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ABSTRACT 

With the advent of smart homes, there is a 

need to detect human behavior, such as door 

opening, to trigger various smart home 

features. Machine learning (ML) based on 

smartwatch sensor data can be leveraged to 

detect if a door is being opened. Developing 

this solution required an ML tool: WEKA, a 

smartwatch sensor tool: WADA, and python 

& java scripting skills involving data analysis 

and manipulation. This class project 

employed the aforementioned tools to 

develop three ML models— random forests, 

J48, and SVMs—to utilize smartwatch 

sensor data and detect door opening. Of the 

models built using the three methods, the 

random forest classifier performed the best, 

with a 96.1% accuracy. In the future, more 

and a larger breadth of smartwatch data 

would be useful in validating the models. 

Results from this experiment indicate a high 

probability that, in the future and with more 

development, live smartwatch sensor data 

can be used to operate smart home 

functionality.  

 

1. INTRODUCTION 

As smart watches become increasingly 

popular, there will be more demand for 

software to extend their functionality. Smart 

watches contain many types of sensors that 

can be used to sense their environment, such 

as accelerometers—sensors that can calculate 

the watch’s acceleration in any direction – 

and gyroscopes – sensors that store the 

watch’s tilt. This work used the ASUS 

Zenwatch 2 smartwatch and its accelerometer 

and gyroscope sensor data to determine 

whether the person wearing the watch was 

opening a door.  

 

2. BACKGROUND 

ML is a general purpose term used to describe 

many types of problem solving that involve 

computers. A variant of ML known as binary 

classification determines if some action or 

data is indicative of one class of data or 

another, such as door opening and non-door 

opening.  

 

Most ML algorithms necessitate a model, 

which is a numerical representation of a 

problem that takes in numerical variables that 

quantify the environment, performs functions 

on these variables, and outputs value(s) to be 

interpreted by people. When using a model 

for classification, the model is known as a 

classifier. Classifiers require sample 

scenarios, also known as training data, to 

learn about the environment that they model. 

Computation is performed on classifiers 

using training data to improve the classifier 

performance. For example, training data for 

door opening may be gyroscope values over 

time for someone opening a door. This would 

help the model understand what data of door 

opening may look like. Two ML algorithms I 

used were decision trees and support vector 

machines (SVMs).  



2.1 Decision Trees 

At a high level, decision trees are a collection 

of hierarchical nodes. Each node compares 

the data with some criteria; if the criteria is 

met, one child path will be taken, otherwise 

another would be. This recursive pattern 

occurs until one gets to a node without 

children, which leads to some classification. 

For example, a decision tree might be given 

accelerometer data and determine if a door is 

opening based on the y-direction acceleration 

at some set of timestamps. Using criteria 

about this acceleration data, the decision tree 

will take some child path and use criteria 

about the x-direction acceleration data. This 

would repeat until the decision tree 

determines whether a door is being opened.  
 

However, decision trees can suffer from 

making incorrect decisions given data, which 

has motivated many improvements, leading 

to the development of random forests and J48 

decision trees. These models use more 

sophisticated techniques to implement the 

flow of decision trees. To learn more about 

these trees, see articles from IBM and 

Khanna.  
 

2.2 SVM Classifiers 

If one imagines every possible environment 

scenario as a point on a plot, SVMs create a 

boundary by which points on one side of the 

boundary are classified as one class, and vice 

versa. For example, the accelerometer data 

from one hand motion would correspond to 

some point in a high dimensional plot; an 

SVM would draw some boundary based on 

training data passed to it, and use this 

boundary to determine which class the data 

falls into.  
 

3. RELATED WORKS 

This project was inspired by the field of 

cyber-physical systems, large systems that 

require communication between many 

hardware or software components and 

interact with the environment. One recent 

form of a cyber-physical system is the smart 

home, a type of house that uses computer 

systems to autonomously control its 

environment (e.g. lighting, climate, and 

household appliances). Such a system would 

likely require functionality in a smart watch 

to sense a human’s actions, leading to the 

development of smart watch applications that 

can detect human actions.  

 

Similar concepts have been developed, by 

Kunwar, et al. (2022), for example. They 

developed a proof of concept for classifying 

general hand movements (e.g. drinking water 

from a cup, jogging in place) via a 

smartwatch’s various sensors (Kunwar et al., 

2022) with strong results. A study by Sehirli 

& Alesmaeil (2022) performed binary 

classification of face-touching using 

smartwatch sensors, also with strong results. 

In these cases, strong results refer to the 

models having low rates of error and high 

probabilities of correct classification.  

 

4. PROJECT DESIGN 

Before using the model, training data would 

need to be collected and prepared to be fed to 

models.  

 

4.1 Data Collection 

The best way to capture training data was to 

use the smart watch and perform hand 

gestures/motions. I collected five minutes of 

hand gestures that did not involve opening 

doors, followed by 60 separate intervals of 

opening doors. Data collection required the 

use of the WADA app, an app that records the 

watch’s sensor data and can be exported to 

another device for data analysis. 

 

4.2 Data Processing 

Because door opening is a short action, data 

would need to be clipped into short time 

intervals to mirror the short time of door 

opening.   



4.2.1 Truncation 

I first began by removing the first and last 25 

data points of all training data to remove a lot 

of noise that usually occurs in the beginning 

and end of recordings. 
 

4.2.2 Sliding Window 

After exporting data to my machine, I tested 

various clipping schemes to test their 

effectiveness. The training data was 

relatively large, with each sample holding 

hundreds of datum. To reduce this bulk, I 

used a “sliding window” to collapse the data; 

the sliding window would take every ten data 

points and collapse them into one data value, 

or feature, containing mean, median, root 

mean square, standard deviation, and 

variance of the accelerations in the x, y, z 

directions. I then tried using a sliding window 

of 20, 30, and 40 points to compare the 

efficacy of sliding windows for various sizes. 

These were tested with a random forest 

model; the model was likely not as important 

as the size of the sliding window, so any 

model should have been sufficient for testing 

sliding window size.  
 

Once the best sliding window size was 

determined, the next step was to determine 

the best model of the scenario from the model 

choices: J48 Decision Tree, Random Forest, 

and SVM classifier.  
 

4.2.3 Model Selection 

ML often suffers from an issue of overfitting, 

which happens when a model draws too 

many conclusions from training data. This 

can result in the model making incorrect 

classifications about new data because it 

drew false conclusions about old training 

data.  
 

To reduce the likelihood of overfitting, I 

constrained the number of features (mean, 

median, standard deviation, etc.) that a model 

used during classification. This was done by 

checking how much accuracy each feature 

added to the total accuracy and selecting the 

best. I stopped adding features once the best 

unused feature would only add 1% accuracy 

to the total. For example, if the combined 

usage of mean x-acceleration, standard 

deviation of y-acceleration, and mean z-

acceleration contributed to a 90% accuracy 

with the best unused variable only 

contributing .5% accuracy, I would not let the 

model use that variable and settle with the 

original three features. Once I performed this 

with every model (J48, Random Forest, 

SVM), I selected the best model. 
 

5. RESULTS 

Testing various sliding window sizes against 

the random forest model yielded Table I, 

shown below. 
 

Window Size 

(# Data 

Points) 

10 20 30 40 

Model 

Accuracy 

(%) 

94.0 94.3 95.2 94.8 

Table 1: Window Size vs. Max Random 

Forest Accuracy 
 

A sliding window of 30 data points seemed 

to yield the best model in terms of accuracy, 

though future work could be done to support 

this with more evidence.  
 

Once the sliding window was set, the model 

was to be selected while minimizing 

overfitting. Table 2, 3, and 4 show the three 

variables used by the various models to 

achieve their non-overfit accuracies along 

with the increase in accuracy that they 

contributed. Note that the variable names are 

of the acceleration in the given direction. 

Also note that all values are percentages. The 

bolded percentages are the total non-overfit 

accuracies. 
  



Feature 

Added 

Median x  Median 

y  

Mean y  

Total 

Accuracy 

88.2 93.2 94.9 

Change in 

Accuracy 

88.2 5.0 1.7 

 

Table 2: Feature Added vs J48 Accuracy 

Feature 

Added 

Median x Mean z Median 

y  

Total 

Accuracy 

83.1 93.0 96.1 

Change in 

Accuracy 

83.1 9.9 3.1 

Table 3: Feature Added vs Random Forest 

Accuracy 

 

Feature 

Added 

Med. 

x 

RMS 

y 

STD 

y 

Mean 

z 

Mean 

y 

Total 

Acc. 

76.5 80.5 83.8 85.2 86.4 

Change 

in Acc. 

76.5 4.1 3.2 1.4 1.3 

Table 4: Feature Added vs SVM Accuracy 

 

Based on these results, the best classifier was 

the random forest classifier with an accuracy 

of 96.1% and a sliding window of size 30.  

 

6. CONCLUSION 

As the world becomes more digitized, there 

will be a growing demand for increased 

convenience. People will ask more of 

artificial intelligence, more of cyber-physical 

systems, and more of large technology 

systems in general. Smartwatches may be 

adopted to give systems real time sensor data 

to classify actions that wearers are 

performing. As a result, there is a need to 

develop ML models that can perform 

inference based on sensor data. I developed 

the door opening classifier that could power 

the functionality of automatic smart home 

doors to test the viability of smartwatch 

usage. Because of the strong results, it is 

highly possible for smartwatches to be used 

in conjunction with smart homes and other 

technology to classify human activity and 

bring about further convenience. 
 

7. FUTURE WORK 

Because the door opening classifier is more 

of a proof-of-concept, several steps will be 

required to bring this product to the market. 

For example, advances will need to be made 

to the model. While the accuracy of the watch 

is high, more research may be needed to 

ensure that the watch is more stable. Research 

could be done by exploring other types of 

sensors, aggregates of sensor data (e.g. 

modes, max, min) or different ML models 

(e.g. large neural networks, convolutional 

neural networks, long short-term memory). 

Because of the limited time given for this 

project, there was not too much data 

prepared. Being able to allot more resources 

for data collection would also greatly benefit 

the classifier’s performance.  
 

Once the product is more accurate and 

powerful, the model would likely need to be 

deployed to some cloud provider to be used 

in real time. Smartwatches would also require 

some software to be able to communicate 

with a model being deployed. With these 

changes, I am confident that the door opening 

classifier and similar models would be viable 

for use in conjunction with a smart home or 

some other cyber physical system. 
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