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Abstract 

In response to climate change, research on extreme conditions is accelerating. One such 
condition is the aquatic heatwave. With an expected rise in the occurrence, severity, and span 
of heatwaves, aquatic ecosystem processes will be affected, but the impacts are understudied 
and uncertain. This study addressed the effects of aquatic heatwaves on gross primary 
production (GPP), ecosystem respiration (ER), and their difference defined as net ecosystem 
metabolism (NEM) in a riverine ecosystem. Using long-term data from a site in the James 
River, water temperature time series were analyzed for heatwave metrics. In addition, by 
using dissolved oxygen time series, daily rates of GPP and ER were estimated. Of the 40 
heatwaves observed during this study, 70% were of moderate severity and 30% were of 
strong severity, as determined based on peak temperatures. The average (± SD) frequency of 
heatwaves was 2 ± 2 events year -1 and ranged up to 5 events year -1. The average duration 
and maximum intensity of a heatwave was 8 ± 3 days and 5.22 ± 1.36°C. GPP was 
significantly higher during moderate heatwaves (1.01 ± 1.30 g O2 m-2 d-1, p-value = 0.003) 
compared to non-heatwave conditions (0.70 ± 0.96 g O2 m-2 d-1). GPP significantly declined 
during strong heatwaves (0.49 ± 1.13 g O2 m-2 d-1) relative to moderate heatwaves (p-value = 
0.002), which suggests unfavorable conditions for primary producers as heatwaves become 
more severe. ER and NEM were not significantly different during heatwave and non-
heatwave conditions, nor during moderate versus strong heatwaves. Overall, these results 
suggest that GPP will increase with increasing water temperature until a thermal maximum is 
reached and then begin to decline. This may result in increased CO2 release to the 
atmosphere as rivers become increasingly heterotrophic under persistent and strong 
heatwaves.  
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Introduction 

Climate change is increasing water temperatures in the global ocean (Rhein et al. 2013), 

as well as in inland waters (Kaushal et al. 2010; O’Reilly et al. 2015). In freshwater systems, 

water temperature exerts strong controls on organism distribution (Vannote et al. 1980), 

contaminant toxicity (Patra et al. 2015) and rates of biochemical reactions (De Stasio et al. 

2009). Along with increases in annual mean water temperature are increases in discrete, 

extremely high-temperature events called heatwaves (Hobday et al. 2016). Hobday et al. (2016) 

formally defined an aquatic heatwave as a period of sustained high temperature that exceeds a 

local and seasonally varying long-term 90th percentile for at least 5 consecutive days. Aquatic 

heatwaves have been relatively well-studied in the global (Oliver et al. 2018) and coastal oceans 

(Lima and Wethey 2012) and lakes (Woolway et al. 2021). However, the development of aquatic 

heatwaves in rivers and streams has only recently been considered (Tassone et al. 2022a; Zhu et 

al. 2024). For lotic systems, aquatic heatwaves are associated with high air temperatures often in 

concert with low river discharge (Tassone et al. 2022a). As global temperatures rise, riverine 

heatwaves are expected to increase in frequency, as well as duration, along with achieving ever 

higher maximum temperatures (Tassone et al. 2022a; Zhu et al. 2024). The consequences of 

these changes include possible exceedance of organismal thermal tolerances and associated 

changes in ecosystem processes (Joint and Smale 2017; Smale et al. 2019), economic costs from 

the loss of resource species (Smale et al. 2019; Smith et al. 2021) and diminishing water quality 

(van Vliet et al. 2023). 

This study explores the significance of riverine heatwaves in the context of riverine 

ecosystem functioning. Ecosystem metabolism is a central process governing the flux of carbon 

and oxygen. Metabolism is an umbrella term used to describe gross primary production (GPP), 
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ecosystem respiration (ER), and their difference defined as net ecosystem metabolism (NEM = 

GPP - ER). In aquatic systems, ecosystem metabolism can be measured by considering fluxes in 

oxygen over the diel cycle (Odum 1956; Pace and Prairie 2005; Bernhardt et al. 2018). 

Water temperature affects dissolved oxygen (DO) solubility (Zhi et al. 2023) as well as 

metabolic rates of aquatic organisms (Caffrey 2004; Demars et al. 2011). DO solubility declines 

with increasing water temperature (Zhi et al. 2023). Rates of respiration tend to increase with 

water temperature to a maximum (Pace and Prairie 2005; Tassone and Bukaveckas 2019). 

Respiration may also decline at very high temperatures, but this pattern is less well-documented 

for in situ conditions (although established for individual organisms; Gillooly et al. 2001). Rates 

of GPP follow a similar trend to those of ER, though GPP is also limited by other factors such as 

light availability or nutrients (Bernhardt et al. 2018; Joint and Smale 2017; Song et al 2018) but 

these limitations do not always occur (Demars et al. 2011). An increase in ER relative to GPP 

causes rivers, which are typically net heterotrophic (Cole and Caraco 2001; Mulholland et al. 

2001; Demars et al. 2011), to become more strongly net heterotrophic, thereby depleting 

dissolved oxygen and increasing production of CO2. This is due to the respiration of exogenous 

organic matter that flows into rivers from surrounding land. Aquatic heatwaves may increase 

CO2 emissions from rivers by enhancing ER relative to GPP (Demars et al. 2011; Bernhardt et al. 

2018; Song et al. 2018).  

The effects of water temperature on the components of metabolism (GPP, ER, NEM) also 

differ with seasonality such that the greatest rates of GPP and ER occur during summer and the 

lowest rates occur in winter (Caffrey 2004; Tassone and Bukaveckas 2019; Munn et al. 2023). In 

the case of heatwaves, the most severe riverine heatwaves tend to take place during winter 

(Tassone et al. 2022a). Metabolic dynamics in winter differ from those in warmer conditions, 
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such that heatwaves might further push rates of ER above GPP, since GPP can be especially 

limited in winter by light, nutrients, and other factors (Joint and Smale 2017).  

Changes in discharge also alter riverine ecosystem metabolism (Bernhardt et al. 2018; 

Tassone and Bukaveckas 2019; Munn et al. 2023). During high-flow conditions, primary 

production is limited often due to elevated turbidity that reduces light availability (Bernhardt et 

al. 2018; Bukaveckas et al. 2020; Munn et al. 2023). Similarly, low-flow conditions may limit 

primary production due to lost habitat and the resulting dry conditions (Bernhardt et al. 2018; 

Munn et al. 2023). Drought can also amplify temperatures (Tassone et al. 2022a; van Vliet et al. 

2023), which again may affect metabolism. Thus, I expected that discharge would impact 

heatwaves and, consequently, metabolism.  

This study aimed to uncover whether riverine heatwaves impact rates of riverine GPP, 

ER, and NEM beyond expected increases due to temperature. I hypothesized, based on a general 

review by De Stasio et al. (2009), that rates of ER would increase with increasing heatwave 

severity relative to non-heatwave conditions. Additionally, I hypothesized that GPP might 

increase during moderate heatwaves due to being in a more thermally optimal temperature range, 

however, as heatwaves become more severe, GPP would decrease due to thermal stress on 

primary producers (De Stasio et al. 2009). The net effect of these changes would be an 

unchanged NEM during moderate heatwaves whereas rivers would become significantly more 

heterotrophic during stronger heatwaves. This study is among the first to examine heatwave 

impacts on ecosystem processes in rivers and is currently the only study of riverine heatwaves 

for a Virginia river.  
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Methods 

Study Site  

For this study I used long-term data from the United States Geological Survey (USGS) 

monitoring station James River at Cartersville (USGS Site ID: 02035000) in Cumberland 

County, VA (Figure 1). This site is located in the lower freshwater section of the James River 

which stretches about 540 km (Smock et al. 2005) and runs through central Virginia, ultimately 

draining into the Chesapeake Bay. The watershed upstream from the Cartersville station is 

mostly forested (76.51%) and has a drainage area of 16,187 km2 (USGS StreamStats). Between 

1911 to 2023 the average depth of the James River at Cartersville was 1.47 ± 1.04m.  

 

Figure 1. Map of study-site watershed (red area). Black dot indicates the sampling 
location for data analyzed in this study - “James River at Cartersville” USGS station. 
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Data & Data Manipulation 

 For the heatwave analysis I used high frequency (i.e., 15-minute) water temperature 

observations collected over a 16-year period (Oct 2007- Sept 2023). The water temperature time 

series were accessed using the dataRetrieval R package version 2.7.13 (De Cicco et al. 2023) and 

further analyzed using the R environment for statistical computing (R Core Team 2023). While 

the length of this data is on the lower end of the acceptable range for calculating heatwaves, 

sensitivity studies show that 10 years of data is acceptable for this type of analysis (Schlegel et 

al. 2019). Missing data from the high frequency time series was filled by linear interpolation for 

gaps ≤ 6 hours. Daily means were derived from the high frequency observations when ≥ 75% of 

a day’s observations were available. Linear interpolation was then performed on the low 

frequency (i.e., daily) data for gaps ≤ 2 days.  

For the metabolism analysis I also used high frequency water temperature data in 

addition to high frequency dissolved oxygen (mg L-1), depth (m), and discharge (m3s-1) data from 

USGS for an 11-year period (Apr 2012– Sept 2023). Additionally, photosynthetically active 

radiation (PAR) data were needed for the metabolism analysis, which were obtained from the 

National Estuarine Research Reserve System (NERRS) Taskinas Creek station which is ~130 km 

from Cartersville (NOAA 2024). While these PAR data are relatively far from Cartersville, they 

represent the closest and best PAR time series that is publicly available. PAR data flagged as 

“suspect” were removed prior to analysis. PAR data were accessed using the NERRS Centralized 

Data Management Office’s Data Export System (https://cdmo.baruch.sc.edu/). Similar to the 

water temperature data from the heatwave analysis, linear interpolation was performed over gaps 

≤ 6 hours on the dissolved oxygen, depth, discharge, and PAR data.  
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While USGS provides a continuous measure of gage height at Cartersville, depth is 

needed for the metabolism model (described below). To estimate depth at 15-minute intervals, a 

second order polynomial regression model was created from the relationship between historic 

gage height and depth (channel area divided by channel width) data provided by USGS (Figure 

2). This model was then applied to the continuously monitored gage height at Cartersville to 

create a continuous depth time series.  

 

 

Figure 2. Model used to determine depth (m) using historic depth and gage 
height (m) data from the USGS Cartersville station. This equation was 
applied over the time series to estimate water column depth from directly 
measured gage height. 
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Heatwave Analysis  

The R package heatwaveR (version 0.4.6) was applied to identify riverine heatwaves and 

their characteristics (i.e., total number of heatwaves per year, heatwave duration, and heatwave 

magnitude; Schlegel and Smit 2018). This package identifies heatwaves according to the Hobday 

et al. (2016) definition as periods in which daily mean water temperature is > the 90th percentile 

for ≥ 5 days. The package also defines heatwave characteristics for each event, including 

severity. Heatwave severity ranges among moderate, strong, severe, and extreme and is 

determined using the peak magnitude of water temperature during the heatwave and by multiples 

of the difference between the climatological norm and the 90th percentile (Hobday et al. 2018). 

Each identified heatwave was further classified according to the season in which it occurred (i.e., 

summer = June to August, fall = September to November, winter = December to February, and 

spring = March to May), in accordance with similar studies (Caffrey 2004; Lau and Nath 2012; 

Tassone et al. 2022b).  

To account for departures from normal seasonal variability in discharge, I determined the 

residual discharge for each day. Daily mean values for discharge were downloaded for the same 

16-year period (Oct 2007- Sept 2023) as water temperature. There were no missing values in this 

dataset, eliminating the need to perform interpolations on the daily mean discharge data. 

Residual discharge was determined as the difference between expected discharge and observed 

discharge, where expected discharge was derived using the heatwaveR package in R (according 

to methods in Tassone et al. 2022a).  

Metabolism Analysis  

 Diel dissolved oxygen (DO) dynamics were used to estimate rates of ER and GPP. 

During the day, DO rises due to photosynthesis exceeding respiration. At night, DO declines due 
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to respiration in the absence of photosynthesis. This oscillation continues daily but DO 

concentration and magnitude of the cycle may vary between days. The loss of DO at night (ERn) 

is used to estimate respiration over the 24-hour period. GPP is estimated by the accumulation of 

DO during the day plus ERn.  

To determine ecosystem metabolism, the streamMetabolizer R package (version 0.12.1) 

was utilized (Appling 2018a). This program requires time series input data (described below) in 

addition to prior values for GPP and ER. I used the default, minimally informative prior values 

found in the sample code provided by the streamMetabolizer R package for the sample dataset 

(Appling et al. 2018a), which were: GPP = 3 ± 2 g O2 m-2 d-1 and ER = -7.1 ± 7.1 g O2 m-2 d-1. 

These values are referred to as prior probabilities and are used with the measured input data to 

apply the Bayesian method where estimates of GPP and ER are obtained from the posterior 

distribution, which is proportional to the probability of the measured input data considering the 

prior estimates (Hobbs and Hooten 2015; Hall et al. 2016; Tassone and Bukaveckas 2019). 

The Bayesian model estimates GPP and ER for each day using observed oxygen 

concentrations, oxygen saturation determined from water temperature, light determined from 

PAR, and depth estimated from the gage-height to depth relationship. The model’s fundamental 

equation from Appling et al. (2018b) solves for the rate of change of oxygen over time by 

determining the combination of GPP, ER, and gas exchange (K600) that fit the daily cycle of 

oxygen as follows: 

dOid/dt = (GPPd/zd x (PARid/PARd)) + (ERd/zd) + fid (K600d)(Osatid – Oid)   [1] 

where dOid/dt is the rate of change of oxygen concentration with respect to time at any time step 

i (15 minutes in my study) for a specified day d; GPPd and ERd are the daily estimated values in 

g m-2 d-1; zd is the daily mean river depth in meters; PARid is the photon flux over the time step 
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(i) of the specified d in mmol m-2 sec-1; PARd is the average photon flux in the same units over 

the day; Osatid is the oxygen saturation if air and water are in equilibrium, K600 is the gas 

exchange coefficient in meters per day, and f (K600) is a function to determine gas exchange 

with respect to oxygen and temperature (Appling et al. 2018b). The three unknowns, GPP, ER, 

and K600, are estimated using a Hamiltonian Monte-Carlo method to determine the best fit for 

measured and modeled oxygen over the daily cycle (Appling et al. 2018a,b). The fitting process 

used 1000 burn-in steps and 500 saved steps for each daily estimation (Appling et al. 2018a,b). 

Statistical Analysis  

The metabolism analysis produced daily estimates of GPP and ER. Consistent with other 

studies, some estimates produced negative rates of GPP and positive rates of ER, which are 

theoretically impossible (Appling et al. 2018b; Pace et al. 2021). Of the 3722 metabolism values 

estimated by streamMetabolizer, 24% of GPP and 15% of ER values were non-real numbers. 

These values occur because diel cycles of oxygen are altered by rapidly changing river 

conditions such as shifting discharge and/or storm passage. Non-real numbers from the 

metabolism data output were removed based on conditions used in other studies (Appling et al. 

2018b); GPP values -0.5 < x < 0 were converted to 0 and GPP values < -0.5 were converted to 

NAs. Similarly, ER values 0.5 > x > 0 were converted to 0 and ER values > 0.5 were converted 

to NAs (Appling et al. 2018b).  

One obvious outlier was flagged from the respiration data output (-73.03 g O2 m-2 d-1), as 

it was almost three times higher than the next greatest value (-25.54 g O2 m-2 d-1). This extreme 

ER value occurred during a flooding event, and while it may represent a true value, it was 20 

standard deviations greater than the mean and was therefore removed to avoid skewing the data. 
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After suspect data removal, daily NEM was calculated, where ER is expressed as a positive 

value (Eq. 2). 

NEM = GPP – ER [2] 

To test for the effects of heatwaves on metabolism, data were organized into categories 

(non-heatwave, moderate heatwave, severe heatwave). One-way ANOVA and Tukey post-hoc 

tests were performed to test if metabolism parameters (GPP, ER, NEM) were significantly (p-

values < 0.05) different among heatwave categories. Linear regressions were conducted for daily 

mean water temperature vs log transformed GPP and ER and log transformed daily mean 

discharge vs log transformed GPP and ER.  

Results  

Heatwaves 

 There were 40 heatwaves over the 16-year span of this study (Oct 2007- Sept 2023; 

Figure 3). The average (± standard deviation) frequency of heatwaves was 2 ± 2 events year-1 

and ranged up to 5 events year-1. Similarly, the average duration and max intensity of a heatwave 

was 8 ± 3 days and 5.22 ± 1.36 °C. Only moderate and strong heatwaves were observed, 

comprising 70% and 30% of the total observed events, respectively. Overall, 28 moderate 

heatwaves were observed for a total of 187 days and 12 strong heatwaves were observed for a 

total of 115 days. The majority of heatwaves occurred in the summer (32%), followed by winter 

(28%), fall (25%), and spring (15%). There were no statistically significant linear trends for the 

annual total heatwave days per water year or annual frequency of heatwaves per water year (both 

p-values > 0.05). 
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 Residual discharge was calculated to determine if heatwaves are more likely to occur 

during periods of low discharge compared to expected discharge conditions. For all months 

except January, the median residual discharge during heatwaves was less than zero and for most 

months the upper 95th percentile of the distribution was below zero. Thus, heatwaves tend to 

occur during low discharge except in November through January (Figure 4).   

 

Figure 3. Total number of heatwave (HW) events per water year. Yellow bars 
represent moderate heatwaves and orange bars represent strong heatwaves. 
Extreme and severe heatwaves were not observed in this study. No heatwaves 
occurred in the years 2009 and 2013. 
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Figure 4. Daily average residual discharge during heatwave events. The median value is the dark 
line within the distribution, box ends are the 25th and 75th percentiles, and lines extending from 
the boxes indicate the 5th and 95th percentiles. 

  

Physical, Chemical, and Hydrological Site Conditions  

Discharge is variable in the James River at Cartersville with flood (or high discharge 

events) occurring episodically, and low discharge typically associated with the warmest periods 

of the year (Figure 5). In contrast with discharge, water temperature, dissolved oxygen, and light 

have pronounced and regular seasonal cycles (Figure 5). The inverse pattern of water 

temperature and dissolved oxygen reflects the greater solubility of oxygen in cold water (Zhi et 

al. 2023). Similarly, water temperature is inversely related to discharge. Discharge is generally 

lower during summer months due to increased rates of evapotranspiration resulting in lower run-

off (Bukaveckas 2009).  
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Figure 5. High-frequency observations of discharge (top left), water temperature (bottom left), 
PAR (top right), and DO (bottom right) over the water years of 2012 to 2023. 

Are Metabolic Rates Different During Heatwaves? 

GPP and ER followed seasonal patterns in water temperature and PAR (Figure 6). Daily 

rates of ER were on average 3x greater (mean = -3.14 ± 2.92 g O2 m-2 d-1) than GPP (mean = 

0.70 ± 0.98 g O2 m-2 d-1; Table 1). Note that ER represents oxygen consumption, so it is 

expressed as a negative number. The standard deviation was approximately the same magnitude 

as the mean, indicating substantial variability of the rates (Table 1). Ranges were also large 

especially for ER and NEM (Table 1). Daily average NEM was -2.41 ± 2.88 g O2 m-2 d-1 

indicating this section of the James River was predominately net heterotrophic (66% of the time 
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over the study period or 2751 days out of 4198 total days). Linear regressions between log 

transformed metabolic parameters (i.e., GPP and ER) and daily mean water temperature and 

daily mean log transformed discharge were highly significant (p-values ≤ 0.001) but had low 

explanatory power (R2 < 0.20). Gas exchange was high for the James River at this location 

(mean 3.78 ± 1.99 m d-1) as expected for rivers due to the quickly moving and relatively shallow 

water (Raymond et al. 2012). 

 

 

 

 

 

 

 

 

Table 1. Summary statistics for output metabolism data from streamMetabolizer. These values 
were calculated after the outlier and non-real data were removed. A negative mean NEM 
indicates the system is net heterotrophic. 

Metabolism Parameter Mean SD Range 

GPP (g O2 m-2 d-1) 0.70 0.98 10.63 

ER (g O2 m-2 d-1) -3.14 2.92 25.54 

NEM (g O2 m-2 d-1) -2.41 2.88 31.61 

 
 

Daily mean GPP during non-heatwave conditions was 0.70 ± 0.96 g O2 m-2 d-1 which 

was significantly lower than GPP during moderate heatwaves (1.01 ± 1.30 g O2 m-2 d-1, p-value 

Figure 6. Average monthly rates of GPP (green, top) and ER (blue, bottom) after the 
outlier and non-real data were removed. ER values are generally much greater than GPP 
values, indicating a net heterotrophic system. 
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= 0.003, Table 1, Figure 7). GPP during strong heatwaves was low (0.49 ± 1.13 g O2 m-2 d-1) and 

was significantly lower than moderate heatwave conditions (p = 0.002, Figure 7) but was not 

significantly different from non-heatwave conditions. ER and NEM were not significantly 

different during heatwave and non-heatwave conditions or during moderate versus strong 

heatwave conditions (Figure 7).  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

Discussion 

Riverine heatwaves affect gross primary production but do not impact the other 

components of ecosystem metabolism for the James River study site (Figure 7). There are 

several possibilities for the positive effect on GPP during moderate heatwaves. Higher 

temperatures are associated with lower discharge (Tassone et al. 2022a; van Vliet et al. 2023) 

and therefore greater water clarity, which could facilitate photosynthesis until it becomes light-

Figure 7. Riverine heatwave conditions by metabolic variable. Baseline (no heatwave) 
conditions are in blue, moderate heatwaves are in yellow, and strong heatwaves are in 
orange. GPP significantly increased during moderate heatwaves (p < 0.05) and 
significantly decreased during strong heatwaves compared to moderate heatwaves (p < 
0.05). There were no other significant differences. 
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limited by depth (Bernhardt et al. 2018). Also, low discharge facilitates the buildup of attached 

algae, as scouring from surfaces is reduced (Bernhardt et al. 2018). Additionally, moderate 

heatwaves may create an advantageous thermal range for primary producers, but as heatwaves 

become more severe GPP would be expected to decrease due to thermal stress on primary 

producers (De Stasio et al. 2009; Smale et al. 2019; Filbee-Dexter et al. 2020; Tassone et al. 

personal communication 2024). This hypothesis was partially supported by my results, as it was 

observed that GPP during strong heatwaves was significantly lower than GPP during moderate 

heatwaves (Figure 7). This result suggests stronger heatwaves may exceed thermal tolerances 

and therefore suppress GPP (Figure 7; Joint and Smale 2017). Other studies have found rising 

temperatures have a stronger effect on ER compared to GPP (Demars et al. 2011; Song et al. 

2018), which did not occur in this case. While I did see an increase in the median rate of 

respiration during moderate heatwaves compared to non-heatwave conditions, this increase was 

not statistically significant. However, more data would be needed to confirm this difference in 

results. The general lack of statistically significant differences for ER and NEM could be due to 

the low sample size (i.e., 5844 non-heatwave days compared to 187 moderate heatwave days and 

115 strong heatwave days). Other studies have suggested that strong heatwaves can negatively 

affect primary producers (Smale et al. 2019; Aoki et al. 2021; Filbee-Dexter et al. 2020) thereby 

causing aquatic systems to become net heterotrophic (Berger et al. 2020). Overall, my results 

provide evidence that moderate riverine heatwaves can affect aquatic metabolism by increasing 

rates of GPP. 

Like many rivers, the James at Cartersville had a negative mean NEM (GPP < ER), 

signifying this system was net heterotrophic (Table 1; Figure 6; Cole and Caraco 2001; Demars 

et al. 2011; Munn et al. 2023). The differences between ER and GPP (NEM) were similar to 
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those found in a study of metabolism from the James River Estuary below Richmond where 

phytoplankton blooms occur in summer (Tassone and Bukaveckas 2019). However, ER and GPP 

were lower at Cartersville, as would be expected for riverine systems compared to their wide and 

shallow estuarine equivalents (Tassone and Bukaveckas 2019).  

Heatwaves were associated with low-flow conditions, as the monthly median residual 

discharge during heatwaves was < 0 for most months of the year (Figure 4). Droughts can 

amplify temperatures (Tassone et al. 2022a; van Vliet et al. 2023) and thus lead to heatwave 

conditions. January was the only month in which the median residual discharge during 

heatwaves was > 0. This could be because the lack of evapotranspiration in the watershed 

coupled with episodic heavy precipitation in winter leads to high surface and groundwater flow 

(Bukaveckas 2009). The large variability of residual discharge during heatwaves for November-

January suggest high variability in discharge temperatures for these months.     

Of the 40 observed heatwaves, 70% were of moderate severity. While strong heatwaves 

were also observed (30%), no severe or extreme events occurred during the years of this study at 

the Cartersville location, thereby limiting my ability to assess impacts of all heatwave severity 

classifications on metabolism (Figure 3). Other studies have considered the seasonality of 

heatwave events, citing that the most severe riverine heatwaves tend to take place during winter 

(Tassone et al. 2022a). Of the top ten percent most intense heatwaves in the present study (n = 

4), 50% occurred in winter, 25% in summer and 25% in spring. Additionally, most heatwaves 

were observed in the summer, similar to prior observations (Tassone et al. 2022a). The total 

annual heatwave days and annual frequency do not appear to be increasing over time (p > 0.05) 

as might be expected due to climate warming (Tassone et al. 2022a; Zhu et al. 2024). However, 

the relatively short 16-year time series may be insufficient for observing effects of climate 
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warming on heatwaves. Additionally, other studies have found non-significant trends in 

heatwave duration over time (Tassone et al. 2022b).  

This study had several limitations including 1) the length of the times series for analysis 

of heatwaves, 2) uncertainties in metabolism estimates, and 3) the need to use data from other 

locations because not all the necessary data were available at Cartersville. Water temperature and 

DO time series only overlapped for 11 years which is a relatively short period for identifying 

heatwaves and associated effects on metabolic processes. While I had thousands of daily 

estimates of GPP, ER, and NEM, there were only 40 heatwaves over the record, with each 

heatwave lasting on average 8 ± 3 days. More heatwaves, including those in the severe and 

extreme categories, would have allowed a fuller analysis of effects on metabolism. A second 

concern is that metabolic estimates based on diel oxygen cycles are relatively imprecise (Appling 

et al. 2018a; Pace et al. 2021). Other processes besides photosynthesis and respiration affect 

oxygen concentrations, and these can be difficult to account for. Some examples include air-

water gas exchange, photochemical oxygen consumption, unaccounted inputs and losses (e.g. 

lateral or hyporheic flows) and variable inputs (and losses) of oxygen relative to the 

measurement footprint of the sensor (Reichert et al. 2009; Pace et al. 2021). In this study I 

estimated air-water gas exchange by statistical fitting whereas there are process models that 

allow direct estimation (Dugan et al. 2016). Overall, unmeasured processes and random variation 

including rapid changes in river conditions that alter oxygen concentrations independent of 

biological production and consumption are likely to contribute to the observed negative values of 

GPP and positive values of ER. Regardless, more constrained and precise estimates of rates 

would facilitate testing for the effects of conditions like heatwaves. A third specific limitation for 

my study was that PAR data were not available for the study location. I used data from a site 
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about 130 km from Carterville, which may represent the general area well but may not account 

for local variability in light conditions (e.g., due to variable cloud passage).   

Despite the limitations of my study, a significant increase in GPP under moderate 

heatwave conditions is an important finding and can provide insight for how aquatic ecosystems 

will function under climate change. Future studies should build on this result and consider 

additional sites and longer times series that incorporate more heatwaves to facilitate within and 

among-site analysis of results. Additionally, because severe and extreme heatwave events were 

not observed during this study, considering systems that have a history of severe and extreme 

heatwaves is necessary to further understanding of how extreme climatic events will impact 

ecosystem functioning. Given what was found in this study, an increase in GPP during moderate 

heatwaves with no significant change in ER means more CO2 will be removed from the system 

while inputs of photosynthetically produced O2 will be elevated.   
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