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Abstract

In recent years, the surge in data generation by wireless edge devices has propelled the integration of artificial intelligence

(AI) across various domains, including computer vision and natural language processing. Traditionally, ML models are

trained in a centralized fashion, where edge devices transmit their data to a central server. However, this centralized

approach incurs substantial communication resource costs and poses significant privacy risks. Federated Learning

(FL) emerges as an innovative solution, addressing these concerns by decentralizing the learning process. The quest

for communication efficiency is central to the optimization of FL, as it represents a critical bottleneck that impacts its

scalability and effectiveness. This dissertation concentrates on enhancing the reliability and efficiency of both uplink

and downlink wireless transmissions within the FL framework.

This dissertation introduces a pioneering convergence analysis for FL under the condition of simultaneous noisy

communications in both directions, establishing the criteria essential for ensuring FL’s convergence over noisy channels.

Followed by the theoretical results, two novel designs are proposed for both uplink and downlink transmissions in

multiple-input multiple-output (MIMO) and single-input single-output (SISO) systems. For MIMO systems, the

proposed “random orthogonalization” method, leveraging the massive MIMO characteristics of channel hardening and

favorable propagation, facilitates natural over-the-air model aggregation without the need for channel state information

at the transmitters (CSIT) in the uplink stage, and offers an efficient model broadcasting technique during the downlink

stage. In the realm of SISO systems, our strategy also eliminates the necessity for CSIT through the use of orthogonal

sequences, providing robust and flexible differential privacy (DP) guarantee at both the item and client levels.

Extensive numerical experiments conducted with real-world datasets affirm the effectiveness and efficiency of the

proposed methods, highlighting their potential to significantly enhance the FL process by addressing its communication

challenges.
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Chapter 1

Introduction and Overview

Federated learning (FL) [1, 2] is an emerging distributed machine learning paradigm that has many attractive properties

which can address new challenges in machine learning (ML). In particular, FL is motivated by the growing trend that

massive amount of the real-world data are exogenously generated at the edge devices. For better privacy protection, it is

desirable to keep sensitive user data locally. FL is able to train a global ML model across all local datasets without

the server having direct access to client data. The power of FL has been realized in commercial devices (e.g., Google

Pixel 2 uses FL to train ML models to personalize user experience) and ML tasks (e.g., Gboard uses FL for keyboard

prediction) [3]. Therefore, FL is considered as one of the potential key applications in 6th generation (6G) cellular

communication systems [4].

Communication efficiency has been at the front and center of FL ever since its inception [2, 1], and it is widely

regarded as one of its primary bottlenecks The local training nature of FL leads to massive communication costs, as an

FL task consists of multiple learning rounds, each of which requires uplink and downlink model exchange between

clients and the server. The limited communication resources in both uplink and downlink, combined with the dynamics

in the communication links, severely impact the efficiency and reliability of FL tasks in a wireless communication

system. Communication schemes for FL can be divided into two categories: digital communication and analog

communication. Digital communication for FL is usually considered to incur a heavy burden for wireless networks, as

it allocates different communication resources to the ML model parameters of each client. Analog communication

reduces the communication overhead by allowing different clients to transmit FL models using shared resources.

To improve the communication efficiency of FL, early research has largely focused on either reducing the number

of communication rounds [1, 5], or decreasing the size of the payload for transmission [6, 7, 8]. However, in most

FL literature that deals with communication efficiency, it is often assumed that a perfect communication “tunnel” has
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been established, and the task of improving communication efficiency largely resides on the ML design that trades

off computation and communication. More recent research starts to close this gap by focusing on the system design,

particularly for wireless FL.

The primary difficulty in crafting and scrutinizing wireless FL systems is comprehending how the characteristics of

wireless systems affect learning outcomes. Addressing diverse learning needs—ranging from accuracy and privacy

assurances to dealing with the volatile nature of wireless connections, including noise, interference, and channel

fading, alongside different system setups like single-input single-output (SISO) and multiple-input multiple-output

(MIMO)—demands a thorough grasp of both learning and communication dynamics. The goal of this dissertation is to

merge the design of learning and communication, thereby establishing an efficient and dependable FL framework. In

particular, this dissertation enhances the efficiency and reliability of wireless federated learning by delving into the

optimal resource allocation and aggregation rules in noisy communication links. Leveraging the orthogonality

provided by high-dimensional signals, it proposes two designs for MIMO and SISO systems, respectively, that

improve upon existing over-the-air computation (AirComp) methods. The proposed designs do not require

channel state information at transmitters (CSIT), simplifying system complexity while ensuring differential

privacy guarantees.

1.1 Challenges

Scalability. Compared with downlink broadcasting, uplink communication is more challenging in FL when com-

munication is over the wireless medium [9, 6, 10, 11]. Due to the stringent power constraints at mobile devices,

channel noise and fading have a more conspicuous impact on uplink communications. More importantly, significant

scalability challenges arise from the large number of clients in FL versus limited uplink communication resources.

Uplink communication is known to be one of the key bottlenecks of wireless federated learning [1, 12, 13, 14, 15].

A notable approach to addressing the scalability challenge of Federated Learning (FL) over wireless networks

is through AirComp, as highlighted in several studies including [16, 17, 18, 19, 20]. Unlike the traditional method

where individual local models from each client are decoded and then aggregated, AirComp enables the simultaneous

transmission of uplink signals from multiple clients in a superposed manner, allowing the FL server to directly decode

the aggregated global model. Nevertheless, managing power control and interference in AirComp presents significant

challenges that are yet to be fully resolved.

CSIT requirements. In order to achieve AirComp, a common approach is to “invert” the fading channel at each

transmitter [17, 20], so that the sum model can be obtained at the server. Variants and enhancements of AirComp have

2



been studied, yet, a fundamental limitation of the existing methods is that they mostly require CSIT. Enabling CSIT in

wireless communication systems is complicated and is substantially harder than obtaining the channel state information

at the receiver (CSIR). Moreover, channel inversion based on CSIT is well known to “blow up” when one of the users’

channels is in deep fade [21]. Hence, exploring CSIT-free AirComp methods becomes attractive[22].

Privacy. Amidst a growing focus on data security, the importance of safeguarding individuals’ personal information

has become increasingly emphasized. Although FL intuitively helps protect client privacy by keeping training data

locally and never sharing it with the server, private information can still be leaked to some extent by analyzing the

ML model parameters trained and uploaded by the clients [23, 24, 25]. To address the privacy concern, a natural

way is to add (artificial) noise to ML model parameters in the upload phase of FL, whose privacy properties can be

mathematically characterized using differential privacy (DP) [26]. Traditionally, adding artificial noise to achieve

certain differential privacy during communications in FL will trade off with its convergence [27, 28]. In the context of

FL within wireless systems, the strategy of adjusting system parameters to effectively harness the inherent randomness

of wireless channels for DP becomes appealing. This approach is particularly attractive for its potential to achieve DP

at no additional cost, essentially offering ”free” DP.

1.2 Dissertation Overview

The technical section of this dissertation is divided into three main parts. To address the identified challenges in

FL, the study initially focuses on understanding how communication-induced noise during both the upload (uplink)

and download (downlink) phases affects the convergence and accuracy of ML models. The insights gained from

theoretical analyses inform the development of a signal-to-noise ratio (SNR) scaling strategy aimed at enhancing

FL performance within a constrained total resource budget. Specifically, the proposed framework is designed to

accommodate various scenarios, including both full and partial client participation, direct model updates and model

differentials, and non-independent and identically distributed (non-IID) local datasets. This framework improves upon

the commonly utilized algorithms for transmit power control and receive diversity combining, tailoring them to more

effectively support FL in the presence of noisy communication channels.

The SNR scaling rules established in this dissertation act as a fundamental design guideline for wireless federated

learning systems. Moving forward, the dissertation delves into the intricate physical layer design for various systems to

adeptly tackle the scalability issue and the challenge posed by the requirement for CSIT in conventional AirComp setups.

The suggested approach closely marries MIMO technology with FL, making deliberate use of the synergies between

the two. By capitalizing on the distinct characteristics of channel hardening and favorable propagation characteristic

3



Figure 1.1: Federated learning pipeline.

of massive MIMO, the introduced concept of “random orthogonalization” enables the base station (BS) to compute

the global model directly through a straightforward linear projection operation. This method significantly reduces

the complexity and latency of uplink communication, presenting an effective solution to previously insurmountable

challenges.

Inspired my random orthogonalization, we further propose FLORAS – Federated Learning using ORthogonAl

Sequences, a novel uplink wireless physical layer design for FL by leveraging the properties of orthogonal sequences.

FLORAS is an uplink communication scheme for SISO wireless FL systems. It enjoys all advantages of AirComp,

yet without the CSIT requirement. Moreover, by the adjustment on the number of used orthogonal sequences in the

system configuration, the novel signal processing techniques in FLORAS empowers flexible item-level and client-level

DP guarantee. An interesting convergence characterizes the trade-off between the model convergence rate and the

achievable DP levels is derived.

Extensive experiments were carried out to rigorously assess the effectiveness of the proposed solutions across

various system configurations. This comprehensive evaluation aimed to showcase the versatility and robustness of the

methodologies under consideration, focusing on different aspects such as system scalability, communication efficiency,

and learning performance.

1.3 System Model and Assumptions

The FL problem setting studied throughout the this dissertation mostly follows the standard model, termed FEDAVG, in

the original paper [1]. This section presents the FEDAVG framework and describe the main assumptions adopted in this

dissertation. Consider an FL task with a central server and M total clients. Each client k ∈ [M ] stores a (disjoint) local

dataset Dk, with its size denoted by Dk. The size of the total data is D ≜
∑
k∈[M ]Dk. We use fk(w) to denote the
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local loss function at client k, which measures how well a machine learning (ML) model with parameter w ∈ Rd fits its

local dataset. Therefore, the global objective function over all M clients can be denoted as

f(w) =
∑
k∈[M ]

pkfk(w),

where pk = Dk

D is the weight of each local loss function, and the purpose of FL is to distributively find the optimal

model parameter w∗ that minimizes the global loss function:

w∗ ≜ argmin
w∈Rd

f(w).

Term Γ ≜ f∗ −
∑
k∈[M ] pkf

∗
k captures the non-i.i.d. degree of local datasets, where f∗ and f∗k are the minimums of

global and local loss functions, respectively.

The FEDAVG [29] framework keeps clients’ data locally, and the global model is converged at the central server

by the composition of multiple learning rounds. One of the key characteristics of FL is partial participation, i.e.,

only a portion of clients are selected in a single learning round for model upload. Here, K of total M clients are

uniformly randomly selected during each learning round for the FL task. To simplify the notation, this dissertation

uses the subscript k = 1, · · · ,K to indicate the K clients during a certain learning round, acknowledging that they

could correspond to different clients in different rounds. A typical FL pipeline is illustrated in Fig. 1.1. Specifically, this

pipeline iteratively executes the following steps for T learning rounds until the global model converges.

1. Downlink communication. The BS broadcasts the current global model wt−1 to all K selected devices over the

downlink wireless channel.

2. Local computation. Each client uses its local data to train a local ML model improved upon the received global

ML model. In this proposal, we assume that mini-batch SGD is used in the model training. Note that this is the

most commonly adopted training method in modern ML tasks, e.g., deep neural networks, but its analysis is more

complicated than gradient descent (GD) when communication noise is present. Specifically, mini-batch SGD

operates by updating the weight iteratively (for E steps in each learning round) at client k as follows:

Initialization: wk
t,0 = wk

t−1,

Iteration: wk
t,τ = wk

t,τ−1 − ηt∇F k(wk
t,τ−1, ξ

k
τ ),∀τ = 1, · · · , E,

Output: wk
t = wk

t,E ,
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where ξkτ is a batch of data points that are sampled independently and uniformly at random from the local dataset

of client k in the τ -th iteration of mini-batch SGD.

3. Uplink communication. Each involved client uploads its latest local model to the server synchronously over the

uplink wireless channel.

4. Server Aggregation. The BS aggregates the received local models wk
t to generate a new global model. For

simplicity, each local dataset is assumed to have a equal size. Therefore, the global model can be averaged by

wt = ΣKk=1

1

K
wk
t .

Throughout this dissertation, the following four assumptions are made on local loss functions fk ∀k ∈ [M ] to

analyze the convergence performance theoretically of different methods. Note that they are all standard assumptions

that are commonly adopted in the convergence analysis of FEDAVG and its variants; see [30, 31, 32, 6].

Assumption 1. L-smooth: ∀ v and w, ∥fk(v)− fk(w)∥ ≤ L ∥v −w∥;

Assumption 2. µ-strongly convex: ∀ v and w, ⟨fk(v)− fk(w),v −w⟩ ≥ µ ∥v −w∥2;

Assumption 3. Unbiased SGD: ∀k ∈ [M ], E[∇f̃k(w)] = ∇fk(w);

Assumption 4. Uniformly bounded gradient: ∀k ∈ [M ], E
∥∥∥∇f̃k(w)

∥∥∥2 ≤ H2 for all mini-batch data.

In particular, Assumption 1 indicates that the gradient of fk is Lipschitz continuous. The strongly convex loss

function in Assumption 2 is a category of loss functions that are widely studied in the literature (see [30] and its

follow-up works). Assumptions 3 and 4 imply that the mini-batch stochastic gradient and its variance are bounded [32].
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Chapter 2

Federated Learning over Noisy Channels

While initial research has hinted at the benefits of refining communication protocols for FL, the crucial and more

practical challenge posed by noisy communications—both in the uplink (where clients transmit local models to the

parameter server) and the downlink (where the server dispatches the global model to clients)—remains underexplored.

From an analytical standpoint, considering the impact of noise in both uplink and downlink simultaneously adds

complexity to the analysis of FL convergence due to the propagation of noise through every round of communication in

both directions. Moreover, the cumulative effect of these noisy communications in both the uplink and downlink phases

plays a decisive role in determining the overall learning outcomes, necessitating a comprehensive approach to both the

design and analysis of the system.

The goal in the research of this chapter is two-fold: To understand the impact of communication-induced noise, in

both upload (uplink) and download (downlink) phases of FL, on the ML model convergence and accuracy performance,

and to design communication algorithms to control the signal-to-noise ratio (SNR) to improve FL performance under a

total resource budget.

The proposed solution is mainly focused on analog communications for model updates [19, 17, 18] and investigates

SNR control in both uplink and downlink, which is especially crucial when the underlying ML method is stochastic

gradient descent (SGD), because SGD is much more sensitive to noise than the (full) gradient descent [33, 32]. The

treatment is novel because all prior works either study uplink-only [19, 17, 34, 35, 36] or downlink-only [37] noisy

communications, but not both. Theoretically, the convergence analyses of the standard Federated Averaging (FEDAVG)

scheme is presented, under non-IID datasets, full or partial clients participation, direct model or model differential

transmissions, and simultaneous noisy downlink and uplink analog communications. These analyses are based on very

general receive noise assumptions, and hence are broadly applicable to a variety of communication systems. The key
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insight of these theoretical results is a “flying under the radar” principle: SGD is inherently a noisy process, and as

long as uplink/downlink channel noises do not dominate the SGD noise during model training (which is controlled

by the time-varying learning rate), the scaling of convergence is not affected. This general principle is exemplified

with two widely adopted communication techniques – transmit power control and receive diversity combining – by

controlling the resulting post-processing SNR to satisfy the theoretical analyses under a fixed total budget constraint.

Comprehensive numerical evaluations on three widely adopted ML tasks with increasing difficulties (MNIST, CIFAR-10

and Shakespeare) are carried out using these techniques. A sequence of experiments shows that adjusting transmit

power and combining receive diversity, guided by theoretical analysis, can greatly surpass the baseline of maintaining

equal SNR over time. In fact, in many experimental setups, this approach can come close to achieving the performance

of ideal, noise-free communication. These results not only corroborate the theoretical conclusions, but also highlight

the benefit of designing communication algorithms that are specifically tailored to the characteristics of FL.

To summarize, the main contributions of this chapter include the following.

• A novel convergence analyses for FL are presented with simultaneous uplink and downlink noisy analog communica-

tions, with full vs. partial clients participation, direct model vs. model differential, and non-IID local datasets. To the

best of the authors’ knowledge, this is the first time FL convergence analysis is carried out when both upload and

download phases are over noisy communication channels, which introduce significant challenges because of the noise

propagation in both directions.

• A SNR scaling laws is estabulished. In particular, the theoretical results prove that, in order to maintain the well-

known O(1/T )1 convergence rate of FEDAVG with noise-free communications, O(t2) SNR scaling is needed for

direct model and O(1) (i.e., constant) for model differential. This t2-vs-1 scaling law comparison under the same

communication environment is novel.

• The presented findings improve upon the commonly used algorithms for transmit power control and receive diversity

combining, optimizing their use for FL over noisy channels. Through comprehensive numerical experiments, these

enhancements have been shown to offer performance benefits over current leading methods, all while operating within

the same total resource allocation.

The remainder of this chapter is organized as follows. Related works are surveyed in Section 2.1. The system model

that captures the noisy channels in both uplink and downlink of FL is described in Section 2.2. Theoretical analyses are

presented in Section 2.3 for three different FL configurations. These results inspire novel communication designs of

transmit power control and receive diversity combining that are presented in Section 2.4. Experimental results are given

in Section 2.5, followed by a summary in Section 2.6. All technical proofs are given in the Appendices.
1Notation f = O(g) denotes f is of order at most of g.
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2.1 Related Works

Improve FL communication efficiency. The original FEDAVG reduces the communication overhead by only

periodically averaging the local models. Theoretical understanding of the communication-computation tradeoff has

been actively pursued and, depending on the underlying assumptions (e.g., IID or non-IID local datasets, convex

or non-convex loss functions, GD or SGD), rigorous analyses of the convergence behavior have been carried out

[32, 38, 30]. For the approach of reducing the size of messages, general discussions on sparsification, subsampling, and

quantization are given in [2]. There are also recent efforts in developing quantization and source coding to reduce the

communication cost [39, 7, 19, 40, 6, 41, 8]. Nevertheless, they mostly do not consider the communication channel

noise.

Communication design for FL. Recent years have also seen increased effort in the communication algorithm

and system design for FL. Trade-off between local model update and global model aggregation is studied in [42] to

optimize the transmission power/rate and training time. Various radio resource allocation and client selection policies

[43, 44, 45, 46, 47, 48] have been proposed to minimize the learning loss or the training time. Joint communication and

computation is investigated [18, 17, 39, 49]. In particular, the analog aggregation design [17, 50, 39] serves as one of

our design examples in Section 2.4.

FL with imperfect/noisy communications. Existing literature is dominated by uplink-only noisy communications

[51, 52, 18, 19, 17, 34, 35, 36]. There is very limited study on downlink-only noisy communications for FL; [37]

proposes and analyzes downlink digital and analog transmissions while assuming an error-free uplink. On the other

hand, existing literature that consider both upload and download imperfect communications focus only on how to

modify the ML model training method. In particular, [53] changes the loss function of FL to accommodate the

communication error. [54, 55, 56] propose to compress the gradients in order to tolerate both uplink and downlink

bandwidth bottlenecks. Their methods are either error compensation, quantization or leveraging sparsity. None of these

considers improving the communication design.

2.2 System Model for Learning over Noisy Communication

This chapter focus on a generic FL framework where partial client participation and non-IID local datasets, two critical

features that separate FL from conventional distributed ML, are explicitly captured. Unlike the existing literature,

the imperfect communications is captured and both the upload and download transmissions take place over noisy

communication channels are fully considered. The overall system diagram is depicted in Fig. 2.1. In particular, the

FL-over-noisy-channel pipeline works by iteratively executing the following steps at the t-th learning round, ∀t ∈ [T ].
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Figure 2.1: End-to-end FL system diagram in the t-th communication round. The impact of noisy channels in both
uplink and downlink is captured.

Without loss of generality, the model transmitted at the transmitters w is assumed to be zero-mean and unit-variance

elements2, i.e., E||wi||2 = 1, ∀i ∈ [d].

(1) Downlink communication for global model download. The centralized server broadcasts the current global ML

model, which is described by the latest weight vector wt−1 from the previous round, to a set of uniformly randomly

selected clients3 denoted as St with |St| = K. Because of the imperfection introduced in communications, e.g., channel

noise, imperfect channel estimation, and detection or estimation error, client k receives a noisy version of wt−1, which

is written as

ŵk
t−1 = wt−1 + ekt , (2.1)

where ekt = [ekt,1, · · · , ekt,d]T ∈ Rd is the d-dimensional downlink effective noise vector at client k and time t. We

assume that ekt is a zero-mean random vector consisting of IID elements with variance:

E||ekt,i||2 = ζ2t,k and E||ekt ||2 = dζ2t,k, ∀t ∈ [T ], k ∈ St, i ∈ [d]. (2.2)

Effective noise and definition of SNR. In order to keep the problem general, a particular communication system for

the actual downlink data transmission is not spcified here, and (2.1) only use the effective noise model. The same

approach applies to the uplink. This is a conscious choice to keep the problem general, and to focus on analyzing

the impact of communication-induced noise and further controlling the resulting SNR to improve FL performance.

In this way, ekt shall be interpreted as the effective noise that captures all the processing components in a downlink
2The parameter normalization and de-normalization procedure in wireless FL can be found in the Appendix in [17]. Note that weight normalization

is widely adopted in training deep neural networks [57].
3We note that for partial clients participation, we have K < N ; in the case of full clients participation we have K = N .
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communication phase in addition to the natural channel noise4. Because the variance of each scalar model parameter

has been normalized , the (post-processing) receive SNR for the k-th client at the t-th communication round can be

written as

SNRL
t,k =

E||wt−1||2

E||ekt ||2
=

1

ζ2t,k
. (2.3)

Lastly, note that the noise assumption is very mild, because (2.2) only requires a bounded variance of the random noise,

but does not limit to any particular distribution. In addition, the downlink communication model is very general in the

sense that the effective noise variances, {ζ2t,k}, can be different for different clients and at different rounds.

(2) Local computation. Each client uses its local data to train a local ML model improved upon the received global

ML model. In this work, mini-batch SGD is used in the model training. Note that this is the most commonly adopted

training method in modern ML tasks, e.g., deep neural networks, but its analysis is more complicated than gradient

descent (GD) when communication noise is present.

Specifically, mini-batch SGD operates by updating the weight iteratively (for E steps in each learning round) at

client k as follows:

Initialization: wk
t,0 = ŵk

t−1,

Iteration: wk
t,τ = wk

t,τ−1 − ηt∇F k(wk
t,τ−1, ξ

k
τ ),∀τ = 1, · · · , E,

Output: wk
t = wk

t,E ,

where ξkτ is a batch of data points that are sampled independently and uniformly at random from the local dataset of

client k in the τ -th iteration of mini-batch SGD.

(3) Uplink communication for local model upload. The K participating clients upload their latest local models to

the server. More specifically, client k transmits a vector xkt to the server at the t-th round. Here, the practical case is

again considered, where the server receives a noisy version of the individual weight vectors from each client in the

uplink communications (e.g., channel noise, fading, transmitter and receiver distortion). The received vector for client k

can be written as

x̂kt = xkt + nkt , (2.4)

4As a simple example, if the downlink communication is over a standard Additive White Gaussian Noise (AWGN) channel, then the actual
received signal at client k is yk

t−1 =
√

Pt−1wt−1 + zkt where zkt represents the AWGN and Pt−1 is the downlink broadcast transmit power. The
effective channel noise becomes ekt = 1√

Pt−1
zkt .
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where nkt ∈ Rd is the d-dimensional uplink effective noise vector for decoding client k’s model at time t. We assume

that nkt is a zero-mean random vector consisting of IID elements with bounded variance:

E||nkt,i||2 = σ2
t,k and E||nkt ||2 = dσ2

t,k, ∀t ∈ [T ], k ∈ St, i ∈ [d]. (2.5)

Once again, note that the uplink communication model in (2.5) is very general in the sense that (1) only bounded

variance is assumed as opposed to the specific noise distribution; and (2) the effective noise variances, {σ2
t,k}, can be

different for different clients and at different rounds.

Unlike in the download phase where the model itself is transmitted to clients, two different choices of the vector xkt

for model upload are considered in this paper.

1. Model Transmission (MT). The K participating clients upload the latest local models: xkt = wk
t . Following

(2.4), the server receives the updated local model of client k as

w̃k
t = x̂kt = wk

t + nkt . (2.6)

2. Model Differential Transmission (MDT). The K participating clients only upload the differences between the

latest local model and the previously received (noisy) global model, i.e., xkt = dkt ≜ wk
t − ŵk

t−1. For MDT, the

server uses dkt and the previously computed global model wt−1 to reconstruct the updated local model of client

k as

w̃k
t = wt−1 + x̂kt = wt−1 + dkt + nkt = wk

t + nkt − ekt . (2.7)

The SNR for these two models, however, has to be defined slightly differently because we have normalized the ML

model parameter w to have unit-variance elements in Section 2.2. Thus, for MT, the received SNR at the server for k-th

client’s signal is written as

SNRS,MT
t,k =

E
∥∥wk

t

∥∥2
E
∥∥nkt ∥∥2 =

1

σ2
t,k

. (2.8)

To keep the SNR expression general, the MDT SNR denotes:

SNRS,MDT
t,k =

E
∥∥dkt ∥∥2

E
∥∥nkt ∥∥2 =

E
∥∥dkt ∥∥2
dσ2

t,k

, (2.9)

since the variance of model difference dkt is unknown a priori and also changes over time.
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Differences between MT and MDT, and why they are both considered. The different choices of MT and MDT are

not considered in most of the literature because with a perfect communication assumption, there is no difference

between them from a pure learning perspective – as long as the server can reconstruct wk
t , this aspect does not impact

the learning performance [1]. However, the choice becomes significant when communication noises are present. From

a practical system point of view, both schemes can be useful in different use cases. For example, MDT in the uplink

relies on the server keeping the previous global model wt−1, from which the new local models can be reconstructed.

This, however, may not always be true if the server deletes intermediate model aggregation (after broadcast) for privacy

preservation [3], which makes reconstruction from the model differential infeasible.

Note that the download phase, on the other hand, does not have these two choices – the server should always transmit

the global model wt−1 itself. This is due to the limitation introduced by partial (and random) clients participation,

where the set of clients participating the t-th round can be totally different from the (t− 1)-th round, and they do not

have the previous global model to reconstruct based on the model difference.

Noise propagation. Both uplink and downlink channel noises collectively impact the received local models at the

server. This noise propagation effect is more prominent in MDT ((2.7) explicitly has both noise terms). However, this

effect in fact exists in both cases, because the local model is trained using the previously received global model, which

contains the downlink noise.

(4) Global aggregation. The server aggregates the received local models to generate a new global ML model,

following the standard FEDAVG [1]: wt =
∑
k∈St

Dk∑
i∈St

Di
w̃k
t . The server then moves on to the (t+ 1)-th round. For

ease of exposition and to simply the analysis, we assume in the remainder of the paper that the local dataset sizes at all

clients are the same5: Di = Dj , ∀i, j ∈ [N ], which leads to the following simplifications.

1. MT. The aggregation can be simplified as

wt =
1

K

∑
k∈St

w̃k
t =

1

K

∑
k∈St

x̂kt=
1

K

∑
k∈St

(
wk
t + nkt

)
. (2.10)

2. MDT. The aggregation can be written as

wt =
1

K

∑
k∈St

w̃k
t = wt−1 +

1

K

∑
k∈St

x̂kt=
1

K

∑
k∈St

(
wk
t + nkt − ekt

)
. (2.11)

5We emphasize that all the results of this paper can be extended to handle different local dataset sizes.
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For the case of MT, the SNR for the global model (after aggregation) can be written as

SNRGt =
E||
∑
k∈St

wk
t ||2

E||
∑
k∈St

nkt ||2
=

E||
∑
k∈St

wk
t ||2

dσ2
t

, (2.12)

and for MDT, the SNR for the global model can be written as

SNRGt =
E||
∑
k∈St

wk
t ||2

E||
∑
k∈St

(nkt − ekt )||2
=

E||
∑
k∈St

wk
t ||2

d(σ2
t + ζ2t )

, (2.13)

where σ2
t ≜

∑
k∈St

σ2
t,k and ζ2t ≜

∑
k∈St

ζ2t,k denote the total uplink and downlink effective noise power for

participating clients, respectively.

In general, {wk
t } are correlated across clients because the local model updates all start from (roughly) the same

global model. Intuitively, once FL convergences, these models will largely be the same, leading to a signal power term

of dK2 for the numerator. On the other hand, under the assumption that these local models are independent across

clients, which is reasonable in the early phases of FL with large local epochs, where the (roughly) same starting point

has diminishing impact due to the long training period and non-IID nature of the data distribution, the signal power

term of dK is not enjoyed. Nevertheless, since the SNR control can be realized by adjusting the effective noise power

levels, we focus on the impact of σ2
t and ζ2t on the FL performance in Section 2.3.

In this section, the main focus is placed on analog communication for FL, where model parameters are transmitted in

an analog manner. Therefore, digital communication processing such as source coding, channel coding and modulation

are not incorporated. The adopted zero-mean bounded random noise assumption is reasonable for this setting, because it

does not require any specific distribution and thus can be applicable to a broad range of analog communication systems.

2.3 Convergence Analysis of FL over Noisy Channels

2.3.1 Convergence Analysis for Model Transmission for Full Clients Participation

The convergence of FEDAVG in the presence of both uplink and downlink communication noise is first analyzed, when

direct model transmission (MT) is adopted for local model upload: xkt = wk
t . To simplify the analysis and highlight the

key techniques in deriving the convergence rate, the analysis is under the assumption K = N in this subsection (i.e.,

full clients participation with St = [K] = [N ]), and leave the case of partial clients participation to Section 2.3.2.

The main convergence result of MT with full clients participation is presented in the following Theorem 1.
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Theorem 1. Define ϕ = L/µ, γ = max{8ϕ,E}. Set learning rate as ηt = 2/(µ(γ + t)) and adopt a SNR control

policy that scales the effective uplink and downlink noise power over t such that:

σ2
t ≤ 4N2

µ2(γ + t− 1)2
∼ O

(
1

t2

)
(2.14)

ζ2t ≤ 4N2

µ2(γ + t)(γ + t− 2)
∼ O

(
1

t2

)
. (2.15)

where σ2
t ≜

∑
k∈[N ] σ

2
t,k and ζ2t ≜

∑
k∈[N ] ζ

2
t,k denote the total uplink and downlink effective noise power, respectively.

Then, under Assumption 1− 4, the convergence of FEDAVG with non-IID datasets and full clients participation satisfies

E ∥wT −w∗∥2 ≤ 8L+ µE

µ(T + γ)
∥w0 −w∗∥2 + 4D

µ2(T + γ)
(2.16)

with D =
∑N
k=1 δ

2
k/N

2 + 6LΓ + 8(E − 1)2H2 + 2d.

A few remarks about Theorem 1 and its proof are now in order.

Remark 1. A complete proof of Theorem 1 can be found in Appendix A. The core technique utilized in Appendix A

is the perturbed iterate framework that was pioneered in [58], especially the virtual sequence construction that have

been widely adopted in the distributed SGD analysis [32, 30, 7, 6]. The unique challenge of this proof, however, is how

to handle simultaneous uplink and downlink noises, which cannot be isolated from the SGD iterations. Not only do

we have to incorporate more virtual sequences in the proof, but they also have the “coupling” effect in that downlink

noise is present in the SGD steps and further in the new local model for uplink, while the uplink noise is present in the

next-round downlink model. A careful manipulation of these coupled noise components in the various virtual sequences

is a key analytical novelty of the proof.

Remark 2. It is important to clarify that although the requirement of Theorem 1 is presented in terms of the effective

noise power, what ultimately matters is the SNR defined in Section 2.2. Controlling the effective noise power to scale

as O(1/t2) is equivalent to scaling the SNR as O(t2), and can be implemented by either increasing the signal power

(e.g., transmit power control) or reducing the post-processing noise power (e.g., receive diversity combining) while

satisfying a fixed total resource budget constraint. The design examples that realize the requirement of Theorem 1 will

be established in Section 2.4.

Remark 3. It is not surprising to see that Theorem 1 requires the SNR to increase, which gradually suppresses the

noise effect as the FL process converges. There are, however, two unique characteristics about this theorem:
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1. It characterizes a sufficient condition for the SNR scaling law as O(t2). As we will see in Section 2.5, choosing a

SNR scaling that is slower than O(t2) degrades the FL performance.

2. This O(t2) scaling law can be realized under a fixed total budget constraint. In other words, the benefit of Theorem 1

does not come from using more communication resources, but rather is due to a more judicious allocation (following

the scaling law) of the same resource budget.

Remark 4. Theorem 1 guarantees that even under simultaneous uplink and downlink noisy communications, the

same O(1/T ) convergence rate of FEDAVG with perfect communications can be achieved if we control the effective

noise power of both uplink and downlink to scale at rate O(1/t2) and choose the learning rate at O(1/t) over t. Note

that the choice of ηt to scale as O(1/t) is well-known in distributed and federated learning [32, 38, 31, 30], which

essentially controls the “SGD noise” that is inherent to the stochastic process in SGD to gradually shrink as the FL

process converges. We also note that for other learning rate choices in SGD, the fundamental insight of Theorem 1, i.e.,

controlling the “effective channel noise” to not dominate the “SGD noise”, is still valid.

Remark 5. Lastly, it is important to point out that the scaling law in Theorem 1 should be viewed as an average

SNR requirement that changes over learning rounds. The time scale of changing the average SNR is on the order of

learning rounds, which is much slower6 than the time scale of the time-varying wireless channel. Furthermore, the SNR

scaling law can be used in conjunction with other “faster” resource allocation mechanisms, such as inner-loop power

control, to handle wireless dynamics under the average SNR budget decided from Theorem 1. This will become clear in

Section 2.4.1.

2.3.2 Convergence Analysis for Model Transmission for Partial Clients Participation

The convergence analysis for partial clients participation is generalized next, where K clients (K < N ) are uniformly

randomly selected to form a set St at round t, and carry out the FL process. This section mostly follows the FL system

model described in Section 2.2, with the only simplification on homogeneous noise power levels at the uplink and

downlink, i.e.,

σ2
t,k = σ̄2

t , and ζ2t,k = ζ̄2t , ∀t ∈ [T ], k ∈ [N ]. (2.17)

The main reason to introduce this simplification is due to the time-varying randomly participating clients: since St

changes over t, the total power levels also vary over t if we insist on heterogeneous noise power for different clients.

Furthermore, since clients are randomly selected, the total power level becomes a random variable as well, which

6This is particularly true when there are a large number of clients participating in the FL process, as the length of learning rounds is often
dominated by the “straggler” [59].
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significantly complicates the convergence analysis. Making this assumption would allow us to focus on the challenge

with respect to the model update from partial clients participation.

Theorem 2. Let ϕ, γ and ηt be the same as in Theorem 1. Adopt a SNR control policy that scales the effective uplink

and downlink noise power over t such that:

σ̄2
t ≤ 4K

µ2(γ + t− 1)2
∼ O

(
1

t2

)
(2.18)

ζ̄2t ≤ 4N

µ2(γ + t)(γ + t− 2)
∼ O

(
1

t2

)
. (2.19)

where σ̄2
t and ζ̄2t represent the individual client effective noise in the uplink and downlink, respectively, which

are defined in (2.17). Then, under Assumption 1 − 4, the convergence of FEDAVG with non-IID datasets and

partial clients participation has the same convergence rate expression as (2.16), with D being replaced as D =∑N
k=1 δ

2
k/N

2 + 4(N −K)E2H2/(K(N − 1)) + 6LΓ + 8(E − 1)2H2 + 2d.

The proof of Theorem 2 is given in Appendix B. It is clear that partial clients participation does not fundamentally

change the behavior of FL in the presence of uplink and downlink communication noises. However, unlike full client

participation, the uplink effective noise depends on the number of active users, which makes it harder to satisfy (2.18)

compared with (2.19). The reason behind this difference is that, in partial client participation, the downlink process

remains the same as the fully client participation, while the number of participants in the uplink process reduces from

N to K. Therefore, the effective uplink noise can only be controlled by K rather than N participants, which implies

that each user needs to allocate more transmission power than the fully client participation case to achieve the desired

noise-free convergence rate of FL. A practical example will be provided in Section 2.4.2 to handle this tighter upper

bound.

2.3.3 Convergence Analysis for Model Differential Transmission

This section considers the model different transmission (MDT) scheme when the clients upload model parameters.

Since only model differential is transmitted, the receiver must possess a copy of the “base” model to reconstruct the

updated model. This precludes using MDT in the downlink for partial clients participation, because participating clients

differ from round to round, and a newly participating client does not have the “base” model of the previous round to

reconstruct the new global model. We thus only focus on MDT in the uplink and MT in the downlink with partial

clients participation.

17



Theorem 3. Let ϕ, γ and ηt be the same as in Theorem 1, and the effective noise follows (2.17). Adopt a SNR control

policy that maintains a constant uplink SNR at each client over t:

SNRS,MDT
t,k = ν ∼ O (1) , (2.20)

and scales the effective downlink noise power at each client over t such that:

ζ̄2t ≤
4
µ2

1
N (γ + t)(γ + t− 2) + 1

K

(
1 + 1

ν

)
(γ + t)2

∼ O
(

1

t2

)
. (2.21)

Then, under Assumption 1− 4, the convergence of FEDAVG with non-IID datasets and partial clients participation

for uplink MDT and downlink MT has the same convergence rate expression as (2.16), with D being replaced as

D =
∑N
k=1 δ

2
k/N

2 + 4(N −K)E2H2/(K(N − 1)) + 4E2H2/(Kν) + 6LΓ + 8(E − 1)2H2 + d.

The complete proof of Theorem 3 can be found in Appendix C. It is instrumental to note that unlike direct model

transmission, only transmitting model differentials in the uplink allows us to remove the corresponding SNR scaling

requirement. Instead, one can keep a constant SNR in uplink throughout the entire FL process. Intuitively, this is

because the “scaling” already takes place in the model differential dkt , which is the difference between the updated local

model at client k after E epochs of training and the starting local model. As FL gradually converges, this differential

becomes smaller. Thus, by keeping a constant communication SNR, we essentially scales down the effective noise

power at the server.

Lastly, It is important to note that the constant SNR requirement of Theorem 3 enables very simple implementation

given the MDT SNR expression in (2.9). The signal power in the numerator of (2.9) is unknown and varying over

learning rounds. However, a constant SNR requirement means one can fix the transmit power and “scales” individual

dkt to have the desired power, without prior knowledge of its true variance.

2.4 Communication Design Examples for FL in Noisy Channels

An immediate engineering question following the previous analyses is how one can realize the effective noise power (or

equivalently the SNR) specified in the theorems. A natural approach is transmit power control, which has the flexibility

of controlling the average receive SNR (and thus the effective noise power) while satisfying a total power constraint.

Specially, for a FL task with T total communication rounds and a given total power budget of P over all rounds, it is
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straightforward to compute that

Pt = 6Pt2/(T (T + 1)(2T + 1)),∀t = 1, · · · , T, (2.22)

where Pt is the desired average transmit power of the communication round t.

Since the analog communication and aggregation is the main consideration of this work, it is necessary take the

wireless channel fading into account. To combat the influence of channel fading on received power, two design examples

are now proposed to demonstrate how the proposed O(t2)-power increased strategy could be adopted in both continuous

and discrete average power allocation schemes.

2.4.1 Design Example I: Transmit Power Control for Analog Aggregation

The following design presents a power control policy for the analog aggregation FL framework in [17, 19, 50], as an

example to demonstrate the system design for FL tasks in the presence of communication noise.

The analog aggregation method in [17, 19, 50]. Consider a communication system where several narrowband

orthogonal channels (e.g., sub-carriers in orthogonal frequency-division multiplexing (OFDM), time slots in time

division multiple access (TDMA)) are shared by K random selected clients in an uplink model upload phase of a

communication round. Each element in the transmitted model w ∈ Rd is allocated and transmitted in a narrowband

channel and aggregated automatically over the air. Denote the received signal of each element i = 1, · · · , d in the t-th

communication round as

yt,i =
1

K

∑
k∈St

r
−α/2
t,k ht,k,i

√
pt,k,iwt,k,i + nt,i ∀k ∈ St,

where r−α/2t,k and ht,k,i∼ CN (0, 1) are the large-scale and small-scale fading coefficients of the channel, respectively,

nt,i ∼ CN (0, 1) is the additive Gaussian white noise of the channel, and pt,k,i denotes the transmit power determined

by the power control policy. By the assumption on perfect CSIT, the channel inversion rule is used as in [17], which

leads to the following instantaneous transmit power of user k at time t for model weight element i:

pt,k,i =
ρUL
t

r−αt,k |ht,k,i|2
, (2.23)
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where ρUL
t is a scalar that denotes the uplink average transmit power, which is to be optimized. Hence, the receive SNR

of the global model can be written as

SNRGt = E

∥∥∥∥∥ 1

K

d∑
i=1

√
ρUL
t

∑
k∈St

wt,k,i

nt,i

∥∥∥∥∥
2

=
ρUL
t E||

∑
k∈St

wk
t ||2

dK2
. (2.24)

Transmit power control. The original analog aggregation framework in [17] assumes that ρUL
t is a constant over time

t. However, our theoretical analysis in Section 2.3 suggests that this can be improved. Specifically, taking partial clients

participation and MT as an example, and further assuming IID weight elements, the transmit power should follow

ρUL
t =

K

σ̄2
t

≥ µ2(γ + t− 1)2

4
∼ O(t2), (2.25)

which implies that ρt should be increased at the rate O(t2) in the uplink to ensure the convergence of FEDAVG. Similar

policy can be derived for MDT and/or full clients participation, by invoking the corresponding theorems.

In the downlink case, when the server broadcasts the global model to K randomly selected clients, the receive

signal of the i-th element for the n-th user in the t-th communication round is

yt,n,i = r
−α/2
t,n ht,n,i

√
ρDL
t wt,i + et,n,i ∀n = 1 · · ·K,

where et,n,i ∈ CN ∼ (0, 1) is the additive Gaussian white noise, and ρDL
t is the transmitted power at the server. The

downlink SNR for the n-th user is

SNRLt,n,i = r−αt,n |ht,n,i|2ρDL
t . (2.26)

Instead of keeping ρDL
t as a constant, we derive the following policy based on Theorem 3 to guarantee the convergence

of FEDAVG:

ρDL
t ≥

rαt,kµ
2(γ + t)(γ + t− 2)

4N |ht,n,i|2
∼ O(t2). (2.27)

Finally, by applying the power control policy defined in Eqns. (2.25) and (2.27), FL tasks are able to achieve better

performances under the same energy budget. This is also numerically validated in the experiment.

Remarks. Note that the proposed transmit power control only changes the average transmit power at learning rounds.

Such method is often referred to as the outer-loop power control (OLPC) [60], which operates at a very slow time scale

and only relies on the large-scale, stationary information of the wireless FL system. In fact, this method can be used in

conjunction with a faster inner-loop power control, such as the channel inversion power in (2.23) or any other methods

that handle the fast fading component or interference, to determine the instantaneous transmit power of the sender.
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Another minor note is that the pathloss component appears in (2.27) but not in (2.25). This is due to the broadcast

nature of download. For upload, the pathloss is absorbed in the channel inversion expression (2.23).

2.4.2 Design Example II: Receive Diversity Combining for Analog Aggregation

Another technique that can benefit from our theoretical results is to control the diversity order of a receiver combining

scheme, such as using multiple receive antennas, multiple time slots, or multiple frequency resources. Essentially,

it leverages the repeated transmissions to reduce the effective noise power via receive diversity combining, and by

only activating sufficient diversity branches as the progress over the learning rounds, resources can be more efficiently

utilized.

Uplink diversity requirement. Denoting that the uploaded local model is independently received Lt times (over

time, frequency, space, or some combination of them) in the t-th round; and reusing the notations and the channel

inversion rule in (2.23), the Lt received signals for the i-th element can be given as

yt,i,l =
1

K

K∑
k=1

√
ρt,lwt,k,i + nt,i,l ∀k ∈ St, ∀l = 1 · · ·Lt.

For simplicity, the average transmit power for each branch is assumed to be fixed: ρt,l = ρ0, but this can be easily

extended to incorporate power allocation over diversity branches [60]. The receive SNR of the global model after the

diversity combining can be written as

SNRGt = E

∥∥∥∥∥
d∑
i=1

∑Lt

l=1

√
ρt,l
K

∑
k∈St

wt,k,i∑Lt

l=1 nt,i,l

∥∥∥∥∥
2

= Lt
ρ0E||

∑
k∈St

wk
t ||2

dK2
.

Compared with the SNR of the power control policy in (2.24), we can derive the diversity requirement as

Lt =
⌈
ρUL
t /ρ0

⌉
, (2.28)

where ⌈a⌉ denotes the ceiling operation on a.

Downlink diversity requirement. The server broadcasts the global weight for Qt times (again it can be over time,

frequency, space, or some combination of them) in the t-th round and each client combines the multiple independent

copies of the received signals to achieve a higher SNR (i.e., lower effective noise power). The receive signal at client k

can be written as

yt,k,i,q = r
−α/2
t,k,i,qht,k,i,q

√
ρt,qwt,i + et,k,i,q ∀q = 1 · · ·Qt,
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where ρt,q = ρ1 is the (constant) transmit power at the server. The downlink SNR for the k-th user is SNRLt,k =

r−αt,k Qtρ1. Similarly, compared with the local SNR in (2.26), we can derive the diversity requirement as

Qt =
⌈
ρDL
t /ρ1

⌉
. (2.29)

By applying the combining rules in Eqns. (2.28) and (2.29), the receive diversity combining policy that can guarantee

the convergence of FL at rate O(1/T ) is completed, under the transmit power constraints at both clients and server.

Remarks. Receive diversity combining is not as flexible as power control, because it can only achieve discrete

effective noise power levels. This is also observed in the experiments. However, it can be useful in situations where

adjusting the average transmit power is not feasible, e.g., no change at the transmitter is allowed. In addition, one

can combine the transmit power control in Section 2.4.1 with the receive diversity combining in Section 2.4.2 in

a straightforward manner. Note that there are other methods, such as increasing the precision of analog-to-digital

converters (ADC), to implement the SNR control policy. The general design principles in Theorems 1 to 3 can be

similarly realized.

2.5 Experiment Results

2.5.1 Experiment Setup

In experiments, various FL tasks are considered under noisy uplink and downlink communications. For simplicity,

every channel use in the simulation has the same noise level, and both uplink and downlink have the same total energy

budget P =
∑T
t=1 Pt, where Pt is the transmission power of the t-th round, t = 1, · · · , T . However, note that the

downlink energy is consumed only by the server (i.e., Pt), while the uplink budget is equally shared among all clients

(i.e., Pt/N per transmitter), resulting in significantly smaller uplink transmit power per transmitter than the downlink.

In each round of FL, the updated (locally or globally) ML model (or model differential when applicable) is transmitted

over the noisy channel as described in Section 2.2. The following four schemes are considered in the experiments.

1. Noise free. This is the ideal case with no noise in either uplink or downlink. The accurate model parameters are

perfectly received at the server and clients. This represents the best-case performance.

2. Equal power allocation. This corresponds to Pt = P/T,∀t = 1, · · · , T , as used in [17]. We adopte a normalized

transmitted power Pt = 1 and the receive SNR of the model parameters is set as 10 dB in the experiments.

3. O(t2)-increased power control policy. Transmit power increases at the rate of O(t2) with the round t but the

overall energy consumption is kept constant as other methods, i.e., the receive SNR is increased and the effective
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Figure 2.2: Comparing the performance of transmit power control to the baselines with full clients participation, model
transmission, and both IID (left two) and non-IID (right two) FL on the CIFAR-10 dataset.

noise of the signal is decreased with the progress of FL. With the total budget P , (2.22) gives the power allocation

solution.

4. O(t2)-increased diversity combining policy. The transmit power in both downlink and uplink remains the same

as 2). However, the final models at the server and clients of each communication round are obtained by multiple

repeated transmissions and the subsequent combining. The number of the repeated transmissions increases at the

rate of O(t2). For simple discretization, we use 1, 4, 9, 16 and 25 orders of receive diversity combining in both

uplink and downlink model transmissions for 1st to 9th, 10th to 45th, 46th to 125th, 125th to 270th, and 270th to

500th communication round, respectively, of a 500-round task. Note that the total energy budget remains the same

as the previous two methods.

The standard image classification and natural language processing FL tasks over different datasets are used to

evaluate the performances of these schemes. The following three standard datasets are used in the experiments, which
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Figure 2.3: Comparing the performance of transmit power control to the baselines with partial clients participation,
model transmission, and both IID (left two) and non-IID (right two) FL on the MNIST dataset.

are commonly accepted as the benchmark tasks to evaluate the performance of FL.

1. MNIST. The training sets contains 60000 examples. For the full clients participation case, the training sets are

evenly distributed over N = K = 10 clients. For the partial clients participation case, the training sets are evenly

partitioned over N = 2000 clients each containing 30 examples, and we set K = 20 per round (1% of total users).

For the IID case, the data is shuffled and randomly assigned to each client, while for the non-IID case the data

is sorted by labels and each client is then randomly assigned with 1 or 2 labels. The CNN model has two 5 × 5

convolution layers, a fully connected layer with 512 units and ReLU activation, and a final output layer with softmax.

The first convolution layer has 32 channels while the second one has 64 channels, and both are followed by 2× 2

max pooling. The following parameters are used for training: local batch size BS = 5, the number of local epochs

E = 1, and learning rate η = 0.065.

2. CIFAR-10. We set N = K = 10 for the full clients participation case while N = 100 and K = 10 for the partial
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Figure 2.4: Comparing the performance of transmit power control to the baselines with partial clients participation,
model transmission, and both IID (left two) and non-IID (right two) FL on the CIFAR-10 dataset.

clients participation case. We train a CNN model with two 5× 5 convolution layers (both with 64 channels), two

fully connected layers (384 and 192 units respectively) with ReLU activation and a final output layer with softmax.

The two convolution layers are both followed by 2× 2 max pooling and a local response norm layer. The training

parameters are: (a) IID: BS = 50, E = 5, learning rate initially sets to η = 0.15 and decays every 10 rounds with

rate 0.99; (b) non-IID: BS = 100, E = 1, η = 0.1 and decay every round with rate 0.992.

3. Shakespeare. This dataset is built from The Complete Works of William Shakespeare and each speaking role is

viewed as a client. Hence, the dataset is naturally unbalanced and non-IID since the number of lines and speaking

habits of each role vary significantly. There are totally 1129 roles in the dataset [61]. We randomly pick 300 of them

and build a dataset with 794659 training examples and 198807 test examples. We also construct an IID dataset by

shuffling the data and redistribute evenly to 300 roles and set K = 10. The ML task is the next-character prediction,

and we use a classifier with an 8D embedding layer, two LSTM layers (each with 256 hidden units) and a softmax
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Figure 2.5: Comparing the performance of transmit power control to the baselines with partial clients participation,
model transmission, and both IID (left two) and non-IID (right two) FL on the Shakespeare dataset.

output layer with 86 nodes. The training parameters are: BS = 20, E = 1, learning rate initially sets to η = 0.8

and decays every 10 rounds with rate 0.99.

The performance for all the aforementioned configurations is evaluated by comparing the test accuracies and training

losses as functions of the communication rounds. All of the reported results are obtained by averaging over 5 independent

runs. We also report the final test accuracy, which is averaged over the last 10 rounds, as the performance of the final

global model.

2.5.2 Experiment Results for Transmit Power Control

The focus of the experiment is on partial clients participation under both MT and MDT, but results for full clients

participation in CIFAR-10 is firstly reported, to highlight some common observations across all experiments.
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Full clients participation. As seen from Fig. 2.2 that under the same total power budget, the O(t2) power control

policy performs better than the equal power allocation scheme and is very close to the noise-free ideal case. Specifically,

O(t2) power control policy achieves 81.1% and 59.6% final test accuracy in IID and non-IID data partitions on

CIFAR-10, which is 2.6% and 9.8% better than that of the equal power allocation scheme. Note that the training loss

(test accuracy) of equal power allocation scheme increases (decreases) during the late rounds (350th to 500th) in the

non-IID case, implying that a non-increasing SNR may occur deterioration in the convergence of FL for more difficult

ML tasks.

To further validate the O(t2) scaling, experiments where power is increased as a slower rate of O(log(t)) and O(t)

are carried out. The resulting performance is much worse than the O(t2) scaling, and in fact has only very limited

improvement over the equal power allocation.

Lastly, note that the early rounds of all methods have very similar performance. This is because although O(t2)

power control allocates less power than the equal power policy, both are dominated by the noise of SGD in early rounds

and thus their performances are similar. This phenomenon is also observed in other experiments, which again highlights

the benefits of adaptively “flying under the radar”, to only allocate sufficient-but-not-excessive transmit power in each

round. All of the aforementioned observations carry over to other tasks and different FL configurations.

Partial clients participation. The performance comparisons of the three schemes on MNIST, CIFAR-10 and

Shakespeare datasets in both IID and non-IID configurations and MT are reported in Figs. 2.3, 2.4, and 2.5, respectively.

Their final model accuracies (after T rounds of FL are complete) are also summarized in Table 2.1. First, as seen

from Fig. 2.3, the proposed O(t2)-increased power allocation scheme achieves higher test accuracy and lower train

loss than the equal power allocation scheme under the same energy budget on MNIST. In particular, O(t2)-increased

power allocation scheme achieves 0.6% higher test accuracy than that of equal power allocation scheme in both IID

and non-IID data partitions, respectively. It may seem that the gain is insignificant, but the reason is mostly due to

that MNIST classification is a very simple task. In fact, the gain of power control is much more notable under the

challenging CIFAR-10 and Shakespeare tasks as shown in Figs. 2.4 and Fig. 2.5, respectively. Compared with the equal

power allocation scheme, which achieves 90.2% and 81.6% of the ideal (noise free) test accuracy in IID and non-IID

data partitions under CIFAR-10 dataset respectively, the proposed O(t2)-increased power allocation achieves 99.2%

(IID) and 95.9% (non-IID) of the ideal (noise free) test accuracy respectively after T = 500 communication rounds.

Similarly, under Shakespeare dataset, the equal power allocation scheme achieves 91.5% (IID) and 95.8% (non-IID) of

the ideal (noise free) test accuracy, while the proposed method improves 8.5% and 3.5%, respectively.

MDT. The experiment results of model differential transmission is presented next. Note that, by applying MDT,

the uplink transmission power of the proposed scheme remains constant (recall that SNR is set as 10dB) while the
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Figure 2.6: Comparing the performance of transmit power control to the baselines with partial clients participation,
model differential transmission, and both IID (left two) and non-IID (right two) FL on the MNIST dataset.

downlink transmission power still increases at the rate of O(t2). Figs. 2.6, 2.7 and 2.8 illustrate the test accuracies and

training losses with MDT under MNIST, CIFAR-10 and Shakespeare datasets and the final model accuracies of the three

schemes are summarized in Table 2.2. The proposed power control policy achieves 99.7% (99.7%), 99.2% (98.0%)

and 100% (98.9%) of the ideal test accuracy in IID (non-IID) data setting under MNIST, CIFAR-10 and Shakespeare

datasets, respectively, which significantly outperforms the baseline equal power allocation scheme.

2.5.3 Experiment Results for Receive Diversity Combining

The performance of receive diversity combining is evaluated on CIFAR-10 as the final part of the experiments. Fig. 2.9

captures the test accuracies and training losses of receive diversity combining together with noise free and equal power

allocation schemes. Although receive diversity combining is less flexible than the (continuous) transmit power control

policy, we can see that it still outperforms the baseline method and approaches the noise-free ideal case. Notice that
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Figure 2.7: Comparing the performance of transmit power control to the baselines with partial clients participation,
model differential transmission, and both IID (left two) and non-IID (right two) FL on the CIFAR-10 dataset.

Table 2.1: Performance Summary of MT
Dataset Scheme Accuracy Percentage* Accuracy Percentage*

IID non-IID
MNIST Noise free 99.3% 100% 99.1% 100%

Increased power 99.1% 99.8% 99.0% 99.9%
Equal power 98.5% 99.2% 98.4% 99.3%

CIFAR-10 Noise free 79.5% 100% 54.3% 100%
Increased power 78.9% 99.2% 52.1% 95.9%

Equal power 71.7 % 90.2% 44.3% 81.6%
Shakespeare Noise free 57.8% 100% 56.8% 100%

Increased power 57.8% 100% 56.4% 99.3%
Equal power 52.9 % 91.5% 54.4% 95.8%
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Figure 2.8: Comparing the performance of transmit power control to the baselines with partial clients participation,
model differential transmission, and both IID (left two) and non-IID (right two) FL on the Shakespeare dataset.

Table 2.2: Performance Summary of MDT
Dataset Scheme Accuracy Percentage* Accuracy Percentage*

IID non-IID
MNIST Noise free 99.3% 100% 99.1% 100%

Increased power 99.0% 99.7% 98.8% 99.7%
Equal power 96.7% 97.4% 97.5% 98.4%

CIFAR-10 Noise free 79.5% 100% 54.3% 100%
Increased power 78.9% 99.2% 53.2% 98.0%

Equal power 73.9 % 93.0% 47.7% 87.8%
Shakespeare Noise free 57.8% 100% 56.8% 100%

Increased power 57.8% 100% 56.2% 98.9%
Equal power 53.3 % 92.2% 54.3% 95.6%
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Figure 2.9: Comparing the performance of receive diversity combining to the baselines with partial clients participation,
model differential transmission, and both IID (left two) and non-IID (right two) FL on the CIFAR-10 dataset.

the training losses of receive diversity combining are larger than those of the equal power allocation scheme at the

beginning stage of convergence, but as the diversity branches increase, the training losses eventually reduce and the

model converges to a better global one. Particularly, receive diversity combining achieves 75.6% and 47.8% test

accuracies for IID and non-IID data partitions, which is 3.9% and 3.4% better than the equal power allocation scheme.

2.6 Summary

In this chapter, the exploration focuses on wireless FL conducted over noisy channels, examining a FEDAVG pipeline

impacted by both uplink and downlink communication noises. Through a rigorous theoretical analysis of model training

convergence, it has been established that FEDAVG can achieve the conventional O(1/T ) convergence rate observed

under ideal (noise-free) communication conditions. This outcome is feasible provided that the SNRs for uplink and

downlink communications are appropriately managed at O(t2) in scenarios of direct model transmission, and maintained
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at O(1) for differential model transmission across noisy channels. This chapter highlights the practical application of

two prevalent communication strategies—transmit power control and receive diversity combining—to realize these

theoretical insights. Comprehensive experimental investigations support the theoretical findings, showcasing the

enhanced performance of these advanced strategies compared to conventional methods within the constraints of an

identical total energy budget.
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Chapter 3

Random Orthogonalization for Federated

Learning in Massive MIMO Systems

The SNR scaling rules established in last chapter act as a fundamental design guideline for wireless FL systems. In this

chapter, detailed physical layer design for AirComp FL will be proposed. As a potential solution to tickle the scalability

challenge in wireless FL, the existing work on AirComp has several limitations. First, these methods often require CSIT

for each individual client. The process of enabling individual CSIT is complicated – in a frequency division duplex

(FDD) system, this involves the receiver estimating the channels and then sending back the estimates to the transmitters;

in a time division duplex (TDD) system, one can benefit from channel reciprocity [21, 60], but there is still a need for

an independent pilot for each client. In both cases, practical mechanisms to obtain individual CSIT do not scale with

the number of clients. In addition, the precision of CSIT is often worse than CSIR. Second, most AirComp approaches

in the literature require a channel inversion-type power control, which is well known to “blow up” when at least one

of the channels is experiencing deep fading [21]. Third, AirComp approaches focus on improving the scalability and

efficiency of the uplink communication phase in FL. How to address these challenges in the downlink communication

phase remains underdeveloped.

Another important limitation is that the AirComp solution does not naturally extend to MIMO systems where

the uplink and downlink channels become vectors. Compared with the studies in scalar channels, there are only a

few recent papers that explore the potential of MIMO for wireless FL. MIMO beamforming design to optimize FL

has been studied in [18, 62]. Coding, quantization, and compressive sensing over MIMO channels for FL have been

studied in [63, 64]. Nevertheless, none of these works tightly incorporates the unique properties of MIMO to the FL

communication design. On the other hand, if the unique characteristics of FL is ignored, MIMO can also be utilized in a

33



straightforward manner. In the uplink phase, the conventional MIMO estimators such as zero-forcing (ZF) or minimum

mean square error (MMSE) can be used to estimate each local model, and then the global model can be computed. In

the downlink phase, MIMO precoders is designed to broadcast the global model. However, these approaches incur a

large channel estimation overhead, especially when the channels have high dimensions. Moreover, matrix inversions in

the ZF or MMSE estimators and the optimization algorithms for the precoding design are computationally demanding,

in particular for massive MIMO. This increases the complexity and latency of the overall system. In addition, decoding

individual local models also makes it easier for the server to sketch the data distribution of the clients, leading to

potential privacy leakage.

This chapter aims at designing simple-yet-effective FL communication methods that can efficiently address the

scalability challenge in FL for both uplink and downlink phases. The novelty comes from a tight integration of MIMO

and FL – our design explicitly utilizes the characteristics of both components. The contributions are summarized as

follows.

• A novel Random Orthogonalization design for massive MIMO is proposed. In uplink communications, by

leveraging the unique channel hardening and favorable propagation properties of massive MIMO, the proposed

framework only requires the BS to estimate a summation channel and allows it to directly compute the global

model via a simple linear projection, which significantly alleviates the burden on channel estimation1 and achieves

extremely low complexity and low latency. In downlink communications, the proposed method leads to a simple

but highly effective model broadcast method for FL. Moreover, our approach is agnostic to the number of clients,

and thus improves the scalability of FL.

• Considering that conventional random orthogonalization techniques depend on channel hardening and favorable

propagation to mitigate interference—conditions that may not always be present in practical scenarios, such

as when the number of antennas is limited—we propose a refined strategy termed enhanced random orthogo-

nalization. This advanced approach incorporates channel echoes as a means to offset the absence of channel

hardening and favorable propagation. Consequently, the enhanced random orthogonalization design is adaptable

to a broader range of MIMO systems, making it suitable for both uplink and downlink FL communications.

This adaptability ensures more reliable and efficient communication across various network conditions, thereby

extending the applicability of random orthogonalization techniques in practical MIMO deployments.

• To evaluate the efficacy of random orthogonalization strategies, the Cramer-Rao Lower Bounds (CRLBs) for the

average model estimation errors were derived, establishing a theoretical benchmark for performance analysis.

1For example, a single pilot can be used by all clients as long as it is sent synchronously, regardless of the number of clients that participate in the
current FL round.
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Furthermore, considering both interference and noise, a novel convergence bound for FL across massive MIMO

channels was formulated, elucidating the explicit relationship between the convergence rate, the number of clients,

and the number of antennas. This analysis provides critical design insights for wireless FL systems. Extensive

numerical experiments demonstrate the effectiveness and efficiency of the random orthogonalization approach in

a broad range of FL and MIMO scenarios.

The remainder of this chapter is organized as follows. Related works are surveyed in Section 3.1. Section 3.2

introduces the FL pipeline and the wireless communication model. The proposed random orthogonalization principle is

presented in Section 3.3, and then the enhanced design is proposed in Section 3.4. Analyses of the CRLB as well as

the FL model convergence are given in Section 3.5. Experimental results are reported in Section 3.6, followed by a

summary in Section 3.7.

3.1 Related Works

Improve FL communication efficiency. The original Federated Averaging (FEDAVG) algorithm [1] reduces

the communication overhead by only periodically averaging the local models. Theoretical understanding of the

communication-computation tradeoff has been actively pursued and, depending on the underlying assumptions (e.g.,

independent and identically distributed (i.i.d.) or non-i.i.d. local datasets, convex or non-convex loss functions, gradient

descent or stochastic gradient descent (SGD)), convergence analyses have been carried out [32, 30]. The approaches to

reduce the payload size or communication frequency include sparsification [65, 66] and quantization [39, 40, 8]. There

are also efforts to improve resource allocation [67, 68, 69].

AirComp for FL. As a special case of computing over multiple access channels [70], AirComp [17, 18, 19, 20]

leverages the signal superposition properties in a wireless multiple access channel to efficiently compute the average

ML model. This technique has attracted considerable interest, as it can reduce the uplink communication cost to be

(nearly) agnostic to the number of participating clients. Client scheduling and various power and computation resource

allocation methods have been investigated [71, 48, 72, 73, 74, 75]. The assumption of full CSIT is relaxed in [76]

by only using the phase information of each individual channel. Convergence guarantees of Aircomp under different

constraints are reported in [77, 78, 79, 80, 81].

Communication design for FL in MIMO systems. There are some recent studies on optimizing the communication

efficiency and learning performance in MIMO systems for FL, including transmit power control [82, 83, 84], data

rate allocation [85], and compression [64, 86]. Several beamforming designs have been proposed to improve the

performance of wireless FL [87, 18, 88, 89, 34]. However, these methods require full CSIT and rely on complex
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optimization methods to design the beamformers, which becomes less attractive in massive MIMO due to the high

communication and computation cost. Asymptotic analysis of the aggregation error in massive MIMO is provided in

[87, 90, 91], which leads to beamformer designs that can relax the individual CSIT assumption in wireless FL. However,

they only focus on the uplink communication phase.

3.2 System Model

Consider a MIMO TDD communication system equipped with M antennas at the BS (server) where K randomly-

selected single-antenna devices (clients) are involved in the t-th round of the aforementioned FL task. Let hk ∈ CM×1

denote the uplink wireless channel between the k-th client and the BS. During the uplink communication phase, each

client transmits the difference between the received global model and the newly computed local model

xkt = wt −wk
t+1, ∀k ∈ [K] (3.1)

to the BS, where xkt ≜ [xk1,t, · · · , xkd,t]T ∈ Rd×1 denotes the d-dimensional model differential of client k at the t-th

communication round. To simplify the notation, the index t is omitted by using xk,i instead of xki,t barring any confusion.

Throughout this chapter, all active clients are assumed to be synchronized. This can be achieved in practice by having

the BS send a beacon signal to initialize uplink transmissions. For more details on synchronization, please refer to

[92]. Therefore, each client can transmit every element of the differential model {xk,i}di=1 via d shared time slots2.

For a given element xk,i, the received signal at the BS is yUL
i =

√
PClient

∑
k∈[K] hkxk,i + ni,∀i = 1, · · · , d, where

PClient is the maximum transmit power of each client, and ni ∈ CM×1 represents the uplink noise. Denoting H ≜

[h1, · · · ,hK ] ∈ CM×K as the channel vectors from all K clients and xi ≜ [x1,i, · · · , xK,i]T ∈ RK×1,∀i = 1, · · · , d

as the i-th dimension model differential from all K clients at the t-th learning round, the received signal3 can be written

as

yUL
i =

√
PClientHxi + ni. (3.2)

It is easy to see that (3.2) is a standard MIMO communication model and traditional MIMO estimators can be adopted

to estimate x̂i = [x̂1,i, · · · , x̂K,i]T . However, as discussed before, decoding {xk,i}di=1 individually and obtaining the

aggregated parameter x̃i ≜
∑
k∈[K] x̂k,i by a summation is inefficient. After the BS decoding all aggregated parameter

2In general, differential model parameters can be transmitted over any d shared orthogonal communication resources (e.g., time or frequency).
For simplicity, we use d time slots here.

3For simplicity, real signals {xk,i}di=1 are assume to be transmitted. It can be easily extended to complex signals by stacking two real model
parameters into a complex signal, so that the full degree of freedom (d.o.f.) is utilized.
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x̃t ≜ [x̃1, · · · , x̃d]T in d slots, it can compute the new global model as

wt+1 = wt +
1

K
x̃t. (3.3)

In the downlink, after the computation of the global model wt+1 = [w1,t+1, · · · , wd,t+1]
T , the BS broadcasts the

global model to all clients via a precoder f ∈ CM×1, and the received signal at client k is given by

yDL
i =

√
PBSh

H
k,t+1fwi,t+1 + zki , ∀i = 1, · · · , d, (3.4)

where PBS is the maximum transmit power of the BS and zki denotes the downlink noise. We note that channel

hHk,t+1 ∈ C1×M denotes the downlink vector channel that is reciprocal of the uplink channel in round t + 1. Each

client then computes an estimated global model and uses it as a new initial point for the next learning round after all d

elements are received via (3.4). Traditionally, the precoder design of f belongs to broadcasting common messages (see

[93] and the references therein). However, existing methods become impractical due to the difficulty in obtaining full

CSI in massive MIMO systems, which motivates us to design f with only partial CSI. For mathematical simplicity,

we assume a normalized symbol power4, i.e., E ∥xk,i∥2 = 1 and E ∥wi,t+1∥2 = 1; normalized Rayleigh block fading

channels5 hk ∼ CN (0, 1
M I) in d slots; and i.i.d. Gaussian noise ni ∼ CN (0,

σ2
UL

M I) and zki ∼ CN (0, σ2
DL). We

define the signal-to-noise ratio (SNR) as SNRUL ≜ PClient/σ
2
UL for uplink communications and SNRDL ≜ PBS/σ

2
DL for

downlink communications, and without loss of generality (w.l.o.g.) we set PClient = 1 and PBS = 1.

3.3 Random Orthogonalization

In this section, the key ideas of random orthogonalization is presented. With this principle, the global model can be

directly obtained at the BS via a simple operation in the uplink communications, and the global model can be broadcast

to clients efficiently in the downlink communications. By exploring favorable propagation and channel hardening in

massive MIMO, our proposed methods only require partial CSI, which significantly reduces the channel estimation

overhead.

3.3.1 Uplink Communication Design

The designed framework contains the following three main steps in the uplink communications.

4The parameter normalization and de-normalization procedure in wireless FL follows the same as that in the Appendix of [17].
5The large-scale pathloss and shadowing effect is assumed to be taken care of by, e.g., open loop power control [94].

37



Figure 3.1: An illustration of the proposed uplink FL design with massive MIMO.

(U1) Uplink channel summation. The BS first schedules all clients participating in the current learning round to

transmit a common pilot signal s synchronously. The received signal at the BS is

ys =
∑
k∈[K]

hks+ ns, (3.5)

and the BS can estimate the summation of channel vectors hs ≜
∑
k∈[K] hk from the received signal ys. Given the

pilot s, the estimates can be obtained via a maximum likelihood estimator argminhs ∥ys − hss∥2 [95]. We can also

adopt multiple pilots to improve the accuracy of channel estimation. Note that the complexity of this sum channel

estimation does not scale with K. For the purpose of illustrating our key ideas, we assume perfect summation channel

estimation at the BS for now. The channel estimation error of hs will affect the effective SNR of the decoded model,

and this impact will be evaluated in numerical experiments. Moreover, when the pilot SNR is sufficiently high, one can

directly scale the received signal ys (by 1/s) to obtain the estimated summation channel.

(U2) Uplink model transmission. All selected clients transmit model differential parameters {xk,i}di=1 to the BS in d

shared time slots. The received signal for each differential model element is yi =
∑
k∈[K] hkxk,i + ni,∀i = 1, · · · , d.

(U3) Receiver computation. The BS estimates each aggregated model element via the following simple linear

projection operation:

x̃i = hHs yi =
∑
k∈[K]

hHk
∑
k∈[K]

hkxk,i +
∑
k∈[K]

hHk ni

(a)
=
∑
k∈[K]

hHk hkxk,i︸ ︷︷ ︸
Signal

+
∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxj,i︸ ︷︷ ︸
Interference

+
∑
k∈[K]

hHk ni︸ ︷︷ ︸
Noise

(b)
≈
∑
k∈[K]

xk,i, ∀i = 1, · · · , d. (3.6)

The above three-step uplink communication procedure is illustrated in Fig. 3.1. Based on Eqn. (3.6), the BS then

computes the global model via Eqn. (3.3) and begins the downlink global model broadcast.
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As shown in (a) of Eqn. (3.6), inner product hHs yi can be viewed as the combination of three parts: signal,

interference, and noise. We next show that, taking advantage of two fundamental properties of massive MIMO, the

error-free approximation (b) in (3.6) is asymptotically accurate (as the number of BS antennas M goes to infinity).

Channel hardening. Since each element of hk is i.i.d. complex Gaussian, by the law of large numbers, massive

MIMO enjoys channel hardening [96]: hHk hk → 1, as M → ∞. In practical systems, when M is large but finite, for

the signal part of (3.6), we have

Eh

 ∑
k∈[K]

hHk hkxk,i

 =
∑
k∈[K]

xk,i, (3.7)

and

Varh

 ∑
k∈[K]

hHk hkxk,i

 =

∑
k∈[K] x

2
k,i

M
. (3.8)

Favorable propagation. Since channels between different users are independent random vectors, massive MIMO

also offers favorable propagation [96]: hHk hj → 0, as M → ∞, ∀k ̸= j. Similarly, when M is finite, we have

Eh

 ∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxj,i

 = 0, (3.9)

and

Varh

 ∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxj,i

 =
(K − 1)

∑
k∈[K] x

2
k,i

M
. (3.10)

Furthermore, the expectation of the noise part in (3.6) is zero. Therefore, x̃i in (3.6) is an unbiased estimate of the

average model. For a given K, the variances of both signal and interference decrease in the order of O(1/M), which

shows that massive MIMO offers random orthogonality for analog aggregation over wireless channels. In particular,

the asymptotic element-wise orthogonality of channel vector ensures channel hardening, and the asymptotic vector-wise

orthogonality among different wireless channel vectors provides favorable propagation. Both properties render the

linear projection operation hHs yi an ideal fit for the server model aggregation in FL.
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Figure 3.2: An illustration of the proposed downlink FL design with massive MIMO.

To gain some insight of random orthogonality, we approximate the average signal-to-interference-plus-noise-ratio

(SINR) after the operation in (3.6) as

E[SINRi] ≈

Eh,x

∥∥∥∑k∈[K] h
H
k hkxk,i

∥∥∥2
Eh,n,x

∥∥∥∑k∈[K]

∑
j∈[K],j ̸=k h

H
k hjxj,i +

∑
k∈[K] h

H
k ni

∥∥∥2
=

M

K − 1 + 1/SNR
,

(3.11)

which grows linearly with M for a fixed K. On the other hand, for a given number of antennas M , Eqn. (3.11) can

be used to guide the choice of K in each communication round to satisfy an SINR requirement. More details on

the scalability of clients via the convergence analysis will be provided in Section 3.5.2. Note that Eqn. (3.11) is an

approximate expression for SINR but it sheds light into the relationship between K and M . This approximation,

however, is not used in the convergence analysis of FL with random orthogonalization in Section 3.5.2.

The uplink random orthognalization design presented above is similar to that in [90], which also relies on orthog-

onality to directly compute the summation ML model at the server. This work, however, builds a more complete

framework that has both uplink and downlink designs, for both massive MIMO and general MIMO. This will be

elaborated in the following sections.

3.3.2 Downlink Communication Design

Inspired by the uplink communication design, the downlink design contains the following two steps.

(D1) Uplink channel summation. This step remains the same as U1 in the uplink design. We similarly assume

perfect sum channel estimation hs =
∑
k∈[K] hk at the BS.
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(D2) Downlink global model broadcast. The BS broadcasts global model {wi} to all users, using the estimated

summation channel hs as the precoder. Hence the received signal at the k-th user is

yk = hH
k hswi + zki

(a)
= hH

k hkwi︸ ︷︷ ︸
Signal

+
∑

j∈[K],j ̸=k

hH
k hjwi︸ ︷︷ ︸

Interference

+ zki︸︷︷︸
Noise

(b)
≈ wi ∀i = 1, · · · , d.

(3.12)

The above two-step downlink communication procedure is illustrated in Fig. 3.2. Similar to the uplink case, the global

model signal obtained at each client can also be regarded as the combination of three parts: signal, interference, and

noise as shown in (3.12). Leveraging channel hardening and favorable propagation of massive MIMO channels as

mentioned before, we have

Eh

[
hHk hkwi

]
= wi and Varh

[
hHk hkwi

]
=
w2
i

M
, (3.13)

for the signal part of (3.12). Besides, we have

Eh

 ∑
j∈[K],j ̸=k

hHk hjwi

 = 0 (3.14)

and

Varh

 ∑
j∈[K],j ̸=k

hHk hjwi

 =
(K − 1)w2

i

M
, (3.15)

for the interference part. The above derivation demonstrates that, similar to the uplink design, received signals obtained

via (3.12) are unbiased estimates of global model parameters whose variances decrease in the order of O(1/M) with

the increase of BS antennas. Next, two remarks about the proposed uplink and downlink communication designs of FL

with random orthogonalization are in order.

Remark 6. In uplink communications, unlike the analog aggregation method in [17], the proposed random orthogo-

nalization does not require any individual CSIT. On the contrary, it only requires partial CSIR, i.e., the estimation of

a summation channel hs, which is 1/K of the channel estimation overhead compared with the AirComp method in

[18] or the traditional MIMO estimators. In downlink communications, the traditional precoder design for common

message broadcast requires CSIT for each client. By using the summation channel hs as the precoder for global model

broadcast, only partial CSIT is needed. In a TDD system, the downlink summation channel hs can be estimated at a

low cost utilizing channel reciprocity as shown in Step D1. Therefore, the proposed method is attractive in wireless

FL due to its mild requirement of partial CSI. Moreover, the server obtains global models directly after a series of
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simple linear projections, which improves the privacy and reduces the system latency as a result of the extremely low

computational complexity of random orthogonalization. The same applies to the downlink phase.

Remark 7. Note that although we assume i.i.d. Rayleigh fading channels across different clients, the proposed random

orthogonalization method is still valid for other channel models as long as channel hardening and favorable propagation

are offered. In massive MIMO millimeter-wave (mmWave) communications, Rayleigh fading channels and light-of-sight

(LOS) channels represent two extreme cases: rich scattering and no scattering. It is shown in [96] that both channel

models offer asymptotic channel hardening and favorable propagation. In practice, it is likely to have a scenario which

lies in between these two cases. Therefore, even under some channel correlations, the MIMO channels can still provide

certain level of channel hardening and favorable propagation. Generally speaking, the random orthogonalization

method is still valid in MIMO channels with low to moderate correlations, albeit with increased interference in the

decoded models.

3.4 Enhanced Random Orthogonalization Design

The proposed random orthogonalization principle in Section 3.3 requires channel hardening and favorable propagation.

Although these two properties are quite common in massive MIMO systems, in the case that they are not available

(e.g., the number of BS antennas is small), the design philosophy can still be applied by introducing a novel channel

echo mechanism. In this section, an enhanced design to the methods in Section 3.3 is presented by taking advantage of

channel echos.

Channel echo refers to that the receiver sends whatever it receives back to the original transmitter as the data

payload. Similar techniques have been proposed before, such as “Echo-MIMO” and “two-way training” in [97] and

[98]. However, they are developed for cooperative beamforming and optimal power allocation, respectively, and only

focus on the single-user case. The main purpose of channel echo in our setting, however, is to “cancel” channel fading

for each of the involved clients. The enhanced design for the uplink communications contains the following four main

steps, which is demonstrated in Fig. 3.3.

(EU1) Uplink channel summation. The first step of the enhanced design follows the same as the random orthogonal-

ization method (U1 and D1), so that the BS has the estimate sum channel vector hs =
∑
j∈[K] hk.

(EU2) Downlink channel echo. The BS sends the previously estimated hs (after normalization to satisfy the power

constraint) to all clients. For the k-th client, the received signal is yk =
hH

k hs√
K

+ nk, by which client k can estimate

gk = hHk hs = hHk
∑
j∈[K] hk = ∥hk∥2 +

∑K
j∈[K],j ̸=k h

H
k hj . Note again that we assume a perfect estimation of hs.
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Figure 3.3: An illustration of the proposed enhanced uplink FL design with massive MIMO.

An additional error term will appear in the estimation of gk when the summation channel estimation is imperfect, which

will be discussed later.

(EU3) Uplink model transmission. All involved clients transmit local parameter {xk,i/Re(gk)}k∈[K] to the BS

synchronously in d shared time slots: yi =
∑K
k∈[K] hk

xk,i

Re(gk)
+ ni, ∀i = 1, · · · , d.

(EU4) Server computation. The BS obtains
∑
k∈[K] xk,i via the following operation:

x̃i = Re(yH
i hs) = Re

 ∑
k∈[K]

hH
k

xk,i

Re(gk)

K∑
j∈[K]

hj + nH
i

∑
j∈[K]

hj


=
∑

k∈[K]

xk,i

Re(gk)
Re

hH
k

∑
j∈[K]

hj

+ Re

nH
i

∑
j∈[K]

hj


=
∑

k∈[K]

xk,i + Re

∑
j∈[K]

hH
j ni

 .

(3.16)

Similarly, as shown in Fig. 3.4, the enhanced design for the downlink communication contains the following four main

steps.

(ED1-2) Uplink channel summation and downlink channel echo. The first two steps in the downlink design

remain the same as Steps EU1 and EU2 in the uplink design, so that the BS can estimate channel vector summation

hs =
∑
j∈[K] hk and each client can estimate the parameter gk.

(ED3) Downlink global model broadcast. The BS broadcasts global model {wi} to all clients using the estimated

sum channel hs√
K

as the precoder. The received signal at the k-th client is yk = hHk
hs√
K
wi + ni =

1√
K
gkwi + zki ,∀i =

1, · · · , d.

(ED4) Model parameter computation. Each user obtains the global model {wi} via the following calculation:

Re

[√
Kyk
gk

]
= wi + Re(

√
Kzki
gk

) ∀i = 1, · · · , d. (3.17)
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Figure 3.4: An illustration of the proposed enhanced downlink FL design with massive MIMO.

Note that the estimations of the aggregated signal and the global model in (3.16) and (3.17) are both unbiased,

since nj , hj and zki are independent random variables with zero mean, and E[gk] ̸= 0. Compared with the random

orthogonalization method that offers asymptotic interference-free global model estimation, the received FL parameters

obtained by the enhanced method are completely interference-free at both the server and the clients, as shown in (3.16)

and (3.17). The extra channel echo steps (Step EU2 in uplink and Step ED1 in downlink) allow clients to obtain

partial CSI gk, so that they can pre-cancel and post-cancel channel interference among different user channels in uplink

and downlink communications, respectively. Therefore, this enhancement is valid even if channel hardening and

favorable propagation are not present in wireless channels, at a low cost of using one extra slot for the channel echo

operation, and preserves all the other advantages of random orthogonalization.

Remark 8. So far, both random orthogonalization and enhanced methods assume a perfect estimation of hs. In

practical systems, to improve the accuracy of the estimate ĥs, BS can use multiple pilots or multiple time slots for

improved channel estimation, but summation channel estimation error will inevitably exist. In the following, taking

uplink random orthogonalization as an example, the impact of imperfect summation channel estimation is evaluated.

Denote the imperfect summation channel as ĥs = hs+ϵ, where ϵ ∼ CN (0,
σ2
ϵ

M IM ) is the summation channel estimation

error that is modeled as a Gaussian random vector with i.i.d. elements. The decoded signal in (3.6) becomes

x̃i = ĥHs yi =

 ∑
k∈[K]

hHk + ϵH

 ∑
k∈[K]

hkxk,i

+
∑
k∈[K]

hHk ni + ϵHni =
∑
k∈[K]

hHk hkxk,i︸ ︷︷ ︸
Signal

+
∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxj,i +
∑
k∈[K]

ϵHhkxk,i︸ ︷︷ ︸
Effective interference

+
∑
k∈[K]

hHk ni + ϵHni︸ ︷︷ ︸
Effective noise

≈
∑
k∈[K]

xk,i, ∀i = 1, · · · , d. (3.18)
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Note that estimation in (3.18) is still unbiased, since E
[∑

k∈[K] ϵ
Hhkxk,i

]
= 0 and E

[
ϵHni

]
= 0. Moreover, since

Varh,ϵ

 ∑
k∈[K]

ϵHhkxj,i

 =
Kσ2

ϵ
∑
k∈[K] x

2
k,i

M
, (3.19)

and

Var
[
ϵHni

]
=
σ2
ULσ

2
ϵ

M
. (3.20)

it is equivalent to consider the presence of channel estimation error as a perfect estimation case with a larger effective

interference and noise, which depend on the channel estimation quality σ2
ϵ. In addition, for the enhanced method, the

estimation error of hs itself will not affect the performance, since the imperfect estimated summation channel will

cancel out in Step EU/ED4. Only the imperfect estimation of gk will influence the results. We provide more details on

the robustness of the proposed schemes over imperfect ĥs and gk in the experiment results.

Remark 9. In the enhanced uplink design, each client pre-cancels the channel fading effect so that the global model

can be directly obtained at the BS after simple operations. Note that the analog aggregation method in [17] also uses

“channel inversion” to pre-cancel channel fading. However, the proposed design outperforms the method in [17] because

the latter requires full CSIT, which leads to a large channel estimation overhead even with channel reciprocity in a

TDD system. On the contrary, the proposed method only requires partial CSI, which can be efficiently obtained via

channel echos. Moreover, channel-inversion-based methods do not naturally extend to MIMO systems when the uplink

channels become vectors, which makes the inversion operations at the transmitters nontrivial.

3.5 Performance Analyses

The performance of the proposed methods are analyzed from two aspects. On the communication performance

side, the CRLBs on the estimates of model parameters in both uplink and downlink phases are derived as the

theoretical benchmarks. On the machine learning side, the convergence analysis of FL is presnetd when the proposed

communication designs are applied.

3.5.1 Cramer-Rao Lower Bounds

In the uplink communication, recall that the received signal is yi = Hxi + ni. Denoting µUL = Hxi, it is clear

that yi ∼ CN (µUL,
1

SNRI). To leverage CRLBs to evaluate the parameter estimation, one need to derive the Fisher

information of xi. Based on Example 3.9 in [95], we can write the Fisher information matrix (FIM) of the estimation of
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xi as:

FUL = 2 · SNR · Re
[
∂HµUL(xi)

∂xi

∂µUL(xi)

∂xi

]
. (3.21)

After inserting ∂µUL(xi)

∂xi
= H into the FIM, it is easy to have FUL = 2 · SNR · Re(HHH). Note that for the enhanced

uplink design, one can absorb Re(gk) into the effective channel as H̃ ≜ [h1/Re(g1), · · · ,hK/Re(gK)], and calculate

FIM via FUL = 2 · SNR · Re(H̃HH̃).

In the downlink communication, since yk = hHk hswi + nk, by the definition of µDL = hHk hswi, it is easy to see

yk ∼ CN (µDL,
1

SNR ). The Fisher information of global model parameters is

FDL = 2 · SNR · Re
[
∂HµDL(wi)

∂wi

∂µDL(wi)

∂wi

]
= 2 · SNR · Re(hHk hsh

H
s hk). (3.22)

The CRLBs of estimates are then given by the inverse of the Fisher information (matrix): Cx̂i
= F−1

UL and

Cŵi = 1/FDL, respectively. CRLBs are the lower bounds on the variances of unbiased estimators, stating that the

variance of any such estimator is at least as high as the inverse of the Fisher information (matrix). As shown that the

proposed methods lead to unbiased estimations of the global model in both uplink and downlink communications, one

can use the sum of all diagonal elements of Cx̂ as the lower bound of the mean squared error (MSE) E ∥xi − x̂i∥2; and

use Cŵi
as the lower bound of MSE E ∥wi − ŵi∥2, to evaluate the performance of model estimation in both uplink and

downlink communications. These bounds will be validated in the experiment results.

3.5.2 ML Model Convergence Analysis

This section delves into the machine learning model convergence performance of the proposed methods. Given that two

distinct designs (basic and enhanced) have been introduced for uplink and downlink communications, this leads to four

possible scenarios for convergence analysis. However, due to the similarity among these analyses, only one scenario is

presented for brevity.

The focus here is on the convergence analysis of FL when random orthogonalization is employed for uplink

communications, alongside the application of the enhanced design for downlink communications. It is important to note

that, in contrast to uplink communications, the use of model differential is not feasible for downlink FL communications

due to the selective participation of clients. To ensure FL convergence under these conditions, it is necessary to adhere

to a guideline derived from prior research [99], which stipulates that the downlink transmit power should scale with the

order of O(t2). This prerequisite is vital for maintaining effective communication and ensuring the steady progress of

FL in environments with partial client selection.
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Theorem 4 (Convergence for random orthogonalization in the uplink and enhanced method in the downlink).

Consider a wireless FL task that applies random orthogonalization for the uplink communications and the enhanced

method for the downlink communications. With Assumptions 1-4, for some γ ≥ 0, if we set the learning rate as

ηt =
2

µ(t+γ) and downlink SNR scales as SNRDL ≥ 1−µηt
η2t

in round t, we have

E[f(wt)]− f∗ ≤ L

2(t+ γ)

[
4B

µ2
+ (1 + γ) ∥w0 −w∗∥2

]
, (3.23)

for any t ≥ 1, where

B ≜
N∑

k=1

H2
k

N2
+ 6LΓ + 8(E − 1)2H2 +

N −K

N − 1

4

K
E2H2

+
4

K

(
K

M
+

1

SNRUL

)
E2H2 +

MK

N2(K +M)
.

(3.24)

Proof. Proof of Theorem 4 is given in Appendix D.3.

Theorem 4 shows that applying random orthogonalization in the uplink communications and enhanced method

in the downlink communications preserves the O(1/T ) convergence rate of vanilla SGD in FL tasks with perfect

communications in both uplink and downlink phases. The factors that impact the convergence rate are captured entirely

in the constant B, which come from multiple sources as explained below:
∑

k∈[N]H
2
k

N2 comes from the variances of

stochastic gradients; 6LΓ is introduced by the non-i.i.d. of local datasets; the choice of local computation steps and

the fraction of partial client participation lead to 8(E − 1)2H2 and N−K
N−1

4
KE

2H2, respectively; and the interference

and noise in uplink and downlink communications result in 4
K

(
K
M + 1

SNRUL

)
E2H2 and

(
d+ dK

M

)
, respectively. Note

that the impact of the downlink noise, i.e., SNRDL, is not explicit in B due to the requirement of SNRDL ≥ 1−µηt
η2t

to

guarantee the convergence.

Remark 10. Note that Theorem 4 considers random orthogonalization in the uplink and enhanced method in the

downlink. When random orthogonalization is adopted in the downlink, the convergence bound in (3.23) will suffer from

an additive constant term. This is because the interference cannot be effectively reduced when downlink power scales

in the order of O(t2), as required for direct model transmission [99]. This gap is also empirically observed in the

experiments (see Section 3.6.2). However, we also note that this gap is inversely proportional to the number of antennas

M . Hence, as M becomes large, it reduces to zero asymptotically6.

The analysis now turns to examining the relationship between the number of selected clients K and the number of

antennas M at the BS, to gauge the scalability of multi-user MIMO for FL. This examination offers deeper insights

for the practical design of such systems. For this purpose, a simplified scenario is considered where only random

orthogonalization is configured for the uplink communications, with the assumption that downlink communications
6Due to the space limitation, the technical details for this remark are deferred to our technical report [100].
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are error-free. This assumption is deemed reasonable in cases where the BS possesses significant transmit power. The

assumptions on full client participation (N = K), one-step SGD at each device (E = 1), and i.i.d datasets across all

clients (Γ = 0) are further made. For this special case, Corollary 5 is established as follows.

Corollary 5 (Convergence for the simplified case). Consider a MIMO system that applies random orthogonalization

for the uplink communications of FL with full client participation, one-step SGD at each device, and i.i.d datasets

across all clients. Based on Assumptions 1-4 and choosing learning rate as ηt = 2
µ(t+γ) , ∀t ∈ [T ], the following

inequality holds:

E[f(wt)]− f∗ ≤ L

2(t+ γ)

[
4B̃

µ2
+ (1 + γ) ∥w0 −w∗∥2

]
(3.25)

for any t ≥ 1, where

B̃ ≜

[
1 +

K

M
+

1

SNR

]
H2

K
. (3.26)

Proof. Corollary 5 comes naturally from Theorem 4 by setting N = K, Γ = 0, E = 1, omitting the
(
d+ dK

M

)
term

due to the perfect downlink communications, and the fact that E
∥∥∥∇fk(w)−∇f̃k(w)

∥∥∥2 ≤ E
∥∥∥∇f̃k(w)

∥∥∥2 ≤ H2.

Corollary 5 shows that there are two main factors that impact the convergence rate of FL with MIMO: variance

reduction and channel interference and noise. In particular, the definition of B̃ in (3.26), which appears in Corollary

5, captures the joint impact of both factors. The nature of distributed SGD suggests that, for a fixed mini-batch size

at each client, involving K devices enjoys a 1
K variance reduction of stochastic gradient at each SGD iteration [101],

which is captured by the H2

K term in (3.26). However, due to the existence of interference and noise, the convergence

rate is determined by both factors, shown as H2

K and (K/M+1/SNR)H2

K ≈ H2

M terms in (3.26). This suggests that the

desired variance reduction may be adversely impacted if channel interference and noise dominate the convergence

bound. In particular, when M ≫ K, we have 1
K ≫ 1

M , and the system enjoys almost the same variance reduction as

the interference-free and noise-free case. However, in the case of K ≫M , we have (K/M+1/SNR)
K ≈ 1

M ≫ 1
K , and

H2

M dominates the convergence bound. In this case, it is unwise to blindly increase the number of clients, as it does not

have the advantage of variance reduction.

Remark 11. In massive MIMO, a BS is usually equipped with many (up to hundreds) antennas. Although there may be

large number of users participating in FL, only a small number of them are simultaneously active [18]. Both factors

indicate that K ≪M often holds in typical massive MIMO systems. The analysis reveals that our proposed framework

enjoys nearly the same interference-free and noise-free convergence rate with low communication and computation

overhead in massive MIMO systems.
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3.6 Experiment Results

The performances of random orthogonalization and the enhanced method for uplink and downlink FL communications

are evaluated through numerical experiments in this section. This evaluation includes a comparison of the proposed

methods against classic MIMO estimators and precoders in terms of MSE from a communication performance

perspective. Additionally, the computation time is compared to gauge the complexity of the various methods. The

robustness of the proposed methods is also discussed, particularly in scenarios where the conditions of channel hardening

and favorable propagation are not fully met, and where channel estimation is imperfect. The effectiveness of these

methods is further validated through FL tasks using real-world datasets, providing a comprehensive assessment of their

viability and efficiency in practical applications.
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Figure 3.5: MSE of the received global ML model parameters versus SNR of random orthogonalization in uplink (a)
and downlink (b) communications and of the enhanced method in uplink (c) and downlink (d) communications.
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3.6.1 Communication Performance

Consider a massive MIMO BS with M = 64, 128, 256, 512, or 1024 antennas, supporting K = 8 active users engaged

in an FL task. A Rayleigh fading channel model, i.e., hk ∼ CN (0, 1
M I), is assumed for each user. The system’s

performance is evaluated based on the MSE of the computed global model parameters in both uplink and downlink

communications, providing a quantitative measure of effectiveness across various antenna configurations. All MSE

results are obtained from 2000 Monte Carlo experiments. The CRLBs derived in Section 3.5.1 is used as the benchmark

of the computed MSEs. More specifically, the benchmark corresponds to the mean CRLBs calculated via (3.21)

and (3.22) using the channel realizations in the Monte Carlo simulation. In addition, the traditional MIMO MMSE

estimator and the semidefinite relaxation based (SDR-based) precoder design method in [93] are chosen for performance

comparisons of uplink and downlink communications, respectively.

Effectiveness. Fig. 3.5(a) and Fig. 3.5(b) compare the MSE performance of the random orthogonalization method

in uplink and downlink communications with the traditional MIMO estimator/precoder as well as the CRLB under

different system SNRs. As illustrated in these two plots, the proposed method performs nearly identically to the CRLB

in low and moderate SNRs under different antenna configurations (see SNR ≤ 12 dB for uplink and SNR ≤ 18 dB for

downlink, when M = 128, 256 and 1024). As the SNR increases, the dominant factor affecting system performances

becomes the interference among different users. In the uplink communications, when K ≤ M and at high SNR,

Eqn. (3.11) shows that for a given K and M , the proposed method has a fixed (approximate) SIR = K−1
M as SNR → ∞,

which explains why the performance of the proposed scheme deteriorates compared with MMSE at high SNR. This

phenomenon is more prominent when the number of antennas at the BS is relatively small (M = 64 and 128). However,

this issue disappears naturally as the number of BS antennas increases. It can be seen in Fig. 3.5(a) that the performance

gap between the proposed method and the CRLB reduces, from about 12 dB when M = 64 to about 2 dB when

M = 1024 at SNR = 20 dB, in uplink communications. Note that, although random orthogonalization produces

higher MSEs than the MMSE estimator, the FL tasks have the same convergence rate under a constant SINR in uplink

communications as indicated by the convergence analysis. This will be further validated in Section 3.6.2 by showing that

random orthogonalization hardly slows the convergence of FL. Similar to uplink, random orthogonalization performs

nearly identically to the CRLB in low and moderate SNRs in downlink, and only loses about 0.5 ∼ 6 dB under different

antenna configurations at SNR = 24 dB. Moreover, random orthogonalization outperforms the SDR-based method

at almost all SNRs and antenna configurations. Due to its sub-optimality, the performance of SDR-based method

deteriorates as the number of antennas increases. In particular, it has about 3 dB loss compared with the CRLB when

M = 1024, which further highlights the strengths of our approach for large arrays in massive MIMO. It should be

emphasized that our method only requires 1/K of the channel estimation overheard (partial CSI) compared with both
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Table 3.1: Computation time comparison between the proposed methods and the MMSE/SDR Method
# antennas Total CPU time (second) Ratio Total CPU time (second) Ratio

(M) RO-UL MMSE RO-UL/MMSE Enhanced-UL MMSE Enhanced-UL/MMSE
256 0.0186 2.7141 0.68% 0.0203 2.9228 0.69%
512 0.0303 12.4155 0.24% 0.0469 16.3938 0.30%
1024 0.0448 82.3530 0.05% 0.0711 91.4117 0.07%

# antennas Total CPU time (second) Ratio Total CPU time (second) Ratio
(M) RO-DL SDR RO-DL/SDR Enhanced-DL SDR Enhanced-DL/SDR
256 0.0157 25.1492 0.062% 0.0163 28.8593 0.056%
512 0.0415 324.7349 0.012% 0.0592 492.9539 0.012%
1024 0.0571 4819.6221 0.0012% 0.0695 5925.9250 0.0011%

MMSE and the SDR-based method (full CSI), and this advantage is more pronounced when the BS is equipped with a

larger number of antennas.

Similarly, Fig. 3.5(c) and Fig. 3.5(d) compare the MSE performance of the enhanced method in uplink and downlink

communications with the MMSE estimator / SDR-based precoder. It is clear from both plots that the enhanced

method achieves MSEs that are very close to the CRLBs. Furthermore, it performs nearly identically as the MMSE

estimator in uplink, and outperforms the SDR-based method by about 0.5− 3 dB in downlink for different antenna

configurations. Therefore, by introducing channel echos, the enhanced method achieves excellent performance while

consuming relatively low additional resource. Unlike random orthogonalization, the enhanced method cancels out all

the interference in the decoded signal. Therefore, it is more attractive for smaller antenna arrays when the MIMO

channels are not sufficiently orthogonal, despite at an additional channel echo cost. Random orthogonalization and

the enhancement hence supplement each other, and they jointly serve as an efficient framework for both uplink and

downlink communications of FL under different array configurations. The machine learning model parameters we

estimate in FL are real signals. This constraint leads to a biased estimator at very low SNR, which leads to MSE

saturation. Therefore, the MMSE estimator achieves a lower MSE than the CRLB when SNR ≤ 4 dB. It is worth noting

that we can obtain an unbiased estimator by using complex signals and keeping the imaginary part of the estimates. For

more details on MSE saturation in low SNRs, please refer to Section VI-D in [102].

Efficiency. This part evaluates the low-latency advantage of the proposed methods, which originate from the low

computational complexity. The complexity of both MMSE and SDR-based methods scale as Õ(M3), which is

considerably higher compared with the Õ(M) complexity of random orthogonalization and the enhanced method. To

illustrate the benefit of low latency, the CPU time is reported as a reference for an intuitive demonstration. Table 3.1

compares the computational time of the proposed schemes with the MMSE estimator and the SDR-based precoder

when SNR = 10 dB in the uplink and downlink communications, respectively. The total CPU time is the cumulative

time of each algorithm over 2000 Monte Carlo experiments. It can be seen that the time consumption of random
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orthogonalization and the enhanced method is much less than that of the MMSE estimator and the SDR-based

precoder. Especially, when M = 1024, despite the 0.3 dB normalized MSE (NMSE) performance loss of random

orthogonalization compared with the MMSE estimator in the uplink communications (as shown in Fig. 3.5(a)), the

computation time of the former is only 0.05% of the latter. The proposed methods are even more computationally

efficient for the downlink communications, as the total CPU time is less than 0.1% of the SDR-based method in all

settings. All these results suggest that both random orthogonalization and its enhancement are attractive in massive

MIMO systems, because they have promising MSE performances but require much less channel estimation overhead

and achieve extremely lower system latency than the classic MIMO estimators and precoders.
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Figure 3.6: MSE comparison of the received global ML model parameters when channel hardening and favorable
propagation are not fully offered (left) and channel estimation is imperfect (right).

Robustness. The subsection focuses on the robustness of the proposed methods, and evaluate the MSEs of the global

model parameters obtained at SNR = 10 dB through 2000 Monte Carlo experiments. Fig. 3.6 reports the achieved

MSEs of the random orthogonalization method when the (approximate) channel hardening and favorable propagation

are not strictly offered, i.e., the wireless channels are correlated. Two channel correlation models with covariance

matrix elements equal to 1 on the diagonal and equal to 0.01 or 0.05 off the diagonal are considered, respectively. It

is observed that when the off-diagonal elements are 0.01, random orthogonalization performs nearly identically as

that in the ideal i.i.d. Rayleigh fading channel case. Even when the off-diagonal elements equal to 0.05, the achieved

MSEs only increase by less than 1 dB in the worst case (when M = 256). The MSEs become closer to those of the i.i.d.

Rayleigh channel cases when M increases, as larger antenna arrays offer higher orthogonality.

This subsection considers the performance when the estimation of the summation channel hs (and gk in the

enhanced method) is imperfect. The right sub-figure of Fig. 3.6 compares the MSEs of both proposed methods when

the channel estimation is obtained under SNR = 20 dB. It reveals that the downlink communication is more robust

than the uplink – the former achieves nearly identical MSEs as the ideal case even when the channel estimation is
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inaccurate. For the uplink, an imperfect channel estimation increases the MSEs by 1 ∼ 3 dB depending on the antenna

configurations. However, we emphasize again that the FL tasks have the same convergence rate under a constant SINR

in the uplink communications (thanks to the model differential transmission).
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Figure 3.7: Comparison of test accuracy. (a): a SVM FL task with an ideal uplink communication (interference and noise
free), random orthogonalization, and the enhanced method; (b): a SVM FL task with an ideal downlink communication
(interference and noise free), random orthogonalization, and the enhanced method; (c): a CIFAR classification FL
task with ideal uplink and downlink communications (interference and noise free), random orthogonalization, and the
enhanced method.

3.6.2 Learning Performance

To evaluate the learning performance, experiments of FL classification tasks are carried out using two widely adopted

real-world datasets: MNIST and CIFAR-10, via a support vector machine (SVM) model and a convolution neural

network (CNN) model, respectively. In the MNIST-SVM experiment, the proposed uplink and downlink design

are evaluated separately, to identify their individual influence on the learning performance. Then, the CIFAR-CNN

experiment jointly considers the uplink and downlink designs to evaluate the overall system performance of the proposed

framework.

MNIST-SVM. The MNIST dataset collates small square 28× 28 pixel gray-scale images of handwritten single digits

between 0 and 9[103]. We implement a SVM to classify even and odd numbers in the MNIST dataset, with d = 784.

Total clients are set as N = 20, the size of each local dataset is 500, the size of the test set is 2000, and E = 1. The

local dataset can be regarded as non-i.i.d. since we only allocate data of one label to each client. We consider a massive

MIMO cell with M = 256 antennas at the BS and K = 8 (out of 20) randomly selected clients are involved in each

learning round. The channels between each client and the BS are assumed to be i.i.d. Rayleigh fading.

Fig. 3.7(a) reports the test accuracy when the uplink adopts the proposed method, and the downlink is assumed to be

noise-free. The uplink SNR is set as 10 dB. We can see that both random orthogonalization and the enhanced method

behave almost identically as the ideal case where both uplink and downlink communications are perfect. Note that
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although the global model received at the BS has noise and interference components, the actual learning performances

of the two methods do not deteriorate. Due to the model differential transmission in the uplink communications, the

effective SINR of the received global model gradually increases as the model converges, despite the presence of channel

interference and noise. Fig. 3.7(b) demonstrates the learning performance when the proposed designs are applied to the

downlink communications. Since the model differential transmission is infeasible, the initial downlink SNR is set to be

0 dB and scales at a rate of O(t2) as the learning progresses (see [99]). Notice that the learning performance of the

enhanced method is almost identical to that of the ideal case, while there is about 2% test accuracy loss for random

orthogonalization. Note that, for downlink communications, because the BS only applies the normalized summation

channel as the precoder, large-scale fading will result in different received SNRs for different clients. In this case,

the above downlink SNR can be considered as the “worst” SNR among the involved clients (as the BS power control

will need to target the worst-case user). Therefore, the reported result can be viewed as a lower bound of the actual

performance.

CIFAR-CNN. The CIFAR-10 dataset consists of 32× 32 color images in 10 classes, and we train a CNN model for

the classification task. The CNN model consists of two 5× 5 convolution layers (both with 64 channels), two fully

connected layers (384 and 192 units respectively) with the ReLU activation, and a final output layer with the softmax

activation. The two convolution layers are both followed by 2× 2 max pooling and a local response norm layer. In the

FL tasks, we set N = K = 10, and the size of each local dataset is 1000, with mini-batch size 50 and E = 5. The

initial learning rate is η = 0.15 and decays every 10 rounds with rate 0.99. We consider a massive MIMO cell with

M = 1024 antennas at the BS and the channels between each client and the BS are assumed to be i.i.d. Rayleigh fading.

The uplink SNR is set as 10 dB and the initial downlink SNR is set as 0 dB, and scales at the rate of O(t2).

Fig. 3.7(c) illustrates the training loss and test accuracy versus the learning rounds when both the uplink and

downlink communications adopt the random orthogonalization method or the enhanced method, respectively. It is

observed that the enhanced method achieves similar training loss and test accuracy as the ideal case. Due to the constant

interference in the downlink communications, random orthogonalization incurs a test accuracy loss of about 3%.

To summarize, experiments on both datasets demonstrate that random orthogonalization suffers a slight performance

degradation over the ideal case when it is applied to the downlink communications. As stated in Remark 10, unlike

the enhanced method that cancels all interference in the received global model, the interference is constant in the

global model obtained via random orthogonalization despite the increased SNR. Note that this gap can be reduced

by increasing M . Therefore, downlink random orthogonalization is more attractive in systems with large number of

antennas or severely limited resources.
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3.7 Summary

Leveraging the distinctive properties of channel hardening and favorable propagation inherent to massive MIMO

systems, a novel uplink communication method named random orthogonalization has been introduced. This approach

notably diminishes the channel estimation overhead and facilitates natural over-the-air model aggregation without ne-

cessitating channel state information at the transmitter. This principle has been adapted to the downlink communication

phase, resulting in a straightforward yet highly effective model broadcast technique for FL. Furthermore, to accom-

modate scenarios not strictly adhering to massive MIMO conditions, an enhanced random orthogonalization design

employing channel echoes has been proposed. Comprehensive theoretical performance analyses have been conducted,

encompassing both communication (CRLB) and machine learning (model convergence rate) aspects. Theoretical

findings indicate that random orthogonalization can asymptotically achieve the same convergence rate as traditional FL

under perfect communication conditions. These results have been corroborated through numerical experiments.
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Chapter 4

Differentially Private Wireless Federated

Learning Using Orthogonal Sequences

The exploration of physical layer design in MIMO systems has ventured into strategies that avoid the need for CSIT for

AirComp. However, the application of such strategies to simpler SISO systems remains unclear.

Furthermore, while FL ostensibly enhances client privacy by localizing data training, the potential for privacy

breaches persists through the analysis of ML model parameters shared by clients. To mitigate this privacy concern,

introducing (artificial) noise to ML model parameters during the upload phase of FL has been proposed, with its

privacy properties quantifiable through DP. Intriguingly, AirComp inherently offers the potential for DP assurance at

no additional cost, owing to the natural noise present in wireless channels. It is suggested that varying levels of DP

can be achieved by manipulating the SNR, thereby adjusting the effective channel noise at the receiver. Nonetheless,

the literature on AirComp seldom provides a mathematically rigorous characterization of attainable privacy levels.

A comprehensive review of related literature is presented in Section 4.1. It is also noted that current discussions

predominantly cover item-level DP in wireless FL, whereas client-level DP (or user-level DP) presents a novel and

crucial metric for FL that has not been adequately addressed.

To simultaneously remove the CSIT requirement of AirComp and address the privacy challenge, I propose FLORAS

– Federated Learning using ORthogonAl Sequences, a novel uplink wireless physical layer design for FL by leveraging

the properties of orthogonal sequences. On the communication design, FLORAS preserves all the advantages of

AirComp while removing the CSIT requirement. From the perspective of privacy, FLORAS achieves desired DP

guarantees (both item-level and client-level) by adjusting the number of used orthogonal sequences, making it much

simpler and providing more flexibility to trade off privacy and utility.
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The main contributions of this paper are summarized as follows:

• FLORAS is proposed for uplink communications in SISO wireless FL systems. FLORAS enjoys all the advantages

of AirComp, yet without the CSIT requirement. In particular, orthogonal sequences allow the base station (BS) to

obtain individual CSIR via a single pilot, by which global ML model parameters can be estimated via simple linear

projections. Therefore, FLORAS significantly reduces the channel estimation overhead. Different from the channel

inversion power control, FLORAS allows the transmit power to be independent of the channel realizations, which

avoids increasing the dynamic range of the transmit signal and improves the power efficiency.

• By adjusting the number of orthogonal sequences in the system configuration, the novel signal processing technique

in FLORAS produces Cauchy effective noise to the decoded global model, which empowers flexible item-level and

client-level DP guarantees. Moreover, a new FL convergence bound based on the truncated Cauchy noise is derived,

which allows us to characterize the tradeoff between the model convergence rate and the achievable DP levels.

• Extensive experiments are conducted based on real-world datasets to evaluate the performance of FLORAS. Numerical

results demonstrate the performance advantages of FLORAS compared with the channel inversion method and validate

our theoretical analysis by achieving tradeoffs between model convergence and DP.

The remainder of this chapter is organized as follows. Literature review is presented in Section 4.1. Section 4.2

introduces the FL pipeline and the uplink communication model. The proposed FLORAS design is detailed in Section

4.3. The DP guarantee and convergence analysis of FLORAS are presented in Section 4.4 and Section 4.5, respectively.

Experimental results are reported in Section 4.6, followed by the summary in Section 4.7.

4.1 Related Work

AirComp for FL. The AirComp approach [17, 18, 19, 20] exploits the inherent signal superposition characteristics

of a wireless multiple access channel to efficiently perform sum/average computations. This methodology can be

considered as a special instance of computation over multiple access channels, as outlined by [70]. The approach has

garnered significant attention due to its ability to minimize uplink communication costs, irrespective of the number of

participating clients in FL. The exploration of client scheduling, along with various power and computation resource

allocation techniques, has been investigated by [71, 48, 72, 74, 75]. Several studies have provided convergence

guarantees for AirComp under diverse practical constraints and types of heterogeneity [77, 78, 79, 80, 81]. Efforts

also have been made to reduce the CSIT requirement of AirComp. [76] relaxes full CSIT by utilizing only the

phase information of the channel. Notably, [90] and [9] present CSIT-free AirComp methods that leverage channel

orthogonality, although their effectiveness is limited to massive MIMO systems.
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Differential Privacy for FL. DP-SGD has been widely regarded as a standard approach to train a differentially

private ML model [104]. Along with its variants[105, 106], recent years have also witnessed increased efforts on DP

for distributed learning systems, including the clipping technique in [107, 108], the subsampling principle in [109],

and random quantization in [110]. In the category of exploiting the channel noise for differentially private FL, [111]

proposes an AirComp design to achieve DP by adjusting the effective noise; [112, 113] investigate adding noise and

power allocation in non-orthogonal multiple access (NOMA) systems; [114] considers DP amplification via user

sampling and wireless aggregation; [115] applies it to personalized FL. [116] jointly optimizes the latency and DP

requirements of FL, and [117] discusses the tradeoff among privacy, utility, and communication.

4.2 System Model

In each learning round, since there are K active clients, the uplink communication between clients (mobile devices)

and the parameter server (base station) can be modeled as over a fading multiple access channel. Consider a cell

with a single-antenna BS and K single-antenna users involved in one round of the aforementioned FL task. The

communication system leverages orthogonal sequences for uplink transmissions. Note that one of the most popular

implementations of the orthogonal sequence-based system is code-division multiple access (CDMA). We assume a

spreading sequence set A = {a1, · · · ,ak, · · · ,aN} containing N unique spreading sequences (N ≥ K), where each

spreading sequence is denoted as ak = [a1,k, · · · , aL,k]T and L is the length of the spreading sequence. Each user is

(randomly) assigned with a unique spreading sequence ak from A as its signature.

We assume that the BS only has knowledge of the entire spreading sequence set A, without knowing the specific

signature of each user. We emphasize that this restriction is consistent with our goal of guaranteeing user privacy – BS

cannot identify users or decode individual models based on their spreading sequences. We will discuss the details of the

spreading sequence assignment mechanism in Section 4.4.4.

In the uplink communication, each client transmits the differential between the received global model and the

computed new local model:

xkt = wt −wk
t+1 ∈ Rd, ∀k = 1, · · · ,K.

The BS aims at estimating xt ≜
∑K
k=1 x

k
t .

Before the transmission of xkt , client k will apply a normalization technique. We denote

xkt ≜ [xk1,t, · · · , xki,t, · · · , xkd,t]T ∈ Rd
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as the normalized transmit signal. The following normalization technique, adopted in [17], ensures E[xkt ] = 0 and∥∥xkt ∥∥22 ≤ C2:

xkt ≜
C(xkt − µk)

Cmax,t
,

where µk is the sample mean of d elements in xkt . Note that normalization parameters µk, C and Cmax,t ≜

max{
∥∥xkt − µk

∥∥
2
,∀k} will be determined by the BS and clients via a separate control channel as suggested in

[17]. The l2-norm bound guaranteed in the normalization not only provides the sensitivity of xkt for the DP analysis in

Section 4.4, but also satisfies the practical requirement that each client has a limited transmit power. We note that the

similar technique has also been applied in [107].

To simplify the notation, we omit index t and use xik instead of xki,t barring any confusion. We assume that each

client transmits every element of the model differential {x1k, · · · , xdk} via d shared time slots. In addition, block fading

channel is assumed1, i.e., the fading channel between each client and the BS hk remains unchanged in d time slots. We

emphasize that we do not make any specific assumption on the fading distribution throughout this paper. In the i-th slot,

each client transmits symbol xik spread by its uniquely assigned orthogonal sequence ak. The BS received signal can be

written as

yi =

K∑
k=1

akhkx
i
k + ni, ∀i = 1, · · · , d,

where ni is the additive white Gaussian noise (AWGN) with mean zero and variance σ2/L per dimension. Note that

since the model differential parameters are real signals, we only need to consider the real parts of channel coefficients

and noise. Although one-dimensional (real) modulation cannot fully leverage the channel degrees of freedom, it is

consistent with the fact that binary phase-shift keying (BPSK) is the most common modulation scheme in CDMA

systems [21]. In addition, focusing on the real dimension makes the subsequent discussion easier and highlights our

contribution better. Also, as we detail later in Remark 13, we can leverage full channel gain at an affordable cost of

partial CSIT.

We note that spreading sequences are orthonormal, i.e.,

aTi ai = 1, ∀i; and aTi aj = 0, ∀i ̸= j. (4.1)

1The large-scale pathloss and shadowing effect is assumed to be taken care of by, e.g., open loop power control [94], which is a common practice
in real-world systems.
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Figure 4.1: Illustration of the proposed uplink communication design of FLORAS.

At the BS, the receiver will decode the estimated aggregation parameter x̃i, which is a noisy version of xi ≜
∑K
k=1 x

i
k,

and recover x̃t ≜ [x̃1, · · · , x̃d]T in d slots. After that, the BS can perform de-normalization:

x̃t ≜
Cmax,t

C
x̃t +

K∑
k=1

µk

and compute the new global model as

wt+1 = wt +
1

K
x̃t. (4.2)

Throughout the paper, we assume that all users are synchronized in frames, which can be achieved by the BS

sending a beacon signal to initialize uplink transmissions [94].

4.3 FLORAS

We present the FLORAS design for uplink communications in wireless FL, and give some preliminary analysis.

4.3.1 Algorithm Design

FLORAS is a four-step protocol detailed as follows.

Step 1: Uplink channel estimation. The BS first schedules all participating users to transmit a common pilot s

simultaneously. The received signal is

ys =

K∑
k=1

akhks+ ns.
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The BS can utilize ys and the complete set of orthogonal sequences A = {a1, · · · ,aN} to estimate the channel gain

coefficients. For the K spreading sequences that are actually adopted by the user2, we have

ĥk =
aTk

[∑K
i=1 aihis+ ns

]
s

= hk +
aTk ns
s

,∀k = 1, · · · ,K.

For the N −K spreading sequences that are not selected by any user, the BS obtains

ĥk =
aTk

[∑K
i=1 aihis+ ns

]
s

=
aTk ns
s

,∀k = K + 1, · · · , N.

We emphasize that the BS is not able to distinguish these two cases; all it has are N estimates {ĥ1, · · · , ĥN}.

Step 2: Projector construction. For simplicity, we assume s = 1 in the following discussion. After the channel

estimation, the BS constructs the following vector based on all of the estimated channel coefficients:

v =

N∑
k=1

1

ĥk
ak =

K∑
k=1

ak
hk + aTk ns

+

N∑
k=K+1

ak
aTk ns

.

We note that since the BS does not know which K of the total N spreading sequences are adopted by the users, it has to

use all of {ĥ1, · · · , ĥN} to construct the projector hs. This seemingly redundant design actually enables better privacy

protection, which will be clear in Section 4.4.

Step 3: UL model transmission. All users transmit every element of the differentials via d shared time slots:

yi =

K∑
k=1

akhkx
i
k + ni, ∀i = 1, · · · , d.

Step 4: Sum model decoding. The BS applies the following linear projection to estimate each aggregated model

differential xi,∀i = 1, · · · , d:

x̃i = vTyi =

N∑
k=1

1

ĥk
ak

[
K∑
k=1

akhkx
i
k + ni

]

=

[
K∑
k=1

ak
hk + aTk ns

+

N∑
k=K+1

ak
aTk ns

][
K∑
k=1

akhkx
i
k + ni

]

=

K∑
k=1

hk
hk + aTk ns

xik +

K∑
k=1

aTk ni
hk + aTk ns

+

N∑
k=K+1

aTk ni
aTk ns

.

2Without loss of generality, we assume the first K spreading sequences from the set are selected. This assumption is made to ease the notation.
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After obtaining {x̃1, · · · , x̃d}, the BS can compute the new global model following (4.2) and start the next learning

round. The above four-step procedure is illustrated in Fig. 4.1.

4.3.2 Preliminary Analysis

In the high signal-to-noise ratio (SNR) regime, where the channel fading effect dominates the noise, we have

E[
∥∥aTk ns∥∥2] ≪ E[∥hk∥2]. Therefore, we can establish the following approximation for the estimated model in

Step 4:

x̃i ≈
K∑
k=1

xik +

N∑
k=K+1

aTk ni
aTk ns

, ∀i = 1, · · · , d, (4.3)

where
∑N
k=K+1

aT
k ni

aT
k ns

denotes the dominant noise of the received global model parameters3. The distribution of this

post-processing noise is not straightforward, and we next present Lemma 1 to establish that the noise term is a Cauchy

random variable.

Lemma 1. Define γ ≜ N −K. For IID Gaussian random vector ni,ns ∼ N (0, σ
2

L I), random variable

X ≜
N∑

k=K+1

aTk ni
aTk ns

∼ Cauchy(0, γ), ∀ak ∈ A,

with probability density function (PDF)

fX(x) =
1

π

γ

x2 + γ2
, x ∈ R.

Proof. We first note that aTk ni and aTk ns are Gaussian random variables since they are linear combinations of IID

Gaussian random variables. Let

Y ≜
[
aTK+1ni,a

T
K+2ni, · · · ,aTNni

]T
and

Z ≜
[
aTK+1ns,a

T
K+2ns, · · · ,aTNns

]T
,

and it is straightforward to verify that Y and Z are IID Gaussian random vectors with distribution N (0,Σ), where Σ is

a covariance matrix. According to [118], we have

N∑
k=K+1

wk
Yk
Zk

=

N∑
k=K+1

bk
aTk ni
aTk ns

∼ Cauchy(0, 1),

3Note that this approximation drops the minor noise term, which results in that the DP guarantee in the later discussion is a lower bound of the
true DP level of FLORAS, i.e., we achieve better DP than that computed in this paper.

62



as long as wk is independent of (Y,Z) and
∑N
k=K+1 wk = 1. Letting bk = 1

γ and using the fact that kX ∼

Cauchy(0, |k|) if X ∼ Cauchy(0, 1), we prove Lemma 1.

Cauchy distribution is known as a “fat tail” distribution, as the tail of its PDF decreases proportionally with 1/x2.

Lemma 1 suggests that, for a fixed K, a larger spreading sequence set will result in a heavier tail in the Cauchy noise.

Therefore, we can adjust the size of the spreading sequence set to induce different additive Cauchy noise in (4.3). We

will discuss the effect of Cauchy noise on DP and convergence in Sections 4.4 and 4.5, respectively.

A few remarks about FLORAS are now in order.

Remark 12 (Advantages over the channel inversion method). Compared with the widely studied channel inversion-based

AirComp design, FLORAS does not require CSIT for uplink communications, which greatly reduces the communication

overhead. This is especially attractive for Internet-of-Things (IoT) applications with massive devices. Moreover, in SISO

systems, the maximum uplink transmit power of each user in the channel inversion-based methods is usually limited by

the worst channel gain. As a result, the received SNR of the global model and the efficiency of power amplifiers (PAs)

will significantly decrease, if one of the client channels experiences deep fading [21]. Thanks to the orthogonality of

spreading sequences, FLORAS allows the transmit power to be independent of small-scale fading channel realizations,

and thus avoids increasing the dynamic range of the transmit signal, which improves the power efficiency of PAs.

Remark 13 (Leverage full channel degrees of freedom). As mentioned before, real modulation cannot exploit full

degrees of freedom of the complex channel. To address this limitation, we can borrow the idea of [76]. Specifically, the

fading channel between each client and the BS can be written as

hk = h̃ke
jϕk , ∀k = 1, · · · ,K,

where h̃k ≜ |hk| ∈ R+ and ϕk ≜ ∠hk ∈ [0, 2π) represent channel amplitude (gain) and phase, respectively. For a

given xik, client k transmits symbol xike
−jϕk , where e−jϕk is the phase correction term as suggested in [76]. Hence the

received signal at the BS can be written as

yi =

K∑
k=1

akhke
−jϕkxik + ni =

K∑
k=1

akh̃kx
i
k + ni,∀i = 1, · · · , d.

By phase correction, the imaginary part of hk is projected to the real domain and the full channel gain can be leveraged

without sacrificing any other advantages of FLORAS. We note that same as in [76], this approach requires each client

k to have the channel phase information ϕk, which is weaker than the complete CSIT hk but stronger than the standard

FLORAS.
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Note that we consider the imperfect channel estimation previously in Step 2 for uplink communication. For simplicity,

we assume that each client has perfect partial CSIT (channel phases) obtained from downlink channel estimation here.

One reason for this different consideration is that the transmit power at the BS is usually much larger than those at

devices, which naturally ensures more accurate downlink channel estimation than uplink. Additionally, even if the

phase correction term suffers from estimation error, as long as the error is within [−π/2, π/2), the proposed design is

still valid [76], only at a cost of some channel gain lost.

Remark 14 (Extensions on NOMA systems). Another limitation of FLORAS is that the number of orthogonal spreading

sequences is fixed for a given sequence length. To expand the size of set A, the system would need to adopt longer

spreading sequences, which consumes more bandwidth. We first note that although there may exist a large number of

clients in an FL task, the number of actively participating clients in each learning round is usually relatively small

(due to client selection), which implies the bandwidth cost will not be too significant for our design. Second, as an

alternative, the system can adopt non-orthogonal spreading sequences to improve the scalability without the cost of

extra bandwidth. Applying non-orthogonal spreading sequences is consistent with non-orthogonal multiple access

(NOMA) systems, which is an emerging technology for massive machine-type communications (mMTC) applications.

For non-orthogonal spreading sequences, the requirement in (4.1) becomes

E
[
aTi ai

]
= 1, ∀i and E

[
aTi aj

]
= 0, ∀i ̸= j,

which can be achieved by random Gaussian vectors. Note that Lemma 1 still holds for non-orthogonal spreading

sequences, since it allows an arbitrary covariance matrix of random Gaussian vectors Y and Z. Non-orthogonal

spreading sequences will introduce inter-symbol interference besides noise when decoding the global model parameters

in Step 4. Therefore, the convergence bound developed in Section 4.5 can be regarded as a lower bound for NOMA

systems.

4.4 Differential Privacy Analysis

In this section, we analyze the DP level achieved by FLORAS. We begin by introducing the basic concepts of DP in FL,

and then prove that FLORAS achieves different levels of DP via the adjustment of the size of spreading sequence set N

and the number of involved clients K. Both item-level and client-level DP are analyzed. The DP guarantee not only

considers multiple sources of randomness in wireless FL, including random mini-batch in SGD, the Cauchy noise, and

the random client participation, but also reveals the influence of multiple learning rounds.
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4.4.1 Preliminaries

We first introduce the concept of neighboring datasets. We say that two datasets D and D′ are neighboring, written as

D ∼ D′, if they differ in at most one sample. Based on this concept, we state the standard definition of (ϵ, δ)-DP as

follows.

Definition 1 ((ϵ, δ)-DP [26]). A randomized algorithm M : Xn → R provides (ϵ, δ)-DP with 0 ≤ δ < 1, if for all

pairs of neighboring datasets D ∼ D′ and all measurable sets of outcomes S ⊆ R, we have

P[M(D) ∈ S] ≤ eϵP[M(D′) ∈ S] + δ.

We say that a randomized algorithm achieves ϵ-DP (also known as pure DP) if it satisfies (ϵ, δ)-DP with δ = 0. The

common interpretation of δ is the “leakage probability”, i.e., (ϵ, δ)-DP is ϵ-DP “except with probability δ”.

We next introduce the definition of Rényi DP [119]. As a generalization of (ϵ, δ)-DP, it can help us obtain a tighter

(ϵ, δ)-DP bound converted from its composition, which is particularly attractive in FL due to its multiple learning

rounds.

Definition 2 ((α, ϵ)-Rényi DP [119]). A randomized algorithm M : Xn → R is said to provide (α, ϵ)-Rényi DP, if for

any pair of neighboring datasets D ∼ D′ it holds that

Dα(M(D)||M(D′)) ≤ ϵ,

where

Dα(M(D)||M(D′)) ≜
1

α− 1
log

∫ +∞

−∞
P (x)αQ(x)1−αdx

is the Rényi divergence. Specially, for α = +∞, we have

D∞(M(D)||M(D′)) = sup
x∈suppQ

log
P (x)

Q(x)
.

In the AirComp FL design, decoding the global model from the received signal can be regarded as a randomized

mechanism on D =
⋃M
k=1 Dk, where D is the union of the local datasets of all M clients throughout the whole FL task.

We denote this randomized mechanism as

M(D) ≜ x̃t = g(D) + nt, (4.4)
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where g(D) = xt is the noise-free summation of model differentials at the t-th learning round, and nt is a random noise

following a certain distribution. The randomness of the mechanism comes from the random client participation, random

mini-batch SGD, and the random noise.

To determine the DP level, we next define the global sensitivity function for the operator g(·) as

GSg = max
D,D′

∥g(D)− g(D′)∥2 , (4.5)

where D′ is a neighboring dataset of D. As mentioned in Section 4.2, for uplink communications, we ensure that∥∥xkt ∥∥2 ≤ C. Therefore, we have

GSg = max
D,D′

∥g(D)− g(D′)∥2 = max
xkt ,x

k
t
′

∥∥∥xkt − xkt
′
∥∥∥
2
≤ max

xkt ,x
k
t
′

[∥∥xkt ∥∥2 + ∥∥∥xkt ′∥∥∥2] ≤ 2C, (4.6)

where xkt
′ denotes the noise-free model differential from client k′ whose local dataset is swapped in a random data

sample.

4.4.2 Item-level Differential Privacy

The Rényi DP guarantee of FLORAS in a single learning round is given in Theorem 6.

Theorem 6. Assume a spreading sequence set A containing N unique sequences and M total clients involved in an

FL task. In each learning round, K < min{N,M} clients are independently and uniformly randomly selected to

participate in FL. With local dataset Dk of size D and mini-batch size dbatch ≜ |ξ| < D, FLORAS provides (α, ϵ)-Rényi

DP for the global model, where

ϵ =
1

2
α log2

(
1 +

qp

1 + qp

2C
√
C2 + γ2 + 2C2

γ2

)
= O

(
αq2p2

γ2

)
, (4.7)

with q ≜ dbatch
D+1−dbatch

, p ≜ K
M , and γ = N −K.

Proof. See Appendix E.2.

Based on the composition rule of Rényi DP, we next establish the (ϵ, δ)-DP guarantee for the overall uplink

communications in an FL task of T rounds.

Theorem 7. Consider a wireless FL task with T learning rounds, a spreading sequence set A containing N unique

sequences, and K < min{N,M} clients are independently and uniformly randomly selected in each round. With local
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Figure 4.2: Comparison of sequential composition, Rényi DP composition, and advanced composition with different
sizes of mini-batch SGD and orthogonal sequence set.

dataset Dk of size D and mini-batch size dbatch < D, FLORAS provides (ϵ′, δ)-DP for the entire FL task, where

ϵ′ =
√
2T log(1/δ) log

(
1 +

qp

1 + qp

2C
√
C2 + γ2 + 2C2

γ2

)

+
1

2
T log2

(
1 +

qp

1 + qp

2C
√
C2 + γ2 + 2C2

γ2

)
∼ Õ

(√
Tqp

γ

)
, (4.8)

with q ≜ dbatch
D+1−dbatch

, p ≜ K
M , and γ = N −K.

Proof. See Appendix E.3.

Theorems 6 and 7 reveal that, for a given FL configuration, i.e., fixed number of selected clients K, mini-batch

size ratio q, participation ratio p, and the number of learning rounds T , the expansion of spreading sequence set would

achieve a higher level of DP per learning round and for the whole learning task, respectively. In particular, ϵ ∝ 1
γ2 in

Rényi DP for each learning round, and ϵ′ ∝ 1
γ in (ϵ, δ)-DP for the whole learning task. Since the BS (adversary) has no

knowledge of which particular K out of the total N spreading sequences the clients have chosen, increasing the number

of spreading sequences results in a heavier tail of the post-processing Cauchy noise, which achieves better privacy

protection.

Guided by Theorem 7, we can adjust N to meet the privacy requirement of a practical FL task. Note that larger

noise (better privacy protection) will affect the convergence rate of FL, and we will discuss this impact in detail in

Section 4.5.

Remark 15 (Choice of DP metrics). Note that we use (ϵ, δ)-DP to evaluate the overall DP guarantee of the FL task.

The reason why we choose to utilize Rényi DP to analyze the DP guarantee per learning round is the same as [120]:

we can obtain a tighter (ϵ, δ)-DP guarantee from the composition of multiple Rényi-DP mechanisms. This advantage is

empirically shown in Fig. 4.2, in which we compare the overall DP guarantees v.s. learning rounds of three different
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composition methods: i) vanilla sequential composition of (ϵ, δ)-DP; ii) advanced composition of (ϵ, δ)-DP; iii) (ϵ, δ)-

DP converted from composition of Rényi DP. It clearly demonstrates that under different system configurations, Theorem

7 unanimously provides the tightest (ϵ, δ)-DP guarantee, which is consistent with the theoretical and experimental

results in [119].

4.4.3 Client-level Differential Privacy

So far, we have focused on the standard item-level DP that protects a single data sample of a certain local dataset.

For FL, another DP concept called client-level DP (also known as user-level DP) is also important. The definition of

client-level DP follows similarly from Definition 1, with a slight change that the neighboring dataset pair D ∼ D′

differs in at most all data samples of one single client. As a result, client-level DP protects privacy when the entire

data from a certain client is swapped. Intuitively, this guarantees that the participation of a client cannot be inferred by

observing the received signals.

From the previous discussion of global sensitivity, the output xkt is always bounded even though the entire dataset of

a certain client changes. Therefore, our method intuitively satisfies the client-level DP, and we formally establish the

following guarantee.

Theorem 8. Given a spreading sequence set A containing N unique sequences, FLORAS provides (α, ϵ)-client level

Rényi DP, when K clients are independently and uniformly randomly selected from the total M clients in each learning

round, where

ϵ =
1

2
α log2

(
1 + p

2C
√
C2 + γ2 + 2C2

γ2

)
= O

(
αp2

γ2

)
. (4.9)

Moreover, for total T learning rounds, FLORAS provides (ϵ′′, δ)-client level DP for the entire FL task, where

ϵ′′ =
√

2T log(1/δ) log

(
1 + p

2C
√
C2 + γ2 + 2C2

γ2

)

+
1

2
T log2

(
1 + p

2C
√
C2 + γ2 + 2C2

γ2

)
∼ Õ

(√
Tp

γ

)
. (4.10)

Proof. See Appendix E.4.

Theorem 8 demonstrates that FLORAS provides the client-level DP guarantee in a manner that is similar to the

item-level DP. However, since the entire local dataset of a certain client would be swapped, we cannot take advantage of

the SGD randomness in the analysis of client-level DP. Therefore, q disappears from the client-level DP guarantee.
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4.4.4 Spreading Sequence Assignment Mechanism

As we have discussed, the DP guarantee of FLORAS comes from the fact that the assignment of spreading sequences

remains unknown to the BS (adversary). In traditional CDMA systems, the spreading sequence is assigned to each

device by the BS. This mechanism becomes invalid in our setting, since we need to make sure that the BS only has

knowledge of the spreading sequence set A, not the individual assignment. In practice, we can resort to a trusted

third-party to handle the assignment of orthogonal sequences. The design of such a mechanism belongs to the field of

secure multi-party computation (MPC) [121, 122] and is out of the scope of this paper.

In the following, we provide a preliminary reference design based on a random permutation algorithm as illustrated

in Fig. 4.3. The proposed design allows each user to autonomously choose a unique spreading code without collision. To

better explain the mechanism, we first define a fixed matrix based on A = {ak, k = 1, · · · , N} : A = [a1, · · · ,aN ] ∈

RL×N . We assume that every device that will be involved in the FL task shares a common confidential Key. This key

is a priori knowledge to clients, yet confidential to the BS (adversary). This assumption can be achieved via standard

cryptography approaches, e.g., the key-exchange protocol [123]. When the BS schedules clients to participate in the

current learning round, an index ∈ {1, · · · ,K} will be assigned to each client. After that, every client leverages

the confidential Key and the current system time SystemTime() to generate a random seed RandSeed(). Since

the system has been synchronized, each client will obtain the same random seed, and generate a (common) random

permutation matrix Pπ ∈ RN×N based on that. Followed by a random column permutation Ã = APπ, each client can

use the index-th column Ã[:,index] as its spreading sequence for the current learning round. Note that as long as

the confidential key is not leaked, the BS (adversary) will not know which K of the total N spreading sequences are

adopted in the current learning round.

Remark 16. We emphasize that the established DP guarantee is for the receiver processing proposed in Section 4.3.1.

There may exist more sophisticated receiver algorithms, which could conceivably attempt to infer more information

about the usage of the orthogonal sequences per learning round from the received signal. However, since we do not

make any assumptions on the channel distribution, such approach would be difficult in general. Besides, it is impossible

to always accurately identify all used sequences due to the channel noise. Therefore, even under this scenario, the

proposed framework still provides privacy, although the DP guarantee dependency may decrease from O(1/γ) to

O(1/(αγ)), where 0 < α < 1.

69



Figure 4.3: Flowchart of the proposed spreading sequence assignment reference design for any given client.

4.5 Convergence analysis

The main challenge, and hence the novelty of our analysis, lies in the Cauchy distributed post-processing noise. We

note that a Cauchy distribution has uncertain (infinity) variance. To address this issue, the BS applies a truncation

operation in the interval [−B,B] on the decoded global parameters in (4.3), before de-normalization:

x̃i ≈ max

(
min

(
K∑
k=1

xik +

N∑
k=K+1

aTk ni
aTk ns

, B

)
,−B

)
(4.11)

where B ≫ C and C is a normalization parameter defined in Section 4.2. Note that the truncation operation is universal

(albeit sometimes implicit) in almost all practical systems, since the signal values in the processing units are always finite.

As a post-processing procedure, the truncation operation has no impact on the DP guarantee of FLORAS. Unfortunately,

it will introduce a bias in the estimate x̃i, which impacts convergence. In particular, the equivalent noise after the

limiting operation will be a truncated Cauchy distribution with support [−B −
∑K
k=1 x

i
k, B −

∑K
k=1 x

i
k]. Fortunately,

as long as we ensure B ≫ C which requires a very mild truncation and thus is easy to satisfy, this operation will only

have very limited impact on the received signal, hence does not significantly harm the convergence performance. We

also note that biased gradients are very common in various DP-guaranteed SGD methods [105, 124, 125]. Moreover,

after de-normalization, the biased term is effectively diminishing. Therefore, as we show in Theorem 9, FLORAS can

still maintain a good convergence performance despite of the biased noise, which will also be numerically corroborated

in Section 4.6.
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Theorem 9. With Assumptions 1-4 and µ > 2
√
dD(γ)EH/K, for some r ≥ 0, if we set the learning rate as

ηt =
2

µ′(t+r) , a wireless system implementing FLORAS achieves

E[f(wt)]− f∗ ≤ L

(t+ r)

[
4G

µ′2
+ (1 + r) ∥w0 −w∗∥2

]
,

for any t ≥ 1, where µ′ ≜ µ− 2
√
dD(γ)EH/K,

G ≜

(
1 +

2
√

dD(γ)

K
EHη1

)(
M∑
k=1

H2
k

M2
+ 6LΓ + 8(E − 1)2H2 +

M −K

M − 1

4

K
E2H2

)
+

4dD(γ)

K2
E2H2.

and

D(γ) =
γ2

C2 arctan
(
B+C
γ

) [B
γ

− arctan

(
B + C

γ

)]
.

Proof. See Appendix F.

Theorem 9 demonstrates that FLORAS preserves the O(1/T ) convergence rate of SGD for strongly convex loss

functions (compared with the noise-free FL convergence). For a fixed initial point, there are multiple factors in the

constant G that affect the convergence rate of FL. In particular,
∑K
k=1

H2
k

K2 reveals the variance reduction effect of SGD

by involving more clients, and 6LΓ and 8(E − 1)2H2 capture the influence of non-IID dataset and the number of local

epochs, respectively. We note that term D(γ) in G demonstrates the impact from Cauchy noise, i.e. level of privacy

protection. We also note that D(γ) is increasing as γ becomes larger. It implies that a higher level of privacy protection

will decrease the speed of convergence as constant D(γ) becomes larger. Therefore, Theorem 9 establishes a tradeoff

between privacy protection and convergence rate, which can guide the practical system design.

4.6 Experiments

In this section, we evaluate the performance of FLORAS through numerical experiments. We first compare the learning

performance of FLORAS with the widely-investigated channel inversion AirComp method. Then, we evaluate the

effect on the ML model convergence rate of various DP levels. In particular, we corroborate the theoretical results via

real-world FL tasks on the MNIST dataset. The experiments demonstrate that FLORAS achieves superior performances

under various SNRs and other system configurations.

Details on the setup of experiments are as follows. All convergence curves are the average of five indepen-

dent Monte Carlo trials. The MNIST dataset contains multiple handwritten digit figures of 20 × 20 pixels. The

training set contains 4, 000 examples and is evenly distributed over K = 20 clients. For the IID case, the data is

shuffled and randomly assigned to each client; for the non-IID case, the data is sorted by labels and each client is
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Figure 4.4: Training loss/test accuracy versus learning rounds of FLORAS and channel inversion for MNIST dataset
under SNR = 0 and 15 dB.

randomly assigned with the data of one label. The test set size is 1, 000. We evaluate FLORAS and validate the

theoretical results on a multinomial logistic regression task. Specifically, let f(w;xi) denote the prediction model

with the parameter w = (W,b) and the form f(w;xi) = softmax(Wxi + b). The loss function is given by

loss(w) = 1
D

∑D
i=1 CrossEntropy(f(w;xi),yi) + λ ∥w∥2. We adopt the regularization parameter λ = 0.01 in

the experiments.

4.6.1 Communication Efficiency

We first evaluate the performance of FLORAS compared with the channel inversion method. We assume IID Raleigh

block fading channel hk ∼ CN (0, 1),∀k = 1, · · · ,K. For channel inversion, we adopt a user admission threshold 0.01

for the fading channel gain to avoid deep fading. The following parameters are used for training: local batch size 50, the

72



number of local epochs E = 1, and learning rate η = 0.005 and η = 0.001 for the IID and non-IID case, respectively.

Fig. 4.4-(a) and Fig. 4.4-(b) illustrate the training loss and test accuracy performance versus learning round of

FLORAS and channel inversion in high (red line) and low (blue) SNR regimes, respectively. For high SNR (15 dB),

FLORAS and channel inversion have similar performances. Although transmitter fading channel cancellation in channel

inversion limits the maximum transmission power of each user, its performance does not deteriorate, since noise is not

the dominant factor of the convergence. However, we note that, unlike FLORAS, channel inversion requires full CSIT

at each client, which not only consumes larger communication overhead, but also increases the dynamic range of the

signal, bringing higher hardware cost. The advantages of FLORAS become conspicuous in the low SNR regime (0 dB),

in which noise becomes the dominant factor of the convergence rate. FLORAS allows all participated clients to make

full use of transmit power and achieves significantly better performance. As shown in Fig. 4.4-(b), FLORAS achieves

about 7.5% higher test accuracy compared with channel inversion at SNR = 0 dB. This phenomenon becomes more

notable in the non-IID dataset as shown in Fig. 4.4-(c) and Fig. 4.4-(d), where the performance gap of test accuracy

between FLORAS and channel inversion further grows to 10.2%.

4.6.2 Differential Privacy

We also evaluate the convergence performance versus different levels of DP. We keep SNR = 20 dB and number of

selected user K = 20, while changing the size of the orthogonal sequence set A from 20, 21, 25 to 30, i.e., γ = 0, 1, 5

and 10. In each learning round, each user selects its own signature from set A via the method in Section 4.4.4. As

discussed in Section 4.4, the larger size of set A, the higher DP level FLORAS achieves. The following parameters

are used for training: local batch size 20, the number of local epochs E = 1, and learning rate η = 0.005 and

η = 0.001 for IID and non-IID cases, respectively. The training losses with different DP levels are illustrated in

Fig. 4.5-(a) and Fig. 4.5-(c) of IID and non-IID cases, respectively. It is clear that although a higher privacy level

decreases the convergence rate, the machine learning model can still converge with almost the same training loss as the

no-differential-privacy case (γ = 0), which is consistent with the theoretical analysis in Section 4.5. The test accuracies

in Fig. 4.5-(b) and Fig. 4.5-(d) further validate the effectiveness of FLORAS. We can see that the test accuracies for

moderate DP levels (γ = 1 and 5) are almost the same as the case of γ = 0, i.e., we can achieve certain DP levels

almost for free. Even when γ = 10, the test accuracy loss is tiny, with about 3.5% and 2.5% compared with the γ = 0

case in the IID and non-IID datasets, respectively.
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Figure 4.5: Training loss/test accuracy versus learning rounds of FLORAS with different differential privacy levels for
MNIST dataset under SNR = 20 dB.

4.7 Summary

The FLORAS framework has been introduced as a differentially private AirComp FL solution. In comparison to the

channel inversion method, FLORAS eliminates the need for CSIT and exhibits significantly enhanced robustness in

low SNR environments, a factor of paramount importance for Internet of Things (IoT) applications. The framework’s

adaptability, through the adjustment of the orthogonal sequence set size, facilitates the management of both item-level

and client-level DP assurances. Analysis of both the convergence and DP properties of FLORAS has illuminated the

trade-off between convergence rate and privacy preservation, a finding substantiated by experimental results from

real-world FL tasks.
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Chapter 5

Conclusion and Future Work

This dissertation conducts an in-depth exploration of communication design strategies for wireless FL. The investigation

spans various scenarios, environments, and settings to uncover how different factors and designs impact the efficiency

and reliability of wireless FL.

Chapter 2 delves into the impact of communication-induced noise on the convergence of FL during both uplink and

downlink phases. Through theoretical analysis, this study uncovers valuable insights that guide the formulation of a

SNR scaling strategy. This strategy is pivotal in ensuring the convergence of FL within the limits of a total resource

budget. The framework introduced is versatile, designed to support a range of conditions including full and partial

client engagement, both direct model updates and differential model transmission, as well as the challenge of handling

non-IID local datasets.

For MIMO systems studied in Chapter 3, by capitalizing on the distinct characteristics of channel hardening

and favorable propagation characteristic of massive MIMO, “random orthogonalization” design was proposed. It

enables an efficient uplink and downlink transmission method without CSIT. This method significantly reduces the

overhead, computational complexity and latency of uplink communication, presenting an effective solution to previously

insurmountable challenges.

For SISO systems studied in Chapter 4, FLORAS design was proposed. It is a novel uplink wireless physical layer

design for FL by leveraging the properties of orthogonal sequences. FLORAS enjoys all advantages of AirComp, yet

without the CSIT requirement. Moreover, by the adjustment on the number of used orthogonal sequences in the system

configuration, the novel signal processing techniques in FLORAS empowers flexible item-level and client-level DP

guarantee.

This dissertation makes a significant contribution to the burgeoning field of wireless FL by delivering in-depth
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insights into its efficiency, reliability, and privacy. By tackling the critical bottlenecks within FL, the research enhances

the comprehension of wireless design principles for FL across a variety of systems, broadening the scope of knowledge

and application in this dynamic and evolving field. There are several avenues for future research that can further extend

the current knowledge and contribute to practical applications.

Heterogeneous Networks. Exploring the adaptation and optimization of FL in heterogeneous networks represents

a promising direction for future research. These networks, characterized by a diverse array of devices with varying

computational capabilities, network connections, and mobility, pose unique challenges for FL. Investigating strategies to

efficiently integrate and manage FL processes across such varied environments can enhance scalability and inclusivity.

Robustness and Fault Tolerance. Ensuring the robustness and fault tolerance of FL systems in the face of device

failures, network disruptions, and adversarial attacks is essential for their reliability and trustworthiness. Future work

could investigate mechanisms to detect and mitigate such issues in real-time, enhancing the resilience of FL systems.

This may involve the development of robust aggregation algorithms, secure communication channels, and anomaly

detection techniques that can safeguard the FL process against various threats.

Personalized Differential Privacy. Wireless federated learning could significantly benefit from exploring the integra-

tion of personalized DP mechanisms. This entails developing adaptive privacy-preserving algorithms that can tailor

the level of privacy guarantees to individual users’ preferences or the sensitivity of their data. Such personalized DP

approaches could leverage advancements in wireless communication technologies to optimize the trade-off between

privacy, model accuracy, and communication efficiency. Investigating the impact of personalized DP on the convergence

rates of FL models, especially in non-IID and resource-constrained environments, would be crucial. Moreover, future

research could focus on designing novel cryptographic techniques or secure multi-party computation methods to support

personalized DP in FL, ensuring robust privacy protection without compromising the collaborative learning process.

This exploration would not only advance the state of FL but also open new avenues for creating more user-centric and

privacy-aware machine learning models.
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Appendix

A Proof of Theorem 1

A.1 Preliminaries

With a slight abuse of notation, we change the timeline to be with respect to the overall SGD iteration time steps instead

of the communication rounds, i.e.,

t = 1, · · · , E︸ ︷︷ ︸
round 1

, E + 1, · · · , 2E︸ ︷︷ ︸
round 2

, · · · , · · · , (T − 1)E + 1, · · · , TE︸ ︷︷ ︸
round T

.

Note that the (noisy) global model wt is only accessible at the clients for specific t ∈ IE , where IE = {nE | n =

1, 2, . . . }, i.e., the time steps for communication. The notations for ηt, σt and ζt are similarly adjusted to this extended

timeline, but their values remain constant inside the same round.

As mentioned in Section 2.3.1, the key technique in the proof is the perturbed iterate framework in [58]. In

particular, We first define the following variables

ukt+1 =
1

N

∑
i∈[N ]

vit+1, pkt+1 = ukt+1 +
1

N

∑
i∈[N ]

nit+1, and wk
t+1 = pkt+1 + ekt+1,
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to summarize the aforementioned steps:

vkt+1 ≜ wk
t − ηt∇Fk(wk

t , ξ
k
t );

ukt+1 ≜


vkt+1 if t+ 1 /∈ IE ,

1
N

∑
i∈[N ] v

i
t+1 if t+ 1 ∈ IE ;

pkt+1 ≜


vkt+1 if t+ 1 /∈ IE ,

ukt+1 +
1
N

∑
i∈[N ] n

i
t+1 if t+ 1 ∈ IE .

wk
t+1 ≜


vkt+1 if t+ 1 /∈ IE ,

pkt+1 + ekt+1 if t+ 1 ∈ IE .

Then, we construct the following virtual sequences:

vt =
1

N

N∑
k=1

vkt , ut =
1

N

N∑
k=1

ukt , pt =
1

N

N∑
k=1

pkt , and wt =
1

N

N∑
k=1

wk
t . (1)

We also define gt = 1
N

∑N
k=1 ∇Fk(wk

t ) and gt = 1
N

∑N
k=1 ∇Fk(wk

t , ξ
k
t ) for convenience. Therefore, vt+1 =

wt − ηtgt and E [gt] = gt. After some manipulation, we can also write the specific formulations of these virtual

sequences when t+ 1 ∈ IE as follows:

ut+1 =
1

N

∑
i∈[N ]

vit+1, pt+1 = ut+1 +
1

N

∑
i∈[N ]

nit+1, wt+1 = pt+1 +
1

N

N∑
k=1

ekt+1. (2)

Note that for t+ 1 /∈ IE , all these virtual sequences are the same. In addition, the global model (at the server) pt+1 is

meaningful only at t+ 1 ∈ IE . We emphasize that when t+ 1 ∈ IE , Eqns. (2) and (2.10) indicate that pt+1 = wt+1.

Thus it is sufficient to analyze the convergence of
∥∥pt+1 −w∗

∥∥2.

A.2 Lemmas

Lemma 2. Let Assumption 1 hold, ηt is non-increasing, and ηt ≤ 2ηt+E for all t ≥ 0. If ηt ≤ 1/(4L), we have

E ∥vt+1 −w∗∥2 ≤ (1− ηtµ)E ∥wt −w∗∥2 + η2t

(
N∑
k=1

δ2k/N
2 + 6LΓ + 8(E − 1)2H2

)
.
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Lemma 2 establishes a bound for the one-step SGD. This result only concerns the local model update and is not

impacted by the noisy communication. The derivation is similar to the technique in [32].

Lemma 3. We have

E
[
pt+1

]
= ut+1,E

∥∥ut+1 − pt+1

∥∥2 =
dσ2

t+1

N2
; E [wt+1] = pt+1,E

∥∥wt+1 − pt+1

∥∥2 =
dζ2t+1

N2
(3)

for t+ 1 ∈ IE , where σ2
t+1 ≜

∑
k∈[N ] σ

2
t+1,k and ζ2t+1 ≜

∑
k∈[N ] ζ

2
t+1,k.

Proof. For t+ 1 ∈ IE , we have

E
[
pt+1 − ut+1

]
=

1

K

∑
k∈[N ]

E[nkt+1] = 0

and

E
∥∥pt+1 − ut+1

∥∥2 =
1

N2
E

∥∥∥∥∥∥
∑
k∈[N ]

nkt+1

∥∥∥∥∥∥
2

=
1

N2

∑
k∈[N ]

E
∥∥nkt+1

∥∥2 =
dσ2

t+1

N2

from (2), because {nkt+1,∀k} are independent variables. Similarly, according to (2), we have

E
[
wt+1 − pt+1

]
=

1

N

∑
k∈[N ]

E[ekt+1] = 0

and

E
∥∥wt+1 − pt+1

∥∥2 =
1

N2
E

∥∥∥∥∥∥
∑
k∈[N ]

ekt+1

∥∥∥∥∥∥
2

=
1

N2

∑
k∈[N ]

E
∥∥ekt+1

∥∥2 =

∑
k∈[N ] dζ

2
t+1,k

N2
=
dζ2t+1

N2
.

A.3 Proof of Theorem

We need to consider four cases for the analysis of the convergence of E
∥∥pt+1 −w∗

∥∥2.

1) If t /∈ IE and t+ 1 /∈ IE , wt = pt and vt+1 = pt+1. Using Lemma 2, we have:

E
∥∥pt+1 −w∗∥∥2 = E ∥vt+1 −w∗∥2 ≤ (1− ηtµ)E ∥pt −w∗∥2 + η2t

[
N∑
k=1

δ2k
N2

+ 6LΓ + 8(E − 1)2H2

]
.

2) If t ∈ IE and t+ 1 /∈ IE , we still have vt+1 = pt+1. With wt = pt +
1
N

∑N
k=1 e

k
t , we have:

∥wt −w∗∥2 = ∥wt − pt + pt −w∗∥2 = ∥pt −w∗∥2 + ∥wt − pt∥
2︸ ︷︷ ︸

A1

+2 ⟨wt − pt,pt −w∗⟩︸ ︷︷ ︸
A2

.
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We first note that the expectation of A2 over the noise randomness is zero since we have E [wt − pt] = 0 (from (3)).

Second, the expectation of A1 can be bounded using Lemma 3. We then have

E
∥∥pt+1 −w∗∥∥2 = E ∥vt+1 −w∗∥2

≤ (1− ηtµ)E ∥pt −w∗∥2 + (1− ηtµ)E ∥wt − pt∥
2
+ η2t

[
N∑
k=1

δ2k
N2

+ 6LΓ + 8(E − 1)2H2

]

≤ (1− ηtµ)E ∥pt −w∗∥2 + (1− ηtµ)
dζ2t
N2

+ η2t

[
N∑
k=1

δ2k
N2

+ 6LΓ + 8(E − 1)2H2

]
. (4)

3) If t /∈ IE and t + 1 ∈ IE , then we still have wt = pt. For t + 1, we need to evaluate the convergence of

E
∥∥pt+1 −w∗

∥∥2. We have

∥∥pt+1 −w∗∥∥2 =
∥∥pt+1 − ut+1 + ut+1 −w∗∥∥2

=
∥∥pt+1 − ut+1

∥∥2︸ ︷︷ ︸
B1

+ ∥ut+1 −w∗∥2︸ ︷︷ ︸
B2

+2
〈
pt+1 − ut+1,ut+1 −w∗〉︸ ︷︷ ︸

B3

.
(5)

We first note that the expectation of B3 over the noise is zero since we have E
[
ut+1 − pt+1

]
= 0 (from (3)). Second,

the expectation of B1 can be bounded using Lemma 3. Noticing that ut+1 = vt+1 for B2 and applying Lemma 2, we

have:

E
∥∥pt+1 −w∗∥∥2 ≤ E ∥vt+1 −w∗∥2 +

dσ2
t+1

K2

≤ (1− ηtµ)E ∥pt −w∗∥2 +
dσ2

t+1

N2
+ η2t

[
N∑
k=1

δ2k
N2

+ 6LΓ + 8(E − 1)2H2

]
. (6)

4) If t ∈ IE and t+ 1 ∈ IE , vt+1 ̸= pt+1 and wt ̸= pt. (Note that this is possible only for E = 1.) Combining

the results from the previous two cases, we have

E
∥∥pt+1 −w∗∥∥2 ≤ (1−ηtµ)E ∥pt −w∗∥2+(1−ηtµ)

dζ2t
N2

+
dσ2

t+1

N2
+η2t

[
N∑
k=1

δ2k
N2

+ 6LΓ + 8(E − 1)2H2

]
. (7)

Finally, we have that inequality (7) holds for all four cases. Denote ∆t = E ∥pt −w∗∥2. If we set the effective

noise power σ2
t+1 and ζ2t such that σ2

t+1 ≤ N2η2t and ζ2t ≤ N2 η2t
1−ηtµ , we always have ∆t+1 ≤ (1− ηtµ)∆t + η2tD,

where D =
∑N
k=1

δ2k
N2 +6LΓ+8(E−1)2H2+2d. We decay the learning rate as ηt = β

t+γ for some β ≥ 1
µ and γ ≥ 0

such that η1 ≤ min{ 1
µ ,

1
4L} = 1

4L and ηt ≤ 2ηt+E . Now we prove that ∆t ≤ v
γ+t where v = max{ β2D

βµ−1 , (γ+1)∆0}

by induction. First, the definition of v ensures that it holds for t = 0. Assume the conclusion holds for some t > 0. It
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then follows that

∆t+1 ≤ (1− ηµ)∆t + η2tD =

(
1− βµ

t+ γ

)
v

t+ γ
+

β2D

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2D

(t+ γ)2
− µβ − 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

Then by the strong convexity of F (·), E [F (wt)] − F ∗ ≤ L
2∆t ≤ L

2
v
γ+t . Specially, if we choose β = 2

µ , γ =

max{8Lµ − 1, E} and denote ϕ = L
µ , then ηt = 2

µ
1
γ+t . Using max{a, b} ≤ a+ b, we have v ≤ 4D

µ2 + (γ + 1)∆0 ≤
4D
µ2 + (8ϕ+ E) ∥w0 −w∗∥2. Therefore, ∆t ≤ v

γ+t =
1
γ+t

[
4D
µ2 + (8ϕ+ E) ∥w0 −w∗∥2

]
. Setting t = T concludes

the proof.

B Proof of Theorem 2

The additional difficulty in proving Theorem 2 comes from partial clients participation. The approach we take is to

study a “virtual” FL process where all clients receive the noisy downlink broadcast of the latest global model, and

they all participate in the subsequent local model update phase. However, only the selected clients in St+1 upload

their updated local model to the server via the noisy uplink channel. It is clear that this “virtual” FL is equivalent to

the original process in terms of the convergence – clients that are not selected do not contribute to the global model

aggregation. This seemingly redundant process, however, circumvents the difficulty due to partial clients participation

as can be seen in the analysis.

Before presenting the proof, we first elaborate on some necessary changes of notation. The notation defined

in Appendix A.1 can be largely reused, with the notable distinction that now we have to separate the cases for

K and for N . For t + 1 ∈ IE , the variables of ukt+1 and pkt+1 are now defined as: ukt+1 = 1
K

∑
i∈St

vit+1 and

pkt+1 = ukt+1 +
1
K

∑
i∈St

nit+1. Note that Lemma 3 still holds with the following update: E
∥∥ut+1 − pt+1

∥∥2 =
dσ̄2

t+1

K ,

E
∥∥wt+1 − pt+1

∥∥2 =
dζ̄2t+1

N . In addition, we need the following lemma that establishes the unbiased and variance-

bounded client sampling..

Lemma 4. Let Assumption 1− 4 hold. With ηt ≤ 2ηt+E for all t ≥ 0 and ∀t+ 1 ∈ IE , we have E [ut+1] = vt+1 and

E ∥vt+1 − ut+1∥2 ≤ N−K
N−1

4
K η

2
tE

2H2.
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Proof. Let St+1 denote the set of chosen indexes. Note that the number of possible St+1 is CKN and we denote the lth

possible result as Slt+1 = {il1, . . . , ilK}, where l = 1, . . . , CKN . Therefore,

CK
N∑

j=1

K∑
k=1

v
ilk
t+1 =

K · CKN
N

N∑
i=1

vkt+1 = CK−1
N−1

N∑
i=1

vkt+1.

Since when t+ 1 ∈ IE ,

ukt+1 =
1

K

∑
k∈St+1

vkt+1

for all k, we have

ut+1 =

N∑
k=1

ukt+1 =
1

K

∑
k∈St+1

vkt+1.

Then

ESt [ut+1] =

CK
N∑

l=1

P
(
St+1 = Slt+1

) 1

K

∑
k∈Sl

t+1

vkt+1 =
1

CKN

1

K

CK
N∑

j=1

K∑
k=1

v
ilk
t+1 =

CK−1
N−1

CKN

1

K

N∑
k=1

vkt+1

=
1

N

N∑
k=1

vkt+1 = vt+1.

As for the variance, we have [30]

ESt ∥ut+1 − vt+1∥2 = ESt

∥∥∥∥∥∥ 1

K

∑
i∈St+1

vit+1 − vt+1

∥∥∥∥∥∥ =
1

K2
ESt

∥∥∥∥∥
N∑
i=1

I {i ∈ St}
(
vit+1 − vt+1

)∥∥∥∥∥
2

=
1

K2

∑
i∈[N ]

P (i ∈ St+1)
∥∥vit+1 − vt+1

∥∥2 +
∑
i ̸=j

P (i, j ∈ St+1)
〈
vit+1 − vt+1,v

j
t+1 − vt+1

〉
=

1

KN

N∑
i=1

∥∥vit+1 − vt+1

∥∥2 +∑
i ̸=j

K − 1

KN(N − 1)

〈
vit+1 − vt+1,v

j
t+1 − vt+1

〉

=
1− K

N

K(N − 1)

N∑
i=1

∥∥vit+1 − vt+1

∥∥2

(8)

where we use the following results:

P (i ∈ St+1) =
K

N

and

P (i, j ∈ St+1) =
K(K − 1)

N(N − 1)
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for all i ̸= j, and ∑
i∈[N ]

∥∥vit+1 − vt+1

∥∥2 +∑
i ̸=j

〈
vit+1 − vt+1,v

j
t+1 − vt+1

〉
= 0.

Since t+1 ∈ IE , we know that t0 = t−E +1 ∈ IE is the communication time, implying that {ukt0}
N
k=1 are identical.

Then

N∑
i=1

∥∥vit+1 − vt+1

∥∥2 =

N∑
i=1

∥∥(vit+1 − ut0)− (vt+1 − ut0)
∥∥2

=

N∑
i=1

∥∥vit+1 − ut0
∥∥2 − 2

〈
N∑
i=1

vit+1 − ut0 ,vt+1 − ut0

〉
+

N∑
i=1

∥vt+1 − ut0∥
2

=

N∑
i=1

∥∥vit+1 − ut0
∥∥2 − N∑

i=1

∥vt+1 − ut0∥
2 ≤

N∑
i=1

∥∥vit+1 − ut0
∥∥2

Taking expectation over the randomness of stochastic gradient on Eqn. (8), we have

E

[
1

K(N − 1)

(
1− K

N

) N∑
k=1

∥∥vit+1 − vt+1

∥∥2] ≤ N −K

K(N − 1)

1

N

N∑
k=1

E
∥∥vit+1 − ut0

∥∥2
≤ N −K

K(N − 1)

1

N

N∑
k=1

E

t∑
i=t0

E
∥∥ηi∇Fk(uki , ξki )∥∥2 ≤ N −K

K(N − 1)
E2η2t0H

2 ≤ N −K

N − 1

4

K
E2η2tH

2

where in the last line is because ηt is non-increasing and ηt0 ≤ 2ηt.

We can now similarly analyze the four cases as in Section A.3. Cases 1) and 2) remain the same as before. For Case

3) we need to consider t /∈ IE and t+ 1 ∈ IE . Note that (5) still holds, but we need to re-evaluate the expectation of

B2 because of partial clients participation. We have:

∥ut+1 −w∗∥2 = ∥ut+1 − vt+1 + vt+1 −w∗∥2

= ∥ut+1 − vt+1∥2︸ ︷︷ ︸
C1

+ ∥vt+1 −w∗∥2︸ ︷︷ ︸
C2

+2 ⟨ut+1 − vt+1,vt+1 −w∗⟩︸ ︷︷ ︸
C3

.
(9)

When the expectation is taken over the random clients sampling, the expectation of C3 is zero since we have

E [ut+1 − vt+1] = 0. The expectation of C1 can be bounded using Lemma 4. Therefore we have E
∥∥pt+1 −w∗

∥∥2 ≤

E ∥vt+1 −w∗∥2 + dσ̄2
t+1

K + N−K
N−1

4
K η

2
tE

2H2. Using Lemma 2 and the new definition of D in Theorem 2, we have

E
∥∥pt+1 −w∗

∥∥2 ≤ E ∥vt+1 −w∗∥2 + dσ̄2
t+1

K +
4η2tE

2H2(N−K)
K(N−1) ≤ (1− ηtµ)E ∥pt −w∗∥2 + dσ̄2

t+1

K + η2t (D − 2d).

Case 4) can be similarly updated based on the new result in Case 3). Finally, we have that

E
∥∥pt+1 −w∗∥∥2 ≤ (1− ηtµ)E ∥pt −w∗∥2 + (1− ηtµ)

dζ̄2t
N

+
dσ̄2

t+1

K
+ η2t (D − 2d) (10)
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holds for all cases. If we set σ̄2
t+1 and ζ̄2t such that σ̄2

t+1 ≤ Kη2t and ζ̄2t ≤ N
η2t

1−ηtµ , the remaining proof follows the

same way as in Appendix A.3.

C Proof of Theorem 3

For model differential transmission (MDT), if t + 1 ∈ IE , the global aggregation is given in (2.11). Similar to

Appendix A and B, we expand the timeline to be with respect to the overall SGD iteration time steps, and define the

following variables to facilitate the proof. vkt+1 ≜ wk
t − ηt∇Fk(wk

t , ξ
k
t ), d

k
t+1 ≜ vkt+1 − wk

t+1−E . Furthermore,

when t+ 1 /∈ IE we define ukt+1 = pkt+1 = wk
t+1 ≜ vkt+1, and when t+ 1 ∈ IE we define ukt+1 ≜ 1

K

∑
i∈St

vit+1,

pkt+1 ≜ wt+1−E + 1
K

∑
i∈St

[dit+1 + nit+1], and wk
t+1 ≜ pkt+1 + ekt+1. The virtual sequences vt, ut, pt and wt

remain the same as (1). gt and gt are also similarly defined. Note that the global model at the server is the same as pt,

i.e., wt+1 = pt+1.

We first establish the follow in lemma, which is instrumental in the proof of Theorem 3.

Lemma 5. Let Assumption 1 − 4 hold. Assume that ηt ≤ 2ηt+E for all t ≥ 0, and further assume that the uplink

communication adopts a constant SNR control policy: SNRS,MDT
t,k = ν. Then, for t+1 ∈ IE , we have: E

[
pt+1

]
= ut+1

and E
∥∥ut+1 − pt+1

∥∥2 ≤
(
1 + 1

ν

)
d
K ζ̄

2
t+1−E + 4E2

Kν η
2
tH

2.

Proof. Note that if t + 1 ∈ IE , so does t + 1 − E. Insert dkt+1 = vkt+1 −wk
t+1−E into pkt+1, we have E

[
pt+1

]
=

ut+1 +
1
KE

[∑
k∈St

nkt+1

]
− 1

KE
[∑

k∈St
ekt+1−E

]
= E [ut+1]. As for the variance, we have

E
∥∥ut+1 − pt+1

∥∥2 =
1

K2
E

∥∥∥∥∥∑
k∈St

nkt+1

∥∥∥∥∥
2

+
1

K2
E

∥∥∥∥∥∑
k∈St

ekt+1−E

∥∥∥∥∥
2

=
1

K2ν
E

∥∥∥∥∥∑
k∈St

dkt+1

∥∥∥∥∥
2

+
dζ̄2t+1−E

K
(11)

where the last equality comes from the constant uplink SNR control, (2.9), and the assumption that each client has the

same downlink noise power ζ̄2t , ∀k ∈ [N ]. We further have

E

∥∥∥∥∥∑
k∈St

dkt+1

∥∥∥∥∥
2

= E

∥∥∥∥∥∑
k∈St

(vkt+1 −wt+1−E)

∥∥∥∥∥
2

+ dKζ̄2t+1−E

≤ ESt

∑
k∈St

ESG

∥∥∥∥∥
t∑

τ=t+1−E
ητ∇Fk(wk

τ , ξ
k
τ )

∥∥∥∥∥
2
+ dKζ̄2t+1−E ≤ 4E2Kη2tH

2 + dKζ̄2t+1−E

(12)
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using the Cauchy-Schwarz inequality, Assumption 1− 4, and ηt+1−E < ηt−E ≤ 2ηt. Plugging (12) back to (11) gives

E
∥∥ut+1 − pt+1

∥∥2 =
1

K2ν
E

∥∥∥∥∥∥
∑

k∈St+1

dkt+1

∥∥∥∥∥∥
2

+
dζ̄2t+1−E

K
≤
(
1 +

1

ν

)
d

K
ζ̄2t+1−E +

4E2

Kν
η2tH

2,

which completes the proof.

We are now ready to present the proof of Theorem 3, which is similar to that of Theorem 2. In particular, the

analysis of four cases in Section B still hold, with the only change that (10) is updated to (13) below using Lemma 5

and the new definition of D in Theorem 3.

E
∥∥pt+1 −w∗∥∥2 ≤ (1− ηtµ)E ∥pt −w∗∥2 + (1− ηtµ)

d

N
ζ̄2t +

(
1 +

1

ν

)
d

K
ζ̄2t + η2t (D − d). (13)

We note that the constant uplink SNR control is already used in Lemma 5 and (13). Then, by the definition of

∆t = E ∥pt −w∗∥2 and controlling the downlink SNR such that ζ̄2t ≤ NKη2t
(1−ηtµ)K+(1+ 1

ν )N
, we have ∆t+1 ≤ (1 −

ηtµ)∆t + η2tD. The remaining proof follows using the same induction method.

D Proof of Theorem 4

D.1 Preliminaries

We first define the following local training variables for client k: vkt+1 ≜ pkt − ηt∇f̃k(pkt ); when t+ 1 /∈ IE , we have

vkt+1 = ukt+1 = wk
t+1 = pkt+1; when t+1 ∈ IE , we have: ukt+1 = 1

K

∑
i∈[K] v

i
t+1, wk

t+1 = 1
K

∑
i∈[K] h

H
s hk(v

i
t+1−

wt+1−E) +
1
KNt+1hs +wt+1−E and

pkt+1 ≜

wk
t+1 + z̃kt+1 if k ∈ [K],

wk
t+1 if k /∈ [K];

where Nt+1 ≜ [n1, · · · ,ni, · · · ,nd]H ∈ Cd×M is the stack of uplink noise in (3.5), and

z̃kt+1 ≜


√
K
[
Re(zk1/g1), · · · ,Re(zkd/gd)

]H ∈ Cd×1 if k ∈ [K],

0 otherwise,

are the downlink noise in (3.12), respectively. Then, we construct the following virtual sequences: vt = 1
N

∑N
k=1 u

k
t , ut =

1
N

∑N
k=1 v

k
t , wt = 1

N

∑N
k=1 w

k
t , and pt = 1

N

∑N
k=1 p

k
t . We also define gt = 1

N

∑N
k=1 ∇fk(wk

t ) and

gt = 1
N

∑N
k=1 ∇f̃k(wk

t ) for convenience. Therefore, vt+1 = wt − ηtgt and E [gt] = gt. Note that the global
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model wt+1 is only meaningful when t+1 ∈ IE , hence we have wt+1 ≜ 1
K

∑
k∈[K] w

k
t+1 = 1

N

∑N
k=1 w

k
t+1 = wt+1.

Thus it is sufficient to analyze the convergence of ∥wt+1 −w∗∥2 to evaluate random orthogonalization.

D.2 Lemmas

We first establish the following lemmas that are useful in the proof of Theorem 4.

Lemma 6. Let Assumptions 1-4 hold. With ηt ≤ 2ηt+E for all t ≥ 0 and ∀t + 1 ∈ IE , we have E [wt+1] =

ut+1, and E ∥wt+1 − ut+1∥2 ≤ 4
K

[
K
M + 1

SNRUL

]
η2tE

2H2.

Proof. We take expectation over randomness of fading channel and channel noise. As mentioned in Section 3.3,

leveraging channel hardening and favorable propagation properties, we have

E [wt+1] = E

[
1

N

N∑
k=1

wk
t+1

]
= E[wk

t+1] = E

 1

K

∑
i∈[K]

hHs hi(v
i
t+1 −wt+1−E) +

1

K
Nt+1hs +wt+1−E


= E

 1

K

∑
i∈[K]

hHs hi(v
i
t+1 −wt+1−E)

+ E
[
1

K
Nt+1hs

]
+ E [wt+1−E ]

=
1

K

∑
i∈[K]

E

 ∑
k∈[K]

hHk hi(v
i
t+1 −wt+1−E)

+wt+1−E

=
1

K

∑
i∈[K]

E
[
hHi hi(v

i
t+1 −wt+1−E)

]
+

1

K

∑
i∈[K]

E

 ∑
k∈[K],k ̸=i

hHk hi(v
i
t+1 −wt+1−E)

+wt+1−E

=
1

K

∑
i∈[K]

(vit+1 −wt+1−E) +wt+1−E =
1

K

∑
i∈[K]

vit+1 = ut+1.

We next evaluate the variance of wt+1. Based on the facts that E[hHi hi] = 1, and ∀i ̸= j, we have E[hHi hj ] = 0,

Var[hHi hj ] =
1
M , and xi and xj are independent, we have

E ∥wt+1 − ut+1∥2 = E

∥∥∥∥∥∥ 1

K

∑
i∈[K]

hHs hi(v
i
t+1 −wt+1−E) +

1

K
Nt+1hs +wt+1−E − 1

K

∑
i∈[K]

vit+1

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

K

∑
k∈[K]

x̂k −
1

K

∑
k∈[K]

xk

∥∥∥∥∥∥
2

=
1

K2
E

∥∥∥∥∥∥
∑
k∈[K]

hHk hkxk +
∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxj +Nt+1

∑
k∈[K]

hk −
∑
k∈[K]

xk

∥∥∥∥∥∥
2

=
1

K2

E
∥∥∥∥∥∥
∑
k∈[K]

hHk hkxk

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥
∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxj

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥Nt+1

∑
k∈[K]

hk

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥
∑
k∈[K]

xk

∥∥∥∥∥∥
2

+ 2E

 ∑
k∈[K]

hHk hkxk
∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxj

+ 2E

 ∑
k∈[K]

hHk hkxkNt+1

∑
k∈[K]

hk
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− 2E

 ∑
k∈[K]

hHk hkxk
∑
k∈[K]

xk

+ 2E

 ∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxjNt+1

∑
k∈[K]

hk


− 2E

 ∑
k∈[K]

∑
j∈[K],j ̸=k

hHk hjxj
∑
k∈[K]

xk

− 2E

Nt+1

∑
k∈[K]

hk
∑
k∈[K]

xk


=

1

K2

(1 + 1

M

) ∑
k∈[K]

E ∥xk∥2 +
K − 1

M

∑
k∈[K]

E ∥xk∥2 +
dK

SNRUL
+
∑
k∈[K]

E ∥xk∥2 − 2
∑
k∈[K]

E ∥xk∥2


=
1

K2

K
M

∑
k∈[K]

E ∥xk∥2 +
∑
k∈[K] E ∥xk∥2

SNRUL

 =
1

K2

[
K

M
+

1

SNRUL

] ∑
k∈[K]

E ∥xk∥2

≤ 1

K2

[
K

M
+

1

SNRUL

] ∑
k∈[K]

E

t∑
i=t+1−E

∥∥∥ηi∇f̃k(wk
i )
∥∥∥ ≤ 1

K

[
K

M
+

1

SNRUL

]
η2t+1−EE

2H2

≤ 4

K

[
K

M
+

1

SNRUL

]
η2tE

2H2,

where in the last inequality we use the fact that ηt is non-increasing and ηt+1−E ≤ 2ηt.

Lemma 7. Let Assumptions 1-4 hold and downlink SNR scales SNRDL ≥ 1−µηt
η2t

as learning round t. ∀t+ 1 ∈ IE , we

have E
[
pt+1

]
= wt+1, and E

∥∥pt+1 −wt+1

∥∥2 ≤
(

dMK
N2(K+M)

)
η2t

1−µηt .

Proof. We first show that

E
[

Re
(
zki
gk

)]
= Re

(
E
[
zki
] 1

E [gk]

)
= 0,

and

Var
[

Re
(
zki
gk

)]
= E

[
Re
(
zki
gk

)
Re
(
zk

∗

i

gk∗

)]
= E

[
Re
(
zki z

k∗

i

gkgk∗

)]
≤

E
[
Re(zk

∗

i zki )
]

E [Re(g∗kgk)]

=
1/(2SNRDL)

1/2(1 +K/M)
=

(
M

K +M

)
1

SNRDL
,

from which we can easily obtain E
[
z̃kt+1

]
= 0 and Var

[
z̃kt+1

]
=
(

M
K+M

)
d

SNRDL
. Therefore, we have

E
[
pt+1

]
=

1

N

N∑
k=1

wk
t+1 +

1

N

∑
k∈[K]

E
[
z̃kt+1

]
= wt+1,

and

E
∥∥pt+1 −wt+1

∥∥2 = E

∥∥∥∥∥∥ 1

N

∑
k∈[K]

z̃kt+1

∥∥∥∥∥∥
2

=
1

N2

∑
k∈[K]

E
∥∥z̃kt+1

∥∥2
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=

(
MK

N2(K +M)

)
d

SNRDL
≤
(

dMK

N2(K +M)

)
η2t

1− µηt
.

D.3 Proof of Theorem 4

We need to consider four cases for the analysis of the convergence of E ∥wt+1 −w∗∥2.

1) If t /∈ IE and t+ 1 /∈ IE , vt+1 = wt+1 and pt = wt. Using Lemma 2, we have:

E
∥∥pt+1 −w∗∥∥2 = E ∥vt+1 −w∗∥2 ≤ (1− ηtµ)E ∥wt −w∗∥2 + η2tE ∥gt − gt∥

2
+ 6Lη2tΓ

+ 2E

[
1

N

N∑
k=1

∥∥wt −wk
t

∥∥2] ≤ (1− ηtµ)E ∥pt −w∗∥2 + η2t

[
N∑
k=1

δ2k
N2

+ 6LΓ + 8(E − 1)2H2

]
.

2) If t ∈ IE and t+ 1 /∈ IE , we still have vt+1 = wt+1. With pt = wt +
1
N

∑N
k=1 z̃

k
t , we have:

∥wt −w∗∥2 = ∥pt −wt +wt −w∗∥2 = ∥wt −w∗∥2 + ∥wt − pt∥
2︸ ︷︷ ︸

A1

+2 ⟨wt − pt,pt −w∗⟩︸ ︷︷ ︸
A2

.

We first note that the expectation of A2 over the noise and fading channel randomness is zero since we have

E [wt − pt] = 0. Second, the expectation of A1 can be bounded using Lemma 7. We then have

E ∥wt+1 −w∗∥2 = E ∥vt+1 −w∗∥2 ≤ (1− ηtµ)E ∥wt −w∗∥2 + (1− ηtµ)E ∥wt − pt∥
2

+ η2t

[
N∑
k=1

H2
k

N2
+ 6LΓ + 8(E − 1)2H2

]

≤ (1− ηtµ)E ∥wt −w∗∥2 + η2t

[
N∑
k=1

H2
k

N2
+ 6LΓ + 8(E − 1)2H2 +

MK

N2(K +M)

]
. (14)

3) If t /∈ IE and t + 1 ∈ IE , then we still have pt = wt. For t + 1, we need to evaluate the convergence of

E ∥wt+1 −w∗∥2. We have

∥wt+1 −w∗∥2 = ∥wt+1 − ut+1 + ut+1 −w∗∥2

= ∥wt+1 − ut+1∥2︸ ︷︷ ︸
B1

+ ∥ut+1 −w∗∥2︸ ︷︷ ︸
B2

+2 ⟨wt+1 − ut+1,ut+1 −w∗⟩︸ ︷︷ ︸
B3

.
(15)
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We first note that the expectation of B3 over the noise is zero since we have E [ut+1 −wt+1] = 0 and the expectation

of B1 can be bounded using Lemma 6. We next write B2 into

∥ut+1 −w∗∥2 = ∥ut+1 − vt+1 + vt+1 −w∗∥2

= ∥ut+1 − vt+1∥2︸ ︷︷ ︸
C1

+ ∥vt+1 −w∗∥2︸ ︷︷ ︸
C2

+2 ⟨ut+1 − vt+1,vt+1 −w∗⟩︸ ︷︷ ︸
C3

.
(16)

Similarly, the expectation of C3 over the noise is zero since we have E [ut+1 − vt+1] = 0 and the expectation of C1

can be bounded using Lemma 4. Therefore, we have

E ∥wt+1 −w∗∥2 ≤ E ∥vt+1 −w∗∥2 + 4

K

[
K

M
+

1

SNRUL

]
η2tE

2H2 +
N −K

N − 1

4

K
η2tE

2H2 ≤ (1− ηtµ)E ∥wt −w∗∥2

+ η2t

[
N∑
k=1

H2
k

N2
+ 6LΓ + 8(E − 1)2H2 +

4

K

(
K

M
+

1

SNRUL

)
E2H2 +

N −K

N − 1

4

K
E2H2

]
.

(17)

4) If t ∈ IE and t+ 1 ∈ IE , vt+1 ̸= wt+1 and pt ̸= wt. (Note that this is possible only for E = 1.) Combining

the results from the previous two cases, we have

E ∥wt+1 −w∗∥2 ≤ (1− ηtµ)E ∥wt −w∗∥2

+

[
N∑
k=1

H2
k

N2
+ 6LΓ + 8(E − 1)2H2 +

4

K

(
K

M
+

1

SNRUL

)
E2H2 +

N −K

N − 1

4

K
E2H2 +

MK

N2(K +M)

]
.

(18)

Let ∆t = E ∥wt −w∗∥2. From (F.2), (14), (17) and (18), it is clear that no matter whether t+ 1 ∈ IE or t+ 1 /∈ IE ,

we always have

∆t+1 ≤ (1− ηtµ)∆t + η2tB,

where

B =

N∑
k=1

H2
k

N2
+ 6LΓ + 8(E − 1)2H2 +

4

K

(
K

M
+

1

SNRUL

)
E2H2 +

N −K

N − 1

4

K
E2H2 +

MK

N2(K +M)
.

Define v ≜ max{ 4B
µ2 , (1 + γ)∆1}, by choosing ηt = 2

µ(t+γ) , we can prove ∆t ≤ v
t+γ by induction:

∆t+1 ≤
(
1− 2

t+ γ

)
∆t +

4B

µ2(t+ γ)2
=
t+ γ − 2

(t+ γ)2
v +

4B

µ2(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

(
4B

µ2(t+ γ)2
− v

(t+ γ)2

)
≤ v

t+ γ + 1
.
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By the L-smoothness of f and v ≤ 4B
µ2 + (1 + γ)∆1, we can prove the result in (3.23).

E Proofs of Theorems 6, 7, and 8

E.1 Lemmas

We first establish the necessary lemmas for the proofs.

Lemma 8. Let P and Q be two Cauchy probability distributions Cauchy(0, γ) and Cauchy(θ, γ), with PDF P (x) =

γ/π(x2 + γ2) and Q(x) = γ/π[(x− θ)2 + γ2], respectively. Q(x)/P (x) = (x2 + γ2)/[(x − θ)2 + γ2] reaches

its maximum at xmax = 1
2 (θ +

√
θ2 + 4γ2) with [Q(x)/P (x)]max = [

√
θ2 + 4γ2 + θ]/[

√
θ2 + 4γ2 − θ], and its

minimum at xmin = 1
2 (θ −

√
θ2 + 4γ2) with [Q(x)/P (x)]min = [

√
θ2 + 4γ2 − θ]/[

√
θ2 + 4γ2 + θ].

Proof. The results can be directly obtained by taking the first-order derivative of Q(x)
P (x) and setting ∂

∂x
Q(x)
P (x) = 0.

Lemma 9 (Proposition 3.3 in [126]). Let P and Q be probability distributions satisfying D∞(P ||Q) ≤ ϵ and

D∞(Q||P ) ≤ ϵ. Then Dα(P ||Q) ≤ 1
2αϵ

2 for all α > 1.

Lemma 10 (Proposition 3 in [119]). If f is an (α, ϵ)-Rényi DP mechanism, it also satisfies (ϵ+ log(1/δ)
α−1 , δ)-DP for

any 0 < δ < 1.

E.2 Proof of Theorem 6

Define neighboring datasets D =
⋃M
i=1 Di and D′ = {

⋃M
i=1,i̸=k Di} ∪ D′

k, where D′
k ≜ Dk ∪ {z} has one more

element than Dk. As we have assumed that all datasets {Di, i = 1, · · · ,M} have the same size D, the size of D′
k is

D′ ≜ D + 1. We have c =

 D

dbatch

 and c′ =

 D′

dbatch

 different mini-batches for dataset {Di, i = 1, · · · ,M} and

D′
k, respectively. We further denote set Ξi ≜ {ξi,1, · · · , ξi,c} as a collection of all the mini-batches corresponding to

{Di, i = 1, · · · ,M}. We next calculate the number of mini-batches in dataset D′
k. It is straightforward to verify that

c′ =

D + 1

dbatch

 =

 D

dbatch

+

 D

dbatch − 1

, which reveals that there are

 D

dbatch

 mini-batches in D′
k that are the

same as those in Ξk, and the remaining

 D

dbatch − 1

 mini-batches are the ones that contain the data sample z. We

denote Ξ′
k = {ξ′k,1, · · · , ξ′k,c′−c} as a collection of all the mini-batches that contain the data sample z. Therefore, all

the possible mini-batches of D′
k are in Ξk ∪ Ξ′

k.
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We note that, in each learning round, K of total M clients are randomly selected. Therefore, there are total

χ ≜

M
K

 cK combinations of mini-batches in D. We denote St = {st,1, · · · , st,i, · · · , st,K} as the index set

for the K selected clients at t-th learning round, and it is easy to verify that we have

M
K

 combinations for

client selection per learning round. Therefore, we further denote each possible mini-batch combination as ξj ≜

{ξst,1,c1 , · · · , ξst,i,ci , · · · , ξst,K ,cK}, j = 1, · · · , χ, where ξst,i,ci ∈ Ξst,i ,∀st,i ∈ St. As for D′, there are totalM
K

 cK +

M − 1

K − 1

 (c′ − c)cK−1 mini-batch combinations. Besides the same χ combinations in D, there are

additional χ′ ≜

M − 1

K − 1

 (c′−c)cK−1 mini-batch combinations in D′, which contains the mini-batch of the k-th client

and is chosen from Ξ′
k. We denote them similarly as ξ′j ≜ {ξst,1,c1 , · · · , ξst,i,ci , · · · , ξst,K−1,cK−1

, ξ′k,c′k
}, j = 1, · · ·χ′,

where ξst,i,ci ∈ Ξst,i ,∀st,i ∈ St\[k], and ξ′k,c′k ∈ Ξ′
k. In addition, we use g(ξj) to denote the noise-free global models

calculated from mini-batch combination ξj .

Building on these, the mechanism M(D) can be viewed as a random vector sampling from the following distribution:

M(D) =

χ∑
j=1

1

χ
Cauchy(g(ξj), γId).

Similarly,

M(D′) =

χ∑
j=1

1

χ+ χ′Cauchy(g(ξj), γId) +

χ′∑
j=1

1

χ+ χ′Cauchy(g(ξ
′
j), γId). (19)

We notice that χ
′

χ = K
M

c′−c
c and c′

c = 1 + dbatch
D+1−dbatch

. Defining q ≜ dbatch
D+1−dbatch

and p ≜ K
M , M(D′) can be re-written

as

M(D′) =
1

χ+ χ′

χ∑
j=1

[
Cauchy(g(ξj), γId) +

χ′

χ
Cauchy(g(ξ′⌈j∗χ′

χ ⌉), γId)
]

=
1

χ

χ∑
j=1

[ χ

χ+ χ′Cauchy(g(ξj), γId) +
χ

χ+ χ′
χ′

χ
Cauchy(g(ξ′⌈j∗χ′

χ ⌉, γId)
]

=

χ∑
j=1

1

χ

[(
1− pq

1 + pq

)
Cauchy(g(ξj), γId) +

pq

1 + pq
Cauchy(ξ′⌈j∗pq⌉, γId)

]
,
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where the first equality comes from replicating each of the χ′ items in the second summation in Eqn. (19) χ
′

χ times,

thus allowing the summation to be over the same range as the first summation.

We next bound the Rényi divergence for α = +∞. Since Rényi divergence is quasi-convex, we have

D∞(M(D)||M(D′))

≤ sup
j
D∞

[
Cauchy(g(ξj), γId)||(1−

pq

1 + pq
)Cauchy(g(ξj), γId) +

pq

1 + pq
Cauchy(g(ξ′⌈j∗pq⌉), γId)

]
≤ sup

j
D∞

[
Cauchy(0, γId)||(1−

pq

1 + pq
)Cauchy(0, γId) +

pq

1 + pq
Cauchy(g(ξ′⌈j∗pq⌉)− g(ξj), γId)

]
.

As shown in (4.6),
∥∥∥g(ξ′⌈j∗pq⌉)− g(ξj)

∥∥∥
2
≤ 2C. Therefore, via a rotation, we have that g(ξ′⌈j∗pq⌉)− g(ξj) = cξe1

where cξ ≤ 2C. By the additivity of Rényi divergence for product distributions [127], we have that

D∞(M(D)||M(D′)) ≤ D∞

[
Cauchy(0, γ)||(1− pq

1 + pq
)Cauchy(0, γ) +

pq

1 + pq
Cauchy(2C, γ)

]
.

We next bound D∞(M(D)||M(D′)) and D∞(M(D′)||M(D)). Based on the results in Lemma 8, we have

max

[
Cauchy(2C, γ)

Cauchy(0, γ)

]
=

√
C2 + γ2 + C√
C2 + γ2 − C

,

and

min

[
Cauchy(2C, γ)

Cauchy(0, γ)

]
=

√
C2 + γ2 − C√
C2 + γ2 + C

.

Therefore, D∞(M(D)||M(D′)) and D∞(M(D′)||M(D)) can be bounded respectively as follows:

D∞

[
(1− pq

1 + pq
)Cauchy(0, γ) +

pq

1 + pq
Cauchy(2C, γ)||Cauchy(0, γ)

]
=sup log

(
1− pq

1 + pq
+

pq

1 + pq

Cauchy(2C, γ)

Cauchy(0, γ)

)
≤ log

(
1 +

pq

1 + pq

2C
√
C2 + γ2 + 2C2

γ2

)

and

D∞

[
Cauchy(0, γ)||(1− pq

1 + pq
)Cauchy(0, γ) +

pq

1 + pq
Cauchy(2C, γ)

]

=sup log

 1

1− pq
1+pq +

pq
1+pq

Cauchy(2C,γ)
Cauchy(0,γ)

 ≤ log

(
1 +

pq

1 + pq

2C
√
C2 + γ2 − 2C2

γ2

)
.
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It is straightforward to verify that D∞(M(D)||M(D′)) ≥ D∞(M(D′)||M(D)),∀p, q, such that 0 < pq
1+pq < 1.

Therefore, both D∞(M(D)||M(D′)) and D∞(M(D′)||M(D)) can be bounded by log
(
1 + pq

1+pq

2C
√
C2+γ2+2C2

γ2

)
.

Based on Lemma 9, we can guarantee Dα(M(D)||M(D′)) ≤ 1
2α log2

(
1 + pq

1+pq

2C
√
C2+γ2+2C2

γ2

)
, which completes

the proof.

E.3 Proof of Theorem 7

Based on Theorem 6 and the composition rule of Rényi DP as shown in Lemma 10, the Rényi DP guarantee for total

T learning rounds is
[
1
2Tα log2

(
1 + pq

1+pq

2C
√
C2+γ2+2C2

γ2

)
, α

]
-Rényi DP. Therefore, the proposed design satisfies

(ϵ′, δ)-DP, where

ϵ′ = min
α>1

1

2
Tα log2

(
1 +

pq

1 + pq

2C
√
C2 + γ2 + 2C2

γ2

)
+

log(1/δ)

α− 1

≥
√
2T log(

1

δ
) log

(
1 +

pq

1 + pq

2C
√
C2 + γ2 + 2C2

γ2

)
+

1

2
T log2

(
1 +

pq

1 + pq

2C
√
C2 + γ2 + 2C2

γ2

)
.

E.4 Proof of Theorem 8

Define neighboring datasets D =
⋃M
i=1 Di and D′ =

⋃M
i=1 Di ∪ D′

k, where D′
k is an arbitrary local dataset of a client

k. For dataset D, K of the total M clients are randomly scheduled for the task in each learning round. We denote

Sj ,∀j = 1, · · · , ψ, where ψ ≜
(M
K

)
, as the set of all the possible client combinations during a single learning round

for dataset D. For dataset D′, beside the previous ψ combinations, there are additional ψ′ ≜
( M

K − 1

)
combinations

that contain client k. We denote them as S ′
j ,∀j = 1, · · · , ψ′. Therefore, the mechanism M(D) samples from the

following distribution

M(D) =
1

ψ

ψ∑
j=1

Cauchy(g(Sj), γId).

Similarly,

M(D′) =
1

ψ + ψ′

ψ∑
j=1

Cauchy(g(Sj), γId) +
1

ψ + ψ′

ψ′∑
j=1

Cauchy(g(S ′
j), γId)

=
1

ψ

[ ψ

ψ + ψ′

ψ∑
j=1

Cauchy(g(Sj), γId) +
ψ

ψ + ψ′
ψ′

ψ
Cauchy(g(S ′

j), γId)
]

=
1

ψ

[(
1− K

M + 1

) ψ∑
j=1

Cauchy(g(Sj), γId) +
K

M + 1
Cauchy(g(S ′

j), γId)
]
.
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By the definition of p ≜ K
M+1 and following the similar techniques in Appendix E.2, D∞(M(D)||M(D′)) and

D∞(M(D′)||M(D)) can both be bounded by log

(
1 + p

2C
√
C2+γ2+2C2

γ2

)
. Again, based on Lemma 9, we can

guarantee Dα(M(D)||M(D′)) ≤ 1
2α log2

(
1 + p

2C
√
C2+γ2+2C2

γ2

)
, which completes the single round DP guarantee.

The proof of the client-level DP guarantee for the composition of T rounds follows the same as that in Appendix E.3.

F Proof of Theorem 9

With a slight abuse of notation, we change the timeline to be with respect to the overall SGD iteration time steps instead

of the communication rounds, i.e.,

t = 1, · · · , E︸ ︷︷ ︸
round 1

, E + 1, · · · , 2E︸ ︷︷ ︸
round 2

, · · · , · · · , (T − 1)E + 1, · · · , TE︸ ︷︷ ︸
round T

.

Note that the global model wt is only accessible at the clients for specific t ∈ IE , where IE = {nE | n = 1, 2, . . . },

i.e., the time steps for communication. The notations for ηt are similarly adjusted to this extended timeline, but their

values remain constant within the same round. The key technique in the proof is the perturbed iterate framework in

[58]. In particular, we first define the following variables for client k ∈ [M ]:

vkt+1 ≜ wk
t − ηt∇f̃k(wk

t );

ukt+1 ≜


vkt+1 if t+ 1 /∈ IE ,

1
K

∑K
k=1 v

i
t+1 if t+ 1 ∈ IE ;

wk
t+1 ≜


vkt+1 if t+ 1 /∈ IE ,

ukt+1 +
1
Knt+1 if t+ 1 ∈ IE ;

where nt+1 ≜ Cmax,t

C

[∑N
k=K+1

aT
k n1

aT
k ns

, · · · ,
∑N
k=K+1

aT
k nd

aT
k ns

]T
∈ Cd×1 is the effective noise vector after de-normalization.

Note that nt+1 is a truncated Cauchy distribution vector with the following PDF:

f(nt+1,i) =
γ(

n2t+1,i + γ2
) (

arctan
[
B−

∑K
k=1 x

i
k

γ

]
+ arctan

[
B+

∑K
k=1 x

i
k

γ

]) ,
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where nt+1,i ∈
[
−B −

∑K
k=1 x

i
k, B −

∑K
k=1 x

i
k

]
, ∀i = 1, · · · , d. We further have

E
∥∥∥∥Cmax,t

C
nt+1,i

∥∥∥∥2 =
C2

max,t

C2

 2γB

arctan
[
B−

∑K
k=1

xi
k

γ

]
+ arctan

[
B+

∑K
k=1

xi
k

γ

] − γ2


≤

γ2C2
max,t

C2 arctan
(

B+C
γ

) [B
γ

− arctan

(
B + C

γ

)]

≜ C2
max,tD(γ).

Then, we construct the following virtual sequences:

vt =
1

M

M∑
k=1

vkt , ut =
1

M

M∑
k=1

ukt , and wt =
1

M

M∑
k=1

wk
t .

We also define gt =
1
M

∑M
k=1 ∇fk(wk

t ) and gt =
1
M

∑M
k=1 ∇f̃k(wk

t ) for convenience. Therefore, vt+1 = wt − ηtgt

and E [gt] = gt. Note that the global model wt+1 is only meaningful when t + 1 ∈ IE . Hence, we have wt+1 =

1
K

∑K
k=1 w

k
t+1 = wk

t+1 = 1
M

∑K
k=1 w

k
t+1 = wt+1. Thus it is sufficient to analyze the convergence of ∥wt+1 −w∗∥2

to evaluate FLORAS.

F.1 Lemmas

Lemma 11. Let Assumptions 1-4 hold. With ηt ≤ 2ηt+E for all t ≥ 0 and ∀t+ 1 ∈ IE , we have

E ∥wt+1 − ut+1∥2 ≤ 4dD(γ)

K2
η2tE

2H2.

Proof. As shown previously, nt+1 is a truncated Cauchy random vector. We have E[nHt+1nt+1] ≤ dC2
max,tD(γ).

Recall the definition that Cmax,t ≜ max{
∥∥xkt − µk

∥∥
2
,∀k}, which achieves its maximum at kmax, and we use

µkmax
to denote the element-wise mean of xkmax

t . Since wt+1 = 1
M

∑M
k=1 w

k
t+1 = ut+1 +

1
Knt+1, we can bound

E ∥wt+1 − ut+1∥2 as

E ∥wt+1 − ut+1∥2 = E
∥∥∥∥ 1

K
nt+1

∥∥∥∥2 ≤ E

[
dC2

max,tD(γ)

K2

]
=
dD(γ)

K2
E
∥∥∥xkmax

t − µkmax

∥∥∥2
≤ dD(γ)

K2
E
∥∥∥xkmax

t

∥∥∥2 ≤ dD(γ)

K2
E

t∑
i=t+1−E

E
∥∥∥ηi∇f̃kmax(w

kmax
i )

∥∥∥2
≤ dD(γ)

K2
η2t+1−EE

2H2 ≤ 4dD(γ)

K2
η2tE

2H2,

where in the last inequality we use the fact that ηt is non-increasing and ηt+1−E ≤ 2ηt.
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F.2 Proof of Theorem 9

We next consider the convergence of E ∥wt+1 −w∗∥2.

1) If t+ 1 /∈ IE , vt+1 = wt+1. Using Lemma 2, we have:

E ∥wt+1 −w∗∥2 = E ∥vt+1 −w∗∥2 ≤ (1− ηtµ)E ∥wt −w∗∥2 + η2
t

[
M∑
k=1

H2
k

M2
+ 6LΓ + 8(E − 1)2H2

]
.

2) If t+ 1 ∈ IE , to evaluate the convergence of E ∥wt+1 −w∗∥2, we establish

∥wt+1 −w∗∥2 = ∥wt+1 − ut+1 + ut+1 −w∗∥2

= ∥wt+1 − ut+1∥2︸ ︷︷ ︸
A1

+ ∥ut+1 −w∗∥2︸ ︷︷ ︸
A2

+2 ⟨wt+1 − ut+1,ut+1 −w∗⟩︸ ︷︷ ︸
A3

.

The expectation of A1 can be bounded using Lemma 11. We then bound the expectation of A3 by the Cauchy–Schwarz

inequality:

E [2 ⟨wt+1 − ut+1,ut+1 −w∗⟩] ≤
2
√
dD(γ)

K
ηtEHE ∥ut+1 −w∗∥ ,

and it is now related to A2. Finally, we can write A2 as

∥ut+1 −w∗∥2 = ∥ut+1 − vt+1 + vt+1 −w∗∥2

= ∥ut+1 − vt+1∥2︸ ︷︷ ︸
B1

+ ∥vt+1 −w∗∥2︸ ︷︷ ︸
B2

+2 ⟨ut+1 − vt+1,vt+1 −w∗⟩︸ ︷︷ ︸
B3

.

Based on Lemma 4, the expectation of B3 over random user selection is zero, since we have E [ut+1 − vt+1] = 0. The

expectation of B1 can be bounded also by Lemma 4. Therefore, we have

E ∥wt+1 −w∗∥2 ≤

(
1 +

2
√
dD(γ)

K
ηtEH

)
E ∥vt+1 −w∗∥2

+

(
1 +

2
√
dD(γ)

K
ηtEH

)
M −K

M − 1

4

K
η2tE

2H2 +
4dD(γ)

K2
η2tE

2H2

≤ (1− ηtµ
′)E ∥wt −w∗∥2 + η2t

[(
1 +

2
√
dD(γ)

K
ηtEH

)

×

(
M∑
k=1

H2
k

M2
+ 6LΓ + 8(E − 1)2H2 +

M −K

M − 1

4

K
E2H2

)
+
4dD(γ)

K2
E2H2

]
,
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where µ′ ≜ µ − 2
√
dD(γ)EH/K. Let ∆t ≜ E ∥wt −w∗∥2. No matter whether t + 1 ∈ IE or t + 1 /∈ IE , we

always have

∆t+1 ≤ (1− ηtµ
′)∆t + η2tG,

where

G ≜

(
1 +

2
√

dD(γ)

K
EHη1

)(
M∑
k=1

H2
k

M2
+ 6LΓ + 8(E − 1)2H2 +

M −K

M − 1

4

K
E2H2

)
+

4dD(γ)

K2
E2H2.

Define v ≜ max{ 4G
µ′2 , (1 + r)∆1}. By choosing ηt = 2

µ′(t+r) , we can prove ∆t ≤ v
t+r by induction:

∆t+1 ≤
(
1− 2

t+ r

)
∆t +

4G

µ′2(t+ r)2
=
t+ r − 2

(t+ r)2
v +

4G

µ′2(t+ r)2

≤ t+ r − 1

(t+ r)2
v +

4G

µ′2(t+ r)2
− v

(t+ r)2
≤ v

t+ r + 1
.

By the L-smoothness of f and v ≤ 4G
µ′2 + (1 + r)∆1, we prove Theorem 9.
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