
Data Clustering and Representation: Displaying High Volumes of Geodata Efficiently and

Meaningfully

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Austin Tran

Spring, 2025

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Briana Morrison, Department of Computer Science

Data Clustering and Representation: Displaying High Volumes of
Geodata Efficiently and Meaningfully

CS4991 Capstone Report, 2025

Austin Tran

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

juj8pk@virginia.edu

ABSTRACT
A software solutions company developing an
application to manage customer geodata and
related workflows found issues displaying
high volumes of data on the map of a web
application in a clear, efficient, and
meaningful manner. By clustering data points
hierarchically, I developed software that
displayed point clusters reducing the load on a
user’s browser and allowing more data to be
represented. Each point cluster could be
broken down into smaller clusters via zoom to
provide a clearer representation of data within
the map’s context. To build this, I used the
programming language Typescript, the web
framework Angular, several open-source
JavaScript libraries, and Git version control.
Throughout development, I relied on an Agile
methodology with regular code reviews from
full-time team members to ensure my code
was concise and functional. The major result
of this project was the increased capacity of the
web application from struggling to display 400
data points to loading 75,000 points easily.
Although unit tests were created, future work
lies in end-to-end testing and functional testing
of the software on different browsers with
varying system resources.

1. INTRODUCTION
Arming leaders with meaningful data to aid in
decision-making can often be the difference
between sinking and swimming. Modern-day
businesses and governments collect lots of
data throughout their operations. Having ways
to analyze high volumes of data and visually

represent important trends to nontechnical
leaders is essential to the survival of any
organization. Furthermore, enabling
leadership to easily generate what they need,
when they need it, can remove the slack in
decision-making processes and streamline
operations.

However, as data grows more complex and
irregular it becomes harder to aggregate and
visualize quickly. For example, counting red
cards in sorted piles is easy, but clustering
geodata with varying attributes is more
difficult. Every standard playing card has the
same set of attributes (color, suit, value) while
geodata points may have different features.
Ensuring that users can view complex data
accurately and intuitively presents challenges.
The concept of clustering has its obstacles as
well. When analyzing large datasets, having a
few large clusters may obfuscate important
details while having an excessive number of
small clusters could overwhelm a potential
viewer and prevent them from identifying
larger trends. Additionally, the computing
power of an end user’s browser limits how
intensive a web application attempting to
cluster data can be. An adequate solution must
take all these complications into account to
work both efficiently and effectively.

2. RELATED WORKS
Although there are many ways to cluster
points, Du, et al. (2024) found that using KD-
trees (k-dimensional) to divide datasets and
computing K-nearest neighbors (KNN) could

prove “efficient” and “accurate,” especially
when considering clusters with “uneven
density and complex shapes.” Du, et al.
defines the existence of “adhesive points” that
connect clusters to allow the merging of
adjacent clusters to automatically identify the
“optimal number of clusters.” These benefits
support the use of KD-trees to cluster geodata
and allow the utilization of its hierarchical
structure to enable the decomposition of
clusters into smaller clusters. However, a
drawback of this proposed method is that there
is no optimized K value selection strategy for
KNN. This issue was mitigated by
implementing the KD-tree clustering with a set
minimum and maximum cluster size (radius-
wise).

An additional task of generating a polygon
encompassing the points within a cluster for
transparency to the end user was also
implemented. This was done using an
adaptation of a library, concaveman, that
generates a 2D concave hull from a point set
(GitHub, 2021). This library performs this
using an algorithm based on the ideas of Park
(2012). Park proposed an “easy to understand
and implement” concave hull algorithm that
first creates a convex hull using a known
algorithm, then “digs” on the concave hull
until it becomes a complete concave hull.
Although its proposed time complexity of
O(nlogn +rn) where n is the number of points
and r is the number of points in the convex hull
after the first step, the algorithm has the ability
to be easily adjusted using a threshold value.
Thus, the algorithm proved extremely
adaptable and easy to implement for quick
polygon generation around clusters in the two-
dimensional geodata in the project.

3. PROJECT DESIGN

The project consisted of making upgrades to a
pre-existing web application made to handle
and display geodata to nontechnical users.

3.1 System Architecture

The web application used a complex technical
stack to handle the insertion, manipulation and
retrieval of data. The frontend or user-facing
portion of the project utilized the Angular web
framework to display content from and
interact with the backend, the server-side of
the project which used a myriad of
technologies. On the backend, a Java Spring
Boot framework provided APIs for creating,
deleting, and manipulating data that persisted
in a PostgreSQL database. Additionally, all
data in PostgreSQL would be ingested into an
OpenSearch NoSQL database using a message
broker. To handle data retrieval requests from
the frontend, the backend used a microservice
built in Golang that queried the OpenSearch
database before returning search results to the
frontend.

3.2 Development Environment
To assist developers in working on the
complex application, many different
strategies, both technical and organizational,
were used. Docker, a platform used to package
microservices into individual containers, was
used in combination with Kubernetes, an
open-source container deployment platform,
to allow developers to run local, individual
instances of the application during
development. Additionally, a hot reload
feature was implemented to allow code
changes to immediately be reflected in the
deployed containers without having to rebuild
the entire application. Furthermore, Git
version control and an Agile methodology
allowed multiple developers to work on
individual features and microservices
simultaneously without collaboration issues.

3.3 Requirements
The main objective of the project was to
clearly and quickly represent large volumes of
geodata on the frontend of the web application
using the Angular framework.

3.3.1 Clustering
The goal of the data clustering project was to
represent 75,000 individual data points

retrieved from the backend quickly and
accurately on the user’s browser (frontend).
Moreover, data clusters were expected to
break apart into smaller clusters dynamically
when users zoomed in or clicked on them.
Visual requirements like styling clusters to
have tooltips (information popups on hover)
and dynamic labels and colors generated based
on the contents of each cluster were also
requested by the client. A further requirement
involved rendering individual geodata points
upon extreme zoom and representing cases
where geodata share the same latitude and
longitude (a “stack” of points).

3.3.2 Polygon Generation

To increase visibility on what each cluster

contains, another consideration was a

requirement that each cluster have a colored

polygon that encompassed all its geodata

points. This would help enable users to

visually identify what cluster certain regions

of data belong to.

3.4 Solutions

To cluster queried geodata on the user’s
browser, the MapLibre mapping library’s
clustering layers were used. Using these map
layers, clusters could be configured to have a
maximum size, minimum size and aggregate
information from their data points.
Furthermore, the underlying data structure of
the library, a KD-tree, enables large clusters to
break down into smaller clusters upon zoom.
Features like tooltips on cluster hovers and
zoom-in on cluster clicks were implemented
by adding event listeners which allowed the
binding of browser events to specific actions.
For example, the triggering event of hovering
over a cluster would create a tooltip popup that
contained aggregated information about that
cluster. An issue presented by using event
listeners was browsers repeatedly triggering an
event too quickly (several times per second),
thus triggering an action many times. This
could result in the function of rendering
clusters (the action) upon zoom or moving of
the map (the event) to be called faster than the

function could respond, leading to lag on the
user’s browser. To solve this problem, the
RxJS debounce operator which helps to rate-
limit event notifications was used (GitHub,
2025). This operator delays the call of a
designated action from events until a certain
delay has passed without an event being
triggered. Thus, the re-rendering of clusters,
including the breaking down of clusters, only
occurred once the user finished zooming in or
out after they finished moving the map.

To visually represent “stacks” of geodata
points, they first had to be identified as clusters
that do not break apart under the max level of
zoom. This allowed the original cluster click
event handler to have a special case for clusters
at max zoom (stacks) in which a popup with a
scrollable list of each item in the stack would
be displayed. Finally, using the information
each cluster aggregated, a colored ring around
each cluster indicating the composition of the
cluster, like a pie or donut chart, would be
displayed.

The concaveman library was used to create
polygons based on the points in each cluster.
In addition to tooltips, the cluster hover event
listener was used to trigger the generation and
display polygons. The debounce operator was
again used to rate-limit the display and remove
polygons from clusters. However, the
generation of polygons for each cluster upon
hover proved to be slow, especially for clusters
containing over 10,000 points. To solve this
problem, clusters containing over 10,000
points would be exempted from polygon
generation and a polygon-caching strategy
would be implemented, making the user’s
browser only generate a cluster’s associated
polygon once (on the first hover) and simply
redisplay the polygon on later cluster hovers.

4. RESULTS
The implemented data clustering allowed end
users to view up to 75,000 points of data
without lag or noticeable load on the user’s
browser or computer. This was a vast

improvement from the previous maximum
capacity of 400 points of data (over 180 times
more data). Additionally, the aggregated
information in each cluster provided insight
into each region of the map, whereas the prior
display only rendered individual data points
separately without extra categorization of
styling to help make the data more readable.
Thus, clustering helped enable users to utilize
data in decision-making more effectively.
Finally, the polygon generation added
transparency to the underlying clustering
process. Users could clearly identify which
regions were covered by which clusters. Data
clustering geodata had an overall significant
impact in improving end users’ ability to view
and understand data to make key decisions
while also providing transparency on which
clusters covered which areas of the map.

5. CONCLUSION
The project played a key role in assisting
business leaders in analyzing and viewing high
volumes of geodata with speed and accuracy.
It increased the working capacity of the pre-
existing web application from struggling to
display 400 data points to quickly generating
clusters representing 75,000 data points.
Furthermore, it added visual clarity on
clustering through the display of polygons
encompassing all the geodata points within a
given cluster. The solution utilized a variety of
open-source libraries to help implement
clustering, enable polygon generation, and
boost overall performance. Through the
features developed in this project,
nontechnical business leaders were introduced
to new insights and trends in their data through
gaining the ability to view high volumes of
data.

6. FUTURE WORK

As part of the development process, unit tests
for the clustering and polygon generation
features were created. However, more
comprehensive end-to-end tests still need to be
implemented to ensure the consistency and
accuracy of the clustering. End-to-end tests on

the web application using Cypress, a
Javascript testing framework, were already
written for other features, thus any further end-
to-end testing on the clustering and polygon
generation features should be done using
Cypress. Additionally, the clustering feature
should be tested for higher volumes of data.
Although the customer requested 75,000
points of data be displayable at one time,
understanding the limitations of the current
clustering implementation could be useful if
the volume of data required by users at one
time increases.

REFERENCES
Du, H., Hu, Z., Lu, D., Liu, J. (2024). Density

clustering algorithm based on kd-tree and
voting rules. Computers, Materials &
Continua, 79(2), 3239–3259.
https://doi.org/10.32604/cmc.2024.04631
4

GitHub. (2021, August 9). GitHub—

mapbox/concaveman: A very fast 2D
concave hull algorithm in JavaScript.
GitHub.
https://github.com/mapbox/concaveman

GitHub. (2025, February 21). GitHub—

ReactiveX/rxjs: Reactive extensions for
JavaScript. GitHub.
https://github.com/ReactiveX/rxjs

Park, J., Oh, S. (2012). A new concave hull

algorithm and concaveness measure for n-
dimensional datasets. Journal of
Information Science and Engineering
28(3), 587-600.
https://citeseerx.ist.psu.edu/document?rep
id=rep1&type=pdf&doi=14df973438a9ba
4634bb41740072b9e4704ba47b

