
Binary Classification of Hand Motions as Door Opening/Non Door Opening

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Brandon Ou

Spring, 2024

Technical Project Team Members

Matthew Hattrup

Richard Wang

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Aaron Bloomfield, Department of Computer Science

Binary Classification of Hand Motions as Door Opening/Non Door Opening

CS4991 Capstone Report, 2023

Brandon Ou

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

bro9tn@virginia.edu

ABSTRACT

With the advent of smart homes, there is a

need to detect human behavior, such as door

opening, to trigger various smart home

features. Machine learning (ML) based on

smartwatch sensor data can be leveraged to

detect if a door is being opened. Developing

this solution required an ML tool: WEKA, a

smartwatch sensor tool: WADA, and python

& java scripting skills involving data analysis

and manipulation. This class project

employed the aforementioned tools to

develop three ML models— random forests,

J48, and SVMs—to utilize smartwatch

sensor data and detect door opening. Of the

models built using the three methods, the

random forest classifier performed the best,

with a 96.1% accuracy. In the future, more

and a larger breadth of smartwatch data

would be useful in validating the models.

Results from this experiment indicate a high

probability that, in the future and with more

development, live smartwatch sensor data

can be used to operate smart home

functionality.

1. INTRODUCTION

As smart watches become increasingly

popular, there will be more demand for

software to extend their functionality. Smart

watches contain many types of sensors that

can be used to sense their environment, such

as accelerometers—sensors that can calculate

the watch’s acceleration in any direction –

and gyroscopes – sensors that store the

watch’s tilt. This work used the ASUS

Zenwatch 2 smartwatch and its accelerometer

and gyroscope sensor data to determine

whether the person wearing the watch was

opening a door.

2. BACKGROUND

ML is a general purpose term used to describe

many types of problem solving that involve

computers. A variant of ML known as binary

classification determines if some action or

data is indicative of one class of data or

another, such as door opening and non-door

opening.

Most ML algorithms necessitate a model,

which is a numerical representation of a

problem that takes in numerical variables that

quantify the environment, performs functions

on these variables, and outputs value(s) to be

interpreted by people. When using a model

for classification, the model is known as a

classifier. Classifiers require sample

scenarios, also known as training data, to

learn about the environment that they model.

Computation is performed on classifiers

using training data to improve the classifier

performance. For example, training data for

door opening may be gyroscope values over

time for someone opening a door. This would

help the model understand what data of door

opening may look like. Two ML algorithms I

used were decision trees and support vector

machines (SVMs).

2.1 Decision Trees

At a high level, decision trees are a collection

of hierarchical nodes. Each node compares

the data with some criteria; if the criteria is

met, one child path will be taken, otherwise

another would be. This recursive pattern

occurs until one gets to a node without

children, which leads to some classification.

For example, a decision tree might be given

accelerometer data and determine if a door is

opening based on the y-direction acceleration

at some set of timestamps. Using criteria

about this acceleration data, the decision tree

will take some child path and use criteria

about the x-direction acceleration data. This

would repeat until the decision tree

determines whether a door is being opened.

However, decision trees can suffer from

making incorrect decisions given data, which

has motivated many improvements, leading

to the development of random forests and J48

decision trees. These models use more

sophisticated techniques to implement the

flow of decision trees. To learn more about

these trees, see articles from IBM and

Khanna.

2.2 SVM Classifiers

If one imagines every possible environment

scenario as a point on a plot, SVMs create a

boundary by which points on one side of the

boundary are classified as one class, and vice

versa. For example, the accelerometer data

from one hand motion would correspond to

some point in a high dimensional plot; an

SVM would draw some boundary based on

training data passed to it, and use this

boundary to determine which class the data

falls into.

3. RELATED WORKS

This project was inspired by the field of

cyber-physical systems, large systems that

require communication between many

hardware or software components and

interact with the environment. One recent

form of a cyber-physical system is the smart

home, a type of house that uses computer

systems to autonomously control its

environment (e.g. lighting, climate, and

household appliances). Such a system would

likely require functionality in a smart watch

to sense a human’s actions, leading to the

development of smart watch applications that

can detect human actions.

Similar concepts have been developed, by

Kunwar, et al. (2022), for example. They

developed a proof of concept for classifying

general hand movements (e.g. drinking water

from a cup, jogging in place) via a

smartwatch’s various sensors (Kunwar et al.,

2022) with strong results. A study by Sehirli

& Alesmaeil (2022) performed binary

classification of face-touching using

smartwatch sensors, also with strong results.

In these cases, strong results refer to the

models having low rates of error and high

probabilities of correct classification.

4. PROJECT DESIGN

Before using the model, training data would

need to be collected and prepared to be fed to

models.

4.1 Data Collection

The best way to capture training data was to

use the smart watch and perform hand

gestures/motions. I collected five minutes of

hand gestures that did not involve opening

doors, followed by 60 separate intervals of

opening doors. Data collection required the

use of the WADA app, an app that records the

watch’s sensor data and can be exported to

another device for data analysis.

4.2 Data Processing

Because door opening is a short action, data

would need to be clipped into short time

intervals to mirror the short time of door

opening.

4.2.1 Truncation

I first began by removing the first and last 25

data points of all training data to remove a lot

of noise that usually occurs in the beginning

and end of recordings.

4.2.2 Sliding Window

After exporting data to my machine, I tested

various clipping schemes to test their

effectiveness. The training data was

relatively large, with each sample holding

hundreds of datum. To reduce this bulk, I

used a “sliding window” to collapse the data;

the sliding window would take every ten data

points and collapse them into one data value,

or feature, containing mean, median, root

mean square, standard deviation, and

variance of the accelerations in the x, y, z

directions. I then tried using a sliding window

of 20, 30, and 40 points to compare the

efficacy of sliding windows for various sizes.

These were tested with a random forest

model; the model was likely not as important

as the size of the sliding window, so any

model should have been sufficient for testing

sliding window size.

Once the best sliding window size was

determined, the next step was to determine

the best model of the scenario from the model

choices: J48 Decision Tree, Random Forest,

and SVM classifier.

4.2.3 Model Selection

ML often suffers from an issue of overfitting,

which happens when a model draws too

many conclusions from training data. This

can result in the model making incorrect

classifications about new data because it

drew false conclusions about old training

data.

To reduce the likelihood of overfitting, I

constrained the number of features (mean,

median, standard deviation, etc.) that a model

used during classification. This was done by

checking how much accuracy each feature

added to the total accuracy and selecting the

best. I stopped adding features once the best

unused feature would only add 1% accuracy

to the total. For example, if the combined

usage of mean x-acceleration, standard

deviation of y-acceleration, and mean z-

acceleration contributed to a 90% accuracy

with the best unused variable only

contributing .5% accuracy, I would not let the

model use that variable and settle with the

original three features. Once I performed this

with every model (J48, Random Forest,

SVM), I selected the best model.

5. RESULTS

Testing various sliding window sizes against

the random forest model yielded Table I,

shown below.

Window Size

(# Data

Points)

10 20 30 40

Model

Accuracy

(%)

94.0 94.3 95.2 94.8

Table 1: Window Size vs. Max Random

Forest Accuracy

A sliding window of 30 data points seemed

to yield the best model in terms of accuracy,

though future work could be done to support

this with more evidence.

Once the sliding window was set, the model

was to be selected while minimizing

overfitting. Table 2, 3, and 4 show the three

variables used by the various models to

achieve their non-overfit accuracies along

with the increase in accuracy that they

contributed. Note that the variable names are

of the acceleration in the given direction.

Also note that all values are percentages. The

bolded percentages are the total non-overfit

accuracies.

Feature

Added

Median x Median

y

Mean y

Total

Accuracy

88.2 93.2 94.9

Change in

Accuracy

88.2 5.0 1.7

Table 2: Feature Added vs J48 Accuracy

Feature

Added

Median x Mean z Median

y

Total

Accuracy

83.1 93.0 96.1

Change in

Accuracy

83.1 9.9 3.1

Table 3: Feature Added vs Random Forest

Accuracy

Feature

Added

Med.

x

RMS

y

STD

y

Mean

z

Mean

y

Total

Acc.

76.5 80.5 83.8 85.2 86.4

Change

in Acc.

76.5 4.1 3.2 1.4 1.3

Table 4: Feature Added vs SVM Accuracy

Based on these results, the best classifier was

the random forest classifier with an accuracy

of 96.1% and a sliding window of size 30.

6. CONCLUSION

As the world becomes more digitized, there

will be a growing demand for increased

convenience. People will ask more of

artificial intelligence, more of cyber-physical

systems, and more of large technology

systems in general. Smartwatches may be

adopted to give systems real time sensor data

to classify actions that wearers are

performing. As a result, there is a need to

develop ML models that can perform

inference based on sensor data. I developed

the door opening classifier that could power

the functionality of automatic smart home

doors to test the viability of smartwatch

usage. Because of the strong results, it is

highly possible for smartwatches to be used

in conjunction with smart homes and other

technology to classify human activity and

bring about further convenience.

7. FUTURE WORK

Because the door opening classifier is more

of a proof-of-concept, several steps will be

required to bring this product to the market.

For example, advances will need to be made

to the model. While the accuracy of the watch

is high, more research may be needed to

ensure that the watch is more stable. Research

could be done by exploring other types of

sensors, aggregates of sensor data (e.g.

modes, max, min) or different ML models

(e.g. large neural networks, convolutional

neural networks, long short-term memory).

Because of the limited time given for this

project, there was not too much data

prepared. Being able to allot more resources

for data collection would also greatly benefit

the classifier’s performance.

Once the product is more accurate and

powerful, the model would likely need to be

deployed to some cloud provider to be used

in real time. Smartwatches would also require

some software to be able to communicate

with a model being deployed. With these

changes, I am confident that the door opening

classifier and similar models would be viable

for use in conjunction with a smart home or

some other cyber physical system.

8. ACKNOWLEDGEMENTS

I would like to thank my two team members

who helped collect data, perform data

preparation, data cleaning, and analysis:

Matthew Hattrup and Richard Wang. I would

also like to thank the professor who oversaw

the development of this classifier, Dr. Jack

Stankovic, who provided various code

snippets and tutorials that were crucial for

data preparation and analysis.

REFERENCES

IBM. (n.d.). What is Random Forest?. IBM.

Retrieved November 1, 2023, from

https://www.ibm.com/topics/random-

forest

Khanna, N. (2021, August 18). J48

classification (C4.5 algorithm) in a

Nutshell. Medium. Retrieved November

01, 2023, from

https://medium.com/@nilimakhanna1/j4

8-classification-c4-5-algorithm-in-a-

nutshell-24c50d20658e

Kunwar, U., Borar, S., Berghofer, M.,

Kylmälä, J., Aslan, I., Leiva, L. A., &

Oulasvirta, A. (2022). Robust and

deployable gesture recognition for

smartwatches. 27th International

Conference on Intelligent User

Interfaces, 277–291. Retrieved October

12, 2023, from

https://doi.org/10.1145/3490099.351112

5

Sehirli, E., & Alesmaeil, A. (2022).

Detecting Face-Touch Hand Moves

Using Smartwatch Inertial Sensors and

Convolutional Neural Networks.

International Journal of Intelligent

Systems and Applications in

Engineering, 10(1), 122–128. Retrieved

October 12, 2023, from

https://doi.org/10.18201/ijisae.2022.275

https://www.ibm.com/topics/random-forest
https://www.ibm.com/topics/random-forest
https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e
https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e
https://medium.com/@nilimakhanna1/j48-classification-c4-5-algorithm-in-a-nutshell-24c50d20658e
https://doi.org/10.1145/3490099.3511125
https://doi.org/10.1145/3490099.3511125
https://doi.org/10.18201/ijisae.2022.275

