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Abstract 
 

Osteoporosis is a prevalent bone disease that poses a significant health problem for millions of individuals 

globally. Genome-wide association studies (GWASs) have identified numerous associations that affect bone 

mineral density (BMD), the most reliable predictor of osteoporosis fracture. Further efforts are being made to 

identify the genes responsible for the effects of these associations. Most of these associations impact bone by 

altering gene regulation. In my dissertation work, I used innovative, unbiased approaches to prioritize 

previously identified genetic associations from humans. In the first chapter, I discuss how molecular "-omics" 

data and state-of-the-art analytical techniques are being employed to facilitate gene discovery from GWAS and 

provide meaning to these studies. I highlight the resources required in the bone field and novel approaches that I 

used in my graduate work, along with their potential for improvement in the coming years. In the second 

chapter, I focus on identifying potentially causal long non-coding RNAs (lncRNAs), which are understudied 

non-coding RNAs in the context of bone and osteoporosis. I identified 23 lncRNAs that may play a causal role 

in osteoporosis and are candidates for experimental follow-up studies. In the third chapter, I used long-read 

proteogenomics to identify potentially causal protein-coding isoforms in osteoporosis. I provide a list of 

potentially causal isoforms and validated TPM2 functionally in vitro. Finally, I share my final thoughts on the 

current state of the field and future directions for the next generation of systems geneticists who seek to provide 

treatment for osteoporosis. Ultimately, my dissertation contributes to our comprehension of the genetic 

architecture of osteoporosis-related traits and presented new approaches for following up on GWAS studies. 
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1.1 Overview of the genetics of bone mineral density and osteoporosis 

 

Osteoporosis is characterized by low bone mineral density (BMD) and deteriorated bone microarchitecture 

which leads to an increased risk of fracture 1,2. In the USA, over 12 million individuals have been diagnosed 

with osteoporosis, leading to over 2 million fractures per year, a number expected to nearly double by 2025 3. 

Importantly, of the ~300,000 people that suffer from a hip fracture annually, 1 in 5 will die in the subsequent 12 

months 4. Osteoporotic fractures are also costly accounting for approximately $26 billion in health-care 

expenditures 3. 

 

BMD is one of the strongest predictors of fracture 5. It is also a highly heritable quantitative trait (h2 = 0.5–0.8) 

that can be measured in large cohorts of individuals 6–9. Although genome-wide association studies (GWASs) 

have become the mainstay of investigations into the genetic basis of BMD, genetic studies of bone traits began 

before the GWAS era 10. Prior to GWASs, genetic studies of BMD and osteoporosis involved linkage in 

families and candidate gene association studies 9. Linkage studies identified several loci for BMD; however, 

with notable exceptions (see 11 as an example), the challenges of gene discovery in the context of linkage 

studies limited their utility for unraveling complex traits such as BMD. Additionally, replication of loci 

identified by linkage has been low 12. Similarly, candidate gene studies identified several associations for BMD, 

few of which have been replicated in large cohorts 13,14. 

 

Most GWASs conducted for osteoporosis have focused on BMD. BMD can be measured using dual-energy X-

ray absorptiometry (DEXA) or quantitative ultrasound (generates measures of estimated BMD (eBMD)). The 

largest GWAS for DEXA-derived lumbar spine and femoral neck BMD was performed on ~80K individuals 

and identified 56 loci 15,16. The largest eBMD GWAS performed to date used the UK Biobank (N~420K) and 

identified 501 loci harboring 1,103 independent associations which explain 20.3% of the total variance of the 

trait 13. 
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Although GWASs have revolutionized the identification of BMD loci, few of the underlying causal genes have 

been identified. This is largely due to the fact that, unlike Mendelian disease, >90% of GWAS loci for common 

diseases are due to non-coding variants 17. This suggests that most associations are caused by changes in gene 

regulation 18. As a result, it is possible that variants in a GWAS locus may regulate a gene a considerable 

distance (100s of Kbps) up- or downstream. Additionally, extensive linkage disequilibrium (LD) adds to the 

difficulty in assigning target genes to loci and identifying the underlying causal variant(s) at each locus 19. 

Together, these challenges have made it difficult to pinpoint causal genes highlighting the importance of 

developing novel approaches to inform BMD GWASs 20.  

 

There are three primary reasons why causal gene discovery is important. First, the identification of new genes 

responsible for variation in BMD from GWAS 21,22 has already shed light on important new processes 

impacting bone 23,24. This will only continue and increase in impact as the approaches we discuss below are 

utilized more widely to interrogate BMD GWAS. Second, the hopes of precision medicine for osteoporosis, 

which aims to tailor therapeutics based on individualized risk factors (i.e., an individual’s genotype), rely on a 

comprehensive understanding of the genes impacting bone. Third, and possibly the most important, GWAS is a 

powerful approach to identify antiosteoporotic therapeutic targets. Historically, many drug targets from 

traditional studies have failed in clinical trials 25. There are many reasons for these failures including that targets 

of investigation are often not causally linked to a disease. Recently, it has been shown that drug targets with 

evidence from genetic studies (including GWAS) are twice as likely to succeed in clinical trials 25,26. Together, 

these factors are driving the focus on causal gene discovery. 

 

Throughout this introduction, I will highlight how molecular “-omics” data and cutting-edge analytical 

approaches are being used to facilitate gene discovery from GWAS. My aim is to highlight specific studies that 

demonstrate how “-omics” data and analytical approaches can be used to “make sense” of GWAS. I also discuss 

resources that are needed in the bone field and novel approaches that will be used in the coming years. 
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1.2 Approaches for Causal Gene Discovery  

 

Since the first GWAS for any disease in 2006 27, several approaches have been developed with the goal of 

identifying causal genes. All of these approaches leverage the generation of molecular data and its analysis 

using genetic- and/or systems genetics–based analytical strategies. The concept is simple; genetic variants 

mediate their effects on a phenotype by altering molecular changes, such as differences in gene expression, 

alternative splicing, intron retention, protein levels, protein activities, and molecular interactions. As a result, 

the identification of disease-associated variants that influence molecular phenotypes allows one to identify 

causal genes and begin to unravel their mechanisms of action. 

 

The advent of next-generation sequencing (NGS) has made profiling many of these changes straightforward and 

feasible to do in large human populations. This has led to a revolution in the use of molecular quantitative trait 

locus (QTL) data which are beginning to help us understand how BMD-associated variants impact molecular 

processes and, in turn, how these changes influence BMD and ultimately risk of fracture. The next logical step 

is to identify the causal genes in order to enhance our understanding of disease mechanisms. At the heart of this 

step are the approaches to correctly annotate causal genes and understand how they influence bone. This section 

will address current concepts related to establishing the cause-and-effect relationship between BMD GWAS 

reported genetic variants and their respective functional genes in bone. 

 

1.2.1 Expression Quantitative Trait Loci (eQTL) Colocalization 

 

One of the most widely used approaches to inform GWAS is through identification and colocalization of 

expression quantitative trait loci (eQTL) 28. An eQTL is an association between a set of genetic variants and 

gene expression levels 28 (Figures 1.1 and 1.2). eQTLs are divided into two categories based on their proximity 

to target genes: local (also referred to as cis) and distant (also referred to as trans). Local eQTLs are located in 
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close proximity (typically defined as ± 1 Mbp) to the gene they regulate 28. An example of a local eQTL would 

be a polymorphism in the promoter of a gene that leads to altered transcription factor binding and allele-specific 

expression. In contrast, distant eQTLs are located far from the genes they regulate and are often on different 

chromosomes 28. A distant eQTL could manifest from a polymorphic transcription factor that influences its 

target genes differently based on its genotype. The first step in the identification of eQTLs consists of collecting 

and profiling the transcriptome of disease-relevant tissues or cell types using RNA-seq in a population of 

densely genotyped individuals. These data are then used to identify eQTLs by conducting association tests 

between millions of single-nucleotide polymorphisms (SNPs) and thousands of genes. The most direct and 

common way that local eQTLs are used to inform GWAS is through colocalization 29,30. Colocalization is a set 

of statistical approaches that test the hypothesis that an eQTL and GWAS association (or any two associations) 

are driven by the same shared variant (Table 1.1, Figure 1.2). Essentially, colocalization is testing whether or 

not BMD-associated variants also influence gene expression. If so, then one can hypothesize that the BMD-

associated variants influence gene expression and the change in gene expression alters BMD. 

 

Several studies have demonstrated that many eQTLs are tissue or cell type specific, likely reflecting the cell 

type–specific nature of the epigenome 31,32. As a result, eQTLs identified in disease-relevant tissues or cell types 

are likely to be the most informative for use in GWAS colocalization 28,31. One of the largest projects for eQTL 

identification and analysis is the Genotype-Tissue Expression (GTEx) project 31. GTEx is an ongoing effort to 

build a comprehensive public resource to study tissue-specific gene expression and regulation. The project has 

profiled ~50 tissues in hundreds of individuals using RNA-seq and identified thousands of eQTLs 31,32. In fact, 

GTEx has identified significant local eQTL for nearly 95% of all protein-coding genes in the human genome 32. 

While GTEx has significantly increased our understanding of eQTLs and how they mediate the effects of 

GWAS, one of its limitations for the bone field is that bone or bone cells are not included in the 49 tissues 

investigated. Fortunately, studies are beginning to be conducted that identify eQTLs in bone and bone cells 33. 
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Bone tissue is primarily made up of three major cell types: osteoblasts, cells that form bone; osteoclasts, cells 

that break-down bone; and osteocytes, cells that coordinate the function of both osteoblasts and osteoclasts. A 

dynamic equilibrium between these cell types ensures that the skeleton is being properly maintained through 

bone remodeling. Ideally, we would have eQTL data (and other molecular data types) on all three important cell 

types. 

 

The first and only osteoblast eQTL dataset was generated in 2009 from primary cultured human osteoblasts 

(HOb) derived from 95 unrelated donors of Swedish origin 34. Global gene expression from these cells were 

profiled using microarray technology 34. The authors then identified local eQTLs and used them to prioritize the 

genomic loci from one of the first BMD GWAS studies 35. They identified serine racemase (SRR) as a novel 

BMD-associated gene 35. Since its publication, this dataset has also been used by groups performing BMD 

GWAS to help identify causal genes 16,36,37. However, its sample size, low-density genotyping, and use of 

microarray technology to profile expression have limited its effectiveness for gene discovery. The second 

population scale transcriptomic dataset was generated in 2010 on iliac crest bone biopsies from 84 

postmenopausal women in Norway 38. This study suffers the sample limitations as described for the study 

above, but it has been used by several groups performing GWAS to provide insight into potentially causal genes 

16,39. 

 

In 2018, Mullin et al. 33 generated a RNA-seq–based eQTL dataset using osteoclast-like cells differentiated in 

vitro from peripheral blood mononuclear cells (PBMCs) obtained from 158 female patients. These data were 

used to identify genes with eQTLs that colocalized with loci from two eBMD GWASs 13,37. The authors used 

coloc 29, a widely used colocalization approach that tests whether association signals are driven by the same 

causal variant. In the first study 33, using 307 BMD GWAS significant SNPs, eight genes were reported to have 

a significantly colocalizing eQTL. In the second study 33, using 1,103 significant GWAS SNPs, evidence of 

colocalization of GWAS and eQTL association signals was identified for 21 genes. The low percentage of 
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GWAS loci with a colocalizing eQTL in osteoclasts may reflect the cross-sectional nature of the GWAS with 

differences in BMD being driven primarily by bone formation. 

 

Studies support the use of eQTL data in aiding the interpretation of GWAS results in other disease fields such 

as Crohn’s disease 40, bipolar disease 41, and diabetes 42. Here we highlight the transcription factor KLF14 and 

its role in type 2 diabetes (T2D) 43. The genetic variants associated with T2D and other metabolic phenotypes 

map to a region of 3–48 kb upstream of KLF14 43. The GWAS SNPs associated with the KLF14 are colocalized 

with eQTLs only in adipose tissue despite KLF14 being expressed in multiple tissues. Small et al. 43 showed 

that these SNPs act in adipose tissue to reduce KLF14 expression and modulate, in trans, expression of 385 

genes. The study also demonstrated the mechanism in which KLF14 expression increases pre-adipocyte 

proliferation but disrupts lipogenesis 43. Additionally, in vivo knockout in adipose tissue in mice partially 

recapitulated the human phenotype of insulin resistance, dyslipidemia, and T2D 43. This is an excellent example 

of how eQTL data can inform GWAS and how such findings could similarly be used in the bone field, 

especially once large-scale bone-relevant datasets have been generated. 

 

Most eQTL studies focus on “total” gene expression that is transcript levels summed over the exons of a gene. 

However, genetic variation can impact all aspects of transcriptional and posttranscriptional regulation 44. For 

example, recent studies have identified splicing QTL (sQTL), which are loci influencing mRNA splicing 31 

(Figure 1.1). No sQTL studies have been conducted in bone or bone cells; however, this approach has been 

used in other tissues 45. For example, 8,966 sQTL were identified using dorsolateral prefrontal cortex (DLPFC) 

RNA-seq data from >200 individuals 46. When they compared sQTL SNPs and GWAS SNPs (an approach 

similar to colocalization, but statistically less stringent), a significant overlap was observed for schizophrenia 

and other diseases, suggesting that part of the genetic risk for complex diseases is due to sQTL. Therefore, to 

facilitate comprehensive gene discovery, future eQTL studies in bone should address how BMD-associated 

variants impact all levels of gene regulation. 
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1.2.2 Approaches involving Splicing Quantitative Trait Loci (sQTL)  

 

One of the themes of the evolution of multicellular organisms is the development of managed complexity, with 

alternative splicing serving as a prime example. As genes are partitioned into exons separated by intronic 

sequences of increasing length and sequence content, the complexity of gene protein products increases 

tremendously, with splicing serving as the control mechanism for this combinatorial protein complexity. 

Naturally occurring genetic variants can perturb this splicing control mechanism, and it is now clear that an 

appreciable proportion of GWAS loci contain variants that alter splicing 32,44,47,48. 

 

GWAS has provided a wealth of novel insights into human biology, identifying genetic variants in over 55,000 

loci associated with 5,000 complex traits and diseases 49. In addition to GWAS, association studies across 

multiple tissues and cell types have mapped expression quantitative trait loci (eQTLs), whereby common 

genetic variants alter total gene expression levels 50. Colocalization studies combining GWAS and eQTL results 

have successfully identified functional mechanisms for many GWAS loci 51, indicating that the functional of 

these GWAS loci is to alter gene regulation. However, the function of most GWAS loci remains 

uncharacterized, suggesting that other important regulatory mechanisms are involved (and that eQTL discovery 

is incomplete). It is increasingly clear that one of these other mechanisms is genetically influenced alternative 

splicing, measured by splicing quantitative trait loci (sQTLs, Figure 1.3), making the study of alternative 

splicing a priority for GWAS functional characterization of these loci 45,52,53. 

 

The first observations of splicing in human immunoglobulin genes were made decades ago 54,55, but it was 

through the use of RNA-seq that the nearly ubiquitous nature of splicing in the human transcriptome was 

demonstrated 56. Alternative splicing (AS) of mRNA molecules to produce distinct isoforms is a mechanism of 

gene regulation inherent to nearly every protein-coding gene (92–94%) 56,57. Specific splicing events arise from 
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the interplay of core splice factors, which are mandatory for splicing, and auxiliary splice factors, which 

regulate splicing 58,59 to form the ‘splicing network’ 45,60. 

 

Aberrant splicing leads to a host of pathologies, from neurodegeneration to cancer 61–63. Genetic variation can 

affect splice factors, their target binding sites or other regulatory elements to disrupt the balance of the splicing 

network. Splice-altering genetic variation is consistent with other quantitative traits whereby the effect size of 

variants on splicing is inversely correlated with their minor allele frequency 64. Rare variants tend to have more 

dramatic effects on protein function, such as mis-splicing that leads to a truncated protein. On the other hand, 

common variants. contribute to complex genetic diseases through a continuum of effects on splicing, from 

dramatic loss of multiple exons to subtle shifts of splicing ratios 32,48. Functional genomics approaches to map 

and functionally characterize sQTLs are rapidly advancing, and, as I discuss below, are ripe for integration with 

emerging long-read RNA sequencing approaches (Chapter 3). Past excellent reviews cover the topic of 

genetically regulated alternative splicing, with a focus on insights derivable from the short-read RNA-seq data 

available at the time 45,52,53. My goal is to provide comments on the state of the field in terms of the study of 

splicing in the context of complex human disease (GWASs) with a focus on long-read sequencing. 

 

1.2.2a Methods for sQTL discovery: central role of short-read RNA-seq-based splicing quantification 

 

The earliest sQTL studies made creative use of exon arrays to identify sQTLs by comparing genetic effects on 

exon and gene level expression 65–67; however, RNA-seq has revolutionized the identification of sQTLs, largely 

due to the fact that RNA-seq provides direct measurement of splicing through junctional reads 68,69. A review of 

recent studies using sQTLs to functionally characterize GWAS loci may be found in Table 1.2. Previous 

reviews give an excellent overview of sQTL studies before 2018 45,53. 
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In many cases, sQTL detection methods utilize the same regression-based software programs used for eQTL 

detection, such as MatrixeQTL 70, FastQTL 71, tensorQTL 72, and EMMAX 73, though other approaches such as 

transcriptome-wide association studies (TWAS) have been developed 74,75. For eQTL studies, quantification of 

gene expression is fairly straightforward, but splicing differs from eQTLs in that alternative splicing is typically 

expressed in ratios in which the numerator is the count of a particular splice event, such as inclusion of an exon, 

and the denominator is the sum of the counts of all other linked splicing events. The most common metric used 

to quantify splice events is Ψ, ‘percent spliced in’ (PSI), which represents the rate at which a genic feature (such 

as an exon) is included in mature RNA transcripts. Thus, the foundation for most sQTL analyses depends on the 

concept of a splicing event which leads naturally to an ‘event-based’ approach to splicing quantification. 

 

A wide variety of splice quantification methods have been developed 76–79. Most event-based approaches take a 

‘local’ approach in which the numerator and denominator values used to compute Ψ are calculated from directly 

observed short-read quantities, such as junctional reads or exon counts. Two widely used programs, rMATS 80 

and LeafCutter 69, provide useful illustration of the central challenge in the event-based approach, namely the 

lack of a clear correct approach to calculating the denominator for Ψ. This denominator is meant to capture the 

set of splicing alternatives that is relevant for any given splicing event, but splicing often shows a complex 

pattern of dependency in which splice events in different parts of the gene body have a strong pattern of co-

occurrence 81,82. This complexity can make it challenging to unambiguously define the set of linked events that 

should constitute the denominator for calculating the Ψ of any specific event, as described in detail in the MISO 

publication 76. rMATS addresses this issue by limiting its analysis to five well-defined classes of splicing events 

(exon skipping, retained intron, etc.), but it does not account for more complex splicing patterns. The txRevise 

approach addresses more complex splicing, but still limits analysis to events occurring in known isoforms (i.e. 

present in reference databases) 83. In contrast, LeafCutter uses a data-driven approach to identify novel splicing 

events and to ‘learn’ patterns of splicing that may be quite complex, but this can come at the cost of shifting 

definitions of splicing events across or even within datasets. In addition, as Leafcutter relies solely on junction-
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spanning reads, it is unable to quantify changes in gene coverage such as intron retention or changes in UTRs. 

Overall, given the insufficiency of a single event-based approach to capture all possible transcript variations, 

selection of a tool represents the choice of which splicing features are most prioritized for sensitive and accurate 

detection. 

 

An alternative to local, event-based quantification are isoform-based quantification methods, in which the 

abundances of full-length transcripts are first estimated from short reads, an approach that is used by tools such 

as kallisto 84, RSEM 85, Salmon 86, and StringTie 87. A common approach is to calculate isoform ratios (count of 

one isoform/total isoform counts for the gene) which can be tested for association with genetic variants in 

transcript ratio QTL (trQTL) analyses, of which there are many examples 88,89. Detection of changes in isoform 

usage is a multivariate problem, and methods like sQTLSeekeR/R2 48, DRIMSeq 90, and THISTLE 91 

implement statistical models that specifically account for the multivariate nature of isoform analysis. The 

advantage of isoform-based analysis is that by explicitly representing isoforms, which encode and are defined 

by a specific series of splice events, greater clarity can be achieved in the characterization of potentially 

complex splicing changes. The main drawback is the underlying inaccuracy of isoform estimation 92. Even with 

state-of-the-art isoform inference methods, accuracy varies by expression level 93, is reduced for genes with 

many exons and a large number of expressed isoforms 94 and may lead to reduced performance to detect 

differential isoform expression between conditions 95. 

 

Since neither event-based nor isoform inference-based approaches can fully recover missing information about 

the true isoform ratios, this leads to appreciable variability in splicing quantification 92 which also produces 

variability in the results from different sQTL-calling algorithms. A recent sQTL study using both event-based 

(Leafcutter) and the isoform-based (THISTLE) approach found the two methods produced overlapping but 

complementary results 91. Another study found differences between sQTLSeekR and Leafcutter in the GTEx 

dataset 48. 
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1.2.2b Long-read RNA-seq to interpret genetically regulated splicing 

 

By providing direct identification and quantification of full-length transcript isoforms, long-read sequencing—

from technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore (ONT)—can improve sQTL 

interpretation to provide a more direct link between genetic variants and their impact on transcript abundances 

82,96–102. 

 

One obvious way that long-read sequencing informs sQTL interpretation is to reveal effects of sQTLs on novel 

isoforms that would be undetectable or misinterpreted by analyses dependent entirely on reference 

transcriptome annotation (Figure 1.3). A significant number of sQTLs discovered through short-read RNA-seq 

are associated with novel junctions or exons 69. These events are difficult to interpret, because they cannot be 

conclusively linked to a reference transcript. Long-read RNA-seq data from human cells or tissues routinely 

uncover tens of thousands of novel isoforms, indicating that human transcript isoform annotations are 

incomplete, estimated to only include roughly 33% of true isoforms 103–106. 

 

Another way long-read sequencing improves sQTL interpretation is through resolution of sQTL effects on 

complex splicing phenomena, which we refer to here as simpler splicing events that tend to co-occur, such as 

distant exon inclusion events that occur within the same isoform 81,82. In many cases, the identification of ‘local’ 

sQTL events is not sufficient to map the effect of a genetic variant to a specific isoform and then to its 

downstream effect on protein function. By providing accurate information on the isoform content within each 

sample, long-read sequencing can clarify genetic effects on novel splicing events and complex patterns of 

interrelated splicing. For example, even when all junctions are present in the reference, novel isoforms often 

arise from new combinations of known splicing events (i.e. junctions, exons), which would require long-read 

sequencing to resolve 103,107. Though allele-specific expression of particular splicing events can be detected 
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using short-read data 108,109, the use of long reads can reveal allele-specific expression of entirely full-length 

isoforms, even revealing variants that result in dramatic changes in isoform length 110–112. Recently, tools have 

been developed to process long-read sequence reads to extract both splicing and allele information to trace the 

parental origin of isoforms 111–113. 

 

Two illustrative examples of long-read sequencing to clarify genetically influenced splicing are the chronic 

obstructive pulmonary disease (COPD) and lung function GWAS association in NPNT and the body fat 

percentage GWAS association in DUSP13. In the case of NPNT, a genome-wide comparison of COPD GWAS 

peaks and leafcutter sQTLs from GTEx lung tissue identified NPNT as a locus harboring nearly identical 

genetic association signals for COPD and alternative splicing of multiple exons in NPNT. The A allele of the 

lead SNP rs34712979 introduces a novel splice acceptor site at the second exon, creating a NAGNAG motif. 

Analysis of short-read RNA-seq confirmed that the proximal acceptor site created by the A allele is strongly 

preferred to the canonical site. However, this variant also has unexplained sQTL associations with splicing in 

the second, third and fourth exons on NPNT, an observation that had no clear explanation in light of the 

reference isoforms. Targeted long-read sequencing in lung tissue from 10 subjects selected by rs34712979 

genotype revealed the presence of multiple novel, truncated NPNT isoforms which were highly expressed. 

There were marked genotype-specific differences in the usage of these novel short isoforms that account for its 

pattern of sQTL associations 114. In the case of DUSP13, Bayesian colocalization analysis between body fat 

percentage GWAS and sQTLs identified in muscle tissue from GTEx implicated three sQTL intron excision 

events 111. Long-read sequencing coupled with allele-specific transcript structure (ASTS) analysis using 

LORALS 111 showed transcript ENST00000372700 (DUSP13-202) lacking four middle exons was more highly 

expressed from the risk (ALT) allele. 

 

1.2.2c Using long-read RNA-seq to understand how genetic variants affect protein isoform functions 

through splicing 
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While the major functional consequence of eQTLs is to change RNA and protein expression levels, sQTLs can 

alter both the expression and sequence content of the resulting proteins. Using long-read data, one can predict 

the full-length encoded protein isoform product associated with an sQTL 115,116, bridging the gap between 

genetic variants and their functional consequences on proteins. Though protein QTLs may be measured through 

aptamer or mass spectrometry-based approaches, these modalities do not provide isoform-level protein 

quantification 117–119. 

 

Knowledge of long-read-predicted protein isoforms opens up new possibilities for interpreting and prioritizing 

the function of disease-associated sQTLs 120,121. Bioinformatic and experimental approaches can be used to 

relate protein isoform changes to protein functional changes. For example, isoforms associated with sQTLs can 

be bioinformatically analyzed to determine how splicing changes lead to disruption or modulation of protein 

functional features, such as structural domains 122–124 or other protein functional features 125,126. Other 

approaches leverage isoform-specific expression correlation to derive isoform-specific networks 127,128, or to 

propagate gene-level annotations to the most likely functional isoform 129–131. Knowledge of the predicted 

protein isoforms can also be a valuable guide to design experiments for functional validation 132, which can 

include high-throughput phenotypic screening of isoforms 133,134, and isoform-specific assays such as protein–

protein interaction profiling 135–137. 

 

To understand the molecular basis of sQTL associations, at the heart is the need to quantify the functional 

differences between alternative protein isoforms associated with sQTL genetic variants (i.e. the genetic ‘risk’ 

isoform). There are two possibilities here: (1) the alternative isoform has reduced stability or molecular activity, 

relative to the wild-type isoform, or (2) the alternative isoform is capable of a different set of molecular 

activities, relative to the wild-type isoform. Once the pairwise isoform functional effects are defined, one should 

then consider the cumulative protein functional capacity of the gene, which is directly computable from the 



 

25 

collective quantities and functional activities of the individual protein isoforms. This cumulative gene-level 

protein output could make conceptualization of sQTL-effects more tractable in systems-scale analysis. A full 

description of various eQTL and sQTL relationships to protein consequences may be found in Figure 1.4. 

 

1.2.3 Transcriptome-wide association studies (TWASs) 

 

In recent years, transcriptome-wide association studies (TWASs) have become widely used approaches that 

utilize gene expression data to measure the association between genetically regulated gene expression and 

complex phenotypes 138 (Table 1.1). In an individual, gene expression (and as noted above, other aspects of 

gene regulation) is influenced by genetics and the environment 139,140. The genetic contribution to gene 

expression can be quantified using eQTL and used to predict or impute expression in an individual based on 

genotype. For example, if a local eQTL explains 100% (no environmental contribution in this hypothetical 

example) of the variance in gene x, then all we need to know is an individual’s eQTL genotype to know the 

expression of gene x in that individual. TWAS extends this example by estimating the genetic component of 

gene expression (using the advanced statistical analysis of eQTL data) across the genome in a reference 

population where gene expression and genotype have been measured (GTEx is an example) and then imputing 

(predicting) gene expression in a much larger population (such as those used in a BMD GWAS) 138. Once gene 

expression is imputed, genetically regulated gene expression is associated with a disease or disease phenotype. 

Most genes identified by TWAS are located in GWAS associations for that disease (due to genetically regulated 

differences in gene expression being the basis of most GWAS associations). As a result, TWAS can pinpoint 

genes likely to be causal at GWAS loci. 

 

TWASs for BMD are sparse but are starting to be performed. In one of the first studies, gene expression data 

from GTEx muscle and whole blood tissues in combination with the largest eBMD GWAS to date 141 identified 

276 genes with significant gene-trait associations. To further pinpoint causal genes, the authors used 
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colocalization to demonstrate that 142 of the 276 showed strong evidence for colocalization using GTEx data. 

Of the 142 genes, many were well-known regulators of BMD. Another study utilized 48 GTEx tissues and 

reported 88 significant genes, many of which were located in total body (TB) BMD GWAS 142. Lastly, a 

recently published resource, PhenomeXcan 143, integrated TWAS gene- trait associations with colocalization to 

prioritize GWAS loci. A total of 675 genes were identified with both significant TWAS associations with BMD 

and colocalizing eQTLs. 

 

1.2.4 Network Analysis 

 

As mentioned above, GWASs have identified thousands of associations for BMD; however, the scarcity of 

population scale human RNA-seq datasets on bone or bone cells has hindered our ability to directly inform 

BMD GWAS. To address this limitation, it has recently been demonstrated that network approaches using 

transcriptomic (and in some cases other “-omic” data types) data can be used to provide information on which 

genes at a GWAS locus might be causal 144,145. The general idea is simple; genes responsible for GWAS 

associations likely function in pathways that impact bone, such as osteoblast-mediated bone formation or 

osteoclast-mediated bone resorption. In turn, biological network reconstruction approaches can take molecular 

data and group genes, in an unbiased way, into groups (or pathways) based loosely on function (Table 1.1). As 

a result, it is possible to use networks to identify “network modules” that are enriched in GWAS genes and 

likely represent key pathways or biological processes regulating BMD. In other words, biological networks 

provide us with cellular wiring diagrams and GWAS points to “circuits” that when disrupted (by genetic 

variation) lead to disease. We can then use the knowledge of key circuits to inform GWAS. 

 

In a series of studies, our lab has used co-expression networks to predict causal BMD GWAS genes. In a co-

expression network, genes are connected based on the correlation of their expression 146,147. Groups or 

“modules” of highly intercorrelated genes are identified by clustering 146,147, and modules have been shown in a 
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number of studies across species to loosely group genes based on functional similarities 148,149. Calabrese et al. 

145 generated a co-expression network using transcriptomic data on marrow-free cortical bone from the Hybrid 

Mouse Diversity Panel (HMDP; a panel of 96 inbred mouse strains) 150. We used mouse data to profile “pure” 

cortical bone since these data were not available in humans. To identify network modules that represented key 

“circuits,” we mapped the mouse homologues of genes implicated by (i.e., located in a GWAS locus) the largest 

BMD GWAS at the time 16 onto the mouse bone network. We identified two modules with a significant 

enrichment of GWAS genes, collectively named the Osteoblast Functional Module (OFM). Based on a detailed 

characterization, we hypothesized that many of the OFM genes were causal GWAS genes and that they likely 

influenced BMD via a role in modulating osteoblast activity. The OFM allowed us to predict and infer the 

function of causal genes for 30 of 64 reported BMD GWAS loci. We further investigated two BMD loci on 

chromosomes 2p16.2 and 14q32.32. Based on the network analysis, we predicted that Sptbn1 and Mark3 were 

responsible for the effects of the two loci, respectively. In support of these predictions, we used GTEx to 

identify that both genes were regulated by eQTLs in multiple tissues that colocalized with their respective 

GWAS associations. We also showed for both genes that BMD was altered in mouse knockout models in the 

same direction predicted by the GWAS/eQTL data. 

 

There have been two follow-up studies 144,151 that have refined the above approach. Sabik et al. 144 generated a 

cell type–specific (osteoblast) and time point-specific (mineralization) co-expression network using RNA-seq 

data on calvarial osteoblasts from a separate panel of inbred mouse strains. We identified a co-expression 

module enriched for genes implicated by BMD GWAS, correlated with in vitro osteoblast mineralization, and 

associated with skeletal phenotypes in human monogenic disease and mouse knockouts. We further investigated 

four loci and found that Cadm1, B4galnt3, Dock9, and Gpr133 all had human colocalizing eQTL and altered 

BMD in knockout mice. 
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Our next refinement was the use of Bayesian networks. Bayesian networks differ from co-expression networks 

in that they use advanced statistical approaches to add directions to the network that allow one to infer causal 

relationships between genes 152. Al-Barghouthi et al. 151 demonstrated the utility of this approach by generating 

a co-expression network from cortical bone RNA-seq data collected from outbred mice. We then created 

Bayesian networks for each co-expression module and performed what is called a “key driver analysis” (KDA) 

151,153. In a KDA, genes that are known to play important roles in bone (such as RUNX2, a transcription factor 

essential for osteoblastogenesis) are “seeded” onto the network. For each gene in the network, we then counted 

the number of “known” genes it was connected to and determined if this number was more than would be 

expected by chance. We then identified key drivers which were located in a GWAS locus and regulated by a 

colocalizing eQTL. This approach yielded 46 genes likely to be causal for human BMD GWAS associations. 

We further investigated two novel genes, Sertad4 and Glt8d2, and demonstrated that BMD was altered in 

knockouts, further suggesting they were causal for their respective GWAS association. These data supported the 

idea that Bayesian networks provided a new perspective and approach to identify causal BMD GWAS genes. 

 

Another study informed GWAS using a co-expression network generated on macrophages from a cross between 

Wistar Kyoto (WKY) and LEW rats 154. MMnet (the macrophage multinucleation network) was a module in 

this network. Importantly, macrophages can fuse to form osteoclasts in bone, and WKY rats experience 

spontaneous macrophage fusing events, while LEW rats do not 155. MMnet contained 190 genes regulated by 

trans eQTLs that were driven by the Trem2 gene 155. The authors reported that WKY rats show low bone mass, 

mineralization, and strength relative to LEW rats, suggesting that MMnet genes may control bone homeostasis. 

The authors show that the MMnet was enriched for genes located in BMD GWAS loci 154. Given the evidence, 

the authors conducted in vivo knockout experiments of Bcat1, the most highly connected gene in the network, 

and showed that Bcat1 deficiency results in high bone mass. Next, readily available knockout mice of 12 

MMnet individual genes were obtained, half of which showed skeletal phenotype abnormalities. As the authors 

established a strong association between MMnet and osteoclast activity, they investigated whether the human 
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orthologues share the same activity as their rat counterparts. Knockdown of 11 MMnet genes (three of which 

are GWAS hits) in vitro (TRAP+ human osteoclasts) and knockout of the same genes in vivo (mouse models) 

were concordant and strongly correlated. This study identified a physiologically important network that is 

highly conserved in rats, mice, and humans and was enriched in GWAS-implicated genes. This is a great 

representation of how network analysis can inform GWAS and provide important information on the function 

(in this case osteoclast multinucleation) of potentially causal genes. 

 

1.2.5 Non-transcriptomics based data: Epigenomics 

 

Another “-omics” data type that has proven useful for informing GWASs is epigenetic data 156. The majority 

(>90%) of BMD GWAS loci are found within noncoding regions 17, indicating that they perturb gene 

regulation. Thus, it is likely that causal GWAS variants reside in regulatory elements, such as promoters, 

enhancers, and CpG islands, which can be identified using epigenomic data.  

 

In the same way that eQTL can be identified for gene expression, QTL can be identified using epigenomic data 

157. Examples are chromatin accessibility QTLs (caQTLs), which are loci that influence chromatin accessibility 

158 (Figure 1.1). Chromatin accessibility is a measure of the usage and activity of regulatory elements and is 

often assayed using ATAC- seq 159. caQTLs can highlight potentially causal SNPs that may be driving 

genetically regulated changes in expression. In this way, they are most useful for identifying causal variants, not 

causal genes. However, they can also be integrated with eQTL information to link caQTLs to the genes they 

regulate, increasing confidence for a particular set of putatively causal genes 160. 

 

To our knowledge, there are no studies using caQTLs to inform BMD GWAS. However, in T2D, a study 

profiled chromatin accessibility in pancreatic islet samples from 19 genotyped individuals and identified 2,949 

caQTLs 161. The authors performed a functional follow-up on 13 of the reported caQTLs using luciferase 
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reporter assays in MIN6 β-cells and showed that more than half exhibited effects on enhancer activity that were 

consistent with in vivo chromatin accessibility changes. Importantly, islet caQTL analysis nominated putative 

causal SNPs in 13 T2D-associated GWAS loci, linking seven and six T2D risk alleles, respectively, to gain or 

loss of in vivo chromatin accessibility. 

 

Lastly, accumulating evidence suggests that genetic variants may impact a complex disease by modulating 

DNA methylation levels (meQTLs) (Figure 1.1). To date, no meQTL analysis has been performed on bone 

samples. However, a study in depression cohorts has implicated gene targets by testing associations between 

SNPs and DNA methylation levels in whole blood 162. Another study used meQTL to inform GWAS of asthma 

in exaggerated bronchoconstriction of airway smooth muscle cells (ASMCs) and showed that GWAS variants 

in asthma were significantly enriched for meQTLs 163. 

 

1.3 Integrating “-omics” Data Types 

 

So far, we have highlighted the use of single “-omic” data types. However, the use of multidimensional datasets 

(layering of various datasets) increases statistical power 164, potentially provides stronger evidence for causality, 

and captures biology that would not have been informed with any one modality. In a recent study, Qiu et al. 165 

performed multi-“omics” analyses with expression, methylation, and metabolite QTLs to identify osteoporosis 

biomarkers. Their approach involved performing individual transcriptomic, methylomic, and metabolomic 

analysis in 119 European female subjects with high (n = 61) and low (n = 58) BMD. Using advanced statistical 

approaches, the authors identified gene-based biomarkers, some of which corresponded to genes located in 

BMD GWAS loci, suggesting they are causal. 

 

Recently, Chesi et al. 166 took a different approach. Instead of generating population-level “-omics” data, the 

authors broadly profiled multiple “-omics” layers in human mesenchymal stem cell (MSC)–derived osteoblasts. 
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Their approach was anchored on promoter Capture-C 167. Promoter Capture-C is a technique that uses promoter 

“baits” to “fish-out” interactions between promoters and the rest of the genome. These data provide links 

between regulatory elements (e.g., enhancers) and the promoters of their target genes that are presumably 

important for gene expression. In osteoblasts, they identified interactions that were in close proximity of BMD-

associated variants identified by GWAS. They then used RNA- seq data to confirm target gene expression in 

osteoblasts as well as ATAC-seq data to confirm the region interacting with the promoter was a region of open 

chromatin and presumably an active regulatory element. They fine-mapped 273 BMD GWAS loci in primary 

osteoblasts. The authors report observing consistent contacts between candidate causal variants and putative 

target gene promoters in open chromatin for ~ 17% of the 273 BMD loci investigated. Knockdown of two novel 

implicated genes, ING3 and EPDR1, inhibited osteoblastogenesis, while promoting adipogenesis. 

 

In this introduction, I discuss the many ways that “-omics” data can be used to identify genes responsible for the 

effects of BMD GWAS loci. One limitation, as discussed above, is the paucity of “-omics” data on bone tissue 

and bone cells. While the number of such studies is growing, there is a need to generate population-scale 

transcriptomics data on the three main cell types in bone: osteoblasts, osteoclasts, and osteocytes. These data 

would significantly increase our ability to identify and characterize causal genes responsible for BMD GWAS 

associations. They would also be of significant use to the larger bone and human genetics communities to 

address other aspects of disease. 

 

Another exciting approach that will impact our ability to use gene expression data to inform GWAS is single-

cell RNA sequencing (scRNA-seq). scRNA-seq is emerging as a powerful tool to examine transcriptomes of 

individual cells. The clear benefit of this technology is its ability, when used in populations, to identify cell 

type–specific eQTLs, many of which are lost when using bulk methods that take into account average gene 

expression across all different cell subtypes 168. In early 2020, the single-cell eQTLGen consortium 

(sceQTLGen) was founded, aimed at pinpointing the disease-causing genetic variants and their effect on gene 
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expression 168. The single-cell toolbox can be extended beyond the transcriptome to the epigenome with single-

cell ATAC-seq (scATAC-seq). A recent study by Rai et al. 169 attempted to identify cell type–specific 

regulatory signatures underlying T2D in pancreatic islets. They reported that T2D GWAS SNPs were 

significantly enriched in the open chromatin of beta cells, but not in alpha or delta cell–specific open chromatin. 

In the bone field, scRNA-seq and scATAC-seq are just beginning to be performed, but have already 

demonstrated the extensive cellular heterogeneity of bone 170,171. Using post-GWAS approaches described by 

this introduction on data generated by these two approaches will lead to an increase in our ability to inform 

GWAS. 

 

Proteomic analysis offers another type of data that could be integrated into systems genetics approaches. Protein 

quantification studies have shown that transcript abundance is not highly correlated with protein translation 

172,173. Generally, proteomics technologies used in publications to study bone metabolism can be inherently 

divided into two categories: (i) expression screening and (ii) quantitative mass spectroscopy (MS) 173,174. The 

main challenge facing proteomic work in bone is the efficient extraction of proteins from bone cells 175. 

Therefore, most studies have instead used blood serum/plasma or PBMCs to study cellular signaling, secretory 

proteins, and differential protein expression between conditions 174,176. However, the goal of GWAS follow-up 

at the proteome level is identifying genetic variants associated with protein concentrations (protein quantitative 

trait loci; proQTL) 177 (Figure 1.1). Integrating proQTL with GWAS variants using approaches such as 

colocalization may inform GWAS beyond what can be accomplished with transcriptomics data and bridge the 

knowledge gap regarding SNP-disease associations 177. For example, using GWAS data from Framingham 

participants (long-term cardiovascular study cohort) reported 13 proteins harboring proQTL variants that match 

coronary disease-risk variants from GWAS, not all of which also had colocalizing eQTLs 178. 

 

It should be noted that all the approaches discussed in this review provide hypotheses that must be tested in 

order to confirm gene discovery. It is impossible to confirm these hypotheses in humans, thus highlighting the 
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importance of using model organisms such as mice. Available resources such as the International Mouse 

Phenotyping Consortium (IMPC) 179 and Knockout Mouse Project (KOMP) 180 which aim to identify the 

function of every protein-coding gene in the mouse genome, the Origins of Bone and Cartilage Disease 

(OBCD) initiative 181, and Bonebase project 182 that are providing detailed bone phenotyping of mice from these 

efforts are key components of this step. Additionally, in vitro (using human bone cell lines or human primary 

cells) or in vivo (using model organisms) testing of genes using gene editing technologies such as 

CRISPR/Cas9 183 or its variations (CRISPRi, CRISPRa, etc. 184) will be key in uncovering the biology identified 

by GWAS. Finally, the use of genome-scale CRISPR/Cas9 functional genetic screens could potentially uncover 

other genes beyond those directly implicated by GWAS. 

 
1.4 Summary 

 

In summary, over the past 12 years, GWASs have identified a large number of variants influencing BMD. Post-

GWAS efforts are attempting to identify the genes responsible for their effects. We now know that most of the 

variants identified by GWAS exert their impact on bone by altering gene regulation. We also know that the 

discovery of causal genes has the potential to provide insight into osteoporosis etiology and identify novel 

therapeutic targets. The approaches and findings highlighted in this introduction will only continue to improve 

given rapid advances in statistical approaches and technologies to profile molecular phenotypes. As the field 

progresses and we continue to unlock the secrets of the human genome, it is our hope that we will be able to use 

this information to develop more effective therapies to treat and ultimately prevent osteoporosis. In my 

dissertation work, I aimed to further characterize previously identified genetic associations, from humans, using 

novel, unbiased approaches in the following studies: 

(1)   In Chapter 2, we focus on identifying potentially causal long non-coding RNAs, an 

understudied population of non-coding RNAs in the context of bone and osteoporosis. We were 
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able to identify 23 lncRNAs as potentially causal in osteoporosis and are candidates for 

experimental follow-up studies.  

(2)   In Chapter 3, we leveraged long-read proteogenomics to identify potentially causal protein-

coding isoforms in osteoporosis. We provided a list of potentially causal isoforms and 

functionally validated the gene TPM2 in vitro as a novel causal gene in osteoporosis. 

(3) In Chapter 4, I shared my final thoughts on the state of the field and future directions for the 

next generation of systems geneticists who aspire to provide treatment for osteoporosis.  
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Chapter 2 

Identification of known and novel long non-coding RNAs potentially responsible for the effects of BMD 

GWAS loci 
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2.1 Abstract 

 

Osteoporosis, characterized by low bone mineral density (BMD), is the most common complex disease 

affecting bone and constitutes a major societal health problem. Genome-wide association studies (GWASs) 

have identified over 1,100 associations influencing BMD. It has been shown that perturbations to long non-

coding RNAs (lncRNAs) influence BMD and the activities of bone cells; however, the extent to which 

lncRNAs are involved in the genetic regulation of BMD is unknown. Here, we combined the analysis of allelic 

imbalance (AI) in human acetabular bone fragments with a transcriptome-wide association study (TWAS) and 

expression quantitative trait loci (eQTL) colocalization analysis using data from the Genotype-Tissue 

Expression (GTEx) project to identify lncRNAs potentially responsible for GWAS associations. We identified 

27 lncRNAs in bone that are located in proximity to a BMD GWAS association and harbor SNPs demonstrating 

AI. Using GTEx data we identified an additional 31 lncRNAs whose expression was associated (FDR 

correction<0.05) with BMD through TWAS and had a colocalizing eQTL (regional colocalization probability 

(RCP)>0.1). The 58 lncRNAs are located in 43 BMD associations. To further support a causal role for the 

identified lncRNAs, we show that 23 of the 58 lncRNAs are differentially expressed as a function of osteoblast 

differentiation. Our approach identifies lncRNAs that are potentially responsible for BMD GWAS associations 

and suggest that lncRNAs play a role in the genetics of osteoporosis. 

 

Keywords: Osteoporosis; Human association studies; Osteocytes; Osteoblasts 
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2.2 Introduction 

  

Osteoporosis is characterized by low bone mineral density (BMD) and deteriorated structural integrity which 

leads to an increased risk of fracture 2,185. In the U.S. alone, 12 million individuals have been diagnosed with 

osteoporosis, contributing to over 2 million fractures per year 3. This number is expected to nearly double by 

2025, resulting in approximately $26 billion in health care expenditures 3. 

  

BMD is one of the strongest predictors of fracture 5 and is a highly heritable quantitative trait (h2 = 0.5-0.8) 6–

8,186. As a result, the majority of genome-wide association studies (GWASs) conducted for osteoporosis have 

focused on BMD. The largest BMD GWAS performed to date used the UK BioBank (N~420K) and identified 

1,103 associations influencing heel estimated BMD (eBMD) 13. One of the main challenges of BMD GWAS is 

that the majority (>90%) of associations implicate non-coding variants that lie in intronic or intergenic regions 

suggesting they have a role in gene regulation. This has made it difficult to pinpoint causal genes and highlights 

the need for follow-up studies 20. In addition, few studies have systematically evaluated non-coding transcripts 

as potential causal genes. 

  

The largest and most functionally diverse family of non-coding transcripts are long non-coding RNAs 

(lncRNAs). LncRNAs are transcripts longer than 200 nucleotides and have no coding potential 187. The majority 

of lncRNAs share sequence features with protein-coding genes including a 3’ poly-A tail, a 5’ methyl cap, and 

an open reading frame 188. However, their expression is low and heterogenous, and they show intermediate to 

high tissue specificity 189. Aberrant expression of lncRNAs has been linked to diseases such as osteoporosis 190. 

Additionally, there is accumulating evidence suggesting their involvement in key regulatory pathways, 

including osteogenic differentiation 187,191. 

  

Although understudied in the context of GWAS 189, there is increasing evidence suggesting that lncRNAs are 

causal for a subset of associations identified by GWAS. A recent analysis of data from the Genotype-Tissue 



 

38 

Expression (GTEx) project identified 690 potentially causal lncRNAs underlying associations influencing risk 

of a wide range of diseases 189. Additionally, there is emerging evidence implicating lncRNAs in the genetics of 

BMD 192–194.  For example, a study reported 575 differentially expressed lncRNAs between high and low BMD 

groups in Caucasian women, 26 of which regulate protein-coding genes that are potentially causal in BMD 

GWAS 195. Additionally, a recent BMD single nucleotide polymorphism (SNP) prioritization analysis 

implicated lncRNAs as potential effector transcripts 196. Together these studies suggest that lncRNAs may play 

an important role in the genetic regulation of bone mass. 

  

In recent years, a number of approaches have been developed that utilize transcriptomics data to inform GWAS, 

including the analysis of allelic imbalance (AI), transcriptome-wide association studies (TWASs), and 

expression quantitative trait loci (eQTL) colocalization 51. AI results from the cis-regulatory effects (i.e., local 

eQTL) that can be tracked using heterozygous coding SNPs. In transcriptome-wide association studies 

(TWASs) the genetic component of gene expression in a reference population is estimated and then imputed in 

a much larger population. Once gene expression is imputed, genetically regulated gene expression is associated 

with a disease or disease phenotype 197. Most genes identified by TWAS are located in GWAS associations for 

that disease and, as a result, TWAS can pinpoint genes likely to be causal at GWAS loci 198,199. eQTLs are 

genetic variants associated with changes in gene expression and can be tissue-specific or shared across multiple 

tissues. eQTL colocalization tests whether the change in gene expression and the change in a trait of interest are 

driven by the same shared genetic variant(s). All three approaches, alone or in combination, have been 

successfully used to pinpoint potential causal disease genes at GWAS associations. 

  

Here, we identified lncRNAs that are potentially responsible for the effects of BMD GWAS associations by 

first applying AI to bone samples and, next, applying TWAS and eQTL colocalization to gene expression data 

from GTEx. Through both approaches we identified 58 lncRNAs with evidence of being causal BMD GWAS 

genes. We further prioritized these lncRNAs by identifying those that were differentially expressed as a 
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function of osteoblast differentiation. Together, these results highlight the potential importance of lncRNAs as 

candidate causal BMD GWAS genes. 

 

2.3 Methods 

 

Patient demographics 

 

All human specimen collection was performed in accordance with institutional review board (IRB) approval 

from our institution (IRB number H-32517). Acetabular reaming from 17 Boston Medical Center (BMC) 

patients (ages 43–80 years) undergoing elective hip arthroplasty were collected: 12 females and 5 males; 8 

black, 8 white, and 1 Hispanic. This demographic mix reflects the population serviced by Boston University 

Medical Campus (BUMC), which is an urban safety-net hospital. 

 

RNA extraction 

 

Bone fragments were isolated from the 17 patients. Total RNA was isolated from bone fragments as described 

in Sagi and colleagues 200. Total RNA sequencing (RNAseq) libraries were constructed from bone as well as 

human fetal osteoblast (hFOB) RNA samples using Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold 

sample prep kits (Illumina, San Diego, CA, USA). Constructed libraries contained all RNAs greater than 

100 nucleotides (nt) (both unpolyadenylated and polyadenylated) minus cytoplasmic and mitochondrial 

ribosomal RNAs (rRNAs). Samples were sequenced to achieve a minimum of 50 million reads 2 × 75 base pair 

(bp) paired-end reads on an Illumina NextSeq500 (Illumina). 

 

hFOB cell line culture 

 

hFOB 1.19 cells (American Type Culture Collection [ATCC], Manassas, VA, USA; #CRL-11372) were 

cultured at 34C and differentiated at 39.5C as recommended with the following modifications. Growth media: 

minimal essential media (MEM; Gibco, Grand Island, NY, USA; 10370-021) supplemented with 10% fetal 
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bovine serum (FBS; Atlantic Biologicals, Morrisville, NC, USA; S12450), 1% Glutamax (Gibco; 35050-061), 

1% Pen Strep (Gibco; 15140-122). Differentiation media: MEM alpha (Gibco; 12571-063) supplemented with 

10% FBS, 1% Glutamax, 1% Pen Strep, 50 μg/μL Ascorbic Acid (Sigma-Aldrich, St. Louis, MO, USA; A4544-

25G), 10mM beta-Glycerophosphate (Sigma-Aldrich; G9422-100G), 10nM Dexamethasone (Sigma-Aldrich; 

D4902-25MG). RNA was isolated from ~0.5 × 106 cells at days 0, 2, 4, 6, 8, and 10 of differentiation as 

recommended (RNAeasy Minikit; QIAGEN, Valencia, CA, USA; 74106). Mineralized nodule formation was 

measured by staining cultures with Alizarin Red (40mM, pH 5.6; Sigma-Aldrich; A5533-25G). Reported results 

were obtained from three biological replicate experiments. 

 

RNA sequencing and differential gene expression analysis 

 

Computational analysis of RNA sequencing data for the 17 bone samples, Farr and colleagues 201 and the hFOB 

samples were performed using a custom bioinformatics pipeline. Briefly, FastqQC (Babraham Bioinformatics, 

Cambridge, UK; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and RseQC 202 were used to assess 

the quality of raw reads. Adapter trimming was completed using Trimmomatic 203. Sequences were aligned to 

the GENCODE v34 204 reference genome using the SNP and splice aware aligner HISAT2 205. Genome 

assembly and abundances in transcripts per million (TPM) were quantified using StringTie 87. Differential 

expression analysis for the hFOB differentiation experiment was performed using Deseq2 206 across all six 

differentiation time points using analysis of deviance (ANODEV) which is conceptually similar to analysis of 

variance (ANOVA). Differential expression analysis for the comparison between this study's samples and the 

Farr and colleagues 201 samples was performed using Deseq2 206 standard approach. 

 

lncRNA discovery 

 

The Coding Potential Assessment Tool (CPAT) 207 was used to assess the protein-coding potential of the novel 

transcripts assembled. In short, CPAT is a machine learning algorithm trained on a set of known human 
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lncRNAs to identify novel putative lncRNAs based on shared sequence features. We used all known lncRNAs 

in the latest human genome assembly (GRCh38) as the training set. Novel transcripts with coding probability < 

0.367 are regarded as lncRNAs in accordance with software authors. Novel lncRNAs with TPM < 1 were 

regarded as noise and discarded. 

 

Allelic Imbalance (AI) analysis 

 

Reads were aligned to the GENCODE v34 204 reference genome using the SNP and splice aware aligner 

HISAT2 205. The resultant BAM files were then used as input for variant calling using the GATK pipeline 208. 

Briefly, duplicate reads were identified using MarkDuplicates. Next, reads spanning introns were reformatted 

using SplitNCigarReads to match the DNA aligner conventions. Then base quality recalibration was performed 

to detect and correct for patterns of systematic errors in the base quality scores. Finally, the variant calling and 

filtration step was performed using HaplotypeCaller. The resultant VCF file included only known and novel 

SNPs and reference bias was corrected using WASP 209. Briefly, mapped reads that overlap SNPs are identified. 

For each read that overlaps a SNP, its genotype is swapped with that of the other allele and it is re-mapped. If a 

re-mapped read fails to map to exactly the same location, it is discarded. The resultant corrected BAM and 

filtered VCF files were used as input for GATK ASEReadCounter to provide a table of filtered base counts at 

heterozygous sites for allele specific expression. Bases with a read depth less than 20 were discarded. In order 

to determine significance, a binomial test was performed and only heterozygous sites with false discovery rate 

(FDR)-corrected p value of < 0.05 were considered significant. 

 

TWASs 

 

We conducted a TWAS by integrating genome-wide SNP-level association summary statistics from a BMD 

GWAS 13 with GTEx version 8 gene expression QTL data from 49 tissue types. We used the S-MultiXcan 210 

approach for this analysis, to correlate gene expression across tissues to increase power and identify candidate 
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susceptibility genes. Gene-level associations were identified at FDR correction < 0.05 and were further filtered 

using fastENLOC (a faster implementation of ENLOC 30) regional colocalization probability > 0.1 in at least 

one tissue type. 

 

Bayesian colocalization analysis 

 

We used fastENLOC to perform Bayesian colocalization analysis. We integrated summary statistics from the 

most recent (and largest) eBMD GWAS 13 and eQTL data from 49 GTEx tissues 31. We used the recommended 

regional colocalization probability (RCP) threshold of  > 0.1 as indication of significant overlap between SNP 

and eQTL. 

 

2.4 Results 

 

In this study, we used two approaches to identify lncRNAs that potentially underlie BMD GWAS associations. 

In the first approach, we quantified known (lncRNAs that have been reported in the GENCODE database) and 

novel lncRNAs using RNA sequencing (RNAseq) data from human bone fragments and identified lncRNAs 

located in proximity of a BMD GWAS association and harboring SNPs demonstrating AI. In the second 

approach, we leveraged GTEx to identify lncRNAs across a large number of tissues and cell-types whose 

expression was significantly associated with BMD by TWAS and regulated by an eQTL that colocalized with a 

BMD association. Figure 2.1 provides an overview of our study. 

  

2.4.1 Generation of bone expression data from bone fragments 

 

To identify potentially casual lncRNAs in a BMD relevant tissue, we generated total RNAseq (ribo-depleted) 

data on bone fragments isolated from acetabular reamings from patients undergoing hip arthroplasty (n = 17; 5 

males and 12 females; ages 43 to 80 years). The acetabular reamings were comprised primarily of bone and 
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marrow with a small number of contaminating cartilage fragments. In contrast to most gene expression data 

generated on bone which are typically from biopsies that contain marrow, we were able to remove the marrow 

leaving purified trabecular and cortical bone. We hypothesized that the acetabular bone fragments consisted 

primarily of late-stage osteoblasts/osteocytes 211, allowing us to characterize lncRNAs enriched in these cell 

types. To confirm that the acetabular samples were enriched in osteocytes, we compared these data to published 

RNAseq data on bone biopsies 201. Farr and colleagues 201 generated RNAseq data on 58 iliac crest needle 

biopsies from healthy women containing both bone and marrow. Average transcripts per million (TPM) across 

all samples in both experiments were highly correlated (Figure 2.2A, r2= 0.845, p <  2.2 × 10−16). Importantly, 

differential expression analysis between the two datasets showed that the top 1,000 genes with the largest fold 

change increase in the bone fragment samples compared to bone biopsy samples were enriched in Gene 

Ontology (GO) terms such as “skeletal system development” (FDR = 4.01 × 10−3) and “extracellular matrix 

organization” (FDR = 4.11 × 10−5). 

 

To support the notion that our samples are unique in osteocyte enrichment, we used data from a recent study 

that identified an osteocyte gene signature consisting of 1,239 genes in mice and their orthologs in humans 212. 

The ratio of expression (bone fragment samples/bone biopsy samples) was used. A ratio value > 1 indicates that 

gene expression is higher in the bone fragment samples relative to the bone biopsy samples. In contrast, a ratio 

value < 1 indicates that the gene is highly expressed in bone biopsy samples relative to bone fragment samples. 

We expect to see that osteocyte signature genes show ratio values > 1 and marrow enriched genes show ratio 

values < 1. The osteocyte signature genes showed a median ratio of 1.72 (62% of osteocyte signature genes 

ratio > 1). Additionally, the ratio of expression of genes enriched in bone marrow showed a median of 0.27 

(91% of marrow enriched genes ratio < 1). The distribution of osteocyte signature genes ratio values showed a 

significant median shift (Wilcoxon test, p < 2.2 × 10−16) (Figure 2.2D), and the opposite pattern was observed 

for the bone marrow enriched genes (Wilcoxon test, p < 2.2 × 10−16) (Figure 2.2E). In addition, we compared 
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the expression of osteocyte-specific genes reported in Bonewald et al. 211 (Figure 2.2B) and bone marrow 

enriched genes reported in (www.proteinatlas.org) (Figure 2.2C). In addition, during the isolation, care was 

also taken to remove the cartilage fragments. We repeated the analysis for cartilage marker genes and found a 

modest reduction (p = 0.035) of expression in our samples 213. The difference was more modest, likely due to a 

significant overlap in the expression of these genes in both cartilage and bone/osteoblasts. Altogether, these data 

suggest that the purified acetabular bone fragments are enriched for late osteoblasts/osteocytes and are more 

marrow depleted compared to iliac crest biopsies. 

 

2.4.2 Identifying novel lncRNAs in purified acetabular bone fragments 

 

Given the paucity of bone transcriptomics data in the literature, and the tissue-specific nature of lncRNA 

expression, we hypothesized that many bone/osteocyte-specific lncRNAs would not be present in current 

sequence databases. Additionally, ~50% of lncRNAs do not possess a poly-A tail modification 214 and most 

RNAseq data is generated after poly-A selection. Therefore, in order to capture a more comprehensive profile of 

lncRNAs in bone, we implemented a lncRNA discovery step to identify putative “novel” lncRNA transcripts 

using the computational algorithm CPAT 207. Across the 17 bone samples we identified 6,612 known lncRNAs 

and 2,440 novel lncRNAs (Tables S2.1 and S2.2). The mean length of novel lncRNAs was 30.3 kilobases (kb) 

and median length of 11.8 kb. These values were comparable to the mean length of known lncRNAs expressed 

in the bone samples (mean = 35.4 kb; median = 4.7 kb). 

 

2.4.3 Identifying potentially casual lncRNAs in bone 

 

For lncRNAs to be considered potentially causal in bone, we identified those that are both located in proximity 

of a BMD GWAS association and regulated by AI. We hypothesized that such genes may be causal for their 

respective associations because of the potential to be regulated by an eQTL which colocalizes with a BMD 
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association. Of the 9,052 lncRNAs (2,440 novel and 6,612 known) we quantified in acetabular bone, 1,496 

lncRNAs (~17% of expressed lncRNAs) were found within a 400 kb window (±200 kb from the lncRNA start 

site) of each of 1,103 GWAS associations previously identified by Morris and colleagues 13. The rationale 

behind choosing this genomic distance was based on findings in Võsa and colleagues 215, where they showed 

that 92% of lead cis-eQTLs are within 100 kb of the transcription start site. Therefore, this window was 

extended to ensure we captured the majority of all cis-eQTL effects. 

 

Next, we identified heterozygous coding variants that demonstrated significant evidence of AI within lncRNAs. 

None of the heterozygous coding SNPs used to assess AI were in linkage disequilibrium (LD) (r2 < 0.05) with a 

lead BMD GWAS SNP, which is expected because these SNPs were only used to measure AI and not 

necessarily functionally associated with lead GWAS SNPs. Of the total number of lncRNAs we identified, 174 

(47 known, 127 novel; ~2% of expressed lncRNAs) had at least one SNP demonstrating AI in at least one of the 

17 bone fragment samples. Out of the 174, 27 (15.5%; 8 known, 19 novel) were located in proximity of a 

GWAS association (Figure 2.3A, Table S2.3). It is expected that we find a low number of lncRNAs (known or 

novel) under AI relative to the number of expressed lncRNAs within 400 kb of GWAS loci. Reasons for our 

expectation include the absence of an exonic heterozygous SNP because some lncRNAs that do not have an 

exonic heterozygous SNPs in LD with a regulatory SNP within the 17 acetabular bone samples will be missing 

from the intersection. Additionally, lncRNAs in general are lowly expressed; therefore, the power to identify 

lncRNAs under AI is lower than that of protein-coding genes. 

 

2.4.4 Identifying putatively causal lncRNAs by leveraging GTEx 

 

Next, we sought to leverage non-bone data to identify potentially causal lncRNAs. To do this, we integrated 

1,103 BMD GWAS loci with GTEx (v8) eQTL data by coupling TWAS 138 using S-MultiXScan 210 and 

Bayesian colocalization analysis using fastENLOC 30. The rationale behind using GTEx data is genes that are 
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shared in multiple tissues and showing a colocalizing eQTL with BMD GWAS data can be potentially causal in 

bone tissue as well. Our TWAS analysis resulted in 333 significant lncRNA-BMD associations (FDR correction 

< 0.05), which constitute 5% of all known lncRNAs that are expressed in the acetabular samples. Our 

colocalization analysis yielded 48 lncRNAs with a colocalizing eQTL (regional colocalization probability 

[RCP]  > 0.1) in at least one GTEx tissue. These lncRNAs with a colocalizing eQTL makeup < 1% of the 

known expressed lncRNAs in the acetabular bone samples. There were 31 lncRNAs (< 1%) significant in both 

the TWAS and eQTL colocalization analysis (Table S2.4). 

 

2.4.5 Most identified lncRNAs are the only potential effector transcripts implicated by TWAS/eQTL 

colocalization in their respective GWAS associations 

 

To determine if the lncRNAs listed in Table S2.4 are the strongest candidates in their respective GWAS 

associations, we evaluated a recent report of protein coding genes that used the same approach 216. Five out of 

the 31 lncRNAs (LINC01116, LINC01117, SNHG15, LINC01290, LINC00665) have a protein-coding gene with 

a colocalizing eQTL (HOXD8, HOXD9, MYO1G, NACAD, EMP2, ZFP14, ZFP82) within 1 megabase (Mb) of 

the lncRNA start site (Table S2.5). Upon further investigation of the RCP values, some of the lncRNAs showed 

higher RCP than their protein coding gene counterpart. For example, LINC01290 had a higher RCP in lung 

tissue (0.4992) compared to its counterpart EMP2 (0.2227). On the other hand, the same lncRNA has a lower 

RCP value (0.1498) than EMP2 (0.6089) in breast and mammary gland tissue. However, for the remaining 

lncRNAs, this analysis provides support that the lncRNA alone is the potential effector transcript in the region 

because we show no evidence of protein coding colocalization within 1 Mb distance of the start site of the 

lncRNA. 

 

2.4.6 Many identified lncRNAs are differentially expressed as a function of osteoblast differentiation 

 



 

47 

To provide further support for the hypothesis that these lncRNAs mediate GWAS associations, we measured 

their expression as a function of osteoblast differentiation in human fetal osteoblasts (hFOBs). We performed 

total RNAseq at six hFOB differentiation time-points (days 0, 2, 4, 6, 8, and 10). Of the 27 lncRNAs implicated 

in the analysis of AI, all eight known lncRNAs were differentially expressed (FDR < 0.05). On the other hand, 

none of the novel lncRNAs were differentially expressed (Table S2.3). Examples of the identified genes 

include MALAT1 and NEAT1 (Figure 2.3B,C), which were differentially expressed in hFOBs and showed 

evidence of AI in 8 and 10 of the 17 acetabular bone samples, respectively. There were four unique SNPs in the 

exonic regions of MALAT1 (Figure 2.3B) that were heterozygous in at least one of the 17 individuals (with a 

maximum of eight individuals). All four SNPs showed higher expression in the alternative allele relative to the 

reference allele. The expression of MALAT1 gene decreased as the cell differentiated into a mineralizing state 

(Figure 2.3D). Additionally, there were nine unique SNPs reported in the exonic regions of NEAT1 that were 

heterozygous in at least one of the 17 individuals (with a maximum of 10 individuals). Of the nine, eight 

showed higher expression associated with the alternative allele compared to the reference allele. The remaining 

SNP was associated with the opposite pattern, and this was likely due to it being the only SNP not in high LD 

with the others (r2 = 0.0021). NEAT1 showed significant increase in expression around day 10 in hFOBs 

(Figure 2.3E). 

 

We assessed the expression of lncRNAs identified by GTEx TWAS/eQTL colocalization in osteoblast 

differentiation using the same approach in the previous section. Out of the 31 lncRNAs identified by 

TWAS/eQTL colocalization, 15 were found to be differentially expressed (LINC00184, SH3RF3-AS1, 

LINC01116, LINC01934, C3orf35, LINC01018, ARRDC3-AS1, LINC00472, SNHG15, GAS1RR, LINC00840, 

LINC01537, LINC00346, LINC01415, MIR155HG). In general, the expression of those genes in hFOBs was 

low compared to the lncRNAs reported in the AI section. Examples include SHR3F3-AS1 and LINC00472, 

which were regulated by colocalizing eQTL (Figure 2.4B,D) and were differentially expressed in hFOBs. 

(Figure 2.4C,E). SH3RF3-AS1 was shown to have the highest RCP value overall (RCP = 0.72) and in only one 
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GTEx tissue (cultured fibroblasts) (Figure 2.4A,D, Table S2.4). Although the gene was differentially expressed 

across hFOB differentiation points, it had a very low overall level of expression (Figure 2.4E). The pattern of 

expression decreased during mid differentiation points with spikes in early and late points (Figure 2.4E). 

LINC00472 was shown to have a colocalizing eQTL in four GTEx tissues with the highest RCP value in brain 

cerebellar hemisphere (RCP = 0.37) (Figure 2.4A,B, Table S2.4). The gene also showed a moderate level of 

expression in hFOBs with an average of 1.5 TPM (Figure 2.4C). The expression of LINC00472 peaked at day 2 

and then declined (Figure 2.4C). 

 

2.5 Discussion 

 

In this study, we interrogated BMD GWAS loci and identified known and novel lncRNAs as potential effector 

transcripts. We identified potentially important lncRNA using two different approaches. First, we identified 

novel and known lncRNAs in a unique transcriptomic bone dataset that were localized in GWAS loci and 

demonstrated AI. Second, we implicated additional lncRNAs by leveraging GTEx and identifying eQTLs in 

non-bone tissues that colocalized with eBMD GWAS loci whose expression was associated with eBMD via 

TWAS. We also assessed differential expression across the time course of hFOB differentiation to provide more 

evidence of a potential causal role for these lncRNAs. 

 

In the first approach, we set out to perform transcriptomics on a unique set of bone samples in order to identify 

novel lncRNAs in bone, provide deeper coverage for known lncRNA identification, and apply AI analysis. The 

bone samples that exist in the literature are from bone biopsies, and as we show in the Results section, they are 

less enriched in bone-relevant genes compared to the dataset produced by the bone fragments used in this study. 

 

A total of eight lncRNAs (NEAT1, MALAT1, DLEU2, LINC01578, CARMN, AC011603.3, PXN-AS1, 

AC020656.1) were found to be within a 400 kb window of an eBMD GWAS locus and were also differentially 



 

49 

expressed across hFOB differentiation time points. Many of these lncRNAs have been demonstrated to play a 

role in bone. For example, NEAT1 has been reported to stimulate osteoclastogenesis via sponging miR-7 217 and 

the NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow–derived 

mesenchymal stem cells 218. In addition, MALAT1 has been shown to influence BMD 219. MALAT1 acts as a 

sponge of miR-34c to promote the expression of SATB2. SATB2 then acts to reduce the alkaline phosphatase 

(ALP) activity of osteoblasts and mineralized nodules formation 219. A recent study 220 has shown that 

LINC01578 (referred to as CHASERR in this study) represses chromodomain Helicase DNA Binding Protein 2 

(Chd2). A model for Chd2 loss of function by the International Mouse Phenotyping Consortium (IMPC) 221 

reported that these mice exhibit significantly decreased body weight and length, skeletal abnormalities, 

abnormal bone structure, decreased fat levels, and BMD 220. Last, DLEU2 expression has been shown to be 

inversely correlated with BMD in a study involving postmenopausal white women 38. The remaining four 

lncRNAs have not been reported to date to have a role in bone and should be further pursued. 

 

In our second analysis, we reported 15 lncRNAs implicated jointly by colocalization, TWAS, and differential 

expression analysis. We show one example of the 15 lncRNAs reported in SH3RF3-AS1 in Figure 2.4A. Most 

of these lncRNAs have not been shown previously in the literature to have a role in bone biology. However, 

LINC00472 (Figure 2.4B) has been experimentally shown to influence osteogenic differentiation by sponging 

miR-300, which in turn increases the expression of Fgfr2 in mice 222. These preliminary results provide more 

evidence of the potential causal role of these lncRNAs in osteoporosis. 

 

In this study, we were able to use multiple systems genetics approaches on two transcriptomic datasets 

(acetabular bone and GTEx) to identify lncRNAs that are potentially responsible for the effects of some BMD 

GWAS loci. This is the first study to our knowledge that evaluated the role of lncRNAs in mediating the effect 

of BMD GWAS loci from a genome wide perspective. We combined osteoblast differentiation samples and the 

literature to provide experimental evidence in previous studies to support the effector transcript list we 
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generated from our analysis. These results highlight the importance of studying other aspects of the 

transcriptome to identify potential drug targets for osteoporosis and bone fragility. 

 

Limitations of this study 

 

This study is not meant to be comprehensive because we are limited by the number of samples and are not 

suitably powered to identify eQTLs and apply TWAS/colocalization analysis. However, due to the scarcity of 

population-level bone transcriptomic datasets, and the lack of bone cell or tissue data in GTEx, our study is an 

attempt to systematically leverage the available datasets to capture a subset of lncRNAs that we think are 

potentially causal. As mentioned, some of these lncRNAs have been implicated experimentally outside of this 

study. Moreover, lncRNAs under AI and within proximity of GWAS loci may not be causal as they could be 

false positives because they are not prioritized via a systems analysis such as colocalization. Another limitation 

of our study is that we evaluated their expression as a function of osteoblast differentiation; however, it is likely 

that some of the lncRNAs, if truly causal, impact BMD via a function in other cell-types (e.g., osteoclasts). 

Future studies should focus on enhancing these results by generating transcriptomic and eQTL datasets from 

bone and other bone cell types, using network approaches to aid in the prioritization of lncRNAs, and 

experimentally validating the role of specific lncRNAs. 
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Chapter 3 

Long read proteogenomics to connect disease-associated sQTLs to the protein isoform effectors in disease 
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3.1 Abstract  

A major fraction of loci identified by genome-wide association studies (GWASs) lead to alterations in 

alternative splicing, but interpretation of how such alterations impact protein is hindered by the technical 

limitations of short-read RNA-seq, which cannot directly link splicing events to full-length transcript or protein 

isoforms. Long-read RNA-seq represents a powerful tool to define and quantify transcript isoforms, and, 

recently, infer protein isoform existence. Here we present a novel approach that integrates information from 

GWAS, splicing QTL (sQTL), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects 

of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach 

using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue 

Expression (GTEx) project in 732 protein-coding genes which colocalized with BMD associations (H4PP ≥ 

0.75). We generated deep coverage PacBio long-read RNA-seq data (N=~22 million full-length reads) on an in 

vitro model of relevance to BMD, human osteoblasts, identifying 68,326 protein-coding isoforms, of which 

17,375 (25%) were novel. By casting the colocalized sQTLs directly onto protein isoforms, we connected 809 

sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Using these data, we created one of 

the first proteome-scale resources defining full-length isoforms impacted by colocalized sQTLs. Overall, we 

found that 74 sQTLs influenced isoforms likely impacted by nonsense mediated decay (NMD) and 190 that 

potentially resulted in the expression of new protein isoforms. Finally, we identified colocalizing sQTLs in 

TPM2 for splice junctions between two nearly mutually exclusive exons, and two different transcript 

termination sites, making it impossible to interpret without long-read RNA-seq data. siRNA mediated 

knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization. We expect our 

approach to be widely generalizable across diverse clinical traits and accelerate system-scale analyses of protein 

isoform activities modulated by GWAS loci. 
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3.2 Introduction 

Genome-wide association studies (GWASs) have identified thousands of associations influencing complex 

diseases 49; however, the main challenge limiting the use of GWAS data to uncover novel biology and new 

therapeutic targets is pinpointing causal genes. In recent years, it has become increasingly apparent that a 

substantial fraction of GWAS associations act by modulating alternative splicing (AS) 44,48,223. Genetic variants 

influencing AS are identified as splice quantitative trait loci (sQTLs) and several studies have linked sQTL to 

disease associations through colocalization approaches 32,224–226. However, it is not known to what extent the 

effects of GWAS loci are mediated by AS in general, and the identity of the downstream protein isoforms that 

mediate disease. 

In a majority of functional genomics studies, splicing is characterized by algorithms such as LeafCutter 69 or 

rMATS 80, which quantifies local regions of splicing based on the relative abundance of introns (or exon-exon 

junctions) 69. These approaches have proven reliable as a way to globally quantify individual splicing events, 

and even in a reference annotation-free manner to discover novel splicing events. But, this information is only a 

partial picture—a majority of human genes express isoforms with multiple, distinct splicing events that can 

influence each other in cis, creating dependencies of splicing choices within the same transcript 227,228. 

Unfortunately, short-read RNA-seq datasets can only return a probabilistic, not definitive, knowledge of 

isoform expression, many times with inaccuracies 229. 

The influence of splicing in the genetics of complex disease is clear; however, it is often difficult to connect the 

events influenced by sQTLs to the full-length transcript isoforms they impact. This disconnect complicates 

efforts to interpret the effect of sQTLs and the design of experiments to test the role of specific isoforms for 

functional validation. Furthermore, the true impact of an sQTL on protein isoform function is unknown without 

direct measurement of the protein. It is only with knowledge of the number and sequence of protein isoform 

expression changes that one can determine how a GWAS locus mediates protein function from simple loss of 



 

55 

protein stability to the generation of an alternative protein isoform with different functional activities, such as 

differential protein-protein interactions. 

In recent years, long-read RNA-seq technologies have been shown to generate better predictions of proteoforms 

230 including candidate novel protein isoforms 111,115. Here, we present a new approach that connects disease-

associated sQTLs directly to the transcript and putative protein isoforms they impact. We accomplish this by 

integrating information from GWAS with large-scale sQTL datasets, which identifies hundreds of colocalized 

sQTLs, and directly cast such sQTLs onto relevant isoform models derived from long-read RNA-seq. In this 

process, sQTLs can be interpreted in terms of the disease-relevant protein isoforms that are correlated to a trait, 

enabling isoform-resolved studies from single-gene to systems scales. Such resolution facilitates hypothesis 

generation of individual or groups of isoforms playing a role in the clinical trait of interest. 

As a proof of concept, we applied this sQTL-long-read contextualization approach to bone mineral density 

(BMD) GWAS 13 by leveraging sQTL from the Gene Tissue Expression (GTEx) project 31 and long-read 

proteogenomics in human fetal osteoblasts (hFOBs) 231 - a BMD relevant cell model. We identified 2,029 (643 

novel) full-length protein isoforms from 441 protein-coding genes that are candidate effectors of BMD. To 

assess putative functions, we predicted complete open-reading frames and the effect of the associated protein 

isoforms on BMD. One of the genes identified through our approach was beta-tropomyosin (TPM2). Our 

analysis predicted that two different sets of isoforms characterized by the presence of two different nearly 

mutually exclusive exons had opposing effects on mineralization, which we confirmed through isoform specific 

knockdown in hFOBs. 

Our approach facilitates the interpretation of the effects of sQTLs to implicate isoforms likely involved in the 

regulation of BMD. This approach can be used for biomarker and novel therapeutic target identification, as well 

as understanding the splicing determinants of clinical traits, across the spectrum of human diseases.  
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3.3 Results 

An overview of our approach for systematic discovery of the transcript/protein isoforms potentially responsible 

for GWAS association is shown in Figure 3.1. The approach provides connections between GWAS 

associations, sQTLs, and most importantly, transcript/protein isoforms, and does so using a novel long read 

proteogenomics approach 115; thereby, increasing the utility and interpretability of colocalized sQTLs. 

 

3.3.1 Identification of genes potentially regulating BMD through splicing 

 

To nominate splice events of potential relevance to BMD, we leveraged existing sQTLs across 49 tissues from 

the GTEx project 32. Population-scale transcriptomic datasets of bone or bone cells are scarce. However, prior 

studies have reported extensive sharing of sQTLs across tissues, thus, we reasoned that many of the sQTL from 

GTEx would also be found in bone/bone cells and be of potential relevance to BMD 48. We performed Bayesian 

colocalization analysis using coloc 29, GTEx sQTLs, and the largest BMD GWAS performed to date, which 

identified 1103 independent associations 13 (Supplemental note 1). Overall, we found 732 protein-coding 

genes with colocalizing sQTLs (HrPP ≥ 0.75), denoted here as sGenes (Figure 3.2A). The 

colocalized sQTLs represent 1,863 distinct junctions with an average of 2.5 junctions per gene (Figure 3.2A). 

Over half of the sGenes (367, or 50%) have shared sQTLs across multiple tissues (Table S3.1). Examples of 

highly colocalizing sQTLs for TCF7L2 and FHL3 are shown in Figure 3.2B-C. Collectively, these results 

identify genes whose genetically regulated splicing alterations potentially mediate BMD associations. 

 

3.3.2 Characterizing the full-length transcriptome across osteoblast differentiation 

 

In order to provide molecular context for the individual splicing “events” associated with colocalized sQTLs, 

we generated an experimentally-derived and comprehensive map of relevant isoform expression. Our goal was 

to enable the identification of the full-length transcript isoforms impacted by each colocalized sQTL and to 
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ensure such isoforms were expressed in a cell-type relevant to BMD. To accomplish this, we generated deep 

coverage long-read RNA-seq data across osteoblast differentiation in hFOBs. Osteoblasts build bone and are 

critical regulators of bone development and maintenance 232. The hFOB cell-line is a well characterized model 

of osteoblast differentiation capable of in vitro mineralization 233. Across 0, 2, 4, and 10 days of osteoblast 

differentiation, we generated a deep coverage full length transcriptome dataset (Supplemental notes 2 & 4), 

with collection of over 22 million full-length cDNA sequences using long-read RNA-seq on the PacBio Sequel 

II platform (Figure S1A-B) (see Methods). We detected 68,326 transcript isoforms from 12,068 genes. 

Transcripts of all lengths were evenly sampled (median: 2,074 nt, range: 87-8,787 nt). We found that 50,588 

(74%) isoforms were known (annotated in GENCODE) and 17,738 (~26%) were novel. Of the novel isoforms, 

10,793 (61%) arose from new combinations of known splice sites (Figure S1C); whereas 6,580 (39%) arose 

from at least one novel splice donor or acceptor. Overall, this map of transcript isoforms in human osteoblasts is 

both comprehensive and important for revealing cell-type-specific novel isoforms. 

 

3.3.3 Connecting colocalized sQTLs to the transcript and protein isoforms they regulate through long 

read proteogenomics 

 

Despite the wealth of global sQTL studies to date, few have connected sQTLs to the protein isoforms they 

impact. Here we directly mapped colocalized sQTLs onto the protein isoform models generated by long read 

proteogenomics of a relevant disease model. We found that 836 junctions exactly map (shared splice 

donor/acceptor sites) to 2,349 (700 novel; ~30%) in 459 protein-coding genes in the hFOB dataset 

(Supplemental note 3). Collectively, these sGenes are found within 362 of the 1,103 BMD GWAS associations 

(~33% of the total), with 221 lead associations harboring one sGene and 141 harboring more than one sGene 

(Table S3.2 and Supplemental note 5). To our knowledge, this is the first genome-scale map of full-length 

isoform candidates that contribute to a human disease. 
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Colocalized sQTLs impacting novel isoforms 

It is now routine to discover hundreds of novel junctions corresponding to colocalized sQTLs, as we have done 

in this study. However, it is not possible to map sQTLs involving an unannotated junction to its source full-

length isoform(s) without experimental knowledge of isoform expression, such as from long-read RNA-seq 

(Figure 3.3). In the long-read RNA-seq data, we detected 30 novel sQTL junctions, which were not found in 

the GENCODE reference, but mapped perfectly with one or more full-length novel isoforms detected in hFOBs 

(Figure 3.3A). For example, we identified a novel junction with a colocalizing sQTL (H4PP = 0.99) in zinc 

finger protein 800 (ZNF800), a transcription factor expressed across a wide-range of cell-types that has been 

previously implicated in pancreatic beta cell development 234 and in cardio-metabolic traits 235, but not in the 

regulation of BMD (Figure 3.3B).  We mapped this junction to a novel transcript in hFOBs; however, it does 

not have a match to any isoform in the GENCODE database (Figure 3.3C). The lead variant (rs62621812) for 

both the BMD locus and sQTL is a rare missense variant (global minor allele frequency in 1000G = 0.005). 

Although rare, hFOBs were heterozygous for the variant and we observed that the novel ZNF800 isoforms 

almost exclusively originated (21 of 22 long reads) from the haplotype harboring the alternative allele, and its 

expression decreases during hFOB differentiation (Figure 3.3D). The long ZNF800 isoform containing the 

putative DNA binding domain is associated with increase in BMD, suggesting that its gene regulatory activities 

may be osteogenic.  

 

Biological contextualization of isoforms corresponding to known sQTLs 

 

Ostensibly, there is a clear path to contextualize sQTLs containing annotated junctions, as these junctions have 

a direct mapping to at least one isoform in the reference annotation. However, a single sQTL could map to 

multiple annotated isoforms and it is not known if all isoforms or only a subset may be relevant in mediating the 

trait of interest, a common case of isoform ambiguity in sQTL datasets (Figure 3.4A). We found a total of 614 

sQTLs (73% of 836) mapping to multiple annotated isoforms in the GENCODE transcriptome (v38). To hone 
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in on the most relevant isoforms for the trait of interest, we leverage information about which isoforms are 

expressed in the hFOB transcriptome map. 

 

For example, the sQTL-to-isoform mapping of genes amplified in osteosarcoma 9 (OS9) illustrates the power of 

providing full-length isoform context. OS9 has not been directly implicated in the regulation of BMD, but we 

observed one junction in OS9 with a strongly supporting colocalizing sQTL (H4PP = 0.86) (Figure 3.4B) that 

corresponds to the skipping of exon 13. This sQTL maps to multiple isoforms in the reference annotation—17 

annotated transcripts in the GENCODE Basic set (24 in the GENCODE Comprehensive set)—leaving open the 

question of which isoform(s) may be specifically relevant to bone cells. Within the hFOB context, we found 

four OS9 isoforms expressed in hFOBs: OS9-203 and OS9-220, which both exclude exon 13, and OS9-202 and 

OS9-204, which include exon 13 (Figure 3.4C). We found that OS9-220 (excludes exon 13) and OS9-202 

(includes exon 13) are the dominantly expressed isoforms and exhibit an isoform switch during osteoblast 

differentiation with the exon 13-included form OS9-202 dramatically increasing in abundance, relative to OS9-

220, suggesting a direct role in driving potential osteogenic pathways (Figure 3.4D). Additionally, OS9 is 

differentially expressed across osteoblast differentiation. Interestingly, independent evidence from the 

International Mouse Phenotyping Consortium (IMPC) 236 show that Os9 knockout mice show significant 

changes in skeletal phenotypes including abnormal cranium morphology (p = 1.40 x 10-5; both sexes), abnormal 

tooth morphology (p = 9.12 x 10-5; both sexes), and vertebral fusions (p = 3.92 x 10-5; males only). 

Furthermore, the exon 13 skipping event is conserved between human and mouse. We hypothesize that the ratio 

of OS9-202 to OS9-220 is associated with decreased BMD, demonstrating how sQTLs connected with long-

read RNA-seq data leads to isoform-resolved hypotheses. 

 

Known sQTLs impacting novel isoforms in the biological context 

Disease-relevant isoform maps can narrow the possibilities of isoform within which known sQTLs map. 

However, just as importantly, annotated junctions of colocalized sQTLs can actually be found to map to novel 
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isoforms, meaning that the local splicing event is known, but the associated full-length protein isoform to which 

it is derived may be novel (Figure 3.5A).  These “indirectly” novel sQTLs may be an underappreciated source 

of novel isoforms regulated by GWAS loci. We found that a total of 383 (46%) unique junctions were found in 

known isoforms only, but for 350 (42%) junctions, they map to both known and novel isoforms. Importantly, a 

portion of these events were only explained by novel isoforms (103 (12%) were found in novel isoforms only). 

Since these known sQTLs map to novel isoforms, we argue that they must be “recast” and “re- annotated” as 

candidate novel protein isoforms.  

 

An example of a gene with annotated junction sQTLs mapping strictly to a novel isoform in hFOBs is 

dipeptidyl peptidase 8 (DPP8). In our data, we found a colocalizing sQTL (H4PP = 0.83) for the junction 

associated with inclusion of exon 17 (Figure 3.5B). This junction can be mapped in DPP8-205 and DPP8-215 

in the GENCODE database (Figure 3.5C), however, there is no evidence of expression for these two isoforms 

in hFOBs (Figure 3.5D). Rather, the junction strictly maps to PB.16541.32, a novel isoform (Figure 3.5D). 

Skipping of exon 17 is found in isoform DPP8-201, which is associated with a decrease in BMD. Interestingly, 

in data from the IMPC, Dpp8 knockout mice have decreased BMD. 

 

3.3.4 Enrichment of splicing functions among BMD sQTLs and presence of a putative splicing regulatory 

network 

 

Among all 459 genes with a colocalizing sQTL, we found an enrichment of UniProt keywords involved in 

alternative splicing (KW-0025 6.39 x 10-17, RNA splicing). Splice factors (SFs) regulate splicing in trans 

(Figure 3.6A) and have been found to comprise 99 genes to date 237. Of the 99 annotated SFs, 91 are found in 

hFOBs. We found 5 splice factors that show a colocalizing sQTL within our long-read hFOB data: MBNL1, 

PCBP2, DDX5, PTBP1, HNRNPM. Three of these (60%) show differential expression across hFOB 

differentiation: DDX5, PTBP1, HNRNPM and only one of them show differential isoform usage: DDX5 
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(Supplemental note 6).   

 

One example of a putative splicing regulator in BMD is PTBP1 which has been extensively studied as a global 

repressor of exons 238 and is implicated in complex diseases such as atherosclerosis 239. In our colocalization 

data, we found that PTBP1 contains a strongly supported colocalizing sQTL (H4PP: 0.99; # tissues: 9), 

associated with the exclusion or inclusion of exon 9 (Figure 3.6B-C). Mapping of the junctions to GENCODE 

annotations reveals 11 isoforms, but in the context of the full-length transcriptome, we confirmed that the sQTL 

likely corresponds to the two major isoforms in hFOBs: PTBP1-201, which excludes exon 9, and PTBP1-203, 

which includes exon 9. Exon 9 resides in a linker region between RNA recognition motif (RRM) domains, and 

previous studies have shown that skipping of the exon 9 leads to altered polypeptide length between the RRM 

domains and reduced ability of PTBP1 to repress exons, likely due to altered linker length between the RRM 

domains. Previous studies show that skipping of exon 9 reduces the ability of PTBP1 to repress cryptic exons 

240,241. Therefore, the mechanism of action for this sQTL may be the altered ratio of repressive (PTBP1-203) 

and non-repressive (PTBP1-201), with higher ratios corresponding to decreased BMD (Figure 3.6D). This 

genetically-regulated isoform balance could, in turn, globally regulate the repression of PTBP1 target exons 

during osteoblast differentiation. Interestingly, a global analysis of all lead sQTLs revealed a clear enrichment 

in PTBP1 binding sites, suggesting both PTBP1 trans-factor and its cis-regulatory targets are part of a splicing 

regulatory network that could mediate BMD. 

 

3.3.5 Long read proteogenomics for characterizing the landscape of sQTL-associated protein isoforms 

 

We have just described the mapping of sQTLs onto a comprehensive full-length transcriptome. However, even 

more information is encoded in this dataset, particularly properties of the predicted protein isoforms that are 

translated from the transcript isoforms. Furthermore, with sQTLs, risk variant-induced changes to the ratios of 

protein isoforms can have a diversity of molecular functional effects, from overall loss of protein abundance 
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from NMD or degradation mechanisms, to gain of functions from production of multiple, functionally distinct 

or collaborating protein isoforms from the same gene 45,242. In order to explore protein isoform-level 

consequences of colocalized sQTLs, we employed a recently developed “long read proteogenomics” pipeline 

115, in which the hFOB transcriptome is used as a template for in silico translation of ORFs to generate 

osteoblast-relevant protein isoform models (Supplemental notes 7 & 8). 

 

Despite the prevalence of sQTL datasets, little is known about how sQTLs result in changes to the protein 

isoform products of a gene, and, particularly, the nature of such changes (e.g., truncated protein, formation of a 

protein isoform with novel functions) In order to maintain the highest quality of the protein isoform models, we 

employed a stringent filtering schema (Supplemental note 2) and mapped colocalized sQTLs onto 2,029 

protein isoforms from 441 genes, defined as all cases in which a junction is wholly residing within a predicted 

coding sequence (i.e., ORF).   

 

Using a custom pipeline recently developed, Biosurfer (Methods), we devised a strategy to bioinformatically 

compare the groups of non-risk and risk isoforms. The clinical risk status was inferred by mapping the 

directionality of effect, normalized intron excision ratio (slope from GTEx), and isoform mappings, and for 

each sQTL, we designated one or more isoforms that are part of the risk versus non-risk group, for protein 

sequence comparison. In order to quantify the putative risk variant-induced changes, we implemented a custom 

hybrid alignment strategy, which aligns proteins both based on their exon-intron structure with consideration of 

the identity of the amino acid residues, and automatically detects regions of the protein that are deleted, 

inserted, or substituted. Note that these terms refer to changes in polypeptide sequence between two protein 

isoforms of the same gene, and do not refer to genetic variants. We performed this comparison pairwise 

between all risk and non-risk isoforms, weighted by their gene expression in hFOBs, and determined if, overall, 

the effect on the protein was one that led to increased NMD products, a dramatic reduction in protein length, or 

if the protein models indicate a potential change in two functionally relevant proteins, as indicated by those 
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proteins that are full-length and preserved in their critical domain structure. We found that of the 809 sQTLs, 

only 74 (9%) likely represent a switch from a full-length protein product to a transcript undergoing NMD, by 

presence of a premature stop codon upstream of at least one junction 243 (Table S3.3). The remaining sQTL-

protein-isoform groups involve a switch from one full-length protein to another, albeit with vast differences in 

length. We found 190 sQTLs that potentially lead to a truncated protein which may represent a sub functional 

form, or even a dominant negative 244 (Table S4). Although as previously observed 245 reduced length does not 

always correlate with reduced functional capacity 245. To our knowledge, this is the first proteome-scale dataset 

of protein isoforms associated with a clinical trait by mapping directly from an sQTL dataset.  

 

3.3.6 Distinct isoforms of TPM2 have opposing effects on osteoblast differentiation and mineralization 

          

Our analysis identified 441 genes and 2,029 proteoforms potentially linked to BMD. We next sought to select 

isoforms from this list to test their role in osteoblast differentiation and mineralization. We evaluated genes 

primarily based on the strength of colocalization (H4PP) and the extent of sQTL sharing across tissues 

(reasoning that genes with sQTL observed in multiple tissues were more likely active in osteoblasts). We also 

evaluated additional data such as whether genes were the cause of a monogenic bone disease or had been 

implicated in the regulation of BMD in prior studies (Tables S3.5 and S3.6).  We also prioritized genes not 

previously implicated in the regulation of BMD.  

 

Based on our long-read RNA-seq data in hFOBs, four primary TPM2 isoforms were expressed and 

characterized by two mutually exclusive exons (exons 6 and 7) and two alternative last exons (exons 10 and 11) 

(TPM2-6-10 (TPM2 isoform containing exons 6 and 10) TPM2-6-11, TPM2-7-10, and TPM2-7-11) (Figure 

3.7A). We developed a targeted mass spectrometry method 246 for peptides specific to shared and alternative 

exons of TPM2, including exons 6, 7, 10, and 11 (Supplemental note 9). Using these isoform-specific peptide 

signatures, we observed the same changes in isoform expression across hFOBs. 
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We identified multiple colocalizing sQTLs (H4PP > 0.75) that converge on the two sets of splicing events. The 

sQTLs for junctions surrounding exons 6 and 7 were observed in a wide-range of tissues (13 to 33 tissues); 

whereas those around exons 10 and 11 were restricted to brain and testis (Figure 3.7B).  The lead sQTL variant 

differed across tissues; however, the T allele of the lead GWAS SNP (rs2737273) in the locus was associated 

with a decrease in BMD and an increase in TPM2 isoforms containing exon 6. Conversely, the C allele was 

associated with an increase in BMD and increase in isoforms containing exon 7. We also observed in brain and 

testis that the T allele was associated with increased exon 11 containing isoforms and a decrease in BMD; 

however, it is difficult to interpret the direction of effects of multiple sQTL due to the correlated nature of 

multiple splicing events and events occurring across tissues.  

 

Based on the above information, the restriction of Tpm2 expression to osteoblasts in the mouse (using 

BioGPS)247, and its high expression in hFOBs (Figure 3.7C), we hypothesized that exon 6 containing TPM2 

isoforms would be negatively associated with mineralization in hFOBs, with the opposite effect found for exon 

7 containing isoforms. To test this hypothesis, we performed isoform-specific siRNA knockdown experiments 

in hFOBs followed by quantification of mineralized nodules (Figure 7D and E). First, we knocked down all 

isoforms of TPM2 by targeting constitutively expressed exon 2 and exon 9 (Figure 7D), and for both 

experiments we observed no significant differences in mineralization relative to the control (T-Test, p = 0.51 

and p = 0.09 respectively), demonstrating that knock down of all TPM2 isoforms simultaneously does not result 

in a phenotype (Figure 7E). Next, we targeted TPM2 isoforms containing exon 6 (targeting the junction 

between exons 6-8) (Figure 7D), and, strikingly, observed a significant increase in mineralization relative to the 

control (T-Test, p = 0.004) (Figure 7E). This siRNA moderately decreased the expression of all isoforms, 

though it did attenuate expression of exon 6 containing isoforms to the greatest degree (Figure 7D). On the 

other hand, knockdown of isoforms containing exon 7 (Figure 7D) resulted in a significant decrease in 

mineralization in accordance with our hypothesis (T-Test, p = 0.01) (Figure 7E). To comprehensively assess 
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the effect of all TPM2 splice events, we also targeted exons 10 and 11. We observed no change in 

mineralization upon knockdown of exon 10 containing isoforms (T-Test, p = 0.82). Surprisingly, knockdown of 

exon 11 containing isoforms (Figure 7D) decreased mineralization (T-Test, p = 0.015) (Figure 7E). These data 

suggest that disruptions in the ratios of the four TPM2 isoforms have significant impact on mineralization in 

hFOBs. Most importantly, our results clearly demonstrate that different TPM2 isoforms have distinct functions 

with respect to osteoblast activity and are likely regulators of BMD. 

 

3.4 Discussion  

A wealth of GWAS and sQTL data has highlighted the widespread involvement of alternative splicing in patient 

disease risk 32,48, but how individual sQTLs affect downstream transcript and protein isoforms to mediate 

disease is largely unknown. Here, we present a broadly applicable method to increase the interpretability of 

such sQTLs. The method integrates sQTLs with long-read RNA-seq data to nominate full-length protein 

isoforms impacted by colocalized sQTLs, accelerating the path for functionally characterizing the molecular 

implications of sQTLs.  

 

As a proof-of-principle, we applied our approach to BMD, the single strongest predictor of osteoporotic fracture 

248. We identified thousands of candidate full-length isoforms potentially involved in the regulation of BMD, 

providing strong support for the hypothesis that splicing is a major mediator of genetic variation impacting 

bone. Similar conclusions have been reported for other complex diseases such as Alzheimer’s, schizophrenia, 

and cardiometabolic traits 46,224,249 . Our results provide the first resource to specifically connect transcript and 

protein isoform expression to biological processes and pathways impacting bone mass.  

 

One of the genes with isoforms predicted to influence BMD through our approach was TPM2. TPM2 splicing 

has not been directly studied in the context of osteoblast differentiation or bone disease; however, mutations 

have been connected to muscular diseases like the Escobar variant (characterized by skeletal defects including 
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vertebral defects, bone fusion abnormalities and growth retardation) 250, nemaline myopathy 251, and 

atherosclerosis 252. Additionally, loss of Tpm2.1 (the isoform containing exons 6 and 11 together) in the mouse 

increases beta catenin levels 253, which is integral to osteoblast activity and bone formation 254. We 

demonstrated that isoforms containing exon 6 and exon 7 show opposing effects on osteoblast mineralization, 

suggesting the differences in TPM2 splicing lead to proteins with different functions in osteoblasts. Intriguingly, 

we also observed decreased mineralization upon knocking down isoforms containing exon 11. This was 

unexpected since the isoform with exons 6 and 11 was the most highly expressed and a relatively small decrease 

in exon 6 isoforms compared to all other isoforms significantly increased mineralization. These results suggest 

non-additive interactions among TPM2 isoforms, and that osteoblast activity and mineralization is highly 

dependent on the precise isoform ratios present at a particular point in differentiation. 

 

We identified an enrichment for genes involved in alternative splicing among all genes with colocalizing 

sQTLs, including many splicing factors. This led us to discover that colocalized sQTLs for both trans-acting 

splice factors and their cis-regulatory targets converge onto the same splicing network. For example, PTBP1 is a 

splice factor that mediates alternative splicing by binding to polypyrimidine tract and other sites 255. PTBP1 and 

TPM2 are regulated by colocalizing sQTLs and are potentially linked via a regulatory and biochemical 

interaction. PTBP1 isoforms including exon 9 have been shown to bind upstream of and represses the inclusion 

of exon 7 in TPM2, leading to higher levels of isoforms containing exon 6 238,241. Intriguingly, the genetic 

associations indicate that higher levels of exon-9-containing PTBP1 (lead SNP: rs2737273) and higher levels of 

exon-6-containing TPM2 (lead SNP: rs3215700) are associated with lower BMD. Together, these data suggest 

the presence of a broader splicing network at play wherein sQTLs impact splicing factors that then impact their 

targets, which are themselves impacted by sQTLs.  

 

Our work represents one “template” of integrating GWAS, sQTL, and long-read transcriptomics for 

colocalizing sQTL identification and interpretation. In our case there was a lack of short-read data on tissues 
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directly relevant to BMD, therefore, we leveraged GTEx sQTLs and focused on putatively shared sQTLs 48. By 

generating long-read RNA-seq in a model system directly relevant to bone, we were able to simultaneously use 

these data to identify isoforms and leverage this information to contextualize the GTEx sQTLs within a bone-

relevant cell. In this sense the long-read RNA-seq data provided a biological context “filter” to nominate the 

most relevant isoforms for functional validation.  

 

We envision applying different variations of the approach, based on the ability to generate long-read data from 

particular tissues or cell-types. Another variation of our approach is generating a comprehensive long-read 

transcriptome reference from a subset of samples, which can serve as a higher accuracy isoform reference for 

aligning and assembling short-read RNA-seq reads. However, this approach is still subject to well-known 

limitations of short-read-based isoform characterization. Finally, as the throughput of long-read RNA-seq 

reaches that of traditional short-read methods, with recent developments from PacBio and ONT platforms, 

among others, it will become feasible to generate high quality long-read data at population scales that would 

enable direct discovery of isoform-level QTLs. It is also likely that variations of our approach could use diverse 

methods of detecting genetically-regulated splicing signals, beyond colocalization approaches, such as 

transcriptome-wide association studies (TWAS). 

 

Through this study, we were able to identify hundreds of potentially causal isoforms in osteoporosis. However, 

our study does have limitations, such as the paucity of population-scale bone relevant transcriptomics data, 

prompting us to transfer putative sQTLs from an independent dataset (GTEx) 48. Therefore, our analysis missed 

sQTL associations that are specific in bone. While studies have shown that sQTLs are often shared across 

tissues, the lack of sQTL data in bone and bone cells means that bone-specific sQTL were missed. In addition, 

the use of sQTL from multiple non-bone tissues may have inflated the number of false positives due to 

colocalization signals that have no biological impact on bone. We do believe that the overall false positive rate 

was reduced based on the requirement that isoforms were expressed in human osteoblasts. Finally, we 
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demonstrated the utility of our approach on a single cell type, but future work should include tissues 

representing a more comprehensive collection of cell-types of relevance to bone (e.g., osteoclasts, osteocytes, 

and other cells of mesenchymal origin).   

 

Central to our method is the usage of long-read-driven isoform models serving as a scaffold for interpreting 

candidate sQTLs; therefore, the quality of transcriptome-wide maps remains critical for appropriate biological 

interpretation. Long-read RNA-seq technologies continue to evolve at a rapid pace and there is a need for 

continued evaluation of sequencing metrics such as comprehensiveness, accuracy, and quantitative precision. 

Recently, the Long Read Genome Annotation Consortium (LRGASP) has undertaken this as a community 

effort, with the conclusion that novel isoforms are hard to evaluate given the lack of orthogonal, full-length 

isoform sequencing methods. Sources of biochemical, sequencing, and bioinformatic artifacts have been 

previously discussed. As it stands, no method yet exists for large-scale detection of isoforms at the protein level, 

therefore, for tractability, we employed a bioinformatic proteogenomics approach in which the transcript 

models are used as a proxy for inferring the putative protein isoform products, similarly to the reference 

annotation 105. Given the state of protein isoform information, all isoforms of analysis should be fully validated, 

as we have done with TPM2. And, even with full knowledge of protein isoforms expressed in disease relevant 

models, limitations arising from the nature of complex loci containing many distinct sQTLs and highly complex 

splicing, in terms of number of events and dependencies between distal splicing, may still be out of reach for 

straightforward interpretation without extensive functional validation. 

 

In this study, we developed an integrative systems genetics approach to identify isoforms that are potentially 

responsible for the effects of BMD GWAS loci 13. This is the first study to our knowledge that directly 

incorporates long-read RNA-seq to systematically increase the interpretability of colocalized sQTL, providing a 

catalog of full-length isoforms that are potentially causal effectors of BMD. These results highlight the 

importance of genetically regulated variation in alternative splicing to BMD and identifies hundreds of potential 



 

69 

drug targets for osteoporosis and bone fragility. Our work should serve as a model for other researchers to 

increase the clinical utility of sQTL analysis across the disease spectrum. This includes usage of sQTL data 

from publicly available resources like GTEx 31, disease-relevant cohorts, and emerging long-read sequencing 

approaches. 

 

3.6 Methods 

GWAS and sQTL analysis 

eBMD GWAS summary statistics were downloaded from the GEnetic Factors for OSteoporosis Consortium 

(GEFOS) website using http://www.gefos.org/?q=content/data-release-2018 (accessed July 2021). The 

coordinates of the GWAS SNPs were updated from hg19 to hg38 using LiftOver within Bioconductor. GTEx 

V8 sQTL all association summary statistics data were downloaded from the GTEx Google Cloud Platform 

(GCP) using https://console.cloud.google.com/storage/browser/gtex-resources (accessed July 2021). The data 

were prepared as input for coloc 29 as follows: A list of genes with a start site that is 

within ∓200 Kb of each eBMD GWAS SNP was created. Using this list, a list of sQTL 

associations within ∓200 Kb of each of these genes was created for each GTEx 

tissue. coloc.abf was used with this input (all the GWAS SNPs and all the sQTL 

data within ∓200 Kb of each gene start site). In order for a junction to be 

considered significant (junction with a colocalizing sQTL), it must have coloc 29 

H4PP of ≥ 0.75. 

Osteoblast differentiation 

hFOB 1.19 (American type culture center [ATCC], Manassas, VA; CRL-11372) were grown and differentiated 

with RNA isolated on days 0, 2, 4 and 10 exactly as outlined in Abood et al. 256. Briefly, hFOB 1.19 cells 
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(American Type Culture Collection [ATCC], Manassas, VA, USA; #CRL-11372) were cultured at 34°C and 

differentiated at 39.5°C as recommended with the following modifications. Growth media: minimal essential 

media (MEM; Gibco, Grand Island, NY, USA; 10370-021) supplemented with 10% fetal bovine serum (FBS; 

Atlantic Biologicals, Morrisville, NC, USA; S12450), 1% Glutamax (Gibco; 35050-061), 1% Pen Strep (Gibco; 

15140-122). Differentiation media: MEM alpha (Gibco; 12571-063) supplemented with 10% FBS, 1% 

Glutamax, 1% Pen Strep, 50 μg/μL Ascorbic Acid (Sigma-Aldrich, St. Louis, MO, USA; A4544-25G), 10mM 

beta-Glycerophosphate (Sigma-Aldrich; G9422-100G), 10 nM Dexamethasone (Sigma-Aldrich; D4902-

25MG). RNA was isolated from ~0.5 × 106 cells at days 0, 2, 4, and 10 of differentiation as recommended 

(RNAeasy Minikit; QIAGEN, Valencia, CA, USA; 74106). Mineralized nodule formation was measured by 

staining cultures with Alizarin Red (40 mM, pH 5.6; Sigma-Aldrich; A5533-25G). Reported results were 

obtained from three biological replicate experiments for days 2, 4, and 10, and two biological replicates for day 

0 of differentiation. 

Long-read RNA-seq data collection and sequencing  

RNA was extracted from three biological replicates of hFOB cells at days (0, 2, 4, and 10) using Qiagen 

RNeasy mini kit. Extracted RNA was used to create full length cDNA using the NEBNext® Single Cell/Low 

Input cDNA Synthesis & Amplification kit (New England Biolabs Ipswich MA Lot#10078130). Following the 

PacBio Iso-seq protocol, first and second strand cDNA were synthesized using NEB dT oligo and the PacBio 

Template Switching Oligo. For the cDNA amplification 14 cycles of PCR were performed followed by a 

Pronex bead cleanup (Promega Corporation Madison WI, Lot #NG103A). The amplified and purified cDNA 

were QCed using the Bioanalyzer DNA 12000 kit. The samples were then sent to the Smith lab at the 

University of Louisville for long-read PacBio sequencing. 

Approximately 300 ng of cDNA was converted into a SMRTbell library using the Iso-Seq Express Kit SMRT 

Bell Express Template prep kit 2.0 (Pacific Biosciences). This protocol employs bead-based size selection to 

remove low mass cDNA, specifically using an 86:100 bead-to-sample ratio (Pronex Beads, Promega). Library 
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preparations were performed in technical duplicate. We sequenced libraries using 11 SMRT cells on the Sequel 

II system using polymerase v2.1 with a loading concentration of 85pM. A 2-hour extension and 30-hour movie 

collection time was used for data collection. The “ccs” command from the PacBio SMRTLink suite 

(SMRTLink version 9) was used to convert raw reads (~22 million) into circular consensus sequence (CCS) 

reads. CCS reads with a minimum of three full passes and a 99% minimum predicted accuracy (QV20) were 

kept for further analysis. 

Quantitative mass spectrometry-based proteomics 

Protein extraction, quantitation, and digestion 

hFOB cells used for proteomic mass spec analysis were isolated by removing media from a 10 cm plate of cells 

(~5x106) and subsequently washing with 5 ml of PBS. The cells at day 0, were treated with 2 ml 0.05% 

trypsin/EDTA for 5 minutes at 37°C, triturated, pelleted at 1000xg for 5 minutes, washed with PBS, pelleted, 

resuspended in 1.5 ml PBS, transferred to a 1.5 ml microfuge tube, pelleted with the pellet snap frozen and 

stored at -80°C. The cells at day 2 and 4 were treated with 2.5 ml, 8 mg collagenase (Gibco 17018-029) / ml 

HBSS (Hanks Balanced Salt Solution [HBSS], Gibco 14025-092, supplemented with 4mM CaCl) for 15 

minutes at 37°C followed by the addition of 2.5 ml 0.25% trypsin/EDTA with incubation at 37°C continued for 

an additional 15 minutes. Cells were subsequently treated as outlined for day 0 cells. The cells at day 10 were 

initially incubated with 5 ml 60 mM EDTA, ph 7.4 (prepared in PBS) for 15 minutes at RT. The EDTA solution 

was removed and cells washed with HBSS. The cells were then subsequently treated as outlined for day 2 and 

day 4 cells 

Harvested hFOB cells, approximately 8-10 million cell count each, were pelleted in triplicate for four different 

time points: day 0, day 2, day 4, day 10.  The twelve samples were frozen at -80°C until lysis. Each pellet was 

lysed according to the Filter Aided Sample Preparation (FASP) protocol adapted from 257.  Lysis buffer was 

changed to 6% SDS, 150 mM DTT, 75 mM Tris-HCl. To each pellet, an aliquot lysis buffer equal to 2x the 

pellet volume was added and probe-sonicated to lyse the cells and shear the nucleotide material. Sonication 
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continued for 1-5 minutes until the sample was clear and no longer viscous. The lysates were then incubated at 

95°C for 2.5 minutes. Protein quantitation was estimated by BCA assay to be approximately 500-4000 ug per 

lysate. Aliquots equivalent to 80 ug per sample were used for FASP and buffer exchanged into 200 mM EPPS 

pH 8.5. A technical replicate of day 10 replicate C was prepared as well as an unrelated Jurkat lysate sample, 

resulting in a total of 14 samples for proteolytic digestion. Digestion was performed as per Navarrete-Perea et 

al. 258 with Lys-C overnight, followed by trypsin for six hours, using a 1:100 enzyme-to-protein ratio.   

Tandem Mass Tag (TMTpro) labeling 

Reagents from the TMTpro 16plex isobaric label reagent set A44522 (ThermoFisher, Waltham, MA) were used 

for labeling each of the 14 samples (TMTpro-133C and TMTpro-134N were not needed). Per protocol, 20 uL of 

anhydrous acetonitrile was added to each tube of 0.5 mg dry TMTpro reagent and allowed to incubate at room 

temperature for 5 minutes with occasional vortexing. The entirety of each TMTpro vial was added to its 

corresponding digest sample and allowed to incubate at room temperature for one hour, vortexing every 10 

minutes, followed by a final centrifugation of the tubes.   

C18 desalting, label efficiency check  

Aliquots of 2 uL (1.5%) of each digest were combined and desalted using EasyPep Mini C18 desalting resin 

(ThermoFisher, Waltham, MA). The remaining sample was kept frozen at -80℃ until the next day. Eluted 

sample was dried via speed vac and reconstituted in 6 uL of 0.1% formic acid. The entire sample was injected 

for LC-MS/MS analysis to check labeling efficiency and mixing ratios among the 14 labeled samples. After 

check analysis, the remaining sample from all digests were brought back to room temperature, quenched 

according to TMTpro protocol, and mixed according to normalized ratios determined from this check analysis 

(see below).  

 LC-MS/MS check analysis 
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Desalted sample was analyzed by nanoLC-MS/MS using a Dionex Ultimate 3000 (Thermo Fisher Scientific, 

Bremen, Germany) coupled to an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific, 

Bremen, Germany). Six microliters (estimated 1ug) were loaded onto an Acclaim PepMap 100 trap column 

(300 um x 5 mm x 5 um C18) and gradient-eluted from an Acclaim PepMap 100 analytical column (75 um x 25 

cm, 3 um C18) equilibrated in 96% solvent A (0.1% formic acid in water) and 4% solvent B (80% acetonitrile 

in 0.1% formic acid). The peptides were eluted at 300 nL/min using the following gradient: 4% B from 0-5 

minutes, 4-10% B from 5-10 minutes, 10-35% B from 10-60 minutes, 35-55% B from 60-70 minutes, 55-90% 

B from 70-71 minutes, and 90% from 71-73 minutes.   

The Orbitrap Eclipse was operated in positive ion mode with 2.1kV at the spray source, RF lens at 30% and 

data dependent MS/MS acquisition with XCalibur version 4.3.73.11. MS data acquisition was set up according 

to the existing method template, “TMT SPS-MS3 RTS”. Positive ion Full MS scans were acquired in the 

Orbitrap from 400-1600 m/z with 120,000 resolution. Data dependent selection of precursor ions was performed 

in Cycle Time mode, with 2.5 seconds in between Master Scans, using an intensity threshold of 5 x 103 on 

counts and applying dynamic exclusion (n=1 scans for an exclusion duration of 

60 seconds and ∓10 ppm mass tolerance). Monoisotopic peak determination was 

applied and charge states 2-8 were included for CID scans (quadrupole isolation 

mode; rapid scan rate, 0.7 m/z isolation window, 32% collision energy, AGC 

standard). MS3 quantification scans were performed when triggered by the real-

time search (RTS) algorithm.  MS3 (HCD) scans were collected in the Orbitrap 

with 50,000 resolution, 50% collision energy, AGC target of 300%, and automatic 

maximum inject time mode for a maximum of 10 SPS precursors per cycle. 

Sample preparation for targeting TPM2 peptides 
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Replicates “A” and “C” of each of the following TMTpro-labeled samples were mixed according to normalized 

ratios determined from the check analysis: Days 0, 2, 4, 10. In addition, one technical replicate for 10℃ was 

included, as well as one Jurkat sample (used as a negative control). An estimated 6.6 ug from each sample was 

mixed together, for a total of 66 ug. The pooled sample was subjected to C18 desalting using EasyPep Mini C18 

desalting resin (ThermoFisher, Waltham, MA), reconstituted with 66 uL 0.1% formic acid for 1 ug/uL 

concentration, and used for tMS2 targeting analysis without further fractionation. 

LC-MS/MS: DDA and tMS2 analysis  

The resulting peptides were analyzed by nanoLC-MS/MS using a Dionex Ultimate 3000 (Thermo Fisher 

Scientific, Bremen, Germany) coupled to an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher 

Scientific, Bremen, Germany). One microliter (estimated 1 ug) was loaded onto an Acclaim PepMap 100 trap 

column (300 um x 5 mm x 5 um C18) and gradient-eluted from an Acclaim PepMap 100 analytical column (75 

um x 25 cm, 3 um C18) equilibrated in 96% solvent A (0.1% formic acid in water) and 4% solvent B (80% 

acetonitrile in 0.1% formic acid). The peptides were eluted at 300 nL/minute using the following gradient: 4% 

B from 0-5 minutes, 4- 28% B from 5-210 minutes, 28-50% B from 210-240 minutes, 50-95% B from 240-245 

minutes and 95% B from 245-250 minutes.   

DDA mode: The Orbitrap Eclipse was operated in positive ion mode with 2.1kV at the spray source and RF 

lens at 30% with XCalibur version 4.5. MS data acquisition was set up based on the existing method template, 

“TMT SPS-MS3 RTS”.  The details of the method are identical to that described above, except that MS3 (HCD) 

scans were collected in the Orbitrap with 50,000 resolution, 50% collision energy, and AGC target of 300%. 

tMS2 mode: A total of 22 peptides from source protein TPM2 were selected for tMS2 targeting. Charge states z 

= 2 and z = 3 were selected for each peptide for a total of 44 target m/z values (Table S3.7). The Orbitrap 

Eclipse was operated in positive ion mode with 2.1kV at the spray source and RF lens at 30% with XCalibur 

version 4.5. In tMS2 mode, no MS1 scans were acquired and MS2 scans were isolated in the quadrupole with a 
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1.6 m/z isolation window and fragmented using HCD with 30% collision energy. Standard AGC was used and 

fragment ions were detected in the Orbitrap with 30,000 resolution.  Retention time scheduling was not used. 

Mass spectrometric data analysis  

A) Database Searching for offline HPLC fractions 

“DDA  mass spec.raw” files were searched using the Proteome Discoverer software suite (PD 2.4.0.305) 259 

with a processing workflow for SPS MS3 reporter ion quantification using SequestHT search algorithm and 

Percolator validation node. A sample-specific protein database, was generated as described in “Long-read 

RNA-seq analysis pipeline” (below) and used for Sequest HT searching. Precursor ion tolerance was set to 10 

ppm and fragment ion tolerance was set to 0.1 Da. Static modifications of TMTpro (+304.207 Da) on peptide 

N-terminus and lysine residues as well as carbamidomethylation (+57.021 Da) on cysteine residues were used. 

The following dynamic modifications for peptides were used: oxidation (+15.995 Da) of methionine and 

phosphorylation (+79.966 Da) of serine, threonine, and tyrosine.  The following static modifications for proteins 

were used: N-terminal acetylation (+42.011 Da), N-terminal methionine loss (-131.040 Da), and methionine 

loss plus acetylation at the N-terminus (-89.030 Da).  A target FDR of 1% for peptide and protein validation 

was used. 

B) Quantification 

Impurity correction factors were included for reporter ion intensities, based on the quality control information 

provided with the TMTpro reagent kit. Reporter ion abundances above a minimum S/N of 2 and below a co-

isolation threshold of 70% were summed across peptide spectral matches (PSM) to calculate peptide abundance. 

Normalization mode was set to “Total Peptide Amount” and scaling mode was “On All Average” so that the 

average abundance per protein and peptide was normalized to 100.  Quantification rollup parameters were set to 

“Protein Abundance Based” protein ratio calculation, allowing for a maximum 100-fold change in abundance, 

with low abundance resampling imputation and ANOVA (individual proteins) hypothesis testing. 
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C) Manual inspection of targeted TPM2 peptides 

Skyline viewer program 260 was used to view and validate MS2 spectra for target peptides. For quantitative 

analysis, the ion counts of individual reporters ions were recorded for each target peptide MS2 spectrum using 

FreeStyle raw file viewer. 

Long-read RNA-seq analysis pipeline 

Long-read RNAseq processing was performed using the Isoseq3 workflow 

(https://github.com/PacificBiosciences/IsoSeq). Primer removal and demultiplexing of cells was performed 

using “lima”. Next, the demultiplexed samples were refined by keeping only transcripts with poly-A-tails and 

removing any concatemers using the module “refine”. Following that the full-length non-chimeric poly-A 

containing reads were clustered into isoforms using the module “cluster” and then aligned using the PacBio read 

compatible minimap2 261 aligner. Finally the clusters of isoforms were collapsed into non-redundant isoforms 

using the “collapse” module. A raw matrix of expression was generated using cDNA Cupcake’s 

“demux_isoseq_with_genome.py” module. Post Isoseq3, SQANTI3 262 was used to classify isoforms into five 

categories: FSM (Full splice match), ISM (Incomplete splice match), NIC (Novel in catalog), NNC (Novel not 

in catalog), and genic. Following that, IsoAnnot was used to generate a full-length transcriptome reference from 

long-read data.  

Long-read proteogenomics analysis pipeline 

We relied heavily on the published long-read proteogenomics pipeline 115. In short, open-reading frame 

identification steps used CPAT 207 to assess coding potential of isoforms, followed by generation of predicted 

ORFs using the “ORF_calling” module. Next, we generated the CDS GTF file to obtain the list of proteoforms 

using “make_pacbio_CDS” and “refinement” modules. We performed NMD and truncation analyses using 

Biosurfer (https://github.com/sheynkman-lab/Biosurfer_BMD_analysis). Briefly, each ORF containing an 



 

77 

sQTL junction is compared against all ORFs not containing this sQTL and both length differences and the 

NMD rule are applied.  

Experimental validation of TPM2 in hFOBs 

 

siRNA Knock Down; general information 

hFOB cells used in the siRNA knockdown experiments were transfected within five days of thawing from liquid nitrogen 

storage. Briefly, cells were seeded at 75,000 cell/well of a 24 well plate and transfected within 24 hours after plating. In a 

typical experiment, 10 wells were seeded for each siRNA treatment (7 and a No Target control, see Table S3.8) plus a 

‘not transfected’ control as well as 4 wells for RNA collected on the day of transfection (94 wells in toto). Four wells of 

each treatment were used for determining the amount of mineral formed at differentiation Day 10 with the remaining six 

wells used for RNA which was isolated at various times during the course of the experiment. 

 

siRNA transfection procedure and conditions 

Within 24 hours after plating, cells were transfected with siRNAs using Lipofectamine LTX reagent (Invitrogen ref# 

15338100) following the manufacturer's recommended procedure, with minor modifications.  Briefly, between 16-18 

hours after plating, 2.5 ul Lipofectamine LTX was mixed with 37.5 ul pre-warmed Opti-MEM (Gibco, ref # 31985-070) 

per well of cells transfected. In parallel, 1 ul of 5 uM siRNA was mixed with 37.5 ul pre-warmed Opti-MEM per well. 

After a minimum of 5 minutes incubation time at room temperature (RT), the Lipofectamine mix and siRNA mix were 

combined, mixed and allowed to incubate for a minimum of 15 minutes at RT. After this time period, the ~75 ul 

Lipofectamine/siRNA mixture was diluted into 500ul pre-warmed Opti-MEM/well, mixed, and applied to a well of cells 

after growth media was removed. Cells were placed back in the incubator (temperature=34℃) for 5-7 hours at which time 

the Opti-MEM transfection mix was removed and replaced with 500 ul/well of pre-warmed growth media after the cells 

were washed with pre-warmed DPBS (Dulbeco’s Phosphate Buffered Saline, Gibco, ref# 14190-144). 

 

Osteoblast Differentiation 
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Twenty-four hours after transfection (48 hours after plating) growth media was removed, cells washed with 0.5 ml/well 

pre-warmed DPBS, 0.5ml/well pre-warmed differentiation media added and cells placed at 39.5℃.  Differentiation media 

was replaced every other day after cells were washed with DPBS. On the tenth day, cells were washed 3x with 1 ml 

DPBS/well, fixed with 0.5 ml 10% Buffered Formalin Phosphate (Fisher #SF100-4) for 15 minutes at RT, washed three 

times with 1 ml/well water and stained with 400 ul/well 40 mM Alizarin Red, pH 5.6 (with NH4OH; Sigma A5533-25G) 

for 25 minutes at RT after which the stain was removed and cells washed 10x for 10 minutes each with 1 ml/well water. 

After images were scanned, the amount of alizarin red bound to the mineral formed was quantified by eluting in 2 ml/well 

5% (v/v) Perchloric Acid (HClO4, Sigma-Aldrich 311413-500ML) and incubated for 20 minutes with shaking at RT. The 

amount of alizarin red bound for each sample/treatment was determined from the absorbance at 405 nm wavelength of the 

eluent along with standards prepared from the alizarin red staining solution appropriately diluted into 5% HClO4 and was 

expressed in units of nmol alizarin red bound. 

 

RNA isolation and cDNA preparation 

RNA was isolated using the Qiagen RNase minikit (cat# 74106) following the manufacturer's protocol.  Briefly, media 

was removed from cells and washed 3x 1 ml/well DPBS and subsequently lysed in 400 ul/well RLT buffer containing 40 

mM dithiothreitol (DTT) with mild shaking for 10 minutes, transferred to a microfuge tube and stored at -80°C until 

processing. At the time of processing, RNA was isolated from thawed lysates exactly as outlined. RNA was immediately 

DNased after isolation Applied Biosystem’s TURBO DNA-free kit (Invitrogen ref# AM1907) following the 

manufacturer's protocol. DNased samples were stored -80℃. cDNA was prepared from thawed samples by initially 

determining the RNA concentration with a Qubit 4 fluorometer and the RNA HS assay kit (Thermo Fisher ref# Q33226 

and Q32855, respectively) following the manufacturer's protocol.  Random primed cDNA was synthesized from 1 ug 

DNased RNA using Applied Biosystems High Capacity Reverse Transcription kit (cat# 4368813).   

 

Determining the extent and duration of siRNA knock down with real time PCR. 

The relative abundance of different transcriptional isoforms of the Tropomyosin 2 gene (TPM2) was determined in 

duplicates for each sample/treatment from four separate experiments two days after siRNA transfection. Each reaction 

contained ~10 ng cDNA, 800 nM each primer (see Table S3.9), 0.5X  Power Up SYBR Green Master mix (Applied 
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Biosystems ref# 100029285) in a 10ul reaction and amplified in a QuantStudio 5 Real-Time PCR system (Applied 

Biosystems, A28135) under these cycle conditions (50℃ (2 minutes), 95℃ (2 minutes); ([95℃ (1 second), 60℃ (30 

seconds)] for 40 cycles); melt curve (95℃ (1 second), 60℃ (20 seconds), 95℃ (1 second)). Relative quantification of the 

different transcriptional isoforms was determined by the 2 exp (–delta delta C(T)) method 263 using the geometric mean of 

the C(T) values of CCDC47 and CHMP2A as the reference genes. Briefly, the cycle number in which half of the final 

amount of product produced (Cq/C(T)) is determined following the manufacturer's recommendations.  The C(T) for each 

sample/reaction for each TPM2 primer pair is subtracted from the geometric mean of the C(T) of primer pairs for the 

genes CCDC47 and CHMP2A for the same sample (ΔC(T)). Finally, the delta C(T) for a given primer pair for the ‘No 

Target Control’ sample is subtracted from the siRNA knockdown samples C(T)s for that particular primer pair resulting in 

the ΔΔC(T) (ddCT). The reported values are 2 (–)ddC(T). 
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Concluding Remarks and Future Directions 
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The field of complex disease genetics surely is an exciting endeavor. A critical milestone in the field was the 

development of Genome-wide association studies (GWASs), which since their inception in 2005, have 

identified thousands of associations in hundreds of complex diseases and traits 49. Optimism surrounding this 

technology at the time soon turned into a looming uncertainty as over 90% of the associations were found in 

intronic and intergenic regions suggesting a gene regulatory role, a more complicated consequence than 

preliminarily anticipated 31. However, the benefits of this systematic method to discovery far outweighed 

technological parallels (i.e., linkage studies) in the field. Subsequently, cross disciplinary teams took on the 

challenge to follow-up on GWASs (dissecting GWAS associations), both computationally and experimentally, 

in order to pinpoint the causal genes within the associations. Herein lies my contribution to the field which 

involved identification of potentially causal genes impacting bone mineral density (BMD), the strongest 

predictor of osteoporotic fracture, and therefore osteoporosis.  

 

The first GWAS interrogating BMD was published in 2008 264, three years after the first ever GWAS 265. Since 

then, scientists have identified hundreds of associations aimed at uncovering the genetic basis of osteoporosis, 

however, our understanding of the genes and mechanisms driving these genetic associations has been poor. 

Given that the majority of associations are implicated in gene regulation, follow-up studies integrated multi-

omics data (described extensively in Chapter 1) to enhance our ability to systematically identify potential 

causal genes and subsequently validate them experimentally. My research focused on integrating 

transcriptomics data with already published GWAS data. At the start of my PhD, BMD GWAS follow-up had 

contributed improvements in our understanding of the genetic basis of BMD and osteoporosis. However, the 

focus of the majority of these follow-up studies was on protein-coding genes, turning a blind eye on major areas 

of research including a role for non-coding RNAs and the isoform-specific role of protein-coding genes in 

disease. In my work, I delved into these aspects of the transcriptome that have not been investigated in the 

context of osteoporosis. 
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In Chapter 2, we were interested in identifying a role for long non-coding RNAs (lncRNAs) as potential causal 

genes in osteoporosis. LncRNAs are transcripts longer than 200 nucleotides and have no coding potential 187. 

The majority of lncRNAs share sequence features with protein-coding genes including a 3’ poly-A tail, a 5’ 

methyl cap, and an open reading frame 188. However, their expression is low and heterogenous, and they show 

intermediate to high tissue specificity 189. Aberrant expression of lncRNAs has been linked to diseases including 

osteoporosis 190. Additionally, there is accumulating evidence suggesting their involvement in key regulatory 

pathways, including osteogenic differentiation 187,191. We were able to integrate transcriptomics data and GWAS 

data in a small population of bone samples using Allelic Imbalance (AI) in genes found within 400 Kb of BMD 

GWAS associations. Due to the paucity of bone-relevant transcriptomics data, we were limited in our ability to 

apply molecular QTL methods. Therefore, we used AI to prioritize lncRNAs in bone fragment samples obtained 

from 17 patients undergoing hip replacement surgery.  In conjunction, we performed expression quantitative 

trait loci (eQTL) Bayesian colocalization, and Transcriptome-Wide Association Study (TWAS) to identify 

potentially causal lncRNAs in the Genotype-Tissue Expression (GTEx) tissues, which do not contain bone 

relevant samples. Finally, we confirmed the expression of the lncRNAs resulting from both approaches in 

human fetal osteoblasts (hFOBs) during the process of differentiation into a fully mineralized cell. We applied 

this unbiased, systematic approach to discover a total of 23 lncRNAs, many of which are novel in the context of 

osteoporosis and bone biology and could potentially mediate the link between BMD and associations identified 

in BMD GWAS. Aside from the novelty, the work is based on human samples and includes validation of 

lncRNAs expression in osteoblast cultures which makes the conclusions highly relevant for possible translation. 

However, this study was not meant to be comprehensive because we were limited by the number of samples and 

are not suitably powered to identify eQTLs and apply TWAS/colocalization analysis. Nonetheless, due to the 

scarcity of population-level bone transcriptomic datasets, and the lack of bone cell or tissue data in GTEx, our 

study is an attempt to systematically leverage the available datasets to capture a subset of lncRNAs that we 

think are potentially causal. Some of these lncRNAs have been implicated experimentally outside of this study. 

Moreover, lncRNAs under AI and within proximity of GWAS loci may not be causal as they could be false 
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positives because they are not prioritized via a systems analysis such as colocalization. Another limitation of 

our study is that we evaluated their expression as a function of osteoblast differentiation; however, it is likely 

that some of the lncRNAs, if truly causal, impact BMD via a function in other cell-types (eg, osteoclasts).  

 

In Chapter 3, we investigated alternative splicing (AS) in the context of GWAS associations. One major task is 

to understand the functional consequences of AS by identifying how AS affects pathways and processes that 

impact human disease. A wealth of GWAS and sQTL functional genomics data exists among hundreds of 

complex traits, and it has become clear that AS variation has an effect on patients’ disease risk. The field has 

yielded vast catalogs of splicing Quantitative Trait Loci (sQTLs), with some characterization of the mechanisms 

of the implicated Single Nucleotide Polymorphisms (SNPs, e.g., effect of SNP on RNA binding proteins or 

splice donor/acceptor modification), but knowledge of the downstream transcript and protein isoforms affected 

remain unknown. We presented a novel method that should increase the utility and interpretability of sQTLs 

colocalized to disease. Our method integrates sQTL analysis directly with long-read RNA-seq data, and a 

recently developed “long-read proteogenomics” pipeline 115, to identify full-length functional protein isoforms 

impacted by colocalized sQTLs, and thus the molecular implications of altered splicing in patients. We 

demonstrated this approach on BMD, but our work should serve as a model for other areas of research to 

increase the clinical utility of sQTL analysis across the disease spectrum. This includes usage of sQTL data 

from publicly available resources like GTEx or disease-relevant cohorts. 

 

In this study, we identified a comprehensive list of full-length isoforms for BMD as potential effector in 

osteoporosis. More importantly, we did this by leveraging sQTL junctions generated from short-read RNAseq 

data and interpreting their effects on full-length isoforms from an independent long-read RNAseq sample in a 

disease relevant model.  To date, we are unaware of studies that systematically investigated the role of sQTLs in 

bone mass. Our work shows that splicing is a major mechanism influencing BMD. Alternative splicing tends to 

be a distinct mechanism, compared to gene expression, with little overlap between biological and genetically 
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regulated splicing. Indeed, we identified many genes with colocalizing sQTLs that do not show any enrichment 

in known bone monogenic disease genes, International Mouse Phenotyping Consortium (IMPC) BMD relevant 

genes, or known bone processes, demonstrating that studies focused on detecting isoform-driven signals are 

uncovering new biological and potentially clinical processes. 

 

One of the more exciting findings from our study is the gene TPM2 and its isoforms. TPM2 splicing has not 

been directly studied in the context of osteoblast differentiation or bone disease, however, studies have 

implicated splice isoforms of the gene in muscular diseases like the Escobar variant (characterized by skeletal 

defects including vertebral defects, bone fusion abnormalities and growth retardation) 250, nemaline myopathy 

251, and atherosclerosis 252. Additionally, There is evidence from the literature suggesting that loss of Tpm2.1 

(isoform containing exons 6 and 11 together) leads to increase in beta catenin levels 253 which is integral to bone 

formation 254. In our results, isoforms containing exon 6 and exon 7 show opposing effects on hFOB 

mineralization, however, we should also note that knocking down TPM2 isoforms containing exon 11 have 

shown a significant decrease in mineralization. One possible explanation is that the ratio of two isoforms (i.e. 

those containing exons 6 and 11 with those containing exons 7 and 11) and not the absolute amount is necessary 

for the cells to mineralize.  

 

We found several lines of evidence showing convergence of BMD sQTLs on both trans-acting splice factors as 

well as their cis-regulatory targets. For example, we found that both PTBP1 (a splice factor) and TPM2 harbor 

strongly colocalizing sQTLs and are potentially linked via regulatory and biochemical interactions. Studies have 

shown that PTBP1 isoforms containing exon 9 bind the unprocessed TPM2 transcript in intron 6 resulting in 

higher levels of exon 6 containing isoforms 238,241. Conversely, higher levels of PTBP1 isoforms that lack exon 

9 has reduced repressive activity and leads to derepression of exon 7 and thus higher levels of exon-7-

containing TPM2. Intriguingly, the genetic associations indicate that higher levels of exon-9-containing PTBP1 

(lead SNP: rs2737273) and higher levels of exon-6-containing TPM2 (lead SNP: rs3215700), independently, are 
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associated with lower BMD, suggesting a core splicing axis involving PTBP1 and TPM2. The lead sQTL within 

TPM2 (in intron 6) is a SNP that extends the polypyrimidine tract by a single nucleotide which potentially leads 

to reduced PTBP1 binding, suggesting this SNP might be the causal SNP in that region. The mean H4PP 

(Probability of colocalization) in events where rs3215700 is the lead SNP is 0.94 (median 0.97) while the mean 

H4PP of other lead SNPs for the junctions surrounding exons 6 and 7 is 0.90. Furthermore, unpublished data 

provide evidence for this lead SNP to have a high impact in osteoblasts. Overall, future studies interested in this 

splicing network should consider functionally annotating this SNP.  

 

We speculate that this approach can be extended to integrate other GWAS follow-up methods such as 

Transcriptome-wide association studies (TWAS) which was extensively described in Chapter 1. Nonetheless, 

we understand that our study has limitations. We were not statistically powered to identify sQTLs in a bone 

relevant tissue, therefore we inferred the effect of shared sQTLs in different tissues on a bone relevant cell line. 

Ideally, population studies should leverage long-read RNAseq to identify isoforms ratios associated with 

genotypes rather than junctions. However, our approach takes advantage of the wealth of publicly available 

junction sQTL data. At a molecular level, we were able to validate our hypothesis and suggest a mechanism for 

TPM2 isoforms leading to an opposing effect on mineralization, but we were not able to fully validate this 

mechanism experimentally. We consider our work a resource to generate and validate similar hypotheses to 

provide more evidence for an isoform specific role in osteoporosis. 

 

Future directions 

 

The osteoporosis community has been taking baby steps, relative to other fields (i.e., brain & cardiovascular), 

into the generation of a bone-specific population level transcriptome. While the progress has been very slow, it 

might be wise to take advantage of the limited scope of discovery produced by consortia (such as GTEx) using 

bulk transcriptomics. For example, bulk transcriptomics hindered any progress in identifying cell-type specific 
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effects on complex disease and/or isoform level implications. Moreover, we are currently in the single-cell 

sequencing (2019 method of the year 266) and long-read sequencing (2022 method of the year 267) revolutions. 

This yields a great opportunity for the osteoporosis community to make a leap into the present 111,268 by 

generating a single-cell long-read based population level transcriptomics. As long-read technologies rapidly 

improve in throughput and cost, their use in population genetics studies, either alone or in an integrative 

strategy, will likely increase. For example, current technologies like PacBio MAS-seq can deliver the potential 

of the single-cell-isoform defined transcriptome. Additionally, this technology can open the door wide into 

knowledge of the repertoire of expressed protein isoforms and could also guide drug development.  

Studies have shown that drug targets against proteins with underlying genetic evidence are twice as likely to 

succeed in clinical trials 25. 

 

Although precision medicine holds great promise, it currently faces several gaps in research that prevent it from 

reaching all potential patients. One major obstacle is the lack of diversity among participants in biomedical 

research 269. This limitation reduces the generalizability and availability of genomic-based treatments and 

prevention strategies. The serious under-representation of diverse populations in genetic/genomic studies is 

highly problematic since genetic information obtained from one population may not be applicable to other 

populations 270. This is due to differences in linkage disequilibrium (LD), allele frequencies, and genetic 

architecture. Without a diverse sample, important signals revealing powerful insights into genetic associations 

and drug response may go unnoticed. I believe the research presented in this dissertation can be extended to 

begin addressing this issue as the field of personalized medicine is incomplete without meeting medical needs 

of diverse individuals. As long-read technologies rapidly improve in throughput and cost, their use in 

population genetics studies, either alone or in an integrative strategy, will likely increase. In the near term, 

integrative strategies that combine long-read and short-read data will likely remain popular.  Therefore, our 

strategy is to leverage resources such as GTEx or sQTL Compendia, which provides candidate sQTLs in normal 

tissues and determine how such sQTLs may map onto full-length isoforms expressed in representative disease 
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models (cell-line or tissue). This integrative in silico/in vitro approach could allow for inference of the effects of 

sQTLs that are detected in an independent population or meta-analysis (in which there is sufficient sample size 

and power), but are placed within the isoform-relevant context of the disease model. Currently, short-read 

sequencing is approximately 10-fold higher in throughput at the same cost, but due to developments such as 

MAS-Iso-Seq (PacBio) and the PromethION system (ONT), long-read data may become comparable in 

throughput and cost in the next 5 years. Long-read pipelines and long-read/short-read integrative strategies are 

maturing, with recent consortia such as the Long Read Genome Annotation Consortium conducting 

comprehensive comparisons across model organisms, library preparations, platforms and bioinformatic 

pipelines. Strategies to integrate long-read RNA-seq with proteomics are also emerging, pointing to the 

potential to obtain pQTL data that are protein isoform-resolved. Long-read RNA-seq at the single cell level 

could also open the door toward isoform-resolved sQTLs that are specific to certain cellular contexts and 

populations.  

 

Finally, “good science” comes through extensive collaboration and biomedical science is not an exception to 

this rule. It should go without saying that the field of computational biology and biological data science has 

made major strides and contributed major improvements to our biological understanding of disease and 

discovery. However, these discoveries must go hand in hand with extensive collaborations at the bench. The 

need for experimental validation should be a top priority for all computational biologists, and it comes with its 

own experimental design at the top. A computational biologist should provide a hypothesis, a feasible target for 

experimental validation, and should work closely with the bench scientist to address any issues that arise during 

the process. This includes generating visualizations, analyzing data (including qPCR), and interpreting the 

results correctly.  
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Overall, our work was able to identify candidate biomarkers and therapeutic drug targets for osteoporosis. This 

PhD work provides different methodologies for data integration to generate hypotheses and validate them in the 

context of bone disease, a growing field of discovery.  
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Main figures and tables 

 
 Figure 1.1: Examples of quantitative trait loci (QTL) for molecular phenotypes such as gene expression 

(eQTL), alternative splicing (sQTL), DNA methylation (meQTL), chromatin accessibility (caQTL), and protein 

expression (proQTL). QTL approaches can generally be applied to any molecular trait quantifiable in a 

population of individuals. 
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Approach Description References 

Genome-wide association study 
(GWAS) 

Hypothesis-free statistical approach that identifies 
associations of genetic variants and diseases or disease-
associated traits. GWASs are divided into two types: 
case-control and quantitative 

13,16,37 

Transcriptome-wide association 
study (TWAS)  

Statistical approach that leverages gene expression 
imputation to identify significant gene-trait associations 
by estimating the genetic component of gene expression 
in a reference population where gene expression and 
genotype have been measured (GTEx is an example) and 
then imputing (predicting) gene expression in a much 
larger population (such as those used in a BMD GWAS). 
Once gene expression is imputed, genetically regulated 
gene expression is associated with a disease or disease 
phenotype 

138,143 

Colocalization Statistical test to determine whether a single variant is 
responsible for both GWAS and molecular QTL signal 
(i.e., eQTL) in a genomic region. One can draw a parallel 
to fluorescence microscopy where colocalization refers 
to the observation of overlap between different 
fluorescent labels that tag different “targets” located in 
the same area of the cell 

29,143 

Network analysis Approaches using “-omics” data (e.g., RNA-seq, 
proteomics, etc.) to partition genes into groups based on 
functional similarities in an unbiased manner. A growing 
number of studies have demonstrated the ability of 
networks to predict causal genes at GWAS loci 

144,145,151 

Table 1.1: Defining concepts used in this introduction 
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Figure 1.2: eQTL discovery and colocalization. A Two examples of an eQTL with box plots showing that 
gene expression is (left) or is not (right) correlated with the genotype of a single-nucleotide polymorphism 
(SNP). B An example of a colocalizing eQTL for MARK3 visualized using RACER 271. Every circle represents 
a SNP. An eQTL for MARK3 is shown on the top panel of the mirror plot. The BMD GWAS association is 
plotted on the bottom panel. Note that the same SNPs associated with BMD are associated with the expression 
of MARK3. The colors signify r2, a measure of linkage disequilibrium. 
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Figure 1.3: Long-read sequencing provides isoform-level characterization of sQTL effects. To illustrate, a 
hypothetical example may be considered. Panel A shows the event-based characterization of two exon 
inclusion/exclusion events, one of which involves a cryptic exon (represented by the dashed lines). The first 
event can be explained by the reference transcript annotation, but the second event indicates the presence of a 
novel isoform and the identity of this isoform cannot be defined from short-read data alone. Panel B shows the 
results of long-read sequencing which identify the novel isoform. The pattern of isoform usage by genotype 
confirms that this pattern of exon/inclusion events is driven by increased usage of the novel isoform in subjects 
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with the G allele of the causal sQTL variant. Proper characterization of the isoform also provides more accurate 
information on protein sequence and functional potential (as seen in different shapes of the pink proteins). 
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Disease/Trait 
Yea

r 
Sample size Tissue 

Junction/isoform 
Quantification 

sQTL 
calling 

Study 

Various traits  2022  GTEx  GTEx (49 
tissues)  

LeafCutter*  FastQTL + 
PEER*  

Rouhana et al. 
272  

Various neurological and 
psychiatric disorders  

2022  100  255 primary 
human 

microglial 
samples from 
multiple brain 

regions  

LeafCutter  TensorQTL  Lopez et al. 273 

Alzheimer’s disease and 
related dementias  

2022  Various including 
GTEx  

Various 
including GTEx  

Previously reported  Previously 
reported  

Bellenguez et 
al. 274  

Pancreatic Cancer  2022  TCGASpliceSeq 
(N = 176)  

Pancreatic ductal 
adenocarcinoma 

(PDAC)  

SpliceSeq  MatrixeQT
L + 

regression 
analysis  

Tian et al. 275   

Various complex traits  2022  N/A  Various immune 
cells  

In-house package  N/A  Yamaguchi et 
al. 276  

BD (Bipolar Disorder)  2022  511 total samples 
from 295 unique 

donors  

Subgenual 
anterior cingulate 

cortex and 
amygdala 
samples  

LeafCutter  FastQTL + 
PEER  

Zandi et al.  277  

Cardiometabolic traits  2022  426 Finnish men 
from the METSIM 

study  

Subcutaneous 
adipose tissue  

LeafCutter  QTLtools + 
PEER  

Brotman et al. 
224. 
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Prostate Cancer (PrCa)  2022  467  Benign prostate 
tissue  

RSEM + sQTLseekeR  sQTLseeke
R  

Tian et al. 278  

Coronary Artery Disease 
(CAD)  

2022  151  Cultured smooth 
muscle cells  

LeafCutter  FastQTL + 
PEER  

Aherrahrou et 
al. 279  

Various brain related 
traits  

2021  PsyENCODE 
cohort (N = 1073)  

Brain  THISTLE + LeafCutter  FastQTL + 
PEER  

Yang et al. 91   

Meta-analysis of Various 
traits  

2021  Varied  Varied  LeafCutter  QTLtools + 
PEER  

Kerimov et al. 
280   

Developing cortical wall 
or adult cortex  

2021  Primary human 
neural progenitors 
(n = 85) and their 
sorted neuronal 
progeny (n = 74)  

Primary human 
neural 

progenitors and 
their sorted 

neuronal progeny  

LeafCutter  EMMAX  Aygun et al. 
281  

Meta-analysis of multiple 
cohorts for human 

immune traits  

2021  Multiple cohorts: 
1) DGN: N = 922, 
2) BLUEPRINT: 
N = 197, 3) 

GEUVADIS 
N = 462  

Various immune 
cells  

LeafCutter  FastQTL + 
PEER  

Mu et al. 282  

Various traits  2021  GTEx  GTEx (All 
tissues)  

sQTLseekeR2  sQTLseeke
R2  

Garrido-
Martín et al. 48  

Various traits  2021  GTEx  GTEx (49 
tissues)  

LeafCutter*  FastQTL + 
PEER*  

Barbeira et al. 
47 

Type 2 diabetes (T2D)  2021  GTEx  GTEx (48 
tissues)  

LeafCutter*  FastQTL + 
PEER*  

Chen et al. 283  



 

97 

Kidney function  2021  GTEx  GTEx (Kidney)  LeafCutter*  FastQTL + 
PEER  

Stanzick et al. 
284  

Type 1 Diabetes (T1D)  2021  Genotype-Tissue 
Expression 

(GTEx)  

GTEx (All 
tissues)  

LeafCutter*  FastQTL + 
PEER  

Gao et al. 285 

Glioma  2021  CommonMind 
Consortium 

(CMC) and GTEx  

Multiple brain 
tissues  

LeafCutter  Matrixeqtl 
+ PEER  

Patro et al. 286 

Amyotrophic lateral 
sclerosis (ALS)  

2021  154 ALS cases 
and 49 control 

individuals  

Cervical, 
thoracic, and 
lumbar spinal 
cord segments  

LeafCutter  TensorQTL 
+ PEER  

Humphrey et 
al. 249  

Complex disease in Colon  2021  485  Colonic mucosal 
biopsy  

LeafCutter  FastQTL + 
PEER  

Díez-Obrero et 
al. 287  

Parkinson’s disease (PD)  2021  230  Monocytes  LeafCutter  QTLtools + 
PEER  

Navarro et al. 
288  

Mental illness (bipolar 
disorder, schizophrenia, 

major depression)  

2021  200  Postmortem 
subgenual 

anterior cingulate 
cortex (sgACC)  

SQTLseekeR  sQTLseeke
R  

Akula et al. 289  

Schizophrenia  2021  151  Prefrontal 
cortical samples  

LeafCutter  QTLtools + 
PEER  

Liu et al. 290  
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Melanoma  2021  106  Human primary 
melanocytes  

LeafCutter  FastQTL + 
PEER  

Zhang et al. 291  

Aging human brain  2020  Religious Order 
Study (ROS) and 

Memory and 
Aging Project 
(MAP) cohorts 

(N = 450)  

Brain  LeafCutter*  FastQTL + 
PEER*  

Yang et al. 292  

Chronic obstructive 
pulmonary disease 

(COPD)  

2020  GTEx + Lung 
Tissue Research 

Consortium 
(LTRC)  

GTEx 
(Lung) + LTRC  

LeafCutter  FastQTL + 
PEER  

Saferali et al. 
114  

Bladder cancer  2020  580 cases/1101 
controls (GTEx, 
TCGA, GEO, 

CancerSplicingQT
L, 1000 Genomes 

Project)  

Bladder  LeafCutter and SpliceSeq*  FastQTL + 
PEER + 

sQTLSeeke
R*  

Guo et al.293)  

Cancer  2020  19 257 cases and 
30 208 controls 
(71 studies from 
52 publications)  

Various tissues  LeafCutter*  FastQTL + 
PEER*  

Yuan et al. 294  

CAD, stroke, migraine, 
abdominal aortic 

aneurysm  

2020  19 paired primary 
human coronary 
artery smooth 
muscle and 

endothelial cells  

HCASMCs and 
HCAECs  

MAJIQ  In-house 
regression 
analysis  

Nurnberg et 
al. 295  

Various traits  2020  838  Various tissues  LeafCutter  FastQTL + 
PEER  

GTEx 
consortium 31  
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Parkinson’s disease (PD)  2019  ROS + MAP+CM
C (N = 902)  

Brain  LeafCutter*  FastQTL + 
PEER*  

Li et al. 296  

Immune activation  2019  970 RNA-seq 
from 200 

individuals of 
African- and 

European-descent  

Resting and 
stimulated 
monocytes  

LeafCutter  MatrixeQT
L + PEER  

Rotival et al. 
297  

Chronic obstructive 
pulmonary disease 

(COPD)  

2019  376  Whole Blood  LeafCutter  MatrixeQT
L + PEER  

Saferali et al. 
298  

Schizophrenia  2019  201  Mid-gestational 
human brains  

LeafCutter  FastQTL + 
PEER  

Walker et al. 
75  

Cardiovascular disease  2019  83  Induced 
pluripotent stem 

cell (iPSC), 
hepatocyte-like 

cell (HLC), 
primary liver 

tissues  

LeafCutter  QTLtools + 
PEER  

Gawronski et 
al. 299  

Alzeheimer’s disease 
(AD)  

2018  450  Dorsolateral 
prefrontal cortex 

(DLPFC)  

LeafCutter  FastQTL + 
PEER  

Raj et al.300  

Coronary Artery Disease 
(CAD)  

2018  52  HCASMC  LeafCutter  FastQTL + 
PEER  

Liu et al. 301  

 
Table 1.2: An overview of sQTL studies that examine GWAS loci in the context of complex traits (published 
2018–2022). * denotes previously reported sQTL dataset. 
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Figure 1.4: Protein molecular consequences of eQTLs and sQTLs 
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Figure 2.1: Overview of the study. We conducted de novo lncRNA discovery using RNAseq data on human 

acetabular bone fragments from 17 patients. We then identified known and novel lncRNAs located in GWAS 

associations that were influenced by AI (yellow box). We applied TWAS and colocalization on eQTL data from 

49 GTEx project tissues (blue box). We assessed the role of lncRNAs reported by both approaches in 

osteogenic differentiation using RNAseq data from the hFOB cell line at six time points across differentiation 

(bottom panel). AI = allelic imbalance; GTEx = genotype-tissue expression; hFOB = human fetal osteoblast; 

TWAS = transcriptome-wide association study. 
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Figure 2.2: Enrichment of osteocyte marker genes in bone fragment samples (used in this study) 

compared to bone biopsy samples in the literature. (A) Overall gene expression is highly correlated between 

the RNAseq data generated in both studies (r2 = 0.845, p < 2.2 × 10−16); Farr and colleagues 201  (B) Gene 

expression of osteocyte marker genes reported in Bonewald 211 showing enrichment in the bone fragments 

samples (this study) relevant to bone biopsies. (C) Gene expression of bone marrow enriched genes reported in 

The Human Protein Atlas (www.proteinatlas.org/) showing higher expression in bone biopsy samples. (D) 

Osteocyte signature genes reported in Youlten and colleagues 212 are highly expressed in bone fragment samples 

relative to bone biopsies (Wilcoxon test, p < 2.2 × 10−16) (E) Bone marrow enriched genes reported in Youlten 



 

103 

and colleagues 212 are highly expressed in bone biopsy samples compared to bone fragment samples (Wilcoxon 

test, p < 2.2 × 10−16). 
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Figure 2.3: Identification of lncRNAs located within eBMD GWAS associations, are under AI in 

acetabular bone, and are differentially expressed in hFOBs. (A) Venn diagram showing the number of 

known and novel lncRNAs within proximity of GWAS loci, implicated by AI, and implicated by both 

approaches. (B) lncRNA MALAT1 AI plot showing the ratio of reads aligning to the alternative SNP relative to 

the reference SNP in eight of the bone fragments samples where the gene is under AI. (C) lncRNA NEAT1 AI 

plot showing the ratio of reads aligning to the alternative SNP relative to the reference SNP in 10 of the bone 

fragments samples where the gene is under AI. rs78407435 is not in LD with the rest of the SNPs in the region 

and this is likely the reason it shows a different direction of effect. (D) Expression of MALAT1 across hFOB 

differentiation points. (E) Expression of NEAT1 across hFOB differentiation points. AI = allelic imbalance; 

hFOB = human fetal osteoblast. 
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Figure 2.4: lncRNAs implicated by eQTL colocalization and TWAS are potential effector transcripts of 

BMD GWAS loci. (A) Heat map showing colocalization events in GTEx tissues. (B) lncRNA LINC00472 

colocalization plot showing colocalization of eBMD GWAS locus with eQTL from brain cerebellar hemisphere 

with RCP of 0.37 (C) Differential expression of LINC00472 across hFOB differentiation points (D) lncRNA 

SH3RF3-AS1 colocalization plot showing colocalization of eBMD GWAS locus with GTEx fibroblasts eQTL 



 

106 

data with RCP of 0.72 (E) Differential expression of SH3RF3-AS1 across hFOB differentiation points. hFOB = 

human fetal osteoblast. RCP = Regional colocalization probability.  
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Figure 3.1: Overview of the approach to link genetically regulated splicing (sQTLs) to candidate protein 

isoform effectors. In step 1, disease associations were identified by integrating data from the latest BMD 

GWAS with sQTL data from 49 GTEx tissues using Bayesian colocalization analysis. In step 2, long-read 

RNAseq data were generated from a disease relevant model identifying both known (blue) and novel (red) 

isoforms and their predicted open reading frames (ORFs), which in turn were used to map (step 3) the junctions 

identified in step 1 (red = novel, blue = known). Additionally, the impact of these junctions on ORFs was 

predicted (e.g truncation, nonsense mediated decay (NMD), or novel protein). Hypotheses generated from data  

in step 4 are then experimentally validated in the same disease model in step 5.  
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Figure 3.2:  Identification of sQTLs colocalizing with BMD GWAS associations. A) Mirrorplots 

representing examples of highly colocalizing sQTLs in TCF7L2 (H4PP = 0.99) and FHL3 (H4PP = 0.99). B) 

Mapping the junction with colocalizing sQTL to the reference transcriptome (e.g. GENCODE) reveals multiple 

candidate isoforms in TCF7L2. C) As in B, mapping the junction with colocalizing sQTL in FHL3 reveals 

multiple potential isoform candidates that could be impacted by the sQTL. 
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Figure 3.3:  Colocalized sQTLs impact novel isoforms. A) Scenario in which a novel sQTL (with no match in 

isoforms within reference annotation (blue)  is mediating its’ effect through a novel isoform (red) identified via 

long-read RNAseq in hFOBs. B) Mirrorplot representing a highly colocalizing sQTL (H4PP = 0.99) in ZNF800 

where the most significant BMD GWAS SNP and the lead sQTL SNP are the same (rs62621812). C) Isoform 

models for ZNF800 identified via long-read RNAseq in hFOBs where the junction with colocalizing sQTL 

maps only to the novel isoform PB.9463.1. D) Expression of ZNF800 isoforms across hFOB differentiation 

timepoints where red represents the novel isoform PB.9463.1 and blue represents ZNF800-201 and ZNF800-

208.  
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Figure 3.4: Contextualization of isoforms corresponding to known sQTLs: A) Scenario in which a known 

sQTL (match in isoforms within reference annotation) shown in blue map to multiple annotated isoforms (blue) 

and it is not known if all isoforms or only a subset may be relevant in mediating the trait of interest therefore 

full-length expression can be leveraged. B) Mirrorplot representing a colocalizing sQTL (H4PP = 0.86) in OS9. 

C) Isoform models for OS9 identified via long-read RNA-seq in hFOBs where the junction with colocalizing 

sQTL maps to two isoforms OS9-220 and OS9-203. D) Expression of OS9  isoforms across hFOB 

differentiation timepoints where light blue represents isoform OS9-202 and blue represents the rest of the 

isoforms. This example highlights that putting these sQTLs within a biological framework can provide insights 

into potential causal isoforms.   
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Figure 3.5: Known sQTLs impact novel isoforms in the biological context. A) Scenario in which annotated 

junctions of colocalized sQTLs can actually be found to map to novel isoforms, meaning that the local splicing 

event is known (blue), but the associated full-length protein isoform to which it is derived may be novel (red). 

B) Mirrorplot representing a colocalizing sQTL (H4PP = 0.83) in DPP8. C) Isoform models for DPP8  in 

GENCODE v38 containing the junction (blue). D) Isoform models for DPP8 identified via long-read RNAseq 

in hFOBs where the junction with colocalizing sQTL maps strictly to a novel isoform PB.16541.32. 
 
 
 



 

112 

 
Figure 3.6: Enrichment of lead sQTLs in splice factor binding sites. A) Splice factors are regulated by 

sQTLs and in turn regulate the splicing of target genes (also containing sQTLs). B) Mirrorplot showing a 

significantly colocalizing sQTL around exon 9 in the splice factor PTBP1. C) Isoform models of PTBP1 with 

the junction coordinates highlighted. D) Expression of all PTBP1 isoforms including PTBP1-203 (purple) and 

PTBP1-201 (pink).  
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Figure 3.7: Different TPM2 isoforms show opposing effects on mineralization. A) Isoform models for 

TPM2 isoforms expressed in hFOBs. B) Mirrorplot showing a significantly colocalizing sQTL around exons 6 

and 7 in TPM2 (H4PP = 0.98). C) Isoform percentages across hFOB differentiation timepoints highlighting 

TPM2-202 as the major isoform. D) siRNA knockdown of isoforms containing target exon (x-axis). Each color 

represents an siRNA target (red = isoforms containing exon 2, orange = isoform containing exons 6 and 10, 

yellow = isoforms containing exons 6 and 11, sky blue = isoforms containing exons 7 and 10, light blue = 

isoforms containing exon 7 and 11, dark blue = isoforms containing exon 11). E) Quantification of nodule 

mineralization using alizarin red staining in hFOBs (*) represents significant T-Test comparison between no 

target control and the target exon while (ns) represents no significant difference. 
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Appendix A 

Supplemental Data 

All supplemental data are available at: 

https://doi.org/10.5281/zenodo.7672230 
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Supplemental Data 2.1 Known lncRNAs expressed in bone fragment samples 
Supplemental Data 2.2 Unknown lncRNAs expressed in bone fragment samples 

Supplemental Data 2.3 lncRNAs within 400 Kb of BMD GWAS loci and are differentially expressed across            

differentiation time points  

Supplemental Data 2.4 lncRNAs that are implicated by TWAS and colocalization analysis in GTEx tissues 

Supplemental Data 2.5 Colocalized lncRNAs and their Protein-coding counterparts 

Supplemental Data 2.6 Coding SNPs under ASE and LD with GWAS lead SNPs 

Supplemental Data 3.1 Tissue sharing for genes with colocalizing sQTLs  by integrating all 49 GTEx tissues 

with BMD GWAS data 

Supplemental Data 3.2 Distribution of sGenes within BMD GWAS lead associations 

Supplemental Data 3.3 Prediction of NMD status based on long-read RNAseq data 

Supplemental Data 3.4 Evaluation of transcript truncation based on long-read RNAseq data 

Supplemental Data 3.5 Prioritization scheme to nominate isoforms for experimental validation 

Supplemental Data 3.6 Effect sizes obtained from BMD GWAS summary statistics and slope values from 

GTEx tissue summary statistics for every lead sQTL 

Supplemental Data 3.7 Targeted proteomics peptides for TPM2 

Supplemental Data 3.8 TPM2 siRNA sequences 

Supplemental Data 3.9 TPM2 qPCR primer sequences 

Supplemental Data 3.10 List of junctions with significantly colocalizing sQTLs (H4PP > 0.75) for all gene 

types 

Supplemental Data 3.11 Distribution of significant sQTL colocalizations (H4PP >= 0.75) by tissue for all gene 

types 

Supplemental Data 3.12 List of junctions with significantly colocalizing sQTLs (H4PP > 0.75) in protein-

coding genes 

Supplemental Data 3.13 Distribution of significant sQTL colocalizations (H4PP >= 0.75) by tissue for protein-

coding genes 

Supplemental Data 3.14 Lead sQTLs in hFOBs distribution by chromosome and which are within the intron 

they regulate 

Supplemental Data 3.15 Lead sQTLs and their proxy affecting canonical splice sites in hFOBs 

Supplemental Data 3.16 Enrichment of lead sQTLs in splice factor binding sites from eCLIP data 

Supplemental Data 3.17 Potential effects of proteoforms on BMD 
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1. Bayesian colocalization identified potential causal junctions in BMD  

We leveraged Bayesian colocalization analysis with coloc 29 using the largest BMD GWAS 13 and existing 

sQTLs across 49 tissues from the GTEx project 31. Overall, we found 820 genes with colocalizing sQTLs 

(H4PP ≥ 0.75) (total number of associations = 6,889) (Table S3.10 and S3.11). The number of 

unique junctions which we define as junctions with a unique donor-acceptor site pair regardless of the tissue 

where colocalization is reported is 2,043. We focused our study on protein-coding genes and their isoforms. The 

majority of sQTLs (6,391 of 6,889; ~93%) affect protein-coding genes (732 of 820; 89%) (Table S3.12 and 

S3.13), a finding similar to other studies 48. The number of unique junctions is 1,863 found in 732 protein-

coding genes (89% of total genes). Over half the junctions (51%) with colocalizing sQTL showed an H4PP of 

0.90 or above. 

2. Characterization of the full-length transcriptome in hFOBs using long-read RNAseq 

We generated deep coverage long-read RNA-seq data across osteoblast differentiation in hFOBs.  Long reads 

were collected in biological duplicate on day 0 and biological triplicate for days 2, 4, and 10, with a total of 22 

million full-length reads obtained. A gradual increase in mineralization confirmed differentiation into 

functionally mature osteoblasts (see Methods, Figure S1A-B). We applied a stringent filtering strategy where 

isoforms are considered detected if expressed in all replicates of at least one time-point and making up a 

minimum of 1% isoform fractional abundance for the gene. We detected 68,326 transcript isoforms from 12,068 

genes. The number of isoforms with a full-splice match (FSM) when compared to the GENCODE database is 

33,106 (48% of total) while those with an incomplete splice match (ISM) is 17,482 (~26% of total). The 

number of novel isoforms is 17,738 (~26%) (Figure S1C). Of the novel isoforms, 10,793 (61%) arose from 

new combinations of known splice sites (NIC; novel in-catalog), whereas 6,580 (39%) arose from at least one 

novel splice donor or acceptor (NNC; novel not in-catalog) (Figure S1C). The median length of novel isoforms 

is 2,123 nt (mean = 2,268 nt). The median length of known isoforms is 2,055 nt (mean = 2,214 nt).  
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To characterize expression and splicing changes occuring during osteoblast differentiation, we used tappAS 122 

and found that 2,034 genes (~17% of all expressed genes) were differentially expressed (DE) and 3,539 (29% of 

all expressed genes) were differentially spliced, or undergoing differential isoform usage (DIU) (Figure S1D). 

Interestingly, DE and DIU genes were related to distinct GO terms. DE genes associated with bone-relevant 

processes such as positive regulation of bone mineralization (GO:0030501; FDR = 0.004), extracellular matrix 

organization (GO:0030198; FDR=8.88 x 10-8), and collagen-containing extracellular matrix (GO:0062023; FDR 

= 5.06 x 10-11) (Figure S1D). DIU genes, however, did not associate with annotated bone-relevant processes, 

but were enriched in terms related to the regulation of AS, including mRNA splicing and the spliceosome 

(GO:0000398; FDR = 0.0002) (Figure S1D). Together, these results suggest the presence of a splicing program 

acting independently of gene regulation during osteoblast differentiation, suggesting that genetic determinants 

of BMD could be acting through such splice-specific pathways.  

3. Mapping sQTLs colocalized with BMD onto the osteoblast-specific full-length transcript reference 

The GTEx sQTLs are identified from non-bone tissues. Therefore, we sought to place the BMD-associated 

splicing events within the context of bone isoforms for the proper interpretation of putative molecular 

hypotheses. Accordingly, we proceeded to map the colocalized sQTLs onto the transcriptome of differentiating 

osteoblasts. The number of unique junctions with colocalizing sQTLs that are also observed in hFOBs is 836 

(45% of colocalized junction in protein-coding genes), these junctions exactly map (donor-acceptor 

coordinates) to 459 protein-coding genes which in total have 2,349 isoforms (700 novel; ~30%). These genes 

are found within 362 associations (~33% of all BMD GWAS associations), with 221 lead associations 

harboring one sGene and 141 harboring more than one sGene (Table S3.2). Majority of these junctions are 

found in known isoforms, specifically 383 (46%) are found in known isoforms only, and 350 (42%) are found 

in both known and novel isoforms. But we also have a portion of these events that are only explained by novel 

isoforms (103 (12%) are found in novel isoforms only). In order to confirm that the novel sQTL are in fact 

novel and are not a product of isoforms not expressed highly in hFOBs, we also mapped them to GENCODE 
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v38. There were 73 sQTL (of 103; ~71%) that can be explained by known isoforms within GENCODE v38. 

Consequently, the genes reported (and their isoforms) are potential causal candidates in osteoporosis. 

4. Identifying full-length isoform from colocalized sQTLs implicated in osteoblast differentiation 

We next asked whether we see an enrichment of the genes with colocalizing sQTL for those undergoing 

splicing regulation in hFOBs differentiation. Over one third of the genes with colocalizing sQTLs show 

differential isoform usage (164/459; ~36% of genes with a colocalizing sQTL). Genes that show DIU are 

enriched in colocalizing sQTLs (Fisher’s exact test, p = 0.003), indicating the relevance of the disease model 

(osteoblasts) and studying splicing in this process. On the other hand, we report 82 genes with colocalizing 

sQTL were differentially expressed (82/459; ~18%). However, genes that show DE are not enriched in 

colocalizing sQTLs (Fisher’s exact test, p = 0.57). The number of genes with colocalizing sQTL that show both 

DE and DIU is 36 genes (Figure S1E).  

5. Identification of high priority potential causal variants relevant to BMD 

We aimed to provide a potential mechanism by which variants mediate splicing of introns. One way to 

investigate this is by dissecting the lead variants within junctions with colocalizing sQTLs. The total number of 

unique lead variants (lowest p value in the locus) associated with colocalized junction in hFOBs is 1,573 

potentially regulating the splicing of these genes (as some lead SNPs have varying p-values due to tissue 

differences).  

 

Among the colocalized sQTLs, we found that for over half of them (875/1,573, or 56%), the lead SNP or their 

proxy SNP in high linkage disequilibrium (LD ≥ 0.8) resides directly within the associated intron (Table 

S3.14), suggesting a potential regulatory mechanism associated likely to splice machinery. These proportions 

are similar to those reported for other complex diseases 44.   
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Next, we investigated whether these lead SNPs (or their proxy) are found within canonical splice sites (5’ 

splice-donors and 3’ splice-acceptors) in known and novel isoforms within hFOBs. We investigated whether 

these sQTLs are impacting unannotated splice sites, and two novel isoforms belonging to DHRS12 (rs2296028: 

exon 8 acceptor site) and PGS1 (rs11656568; exon 2 donor site) respectively showing disruptions to these sites 

(Table S3.15). This low number of SNPs that lie within these sites is expected as their disruption may be 

strongly deleterious 302. 

6. Splice factors with colocalizing sQTLs 

We obtained splice factor binding sites from CLIPdb in ENCODE 303. We performed enrichment analysis of the 

lead sQTLs within the splice factor binding sites. We see significant enrichment of lead sQTLs within 34 of the 

44 splice factors (Table S3.16). Of these, eight show differential expression across hFOB differentiation time 

points and 13 show differential isoform usage.  

The splice factor hnRNPM shows differential expression across differentiation time points and a colocalizing 

sQTL. This gene has not been implicated previously in the regulation of BMD in human or mouse studies. 

However, evidence suggests that hnRNPM is implicated in an alternative splicing program Ewing sarcoma 

cells, which are aggressive tumors of bone and soft tissues 304. Our results show three junctions with 

colocalizing sQTLs leading to the production of long and short isoforms of the gene.   

7. Mock example to illustrate connecting colocalized sQTLs to isoforms 

We illustrate a toy example in Figure S2, To determine how each isoform impacted BMD, we cross referenced 

the effect size of the lead GWAS SNP with the directionality and magnitude of the slope in the same SNP from 

the GTEx sQTL data (Figure S2). In this example, the TT genotype is associated with a decrease in BMD (a 

result obtained from GWAS summary statistics). The same genotype is also associated with increased 

normalized intron excision ratio (from sQTL summary statistics). An Increase in normalized intron excision 

ratio can be interpreted as an increase in the presence of the exon-exon junction. Therefore, we can hypothesize 
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that genotype TT is associated with isoforms not containing exon 2 in this example which in turn is associated 

with a decrease in BMD. On the other hand, we can conclude that isoforms with exon 2 are associated with an 

increase in BMD. 

8. Resource of candidate protein isoforms that mediate BMD 

We compiled all the information on sQTL-linked protein isoforms, including their predicted risk status, creating 

the Proteoform for BMD Resource (PBR) (Table S3.17). We supplemented each isoform with additional 

evidence that may be pertinent to follow up studies. In terms of the relevance of the isoform in BMD and bone 

traits, we considered two major categories of evidence: i) Literature evidence pertaining to a novel role of the 

gene in bone processes and ii) data-driven evidence to contextualize our results. For the first category, we 

investigated whether the genes reported were implicated previously in bone monogenic disease (26 genes of 

1,088; ~3%), have been previously identified as genes with colocalizing eQTLs in Al-Barghouthi et al. 305 (147 

genes of 512; 32%), have been shown to influence bone strength in Diversity Outbred mice 306 (32 genes of 

1,370; ~3%) or have been shown to disrupt BMD in IMPC 236 (14 genes of 371; ~4%). For our data-driven 

evidence, we leveraged differential isoform usage across hFOB differentiation (164 genes), extent of sQTL 

sharing across GTEx tissues, the strength of H4PP, and the strength of the effect size (results are reported in 

Tables S3.5 and S3.6). 

 
9. For every containing-lacking isoform pair, we check whether their open-reading frames (ORFs) contain a 

stop codon and whether the length of the ORF is divisible by 3. If the ORF has a stop codon located at least 50 

base pairs upstream of the last splice site in the mature transcript (i.e. at the beginning of the last exon), it is 

considered a candidate for nonsense-mediated decay. Based on this identification, we assign an 'NMD status' of 

either 0 or the sum of all weights of the isoform pairs corresponding to the colocalized sQTL, which are 

identified as candidates for NMD. Similar to the NMD analysis, all the lacking-containing isoform pairs 

associated with the sQTLs were subjected to Biosurfer’s hybrid alignment. From the alignment, blocks of 

amino-acids are generated based on identification of deletions, insertions, changes in coding status, frameshits 
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etc. This is used to calculate the average change in the length of the amino acid sequence between two transcript 

isoforms. First the blocks of the two transcripts are grouped together that correspond to the same exonic 

regions, and then the difference in length for each block is calculated. The resulting pairs of delta length and 

weight values are then used to compute the weighted average of the delta length, which is stored in the 

‘Average Delta Amino Acid’ field. If there are no delta length and weight pairs, then the value is set to 0. 

10.  Experimental validation of TPM2 in hFOBs 

We observed 7 colocalizing sQTLs in total, 5 of which are around exons 5-8 observed in 13-33 tissues 

depending on the junction. The other two are around exons 9-11 observed specifically in the brain and testis. In 

order to ensure that all isoforms of TPM2 are found, regardless of filtering criteria, we decided to cluster all the 

isoforms based on each time point and create a relative abundance percentage rather than absolute abundance. 

We were able to capture all four isoforms, albeit, at a low level of expression in certain time points.  

 

In order to confirm that these isoforms are being translated. We were able to identify 12 unique TPM2 peptides 

(Table S3.7). Of those, 4 are unique to exon 6, 4 unique to exon 7, 2 unique to exon 10, and 2 unique to exon 

11. Our proteomics results suggest that all four isoforms of TPM2 identified are being translated and concurs 

with expression data suggesting a decrease of TPM2 abundance as hFOBs mature. The ratios of exon 6 and 

exon 7 in our proteomics analysis suggest an equal presence, which is not consistent with the transcript 

abundances reported in our long-read data. These results highlight previously reported discordance in transcript-

protein correlations 307. Taken together, we speculate that the ratios of isoforms containing exon 6 or exon 7 are 

associated with changes in BMD.  
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Methods 

Long-read RNA-seq differential analysis 

All differential statistical analyses in long-read data  were performed using tappAS 122. The input files for 

tappAS  are the raw expression matrix obtained from cDNA Cupcake, the full-length transcriptome reference 

file generated from IsoAnnot , and a design matrix for time-series analysis. Within tappAS, maSigPro 308 was 

chosen for differential transcript expression using the following parameters: polynomial degree = 3, alpha = 

0.05, R2 cutoff = 0.7, and max K clusters = 10 however “mclust” 309 was used to ensure an optimal number of 

clusters. Differential isoform usage analysis was performed within tappAS using maSigPro with the following 

parameters: polynomial degree = 3, alpha = 0.05. 

Functional annotation of sQTLs and enrichment regulatory regions 

BioMart 310 was used to obtain the genomic positions of lead sQTLs associated with protein-coding genes using 

GRCh38. Ensembl REST API (https://rest.ensembl.org/) was used to obtain the variants in LD with the lead 

sQTLs (r2 ≥ 0.80; high LD). GenomicRanges 311 package in R was used to identify overlaps of the lead 

sQTL or those in proxy within the intron (junction) they regulate. We constructed introns from the SQANTI3 

GTF file using the package “gread” followed by overlap with splice site acceptor (ssa) or splice site donor (ssd) 

using GenomicRanges. We used SNPsnap 312 within the package “VSEA” in R to obtain a background set of 

SNPs with similar minor allele frequencies, distance to nearest genes, and LD patterns. To test enrichment of 

lead sQTLs splice factor binding sites, we used “fisher.test” within R with a significance threshold alpha < 

0.05). The splice factor information was obtained from Van Nostrand et al. 237 and splice factor binding sites 

were obtained from the eCLIP database within ENCODE 303.  
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Figure S1: Long-read RNAsequencing. A) Analysis pipeline for long-read RNAseq performed in hFOBs 

across 4 differentiation timepoints (0,2,4,10). Red color indicates mineralized nodules stained with alizarin red. 

B) Distribution of long-read RNAseq across differentiation timepoints. C) Isoform classification. D) Venn 

diagram showing the number of genes showing differential isoform usage and genes that are differentially 

expressed across hFOB differentiation along with representative Gene Ontology (GO) terms. E) Venn diagram 

showing genes with colocalizing sQTLs showing differential isoform usage and differential expression across 

hFOB differentiation.   
 
 

 
Figure S2: Mock illustration to determine how each isoform impacted BMD. The TT genotype is associated 

with a decrease in BMD (a result obtained from GWAS summary statistics). The same genotype is also 
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associated with increased normalized intron excision ratio (from sQTL summary statistics). An Increase in 

normalized intron excision ratio can be interpreted as an increase in the presence of the exon-exon junction. 

Therefore, we can hypothesize that genotype TT is associated with isoforms not containing exon 2 in this 

example which in turn is associated with a decrease in BMD. On the other hand, we can conclude that isoforms 

with exon 2 are associated with an increase in BMD. 
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