

Transport Layer Security Implementation Benchmarking and Comparative Analysis

(Technical Paper)

A Comparison Between For-profit and Nonprofit Open Source Software Development

(STS Paper)

A Thesis Prospectus Submitted to the

Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements of the Degree

Bachelor of Science, School of Engineering

Justin Zhang

Fall, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Technical Advisor

Briana Morrison, Department of Computer Science

STS Advisor

Travis Elliott, Department of Engineering and Society

1

Introduction

With how important competition is for companies, you would expect most modern software to

all be built on trade secrets and proprietary software; however, quite the opposite could be

considered true. For example, >95% of top web servers use Linux, an open source operating

system (Vaughan-Nichols, 2015). Open source software, first and foremost, gives free access to

its source code; it is also meant to be collaborative, with a license that grants free redistribution

and access to the source code of the software (Open Source Initiative, 2023).

Open source software is not a recent development, though it was not always as popular as

it is today. Software began in academia and research, which generally facilitates open

collaboration. Software was not considered copyrightable until Apple Computer, Inc. v. Franklin

Computer Corp. in 1974 (Nussbaum, 1984). As software development grew as a field and costs

increased, proprietary software became dominant. However, Richard Stallman started the GNU

project in 1983 to allow a user to run a computer on solely free and open source software.

Stallman also wrote the GNU General Public License (GPL) under which a lot of open source

software continues to be licensed under to this day. The Linux kernel, which powers most cloud

servers today (Jones 2021), was released under open source license by Linus Torvalds in 1992,

and when combined with GNU, GNU/Linux provides a fully free and open source operating

system (Torvalds 1992). A vast majority of companies use open source software, and the use of

open source software is only growing (SolutionsHub, 2023).

The technical portion of this thesis reflects on the work from an internship, where I

benchmarked various Transport Layer Security (TLS) implementations, including s2n-tls, the

implementation made by Amazon Web Services (AWS). The STS portion of this thesis analyzes

2

the motivations for a for-profit company to develop open source code and for other software

developers to develop open source code either independent or as part of a nonprofit organization.

3

s2n-tls Benchmarking and Comparative Analysis

CS4991 Capstone Report, 2023

Justin Zhang

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

jmz8rm@virginia.edu

ABSTRACT

As an intern for Amazon Web Services

(AWS), I designed previously nonexistent

simple and reliable comparative benchmarks

for AWS’s s2n-tls and other common

Transport Layer Security (TLS) libraries,

identifying areas for optimization and

ensuring that s2n-tls is performant. s2n-tls

handles hundreds of millions of connections

per second, making any small optimization

result in massive cost savings. The

benchmarking harness adapts each library

(s2n-tls, OpenSSL, and Rustls) to a common

interface and measures handshake latency,

throughput, and memory usage. s2n-tls was

found to be more performant than Rustls and

OpenSSL but at the cost of a higher memory

usage than Rustls, making memory a possible

target for optimization. Future work includes

incorporating benchmarks in testing to

prevent performance regressions before

deployment, more granular testing to get

more specific insights, and testing with more

parameters.

1. INTRODUCTION

TLS is a network protocol that ensures two

endpoints (ex. your computer and a web

server) communicate securely. TLS has two

main goals: authentication and encryption.

Authentication is the verification of an

endpoint’s identity, which prevents a bad

actor from pretending to be the server a client

might want to talk to. Encryption protects the

security of data in transit, which prevents

man-in-the-middle attacks, where a bad actor

would read but not necessarily alter data

transferred between a client and a server.

Computers use implementations of TLS

to establish connections using this protocol.

Each implementation might do this a little bit

differently and thus have different

performances, security risks, etc. For

example, an implementation could decide to

handle incoming data in series or in parallel.

The terms “TLS implementation” and “TLS

library” are generally interchangeable and

used as such in this report. One of the most

common TLS implementations is OpenSSL,

which is the de-facto open source TLS

implementation that comes with almost all

distributions of Linux. AWS also has their

own open source implementation of TLS,

s2n-tls, in part due to past security

vulnerabilities in OpenSSL.

TLS powers most of the Internet,

encrypting around 80% of general Internet

traffic and more than 95% of web traffic

(Zvik & Null, 2023). Cloud services, such as

AWS, especially rely on TLS, since their

services must be accessed via networking

through the Internet. s2n-tls itself powers

hundreds of millions of connections per

second. Any change in performance to a TLS

library such as s2n-tls thus has a broad impact

on cloud performance in general.

My internship project was to benchmark

s2n-tls against two other common TLS

implementations, namely OpenSSL and

Rustls, to ensure s2n-tls was performant and

4

to identify possible areas of optimization

where other libraries might be doing better.

2. RELATED WORKS

There are benchmarks that show that Rustls is

more performant than OpenSSL on

essentially all metrics (Biff-Pixton, 2019).

These benchmarks used a similar

methodology to mine but are not as well-

documented or extensible. They also do not

benchmark s2n-tls, which was important to

my team.

My team also has custom benchmarks that

simulate real network conditions, changing

latency, packet loss, and other parameters

(AWS, 2023). It uses the whole networking

stack with OS sockets, etc., so the numbers

from those benchmarks are representative of

what a user of the library might see. These

benchmarks are thorough, but they are

relatively hard to configure, slow to iterate

on, and have a lot of external factors. Because

of this, there was a gap in benchmarks that

were simple, fast, and easy to use, which this

project aimed to fill.

A sister team at AWS has benchmarks

comparing the performance of different

cryptography libraries, which all TLS

libraries call and use. Since most TLS

computation occurs during the calls to

underlying cryptography libraries, I expected

the performance of each TLS library to

correlate with the performance of their

respective underlying cryptography libraries.

3. PROJECT DESIGN

I was tasked with benchmarking s2n-tls

against OpenSSL and Rustls specifically.

OpenSSL is the main alternative to s2n-tls

internally at AWS; Rustls, on the other hand,

is not as widely used (ex. it has <25% of

GitHub stars that OpenSSL has), but as

mentioned above, there are benchmarks that

show it is more performant than OpenSSL in

almost every way.

The three main metrics benchmarked

were handshake latency, how fast a TLS

connection could be established; throughput,

how much data can be encrypted and

decrypted over a TLS connection in a given

amount of time; and memory, how much

space the data associated with a connection

takes in RAM. These are all important, since

a reduction in any one of these could translate

to massive cost savings for the company.

The application programming interfaces

(APIs) for s2n-tls, OpenSSL, and Rustls are

all very different. My first task was to create a

wrapper around each of the libraries that has a

common API for ease of use and testing. s2n-

tls and OpenSSL have mainly APIs in C, a

low-level programming language, while

Rustls only has an API in Rust, another low-

level programming language. Since s2n-tls

and OpenSSL also have Rust APIs (albeit

much less frequently used), the benchmarking

suite also used Rust.

The benchmarking framework used for

measuring handshake latency and throughput

was Criterion.rs. Criterion.rs is the de-facto

standard for benchmarking in Rust and

provides useful functionality for collecting,

analyzing, and visualizing data. For memory

benchmarking, I used Valgrind and its subtool

Massif, which profiles memory usage

throughout the runtime of a program, and

visualized the data myself with Plotters, a

plotting library written in Rust.

All benchmarks were run in a single CPU

thread with no concurrency, which is very

different from how a typical user would use

the s2n-tls library (which would be

asynchronously with concurrency). All data

was also sent between a mock client and

server over local buffers (not over an actual

connection) and thus sent much faster than it

would typically be. Because of this, the

absolute numbers from the benchmarks are

not accurate, but external factors were

reduced, and relative performance between

libraries was more accurate.

5

During preliminary testing, I found that a

large factor of TLS performance is which

cryptography library is being used. For

example, s2n-tls could use either OpenSSL’s

cryptography library or AWS’s own library,

AWS-LC, which was 3-4x faster for some

sets of parameters. Cryptography library

performance optimizations were out of the

scope of my project, so I decided to mainly

analyze the performance of each TLS library

as most commonly used: OpenSSL with its

native cryptography library, s2n-tls with

AWS-LC, and Rustls with ring, its default.

OpenSSL also has many different

versions that are still widely used. OpenSSL

1.1.1 is the main alternative to s2n-tls used

internally in AWS; OpenSSL 3.0.0 is the

default on Ubuntu, which is the operating

system I was using; and OpenSSL 3.1 is the

newest (and fastest) version. To align with the

goal of comparing these libraries as most

commonly used, I decided to focus on

OpenSSL 1.1.1, since it was the most

common version at AWS.

Finally, I also created historical

benchmarks, where older versions of s2n-tls

are benchmarked against the newer versions

to identify performance optimizations or

regressions. Due to design limitations, I only

made historical benchmarks for handshake

latency and throughput (and not memory). I

also could only benchmark versions after

about a year ago, since any versions before

that had a different API that was incompatible

with the benchmarking suite I made.

4. RESULTS

All benchmarking results were consistent,

reproducible, and easy to run, needing only a

few commands (if not only one command) to

generate effective visualizations in minutes. I

tested many different CPU architectures and

cloud instance types, with the benchmarks

working successfully on all of them.

I found that the signature algorithm

(ECDSA or RSA) used for authentication was

the most important factor in performance.

s2n-tls was 3-4x faster than both Rustls and

OpenSSL with ECDSA, while performance

was similar between the libraries with RSA.

ECDSA was also faster than RSA for all

libraries when similar parameters were

chosen for both. Other factors (like

handshake type and key share algorithm) had

no interesting impacts on handshake

performance or differences in performance

between the libraries.

For throughput, the results were a little

less drastic but still a win for s2n-tls. s2n-tls

was measured to have 15-20% higher

throughput than either Rustls or OpenSSL.

This was true for all parameters tested.

Memory was the only metric where s2n-

tls was not dominant. OpenSSL used over

twice the memory of s2n-tls, which in turn

used over twice the memory of Rustls. This

means that memory usage is a prime target

for optimization. However, after analyzing

which parts of s2n-tls and Rustls were using

the most memory and talking with the rest of

the team, we concluded that there were no

low-hanging fruit for memory optimizations.

Finally, with historical benchmarking, I

only found one significant change in

performance over the past year, which was an

around 15% speedup in throughput;

otherwise, handshake and throughput

performance was relatively consistent. The

version where this speedup occurred had

enabled a compile-time optimization for only

the Rust API of s2n-tls and left the core C

library untouched, meaning that for most

users of s2n-tls, there was no speedup from

that version. However, it shows us that the

historical benchmarks can successfully catch

performance changes.

5. CONCLUSION

Overall, my project filled a gap in s2n-tls

benchmarks, being simple, fast, and reliable.

The API I designed for the s2n-tls library for

the benchmarks was elegant, with my team

6

planning to replace all existing Rust tests with

ones that use the API I designed. I also

produced useful and actionable results that

my team did not have before: s2n-tls

generally outperforms Rustls and OpenSSL,

with only memory not being so, where Rustls

uses less memory than s2n-tls.

I also personally learned a lot over the

course of working on this project. This being

my first time in industry, I experienced the

software design process, working with a

team, and writing code at a very high

standard. I realized why I enjoyed software

engineering: its fast pace, continual learning,

and immediate results.

6. FUTURE WORK

As with a lot of benchmarking projects, there

are many things that could be extended to

improve this project. The most impactful few

things would be to incorporate the

benchmarks into testing to catch performance

regressions earlier, to test more libraries, and

to test more parameters.

Some smaller but still meaningful

extensions to the project could include:

separating the client and server halves of a

TLS connection and benchmarking each

separately; reducing external factors and

noise in the results; testing the performance

of a resumed TLS connection, where a lot of

the cryptographic computation has already

happened in a prior terminated connection;

varying the amount of data sent during

throughput testing; and varying the certificate

chain length used for TLS authentication.

These possible improvements and more are

all tracked in GitHub issue #4157 in the s2n-

tls GitHub repository (Zhang, 2023).

7. ACKNOWLEDGMENTS

First and foremost, I would like to thank my

mentor during my internship, James Mayclin,

for thoughtfully and patiently answering

every question I had. I attribute most of my

deep understanding of and passion for my

project to him.

Next, I would like to thank my manager,

Wesley Rosenblum, for always being

understanding and flexible, as well as being a

great resource and role model. He handled

most of the logistics and paperwork during

my internship and enabled me to have such a

fulfilling summer experience.

Finally, I would like to thank the whole

Transport Libraries team that I had the honor

of being a part of. I had the pleasure of

collaborating with everyone on the team at

some point. They were always excited to see

my new results, and I felt as if what I was

doing mattered.

Since s2n-tls is open source, we can see

all the code online; it is fulfilling to see my

team still building on my project to this day! I

could not have asked for a better internship,

and I hope our paths cross in the future.

REFERENCES

AWS. (2023, March 3). s2n-quic/netbench at

main · aws/s2n-quic. GitHub.

https://github.com/aws/s2n-

quic/tree/main/netbench

Birr-Pixton, J. (2019, July 1). TLS

performance: Rustls versus OpenSSL.

jbp.io. https://jbp.io/2019/07/01/rustls-vs-

openssl-performance.html

Synopsys. (2020, June 3). The heartbleed

bug. The Heartbleed Bug.

https://heartbleed.com/

Zhang, J. (2023, August 18). Possible

improvements to the benchmarking suite ·

Issue #4157 · aws/s2n-tls. GitHub.

https://github.com/aws/s2n-

tls/issues/4157

Zvik, E. W., & Null. (2023). Traditional

Firewalls Can’t Keep Up with the Growth

of Encrypted Traffic. Cato Networks.

https://www.catonetworks.com/blog/tradit

ional-firewalls-cant-keep-up-with-the-

growth-of-encrypted-traffic/

https://www.catonetworks.com/blog/traditional-firewalls-cant-keep-up-with-the-growth-of-encrypted-traffic/
https://www.catonetworks.com/blog/traditional-firewalls-cant-keep-up-with-the-growth-of-encrypted-traffic/
https://www.catonetworks.com/blog/traditional-firewalls-cant-keep-up-with-the-growth-of-encrypted-traffic/

7

STS Topic

The most commonly thought of open source libraries tend to not be maintained by large for-

profit companies and instead by independent software developers or non-profits, such as Linux.

However, many companies are tending more and more towards open source software. For

example, Twitter only recently switched to an open source model for it’s code, ostensibly to earn

customer trust (Clark, 2023). Amazon’s TLS implementation, s2n-tls, is also open source for the

same reason: to earn customer trust.

The STS thesis will examine open source software and the societal factors that contribute

to its development. Because the concept of open source is inherently tied to the meaning society

gives it, I will analyze open source software through the lens of the Societal Construction of

Technology (SCOT) STS framework. I will especially identify the different social groups and

stakeholders in open source software and discuss how that affects the development of open

source software, based on how Humphreys (2005) frames SCOT. Because there are many

different groups that are involved with development of open source software, such as the

developers, power users, maintainers, and security advocates, Humphrey’s framing of SCOT

with social groups will be useful in identifying how these different groups interact with open

source software and its development.

s2n-tls, OpenSSL, and Rustls, TLS libraries from the technical report, will act as case

studies for this analysis open source software, which each playing a different role. s2n-tls is

developed by a large company (Amazon) and is ostensibly made open source to earn trust of

direct and indirect users. OpenSSL is a very large open source library maintained the OpenSSL

Management Committee and the OpenSSL Software Foundation, a for-profit corporate entity

(Crunchbase, n.d.). Most contributions to OpenSSL are from people paid by their employer to

8

work on OpenSSL (Cox, 2023). Finally, Rustls’s top maintainers are funded by Prossimo, a

project of the Internet Security Research Group, a non-profit organization (Rustls, n.d.; Internet

Security Research Group, n.d.). With the diverse structures of these three libraries alone, I will be

able to discuss some of the many different ways open source software is created, maintained, and

funded.

The Linux kernel will also be a case study for analyzing open source software. The Linux

kernel is one of the oldest and most pervasive examples open source software, and it typically

comes bundled with other open source software (such as OpenSSL). Different distributions

(colloquially “distros”) of Linux are operating systems built on top of the Linux kernel, and there

are both many independent and nonprofit distributions and many that are maintained by for-

profit companies. Because of its long history and its prevalence, there are many possible case

studies involving open source software from Linux and its distributions alone.

For all of these examples, this thesis will also analyze how open source software

development is financed and how that might affect the development of the software. Full-time

free open source software developers have limited ways to fund their software development.

Some majors examples include selling maintenance of their software, such as with OpenSSL

(OpenSSL, n.d.); selling certifications for expertise and software, such as with The Linux

Foundation (The Linux Foundation, n.d.); having sponsorships; or just through donations in

general. Even if financial factors are not the primary concern of a open source software

developer, individuals still need some sort of income before any endeavors, developing software

or otherwise.

This thesis will also explore potential reasons for for-profit companies like Amazon to

develop some projects as open source, such as with s2n-tls. Amazon still has a majority of its

9

software as proprietary, with an open source project being maintained full-time by a team of

developers being the exception, not the norm. What makes s2n-tls special and what purpose does

keeping the library open source serve? Other such open source projects developed by companies

that otherwise mostly develop proprietary software will also be analyzed, and the potential

motivations for and effects of these open source projects will be examined. These motivations

and effects will then be contrasted with those of free and open source software projects.

Conclusion

We all interact with open source software every day, and it’s important to recognize where it

comes from and why it exists. The principles behind open source software are very idealistic, and

its reassuring to see the popularity of open source software; however, there are many other

stakeholders in its development, and it’s important to understand them. The technical report

describes how I benchmarked three such open source software libraries. Meanwhile, the STS

paper uses those three libraries (as well as Linux) to analyze the stakeholders of open source

software development and how societal influences affect the development, maintaining, and

financing of different open source software through the lens of SCOT.

10

References

Clark, M. (2023, March 31). Twitter takes its algorithm ‘open-source,’ as Elon Musk promised.

The Verge. https://www.theverge.com/2023/3/31/23664849/twitter-releases-algorithm-

musk-open-source

Cox, P. B. M. (2023, July 17). Who writes OpenSSL? - OpenSSL blog.

https://www.openssl.org/blog/blog/2023/07/17/who-writes-openssl/

Crunchbase. (n.d.). OpenSSL Software Foundation.

https://www.crunchbase.com/organization/openssl-software-foundation

Humphreys, L. (2005). Reframing social groups, closure, and stabilization in the social

construction of technology. Social epistemology, 19(2-3), 231-253.

Internet Security Research Group. (n.d.). About Internet Security Research Group.

https://www.abetterinternet.org/about/

Jones, D. (2021, August 25). More threats target Linux, a foundation for the cloud, report finds.

Cybersecurity Dive. https://www.cybersecuritydive.com/news/linux-threat-coin-miners-

ransomware/605561/

Nussbaum, J. L. (1984). Apple Computer, Inc. v. Franklin Computer Corporation puts the byte

back into copyright protection for computer programs. Golden Gate UL Rev., 14, 281.

Open Source Initiative. (2023, February 22). The Open Source Definition.

https://opensource.org/osd/

OpenSSL. (n.d.). Support contracts. https://www.openssl.org/support/contracts.html

Rustls. (n.d.). GitHub - rustls/rustls: A modern TLS library in Rust. GitHub.

https://github.com/rustls/rustls

SolutionsHub. (2023, January 30). What is Open-Source Software? EPAM SolutionsHub.

https://solutionshub.epam.com/blog/post/what-is-open-source-software

The Linux Foundation. (n.d.). Certification catalog.

https://training.linuxfoundation.org/certification-catalog/

Torvalds, L. (1992, January 15). Release notes for Linux 0.12. The Linux Kernel Archives.

https://mirrors.edge.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12

Vaughan-Nichols, S. (2015, October 15). Can the Internet exist without Linux? ZDNET.

https://www.zdnet.com/home-and-office/networking/can-the-internet-exist-without-linux/

Zvik, E. W., & Null. (2023). Traditional Firewalls Can’t Keep Up with the Growth of Encrypted

Traffic. Cato Networks. https://www.catonetworks.com/blog/traditional-firewalls-cant-

keep-up-with-the-growth-of-encrypted-traffic/

https://www.theverge.com/2023/3/31/23664849/twitter-releases-algorithm-musk-open-source
https://www.theverge.com/2023/3/31/23664849/twitter-releases-algorithm-musk-open-source
https://www.crunchbase.com/organization/openssl-software-foundation
https://opensource.org/osd/
https://www.openssl.org/support/contracts.html
https://mirrors.edge.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12

