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ABSTRACT 

Cyclists and pedestrians represent some of the most vulnerable users (VRUs) of roadway 
infrastructures. Understanding their behaviors, preferences, and interactions with the environment is 
critical in order to aid planners, engineers, and decision-makers to promote safer spaces and active 
mobility. This research presents two case studies in which VRUs’ behaviors and their interactions with 
the built environment were tested with the aid of virtual reality (VR) simulation and wearable sensors for 
heart rate (HR) data collection, in both in-lab and real-world settings.  

The first part of this thesis presents a novel way of studying cyclists’ perceptions of bicycle 
infrastructure design alternatives in a safe and low-cost way using immersive virtual environments 
modeled after a real-world corridor and a previously validated bike simulator. Three infrastructure 
scenarios were tested: sharrows, a separated bike lane, and a protected bike lane with flexible delineators. 
Results of the used multinomial logit model suggest gender, age, and abrupt changes in HR affect 
cyclists’ preferences for bike infrastructure design. Overall, gender emerges as the most practically 
significant predictor variable for bicycle infrastructure preference, with men more likely to prefer 
sharrows and women more likely to prefer protected bike lanes. Exploratory analysis also suggests that 
bicyclists who self-identified as “strong and fearless” are more likely to choose sharrows as the preferred 
design, while bicyclists who self-identified as “interested but concerned” more often chose the protected 
bike lane. These results highlight the importance of understanding preferences of not just current cyclists, 
but potential future cyclists. VR simulation offers a low-cost, safe, and efficient method to understand the 
preferences of individuals interested but not yet choosing cycling as a mode. 

The second part of this thesis presents the experimental design and findings of a pilot naturalistic 
pedestrian experiment conducted on the main commercial street in Staunton, Virginia. The experiment 
was designed to measure variations in the pedestrian experience when the corridor is open and closed to 
vehicular traffic, a distinct opportunity provided by a local initiative to repurpose the corridor. Smart 
eyeglasses with eye-tracking technology enabled the analysis of pedestrians’ gaze, while a smartwatch 
collecting HR data was used to identify potentially stressful events or stimuli, allowing researchers to 
retrieve information from the pedestrian perspective. Results show that most of the abrupt changes in HR 
occur while participants focus their attention on the ground of their walking route and at locations near 
intersections. This study sets the groundwork for future research on linkages between the experiential 
dimensions of the urban environment and pedestrian behaviors and physiological reactions. 

Through these two case studies, this thesis seeks to add to the limited existing literature related to 
understanding VRUs’ behavior and perception using physiological data, in different infrastructure design 
contexts. The thesis identifies the value of low-cost wearable sensor technology as well as the challenges 
with implementing such sensors, both in in-lab and in-field settings, with cyclists and pedestrians. 
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1 CHAPTER 1: INTRODUCTION 

Cyclists and pedestrians represent some of the most vulnerable users of roadway 
infrastructure. Vulnerable road users (VRUs) are defined as those individuals who are most at 
risk in traffic because they lack a protective shield and sustain a greater risk of severe injury in a 
collision compared to those in motor vehicles (1). Bicyclist fatalities have risen, with 2020 deaths of 
cyclists in the United States topping 938, higher than any year in recorded history (2, 3), suggesting that 
cyclists’ needs have not been properly accounted for while designing road infrastructure and public 
policies. Additionally, crashes involving cyclists are underreported (4–9) and typically only reported if 
they are severe (10). Studies also show other factors lead to underreporting, such as availability of 
resources, competing priorities, and political influence, especially when comparing data from different 
countries (11). Therefore, there are limitations to using crash statistics when analyzing cyclist safety. 
Further, in the United States, walking represents 10.5% of all person trips and is the third most prevalent 
mode of transportation, only behind the usage of cars and SUVs (12). In the past ten years, pedestrian 
fatalities have steadily increased, reaching 6,516 in 2020, the highest value in recorded history (3). In 
2020, pedestrian deaths represented 17% of the total fatalities in traffic crashes, with an estimated 55,000 
pedestrians injured nationwide (13). The vast majority of these fatalities occurred in urban areas (82%). 
When analyzing the events’ locations, 75% of pedestrian fatalities took place at locations not categorized 
as intersections, 15% at intersections, and 10% at other locations (i.e., roadside/shoulders, bicycle lanes, 
sidewalk, medians/crossing islands, etc.) (13). Steps must be taken to ensure that a safer, more equitable, 
and sustainable environment for VRUs is provided in order to increase active mobility. 

However, understanding VRUs’ needs and behaviors poses a challenge due to the dangers 
involved in on-road testing for data collection. Traditional safety analysis relies on crash rates, in what 
can be described as a reactive approach since crashes need to occur for data to be collected. Safety 
research has been shifting to a more proactive approach in recent years, with tools like virtual reality 
(VR) being used to test pedestrians and cyclists in various virtual environments modeled after the real 
world to collect data on their reactions and use of facilities (14). The first part of this thesis uses a VR 
bicycle simulator at the Omni-Reality and Cognition Lab (ORCL) at the University of Virginia (UVA) -
which has been previously validated (15)- to collect data to understand cyclists’ behavior and preferences 
for three alternative bicycle infrastructure designs on the same corridor. In addition to pre- and post-
experiment surveys, participants’ physiological responses were collected through heart rate (HR) sensors. 
Currently, there is little prior research that examines bicyclists’ physiological responses in simulation, 
though physiological data has been examined in driving simulators (16). Real or objective traffic safety 
relates to the number of crashes and the resulting fatalities and injuries, while perceived or subjective 
safety is the perception of risk (or lack thereof) in a roadway environment; that is, the psychological 
reaction (10, 11). This study focuses on perceived safety, since the analysis does not include real crash 
data, but rather test results obtained in laboratory experiments and secondary data elicited from revealed 
preference surveys. Prior research shows that increasing cycling mode share is related to higher levels of 
overall safety, according to the “safety in numbers” effect (17, 18), thereby relating perceived safety 
directly to objective safety, as shown in prior research (19).  

Moreover, even though pedestrian wayfinding is a simple, every-day task, it requires attention to 
traffic signs, signals, social norms, and basic traffic rules (20). In a similar manner to understanding 
cyclists’ needs and preferences, there is a need to understand pedestrians’ interactions with the built 
environment in order to aid planners, engineers, and decision-makers to promote safer, walkable spaces 
for active mobility. With the aid of wearable sensors, researchers can gain insight into pedestrians’ 
attention and what physiological reactions elements in the urban environment may elicit. Stress-inducing 
elements from the built environment could impact the way in which pedestrians enjoy their surroundings, 
their perception of walkability, safety, and route choices. In the second part of this thesis, pedestrians’ 
physiological reactions and perceptions of the physical environment were tested on a main commercial 
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street in Staunton, Virginia, on fair weather summer days in which the corridor was open to vehicular 
traffic, and on days that it was closed to motorized vehicles (giving way to commercial and leisure 
activities). Eye-tracking data was collected via smart glasses while a smartwatch was used to collect HR 
data. Further, surveys were used to elicit data on participants’ stated preferences and demographic and 
socio-economic data.  

The body of research of the current thesis is focused on the use of simulation and wearable 
sensors for the analysis of VRUs and is divided into two case studies. The first case study focuses on the 
following research question: What demographic, social, and physiological data is relevant in predicting 
urban cycling infrastructure preferences? The second, addresses the existence of associations between the 
interaction of pedestrians to the built environment, comparing their eye-tracking data and physiological 
reactions when analyzing the same environment in both open and closed-to-vehicle settings. This second 
case study aims to answer: what elements in the built environment shape the urban experience for 
pedestrians, and how do they change when motorized vehicles are involved or removed? As a result of the 
aforementioned case studies, the strengths and weaknesses in the use of wearable sensors to better 
understand VRUs and their environments, in both lab settings and in-field tests, are also assessed. 
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2 CHAPTER 2: LITERATURE REVIEW 

This section summarizes relevant existing literature and is organized into the following broad 
categories: 1) studies examining perceived safety and cyclist infrastructure preference, 2) measured safety 
studies of different types of cycling infrastructure, 3) studies analyzing cyclists’ safety or comfort using VR 
simulators, 4) research on pedestrians’ HR variability in the built environment, and 5) pedestrian 
experiments with smart eyewear and eye-tracking technology. 

 

2.1 Cyclist perceived safety 

Cycling is perceived as being an unsafe mode of transportation (18), especially in urban 
environments where there is exposure to motorized vehicles (21, 22). Safety is shown to be more highly 
valued than time as a factor for mode choice (23) and safety concerns affect route choices and decisions 
to cycle (22, 24). Feelings of perceived safety (19, 21, 25–31), perceptions of risk (19, 25, 29, 32–42), 
and comfort (43–48), among others, have been used in perceived safety literature to measure the cycling 
experience, and have been shown to be related to multiple factors like roadway infrastructure, existing 
traffic, and cyclists’ individual characteristics. Perceptions of safety are in accordance with cyclists’ route 
preferences; high bicycling stress, or low comfortability, is one of the most important factors in choosing 
cycling as a transportation mode (33, 49). Prior studies show that multi-use pathways, which are 
physically separated from motorists and include facilities for cyclists and pedestrians, are preferred (50, 
51) and perceived as one of the safest types of bike infrastructure, even though their measured risk 
reduction compared to major streets is low (33). 

The major contribution to a cyclist’s perception of lower risk (34), reduced feelings of insecurity 
or stress (52), and higher comfort levels (43) is for bike infrastructure to be located off-road or adjacent 
to road infrastructures (e.g., paths and bicycle boulevards). This is in line with the findings that cyclists’ 
safety concerns are mainly due to riding around motor vehicles (22). Particularly, cyclists have strong 
preferences for riding separately from other forms of traffic (53) in dedicated bicycle infrastructure (23, 
54, 55), as such conditions correlate to improved perceptions of safety (31) compared to biking on-road 
without bike lanes (52, 53). Female cyclists have stronger preferences for dedicated bike lanes over their 
male counterparts (53, 56). The existing literature also demonstrates that safety is a greater concern for 
female cyclists (51), that men find cycling more acceptable (34), and that women are more risk-averse 
(57). Moreover, female cyclists have been found to experience higher levels of fear of traffic (25), 
perceptions of risk (58, 59), and discomfort cycling in mixed traffic (59) than their male counterparts. 

 

2.2 Safety outcomes for cycling infrastructure 

Few studies have examined bicycle crash data relating to different cycling infrastructures (6, 9, 
60, 61), mainly due to limited empirical data that has insufficient spatial disaggregation. Robartes and 
Chen found that bicycle crashes involving automobiles on urban or suburban roads with a dedicated bike 
lane showed a smaller proportion of injuries compared to those occurring on streets with shared bike lanes 
or with no cycling infrastructure (9). Lott and Lott studied the same type of crashes in 1976 from police 
reports in a California city with bike lanes and compared them to those in another California city with no 
bike-lane system (61). The resulting frequency of crashes was overall reduced by 31% by the apparent 
effect of bike lanes, up to 53% for certain crash categories. Additionally, Mukoko and Pulugurtha’s model 
of bicycle-vehicle crashes suggested that cyclists are significantly more likely to be involved in crashes 
while traveling on roadway segments with no bicycle lane (62). Finally, the study carried out in Denmark 
by Myhrmann et al. using single-bicycle crash data obtained from 2010-2015 medical records showed 
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that only 24% of the analyzed crashes occurred on a bike lane, with the remaining taking place on road 
segments without dedicated bike infrastructure (60). 

 

2.3 Cycling tests in VR simulators 

 Recently, VR simulators and virtual environments have been used as an effective tool for 
transportation research (16, 63–71) and there have been multiple studies related to the development and 
validation of bicycle simulators and prototypes (14, 72–75). However, there is little prior research of 
bicyclists’ perceived safety or comfort using VR simulators (76–79). Among this small body of existing 
literature, Nazemi et al. used a bike simulator and immersive VR to test perceived level of safety and 
willingness to bicycle, along with pre-test and post-test questionnaires (76). Results showed that 
participants felt safer cycling on a segregated bike path than cycling on a striping-separated bike lane on 
the road and roadside next to vehicles, particularly for non-bicyclists. No significant differences in gender 
and between different durations of cycling were found. Older participants showed more concerns about 
roadside cycling, and commuters were more confident in the same facility. Huemer et al. found that a 
layout with a designated bicycle lane was subjectively safer, more comfortable, and easier to understand 
for cyclists than other bicycle infrastructure designs (77). Furthermore, Cobb et al. used a simulator and 
measured galvanic skin response (GSR) to conclude that cycling in a bike lane incited less skin reaction 
than the no-bike lane condition, and those cycling without the bike lane showed more GSR to vehicular 
volume (78). Female cyclists were found to feel less comfortable than males in either scenario, regardless 
of their biking skills. Finally, Bogacz et al. measured risk perception among cyclists using VR, brain-
imaging data, and a dynamic hybrid choice model (79). The study tested changes in participants’ 
behavior relating to perceived risk due to changes in traffic conditions and showed behavioral and neural 
consistency. Changes in the amplitude of a particular brainwave were associated with increased perceived 
risk and the propensity to brake. 
 

2.4 Heart rate analysis in pedestrians 

In experiments unrelated to vulnerable road users, HR has been associated with emotional factors 
like fear, anxiety, or both (80, 81), and proved to be the best physiological marker for stress assessment 
(82). HR variability refers to the beat-to-beat alterations in human heartbeat (83). Researchers have 
reported HR variability to have a significant positive correlation with subjective situation awareness, as 
tested in varied simulation training scenarios (84, 85). Regarding pedestrians, stressful environmental 
factors could have an impact not only on their stress levels, but on their interaction with their 
surroundings, perceptions of environmental walkability, and route choices. Pedestrians are highly exposed 
to the dynamics of their environments, more so than those inside motorized vehicles whose experience is 
mediated by the vehicle itself (86).  

Incorporating pedestrians’ physiological factors into the evaluation of built environments allows 
for the continuous appraisal of their walkability and identification of features that elicit abnormal 
physiological responses (87). Moreover, HR has been deemed as “quite responsive” to momentary 
changes in mental workload that are observed in pedestrians (88) and has been shown to be indicative of 
sudden events like a close call with a vehicle or being startled (86). On account of noise-increasing 
mental workload, pedestrians would experience greater psychological stress as the number of (noise-
generating) motorized vehicles along their route grows (86). 

An emerging branch of research incorporates wearables that allow for the collection of 
participants’ physiological factors (86). Studies conducted with pedestrians in the built environment, 
aided by wearable HR sensing devices, showed that road congestion degree (representing traffic 
congestion and sidewalk width) was an important environmental factor affecting pedestrians’ personal 
mental stress (89). For example, LaJeunesse et al. (86) measured pedestrians’ physiological factors 
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(including HR) during normal walking activities in multiple traffic contexts and concluded that subjects’ 
stress levels were not correlated to particular crossing locations but rather to roadway conditions. When 
participants walked close to collector and arterial streets, in areas of industrial and mixed land uses, 
higher levels of stress were detected. More traffic, and thus noise and opportunities for pedestrian-vehicle 
crashes could explain the intensified stress reactions reported in busier land uses. On the contrary, the 
authors stated that stress levels were relatively low in lower-density residential areas, parks, forests, 
university campuses, and in areas with low vehicle traffic. In addition, a 1981 experiment with 
pedestrians with different levels of visual impairments -from none to blind- showed that increasing 
familiarity with the walked route tended to result in lower levels of stress (measured through the mean 
HR and standard deviation), particularly in simple routes (90). Furthermore, Kim et al. (87) introduced 
an analysis of body responses (that included HR) to investigate the conditions of a walkable built 
environment and the interactions of pedestrians’ activities and environment features. The authors 
observed that locations with features regarded as adverse for pedestrians, such as barking dogs, a 
container for storing gas, a partially-demolished house, and “no sidewalk” zones, had higher HR reserve 
values -a normalized index mostly used to identify physical demand from HR changes (91)-. 
 

2.5 Analysis of pedestrian eye tracking data 

Emerging new, smaller, and more portable wearable devices -such as smart glasses, sensors, and 
cameras- allow researchers to map visual attention and collect data from the first-person perspective (92). 
Until recently, research involving eye-tracking glasses with pedestrians was only possible in lab settings 
(93), mostly due to technological constraints and the complexity of monitoring tasks in their natural 
environments (94–97). However, such technology is now being used more frequently outdoors, 
providing a deeper understanding of how these users interact with real-life environments (98). Hasan and 
Hasan (99) concluded in their 2022 study that most research on pedestrian safety using sensors (and 
augmented reality) was concentrated on a specific domain, usually not suitable for the real-world setting. 
Furthermore, experimentation with smart glasses has been identified as needed, in relation to 
understanding pedestrians’ changes in focus as they notice objects during their walking experience (100). 
It has also been identified that using smart glasses for data collection allows researchers to obtain reliable 
data on pedestrians’ behavior in their regular commutes and retrieve most of the information experienced 
by them (98).  

Multiple studies were identified on the use of eye-tracking data as a means to explore pedestrians’ 
experiences in outdoor settings in urban environments (101–107). Mobile eye-tracking devices are an 
evolution of lab-based eye tracking that allow researchers to evaluate focus and eye movements while a 
person is traveling in a real-world environment. Eye tracking data can provide insight into pedestrians’ 
perceptions and cognition as it is a means of studying how visual information is processed (105). 
Researchers have found that pedestrian viewing behavior is highly targeted, since they take cues from the 
environment that aid them in walking around safely, which suggests that pedestrians intuitively 
understand what visual cues to focus on, without having to search for them (103). In a 2020 study that 
focused on the visual attention process of pedestrians looking at a particular building, de la Fuente Suarez 
(101) found that time spent looking at the building did not relate to the walked route or its start point. 
However, facades’ high-quality architecture that was described as aesthetically pleasing by participants, 
was viewed longer. Further, it has been found that street edge ground floors receive more visual 
engagement than their upper floors, and the visual attention paid by pedestrians to street edges is unequal 
in non-pedestrianized and pedestrianized streets, having pedestrians focus more on the walked side of the 
former, and having focus more balanced on both sides of the latter types of streets (104). A study found 
that the walked path and other people were the items most frequently fixated on by pedestrians, with most 
of the visual attention on the target path happening at close distances, while fixations with people were 
most likely at far distances (108).  
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2.6 Conclusions from the literature review and paper contributions 

The conducted literature review focused on cyclists’ perceptions of safety, bicycle infrastructure 
as it relates to safety, and research conducted with cyclists within in-lab settings aided by bike simulators 
and VR. As shown, only a few simulator studies of cyclists’ perceived safety use physiological data, and 
only a limited number (exclusively from ORCL at the University of Virginia) have used HR data (15, 
109–112). It has been demonstrated in an on-road experiment that situations perceived as risky by 
cyclists induce higher HR responses (52). This thesis contributes to the emerging literature review by 
analyzing perceived safety of bike infrastructure utilizing HR data in bicycling VR simulation. Further, 
this literature review included past research on pedestrians’ physiological responses (particularly changes 
in HR) in the built environment, with no laboratory constraints, and studies conducted with the use of 
smart eyewear and eye-tracking technology. This thesis’ contribution to the current state of knowledge 
with an exploration of the use of wearable sensors’ outputs to assess pedestrians’ perceptions of real-life 
settings in an urban environment. Better understanding of bicyclists’ and pedestrians’ perceptions and 
interactions with their environment can aid engineers, planners, and decisionmakers in promoting safer 
and more sustainable modes of transportation. 
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3 CHAPTER 3: PHYSIOLOGICAL RESPONSES OF BICYCLISTS IN A LAB VIRTUAL 
REALITY SIMULATOR: CASE STUDY OF PERCEIVED SAFETY 

In this chapter, cyclists’ perceptions of bicycle infrastructure alternatives were tested through 
immersive virtual environments and a previously validated bicycle simulator. The environments were 
modeled after a real-world corridor and three bicycle infrastructure designs were tested: sharrows (with 
no bike lane), a separated bike lane, and a protected bike lane with flexible delineators. Data on 
participants’ preferences and background were elicited from surveys, and HR data were collected using 
smartwatches.  

3.1 Methodology 

3.1.1 Experimental process 

Before starting the biking experiment, participants answered questions designed to elicit 
sociodemographic data in a pre-test questionnaire and put on two smartwatches (one on each wrist) that 
measured their HR. Once on the bike simulator, participants completed a familiarization run in VR to get 
comfortable with the stationary bike’s elements: pedals, controllers for braking, and steering. Steering 
calibration for each participant takes place at this stage. The immersive virtual environments in VR were 
developed in the Unity 3D game engine, and Stream VR platform using HTC Vive Pro Eye headset and 
hand-held controllers. Full development of the simulator, components, and testing elements can be found 
in Guo et al. (15). During the experiments, cyclists were exposed to three different scenarios in VR 
modeled after three blocks on the Water Street corridor between 2nd Street Southwest and 2nd Street 
Southeast in Charlottesville, Virginia (Figure 3.1). Water Street is a two-lane road with parallel parking 
spaces along the westbound side. 

Each immersive virtual scenario represented an alternative bicycle infrastructure design: 1) the 
as-built scenario (mixed-use roadway with no bike lane and painted sharrows), 2) a separated bike lane 
along the eastbound lane, and 3) a protected bike lane with flexible delineators, also in the eastbound 
direction. All other factors between scenarios remained constant (e.g., traffic volume, vehicle speeds, 
vehicle lane width, etc., details of which can be found in Guo et al. (109)). The simulated bike lanes are 
5ft wide and other biking infrastructure elements (e.g., spacing between flexible delineators) were 
designed following Federal Highway Administration standards (113). 

The order in which participants were immersed in these alternative design scenarios was 
randomized to avoid possible biases in responses due to the novelty and excitement of cycling in a 
simulator environment. Each participant cycled in each of the three scenarios once. Following the 
experiments, participants completed a post-test survey in which they stated their safety perceptions. 
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Figure 3.1: (a) Real-life to (b) VR comparison and (c) study area: Water Street corridor in 
Charlottesville, VA 

 
3.1.2 Participants 

Test participants were locally recruited via university email lists and word of mouth. Participants 
were required to be over 18 and without any health condition that would prevent them from riding a 
stationary bike or using a VR headset. In the recruitment email, potential participants were warned that 
glasses may interfere with the use of the VR headset. A total of 14 of the recruited participants reported 
they wear glasses occasionally or regularly. During testing, no interference between eyeglasses and 
headsets occurred and all 14 participants were able to complete the experiment. The number of tested 
participants was 51, but one participant could not finish the experiment due to motion sickness, resulting 
in a sample size of N=50. All tests were carried out at the ORCL at UVA in February and March of 2021. 

Figure 3.2: (a)VR Bicycle simulator setup and scenarios in the immersive virtual environment (b) 
sharrows/as-built, (c) separated bike lane, and (d) protected bike lane, respectively)  
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3.1.3 Data collection 

The collected data (N=50) could be categorized into three groups: sociodemographic data, stated 
preference data, and physiological data. Sociodemographic data were collected from the pre-test surveys; 
this included population-based factors like gender, age, race/ethnicity, personality traits, and 
socioeconomic factors like income and educational level. To assess personality traits, the Ten-Item 
Personality Inventory (TIPI) (114) was used to assign scores on the main five personality dimensions that 
are used as a model for personality (extraversion, agreeableness, conscientiousness, emotional stability, 
and openness to experience). Participants were asked 10 questions on personality traits that could be 
answered on a scale from “Strongly agree” to “Strongly disagree”. The TIPI methodology uses a rubric to 
turn the answers into a numerical score on the main five personality dimensions used to assess 
personality. Additionally, biking attitude was elicited from participants as a way to group participants in 
terms of how they view bicycling. The Roger Geller typology characterizes people as one of four types of 
cyclists concerning their attitude towards biking: strong and fearless, enthused and confident, interested 
but concerned, and no way, no how (115). Revealed infrastructure preferences, elicited from the post-test 
surveys, included participants’ assigned safety ratings for the different bike infrastructure scenarios (on a 
scale from 1- “Not safe at all” to 5- “Very safe”). The rating of perceived safety of each infrastructure 
scenario can be subject to the person’s bias and might pose difficulty for fair comparisons since the values 
used in the rating (1 through 5) cannot be assumed to be scaled identically across all participants. 
Therefore, participants were also asked to select which design scenarios are most and least preferred, 
based on the participant’s perceived safety. The variable representing the physiological response was 
chosen to be HR changepoints to account for the individual variability across participants’ HRs. HR 
changepoints are abrupt changes in mathematical expectation, correlation relations or dispersion that 
result from changes in either external or internal environmental factors (116). They measure the 
progression of each participant’s HRs, not on its absolute value, and isolate points in the time-series data 
where HR suddenly varies. Through the testing, smartwatches collected HR data with a 1 Hz frequency. 
Rising HR points show the HR changepoints in which the HR reading is higher than the average of the 
previous five HRs detected, following the methodology by Guo et al. (109). To reduce inconsistencies in 
the results, HR changepoints collected during steering calibration of the bike simulator (that is before the 
participant starts pedaling) and after the third intersection (at the end of the corridor, where the 
participant’s stop point is not fixed) were dismissed.  
 Descriptive statistics for the collected data can be seen below (Table 3.1) for the total sample 
(N=50) used for exploratory analysis and for the reduced smaller sample size used in the explanatory 
analysis due to missing data (N=42). Missing data can be attributed to sensor malfunction (e.g., 
participants not having the smartwatch tight enough around their wrists) and participants not willing to 
disclose some personal information in the surveys (e.g., age). 
 
Table 3.1: Descriptive statistics of the total and reduced samples 

Variable 
Total Sample (N=50) 

(Exploratory 
Analysis) 

Reduced Sample 
(N=42) (Explanatory 

Analysis) 

Respondent’s socio-economic characteristics 
Gender: Female 46.0% 47.6% 
Gender: Male 54.0% 52.4% 
Age: 18-29 - 45% 
Age: 30-49 - 38% 
Age: 50 + - 17% 
Biking attitude: Strong and fearless 18.0% 16.7% 
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Biking attitude: Enthused and confident 52.0% 50.0% 
Biking attitude: Interested but concerned 26.0% 28.6% 
Biking attitude: No way, no how 4.0% 4.8% 
Educational level: High school/GED 8.0% 7.1% 
Educational level: Some college (no degree) 10.0% 9.5% 
Educational level: Bachelor’s degree 22.0% 21.4% 
Educational level: Graduate degree 60.0% 61.9% 
Race/ethnicity: White/Caucasian 64.0% 57.1% 
Race/ethnicity: Asian/Pacific Islander 30.0% 33.3% 
Race/ethnicity: Hispanic/Latino 2.0% 2.4% 
Race/ethnicity: Other 6.0% 7.1% 
Race/ethnicity: Prefer not to answer 2.0% 2.4% 
Personality trait: Extraversion (mean) 3.87 3.88 
Personality trait: Agreeableness (mean) 4.98 4.98 
Personality trait: Conscientiousness (mean) 5.69 5.67 
Personality trait: Emotional Stability (mean) 4.88 4.79 
Personality trait: Openness to Experiences (mean) 5.32 5.30 
 

3.2 Results and discussion 

The independent variables examined in this study to affect bicycle infrastructure perceived safety 
include 1) participants’ demographic and socioeconomic data, and 2) HR data. The dependent variable 
(perception of safety) is represented by the safety ratings participants assigned to each infrastructure 
alternative scenario and safest and least safe scenario rankings. 

The empirical analysis was divided into two stages. The first stage was an exploratory analysis 
that consisted of utilizing multiple methods to summarize the dataset’s characteristics, discover patterns 
and/or outliers, and check assumptions, while the second stage of analysis involved constructing an 
explanatory model of how demographic, socioeconomic, and physiological data relate to a participant’s 
choice of safest infrastructure design scenario. Both analyses are discussed in detail in this section. N=50 
is the sample size starting point, but sample size is adjusted in the different analyses based on available 
data as explained in the following subsections. For simplification, the three tested scenarios will be 
hereon referred to as B1: As-built scenario (sharrows with no bike lane), B2: Separated bike lane, and B3: 
Protected bike lane with flexible delineators. 
 
3.2.1 Exploratory analysis 

Participants’ stated preferences, as responses to the instruction “Please select the one in which 
you felt the least safe and the one in which you felt the safest” are presented in Figure 3.3. Results 
revealed that only 8% of participants ranked B1 as the safest scenario (80% regarded it as the least safe), 
while 22% chose B2 as safest, and 70% stated their preference for B3 as safest.  
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Figure 3.3: Scenario preference (scenario safety rankings) for all participants (N=50) 
 

The boxplot in Figure 3.4 shows the mean safety ratings for each bike infrastructure scenario for 
all participants, per the answer to the question “How safe did you feel using the different kinds of bike 
infrastructure?”, on a scale ranging from “1=Not safe at all” to “5=Very safe.” The mean rating for B1 
was 2.60 (Std. Deviation=1.20, Mode=2) whereas for scenario B2 the mean response was 3.90 (Std. 
Deviation=0.76, Mode=4), and 4.12 (Std. Deviation=1.10, Mode=5) for B3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Mean scenario safety ratings for all participants (N=50) 
 
 Figure 3.4 shows that the protected bike lane (B3) scored higher mean values of safety rating 
than the separated bike lane (B2) but also showed greater dispersion in results, implying that several 
participants reacted negatively to biking alongside flexible delineators. Repeated measures ANOVA 
showed that there were differences between the means of perceived safety ratings in all scenarios 
(p=0.000). Pairwise comparison using Bonferroni correction validates that participants rated B2 higher on 
average than scenario B1 (p<0.001), which translates into a higher feeling of safety provided by biking in 
the separated bike lane. Furthermore, scenario B3 scored higher mean ratings than B1 (p<0.001), 
indicating that a protected bike lane made participants feel safer than biking in mixed traffic. No 
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statistically significant difference was found between the safety ratings of B2 and B3. These results 
confirm previous studies’ findings that cyclists feel less safe in mixed traffic than in a designated space 
for biking (52, 53). 
 
3.2.1.1 Grouping variable: gender 

 The effect of gender on perceived safety was analyzed by grouping the sample by gender and 
examining the scenario rating responses (Table 3.2). In the pre-test questionnaire, participants were asked 
to choose their gender between “Female”, “Male”, or “Other.” The sample was skewed towards male 
participants (nfemale=23, nmale=27), but is consistent with cycling tests in reviewed literature (117, 118). 
 
Table 3.2: Descriptive statistics for scenario safety ratings for male and female participants (N=50) 

Scenario Gender Mean Std. Dev. Mode n 

B1: as built 
Female 2.17 0.717 2 23 
Male 2.96 1.400 2 27 

B2: separated bike lane 
Female 3.96 0.767 4 23 
Male 3.85 0.770 4 27 

B3: protected bike lane 
Female 4.44 0.945 5 23 
Male 3.85 1.167 5 27 

  
The Mann-Whitney U test was used to find whether differences in central tendency between the 

ratings for both populations exist. The results show that male participants rated scenario B1 more 
favorably than female participants (p=0.044), and that female participants rated scenario B3 higher than 
male participants (p=0.045). The results show that the grouping variable “gender” has an impact on the 
feelings of safety in biking infrastructure alternatives; men seem to report feeling safer than women 
biking in the as-built scenario with only sharrows, while women feel greater safety biking alongside 
flexible delineators in a protected bike lane compared to their male counterparts. Additionally, there were 
no differences in perceived safety ratings between genders for scenario B2. These findings are in 
congruence with the reviewed literature that indicates female cyclists feel safer than males in separated 
bike infrastructure (55, 119) and prefer dedicated bike lanes (53, 56) since they experience higher levels 
of fear of traffic (25), perceived risk (56, 57), and discomfort cycling in mixed traffic. 

 
3.2.1.2 Grouping variable: physiological responses 

 As previously discussed, due to sensor or software malfunction, some participants’ HR data were 
missing or incomplete, which resulted in a sample size of n=43 for HR analysis. Among these 43 
participants, the mean for rising HR changepoints was the highest for scenario B1 (mean=0.884) while 
scenarios B2 and B3 scored mean values of 0.581 and 0.605, respectively. These results indicate that, on 
average, higher rates of change in participants’ HRs could be attributed to cycling in a mixed-use 
roadway with other motorists, instead of in a designated separated and/or protected lane. This result is 
consistent with a previous study using on-road testing that exposure to traffic can elicit variations of HR 
that could be related to higher perceptions of risk, greater physical effort, or both (52). Table 3.3 shows 
the distribution of participants’ rising HR changepoints per infrastructure design scenario. The values 
show that in the as-built scenario (B1), most participants (74.4%) had at least one rising HR changepoint, 
whereas, in both bike lane infrastructure alternatives (B2 and B3), half of the participants had no 
detectable changepoints in their HR (53.5% and 55.8%, respectively). This suggests that a designated 
space for cyclists could produce lower peaks in HR, leading to a less stressful cycling experience. 
However, the protected bike lane (B3) scenario produced two rising HR changepoints in 7 participants, 
more than double the number of participants with two rising HR changepoints for scenario B2. This 
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indicates that some participants had stronger stress reactions biking in the protected bike lane with 
flexible delineators compared to in a separated bike lane. 
 
Table 3.3: Rising HR changepoint frequency per biking scenario 

Scenario 
0 HR 

changepoints 
1 HR 

changepoint 
2 HR 

changepoints 
3 HR 

changepoints 
Median N 

B1 11 26 6 0 1 43 
B2 23 16 3 1 0 43 
B3 24 12 7 0 0 43 

 
 A Spearman’s correlation test revealed that there was a positive correlation between the safety 
rating assigned to scenario B1 and the rising HR changepoints for B1 (ρ=0.289, p=0.061), which 
seemingly contradicts previous findings that environments perceived as high risk by cyclists are likely to 
produce higher HR than those that are perceived as low risk (52). This could be attributed to the fact that 
rising HR changepoints are derived from a continuous variable. Furthermore, an individual’s reaction to a 
particular infrastructure alternative could be correlated to the reactions for the other two scenarios. In fact, 
the data showed that there is a positive correlation between an individual’s HR changepoints for scenarios 
B1 and B2 (p<0.001). These findings indicate the need to include physiological data in achieving a full 
understanding of cyclist preferences and behaviors, especially when such data may contradict stated 
preference data.  
 
3.2.1.3 Grouping variable: biking attitude and personality traits 

 The Mann-Whitney U test was run to test whether individuals with different biking attitudes rated 
the three biking scenarios similarly. Participants in the “no way, no how” category were removed from 
the analysis since the sample size (n=2) was small. For the remaining 48 participants, the results revealed 
that those in the “strong and fearless” category rated scenario B1 on average more favorably (p=0.039) 
than others, while those who identify as “interested but concerned” ranked B1 lower than the other 
participants (p=0.006). This indicates that the grouping variable “biking attitude” affects infrastructure 
scenario safety ratings. Furthermore, this result supports the notion that participants who were more 
confident in their biking skills perceived the as-built scenario as safer than others, and those who had 
some concerns about cycling safety saw the as-built environment as much less safe, highlighting the 
benefit of simulation-based studies that can capture preferences of potential cyclists (rather than real-
world observation studies that only capture preferences of existing cyclists). The results for the 
“interested but concerned” participants show the potential in designing bicycle infrastructure in a way that 
can increase mode share, which could then lead to the “safety in numbers” effect for cyclists. 
 Additionally, a Spearman’s correlation test was run to assess correlation between the scores for 
personality traits and the ratings for safety in the biking scenarios. No statistically significant correlation 
was found between these variables, although a minor relationship was found between personality trait 
“emotional stability” and rating for B2 (p=0.149). Moreover, no statistically significant correlations were 
found between personality traits and physiological responses. 
 
3.2.1.4 Grouping variables: age, education, and income 

The age category presented a challenge for analysis due to the size and composition of the 
sample. The total sample size of those reporting age was n=49 (mean=34.14 years, median=30 years) 
since one participant did not want to reveal their age. Grouping participants by age using categories like 
the one used in the US Census would leave categories with little to no participants. Instead, the age 
variable was treated as a continuous variable for exploratory analysis. A Spearman’s correlation test was 
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run between age and scenario ratings. No statistically significant relationship was found between 
scenarios B1 and B3 and age, but a weak negative relationship was found between age and scenario B2. 
This result could be attributed to the bias towards younger participants in the sample, due to recruiting 
practices that relied primarily on the university community. The correlation coefficient is small, and no 
conclusion can be drawn from this dataset. 

In the pre-test questionnaire, participants were asked to choose one category describing their 
educational attainment out of the following: 1) High School/GED, 2) Some college (no degree), 3) 
Bachelor’s degree, and 4) Graduate degree. Due to the low sample size of the first two categories, they 
were combined into “High school/Some college”. A Spearman’s correlation was run between education 
level and the scenario safety ratings. The results show there was a positive correlation between those with 
Bachelor’s degrees and the safety rating for B1 (p=0.004), a marginal correlation between Bachelor’s 
degree holders and ratings for B2 (p=0.174), a slight negative correlation between the safety rating for B1 
and those with graduate degrees (p=0.106). The participant sample is heavily biased towards highly 
educated participants due to their affiliation with the university (60% of participants have graduate 
degrees), therefore no conclusions can be drawn at this stage regarding educational level and bicycle 
infrastructure scenario preferences. 

Participants were also asked about their individual or household income, depending on whether 
they lived with or without roommates. Four participants preferred not to disclose this information and 
were left out of the sample, resulting in a sample size of n=46 for this analysis. Household income 
categories were merged into lower income ($0 to $75,000) and higher income (>$75,000) for analysis. 
The Mann-Whitney U test was used to compare differences in central tendency between the safety ratings 
of both groups. The findings showed that those in the lower income category ranked scenario B2 higher 
(p=0.016). Since no conclusion can be drawn at this stage, the grouping variable “income” will be 
included in the explanatory stage of the analysis. 
 
3.2.1.5 Grouping variable: race/ethnicity 

The sample showed little diversity across races/ethnicities, with a vast majority of participants 
being white/Caucasian (n=32) or Asian/Pacific Islander (n=15). Thus, due to insufficient representation, 
the variable race/ethnicity was not included as part of the analysis. 
 

3.2.2 Explanatory analysis 

A multinomial logistic (MNL) regression was used to model the relationship between the 
independent variables and the participant’s choice for safest infrastructure scenario. The model aimed to 
examine predictors in cyclists’ preferences and assess whether the selection of the safest scenario can be 
attributed to personal characteristics and physiological responses to biking in the different infrastructure 
scenarios. The sample size was reduced to N=42 (with descriptive statistics shown in Table 3.1), which 
includes participants with full HR and age data.  

The exploratory analysis allowed for some variables to be excluded outright from the explanatory 
analysis (race/ethnicity). Other variables (biking attitude, educational attainment, income, and 
personality) were excluded from the preferred model as the result of an iterative process as they were not 
found to be statistically significant. Because the rising HR changepoints for B1 and B2 emerged as 
correlated (r=0.568, p<0.001), these variables cannot be both included in the model, and two models for 
the safest scenario were built with the as-built scenario (B1) as the reference category (See Table 3.4 and 
Table 3.5). Models 1 and 2 show consistent effects of gender, age, and rising HR changepoints on 
participants’ preferred safest scenario. Model 1, including the physiological responses for the as-built 
scenario (B1) and the protected bike lane (B3), was slightly preferred due to its better fit, and is used for 
results discussion and marginal effects analysis. Likelihood ratio tests indicated the individual 
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contribution of the explanatory variables; gender (p=0.069), age (p=0.005), and rising HR changepoints 
for B3 (p=0.028) had statistically significant impacts on the preference for the safest scenario. The 
physiological responses for B1 and B2 were near statistical significance at the 90% confidence interval, 
and are still included in the model due to small sample size. 
 
Table 3.4: Multinomial logit Model 1 results (N=42)a 

Alternative B2 B3 
Variable Parameter Std. Error Parameter Std. Error 

Alternative specific constant 15.375 9.385 17.372 * 9.321 
Gender (reference category: Female) -3.894 2.770 -4.615 * 2.693 
Age -0.280 * 0.166 -0.278 * 0.163 
Rising HR changepoints for B1 3.389 2.349 3.157 2.297 
Rising HR changepoints for B3 -3.227 2.111 -3.459 * 2.082 
Log-likelihood 49.752 ** 
Cox and Snell Pseudo R-Square 0.313 
Nagelkerke Pseudo R-Square 0.396 
McFadden Pseudo R-Square 0.241 
 

a * indicates 10% significance (p < 0.1), and ** indicates 5% significance (p < 0.05) 
 
Table 3.5: Multinomial logit Model 2 results (N=42)a 

Alternative B2 B3 
Variable Parameter Std. Error Parameter Std. Error 

Alternative specific constant 12.939 ** 6.362 14.842 ** 6.272 
Gender (reference category: Female) -3.494 2.315 -4.142 * 2.216 
Age -0.200 ** 0.097 -0.199 ** 0.093 
Rising HR changepoints for B1 2.863 2.157 2.603 2.124 
Rising HR changepoints for B3 -3.456 * 1.905 -3.623 * 1.859 
Log-likelihood 50.339 * 
Cox and Snell Pseudo R-Square 0.304 
Nagelkerke Pseudo R-Square 0.384 
McFadden Pseudo R-Square 0.232 
 

a * indicates 10% significance (p < 0.1), and ** indicates 5% significance (p < 0.05) 
 

  
From both models, it can be inferred that males are less likely than females to choose scenarios 

B2 and B3 over B1. Additionally, both models suggest increasing age has a negative impact on scenario 
preferences for B2 and B3 over B1, which implies that older participants tend to find the bike lane 
scenarios less safe than the as-built scenario. Finally, the rising HR changepoints for scenario B3 indicate 
cyclists’ preferences in biking scenarios: with higher HR changepoints under scenario B3, the models 
showed that cyclists are less likely to choose scenarios B2 and B3 over B1.  
 Marginal analyses (based on Model 1) were carried out to better understand the practical 
significance of the explanatory variables on the outcomes (most preferred infrastructure scenario) and the 
shifts in probabilities of choosing each scenario. Table 3.6 includes the default outcome probabilities 
when all variables are held at their mean, as well as the resulting probabilities from changes in each 
variable from the preferred model while controlling age at the mean, and physiological responses at the 
median. To analyze the effect size, a change in gender implies that the reference category changes from 
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female to male, while changes in age were carried out by increasing the mean age by one standard 
deviation (13.1 years). Rising HR changepoints were increased by 1 discrete changepoint from the 
median (1 in the case of B1, and 0 for B2 and B3). 
 
Table 3.6: Marginal effects analysis for MNL Model 1 (n=42)a 

 
Probability of 
choosing B1 as 

safest 

Probability of 
choosing B2 as 

safest 

Probability of 
choosing B3 as 

safest 
Model outcome (all variables held 
at their mean) 

0.2% 20.6% ** 79.6% ** 

Model predicted choices (controlling for all other variables) 
If all participants were female 0.0% 13.7% 86.3% ** 
If all participants were male 0.1% 24.5% ** 75.3% ** 
With 1 STD deviation increase in 
age 

0.6% 18.2% * 81.2% ** 

With 1 unit increase in rising HR 
changepoints for B1 

0.0% 22.6% 77.4% ** 

With 1 unit increase in rising HR 
changepoints for B3 

0.4% 22.5% ** 77.1% ** 
 

a * indicates p < 0.1 and ** indicates p < 0.05 

Gender emerged as the most practically significant predictor variable on scenario preference, with 
the greatest impact on the outcomes’ probabilities. If the sample consisted of all women, all other 
variables held constant, there would be a 6.7% increase in the share of those who choose B3 as the safest 
scenario. Moreover, higher HR changepoints for B1 and B3, made it less likely for the participant to 
choose the protected bike lane scenario as safest, more likely to choose the separated lane, and had almost 
no impact on the choice of B1 as safest. Increases in participants’ age resulted in mixed results, showing 
that older participants tend to choose B2 less as the safest scenario. Further analysis would be needed to 
fully understand the marginal effects of the physiological responses, especially to comprehend the 
relationship between rising HR changepoints and gender.  
 Finally, a model for the choice of least safe scenario was also explored (the resulting parameters 
can be found in Appendix A.) The same variables (gender, age, and physiological responses for scenario 
B3) emerged as explanatory, although only for explaining the choice of B3 over B1. There were no 
statistically significant explanatory variables for the outcome of B2 as the least safe scenario. 
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4 CHAPTER 4: PHYSIOLOGICAL RESPONSES OF PEDESTRIANS IN THE REAL 
WORLD: CASE STUDY OF REPURPOSED URBAN STREET 

This chapter includes the experimental design and findings of a pilot naturalistic pedestrian test 
conducted on the main commercial street of Staunton, Virginia. A local initiative to repurpose the streets 
on certain days in the week allowed for the experiments to be conducted to measure variations in the 
pedestrian experience when the corridor is open and closed to vehicular traffic. Smart glasses with eye-
tracking technology enabled insight into the pedestrian viewpoint, while physiological data was collected 
with a smartwatch. The experiment aimed to examine variations in the pedestrian experience of the same 
corridor, under the two use cases. 

1.1 Methodology 

4.1.1 Experimental process 

This naturalistic pedestrian experiment was designed to have participants walk four blocks on 
East Beverly Street (between Market Street and Lewis Street), a two-lane, one-way (westbound) corridor 
with permitted parallel parking along the south side. Beverly Street is the primary commercial street in 
downtown Staunton, Virginia. Since June of 2020, and as a result of COVID-19 safety measures, Beverly 
Street has been closed to vehicular traffic, typically April through October, starting Fridays at 4pm until 
Mondays at 7:30am, as part of the “Shop & Dine Out in Downtown” initiative. Street closures extend a 
total of four blocks, in the aforementioned segment. While motorized vehicles are restricted from driving 
on the corridor, all minor streets that cross Beverly Street remain open to traffic. For that purpose, 
temporary in-ground bollards located along the intersections of the corridor are used to close off the 
corridor and provide safety and guidance for both drivers and pedestrians. Additionally, official city 
vehicles typically block street ends (removing access to parallel parking along the corridor), and the City 
of Staunton makes five local parking garages free of charge when Beverly Street is closed to vehicles. 
The cross streets along this corridor, Lewis Street, Central Avenue, Augusta Street, New Street, and 
Market Street, remain open during the closure of Beverley Street. Figure 3.5 shows Beverly Street in 
both operational scenarios: while it is open to vehicular traffic and when it is open exclusively to 
pedestrian traffic. 

 

Figure 3.5: (a) Beverly Street while it is open to vehicular traffic (source: Google 
Streetview) and (b) Beverly Street while it is open to pedestrians only 
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As a result of this initiative, during times that Beverly Street remained closed to vehicular traffic, 
multiple shops, restaurants, businesses, and pop-up vendors set up in the street with tents and designated 
spaces for outdoor dining, cigar smoking, and playing stations for children. The initiative is a measure set 
by the City of Staunton to support local business owners that could not fully reopen their businesses 
indoors at the beginning of the COVID-19 pandemic. This approach to street closures is similar to others 
in the United States and globally, particularly emergent during the pandemic (120). Additionally, Beverly 
Street is only closed to vehicular traffic on weekends, which provided a distinctive opportunity to 
compare pedestrian behaviors in both an open and closed-to vehicles setting, while many other features of 
the built environment remained the same. 

The conducted experiment included two parts: the first being held on Thursdays, when the 
Beverly corridor remained open to vehicles, and the second on Fridays, when Beverly Street was reserved 
for pedestrian-only use. To the extent possible, participants were scheduled at similar times for both tests, 
between the hours of 4:30 pm to 8:30pm, in order to avoid extreme changes in light conditions between 
open and closed-to-vehicles scenarios. All tests were carried out during the months of June and July of 
2022, while a practice run occurred on Friday, June 3with 5 researchers and city employees.  

Prior to their participation, participants were emailed a short description of their tasks in the 
pedestrian test and participation requisites, including the consent form and pre-test survey eliciting 
sociodemographic and physical activity data. Participants were instructed to meet with the research group 
on South Market Street (Figure 3.6), in a private patio provided by a local coffee shop, about 75ft. from 
Beverly Street. A hard copy of the participation consent form was provided for participants to sign and a 
hard copy of the test route was shown and explained by one of the researchers. Participants’ decisions to 
participate in the study were completely voluntary, and they were free to withdraw from the study at any 
time. The test route required participants to walk westbound from the intersection of Beverly Street and 
Market Street to the intersection of Beverly Street and Lewis Street along the southside sidewalk, cross 
Beverly Street at the intersection with Lewis Street, walk eastbound along the northside sidewalk back to 
the initial intersection of Beverly Street and Market Street, and cross Beverly Street until the start location 
of the test was reached (Figure 3.6). The pre-defined walking path remained constant throughout the 
phases of the test, regardless of whether Beverly Street was open or closed to vehicular traffic. The order 
in which participants walked the open/closed-to-vehicle scenarios was random, to avoid any bias that 
might emerge from the novelty or excitement of participating in the experiment and mostly depended on 
participants’ availability. Participants could only walk each street scenario once, that is, once on a 
Thursday and once on a Friday. 

 

Figure 3.6: Study area and walking route on the Beverly Street corridor in Staunton, VA 
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 At the meeting point, after explaining the walking route, researchers assisted the participants with 
putting on the wearable sensors and briefed them regarding their use. These included the Tobii Pro 
Glasses 3 smart glasses, whose battery pack was asked to be safely placed in participants’ pockets, belt 
loop, or in their hand before each run, and a Fossil electrocardiogram smartwatch (ECG wristwatch) that 
was fitted to always ensure contact with the skin or either wrist. The smart glasses have a camera which 
allows for a first-person view of the participants’ surroundings (20). The smart glasses also recorded 
video, sound, and eye-tracking data, while the smartwatch gathered participants’ HR. The smart glasses 
are used to study human processing of visual data through eye movements (121), while the smartwatch 
can be used to detect induced stress and is used to better understand observed behavior in both operational 
scenarios, as will be further described in the following subsections. Before leaving the meeting point to 
start the experiment, the smart glasses were calibrated to each participant’s eyes to ensure data collection 
accuracy. 

No member of the research team followed the participants as they carried out the experiment, to 
ensure participants behaved naturally. Once participants returned to the meeting point, they would return 
the mobile sensing equipment, and complete a post-test survey once they had completed both phases of 
the test, that is, walking the predetermined path when Beverly Street was open and closed to vehicles. If 
asked, researchers did not disclose the aim of the test until the end of both phases, to avoid sharing any 
information that could cue participants into sharing biased answers in their post-test surveys. 
Additionally, weather and outdoor conditions were important factors in the completion of the tests, not 
only because drizzle or rain would obstruct the view through the smart glasses’ lenses or possibly ruin the 
equipment, but because shops and restaurants would not set up furniture and tents outside, even if 
vehicular traffic was restricted on Beverly Street, which would introduce major changes in the urban 
environment and preclude experimentation. Participants were emailed at least 24 hours in advance in the 
event of adverse weather conditions for rescheduling.  

 
4.1.2 Participants  

 Recruitment for the experiment took place via email within the Staunton area, in identified 
interest groups, such as Pedestrian or Bicyclist Action Committees, universities, businesses along the 
corridor of interest, social media, and word of mouth with the help of employees of the City of Staunton. 
Additionally, a volunteer flyer was distributed in the area to locally recruit participants. It was requested 
that participants were at least 18 years of age and that they did not wear glasses on the days of the test (if 
needed, they were asked to wear contact lenses) as the smart glasses could not be put on regular eyewear. 
Participants who could not walk without assistance were excluded from the study, since the navigation 
and behaviors of pedestrians with disabilities in urban environments were considered out of the scope of 
the study. The resulting sample size, or number of participants who completed both phases of the test, was 
N=12 (nfemale=8, nmale=4, mean age=42.8, Std. dev. age=14.0). 
 
4.1.3 Data collection  

 As described in the previous section, participants walked on Beverly Street to and from the 
meeting point. The smart glasses collected a total of 24 recordings (2 per participant), including multiple 
variables relating to the eyes’ position, pupil size, and movement. These glasses are equipped with a 
forward-facing point-of-view camera with recording resolution of 1920 x 1080 pixels, a sampling rate of 
25 frames per second, and a diagonal field of view of 106 degrees (a smaller field of view than the human 
eye). Generally speaking, it can portray the surrounding on which a pedestrian is focusing their attention 
(20). Further recording capabilities of the glasses include 16-bit mono audio recording, gyroscope, and 
accelerometer, with movements sampled at 100 Hz.  

People interact with their environment through their eyes, and it has been shown that people 
direct their eyes towards what they are working on (122). Gaze has been defined as the analysis of eye 
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tracking data with respect to the visual scene (123). A visual fixation is a period of time in which visual 
gaze remains focused on a specific location (124). Thus, gaze focus (or fixations) are critical for 
understanding the first-person perspective and the interactions between the individual and their 
surrounding environment, including the built environment and any social interaction that might occur in 
it. For the purposes of this study, the focus of the analysis will be on gaze data and video recordings (with 
their corresponding surrounding audio) in order to identify relationships between participants’ attention 
and their physiological responses. The Tobii Pro software was used to analyze the video recordings and 
showed instances in which the eye is focused on an element (fixation). However, fixation data is not 
continuously recorded throughout the video recording as it depends on the fit of the smart glasses and the 
shape of the participants’ faces.  
 Further, instantaneous HR data was collected from the smartwatch as participants completed the 
test runs (2 per participant) with a maximum frequency of 1 Hz. Consistent with the analysis in Chapter 3, 
rising HR changepoints were used for physiological response analysis. HR changepoints identify 
instances in the time-series data with abrupt rising changes in mathematical expectation, correlation 
relations, or dispersion, as introduced in the previous chapter and explained by the methodology by Guo 
et al. (109). Rising HR changepoints were only considered if they occurred along the predetermined 
walking path (Beverly Street corridor), dismissing any data points that occurred from the moment 
participants started the smartwatch recording until they turned on Beverly Street, and the final stretch 
between the end of the predetermined path and the meeting point. In order to account for uncertainties and 
the variability of testing in an uncontrolled natural setting, two tolerances (0.000001 and 0.0000001) were 
tested in the Bayesian changepoint detection codes used to extract the rising HR changepoints from the 
instantaneous HR readings. This resulted in two different sets of rising HR changepoints, which were 
compared and condensed by observing the times in which they occurred. If the identified rising HR 
changepoints were less than 5 seconds apart in each participant’s HR time-series data, they were 
considered a stressful event and the event starting time was matched to the participants’ fixation data. 
Rising HR changepoints that were not detected by both runs were dismissed, as the code itself (intended 
for laboratory settings) might be too sensitive for a naturalistic setting. The analysis was conducted to 
ensure that rising HR changepoints corresponded to stressful situations, although physical activity also 
affects HR. For reference, the pre-determined walking path is mostly flat, with an altitude change of 16 ft. 
(as measured by Google Maps).  

Table 3.7 shows the descriptive statistics for the collected data, including the total sample 
collected for all participants (N=12), the samples corresponding to the open-to-vehicles scenario, and the 
ones corresponding to the closed-to-vehicles scenario. The resulting samples do not show 12 participants 
in each phase of the study due to data loss. HR data loss can be attributed to the smartwatch not having 
proper contact with the participant’s skin, errors either in the smartwatch itself, or the HR uploading 
process from the watch to the server where the data is stored. Out of the total 15 HR recordings, 11 
corresponded to the open-to-vehicles scenario (on Thursdays) and 4 to the closed-to-vehicles scenario (on 
Fridays). The variables shown in Table 3.7 were elicited from the pre-test questionnaire and included 
gender, age ranges, educational attainment, race/ethnicity, and employment status. Finally, participants 
were asked if they had any visual impairments. Five participants reported vision impairments that 
included glasses for seeing in the distance, occasional blurry vision, and regular nearsightedness, although 
no participant reported being color blind. 
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Table 3.7: Descriptive statistics of the total and reduced data samples 

Variable 
Total sample 

(N=12)  
Thursday (open) 

sample (n=11) 
Friday (closed) 
sample (n=4) 

Respondent’s socio-economic characteristics 
Gender: Female 66.7% 63.6% 75.0% 
Gender: Male 33.3% 36.4% 25.0% 
Age: 18-29 8.3% 9.1% 0.0% 
Age: 30-49 50.0% 54.5% 100% 
Age: 50 + 41.7% 36.4% 0.0% 
Educational level: High School/GED 0.0% 0.0% 0.0% 
Educational level: Some college (no degree) 8.3% 9.1% 0.0% 
Educational level: Bachelor’s degree 41.7% 36.4% 50.0% 
Educational level: Graduate degree 50.0% 54.5% 50.0% 
Race/ethnicity: White/Caucasian 85.7% 91.7% 66.7% 
Race/ethnicity: Asian/Pacific Islander 7.1% 0.0% 16.7% 
Race/ethnicity: Hispanic/Latino 7.1% 8.3% 16.7% 
Employment status: Employed full-time 50.0% 54.5% 75.0% 
Employment status: Working part-time 25.0% 18.2% 0.0% 
Employment status: Student 8.3% 9.1% 25.0% 
Employment status: Self-employed 8.3% 9.1% 0.0% 
Employment status: Unemployed 8.3% 0.0% 0.0% 

 

4.2 Results and discussion 
 

The combination of gaze, video recording, and rising HR changepoint data allowed for the 
identification of stressful events in the participants’ walks. However, due to sensor malfunction and data 
loss during the uploading and recording of the HR data from the smartwatch, the initial goal of comparing 
pedestrian behavior and physiological reactions as they navigated through the urban environment during 
the open and closed-to-vehicles scenarios could not be pursued. Nevertheless, the analysis focused on 
identifying occurrences during participants’ walks that resulted in physiological reactions, with the 
advantage that data collected in a natural setting is more advantageous in accurately describing behavior 
than if it were collected in a controlled environment (20). 
 42 rising HR changepoints emerged from the collected data and the aforementioned analysis. Out 
of the 42 data points, 33 could be matched with gaze data from the smart glasses recording since gaze 
data was not available or not continuously recorded by the smart glasses, due to fit to each participant’s 
face and eyes. For each of these 33 data points, the entire minute within which the rising HR changepoint 
occurred was analyzed, to account for multiple elements in the urban environment that participants could 
be focusing on, as well as additional time to consider external stimuli.  

An area of interest (AOI) is defined as the region that may be observed in a scene or object and 
allow the eye tracking data to be linked to those segments or objects (101). From the video recordings, 
physical elements that gained participants’ visual attention were manually classified into one of the 
following urban typologies: 1) parked vehicles, 2) moving vehicles, 3) people, 4) store set up outside, 5) 
traffic lights, 6) traffic signs, 7) storefronts, 8) store frame signs on sidewalks, 9) street furniture e.g., 
trashcans), 10) floor, 11) natural elements (e.g., vegetation, sky) 12) buildings (upward, excluding 
storefronts), and a final category that considers 13) random or impossible-to-discern points. Because more 
than one AOI could have been within the participants’ gaze focus during the HR changepoint, the total 
number of points in each category totals 44 and can be found on Table 3.8. Further, using the obtained 
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video data, participants’ estimated locations were retrieved and were classified into the following: 1) 
midblock, 2) end of block, 3) middle of the street (on pavement), and 4) beginning of the block. To 
analyze the location in which rising HR changepoints occurred, the total 42 data points were used, since 
fixation data was needed in this instance. Table 3.9 shows the physical location of the participants when 
the rising HR changepoints were detected. 
 
Table 3.8: Rising HR changepoints for each fixation category (n=44) 

Fixation categories 
Number of detected rising HR changepoints 

Total sample   
Thursday (open) 

sample (n=35) 
Friday (closed) 
sample (n=9) 

Parked vehicles 2 (4.5%) 1 (2.9%) 1 (11.1%) 
Moving vehicles 1 (2.3%) 1 (2.9%) 0 (0.0%) 
People 2 (4.5%) 2 (5.7%) 0 (0.0%) 
Store set up outside 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Traffic lights 3 (6.8%) 3 (8.6%) 0 (0.0%) 
Traffic signs 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Storefronts 5 (11.4%) 4 (11.4%) 1 (11.1%) 
Store frame signs on sidewalk 1 (2.3%) 1 (2.9%) 0 (0.0%) 
Street furniture (e.g., trashcans) 4 (9.1%) 3 (8.6%) 1 (11.1%) 
Ground 19 (43.2%) 14 (40.0%) 5 (55.6%) 
Natural elements (e.g., vegetation, sky) 3 (6.8%) 3 (8.6%) 0 (0.0%) 
Buildings (upward, excluding storefronts) 4 (9.1%) 3 (8.6%) 1 (11.1%) 
Random or impossible to discern 0 (0.0%) 0 (0.0%) 0 (0.0%) 
 
Table 3.9: Rising HR changepoints and participant location (n=42) 

Location 
Number of detected rising HR changepoints 

Total sample   
Thursday (open) 

sample (n=33)  
Friday (closed) 
Sample (n=9) 

Midblock 22 (52.4%) 17 (51.5%) 5 (55.6%) 
End of block 11 (26.2%) 8 (24.2%) 3 (33.3%) 
Middle of the street 5 (11.9%) 4 (12.1%) 1 (11.1%) 
Beginning of the block 4 (9.5%) 4 (12.1%) 0 (0.0%) 
 

43.2% of all rising HR changepoints in the data set coincided with fixation, and thereby could be 
associated with an AOI. Results showed that the walking path (ground) is the most prevalent AOI which 
coincides with rising HR changepoints. In the open-to-vehicles scenario, 40.0% of rising HR 
changepoints associated with AOIs involved participants looking the ground. Similarly, 55.6% of rising R 
changepoints were associated with participants looking at the ground in the closed-to-vehicles scenario. 
This result showed that gaze focus was not a good predictor for abrupt HR changes, since it has been 
shown that the walked path was one of the elements most fixated on by pedestrians (108). The 
categorization when analyzing participants’ position could be merged into detected rising HR 
changepoints that occurred either when the participants were walking (midblock) or engaging in the 
activity of crossing a street (end of block, middle of the street, and beginning of the block). As a result, 
for all participants, 52.4% of HR changepoints would correspond to walking (midblock) and 47.6% to 
crossing an intersecting street. For the open-to-vehicles scenario, 51.5% of rising HR changepoints 
occurred walking midblock and 48.5% before, during, or after crossing. Finally, for the scenario in which 
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Beverly Steet was closed to vehicular traffic, 55.6% of rising HR changepoints corresponded to walking 
midblock and 44.4% to engaging in crossing a street. This showed that, even though areas near 
intersections represented a small portion in the total length of walked path, the crossing activity accounted 
for a considerable percentage of rising HR changepoints, related to factors like fear and/or anxiety (80, 
81). The anticipation of starting to cross a street, the act of looking one way or both ways for oncoming 
traffic when applicable, the actual crossing activity, and reaching the opposite block could be categorized 
as more stress-inducing activities than walking midblock alongside storefronts based on the results. 
Additionally, rising HR changepoints that occurred during the crossing activity were disaggregated 
considering if the street being crossed had vehicular traffic or if it was restricted. As a result, 19 (95%) of 
the rising HR change points corresponded to crossing streets that were open to vehicles, with only 1 (5%) 
corresponding to physiological responses while crossing a street with vehicular restrictions (Beverly 
Street). However, it is important to note that as a result of the test’s design, most crossings in the pre-
determined path entailed crossing roads open to vehicles (minor roads in both phases of the study, and 
Beverly Street on Thursdays). 

Further, the existence of external stimuli that coincided with rising HR changepoints was 
considered from the video recordings and surrounding audio. This included events that occurred during 
the experiments such as participants stopping to read a sign at a storefront, a vehicle driving past the 
participant or turning while they crossed the street, noise from a person raising their voice as the 
participant was in proximity, or someone shutting a car door, and other pedestrians walking or standing 
on the same sidewalk. About a third of the abrupt changes in HR could be associated with external 
stimuli, although this result was subject to the researcher’s interpretation of video data and thus cannot 
support any robust conclusions. 
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5 CHAPTER 5: CONCLUSION 

5.1 Summary of results 

The current research presented two case studies in which VRUs’ behaviors and their interactions 
with the built/virtual environment(s) were examined with the help of wearable sensors (i.e., VR headset 
for immersive virtual environments, electrocardiogram smartwatch (ECG wristwatch) for instantaneous 
HR collection, and smart glasses for eye tracking), in both in-lab and in-field settings. 

The first part of the thesis presented a novel way of studying cyclist behaviors in a safe and low-
cost way using VR simulation, stated preference data elicited from surveys, and physiological responses 
collected with low-cost HR sensors. Understanding cyclists’ preferences is critical for developing 
roadway designs that ensure cyclists feel safe, and to increase bike mode share since feelings of safety 
entice more people to ride (17, 18). Using immersive virtual environments, the as-built scenario with 
sharrows, an alternate scenario with a separated bike lane, and another alternate scenario with a protected 
bike lane with flexible delineators were tested. This type of study could be used to relate perceived safety 
to actual safety, of special interest considering the few existing papers that focus on crash data 
disaggregated by type of bicycling infrastructure. 
 This study found that the overall perception of safety while cycling on a separated or protected 
bike lane is higher than while cycling in mixed traffic, which aligned with previous research (31, 52, 53). 
Additionally, the protected bike lane with flexible delineators scored higher mean safety values than the 
separated bike lane and was selected as the safest infrastructure by most participants. Of the variables 
examined, gender had the greatest impact on safety perceptions. Consistent with previous studies (25, 34, 
55, 58, 59, 119), results suggested male participants felt safer than female participants in the as-
built/sharrows scenario, and women’s perceived safety of the protected bike lane was higher than that of 
men. Moreover, biking attitude was shown to be correlated with the perception of safety in the different 
infrastructure design alternatives. Cyclists who were more assertive in their biking skills (“strong and 
fearless”) perceive cycling in mixed traffic as safer than others, and those who had interest but some 
concerns about cycling perceived the as-built/sharrows design as less safe. Attending to the needs of 
cyclists who self-identify as “interested but concerned” could result in increases in cycling mode share. 
Such preferences could not be captured with on-road testing and data collection of only existing cyclists; 
however, simulation allows people who are not current cyclists to be included in the dataset. 

This thesis also showed that cycling in the as-built/sharrows scenario, instead of in a designated 
separated and/or protected lane, correlated with more abrupt changes in HR, linked to fear, anxiety, or 
both (80, 81). Almost three quarters of participants experienced rising HR changepoints in the as-built 
scenario, compared to half in the separated or protected bike lane scenarios. However, the physiological 
responses of participants in the protected bike lane indicated that a small but not insignificant number of 
participants reacted more negatively to biking alongside flexible delineators. Additionally, the preferred 
MNL model suggested that gender, age, and physiological responses while cycling in the protected bike 
lane are associated with which biking infrastructure alternative (either a separate bike lane or a protected 
bike lane) cyclists are more likely to choose over the as-built scenario (sharrows). Gender emerged as the 
variable with the greatest impact on cyclists’ preferences. 
 The second part of the thesis presented the design of a naturalistic pedestrian test to understand 
pedestrians’ interaction with the built environment in urban settings, taking advantage of a distinct 
opportunity to compare pedestrian behaviors in both an open and closed-to-vehicles setting. This 
opportunity was presented by the “Shop & Dine Out in Downtown” initiative in the main commercial 
corridor in the city of Staunton, Virginia. By incorporating pedestrians’ physiological factors (namely, 
HR), the environment’s features that produce abnormal physiological responses could be evaluated (87), 
while the use of smart glasses allowed for data on the visual exploration process, with eye-tracking 
technology enabling insight into pedestrians’ perceptions and cognition (105).  
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 Out of the thirteen analyzed AOIs, the obtained results showed that most physiological responses 
occurred while the participants were focusing their gaze on the ground (or walking path). This could be 
understood as in congruence with past results showing that street edge ground floors receive more visual 
engagement than their upper floors (104), since 43.2% of the measured physiological responses occurred 
while looking at the ground, 11.4% at the storefront, and 9.1% while looking upwards at buildings. 
Further, when analyzing the pedestrians’ position relative to the street location, almost half of abrupt 
rising changes in HR occurred when participants engaged in crossing a street (47.6%). Since intersections 
represent a small proportion in the total length of walked path, this finding could be related to previous 
research findings on crossing locations stating that traffic and thus, noise and opportunities for pedestrian-
vehicle crashes, could explain the intensified stress reactions (86). Other external stimuli, such as loud 
noises, discomfort generated due to invasion of personal space, or presence or noise from vehicles driving 
past the participant or turning into their route (86), even if not being the focus of participant’s gaze, were 
found to be the cause of a third of the rising HR changepoints. However, it is important to note that the 
definition of what could be triggering external stimuli for each participant was based on researcher’s 
interpretation of the video data. 

This thesis contributes to the state of knowledge by providing a framework for experiment and 
analysis to understand the perceived safety and preference of bike infrastructure alternatives in VR 
simulation that can be replicated for multiple locations and infrastructure designs. It should be noted that 
the inclusion of demographic and socioeconomic variables in the analysis and explanatory model indicate 
that the method should be adapted for use with location-specific data (34). This research seeks to add to 
the small existing body of literature related to bicycle simulators and immersive VR, with the addition of 
the collection of bicyclists’ physiological responses (HR data) in simulation, mostly examined in driving 
simulation tests (16). Further, the current thesis’ contribution includes the design of an in-field 
naturalistic walking experiment that builds on physiological research and exploration of the use of 
physiological responses and wearable sensors’ outputs to assess real-world settings in an urban 
environment from the pedestrians’ viewpoint. 

Overall, the thesis presents the use of physiological data collected from mobile sensors to 
understand vulnerable road user behavior, in both lab and natural settings. VRUs are more exposed to 
elements in the built environment while navigating them than any other roadway user since they lack the 
protective vehicle. This thesis demonstrated through two distinct case studies that use of mobile wearable 
sensors can contribute to a better understanding of VRUs’ sense of stress when evaluating roadway 
infrastructure alternatives, in both laboratory and field settings. The experiments conducted used low-cost 
technology and commercially available sensors that proved indicative of cyclists and pedestrians’ 
behaviors and perceptions. Both case studies showed that HR data can provide insight into VRUs 
behavior and perceptions and can complement data collected from stated preference surveys and other 
sensors (such as eye-tracking smart glasses or VR headsets). 

 

5.2 Study limitations and future work 

The case studies presented in this thesis presented several advantages and limitations associated 
with using simulation and/or portable wearable devices for studying cyclists and pedestrians. The 
advantages of using VR include the low-cost, efficient, and safe way of testing cyclists in immersive 
virtual environments, and the easy inclusion of collection of physiological data for analyzing cyclist 
behavior while in VR. Additionally, simulation allows people who are not current cyclists to be included 
in the dataset. The identified limitations are primarily related to the sample in the study. The bike study 
sample showed biases in representation in educational attainment, age, and race. This is primarily due to 
the smaller sample size and the fact that participants were recruited locally in a college town with a higher 
share of younger, highly educated people. Furthermore, testing with the bike simulator was carried out in 
person during the COVID-19 pandemic (February and March 2021), in a time of heightened sensitivity, 
which potentially hindered participant recruitment. Testing at the time also meant having constraints 
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about the number of people that could be in the lab and the time required between participants. Future 
studies should include larger and more diverse samples and explore other variables that may impact 
cyclists’ perceived safety and preferences, such as primary trip purpose. Another factor to be considered 
in the study’s limitations is the use of self-assessed typologies (Roger Geller’s “Four Types of Cyclists” 
and the Ten Item Personality Inventory). Even though self-assessments provide insight into participants’ 
attitude towards biking and personality traits, they have been shown to have shortcomings. Researchers 
have found that interest in cycling is not always consistent with real riding behavior (125, 126) (i.e., 
some cyclist in the interested but concerned category were found to not be interested in cycling more 
(125)), and that a higher proportion of strong and fearless riders were classified as non-cyclists, compared 
to enthused and confident and interested but concerned (126). Additionally, the TIPI’s design was not 
intended to meet high standards of reliability. Rather, it was designed to be a brief instrument to assess the 
main five personality dimensions that are used as a model for personality that optimized validity, where 
very short measures are needed, and personality is not the research’s focus (127). A personality typology 
might not reflect that personalities can change over time or given the context. Finally, it is important to 
note the limitation in statistical significance associated with the tested sample size. A sample size of 50 
participants was settled on considering time and budget limitations of the project, as well as comparable 
sample sizes used in previous similar studies (77–79), although larger (and more diverse and 
representative) sample sizes would improve the generalizability of the findings (79). 

The use of wearable devices (smart glasses with eye-tracking technology and electrocardiogram 
smartwatch) can capture the pedestrian perspective in a built urban environment, which has been 
identified in previous research as challenging to capture and quantify (104). The collection and analysis 
of video recordings from the smart glasses’ camera allows for a first-person view of the participants’ 
surroundings and, as a result, is favorable to interpret surroundings from their point of view (20). 
Additionally, data collection in an activity’s native environment has been shown to describe behavior 
more accurately than that collected in a controlled setting (20). An identified limitation is that wearing 
the mobile wearable devices could be stressful in itself for some participants (128), which would affect 
physiological responses. Further, the use of smart glasses with cameras could elicit privacy concerns for 
individuals not involved in testing that get recorded (129). Additional limitations are primarily related to 
the data and its exploratory analysis. Instantaneous HR data loss was an important factor in the pedestrian 
analysis, attributable to errors either in the smartwatch recording, its contact with participants’ skin, or the 
HR uploading process from the watch to the server where the data is stored, which left a reduced sample 
size from the already small sample of 12 participants in the pedestrian experiment. These sensors, even 
though mobile in nature, showed some difficulties when experimentation was carried out in the real 
world, with HR data loss presenting the biggest challenge. It should be noted that even in the laboratory 
setting, instantaneous HR data loss occurred. This proves challenging when trying to reach concrete 
conclusions, since they are based on the interpretation of partial data.  

Mobile wearable sensors are a promising technology in improving the understanding of 
vulnerable road users by providing easy-to-obtain data and being flexible in their application (for in-lab or 
in-field settings). However, there is not a standardized data processing technique or methodology for this 
type of analysis that would prove valid across multiple experiments. Further research should define 
standardized methodologies for physiological data analysis and interpretation in the transportation 
domain. In addition, researcher’s bias when identifying pedestrian stimuli from recordings and the 
limitations in identifying participants’ positions from video recordings (instead of more accurate GPS) 
should be noted. Further research could include the analysis of pupil diameter in experiments that 
evaluate different roadway infrastructure alternatives. Pupil diameter analysis has been used to estimate 
pedestrian’s mental workload and/or behaviors in the built environment (107, 130) but has not applied to 
understanding VRUs’ reactions to roadway design alternatives.  
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7 APPENDIX A – Multinomial logit Model for the Least Safe Scenario (N=42)a 

Alternative B2 B3 
Variable Parameter Std. Error Parameter Std. Error 

Alternative specific constant 0.309 3.672 -9.708 ** 3.359 
Gender (reference category: Female) 0.960 1.488 2.527 * 1.417 
Age -0.209 0.185 0.132 ** 0.055 
Rising HR changepoints for B1 1.796 1.759 -0.026 1.002 
Rising HR changepoints for B2 0.249 0.986 -0.331 0.947 
Rising HR changepoints for B3 0.229 0.999 2.246 ** 1.078 
Log-likelihood 38.841 ** 
Cox and Snell Pseudo R-Square 0.371 
Nagelkerke Pseudo R-Square 0.494 
McFadden Pseudo R-Square 0.334 

 

a * indicates 10% significance (p < 0.1), and ** indicates 5% significance (p < 0.05) 
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8 APPENDIX B – Pre-experiment questionnaire (bicycle simulator VR test) 

 

Please provide the participant number given to you in your experiment confirmation email 
How did you hear about this study? - Selected Choice 
 Word of mouth 
 Social media 
 Other: ______________ 
In the past week, have you _______ (please check all that apply) 
 Walked to a destination or walked for recreation/exercise? 
 Driven or ridden in an automobile? 
 Ridden a bike? 
 Taken transit? 
Approximately how many miles did you walk last week? 
Approximately how many miles did you bike last week? 
Approximately how many miles did you travel by transit last week? 
Approximately how many miles did you travel by automobile last week? 
What describes your attitude toward biking? - Selected Choice 
 "Strong and Fearless" - I will ride anywhere, no matter the facilities provided 
 "Enthused and Confident" -I like to ride and will do so with dedicated infrastructure 
 "Interested but Concerned" - I like the idea of riding but have concerns 
 "No way, no how" - I do not ride a bike 
Do you have any experience with virtual reality headsets? 
Here are a number of personality traits that may or may not apply to you. Please indicate the extent to 

which you agree or disagree with that statement. You should rate the extent to which the pair of 
traits applies to you, even if one characteristic applies more strongly than the other. 

 Extraverted, enthusiastic 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Critical, quarrelsome 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Dependable, self-disciplined 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Anxious, easily upset 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Open to new experiences, complex 
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       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Reserved, quiet 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Sympathetic, warm 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Disorganized, careless 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Calm, emotionally stable 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
 Conventional, uncreative 
       Agree 
       Somewhat agree 
       Neither agree nor disagree 
       Somewhat disagree 
       Disagree 
The following questions ask you about the amount of time you devote to different activities each day. 
 On average, how many hours of physical activity do you have each day? - Hours + Minutes 
 On average how many hours a day do you use a smartphone?  - Hours + Minutes 
 On average how many hours do you spend outdoors each day? - Hours + Minutes 
Do you have any visual impairments? - Selected Choice 
 Yes - please explain here: ______________ 
 No 
Are you color blind? 
What is your current employment status? - Selected Choice 
 Employed full-time 
 Unemployed 
 Student 
 Self-employed 
 Working part time 
 Retired 
 Other: ______________ 
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What is the highest educational degree you have earned? 
 Less than high school diploma 
 High school/GED 
 Bachelor's degree 
 Some college (no degree) 
 Graduate degree 
Do you live in a college dormitory nor with roommates? 
What is your annual household income? (If answered No to the above) / What is your annual income? (If 
answered Yes to the above) – Selected Choice 
 $200,000+ 
 $100,001-$200,000 
 $75,001-100,000 
 $50,001-$75,000 
 $35,001-$50,000 
 $25,001-$35,000 
 $15,001-$25,000 
 $10,001-$15,000 
 0-$10,000 
 Prefer not to answer 
How many of the following does your household have? (If answered No to living in a college dormitory) 
 Bicycles <text> 
 Electric bicycles <text> 
 Mopeds nor motorcycles <text> 
 Passenger cars, vans, SUVs, pickup trucks <text> 
How many of the following do you have? (If answered Yes to living in a college dormitory) 
 Bicycles <text> 
 Electric bicycles <text> 
 Mopeds nor motorcycles <text> 
 Passenger cars, vans, SUVs, pickup trucks <text> 
 Motor homes, recreational vehicles, buses, nor large trucks <text> 
What is your marital status? 
 Single 
 Married 
 Divorced 
Do you have children (under the age of 18)? 
How many children do you have? 
What is/are the age(s) of your child/children? - Child 1 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 2 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 3 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 4 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 5 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 6 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 7 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 8 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 9 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 10 - What is the age of your child? 
Please complete the following question for each child: - Does your child live with you? - Child 1 
Please complete the following question for each child: - Does your child live with you? - Child 2 
Please complete the following question for each child: - Does your child live with you? - Child 3 
Please complete the following question for each child: - Does your child live with you? - Child 4 
Please complete the following question for each child: - Does your child live with you? - Child 5 
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Please complete the following question for each child: - Does your child live with you? - Child 6 
Please complete the following question for each child: - Does your child live with you? - Child 7 
Please complete the following question for each child: - Does your child live with you? - Child 8 
Please complete the following question for each child: - Does your child live with you? - Child 9 
Please complete the following question for each child: - Does your child live with you? - Child 10 
What is your gender? - Selected Choice 
 Female 
 Male 
 Other: ______________ 
What is your age? 
Would you describe yourself as... (Please check all that apply) - Selected Choice 
 Asian/Pacific Islander 
 White/Caucasian 
 Hispanic/Latino 
 Black/African American 
 American Indian/Native American 
 Other: ______________ 

* Highlighted questions were included in the analyses in this thesis 
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9 APPENDIX C – Post-experiment questionnaire (bicycle simulator VR test) 

 

Please provide the participant number given to you in your experiment confirmation email: 
Did you experience any motion sickness while using the bicycle simulator? 
Did you need to stop the experiment due to motion sickness? 
How aware were you of events occurring in the real world around you while performing the assigned 
tasks in the virtual environment? 
 (1) Not at all aware 
 (2) 
 (3) Somewhat aware 
 (4) 
 (5) Very aware 
How immersed were you in the virtual environment experience? 
 (1) Not at all immersed 
 (2) 
 (3) Somewhat immersed 
 (4) 
 (5) Very immersed 
Did the virtual environment feel appropriately to scale? 
 (1) Not at all 
 (2) 
 (3) Somewhat to scale 
 (4) 
 (5) Yes, appropriately scaled 
To what extent did your experiences in the virtual environment seem consistent with your real-world 
experiences as a bicyclist? 
 (1) N/A I do not bike in the real world. 
 (2) 
 (3) Somewhat consistent 
 (4) 
 (5) Very consistent 
The following questions ask how realistic various bicycle movements were in the simulator. 
 Bicycle Speed 
        (1) Not realistic at all 
        (2) 
        (3) Moderately realistic 
        (4) 
        (5) Very realistic 
 Bicycle Acceleration 
        (1) Not realistic at all 
        (2) 
        (3) Moderately realistic 
        (4) 
        (5) Very realistic 
 Bicycle Braking 
        (1) Not realistic at all 
        (2) 
        (3) Moderately realistic 
        (4) 
        (5) Very realistic 
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 Bicycle Steering 
        (1) Not realistic at all 
        (2) 
        (3) Moderately realistic 
        (4) 
        (5) Very realistic 
How distracting was the controller that you used to brake? 
 (1) Very distracting 
 (2) 
 (3) Somewhat distracting 
 (4) 
 (5) Not distracting at all 
How realistic was the vehicle traffic in the virtual environment? 
 (1) Not realistic at all 
 (2) 
 (3) Moderately realistic 
 (4) 
 (5) Very realistic 
Do you feel more or less compelled to observe the "rules of the road" while bicycling in the virtual 
environment compared to bicycling in real life? 
 (1) Less compelled 
 (2) 
 (3) No change compared to real life 
 (4) 
 (5) More compelled 
How realistic was your sense of risk in the virtual environment? 
 (1) Not realistic at all 
 (2) 
 (3) Moderately realistic 
 (4) 
 (5) Very realistic 
How safe did you feel using the different kinds of bike infrastructure? 
 Biking in the bike lane 
  (1) Not safe at all 
  (2) 
  (3) Somewhat safe 
  (4) 
  (5) Very safe 
 Biking in the protected bike lane with pylons 
  (1) Not safe at all 
  (2) 
  (3) Somewhat safe 
  (4) 
  (5) Very safe 
 Biking in the road with no bike infrastructure 
  (1) Not safe at all 
  (2) 
  (3) Somewhat safe 
  (4) 
  (5) Very safe 
How safe did you feel concerning the cars driving past you while you were... -  
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 Biking in the bike lane 
  (1) Not safe at all 
  (2) 
  (3) Somewhat safe 
  (4) 
  (5) Very safe 
 Biking in the protected bike lane with pylons 
  (1) Not safe at all 
  (2) 
  (3) Somewhat safe 
  (4) 
  (5) Very safe 
 Biking in the road with no bike infrastructure 
  (1) Not safe at all 
  (2) 
  (3) Somewhat safe 
  (4) 
  (5) Very safe 
The three bicycling environments you experienced are listed below. Please select the one in which you 
felt the LEAST SAFE and the one in which you felt the SAFEST. 
 SAFEST 
  Biking in the road with no bike infrastructure 
  Biking in the bike lane 
  Biking in the protected bike lane with pylons 
 LEAST SAFE 
  Biking in the road with no bike infrastructure 
  Biking in the bike lane 
  Biking in the protected bike lane with pylons 
Do you have any additional comments about the bicycle simulator? (e.g. Do you think you behaved 
similarly as you would have in real life in the same environment? Why or why not? Are there any 
elements of the simulator you would like to provide more feedback on?) 

* Highlighted questions were included in the analyses in this thesis 
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10 APPENDIX D - Pre-experiment questionnaire (pedestrian test) 

Please provide the participant number given to you in your experiment confirmation email 
How did you hear about this study? - Selected Choice 
 Word of mouth 
 Social media 
 A flyer 
 Other: ______________ 
In the past week, have you _______ (please check all that apply) 
 Walked to a destination or walked for recreation/exercise? 
 Driven or ridden in an automobile? 
 Ridden a bike? 
 Taken transit? 
The following questions ask you about the amount of time you devote to different activities each day. 
 On average, how many hours of physical activity do you have each day? - Hours + Minutes 
 On average how many hours a day do you use a smartphone?  - Hours + Minutes 
 On average how many hours do you spend outdoors each day? - Hours + Minutes 
 Approximately how much time did you spend walking last week? - Hours + Minutes 
If you have a smartwatch that counts your steps, how many steps on average per day do you take? (put 
N/A if you don't wear one nor count steps with one) 
Do you have any visual impairments? - Selected Choice 
 Yes - please explain here: ______________ 
 No 
Are you color blind? 
What is your current employment status? - Selected Choice 
 Employed full-time 
 Unemployed 
 Student 
 Self-employed 
 Working part time 
 Retired 
 Other: ______________ 
What is the highest educational degree you have earned? – Selected Choice 
 Less than high school diploma 
 High school/GED 
 Bachelor's degree 
 Some college (no degree) 
 Graduate degree 
What is your annual household income? – Selected Choice 
 $200,000+ 
 $100,001-$200,000 
 $75,001-100,000 
 $50,001-$75,000 
 $35,001-$50,000 
 $25,001-$35,000 
 $15,001-$25,000 
 $10,001-$15,000 
 0-$10,000 
 Prefer not to answer 
How many of the following does your household have? 
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 Bicycles <text> 
 Electric bicycles <text> 
 Mopeds nor motorcycles <text> 
 Passenger cars, vans, SUVs, pickup trucks <text> 
 Motor homes, recreational vehicles, buses, or large trucks <text> 
What is your marital status? 
 Single 
 Married 
 Divorced 
Do you have children (under the age of 18)? 
How many children do you have? 
What is/are the age(s) of your child/children? - Child 1 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 2 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 3 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 4 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 5 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 6 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 7 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 8 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 9 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 10 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 11 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 12 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 13 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 14 - What is the age of your child? 
What is/are the age(s) of your child/children? - Child 15 - What is the age of your child? 
What is your gender? - Selected Choice 
 Female 
 Male 
 Other: ______________ 
What is your age? 
Would you describe yourself as... (Please check all that apply) - Selected Choice 
 Asian/Pacific Islander 
 White/Caucasian 
 Hispanic/Latino 
 Black/African American 
 American Indian/Native American 
 Other: ______________ 

* Highlighted questions were included in the analyses in this thesis 


