

Intercept -0.838 -1.658 0.104 0.001
(60.546) (22.255) (18.595) (20.604)

Disclosed Risk -1.285 -0.679
(1.109) (1.260)

CARfiling 0.288** 0.290**
(0.118) (0.130)

Not First Event -0.844 -2.832*
(1.458) (1.683)

Ransomware 0.574 -0.003
(1.436) (1.086)

Log(Market Value) -0.285 -0.157
(0.469) (0.517)

Tobin’s Q -0.015 0.033
(0.356) (0.321)

Intangible Ratio -2.451 -0.264
(2.835) (2.226)

Log(Liabilities) 0.286 0.147
(0.486) (0.503)

Year Fixed Effects Y Y Y Y
Industry Fixed Effects Y Y Y Y

Observations 166 166 135 135
R2 0.099 0.117 0.138 0.174
F Statistic 0.950 0.860 1.422 1.969***
Model OLS OLS OLS OLS

*p<0.1, **p<0.05, ***p<0.01

Notes: The results in this table are from estimating equation 2.16. It
shows the effects of prior risk disclosure on the market’s response to
cybersecurity incidents.

These results also contain information about how investors may process cybersecurity

6Alabama was the last state to adopt a data breach disclosure law with the Alabama Data Breach
Notification Act of 2018 (Acts 2018-396).
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risks. The average CARevent in this chapter is similar to that of Kamiya et al. (2021), who

show that a significant portion of the negative market response is investors updating their

beliefs about the loss distribution after the event. This suggests that investors may still rely

heavily on the event itself to learn about the value of the risk. That could be because the

information in these filings is not meaningful, or investors are unwilling to incur the costs

associated with learning about risk until it is realized. Alternatively, the losses from these

events may be getting larger. This would offset any progress investors make in correctly

identifying p.

The final prediction of the framework I propose is that the variance in market response will

be greater among disclosing firms than non-disclosing firms. This is due to the simplifying

assumptions that all firms face the same loss after and event, and that all non-disclosing

firms are assigned the same prior expected loss. As a result, the market’s response to an

incident is the same for all non-disclosers, making the variance zero. Naturally, this will not

be exactly true in reality. Well-informed investors may assign firm specific risks to those who

do not disclose. Comparing observed variance in CARevent for disclosers and non-disclosers,

I find that the variance is higher among disclosing firms, but difference between the two,

however, is not statistically significant (table 2.10).

Table 2.10: CARevent Variance

Variance

Window Disclosers Non-Disclosers Difference P-Value

(-1, 1) 27.875 13.904 13.971 0.233
(-2, 2) 50.747 32.690 18.057 0.546
(-5, 5) 109.116 82.626 26.491 0.694

Notes: The p-value for each difference is calculated using Levene’s
test.

2.6 Conclusion, Implications, and Future Research

Under efficient market models, future risk should be incorporated into firm’s market value

if it is public knowledge. This chapter has developed a framework defining how markets

may account for that risk, and how prior risk disclosure should affect the response to the

realization of adverse events. I show that if the disclosure generates new, negative, infor-

mation to investors, firm share price should fall. The effect of prior risk disclosure on the

market’s reaction to realizations of the event will be opposite for high and low-risk firms.

This is true regardless of whether there is heterogeneity is losses or probability. It will also
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depend on whether the firms disclose information on the losses they expect to incur or on

the probability of the event happening.

Empirically, I find that there is no systematic negative response to the first time a firm

discusses cybersecurity risk in their 10-K and 10-Q filings. Under my proposed framework,

this implies that the responses to high and low-risk firms may be offsetting each other in

expectation, depending on the relative proportion of each type that discloses.

Using a collection of cybersecurity incidents against publicly traded firms, I found an

average response of -0.880 percent in the days immediately following the event, inline with

previous research. I then showed that previous risk disclosure in 10-K and 10-Q filings was

not predictive of the magnitude of the response, providing further evidence of offsetting

effects.

Next, I find that the market’s response to the first filing in which the firm disclosed their

cyber risk is highly predictive of its subsequent response to the events themselves. Firms

where the market responds negatively to the disclosure (i.e., high-risk firms) also suffer a

more negative response in the market when they suffer a cyberattack. This is consistent

with the first iteration of the framework in section 2.2 where there is heterogeneity in loss

after an attack, but share the same event probability.

This chapter does not study whether the need to disclose risk and mitigation efforts

has other benefits such as incentivizing firms to be more proactive in their defense. Even

if the losses would be the same when actualized, increased attention on cyber risk may

lower the probability of an incident in the first place, benefiting firms and customers alike.

Future research could determine whether there are other such benefits to requiring firms to

disclose cybersecurity risks or whether we have reached a point where this risk is ubiquitous

enough that investors are able to properly calibrate expectations without much additional

information from firms.
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Chapter 3.

Unreliable Information in Consumer Credit

Markets

In collaboration with Sarah Turner

3.1 Introduction

A person’s credit score is a key signal of their creditworthiness to lenders. Formed from

individual’s borrowing and repayment history, these scores reveal information about their

risk type, signaling to lenders how likely they are to pay back their loans.1 Higher credit

scores increase access to borrowing opportunities, and can allow for better terms on those

loans because they indicate that the borrower is less risky.

As part of its response to the 2020 COVID-19 pandemic, the United States government

paused activity around student loans, temporarily suspending payments and removing delin-

quent status from derogatory loans. Intended to last a few months, the pause ultimately

stayed in place for over three years. After the pause went into effect, many beneficiaries of

the policy saw large increases in their credit scores because of the student loan pauses. This

was particularly true for borrowers who had previously been delinquent on their student

loans. In effect, by suspending the collection of delinquent loans, the policies made these

borrowers appear less risky than their credit history would suggest, adding noise and bias

to the signal sent to lenders by their credit scores and potentially reducing the reliability of

information in the market.

This chapter studies how that noise and bias affected consumer credit markets, focusing

on auto loans and credit cards. Using a panel of consumer credit data, I estimate whether

those who had a delinquency removed from their credit report because of the pause are

1See Arya et al. (2013) for an in-depth discussion of credit score formation.

70



more likely to take out new loans and go delinquent on a loan than their non-benefiting

counterparts. I also estimate what characteristics of the borrower determined how large of

an increase in credit score they experienced between March and September 2020.

The pause on student loan payment and collection loosened both liquidity constraints and

credit score related borrowing constraints for beneficiaries. Liquidity constraints fell because

they no longer needed to make payments on their loans, borrowing constraints through the

aforementioned credit score increases. If these constraints were binding, then beneficiaries

may respond by increasing the amount they borrow. But if the signal sent by credit scores

was an accurate representation of their fundamental risk as borrowers, then distorting that

signal by artificially inflating their credit scores may also result in these borrowers obtaining

more credit than they are qualified for. If this is the case, they may also have higher

delinquency rates than their post-pause credit score would predict.

Data for this study come from the one of the three major credit bureaus. With these data

I observe information on individual loans including their scheduled payments, account status,

and payment history. At the person level, I observe credit score history and demographic

information. These data are recorded in March and September of each year and for this

chapter I use the 2018–2023 files. I am able to identify beneficiaries of the pause by observing

whether the scheduled payment on any of their loans fell to zero in September 2020 while

the account balance remained positive. Among those loans flagged as being affected by the

pause, I also mark whether they were delinquent in March 2020 but not in September of

that same year.

These data are used to construct an unbalanced person-level panel. For the analysis, I

designate the treatment group as the subset of payment pause beneficiaries who also had a

delinquency resolved due to the policy. I focus on this subgroup, rather than beneficiaries as

a whole, because they saw the largest credit score increase between March and September

2020. I use a propensity score matching process to construct two control groups from the

non-beneficiaries. The first group is based on matches to the treated group using observations

up to March 2020. This is the “but for” group. Those who are most similar to the treated

leading up to the payment pause, and who, under a parallel trends assumption, are most

like what they would be but for the policy. It is relative to this group that the treatment

groups sees their credit constrained loosened. If the credit constraint was previously binding,

beneficiaries may borrow more after the policy than this first control group is able to.

This is a partial equilibrium outcome that assumes no changes in how lenders behave. It

is possible that creditors will become less willing to lend because the information environment

has degraded. Narajabad (2012) proposes a model showing that improvements in information

technology needed to assess risk expands credit markets as lenders can provide more tailored
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terms to even risky borrowers. Reversing that logic, by reducing the quality of information

available to lenders, the payment pause may cause the credit market to contract. Related,

Chatterjee et al. (2023) conduct a counterfactual experiment in which lenders are unable

to observe borrow history and find that interest rates will increase, potentially reducing

borrowing. Each of these are examples of why information degradation may reduce the

amount of available credit, and therefore reduce borrowing.

Furthermore, the control group may be affected by the policy if, due to known bias in

credit scores, lenders choose to assume all credit scores are inflated. If this were the case,

the control group will be harmed by their lack of score inflation, reducing their borrowing

opportunities. As a result, the treatment effect I estimate on account openings will include

both the benefit to the treated and the harm done to the control group. It should therefore

be interpreted as an upper bound on the overall effect.

Empirically, I find evidence that borrowing does increase among the treated group. Pay-

ment pause beneficiaries were 1.07 and 4.55 percentage points more likely to open an auto

loan and credit card, respectively, after March 2020 than the first control group. With auto

loan opening rates fluctuating between four and six percent in most periods, and credit card

opening rates between six and nine percent, these are substantial percentage increases.

The second control group is created using the same matching process, but using obser-

vations up to September 2020. This is the group that beneficiaries appear to look like, in

terms of credit score, after the policy. However, because their new (higher) credit score is

a result of a temporary government policy, rather than actions taken to change their credit

score such as catching up on missed payments, it is possible that their underlying risk type

is unchanged. As a result, they may be more likely to become delinquent on their loans than

those in this post-pause match group.

As with the pre-pause matches, the post-pause matches may be harmed by the policy if

lenders assume their credit scores are inflated and choose to offer them fewer loans or worse

terms on loans they do offer. This could have a positive or negative effect on delinquency

rates. It may decrease delinquency rates among the control group because they cannot

go delinquent on loans they are not offered. This would lead to the treatment effect being

overstated. Delinquency rates may increase in the control group if they are given worse terms,

such as higher interest rates, that affect their ability to stay current on their payments. If

lenders are not able to distinguish between treated and untreated, they should both receive

similar terms on their loans, mitigating this bias in the treatment effect estimate.

I estimate that beneficiaries were 0.43 percentage points more likely to go delinquent

on an auto loan and -1.08 percentage points less likely to go delinquent on a credit card

than those in the post-pause match group. As with openings, those numbers are small in
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magnitude, but large relative to population delinquency rates.

This chapter contributes to the literature on both the role of information in consumer

credit markets and the effects of student loan relief. Seminal work on the former in Jaffee

and Russell (1976) and Stiglitz and Weiss (1981) demonstrate how adverse selection and in-

formation asymmetry can erode credit markets. Chatterjee et al. (2023) show that a lending

market based on credit score can reach an equilibrium equivalent to a market where a prob-

ability is assigned to each potential hidden risk type via Bayesian updating, demonstrating

the importance of accurate credit scores in solving information problems. Unsurprisingly,

noise in the data used to evaluate credit risk has been shown to degrade the effectiveness of

many algorithms designed to classify that risk (Twala, 2013).

The effects of the payment pause on borrower behavior have been studied extensively.

A consistent finding is that these payment pauses increase consumption and debt among

the beneficiaries. Dinerstein et al. (2025) find that borrowers with frozen loans increased

borrowing on mortgages, auto loans, and credit cards. Chava et al. (2023) also find sig-

nificant increase in borrowing among those in forbearance, relative to borrowers who were

not. Salman and Xie (2025) find that consumption increased in areas with higher levels of

borrowers eligible for the payment pauses. Briones and Turner (2025) show that the debt

payment suspension reduced hours worked as well. This chapter confirms many of the results

from the previous literature using an alternative identification strategy.

The remainder of this chapter is structured as follows. Data and descriptive statistics are

presented in section 3.2. I propose a matching-based empirical strategy in section 3.3, and

discuss the results in section 3.4. Concluding thoughts and paths for future research are in

section 3.5.

3.2 Credit Data

Data for this study are from the one of the three major credit bureaus. The data are separated

into two types of datasets: attributes and trades. The attribute files contain information on

the individuals in the sample, such as their credit score, marital status, and imputations of

their income. The trade files contain information on individual loans and credit accounts

opened by the people in the sample. This includes their scheduled and actual payments,

loan status (current, past due, etc.), and account balance. An individual will appear once

in an attribute file, but could have multiple entries in each trade file if they have multiple

outstanding loans in a period. Observations are recorded in March and September of each

year. I use the 2018–2023 files in this study.

To identify loans affected by the pause, I use the March and September 2020 trade files.
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An education loan is flagged as being paused if they have a positive scheduled payment in

March 2020 and a scheduled payment of zero in September 2020 without having been closed.

In addition to the payment pause, the collection of delinquent loans was also suspended. To

determine whether the trade benefited from this aspect of the policy, I compare the loan’s

delinquency status in March 2020 to its status in September 2020. Trades are flagged as

benefiting from this provision if they are delinquent in March but not September, once again

conditioning on not being closed.

Figure 3.1: Period-Over-Period Credit Score Change

Note: These are the unconditional changes in credit score between each obser-
vation period in the study.

After determining the status of each loan, I aggregate them at the person level to set

treated and untreated groups. A person is designated as treated if they have at least one

student loan that had a delinquency resolved between March and September 2020 because

of the pause. I choose to focus on the subset of beneficiaries who had a delinquency resolved,

rather than all beneficiaries because this subgroup saw the largest credit score increases

after the policy (figure 3.1). It can also be seen that credit scores in this group were falling

leading into the policy change, suggesting that many of the delinquencies being resolved

were relatively new. Examining the distribution of credit score changes between March and

September 2020 provides further evidence that these borrowers saw disproportionately larger

increases in their credit score than their peers (figure 3.2).

A comparison of the treated and untreated groups in March 2020 is in table 3.1. The

two are noticeably different with the latter having much higher credit scores and balances on

trades. The untreated are also significantly more likely to own homes and be married. The

difference in average credit score in particular is unsurprising given that, by definition, the

treated group has at least one delinquency on their credit report. The treated group does,
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Figure 3.2: Credit Score Change Density

Note: Credit score change is the difference between September and March 2020
credit scores.

however, have much larger credit score changes on average between March and September

2020 (54 points versus 10).

Trade opening and delinquency rates are in figures 3.3a and 3.3b, respectively. Between

four and six percent of the population opens an auto loan in a give period, while six to nine

percent open a credit card. Less than one percent of people go delinquent on an auto loan,

and between one and 2.5 percent of the population go delinquent on a credit card in a period.

These delinquency rates are not conditioned on having an open loan.

Figure 3.3: Trade Opening and Delinquency Rates

(a) Trade Opening Rates (b) Delinquency Rates
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Table 3.1: Unmatched Panel Balance

Treated Untreated Difference

Credit Score 504.21 677.18 -172.97***
(66.70) (111.25)

Credit Score Change 53.58 9.65 43.93***
(40.79) (34.74)

# Open Trades 5.99 5.09 0.90***
(5.05) (4.98)

Balance On Open Trades 60,068.88 98,642.87 -38,573.99***
(89,088.46) (181,000.00)

Balance on Education Trades 34,390.86 18,613.32 15,777.54***
(47,802.24) (38,905.38)

# of Credit Cards 1.58 3.37 -1.78***
(2.64) (3.84)

Balance on Credit Cards 2,153.30 5,252.23 -3,098.93***
(5,720.28) (10,652.82)

Homeowner 0.31 0.51 -0.20***
(0.46) (0.50)

Married 0.44 0.54 -0.10***
(0.50) (0.50)

Observations 62,234 219,530

Notes: This table contains the means of all the listed variables for the treated
and untreated groups before matching. Each observation is of an individual in
March 2020. Credit score change is the average change in credit score between
March 2020 and September 2020.

3.3 Empirical Strategy

The primary focus of this chapter is to determine whether beneficiaries of the student loan

payment and collection pause are more likely to open auto or credit card loans, and whether

they are more likely to go delinquent on their loans. Both effects are driven by the increase

in credit score caused by the pause. This change loosened credit constraints on borrowers

and added noise to their risk signal, possibly making them appear to be less risky than they

really are.

Before measuring these effects, I also examine the factors that determined the size of

credit score changes between March and September 2020. Using just the treated group, I

estimate
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∆CSi = α + β1CSi + β2Tradesi + β3Balance
all
i +

β4Balance
sl
i + β5Latei + β6N.Treated+ εi

(3.1)

where CSi is their credit score in March 2020; Tradesi is the number of open trades they hold;

Balancealli is the total balance on all open trades; Balancesli is their student loan balance;

Latei is their past due balance on their student loans; and N.Treatedi is the number of

student loan the hold that resolved a delinquency after the payment pause.

For the main analysis, I use propensity score matching to account for the large observable

differences between the unmatched treated and untreated groups. Matching is conducted

within groups determined by credit score bin and homeownership status. Each credit score

bin is 20 points wide. Within these matching groups, I conduct one-to-one propensity score

matching without replacement. Propensity scores are estimated using a logit model over a

common support by removing outliers from the treated group.2 The independent variables

used to calculate propensity scores are credit score, balance on trades, number of open trades,

and balance on student loans.

I create two separate control groups in this chapter. For the first, match groups are

determined by credit card bin in September 2019 and March 2020, and homeownership status

in March 2020. Within those groups, observations for the match variables listed above are

limited to their March 2019 through March 2020 observations. This group is designed to be

most like the treated group but for the collection and payment pause. After matching, they

should have similar credit score patterns, including the observed drop, leading into March

2020, but will not have the benefit of the policy to boost their credit scores afterward. I refer

to this as the pre-pause matches throughout the remainder of this chapter. If their credit

constraint was binding, beneficiaries will likely open more loans than the control group to

take advantage of their increased access to credit.

A comparison of the treatment and pre-pause matches in March 2020 can be found in

table 3.2. Of the 62,234 treated individuals, 54,192 are matched.3. The average credit score

of both groups and period-over-period change in credit score for each group are shown in

figures 3.4a and 3.4b, respectively. The matching process was successful in making the two

groups appear similar in credit score prior to the pause, though there are still noticeable

differences in the average balance on open loans.

Creation of the second control group (the post-pause matches, hereafter) follows the same

2An observation in the treated group is considered an outlier if its propensity score is outside the range
of propensity scores seen in the control group.

3A discussion of which observations are matched and which ones are not is in section C.1 of the appendix.
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Figure 3.4: Pre-Pause Match Credit Scores

(a) Mean Credit Score

(b) Period-Over-Period Credit Score Change
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Table 3.2: Matched Panel Balance—Pre-Pause Matches

Treated Untreated Difference

Credit Score 540.66 540.80 -0.13
(51.91) (51.92)

Credit Score Change 41.99 27.38 14.61***
(38.20) (41.19)

# Open Trades 5.98 4.40 1.58***
(4.57) (5.28)

Balance On Open Trades 66,092.14 50,626.96 15,465.18***
(89,506.38) (100,000.00)

Balance on Education Trades 33,914.39 28,608.45 5,305.93***
(45,280.93) (46,040.58)

# of Credit Cards 2.01 2.54 -0.53***
(2.74) (3.99)

Balance on Credit Cards 2,725.88 3,991.33 -1,265.45***
(6,136.20) (9,887.42)

Homeowner 0.34 0.34 0.00
(0.47) (0.47)

Married 0.47 0.47 0.00
(0.50) (0.50)

Observations 33,394 33,394

Notes: This table shows the mean of each variable for the treated and untreated
groups after matching to create the pre-pause matches control group. As before,
all values are for March 2020, except credit score change which is the change in
credit score between March and September 2020.

procedure, but adds September 2020 to the list of observation periods used to create match

groups and the list of variables used in propensity matching. This is the group of borrowers

the beneficiaries appear most similar to after having their scores inflated. Based on credit

score alone, both groups will be sending the same signal to lenders, but the treated group is

potentially more risky because their “true” credit score, the score they would have if their

delinquencies had not been temporarily resolved, is likely to be lower than their observed

score. If this is true, the treated group should be more likely to go delinquent on a loan than

the control group. Mean comparisons between the treated group and this second control

group are in table 3.3, mean credit scores and credit score changes are in figures 3.5a and

3.5b. Once again the matching process resulted in close credit score matches with some

differences in remaining balance on trades. There are fewer match pairs in this second group

because September 2020 credit score bin was also used to create the match groups. Adding

this variable created more groups to match within, spreading the data out thinner. As a
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Table 3.3: Matched Panel Balance—Post-Pause Matches

Treated Untreated Difference

Credit Score 543.07 543.51 -0.43
(47.18) (47.01)

Credit Score Change 36.17 35.54 0.62**
(25.11) (25.07)

# Open Trades 5.56 4.21 1.35***
(4.04) (5.14)

Balance On Open Trades 54,244.46 43,144.29 11,100.16***
(71,649.37) (83,926.79)

Balance on Education Trades 30,298.13 27,578.87 2,719.26***
(39,154.15) (43,229.38)

# of Credit Cards 1.81 2.31 -0.50***
(2.49) (3.74)

Balance on Credit Cards 2,235.53 3,358.75 -1,123.22***
(5,090.23) (8,737.68)

Homeowner 0.26 0.26 0.00
(0.44) (0.44)

Married 0.46 0.46 0.00
(0.50) (0.50)

Observations 18,109 18,109

Notes: This table shows the mean of each variable after matching to create
the post-pause matches. As before, the observations are for March 2020 except
credit score change which is the change in credit score between March and
September 2020.

result, fewer matches were possible.

After matching, I estimated:

yit = α + ϕTreatedi + δDit + µm(i) + τt + ϵit (3.2)

where Treatedi equals one for treated individuals; Dit is a treatment indicator equal to one

if person i is treated and the observation occurs after March 2020; µm(i) and τt are match

pair and time period fixed effects, respectively.

To test for differential trends prior to the payment and collections pause, I estimate

yit = α + ϕTreatedi +
∑

τ ̸=3/2020

δτDit + µm(i) + τt + ϵit (3.3)

where all parameters are defined as before.
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Figure 3.5: Post-Pause Match Credit Score

(a) Mean Credit Score

(b) Period-Over-Period Credit Score Change
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This empirical strategy assumes that lenders do not change their behavior after credit

scores are inflated. It is possible that lenders, knowing that some credit scores are artificially

high and being unable to identify which ones, treat all scores as inflated. As a result, those

in either control group will have fewer opportunities to borrow, or may be offered worse

terms on the loans they can get. If this is the case, the treatment effects I estimate will

include both the benefit to the treatment group and the harm done to the control group.

The estimated effects on auto loan and credit card openings should therefore be considered

an upper bound of the true impact of the payment pause.

For delinquencies, this response by lenders could bias my estimates in either direction.

First, a person cannot go delinquent on a loan they were not able to take out. The effect

on unconditional delinquencies will also be an upper bound as it does not account for the

decreased likelihood that the control group is able to open a new loan. The second pathway

for bias is through the terms offered on new loans. If lenders offer worse terms, such as

higher interest rates, because they know some credit scores have been inflated, it may be

more difficult for borrowers to keep up with their payments, increasing the probability of

delinquency. However, if lenders are truly unable to distinguish between the treated and

control, as I am assuming, this will affect both groups as lenders offer similar terms to each.

3.4 Results

Results of estimating equation 3.1, which measures the factors that explain the size of in-

dividual credit score changes, are in table 3.4. Recall that this is only estimated using the

treated group observations for March 2020 and the outcome variable is the change in credit

score between March and September of that year. Most of the results are intuitive. Credit

score changes are smaller the higher a borrower’s initial credit score, the more open trades

they have, and the further behind their payments they are. The change is larger for those

with more debt. Interestingly, the number of treated trades—i.e., the number of loans where

the delinquency on the loan was resolved because of the collections pause—has no effect.

Moving to the effect of the payment and collection pause on borrowing, I find that the

treated are significantly more likely to open both auto and credit card trades—roughly 1.07

and 4.55 percentage points in the post-pause period, respectively, than the pre-pause matches

(table 3.5). While these are small numbers in absolute terms, between four and six percent

of people have historically opened auto loans and six to nine percent opened credit cards in

a given period (figure 3.3a). Thus, this represents a 16 to 25 percent increase in auto loan

opening rates, and a 44 to 66 percent increase in credit card opening rates. These results lend

support to the hypothesis that beneficiaries take advantage of loosened borrowing constraints
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Table 3.4: Credit Score Change Factor Variables

Dependent Variable: Credit Score Change
(1) (2) (3)

Intercept 167.2∗∗∗ 172.5∗∗∗ 172.4∗∗∗

(1.1622) (1.2117) (1.3237)
3/2020 Credit Score -0.225∗∗∗ -0.238∗∗∗ -0.238∗∗∗

(0.0023) (0.0025) (0.0027)
Number of Open Trades -0.183∗∗∗ -0.170∗∗∗

(0.0341) (0.0493)
Balance on Trades 0.0000377∗∗∗ 0.0000290∗∗∗

(0.0000) (0.0000)
Student Loan Balance 0.0000321∗∗∗

(0.0000)
Past Due on SL -0.0000987∗∗∗

(0.0000)
Number of Treated Loans -0.111

(0.0680)
N 61906 61906 61906
R2 0.136 0.141 0.142

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Results from estimating equation 3.1 are in this table. The sample is
limited to the treated group. There are fewer observations than in table B.1
because some members of the treated group are missing credit score observa-
tions in March and/or September 2020 and could not have their credit score
change calculated.
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Table 3.5: Trade Openings and Delinquencies—Pre-Pause Matches

Openings Delinquencies

Auto Credit Card Auto Credit Card
(1) (2) (3) (4)

Constant 0.0636∗∗∗ 0.163∗∗∗ 0.0364∗∗∗ 0.0823∗∗∗

(0.0002) (0.0004) (0.0002) (0.0003)

Treated -0.0150∗∗∗ -0.0782∗∗∗ -0.0112∗∗∗ -0.0119∗∗∗

(0.0007) (0.0011) (0.0005) (0.0008)

Treated x Post 0.0107∗∗∗ 0.0455∗∗∗ 0.00222∗∗∗ -0.0187∗∗∗

(0.0008) (0.0013) (0.0006) (0.0010)

Match FE Yes Yes Yes Yes

Period FE Yes Yes Yes Yes
N 1,289,496 1,289,496 1,289,496 1,289,496

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table contains the results of estimating equation 3.2 using the
pre-pause matches control group. Standard errors are clustered at the match-
pair level.

and open significantly more loans than they would have without the policy.

Beneficiaries are also more likely to experience an auto delinquency in the post-period, but

less likely to experience a credit card delinquency than the pre-pause matches. While again

these effects are small in absolute terms, relative to the baseline mean they are large increases.

These results are not conditioned on having a loan of either type. I find similar results, though

larger in magnitude, results when conditioning on having an open loan (appendix table B.7).

I find similar results using the post-pause matches. Relative to this group, beneficiaries

are 0.78 and 3.5 percentage points more likely to open an auto loan and credit card, respec-

tively (table 3.6). They are also once again more likely to go delinquent on an auto loan

(0.43 percentage points) and less likely to go delinquent on a credit card (-1.08 percentage

points).

While significant in their own right, comparing the effect sizes of both groups is also

informative. The pre-pause matches have the same credit score positioning beneficiaries

would have been in were it not for the payment pause. Their credit scores fell significantly,

and while they did rebound there is still a gap between them and the treated group (figure

3.4a). The treated individuals saw their credit constraints loosened more relative to this

group than relative to the post-pause matches. It is therefore unsurprising that the effect
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Table 3.6: Trade Openings and Delinquencies—Post-Pause Matches

Openings Delinquencies

Auto Credit Card Auto Credit Card
(1) (2) (3) (4)

Constant 0.0636∗∗∗ 0.163∗∗∗ 0.0349∗∗∗ 0.0798∗∗∗

(0.0003) (0.0005) (0.0002) (0.0003)

Treated -0.0115∗∗∗ -0.0701∗∗∗ -0.0109∗∗∗ -0.0131∗∗∗

(0.0008) (0.0012) (0.0006) (0.0009)

Treated x Post 0.00718∗∗∗ 0.0348∗∗∗ 0.00431∗∗∗ -0.0108∗∗∗

(0.0009) (0.0015) (0.0007) (0.0011)

Match FE Yes Yes Yes Yes

Period FE Yes Yes Yes Yes
N 960,798 960,798 960,798 960,798

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table contains the results of estimating equation 3.2 using
the post-pause matches control group. Standard errors are clustered at the
match-pair level.
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on trade openings is larger relative to the pre-pause matches than it is for the post-pause

matches.

For delinquencies, the comparison between the treated and post-pause matches is most

interesting. Credit score signal noise and bias introduced by the payment pause causes

beneficiaries to look like this group to lenders. However, if their underlying risk is unchanged

and simply masked by the higher credit scores, this group should be more likely to go

delinquent than their new peers. This effect should be less prominent when using the pre-

pause matches as the comparison because the treatment group is more similar to them in

terms of risk profile. The results indicate this to be true, with the estimated effect on auto

delinquencies estimated using the post-pause matches being close to double that of the effect

estimated using the pre-pause matches. While the treated group are less likely to have a

credit card delinquency than both groups, this difference is slightly smaller when compared

to the post-pause matches.

Implicit in these results in the assumption that those in the treated group only resolved

their delinquencies because of the payment pause. This is not strictly true, as some likely

would have caught up on their payments even without the pause. If this were accounted for,

there would be less bias in the post-pause credit scores, and the estimated effects would be

smaller.

Event study plots for each outcome are in figures 3.6 and 3.7. There are six months

between each period. They consistently show that there are pre-payment pause differences

between the treated and control group that were not resolved in the matching process.
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Figure 3.6: Event Studies—Pre-Pause matches

(a) Auto Trade Openings (b) Credit Card Openings

(c) Auto Trade Delinquencies (d) Credit Card Delinquencies
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Figure 3.7: Event Studies—Post-Pause Matches

(a) Auto Trade Openings (b) Credit Card Openings

(c) Auto Trade Delinquencies (d) Credit Card Delinquencies
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3.5 Conclusion and Future Research

Given the importance of credit scores in determining access and terms in the consumer credit

market, noise that disrupts the signal scores send can have significant consequences. In this

chapter I study how noise and bias introduced by the student loan payment pauses during

the COVID-19 pandemic impacted borrowing and delinquency rates among beneficiaries,

with a specific focus on those who were previously delinquent on a trade.

I show that these beneficiaries are more likely to open both auto loans and new credit

cards than untreated individuals matched with the treated on their pre-and post-policy

profiles. They are also more likely to go delinquent on auto loans than these groups, but

less likely to go delinquent on credit cards. Beyond the headline results, I find that the

trade openings effect is higher against the control group based on pre-policy values than

the control group based on post-policy values, and the delinquency effect is larger for the

post-policy value based control group than the pre-policy group.

There are a number of paths forward to build upon this research. Alternative empirical

strategies, such as synthetic difference-in-differences, could be used to estimate each effect.

The types of debt analyzed could be expanded to include mortgages. Delinquencies also

play out overtime, meaning there could be a more dramatic effect in later years. A follow-up

study conducted once more data are available would capture these long-term effects. The

student loan payment pause ended in fall of 2023, after the last period of data available

for this study. Payment and collection resumption would reimpose the credit constraint

loosened by the payment pause, causing a second change in behavior that can be studied as

those effects work their way through the economy.

A key factor in the market not discussed in this chapter is the terms lenders offer to

borrowers. Higher credit scores typically result in better terms (lower interest rates, higher

credit limits, etc.). However, if lenders believe there to be noise which makes it more difficult

to identify underlying risk types, they may offer less favorable terms to compensate for the

unaccounted for risk. This would have implications on the overall welfare impact of the

policy. It would be valuable to take a general equilibrium approach to the problem in order

to understand the full effects of policies that impact the consumer credit market in this way.
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Kerkwijk, M. H., Brett, M., Haldane, A., del Ŕıo, J. F., Wiebe, M., Peterson, P., Gérard-

Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and

Oliphant, T. E. (2020). Array programming with numpy. Nature, 585(7825):357–362.

Holt, T. J. and Lampke, E. (2010). Exploring stolen data markets online: products and

market forces. Criminal Justice Studies, 23(1):33–50.

Holt, T. J., Smirnova, O., and Chua, Y. T. (2016). Exploring and estimating the revenues

and profits of participants in stolen data markets. Deviant Behavior, 37(4):353–367.

Jaffee, D. M. and Russell, T. (1976). Imperfect information, uncertainty, and credit ra-

tioning*. The Quarterly Journal of Economics, 90(4):651–666.

Janßen, R., Kesler, R., Kummer, M. E., and Waldfogel, J. (2022). Gdpr and the lost

generation of innovative apps. (30028). DOI: 10.3386/w30028.

Jia, J., Jin, G. Z., and Wagman, L. (2021). The short-run effects of the general data

protection regulation on technology venture investment. Marketing Science, 40(4):661–684.

Johnson, G. A., Shriver, S. K., and Goldberg, S. G. (2023). Privacy and market concentra-

tion: Intended and unintended consequences of the gdpr. Management Science.

92



Kamiya, S., Kang, J.-K., Kim, J., Milidonis, A., and Stulz, R. M. (2021). Risk management,

firm reputation, and the impact of successful cyberattacks on target firms. Journal of

Financial Economics, 139(3):719–749.

Kircher, T. and Foerderer, J. (2021). Does eu-consumer privacy harm financing of us-app-

startups? within-us evidence of cross-eu-effects. (4058437).

Kolari, J. W. and Pynnönen, S. (2010). Event study testing with cross-sectional correlation

of abnormal returns. The Review of Financial Studies, 23(11):3996–4025.

Koski, H. and Valmari, N. (2020). Short-term Impacts of the GDPR on Firm Performance.

Number 77.

Leuven, E. and Sianesi, B. (2003). PSMATCH2: Stata module to perform full Mahalanobis

and propensity score matching, common support graphing, and covariate imbalance test-

ing. Statistical Software Components, Boston College Department of Economics.

Li, E. X. and Ramesh, K. (2009). Market reaction surrounding the filing of periodic sec

reports. The Accounting Review, 84(4):1171–1208.

Loughran, T. and Mcdonald, B. (2011). When is a liability not a liability? textual analysis,

dictionaries, and 10-ks. The Journal of Finance, 66(1):35–65.

Lukic, K., Miller, K. M., and Skiera, B. (2023). The impact of the general data protection

regulation (gdpr) on online tracking. (4399388).

Makridis, C. and Dean, B. (2018). Measuring the economic effects of data breaches on firm

outcomes: Challenges and opportunities. Journal of Economic and Social Measurement,

43(1–2):59–83.

Makridis, C. A. (2021). Do data breaches damage reputation? evidence from 45 companies

between 2002 and 2018. Journal of Cybersecurity, 7(1):tyab021.

Miller, A. R. and Tucker, C. (2009). Privacy protection and technology diffusion: The case

of electronic medical records. Management Science, 55(7):1077–1093.

Miller, A. R. and Tucker, C. (2018). Privacy protection, personalized medicine, and genetic

testing. Management Science, 64(10):4648–4668.

Miller, A. R. and Tucker, C. E. (2011). Encryption and the loss of patient data. Journal of

Policy Analysis and Management, 30(3):534–556.

93



Mullahy, J. and Norton, E. C. (2024). Why transform y? the pitfalls of transformed regres-

sions with a mass at zero. Oxford Bulletin of Economics and Statistics, 86(2):417–447.

Narajabad, B. N. (2012). Information technology and the rise of household bankruptcy.

Review of Economic Dynamics, 15(4):526–550.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–2830.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.

Salman, D. and Xie, X. (2025). Relief beliefs: Effects of anticipated student loan forgiveness.

(5157757).

Schwartz, P. M. and Solove, D. J. (2011). The pii problem: Privacy and a new concept of

personally identifiable information. New York University Law Review, 86(6):1814–1894.

Smith, K. T., Jones, A., Johnson, L., and Smith, L. M. (2018). Examination of cybercrime

and its effects on corporate stock value. Journal of Information, Communication and

Ethics in Society, 17(1):42–60.

Spanos, G. and Angelis, L. (2016). The impact of information security events to the stock

market: A systematic literature review. Computers & Security, 58:216–229.

SpyCloud (2024). SpyCloud Annual Identity Exposure Report 2024. Technical report, Spy-

Cloud.

Stice, E. K. (1991). The market reaction to 10-k and 10-q filings and to subsequent the wall

street journal earnings announcements. The Accounting Review, 66(1):42–55.

Stiglitz, J. E. and Weiss, A. (1981). Credit rationing in markets with imperfect information.

The American Economic Review, 71(3):393–410.

The Pandas Development Team (2024). pandas-dev/pandas: Pandas.

Tosun, O. K. (2021). Cyber-attacks and stock market activity. International Review of

Financial Analysis, 76:101795.

Twala, B. (2013). Impact of noise on credit risk prediction: Does data quality really matter?

Intelligent Data Analysis, 17(6):1115–1134.

94



Ushey, K., Allaire, J., and Tang, Y. (2024). reticulate: Interface to ’Python’. R package

version 1.37.0.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
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Appendix A.

Appendix to Chapter 1

A.1 Model Derivations

A.1.1 Legal Data Collection

The objective of organizations is to generate information at the lowest cost. Information is

generated by collecting data, which has a cost in itself, and also carries the risk of being

stolen. If data is stolen, organizations will face additional costs. These costs are related

to sending out breach notifications, conducting post-incident audits, fines imposed by the

government, and legal fees.

Each organization faces the optimization problem:

max
d1,··· ,dJ ,S

A (α1d
ρ
1 + . . .+ αρ

JdJ)
ν
ρ −

J∑
j=1

(ωjdj)− ωsS − r

S + 1

(
ℓ+

J∑
j=1

γjdj

)
.

The two data type case presented in the main body is:

max
d1,d2,S

A (α1d
ρ
1 + α2d

ρ
2)

ν
ρ − ω1d1 − ω2d2 − ωSS − r

S + 1
(ℓ+ γ1d1 + γ2d2) . (A.1)

The first order conditions with respect to S, d1, and d2 are:

97



ωS =
r

(S + 1)2
(ℓ+ γ1d1 + γ2d2) (A.2)

ω1 +
r

S+1
γ1

α1

d1−ρ
1 = νA (α1d

ρ
1 + α2d

ρ
2)

ν−ρ
ρ (A.3)

ω2 +
r

S+1
γ2

α2

d1−ρ
2 = νA (α1d

ρ
1 + α2d

ρ
2)

ν−ρ
ρ (A.4)

Equation A.2 can be rearranged to obtain the optimal S:

S∗ =

√
r (ℓ+ γ1d∗1 + γ2d∗2)

ωS

(A.5)

Setting the left-hand sides of equations A.3 and A.4 equal and solving for d2 in terms of d1

yields:

d2 =

[
α2

ω2 +
r

S+1
γ2

ω1 +
r

S+1
γ1

α1

] 1
1−ρ

d1. (A.6)

Which can be substituted into equation A.3:

ω1 +
r

S+1
γ1

α1

d1−ρ
1 = νA

α1d
ρ
1 + α2

[
α2

ω2 +
r

S+1
γ2

ω1 +
r

S+1
γ1

α1

] ρ
1−ρ

dρ1


ν−ρ
ρ

.

Factoring out dρ1 and
[
ω1+

r
S+1

γ1

α1

] ρ
1−ρ

then simplifying the resulting equation gives the optimal

selection of d1:

d∗1 = (νA)
1

1−ν

(
α1

ω1 +
r

S∗+1
γ1

) 1
1−ρ

α1

(
α1

ω1 +
r

S∗+1
γ1

) ρ
1−ρ

+

α2

(
α2

ω2 +
r

S∗+1
γ2

) ρ
1−ρ


ν−ρ

ρ(1−ν)

.

(A.7)

which gives the optimal d2 when inserted into A.6:
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d∗2 = (νA)
1

1−ν

(
α2

ω2 +
r

S∗+1
γ2

) 1
1−ρ

α1

(
α1

ω1 +
r

S∗+1
γ1

) ρ
1−ρ

+

α2

(
α2

ω2 +
r

S∗+1
γ2

) ρ
1−ρ


ν−ρ

ρ(1−ν)

.

(A.8)

While not a closed form solution, equations A.5, A.7, and A.8 do show that optimal data

collection is decreasing in both costs (ωi and γi) and risk (r). The optimal level of security

investment is increasing in both fundamental risk and costs associated with a breach.

A.1.2 Stylized Example

Assuming that (V,C) ∼ Uniform[0, 1]2, the expected quality of V given V > C is

E
[
V

∣∣∣∣V ≥ C

]
=

∫ 1

0

2V 2dV

=
2

3

Hackers will only sell the data they steal if the price they receive is higher than the utility

they gain from holding the data. With hacker utility given by

UH =M +
BH∑
i=1

Vi,

they will only sell data package i if p ≥ Vi. The expected quality of the breaches they sell is

then

E
[
V

∣∣∣∣C ≤ V ≤ p

]
=

∫ p

0

V 2 2

p2
dV

=
2

3
p

= µ

where µ is buyer’s expectation of quality given that the data are being sold.

Buyer utility is given by

UB =M +
BB∑
i=1

κVi.
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They will only buy data if κµ ≥ p. In this example, κ must be at least 3/2 for the market

to exist. With a total income of Y , buyer’s demand for data is:

D(p) =

Y
p

if κ ≥ 3
2

0 Otherwise
(A.9)

And supply is

S(p) = BP (V ≤ p)

= Bp2.
(A.10)

Setting equations A.9 and A.10 equal and solving for p gives the equilibrium price:

p∗ =

(
Y

B

) 1
3

.

And equilibrium quantity:

Q∗ = Y 2/3B1/3.

After the GDPR, quality for all targets falls and the cost of hacking increases to

V Post
i = (1− ϕ)Vi 0 < ϕ < 1

CPost
i = ξCi ξ ≥ 1

Assuming ξi = θV σ
i and ϕ is constant, the zero profit line is now given by

V 1−σ =
θ

1− ϕ
C

Integrating the above along the Y-axis shows that the joint probability distribution of V and

C is

fV C(V,C) =


θ(2−σ)
1−ϕ

if 0 ≤ V ≤ 1 and 0 ≤ C ≤ 1

0 Otherwise

And the marginal distribution of V is

fV = (2− σ)V 1−σ
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The expectation of V among the hacked is now

E

[
V

∣∣∣∣V ≥
(

θ

1− ϕ
C

) 1
1−σ

]
=

∫ 1

0

(2− σ)V 2−σdV

=
2− σ

3− σ
.

Hackers utility after accounting for the overall decrease in value is

UH,Post =M +
BH,Post∑

i=1

(1− ϕ)Vi.

They will only sell what they steal if (1− ϕ)Vi ≤ p. The joint probability distribution over

this area of the curve is

fV C(V,C) =


θ(2−σ)
1−ϕ

(
1−ϕ
p

)2−σ

if 0 ≤ V ≤ 1 and 0 ≤ C ≤ 1

0 Otherwise

Post-GDPR supply is therefore

SPost(p) = BPostP ((1− ϕ)Vi < p)

= B
(

p

1− ϕ

)2−σ (A.11)

For a given price p, the expected quality of the data packages sold is now

E

[
V

∣∣∣∣ ( θ

1− ϕ
C

) 1
1−σ

≤ V ≤ p

1− ϕ

]
=

∫ p
1−ϕ

0

(2− σ)

(
1− ϕ

p

)2−σ

V 1−σdV

=
2− σ

3− σ

p

1− ϕ
.

Buyers will only buy if κµPost ≥ p where µPost is the above expectation of quality. This

changes the minimum κ needed for the market to exist to 3−σ
2−σ

. The demand curve is now

DPost(p) =

Y
p

if κ ≥ 3−σ
2−σ

0 Otherwise
(A.12)
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Setting equations A.11 and A.12 equal yields the post-GDPR equilibrium:

p∗Post =

(
Y

BPost

) 1
3−σ

(1− ϕ)
2−σ
3−σ

Q∗
Post = Y

2−σ
3−σ

(
BPost

(1− ϕ)2−σ

) 1
3−σ

.

(A.13)

A.2 Data

A.2.1 UK Survey Data

The UK survey data referenced throughout the paper are from the United Kingdom Cyber

Security Breach Survey: Combined Dataset, 2016-2022 (Department for Digital, Culture,

Media and Sport, 2022). I accessed the data through the UK Data Services online portal on

March 20, 2023.

Only the 2018 and 2019 survey asked respondents whether they made any changes in

response to the GDPR. The survey asked about the types of changes made as well, which

I have combined into five groups: human changes (e.g., staff training and hiring), technical

changes (e.g., updated system configurations and increased spending on security), policy

changes (e.g., conducting more audits and changing who has admin rights), third-party

changes (e.g., changing IT service providers), and other changes (e.g., changing the nature

of the business).

Table A.1: UK Cyber Security Breach Survey Dates and Sample

Survey Year Sample Size Survey Period

2016 1,008 businesses November 30, 2015 – February
5, 2016

2017 1,523 businesses October 24, 2016 – January 11,
2017

2018 1,519 businesses, 569 charities October 9, 2017 – December 14,
2017

2019 1,566 businesses, 514 charities October 10, 2018 – December
23, 2019

2020 1,348 businesses, 337 charities October 19, 2019 – December
23, 2019

2021 1,419 businesses, 487 charities,
378 educational institutions

October 12, 2020 – January 21,
2021

2022 1,243 businesses, 424 charities,
490 educational institutions

September 20, 2021 – January
21, 2022
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For figure A.1, an organization was considered breached if they reported a ransomware

or other malware infection; hacking of bank accounts; phishing attacks; unauthorized file

access; or any other breach or attack.

Figure A.1: UK Data Breaches

Source: Department for Digital, Culture, Media and Sport (2022), author’s
calculations.

A.2.2 Breach Data

The individual breach data obtained for this study contains many more data package ob-

servations than are included in the final paper. Observations were dropped for one of three

reasons. First, any breaches that could not be attributed to an organization or country were

removed. Second, any data package that was discovered during a breach of a breach indexing

website, or similar “breach of breaches” was dropped. These breaches are of websites and

other platforms that bundle access to credentials leaked in other breaches to their users.

Essentially, the data being leaked in those breaches had itself been stolen from its original

owner. What makes these observations unusable is the lack of a clear date when the data

were originally stolen. The observed date is of the larger breach, but it is unknown when the

smaller breaches that comprise the breach occurred. Finally, data packages that appeared

online prior to 2017 were removed. As briefly discussed when the panel data was described,

the organization collecting these data was founded in 2016. Dropping these early breaches

allows for the possibility that the breaches collected prior to that founding were meaningfully

different from those that were collected later.
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A.2.3 Defining Personally Identifiable Information

From a legal standpoint, there are three commonly used definitions of “personally identifiable

information” (Schwartz and Solove, 2011). The tautological definition used in the Video

Privacy Protection Act says that PII is information which identifies a person. The non-

public information approach used in the Gramm-Leach-Bliley Act defines PII as non-public

personal information. Finally, the specific-types approach explicitly lists the types of data

that are considered PII. I borrow from all three approaches.

In the data I am able to observe the specific types of records in a data packages. I classify

data as PII if reveals location, financial, contact, user account, or personal information.

Account information covers emails, usernames, and passwords. Personal information includes

as political and religious views, sexual orientation, and aspects of a person’s home life such

as if they have children or pets. As most of the data packages included emails and passwords

(figures 1.6 and A.2), this makes the fraction of records in a data package that are PII fairly

close to one. As part of my robustness checks, I repeat the data package analysis of the effect

of the GDPR on the fraction of records in a data package that are PII using an alternative

definition that removes emails and passwords. I find that this did not change the main result

that the GDPR had no effect on the portion of records in a breach that are PII (table A.25).

Figure A.2: Fraction of Data Packages Containing Each Data Type, Pre-and Post-GDPR

(a) Pre-GDPR (b) Post-GDPR

A.2.4 Descriptive Information

Tables A.2-A.5 report unconditional differences in means between various data package

groups.

Table A.2 compares treated and untreated data packages across the full sample. There
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are statistically significant differences between the two in the fraction of records that are PII,

and the number of unique data types. Although they are statistically significant, they are not

particularly meaningful. Given that both types have close to 70 percent PII, a 4 percentage

point difference is not particularly large. And the difference in number of unique data types

is less than one, making them effectively the same from an interpretation perspective.

Table A.2: Data Package Means: Treated vs. Untreated

Means Differences

0 1 Overall Mean Treated - Untreated
N=3,468 N=926 N=4,394

Number of Records 3,308,275 4,427,708 3,544,186 1,119,433
(464,961.454) (1,129,779.958) (437,434.656) (1,221,716.787)

PII Fraction 0.698 0.660 0.690 -0.038***
(0.003) (0.006) (0.003) (0.007)

# of Data Types 6.365 5.678 6.220 -0.687***
(0.089) (0.166) (0.079) (0.188)

* p< 0.1, ** p< 0.05, *** p< 0.01

Data packages that became available before and after the GDPR are then compared

in table A.3. The data packages get significantly larger after the GDPR in terms of both

the number of records and the number of unique data types. As shown in tables A.4 and

A.5, which compare the packages pre-and post-GDPR for the control and treated groups,

respectively, this affect is seen in both, though it is much larger in the treated group. This is

consistent with the findings that expected data package size significantly increased after the

GDPR, and the theory that attackers may have shifted their efforts towards larger targets.

Table A.3: Data Package Means: Pre-GDPR vs. Post-GDPR

Means Differences

0 1 Overall Mean Post - Pre
N=1,621 N=2,773 N=4,394

Number of Records 1,598,365 4,681,646 3,544,186 3,083,281***
(465,366.681) (636,601.781) (437,434.656) (788,560.699)

PII Fraction 0.550 0.771 0.690 0.221***
(0.003) (0.003) (0.003) (0.004)

# of Data Types 3.163 8.007 6.220 4.844***
(0.069) (0.104) (0.079) (0.125)

* p< 0.1, ** p< 0.05, *** p< 0.01
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Table A.4: Data Package Means: Pre- vs. Post-GDPR, Untreated

Means Differences

0 1 Overall Mean Post - Pre
N=1,175 N=2,293 N=3,468

Number of Records 2,123,526 3,915,375 3,308,275 1,791,849**
(640,456.742) (621,655.452) (464,961.454) (892,547.107)

PII Fraction 0.552 0.773 0.698 0.221***
(0.003) (0.004) (0.003) (0.005)

# of Data Types 3.279 7.946 6.365 4.667***
(0.090) (0.113) (0.089) (0.145)

* p< 0.1, ** p< 0.05, *** p< 0.01

Table A.5: Data Package Means: Pre- vs. Post-GDPR, Treated

Means Differences

0 1 Overall Mean Post - Pre
N=446 N=480 N=926

Number of Records 214,813 8,342,189 4,427,708 8,127,375***
(92,543.690) (2,163,638.826) (1,129,779.958) (2,165,617.072)

PII Fraction 0.546 0.765 0.660 0.219***
(0.004) (0.009) (0.006) (0.010)

# of Data Types 2.859 8.298 5.678 5.439***
(0.080) (0.259) (0.166) (0.271)

* p< 0.1, ** p< 0.05, *** p< 0.01

A.3 Results

Additional results from alternative specifications of the estimated models are presented here.

A.3.1 Extensive Margin Effects

On the extensive margin, I separately estimate equation 1.4.1 for small and large countries.

The former are countries with above median population in 2018, the latter countries with

below median population in 2018. Results are in tables A.6 and A.7.

A.3.2 Aggregate Effects

To test the robustness of my aggregate effect estimates, I first re-estimate each aggregate

effect after removing a treated country from the data. For each removed country, the estimate
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Table A.6: Extensive Margin Effects: Small Countries

Dependent Variable: Positive Number of Breaches

(1) (2)

Post x Treatment -0.224***
(0.051)

SR x Treatment -0.230***
(0.066)

LR x Treatment -0.222***
(0.051)

Observations 1,344 1,344
R2 0.326 0.326

Period Fixed Effects Y Y
Country Fixed Effects Y Y

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. Small countries are
defined as those with a population below the median in 2018.

Table A.7: Extensive Margin Effects: Large Countries

Dependent Variable: Positive Number of Breaches

(1) (2)

Post x Treatment -0.168***
(0.060)

SR x Treatment -0.105
(0.088)

LR x Treatment -0.182***
(0.058)

Observations 1,372 1,372
R2 0.510 0.511

Period Fixed Effects Y Y
Country Fixed Effects Y Y

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. Large countries are
defined as those with a population above the median in 2018.

stays well within the 95 percent confidence interval of the estimate with the full sample

(figures A.3 and A.4).

Next, I use different methods to construct the panel. Brazil and China each adopted
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Figure A.3: Number of Data Breaches Effects Removing Countries

(a) Overall Effect (b) Short Run Effect

(c) Long Run Effect

Notes: Each point represents the estimated effect on number of data breaches
after removing observations from the specified country. The whiskers are the
95 percent confidence interval. The solid line is the point estimate including
all countries, and the shaded area is the 95 percent confidence interval around
that point.

their own data privacy laws near the end of the study period. Removing them from the

sample slightly reduces the estimated effect on the number of breaches, though it is still

significant. As before, there are no statistically significant effects on the number of records

available (table A.8).

Table A.9 shows the aggregate results when I exclude data from after the first quarter of

2020 to avoid any pandemic effects. This significantly reduces the number of post-treatment

observations. The change in the number of records remains insignificant and in number of

data breaches significant, but the long-run effect in the latter case does change. The short-

run effects on both outcomes are identical to using the full panel, which is unsurprising since

observations in the pre-treatment period and short-run all remain in this new panel. The

108



Figure A.4: Number of Records Effects Removing Countries

(a) Overall Effect (b) Short Run Effect

(c) Long Run Effect

Notes: Each point represents the estimated effect on number of records after
removing observations from the specified country. The whiskers are the 95
percent confidence interval. The solid line is the point estimate including all
countries, and the shaded area is the 95 percent confidence interval around that
point.

only change is in the long-run estimates, where the reduction in number of data breaches

shrank, though is still statistically significant. In this shorter panel there are only three

long-run periods: the third and fourth quarters of 2019 and the first quarter of 2020. These

results suggest that the long run effect grows as time goes on.

Table A.10 shows the quantity results when I exclude data packages originating in multi-

national organizations from the panel. Whether an organization is a multinational is deter-

mined in one of two ways. First, if their website is hosted in more than one country, they are

considered multinational. Second, if their website and organizational information, such as

privacy policies, discuss having customers or users in more than one country. The argument

for excluding these effects is that multinational organizations may be partially treated. The
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Table A.8: Aggregate Effects: Dropping Brazil and China

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -0.825*** 0.454
(0.228) (0.461)

SR x Treatment -0.781*** -0.279
(0.301) (0.577)

LR x Treatment -0.829*** 0.549
(0.242) (0.455)

δ̂ -0.562 0.575
(0.100) (0.726)

δ̂SR -0.542 -0.243
(0.138) (0.436)

δ̂LR -0.564 0.732
(0.106) (0.788)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 2,660 2,660 2,660 2,660
Pseudo R2 0.811 0.811 0.885 0.885

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level. Brazil and China
have been removed from the panel

GDPR applies to data specifically from EU residents. A multinational organization would

therefore have to comply if they have any users in the EU, but it is not clear whether they

would change their data collection and protection practices for all their users, or just those

in the EU.

When multinational breaches are excluded, there is actually a long-run increase in the

number of records available after the GDPR. The effect on the number of data breaches is

roughly equivalent to the one found in the main specification.

Each of the previous tests left the definition of the outcome variables unchanged and

were estimated with same Poisson regression as in the main paper. Tables A.11-A.16 test

changes in the outcome variable definition, the effect of adding covariates to the equation,

and using three other models to derive estimates.

First, I estimate the effect using a linear model, rather than a Poisson model:

Yit = γs + τt + δDi × Post-GDPRt + ϵit (A.14)
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Table A.9: Aggregate Effects: Excluding COVID Years

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -0.639*** -0.214
(0.182) (0.572)

SR x Treatment -0.782*** -0.218
(0.300) (0.592)

LR x Treatment -0.533*** -0.210
(0.152) (0.577)

δ̂ -0.472 -0.193
(0.096) (0.462)

δ̂SR -0.543 -0.196
(0.137) (0.476)

δ̂LR -0.413 -0.189
(0.089) (0.468)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 852 852 852 852
Pseudo R2 0.849 0.849 0.885 0.885

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. All periods after
the first quarter or 2020 are excluded from the panel.

where each term is defined as before. In addition to using a linear model, I use two log-like

transformations of the outcome variable, log(Yit + 1) and the inverse hyperbolic sine (IHS)

function ln(Yit +
√
Y 2
it + 1). These transformations are necessary, rather than just using

log(Yit) because there are a number of periods in which countries have no breaches. Using

these transformations significantly changes the results from the Poisson model. For the

number of records, both the log(Yit + 1) and IHS transformation give large and statistically

significant negative estimates of the treatment effect, unlike the Poisson which showed no

change. I believe this is due to a significant extensive margin effect. Chen and Roth (2023)

and Mullahy and Norton (2024) both discuss how, when there are mass points at zeros,

log-like transformations may greatly influence the estimated coefficients.

As discussed in the main body of the paper, there are significant and negative extensive

margin effects (table 1.9). This is likely the source of the discrepancies in effect sizes between

the models and the primary reason for using the Poisson model over the linear models with

a log-like transformation.
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Table A.10: Aggregate Effects: Excluding Multinational Organiza-
tions

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -0.909*** 0.655
(0.279) (0.435)

SR x Treatment -0.805*** -0.718
(0.289) (0.704)

LR x Treatment -0.918*** 0.806*
(0.299) (0.444)

δ̂ -0.597 0.925
(0.112) (0.837)

δ̂SR -0.553 -0.512
(0.129) (0.343)

δ̂LR -0.601 1.239
(0.119) (0.993)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 2,632 2,632 2,632 2,632
Pseudo R2 0.784 0.784 0.824 0.825

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. Data packages
originating from multinational organizations are excluded from the panel
construction.

Without the log-like transformation, when it is estimated in levels, the linear model

produces results that are in line with, though interpreted differently than, the Poisson model.

Specifically, I still find no effect on the number of records and a significant negative effect

on the number of data breaches (columns 7 and 8 of each table).

Next, I estimate the models using various measures to account for population size. In

tables A.13 and A.14, I add population in millions as a covariate. It is not included in

the levels models because the outcomes are already scaled to be records/data packages per

million. In all cases there is no significant change in the estimates and the population

coefficient is insignificant.

In tables A.15 and A.16, I change the outcome for the log-like transformation to also

be number of records/data packages per million, and add a population offset to the Poisson

model. This noticeably changes the magnitude of both log-like transformations in each

outcome. As Chen and Roth (2023) discuss, this is a reflection of the sensitivity of log-
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like transformations to the scale of the outcome variable when extensive margin effects are

present. The offset in the Poisson model effectively changes the outcome to a rate, as in

breaches per million. The estimates however are roughly the same as those in the model

without the offset.
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Table A.11: Alternative Models: Number of Data Breaches

Poisson Log(Y + 1) IHS Levels

(1) (2) (3) (4) (5) (6) (7) (8)

Post x Treatment -0.930*** -0.416*** -0.518*** -0.146***
(0.265) (0.085) (0.102) (0.032)

SR x Treatment -0.785*** -0.387*** -0.484*** -0.135***
(0.299) (0.111) (0.136) (0.033)

LR x Treatment -0.942*** -0.423*** -0.525*** -0.149***
(0.283) (0.081) (0.097) (0.033)

Period Fixed Effects Y Y Y Y Y Y Y Y
Country Fixed Effects Y Y Y Y Y Y Y Y

Observations 2,716 2,716 2,716 2,716 2,716 2,716 2,716 2,716
R2 0.692 0.692 0.683 0.683 0.105 0.105
Pseudo R2 0.793 0.793

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. IHS: inverse hyperbolic sine transformation of the dependent variable.
In the levels regression, the dependent variable is number of data breaches per million. Unlike the main specification, the Poisson
model does not include a population offset.
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Table A.12: Alternative Models: Number of Records

Poisson Log(Y + 1) IHS Levels

(1) (2) (3) (4) (5) (6) (7) (8)

Post x Treatment 0.341 -2.295*** -2.437*** -3.626
(0.430) (0.394) (0.418) (20.950)

SR x Treatment -0.219 -1.805*** -1.920*** -1.971
(0.590) (0.577) (0.609) (18.370)

LR x Treatment 0.406 -2.404*** -2.552*** -3.993
(0.430) (0.396) (0.420) (22.980)

Period Fixed Effects Y Y Y Y Y Y Y Y
Country Fixed Effects Y Y Y Y Y Y Y Y

Observations 2,716 2,716 2,716 2,716 2,716 2,716 2,716 2,716
R2 0.545 0.545 0.542 0.543 0.182 0.182
Pseudo R2 0.847 0.847

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. IHS: inverse hyperbolic sine transformation of the dependent
variable. In the levels regression, the dependent variable is number of records per thousand. Unlike the main specification,
the Poisson model does not include a population offset.
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Table A.13: Alternative Models with Covariates: Number of Data Breaches

Poisson Log(Y + 1) IHS Levels

(1) (2) (3) (4) (5) (6) (7) (8)

Post x Treatment -1.080*** -0.414*** -0.515*** -0.146***
(0.308) (0.086) (0.103) (0.032)

SR x Treatment -0.835*** -0.390*** -0.488*** -0.135***
(0.323) (0.111) (0.136) (0.033)

LR x Treatment -1.107*** -0.421*** -0.522*** -0.149***
(0.323) (0.082) (0.098) (0.033)

GDP Per Capita -0.000 -0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Population -0.004 -0.004 0.004 0.004 0.006 0.006
(0.006) (0.006) (0.003) (0.003) (0.004) (0.004)

Period Fixed Effects Y Y Y Y Y Y Y Y
Country Fixed Effects Y Y Y Y Y Y Y Y

Observations 2,648 2,648 2,648 2,648 2,648 2,648 2,716 2,716
R2 0.697 0.697 0.687 0.687 0.105 0.105
Pseudo R2 0.797 0.797

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. IHS: inverse hyperbolic sine transformation of the dependent variable.
In the levels regression, the dependent variable is number of data breaches per million. Annual population data is provided by
the World Bank. Unlike the main specification, the Poisson model does not include a population offset.
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Table A.14: Alternative Models with Covariates: Number of Records

Poisson Log(Y + 1) IHS Levels

(1) (2) (3) (4) (5) (6) (7) (8)

Post x Treatment 0.482 -2.261*** -2.403*** -3.626
(0.509) (0.393) (0.416) (20.950)

SR x Treatment -0.147 -1.849*** -1.968*** -1.971
(0.618) (0.572) (0.604) (18.370)

LR x Treatment 0.568 -2.367*** -2.515*** -3.993
(0.520) (0.397) (0.420) (22.980)

GDP Per Capita 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Population 0.015 0.016 0.021 0.019 0.022 0.019
(0.015) (0.015) (0.022) (0.022) (0.023) (0.023)

Period Fixed Effects Y Y Y Y Y Y Y Y
Country Fixed Effects Y Y Y Y Y Y Y Y

Observations 2,648 2,648 2,648 2,648 2,648 2,648 2,716 2,716
R2 0.551 0.551 0.548 0.549 0.182 0.182
Pseudo R2 0.847 0.848

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. IHS: inverse hyperbolic sine transformation of the dependent
variable. In the levels regression, the dependent variable is number of records per thousand. Annual population data is
provided by the World Bank. Unlike the main specification, the Poisson model does not include a population offset.
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Table A.15: Alternative Models: Number of Data Breaches Scaled by Population

Poisson Log(Y + 1) IHS Levels

(1) (2) (3) (4) (5) (6) (7) (8)

Post x Treatment -0.921*** -0.101*** -0.124*** -0.146***
(0.265) (0.019) (0.025) (0.032)

SR x Treatment -0.782*** -0.100*** -0.121*** -0.135***
(0.299) (0.021) (0.026) (0.033)

LR x Treatment -0.934*** -0.102*** -0.124*** -0.149***
(0.283) (0.019) (0.025) (0.033)

Period Fixed Effects Y Y Y Y Y Y Y Y
Country Fixed Effects Y Y Y Y Y Y Y Y

Observations 2,716 2,716 2,716 2,716 2,716 2,716 2,716 2,716
R2 0.254 0.254 0.234 0.234 0.105 0.105
Pseudo R2 0.792 0.792

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. IHS: inverse hyperbolic sine transformation of the dependent variable.
The dependent variable is number of breaches per million, except in the Poisson model, where a log(population) offset is used
instead. Annual population data is provided by the World Bank.
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Table A.16: Alternative Models: Number of Records Scaled by Population

Poisson Log(Y + 1) IHS Levels

(1) (2) (3) (4) (5) (6) (7) (8)

Post x Treatment 0.345 -0.510*** -0.619*** -3.626
(0.430) (0.122) (0.140) (20.950)

SR x Treatment -0.217 -0.440*** -0.536*** -1.971
(0.590) (0.158) (0.185) (18.370)

LR x Treatment 0.410 -0.526*** -0.638*** -3.993
(0.430) (0.126) (0.144) (22.980)

Period Fixed Effects Y Y Y Y Y Y Y Y
Country Fixed Effects Y Y Y Y Y Y Y Y

Observations 2,716 2,716 2,716 2,716 2,716 2,716 2,716 2,716
R2 0.447 0.447 0.450 0.450 0.182 0.182
Pseudo R2 0.847 0.847

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. IHS: inverse hyperbolic sine transformation of the dependent
variable. The dependent variable is number of records per thousand, except in the Poisson model, where a log(population)
offset is used instead. Annual population data is provided by the World Bank.
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For my final model specification tests, I used alternative ways of controlling for population

and added covariates. My results were largely unchanged in each case. In table A.17, I

remove the population offset. Table A.18 weights the estimates using population rather

than including an offset. In table A.19, I again remove the population offset and opt instead

for using per capita outcomes variables. Finally, I split the sample into small and large

countries in tables A.20 and A.21, and include indicators for whether the observation is a

small or large country in table A.22.1

A shortcoming of my data is that many variables that would be reasonable to include as

covariates, such as the fraction of people with internet access, are not consistently observed

for every country. Rather than drop observations and unbalance the panel to account for

this, the only covariate I add to the model is GDP per capita. As shown in table A.23, this

does not have a significant effect on my effect estimates.

Table A.17: Aggregate Effects: No Offset

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -0.930*** 0.341
(0.265) (0.430)

SR x Treatment -0.785*** -0.219
(0.299) (0.590)

LR x Treatment -0.942*** 0.406
(0.283) (0.430)

δ̂ -0.605 0.406
(0.105) (0.604)

δ̂SR -0.544 -0.197
(0.136) (0.474)

δ̂LR -0.610 0.500
(0.110) (0.645)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 2,716 2,716 2,716 2,716
Pseudo R2 0.793 0.793 0.847 0.847

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level. No population
offset is used

The final aggregate effects test I conduct estimates the effect on the number of small and

1Small or large in this context means above or below the median population in 2018.
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Table A.18: Aggregate Effects: Weighted Estimation

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -1.113*** -0.007
(0.384) (0.473)

SR x Treatment -0.932*** -0.476
(0.212) (0.558)

LR x Treatment -1.127*** 0.040
(0.411) (0.497)

δ̂ -0.671 -0.007
(0.126) (0.469)

δ̂SR -0.606 -0.379
(0.084) (0.347)

δ̂LR -0.676 0.041
(0.133) (0.518)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 2,716 2,716 2,716 2,716
Pseudo R2 1.426 1.426 1.031 1.031

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level. The population
offset is removed and observations are instead weighted by population.

large breaches. Small breaches are those with more than the median number of records, large

breaches are those with more than the median number of records. As shown in table A.24,

the decline in breaches is concentrated entirely among small breaches. This is consistent

with the model’s prediction that there will be a shift to more data rich targets, and my

empirical finding that breach sizes increased after the GDPR.

A.3.3 Data Package Effects

Estimates of the change in PII fraction using a slightly different definition of PII are in table

A.25. Under this definition, I remove emails and passwords from PII. I find no significant

change, as is the case using the original definition.

As previously discussed, data packages from periods prior to January 2017 were excluded

from the main dataset. Tables A.27-A.29 report the results using the full sample, including

those early breaches. In all cases, the signs of the estimated coefficients remain the same.

The magnitude of the increase in number of records is larger (comparing table A.27 to table
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Table A.19: Aggregate Effects Per Capita Outcomes

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -1.406*** 0.339
(0.369) (0.408)

SR x Treatment -0.109 -0.326
(0.505) (0.723)

LR x Treatment -1.474*** 0.397
(0.370) (0.418)

δ̂ -0.755 0.403
(0.090) (0.573)

δ̂SR -0.103 -0.278
(0.453) (0.522)

δ̂LR -0.771 0.487
(0.085) (0.621)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 2,716 2,716 2,716 2,716
Pseudo R2 0.073 0.073 0.473 0.474

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level.

1.11), but the estimates are still within each other’s standard errors. For the number of

unique data types, using the full sample does result in a statistically significant increase,

unlike the smaller sample. But the increase is still less than a single data type and therefore

not economically meaningful.

Finally, I estimated extensive margin effects for each of the data types using the linear

probability model

Positivei = γi + τt + δDit + εit

where Positivei is one if the data package contains a positive amount of that data; γi and

τt are country and quarter fixed effects, respectively; and Dit is an indicator for whether the

data package is treated.

There is a short-run increase in the probability of a data package containing email ad-

dresses and password information, but neither is maintained into the long-run. Long term,

the only data type showing a significant change is account information, which saw an eight

percent increase in the likelihood that it is in a data package (table A.30).
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Table A.20: Aggregate Effects: Small Countries

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -1.328*** 0.145
(0.429) (0.437)

SR x Treatment -0.210 -2.229***
(0.695) (0.630)

LR x Treatment -1.383*** 0.286
(0.427) (0.431)

δ̂ -0.735 0.156
(0.114) (0.505)

δ̂SR -0.189 -0.892
(0.564) (0.068)

δ̂LR -0.749 0.331
(0.107) (0.573)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 1,344 1,344 1,344 1,344
Pseudo R2 0.471 0.472 0.745 0.750

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level. Observations
are limited to countries with below median populations in 2018.

123



Table A.21: Aggregate Effects: Large Countries

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -0.863*** 0.290
(0.283) (0.497)

SR x Treatment -0.742** -0.089
(0.328) (0.617)

LR x Treatment -0.874*** 0.338
(0.300) (0.504)

δ̂ -0.578 0.336
(0.120) (0.664)

δ̂SR -0.524 -0.085
(0.156) (0.565)

δ̂LR -0.583 0.402
(0.125) (0.706)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 1,372 1,372 1,372 1,372
Pseudo R2 0.804 0.804 0.828 0.828

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level. Observations
are limited to countries with above median populations in 2018.
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Table A.22: Aggregate Effects: Size Indicators

Number of Breaches Number of Records

(1) (2) (3) (4)

Above Median Pop. x Post -0.276 -0.520
(0.357) (0.411)

Above Median Pop. x SR 0.925* -0.598
(0.486) (0.585)

Above Median Pop. x LR -0.262 -0.452
(0.388) (0.359)

Post x Treatment -1.330*** 0.141
(0.426) (0.433)

SR x Treatment -0.153 -2.279***
(0.715) (0.605)

LR x Treatment -1.243** 0.001
(0.546) (0.456)

Above Median Pop. x Post x Treatment 0.467 0.149
(0.511) (0.656)

Above Median Pop. x SR x Treatment -0.647 2.231***
(0.785) (0.857)

Above Median Pop. x LR x Treatment 0.178 0.471
(0.566) (0.837)

δ̂ 0.596 0.160
(0.815) (0.761)

δ̂SR -0.477 8.311
(0.411) (7.981)

δ̂LR 0.195 0.601
(0.676) (1.340)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 2,716 2,648 2,716 2,648
Pseudo R2 0.793 0.797 0.847 0.847

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level. Observations are unweighted.
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Table A.23: Aggregate Effects: With Covariates

Number of Breaches Number of Records

(1) (2) (3) (4)

Post x Treatment -1.042*** 0.396
(0.285) (0.471)

SR x Treatment -0.822** -0.186
(0.321) (0.596)

LR x Treatment -1.064*** 0.468
(0.298) (0.483)

GDP Per Capita -0.000 -0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

δ̂ -0.647 0.485
(0.101) (0.700)

δ̂SR -0.560 -0.169
(0.141) (0.495)

δ̂LR -0.655 0.597
(0.103) (0.771)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 2,648 2,648 2,648 2,648
Pseudo R2 0.796 0.796 0.847 0.847

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level. Observations
are unweighted.
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Table A.24: Aggregate Effects by Breach Size

Below Median Above Median Total

(1) (2) (3) (4) (5) (6)

Post x Treatment -0.864*** 0.009 -0.921***
(0.284) (0.378) (0.265)

SR x Treatment -0.608** 0.024 -0.782***
(0.294) (0.400) (0.299)

LR x Treatment -0.885*** 0.007 -0.934***
(0.299) (0.422) (0.283)

δ̂ -0.579 0.009 -0.602
(0.119) (0.381) (0.105)

δ̂SR -0.456 0.024 -0.543
(0.160) (0.410) (0.137)

δ̂LR -0.587 0.007 -0.607
(0.123) (0.425) (0.111)

Period Fixed Effects Y Y Y Y Y Y
Country Fixed Effects Y Y Y Y Y Y

Observations 2,716 2,716 2,716 2,716 2,716 2,716
Pseudo R2 0.784 0.784 0.700 0.700 0.792 0.792

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard Errors are clustered at the country level.
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Table A.25: Data Package Effects: PII Fraction - Excluding
Emails and Passwords

Dependent Variable: PII Fraction

(1) (2) (3) (4)

Post x Treatment 0.002 -0.015
(0.019) (0.013)

SR x Treatment 0.047 0.034
(0.038) (0.037)

LR x Treatment 0.002 -0.012
(0.022) (0.017)

Multinational 0.052*** 0.048***
(0.019) (0.018)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 4,394 4,394 4,394 4,394
R2 0.422 0.422 0.423 0.423

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered by country. PII definition ex-
cludes emails and passwords.
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Table A.26: Data Package Effects: Number of PII Records - Excluding Emails
and Passwords

Dependent Variable: Log(Number of PII Records)

(1) (2) (3) (4)

Post x Treatment 0.948 0.362
(0.642) (0.392)

SR x Treatment 1.857** 1.385*
(0.853) (0.698)

LR x Treatment 0.897 0.370
(0.591) (0.403)

Multinational 1.810*** 1.741***
(0.346) (0.336)

δ̂ 1.579 0.436
(1.657) (0.563)

δ̂SR 5.405 2.993
(5.463) (2.788)

δ̂LR 1.453 0.448
(1.449) (0.583)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 4,394 4,394 4,394 4,394
R2 0.382 0.383 0.386 0.386

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered by country. PII definition excludes emails and
passwords.
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Table A.27: Data Package Effects: Number of Records

Dependent Variable: Log(Number of Records)

(1) (2) (3) (4)

Post x Treatment 0.977** 0.584**
(0.413) (0.259)

SR x Treatment 0.424 0.089
(0.359) (0.251)

LR x Treatment 0.962** 0.589**
(0.392) (0.259)

Multinational 1.418*** 1.431***
(0.305) (0.310)

δ̂ 1.657 0.793
(1.096) (0.464)

δ̂SR 0.529 0.093
(0.549) (0.274)

δ̂LR 1.617 0.803
(1.025) (0.467)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 5,669 5,669 5,669 5,669
R2 0.280 0.280 0.289 0.289

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. Estimates use the
full sample and do not drop early period data packages.

130



Table A.28: Data Package Effects: PII Fraction

Dependent Variable: PII Fraction

(1) (2) (3) (4)

Post x Treatment -0.014 -0.016
(0.009) (0.013)

SR x Treatment -0.010 -0.012
(0.024) (0.022)

LR x Treatment -0.011 -0.013
(0.012) (0.016)

Multinational 0.010 0.009
(0.015) (0.015)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 5,669 5,669 5,669 5,669
R2 0.396 0.395 0.396 0.396

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. Esti-
mates use the full sample and do not drop early period data pack-
ages.

Table A.29: Data Package Effects: Number of Data Types

Dependent Variable: Number of Unique Data Types

(1) (2) (3) (4)

Post x Treatment 0.490* 0.491*
(0.264) (0.258)

SR x Treatment 0.377 0.381
(0.492) (0.521)

LR x Treatment 0.539* 0.543*
(0.302) (0.289)

Multinational -0.001 -0.015
(0.202) (0.210)

Period Fixed Effects Y Y Y Y
Country Fixed Effects Y Y Y Y

Observations 5,669 5,669 5,669 5,669
R2 0.277 0.277 0.277 0.277

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. Estimates use the full
sample and do not drop early period data packages.
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Table A.30: Data Types Extensive Margin Effects

Account Email Financial Passwords PII

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Post x Treatment 0.083** 0.033 -0.011 0.033 0.012
(0.037) (0.034) (0.012) (0.062) (0.026)

SR x Treatment 0.147*** 0.035* 0.037 0.070* 0.005
(0.054) (0.020) (0.031) (0.036) (0.062)

LR x Treatment 0.081* 0.028 -0.014 0.016 0.020
(0.047) (0.040) (0.013) (0.068) (0.032)

Observations 4,394 4,394 4,394 4,394 4,394 4,394 4,394 4,394 4,394 4,394
R2 0.275 0.275 0.378 0.378 0.067 0.067 0.358 0.358 0.477 0.477

Period Fixed Effects Y Y Y Y Y Y Y Y Y Y
Country Fixed Effects Y Y Y Y Y Y Y Y Y Y

*p<0.1, **p<0.05, ***p<0.01

Notes: Standard errors are clustered at the country level. The extensive margin is estimated using a linear probability model.
The dependent variable is an indicator for whether the data package contains data of each type. PII in columns 9 and 10 does
not include emails or passwords.
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Appendix B.

Appendix to Chapter 2

B.1 Data

In total, I observe 12,210 filings by treated firms. There are 5,112 fewer used in both the

event study and disclosure effect estimates because some filings were unable to be included

in the analysis. A filing was removed for one of two reasons:

1. The filing could not be read or processed. This was typically due to an error in the

encoding.

2. There were missing stock data during the event study. This could either be during the

period where the risk model was estimated or during the event window itself. Some

filings also happened after the last CRSP update on WRDS, meaning I could not

observe any stock data around the filing.

Table B.1 lists the words used to determine whether a filing discussed cybersecurity risk.

B.2 CAR Estimates

To test the robustness of my CARevent estimates, I reran the analysis using different market

models and measures of market return.

Table B.2 shows the results using alternative models for estimating expected returns.

Column one sets the expected returns to a constant: the mean of the returns in the estimation

window. Column two uses the CAPM model, estimated as

Rit = Rft + βi (Rmt −Rft) + εit

where Rft and Rmt are the risk-free and market returns on day t, respectively.
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Table B.1: Cybersecurity Risk Keywords

Breach of our networks or systems Data security
Compromised data Data-breach

Cyber attacks Ddos
Cyber incident Denial of service
Cyber incidents Denial-of-service
Cyber security Disclosure of our data

Cyber security incident Distributed denial-of-service
Cyber security incidents Hack

Cyber-attack Hacker
Cyber-attacks Hackers
Cyber-security Hacking

Cyber-security incident Hacks
Cyber-security incidents Information security systems

Cyberattack Large amounts of data
Cyberattacks Malware
Cybersecurity Phishing

Cybersecurity incident Ransomware
Cybersecurity incidents Social engineering

Data breach Social-engineering
Data privacy Unauthorized access to our data

Data protection

In column three, the market model is the Fama-French three-factor model plus momen-

tum:

Rit = Rft + α + βi1(Rmt −Rft) + βi2SMBt + βi3HMLt + βi4UMDt + εit.

where Rft, Rmt, SMBt, and HMLt are defined in the main body of the paper. UMDt is

the momentum factor.

With each model, CAR is similar to CAR measured using the three-factor model in the

main body of the paper.

For goodness of fit, table B.3 contains summary statistics for the R2 of each model. The

R2 distributions are shown in figure B.1.

Next, I estimated cumulative abnormal return using the S&P Composite market, the

value-weighted, and equal-weighted returns. These results are in table B.4. For consistency,

I subtracted the daily risk-free rate from the total return. The average abnormal and cumu-

lative abnormal returns under these return measurements are almost identical to the results

using the risk-free market return from the Fama-French WRDS database.
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Table B.2: CAR with Alternative Market Models

At (1) (2) (3) (4)

-1 0.285 0.011 -0.159 -0.126
(0.195) (0.194) (0.157) (0.153)

0 -0.618** -0.578** -0.499** -0.507**
(0.265) (0.242) (0.236) (0.231)

1 -0.477** -0.389* -0.248 -0.247
(0.327) (0.293) (0.304) (0.297)

CAR -0.811** -0.956*** -0.906*** -0.880***
(0.473) (0.421) (0.385) (0.391)

Observations 166 166 166 166
Model Constant CAPM 3F Momentum Three Factor

*p<0.1, **p<0.05, ***p<0.01

Notes: Column four, the three-factor model, is the market model used in the
main text.

Table B.3: Market Model R2 Summary Statistics

CAPM Three-Factor + Momentum Three-Factor

Observations 166 166 166
Mean 0.285 0.363 0.352
Std. Dev. 0.181 0.196 0.199
Min. 0.000 0.013 0.007
25% 0.150 0.219 0.207
50% 0.247 0.354 0.339
75% 0.425 0.512 0.506
Max. 0.703 0.858 0.847

B.3 Disclosure Effects

As a robustness check, I estimate the impact of cyber risk disclosure on CARfiling for 10-K

and 10-Q filings separately. I use the same model as described in equation 2.15, but remove

the indicator for whether the filing is a 10-Q. Results are in tables B.5 and B.6. The key

change is that the coefficient on mentioning cyber risk becomes insignificant for 10-K filings.

However, it is still significant and larger for 10-Q filings.

Removing the year and industry fixed effects makes the effect of CARfiling slightly smaller

than in the main results, but it is still the only significant predictor of the market’s response

to cybersecurity incidents (table B.7).
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Figure B.1: R2 Density

Table B.4: Alternative Market Return Variables

Value-Weighted Equal-Weighted S&P Composite FF-Market

t (1) (2) (3) (4)

-1 -0.135 -0.126 -0.135 -0.126
(0.154) (0.159) (0.153) (0.153)

0 -0.503** -0.495** -0.504** -0.507**
(0.231) (0.228) (0.232) (0.231)

1 -0.241 -0.242 -0.232 -0.247
(0.297) (0.294) (0.298) (0.297)

CAR -0.879*** -0.863*** -0.871*** -0.880***
(0.390) (0.381) (0.393) (0.391)

Observations 166 166 166 166
Model Three Factor Three Factor Three Factor Three Factor

*p<0.1, **p<0.05, ***p<0.01

Notes: Column four is the same specification in the main text.
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Table B.5: Disclosure Effect on the Market Response to Filings:
10-K Only

Dependent Variable: CAR(-1, 1)

(1) (2)

Intercept -2.983 54.775
(17.727) (76.068)

First Cyber Risk Mention 0.339 0.337
(0.704) (0.702)

Mentions Cyber Risk 0.158 0.187
(0.646) (0.644)

Age -2.038
(2.686)

Sentiment -0.430
(0.334)

Year Fixed Effects Yes Yes
Firm Fixed Effects Yes Yes

Observations 1,911 1,911
R2 0.076 0.077
F Statistic 0.987 1.000
Model OLS OLS

*p<0.1, **p<0.05, ***p<0.01

Notes: These are the results of estimating equation 2.15, limiting
the sample to only 10-K filings.
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Table B.6: Disclosure Effect on the Market Response to Filings:
10-Q Only

Dependent Variable: CAR(-1, 1)

(1) (2)

Intercept -0.293 15.292
(35.007) (28.223)

First Cyber Risk Mention -1.433 -1.397
(1.865) (1.873)

Mentions Cyber Risk 1.230** 1.208**
(0.542) (0.560)

Age -0.462
(0.525)

Sentiment 0.043
(0.193)

Year Fixed Effects Yes Yes

Observations 5,187 5,187
R2 0.035 0.035
F Statistic 1.176* 1.168*
Model OLS OLS

*p<0.1, **p<0.05, ***p<0.01

Notes: These are the results of estimating equation 2.15, limiting
the sample to only 10-Q filings.
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Table B.7: Disclosure Effect on the Market Response to Inci-
dents, No Fixed Effects

Dependent Variable: CAR(-1, 1)

(1) (2) (3) (4)

Intercept 0.172 0.230 -0.379 1.634
(0.681) (2.186) (0.340) (1.781)

Disclosed Risk -1.293 -0.998
(0.819) (0.866)

CARfiling 0.270** 0.257**
(0.108) (0.115)

Not First Event -0.899 -1.984
(1.237) (1.300)

Ransomware 0.205 -0.216
(0.892) (0.783)

Log(Market Value) -0.358 -0.159
(0.399) (0.416)

Tobin’s Q 0.005 -0.009
(0.314) (0.226)

Intangible Ratio -1.159 -0.475
(2.462) (1.741)

Log(Liabilities) 0.385 -0.024
(0.419) (0.393)

Year Fixed Effects N N N N
Industry Fixed Effects N N N N

Observations 166 166 135 135
R2 0.010 0.030 0.072 0.105
F Statistic 2.489 0.711 6.303** 1.370
Model OLS OLS OLS OLS

*p<0.1, **p<0.05, ***p<0.01

Notes: These results remove all fixed effects from equation 2.16.

139



Table B.8: Cybersecurity Incidents

Company News Filing Statement Event Date

AT&T 08-29-2006 08-29-2006

Fidelity National Information Services 07-03-2007 07-03-2007

Cisco 07-10-2010 07-10-2010

McDonalds 12-13-2010 12-13-2010

Comcast 06-19-2012 06-19-2012

Rite Aid 09-27-2012 09-27-2012

Adobe 10-03-2013 10-03-2013

Target 12-18-2013 12-18-2013

AutoNation 05-27-2014 05-27-2014

Aecom 07-16-2014 07-16-2014

Community Health Systems 08-19-2014 08-14-2014 08-14-2014

Home Depot 09-08-2014 09-08-2014

Fidelity National Financial Corportation 10-08-2014 10-08-2014

United Airlines 12-24-2014 12-24-2014

Natural Grocers 03-02-2015 03-02-2015

Sally Beauty Holdings 05-04-2015 05-04-2015

United Airlines 07-29-2015 07-29-2015

Hyatt Hotels Corporation 12-23-2015 12-23-2015 12-23-2015

Sprouts Farmers Market 03-24-2016 03-28-2016 03-24-2016

Equifax 05-06-2016 05-05-2016 05-05-2016

Noodles and Company 05-19-2016 06-28-2016 05-19-2016

Continued on next page
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Company News Filing Statement Event Date

Quest Diagnostics 12-12-2016 12-12-2016

Ameriprise 12-16-2016 12-16-2016

Western Union 12-20-2016 12-20-2016

Performant Financial Corporation 04-07-2017 04-07-2017

Humana 04-18-2017 04-18-2017

Sabre Corporation 05-02-2017 05-02-2017 05-02-2017

Merck & Co., Inc. 06-27-2017 02-27-2018 06-27-2017

Mondelez International 06-27-2017 07-07-2017 06-27-2017

Fedex Corp 06-28-2017 07-17-2017 06-30-2017 06-28-2017

Equifax Inc. 09-07-2017 09-07-2017 09-07-2017 09-07-2017

Forrester Research 10-06-2017 10-10-2017 10-06-2017 10-06-2017

Insulet Corporation 10-17-2017 10-17-2017

Boeing Co 03-28-2018 03-28-2018

Under Armour Inc. 03-29-2018 03-29-2018 03-29-2018 03-29-2018

Brinker International, Inc. 05-14-2018 08-27-2018 05-14-2018

Cigna 06-04-2018 06-04-2018

T-Mobile US, Inc. 08-24-2018 08-24-2018

Orrstown Financial Services, Inc. 09-05-2018 04-18-2019 09-05-2018

Chegg, Inc. 09-26-2018 09-25-2018 09-25-2018

Chegg Corporation 09-26-2018 09-26-2018

Meta Platforms, Inc. 09-28-2018 09-28-2018 09-28-2018

Alphabet Inc 10-08-2018 10-08-2018 10-08-2018

Village Bank 11-28-2018 11-28-2018

Continued on next page
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Company News Filing Statement Event Date

Marriott International, Inc. 11-30-2018 11-30-2018

Humana 01-04-2019 01-03-2019 01-03-2019

Aetna 01-07-2019 01-07-2019

CarGurus 01-18-2019 01-18-2019

Five Below 02-14-2019 02-14-2019

Toyota Motor Corp 02-20-2019 02-21-2019 02-20-2019

ABM Industries 03-12-2019 03-12-2019

Urban One Corporation 05-15-2019 05-09-2019 03-28-2019 03-28-2019

Meta Platforms, Inc. 04-03-2019 04-03-2019

Carlylye Group 04-05-2019 04-05-2019

HSBC 05-09-2019 05-09-2019

Berry Global Corporation 05-09-2019 05-09-2019

ESI 05-15-2019 05-15-2019

Ryder System Corporation 05-24-2019 05-24-2019

Xperi Corporation 05-31-2019 05-31-2019

Quest Diagnostics 06-03-2019 06-04-2019 06-03-2019

Laboratory Corporatin of America Holdings 06-04-2019 06-04-2019 06-04-2019

Natera Corporation 06-04-2019 06-04-2019

Capital One Financial Corp 07-29-2019 07-30-2019 07-29-2019 07-29-2019

AAR Corporation 08-06-2019 08-06-2019

Brixmor Property Group 08-09-2019 08-09-2019

Cable One, Inc. 08-16-2019 08-16-2019

Deluxe Corporation 08-28-2019 08-28-2019

Continued on next page
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Company News Filing Statement Event Date

Cronos Group Corporation 09-13-2019 09-13-2019

Park Hotels and Resorts Corporation 09-16-2019 09-16-2019

American Express Company 09-30-2019 09-30-2019

Pitney Bowes Inc 10-14-2019 10-15-2019 10-14-2019 10-14-2019

Patrick Industries, Inc. 10-24-2019 10-24-2019 10-24-2019 10-24-2019

Dominion Energy Credit Union 10-29-2019 10-29-2019

Marriott International, Inc. 10-30-2019 10-30-2019

Golden Entertainment 11-07-2019 11-07-2019

Macy’s 11-18-2019 11-14-2019 11-14-2019

T-Mobile, INC 11-21-2019 11-21-2019 11-21-2019

Avid Technology Corporation 12-24-2019 12-24-2019

Microsoft Corp 01-22-2020 12-31-2020 01-22-2020

Altice 02-05-2020 02-05-2020

MGM Resorts International 02-19-2020 02-19-2020

Dynavax Technologies Corporation 02-28-2020 02-28-2020

Carnival Corp 03-04-2020 03-04-2020

Tandem Diabetes Care Corporation 03-16-2020 03-16-2020

General Electric 03-23-2020 03-20-2020 03-20-2020

Marriott International, Inc. 03-31-2020 03-31-2020 03-31-2020

Cognizant Technology Solutions Corporation 04-18-2020 04-20-2020 04-18-2020

Stride Inc. 11-30-2020 04-18-2020 04-18-2020

Chegg Corporation 04-29-2020 04-29-2020

Pitney Bowes Inc 05-11-2020 05-11-2020

Continued on next page
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Company News Filing Statement Event Date

Conduent 06-04-2020 06-04-2020

Honda Motor Co Ltd 06-09-2020 06-08-2020 06-08-2020

MaxLinear, Inc. 06-16-2020 06-16-2020 06-10-2020 06-10-2020

Xerox 06-30-2020 06-30-2020

Steel Partners Holdings 07-01-2020 07-01-2020

DXC Technology Co 07-05-2020 07-06-2020 07-05-2020 07-05-2020

FormFactor 07-09-2020 07-17-2020 07-09-2020

Twitter, Inc. 07-15-2020 07-18-2020 07-15-2020

Blackbaud, Inc. 07-16-2020 09-29-2020 07-16-2020

Orange SA 07-16-2020 07-16-2020

Telcomm Argentina 07-20-2020 07-20-2020

Garmin Ltd. 07-24-2020 07-27-2020 07-27-2020 07-24-2020

SiteOne Landscape Supply, Inc. 07-27-2020 07-27-2020 07-29-2020 07-27-2020

MGP Ingredients, Inc. 07-30-2020 02-25-2021 02-25-2021 07-30-2020

Cornerstone Building Brands, Inc. 08-11-2020 08-11-2020 08-11-2020

Salem Media Group, Inc. 08-14-2020 08-12-2020 08-14-2020 08-12-2020

R1 RCM Holdco Inc 08-14-2020 08-14-2020

Carnival Corp 08-17-2020 08-17-2020 08-17-2020 08-17-2020

Amphastar Pharmaceuticals Inc 08-27-2020 08-27-2020

Stericycle 08-31-2020 08-31-2020

Equinix Inc 09-10-2020 09-10-2020 09-09-2020 09-09-2020

IPG Photonics Corp 09-18-2020 09-21-2020 09-18-2020

Shopify, Inc. 09-23-2020 09-22-2020 09-22-2020

Continued on next page
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Company News Filing Statement Event Date

Tyler Technologies, Inc. 09-23-2020 09-29-2020 09-23-2020

Universal Health Services Inc 09-28-2020 09-29-2020 09-29-2020 09-28-2020

Arthur J. Gallagher & Co. 09-29-2020 09-28-2020 09-28-2020

Barnes & Noble Education Inc 10-14-2020 10-14-2020 10-14-2020

Minerals Technologies, Inc. 10-26-2020 10-26-2020 10-26-2020

Steelcase Inc 10-27-2020 10-26-2020 10-26-2020

Mattel Inc 11-03-2020 11-03-2020 11-03-2020

The Geo Group, Inc. 11-03-2020 11-03-2020 11-03-2020 11-03-2020

Americold 11-16-2020 11-16-2020 11-16-2020

Embraer SA 12-03-2020 12-03-2020

FireEye, Inc. 12-08-2020 12-08-2020 12-08-2020

Spotify Technology SA 12-10-2020 12-09-2020 12-09-2020

Aetna 12-11-2020 12-11-2020

SolarWinds Corp 12-13-2020 12-14-2020 12-13-2020

Forward Air Corporation 12-16-2020 12-21-2020 12-16-2020

Whirpool Corp 12-28-2020 12-28-2020

Veritex Holdings Inc 01-11-2021 01-11-2021

Qualys Inc 03-04-2021 03-04-2021 03-03-2021 03-03-2021

Molson Coors Beverage Co 03-11-2021 03-11-2021 03-11-2021

Shell plc 03-22-2021 03-16-2021 03-16-2021

Insulet Corporation 03-18-2021 03-18-2021

Meta Platforms, Inc. 04-03-2021 04-06-2021 04-03-2021

The Dixie Group, Inc. 04-19-2021 04-19-2021 03-10-2022 04-19-2021

Continued on next page
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Company News Filing Statement Event Date

SmileDirectClub, Inc. 05-03-2021 05-03-2021

Peloton Interactive Inc 05-05-2021 05-05-2021

Oak Valley Community Bank 05-11-2021 05-11-2021

CNA Financial Corp 05-13-2021 07-09-2021 05-13-2021

Allied Healthcare Products, Inc. 06-04-2021 06-04-2021 06-02-2021 06-02-2021

Electronic Arts 06-10-2021 06-11-2021 06-10-2021

McDonalds Corp 06-11-2021 06-11-2021

Bath and Body Works 08-10-2021 08-10-2021

P&F Industries, Inc. 08-12-2021 11-12-2021 08-12-2021 08-12-2021

T-Mobile, INC 08-15-2021 08-17-2021 08-15-2021

T-Mobile US, Inc. 08-17-2021 08-27-2021 08-17-2021 08-17-2021

ALJ Regional Holdings, Inc. 08-19-2021 08-19-2021 08-19-2021

MFA Financial Inc 09-01-2021 09-01-2021

Marcus & Millichap, Inc. 09-20-2021 09-20-2021 09-20-2021

Golden Entertainment 09-24-2021 09-24-2021

Star Group, L.P. 09-24-2021 09-24-2021 09-24-2021

Sinclair Broadcast Group, Inc. 10-18-2021 11-03-2021 10-18-2021

J.B. Hunt Transport Services 10-20-2021 10-20-2021

Kewaunee Scientific Corporation 11-10-2021 11-10-2021 03-09-2022 11-10-2021

Godaddy Inc 11-22-2021 11-22-2021 11-22-2021 11-22-2021

Radiant Logistics, Inc. 12-13-2021 01-14-2022 12-13-2021

McGrath RentCorp 12-15-2021 12-15-2021

Century Aluminum Company 02-16-2022 02-24-2022 02-24-2022 02-16-2022

Continued on next page
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Company News Filing Statement Event Date

Expeditors International of Washington, Inc. 02-22-2022 05-03-2022 02-22-2022 02-22-2022

Nvidia Corp 02-25-2022 03-01-2022 02-25-2022

Aon plc 02-28-2022 02-28-2022 02-28-2022 02-28-2022

Okta Inc 03-21-2022 04-19-2022 03-23-2022 03-21-2022

Mailchimp 04-03-2022 04-03-2022

Tenet Healthcare Corp 04-26-2022 07-21-2022 04-26-2022 04-26-2022

Montrose Environmental Group, Inc. 06-14-2022 06-14-2022 06-14-2022 06-14-2022
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Appendix C.

Appendix to Chapter 3

C.1 Propensity Matching

Of the 62,234 individuals identified as treated, 54,192 are matched to the first control group

and 40,348 to the second control group. The treated but unmatched group are typically from

the lower end of the credit score distribution where there are very few untreated individuals

to be matched with. This is a result of two matching specification decisions I made. First,

matches are only conducted within matching groups based on credit score bins. Second, I

limit the matches to just those on a common support, meaning that any treated individual

whose propensity score is not within the range of scores among the treated group will not

be matched. Almost by definition, many of the treated individuals will have very low credit

scores due to the fact that they have at least one delinquency on their credit report. While

some untreated individuals will have non-student loan delinquencies which will also lead to

low credit scores, the data show that the frequency of extremely low credit scores is higher

for the treated group than untreated group (figure B.1).

Figure B.1: Credit Score Density

Figure B.2 shows the distribution of credit scores in March and September 2020 for the
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matched and unmatched individuals, split by their treatment status. For the treated group,

those who were not matched typically have a lower credit score even after the increase in

credit in score from the payment pause (panels (a) and (c)). The opposite is true for the

untreated group, where the matched individuals tend to be from the lower end of the credit

score distribution (panels (b) and (d) of the same figure).

Figure B.2: Matched and Unmatched Credit Score Density

(a) Match Group One, Treated (b) Match Group One, Untreated

(c) Match Group Two, Treated (d) Match Group Two, Untreated

Notes: The density of credit scores for the matched and unmatched groups are presented
in each figure. The first row shows the first match groups, where individuals were matched
based on their observable characteristics up to March 2020. The second row shows the
second match group, where individuals were matched based on their observables up to
September 2020.

The density of credit score changes between March and September 2020 for the treated

but unmatched group is slightly to the right of the density for the treated and matched.

This is true for both match groups. As I discussed in section 3.4 and will expand on in

section C.2, credit score change is decreasing in March 2020 score. Among the treated,

those in the unmatched group have lower credit scores on average than their peers. It is

therefore unsurprising that they saw larger increases in their credit score than those who

were matched. The larger credit score increases could mean there is a greater loosening
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of the credit constraint for the unmatched, but they still have lower credit scores than the

matched, which could limit that benefit.

Among those who were matched, figure B.3 shows the distribution of credit score changes

between March and September 2020. Panel (a) compares the treated to the first control

group. Panel (b) compares the treated to the second control group.

C.2 Credit Score Change Factors

Means for the variables used in the credit score change factor regressions are in table B.1.

Table B.1: Regression Variable Means

Summary
N 62,234
Credit Score Change 53.577 (40.792)
Credit score 504.211 (66.701)
# total of open trades 5.987 (5.054)
total balance on open trades reported in last 3 months 60,068.879 (89,088.464)
(sum) acct balance am 34,390.860 (47,802.237)
(sum) acct past due am 2,524.613 (9,203.787)
(sum) treated 3.094 (3.273)

Notes: These are the means among the treated group for the variables in the regression
in equation 3.1. Standard deviations are in the parenthesis.

In addition to the specification presented in the main text, I estimate the credit score

change explanatory factors using models with non-linear relationships between score change

and March 2020 credit score. Starting with a log transformation of credit score reported in

table B.2, the direction of the influence of each variable is the same.

Next, I add the square of the March 2020 credit score, finding that, while higher credit

scores in March 2020 still lead to lower credit score changes, this effect is diminishing.

Interestingly, under this specification the number of trades that the payment pause affected

now does have a statistically significant effect, with more trades causing larger credit score

changes (table B.6).

Finally, I re-estimate the effects under all specifications previously mentioned, but using

the full sample rather than just the treated subset. The only change I make to the model is

including an indicator for whether the individual was treated. Results are in tables B.4-B.6.
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Table B.2: Credit Score Change Factors — Logged

Dependent Variable: Credit Score Change
(1) (2) (3)

Intercept 767.7∗∗∗ 806.7∗∗∗ 804.0∗∗∗

(7.1001) (7.7084) (8.2801)
3/2020 Credit Score Logged -114.9∗∗∗ -121.4∗∗∗ -121.0∗∗∗

(1.1423) (1.2522) (1.3422)
Number of Open Trades -0.161∗∗∗ -0.175∗∗∗

(0.0340) (0.0489)
Balance on Trades 0.0000370∗∗∗ 0.0000274∗∗∗

(0.0000) (0.0000)
Student Loan Balance 0.0000358∗∗∗

(0.0000)
Past Due on SL -0.0001000∗∗∗

(0.0000)
Number of Treated Loans -0.0685

(0.0674)
N 61906 61906 61906
R2 0.141 0.146 0.147

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table contains the results of estimating equation 3.2, replacing the
March 2020 credit score with it’s log transformation.

C.3 Conditional Delinquency

In the main text, the delinquency effects are not conditioned on having an open auto loan

or credit card. Re-running those estimates using only those who have an open loan. Results

are reported in table B.7.

151



Table B.3: Credit Score Change Factors—Squared

Dependent Variable: Credit Score Change
(1) (2) (3)

Intercept 373.6∗∗∗ 366.5∗∗∗ 376.6∗∗∗

(7.6619) (7.6635) (7.7343)
3/2020 Credit Score -1.050∗∗∗ -1.014∗∗∗ -1.060∗∗∗

(0.0303) (0.0304) (0.0308)
Credit Score Squared 0.000809∗∗∗ 0.000762∗∗∗ 0.000812∗∗∗

(0.0000) (0.0000) (0.0000)
Number of Open Trades -0.147∗∗∗ -0.292∗∗∗

(0.0340) (0.0492)
Balance on Trades 0.0000331∗∗∗ 0.0000210∗∗∗

(0.0000) (0.0000)
Student Loan Balance 0.0000468∗∗∗

(0.0000)
Past Due on SL -0.000107∗∗∗

(0.0000)
Number of Treated Loans 0.153∗

(0.0683)
N 61906 61906 61906
R2 0.146 0.150 0.152

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table contains the results of estimating equation 3.2, adding the
square of the March 2020 credit score to the right-hand side.

(a) Match Group One (b) Match Group Two

Figure B.3: March–September 2020 Credit Score Change Distributions
Notes: This figure contains the density of credit score changes among the
matched treated and untreated groups. Panel (a) compares those in the pre-
pause matches. Panel (b) compares those matched with post-pause matches.
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Table B.4: Credit Score Change Factors—All

Dependent Variable: Credit Score Change
(1) (2) (3)

Intercept 80.59∗∗∗ 86.31∗∗∗ 86.75∗∗∗

(0.1285) (0.1323) (0.1375)
3/2020 Credit Score -0.104∗∗∗ -0.119∗∗∗ -0.120∗∗∗

(0.0002) (0.0002) (0.0002)
Treated 25.21∗∗∗ 23.29∗∗∗ 24.90∗∗∗

(0.1412) (0.1405) (0.1897)
Number of Open Trades 0.580∗∗∗ 0.554∗∗∗

(0.0039) (0.0040)
Balance on Trades 0.0000105∗∗∗ 0.0000100∗∗∗

(0.0000) (0.0000)
Student Loan Balance 0.0000100∗∗∗

(0.0000)
Past Due on SL -0.0000819∗∗∗

(0.0000)
Number of Treated Loans -0.565∗∗∗

(0.0414)
N 2882961 2882961 2882266
R2 0.122 0.134 0.135

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table contains the results of estimating equation 3.2 using the full
sample rather than just the treated group.
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Table B.5: Credit Score Change Factors — Logged, All

Dependent Variable: Credit Score Change
(1) (2) (3)

Intercept 154.0∗∗∗ 158.3∗∗∗ 516.2∗∗∗

(0.1353) (0.1356) (0.8447)
3/2020 Credit Score Logged -23.00∗∗∗ -24.36∗∗∗ -78.44∗∗∗

(0.0209) (0.0213) (0.1311)
Number of Open Trades 1.006∗∗∗ 0.554∗∗∗

(0.0034) (0.0040)
Balance on Trades 0.000000884∗∗∗ 0.00000908∗∗∗

(0.0000) (0.0000)
Student Loan Balance 0.0000124∗∗∗

(0.0000)
Past Due on SL -0.0000893∗∗∗

(0.0000)
Number of Treated Loans 2.859∗∗∗

(0.0309)
N 13790629 13790629 2882266
R2 0.081 0.087 0.130

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table contains the results of estimating equation 3.2 using the full
sample rather than just the treated group, and using the log transformation of
the March 2020 credit score instead of the untransformed values.
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Table B.6: Credit Score Change Factors—Squared, All

Dependent Variable: Credit Score Change
(1) (2) (3)

Intercept 132.3∗∗∗ 144.3∗∗∗ 148.0∗∗∗

(0.7408) (0.7433) (0.7458)
3/2020 Credit Score -0.264∗∗∗ -0.300∗∗∗ -0.311∗∗∗

(0.0023) (0.0023) (0.0023)
Credit Score Squared 0.000121∗∗∗ 0.000137∗∗∗ 0.000145∗∗∗

(0.0000) (0.0000) (0.0000)
Number of Open Trades 0.620∗∗∗ 0.589∗∗∗

(0.0039) (0.0040)
Balance on Trades 0.00000921∗∗∗ 0.00000844∗∗∗

(0.0000) (0.0000)
Treated 23.08∗∗∗ 20.86∗∗∗ 22.55∗∗∗

(0.1442) (0.1437) (0.1915)
Student Loan Balance 0.0000134∗∗∗

(0.0000)
Past Due on SL -0.0000893∗∗∗

(0.0000)
Number of Treated Loans -0.632∗∗∗

(0.0414)
N 2882961 2882961 2882266
R2 0.123 0.136 0.137

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table contains the results of estimating equation 3.2 using the full
sample rather than just the treated group, and adding the square of March 2020
credit score to the right hand side.
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Table B.7: Conditional Delinquency Effects

Match Group One Match Group Two

Auto Credit Card Auto Credit Card
(1) (2) (3) (4)

Constant 0.0520∗∗∗ 0.109∗∗∗ 0.0494∗∗∗ 0.103∗∗∗

(0.0003) (0.0003) (0.0003) (0.0004)

Treated -0.0106∗∗∗ -0.00969∗∗∗ -0.0121∗∗∗ -0.0125∗∗∗

(0.0008) (0.0010) (0.0009) (0.0012)

Treated x Post 0.00364∗∗∗ -0.0249∗∗∗ 0.00735∗∗∗ -0.0120∗∗∗

(0.0010) (0.0013) (0.0011) (0.0015)

Match FE Yes Yes Yes Yes

Period FE Yes Yes Yes Yes
N 847,557 939,493 647,558 718,906

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The results in this table are from estimating equation 3.2, where the
outcome variables are whether the individual went delinquent on an auto
loan or credit card, conditional on having at least one trade of that type
open.
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Figure B.4: Matched and Unmatched Credit Score Change Density

(a) Match Group One, Treated (b) Match Group One, Untreated

(c) Match Group Two, Treated (d) Match Group Two, Untreated

Notes: The density of credit score change between March and September 2020
for the matched and unmatched groups are presented in each figure. The first
row shows the first match groups, where individuals were matched based on
their observable characteristics up to March 2020. The second row shows the
second match group, where individuals were matched based on their observables
up to September 2020.
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Appendix D.

Miscellaneous Material

I used open source software for almost all the empirical analysis in this dissertation. The

software and versions used are listed in table D.1.

Table D.1: Software and Versions

Software Version Developer

Python 3.12 Python Software Foundation
R 4.3.3 R Core Team (2024)
Pandas 2.2.3 The Pandas Development Team (2024)
Numpy 1.26.4 Harris et al. (2020)
Seaborn 0.13.2 Waskom (2021)
edgartools 3.10.2 Dwight Gunning
Statstables 0.0.16 Anderson Frailey
Scikit-Learn 1.6.1 Pedregosa et al. (2011)
scipy 1.14.0 Virtanen et al. (2020)
psmatch2 4.0.12 Leuven and Sianesi (2003)
fixest 0.12.0 Bergé (2018)
reticulate 1.37.0 Ushey et al. (2024)
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