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Abstract

Bidirectional satellite communication between earth terminals on the same frequency at the same time is an

emerging means of doubling spectral efficiency on satellite channels. With a linear satellite repeater, cancel-

lation of self-interference can be done with standard echo cancelling methods. However, satellite amplifiers

are normally operated in a highly-nonlinear regime, for maximum power output, and this complicates the

interference removal process. Our research studies two algorithms for ‘inverting’ the nonlinearity at the re-

ceiving terminal, making the resulting channel roughly linear, so echo cancellation again becomes attractive.

These methods are 1) a MAP detection approach which selects the most-probable choice among candidate

input sequences, given the observed amplifier output; and 2) a particle filtering approach which approxi-

mates the MMSE estimate of the input signal, given the output sequence. These approaches are compared

at different SNR’s and different amplifier backoff’s, and it is concluded that the particle filtering approach

is more robust in the presence of downlink noise,while also offering reasonable receiver complexity.
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Chapter 1

Introduction

This thesis deals with a specific problem in bidirectional (same frequency) satellite communication, wherein

two uplink signals transmit data on the same carrier frequency. A satellite relay amplifies the sum signal

(without demodulation and reencoding) and rebroadcasts to both communicating terminals. With this

method, we achieve up to double the spectral efficiency in bits/second/Hz that a traditional two-way system

achieves, either by use of non-overlapping frequencies or by time-sharing. Figure 1 shows a simple depiction

of the operational setup.

In the information theory literature this constitutes an instance of the two-way relay channel, formulated

originally by Shannon. Our choice for relay processing, however, is not the most general relay, but merely a

traditional amplify-and-forward relay.

For linear relaying amplifiers, it is known that amplify-forward relaying can perform relatively close to the

cut-set bound on the capacity region for the two-way relay channel, and this is beneficial because the relay

does not require sophisticated on-board processing. Amplify-forward processing enjoys complete flexibility to

uplink modulation/coding choice, and does not require user synchronization at the satellite. What makes the

protocol work in essence is that the downlink signal contains self-interference (or echo), which each terminal

knows as side-information, since the given terminal initiated the uplink it receives after delay. Consequently,

standard echo cancellation techniques [14], are feasible for the linear relay channel.

Satellite amplifiers (often called transponders) are nonlinear, as is any amplifier ultimately. In satellite

communication, it’s desired to operate near the maximum power operating point where the strongest down-

link is obtained, and where the DC-to-RF efficiency is highest. The nonlinearity is most simply modeled as

a memoryless nonlinearity imposing AM-to-AM and AM-to-PM distortion to the input RF signal. In this
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Figure 1.1: Two terminals and a satellite relay [29]

case each receiver terminal receives a nonlinear function of the sum of two uplink signals, and elimination

or cancellation of the echo is no longer straight-forward as in the linear amplifier case. Therein lies the

origin of the central problem of this thesis–how can we simply process the received signal to

extract the signal of interest, given the available side-information?

We will study two approaches, both rather heuristically-motivated. They have advantages of being

independent of constellation size, relative delay and carrier phase/frequency difference between the two

uplink signals, and can even tolerate differing data rates, a common situation in real applications. Common

to both methods is the aim of recovering a close approximation to the amplifier input waveform (sum of

two RF signals), and if this is roughly successful we have ‘inverted’ the nonlinearity, whence standard echo

cancellation becomes feasible. The methods in brief terms are

1. a MAP detection algorithm operating on the received signal for reconstructing the most-likely waveform

at the amplifier input. Based on knowledge of the amplifier characteristic and on a statistical model

for the received continuous-time signal, we do MAP detection on ambiguous slices of the signal (where

the nonlinearity is non-invertible). This is detailed and analyzed in Chapter 3.

2. waveform reconstruction using a Bayesian framework based on particle filtering, by trying to construct

the a posteriori p.d.f for the input signal, given the noisy downlink measurement. From this we output

the MMSE estimate, namely the mean of the posterior random variable. This method is discussed in

Chapter 4.
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Results to date indicate both methods are successful at achieving the objective, though the particle

filtering method seems more robust to downlink noise in the low SNR1 range as demonstrated later. Detailed

complexity studies need to be made to assess the practical feasibility for real-time processing at data rates

of tens of MHz. A more extensive set of operational conditions should ultimately be tested, including

asynchronous uplink operation, sensitivity to amplifier modeling error, etc.

1.1 Thesis Organization

In Chapter 2, detailed descriptions of the transmitter, relay, and receiver processing is given, establishing

notation. Of particular importance here is the Saleh model adopted for our research, a common model for

satellite amplifiers that provides a memoryless saturating nonlinearity.

Chapter 3 is devoted to the MAP detection approach, wherein ambiguous (non-uniquely-invertible) in-

tervals in the data are identified, and candidate sample sequences are formulated, then evaluated according

to a posteriori probability over the ambiguous spans.

Chapter 4 presents our particle filtering approach, which is a Monte Carlo approach in Bayesian methods

for estimating the posterior probability density given a state model which is observed nonlinearly with

additive noise. The chapter reviews the particle filter methodology and tests the algorithm in conjunction

with echo cancellation for 16-APSK transmission of two signals.

Finally Chapter 5 provides some conclusions drawn from the research, and identifies topics for further

study.

1.2 Other Candidate Approaches

The end-to-end model from modulator inputs to the sampled matched filter output at one receiver can be

viewed as a two-input, one-output Volterra model [26] expressing both nonlinearity and memory. To the

output of this model would be added complex Gaussian white discrete-time noise. IF the parameters of a

system were exactly known, including relative symbol timing on the uplink as well as relative carrier phase

rotation and input backoff, then the Volterra model can be derived and truncated to some finite memory

order. From this, the optimal sequence decoder for one of the sequences would be a Viterbi-style trellis

decoder with number of states equaling ML, where M is the constellation size and L is the memory order

of the Volterra system. Side information about one sequence is incorporated into the branch labels of this

trellis.
1Through out this document we use SNR and Esat/No interchangeably in the context of nonlinear channel.
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Though formally optimal, we do not see this as practical on two counts. First, decoder complexity is

typically infeasible for alphabets as large as 16, say. Second, it seems impractical to keep learning and

updating a Volterra model as the signal synchronization changes slowly with time.

Predistortion, a transmitter-based pre-compensation for nonlinearity, has received considerable attention

in wireless research recently, but this can only be done in this application on-board the satellite at the

waveform level, and this is not compatible with legacy satellites. (Separate predistortion at each of the uplink

terminals is unable to correctly compensate for nonlinearity.) Moreover, predistortion cannot ultimately

linearize the system beyond the saturation point of the amplifier, still leaving a peak-limited amplifier.

Nonlinear receiver-based equalizers have been studied [4] for single-user reception over nonlinear channels,

but it’s unclear how the equalizer methodology can incorporate side-information in the two-user problem.

Thus, we believe the most sensible approach to signal processing for the two-signal problem is a pragmatic

one: to try to restore a quasi-linear channel by inferring the sum signal at the input to the nonlinear amplifier,

then resorting to echo cancellation methods appropriate for linear channel bidirectional relaying. Though

not optimal in any sense, we believe it presents a practical alternative, and in particular does not depend on

any assumptions about constellation, relative symbol timing at the satellite, or carrier phase rotation which

will always be present. Even unequal data rates from the two terminals fits within our framework. Finally,

the techniques presented here are transparent to whether coding is applied on either signal, or to the details

of the coding.

In the remainder of this thesis, we describe two approaches for this signal inference problem.
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Chapter 2

Problem Description

In this Chapter we discuss our problem setup. The satellite acts as a relay between two ground terminals

that wish to exchange data, simultaneously on the same frequency. We denote the two ground terminals by

T1 and T2, and the satellite relay by R as shown earlier in Figure 1.1. These terminals cannot communicate

directly, but only through a satellite relay that forms the link between the two terminals. To accomodate

duplexing at the satellite and earth terminals, we assume a traditional frequency plan—uplinks are in one

frequency band, say 14 GHz, while downlinks are in another band, say 12 GHz. Thus all terminals are

transmitting and receiving at the same time. A final assumption is that T1 and T2 are in the footprint of

the satellite antenna beam.

We next break down the system into transmitter, relay, and receiver blocks and explain the structure and

functionality of each block.

2.1 Transmitter

Both the terminals operate on the same principle. We start defining the problem at the transmitting terminal

T1, with reference to Figure 2.1.

The user at T1 wants to send a stream of data d1 which is drawn from a constellation, C. This constellation

is 16-ary amplitude phase shift keying (APSK) in most of our research, but it can be any QAM constellation.

In order to simulate continuous-time processing we upsample this sequence by eight, producing d1up. This

sequence is then passed through a pulse shaping filter whose impulse response is h1. The pulse shaping filter

used is a finite impulse response (FIR) root-raised-cosine (RRC) filter. The pulse shaping filter creates a

complex, bandlimited signal s1 which is transmitted to the satellite relay R. The transmitter at T2 works

on the same principle and aims to transmit the sequence d2. d2up is generated by upsampling d2. d2up is

11



Data Source Modulator ↑8 h1[n]

Data Source Modulator ↑8 h2[n]

d1 s1

d2 s2s2

Figure 2.1: Block diagram for the transmitters

then fed to pulse shaping filter h2[n] and the resulting waveform s2 is transmitted to R. The structure of

the transmitter is shown in Figure 2.1 below.

2.1.1 16-APSK

In most of our study, we transmit data drawn from 16-APSK. This is a choice with high bandwidth efficiency

in bps/Hz, and is part of the DVB-S2 standard for satellite relaying. 16-APSK was initially adopted because

of its relatively low Peak-to-Average-Power Ratio (PAPR). This attribute is important in communications

on nonlinear channels [12] as the low PAPR means that the peaks are relatively closer to the average power

and therefore the overall nonlinear distortion induced is relatively small [8]. The constellation consists of an

inner ring and an outer ring. The symbols belonging to the inner ring form a typical 4-QAM constellation.

The outer ring has 12 symbols where the symbols represent a 12-ary phase shift keying (PSK) constellation.

There are different standards that dictate the ratio between the outer ring radius and the inner ring radius.

In our study the ratio is 2.57. Below we give a mathematical and graphical description of the constellation.

dRin
= a exp j(π4 + iin

π

2 ), iin ∈ {0, 1, 2, 3} (2.1)

dRout
= 2.57a exp j( π12 + iout

π

2 ), iout ∈ {0, 1 · · · , 11} (2.2)

where a is a scale factor. This set is shown below when a is chosen such that the average constellation energy

is 1. Notice the relatively uniform spacing of points within a circle constraint.

2.1.2 Pulse Shaping Filter

The pulse shaping filter used in our work is an FIR filter based on the RRC filter as alluded to earlier.

The filter has a length of 65 and hence total length of 8 symbols. The figures below show the impulse

response and the frequency response of the filter. The cutoff frequency of the filter is 1
8 , a consequence of
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Figure 2.2: 16-APSK constellation

oversampling by 8. Furthermore, a roll-off factor, β = 0.25 is chosen as a practical design choice. As can

be seen from the figure below, the filter coefficients are non-zero at the tails and this truncation can lead

to small ‘discontinuities’ at the filter’s output. We found this adversely impacted our MAP reconstruction

method. This is because the MAP inverter relies on the smoothness of the locus and the presence of small

‘discontinuities’ when coupled with additive noise can be detrimental the reconstruction process. To appease

this issue we added a time-domain window to taper the filter coefficients to zero.

Figure 2.3: Time domain representation of the FIR pulse shaping filter
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Figure 2.4: Frequency response of the pulse shaping filter

2.1.3 Windowing Function

This problem of discontinuous tail coefficients is rectified by using a window. We tested various windows

during the implementation of the algorithm. Windowing does reduce the non-smooth behavior of the RRC

filter. However, a negative consequence is the introduction of intersymbol interference (ISI) as the Nyquist

property is no longer obtained.1 For this reason we designed a tapered sine window which is shown below.

The window is concatenation of a rectangular window with tapered sine function at each end.

f(x) =


sin( (wl−n)π

2(l1−1) ) 1 ≤ n ≤ l1

1 l1 < n < wl − l1

sin( (n−wl)π
2(l1−1) ) wl − l1 ≤ n ≤ wl

In the above equation, wl corresponds to the length of the window, and the variable l1 refers to the length

of the tapered sine function at either end of the rectangular window. The time domain representation of

the window is shown below. Simulations suggested that the window did remove the discontinuity effects

introduced by the original pulse shaping filter and the consequential ISI introduced was not severe, as will

be seen later.

1The original filter has some small amount of ISI because of filter truncation.
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Figure 2.5: Depiction of tapered sine window coefficients

2.2 Relay

At the relay the two transmitted signals s1 and s2 arrive from T1 and T2 respectively. The two signals are

added together and the aggregate signal is

S = s1 + s2 (2.3)

The relay works on the principle of amplify and forward and thus amplifies the aggregate signal S as shown

in Figure2.6. The aggregate signal is then fed to the amplifier represented as g(·) in Figure 2.6.

+ g(·)

s1

s2

S S̃

Figure 2.6: Satellite relay’s block diagram

The uplink signals have power control to adjust the aggregate power level at the amplifier input. The

input backoff (IBO) is normally expressed in dB, and determines how close to saturation the amplifier is

operated. At small backoffs, typically IBO ≥ −3 dB, the input signal is driven harder into the saturation
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zone and the input-output characteristic is highly nonlinear, whereas at larger backoffs, say IBO ≤ −6 dB,

the amplifier demonstrates a nearly linear input-output characteristic and the signal seldom traverses into

saturation. The input backoff IBO is related to the base 10 scale factor ρ via the following relation.

ρ = 10 IBO
10

(Each uplink would need power control to manage the aggregate power backoff at the satellite.)

As mentioned earlier, we assume the HPA is characterized by the Saleh model for nonlinear amplitude

and phase distortions, [22]. The AM-AM and AM-PM characteristics of the Saleh model are shown below

and graphically illustrated in Figure 2.7.

A(S) = αau

1 + βau2 (AM −AM) (2.4)

Φ(S) = αφu
2

1 + βφu2 (AM − PM) (2.5)

where u = |S| is the input signal magnitude. Both AM-AM and AM-PM characteristics depend only on

the magnitude of the input signal.

Figure 2.7: Plots of Saleh model AM-AM and AM-PM characteristics

The combined effects of the AM-AM and the AM-PM relations yield the following net effect on the

16



complex input S to the HPA. The input signal S can be written as

S = u exp jψ,

and the output of the Saleh model S̃ can be written as

S̃ = A(S)ejΦ(S)ejψ

= A(S)ej(ψ+Φ(S))

expressing the nonlinear amplitude transfer characteristic as well as the amplitude-dependent phase modu-

lation.

This distorted signal S̃ is then relayed down to each ground terminal.

2.3 Receiver

The relay transmits the signal S̃ to both the ground terminals. Now the terminals T1 and T2 act as receivers.

Again we use one receiver to describe the structure and functionality as both receivers are identical in terms

of structure and functionality. The receiver structure is depicted in Figure 2.7. The additive noise at the

receiver further corrupts the received signal. The noise is modeled as additive white complex Gaussian

noise (AWGN). Specifically, n ∼ CN (0, σ2) where σ2 is the complex noise variance of the noise process at

eight-times oversampling.

The goal is to recover the sequence S from the observed sequence Y with high fidelity, say with small

rms error. As discussed in Chapters 3 and 4, two approaches for recovering the aggregate waveform at the

amplifier input have been studied. Whichever method is employed, we apply adaptive echo cancellation

based on the side information available at each terminal and recover ŝj where j corresponds to the terminal

where the message sj is generated. The recovered signal ŝj is then passed through the matched filter and

down-sampled to recover the original data sequence d̂j .

In the following section, details on the adaptive canceller are provided.

2.4 Adaptive Echo Cancellation

At the output of the matched filter, we have an approximation to what would have been received on a linear

channel, though the original noise has been nonlinearly-modified by the inversion process. The Figure below

illustrates this model.
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+

n∼CN (0,σ2)

g−1(·) h[-n]

Adaptive Filter

↓8 Decision
S̃

d2

Y Ŝ=S+n′ +
−

d̂2

d̂1 = e

Figure 2.8: Receiver block diagram

Figure 2.9: Ideal inversion leads to an overall linear channel with gain of 1

The particular adaptive filter deployed here is the least mean square (LMS) adaptive noise canceller

[14], which is standard in the signal processing literature. We have a reference signal (the side-information

sequence) and an input signal. The input signal contains the signal of interest which is corrupted in a

linear fashion by the reference signal. Since we have information about the reference signal we can create

an estimate of the reference signal in the input signal, then subtract it from the input signal. The relative

symbol delay is easily incorporated into the adaptive filter. The error is then used to update the coefficients

of the adaptive filter. The general structure and mathematics behind the adaptive filter are given below in

Figure 2.10 and the subsequent equations.

We assume,

D̂ = d̂1 + αd̂2

where α is an arbitrary complex constant. With reference to the diagram we also have

d̂2 =
Q−1∑
i=0

ŵ∗i (n)d2(n− i)
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Figure 2.10: Structure of adaptive echo canceller

e(n) = D̂(n)− d̂2

ŵi(n+ 1) = ŵi(n) + µe∗(n)d2(n− i), i = {0, 1 · · ·Q− 1}

with µ a small adaptation scale factor that controls convergence speed and steady-state tracking jitter.

The Q-tap adaptive filter has complex weights at each tap as shown in Figure 2.11. These tap weights

evolve with time and settle quickly to a set of weights that minimizes the mean-square value of e(n), which

is equivalent to the best removal of the echo. Decisions for the desired signal are then made based on e(n).

z−1

ŵ∗0

z−1 · · ·

ŵ∗1 ŵ∗2 ŵ∗q

∑ ∑ ∑

d2

d̂2

Figure 2.11: Adaptive filter structure

2.5 Centroid-based Decision

At the output of the adaptive noise canceller we have an estimate of the received signal. The next task is

to map each received symbol to the symbol in the original constellation. This could be challenging as the

received constellation might be degraded and distorted during the transmission. The received constellation

might be rotated and translated because of the complex noise or be distorted due to the nonlinearity in

the channel. Voronoi Tessellations are typically used to make decision zones for the received symbols. The
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16-APSK constellation would be split into 16 non-overlapping zones each of which corresponds to a symbol

in the constellation. This is shown for the ideal case in Figure 2.12.

Figure 2.12: Voronoi tessellation of the complex plane

Another approach is the centroid based approach. Centroids are good ways to decide which Voronoi

zone the received symbols should be classified into. The centroids are calculated by passing a known stream

of symbols through channel and observing the received symbol â i for every a i in the alphabet sent. The

centroid corresponding to each transmitted letter ai is obtained by taking the expected value of all N received

âi ‘s at the receiver. By the law of large numbers we can use the mean instead if we use a long enough

sequence.

ci =
N∑
n=1

âi n (2.6)

This is also shown below in Figure 2.13, where the green scattered points are the redidual of the adaptive

canceller.

We can use training sequences to create tables of centroid for different values of backoff that can be

deployed as per need. Once we have the centroids we can use them to find the modulus of the complex

difference between a received symbol and all the centroids. The symbol in the original constellation that
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Figure 2.13: Received constellation and the corresponding centroids

is associated with the centroid that yields the smallest absolute difference is declared as the transmitted

symbol. Another Voronoi tessellation of the received constellation is shown in Figure 2.14 where we can

see that the constellations are contained inside the demarcated complex plane. An error occurs when the

wrong centroid is selected and thus a wrong transmitted symbol is associated with the received symbol. The

centroid based decision making is later used to evaluate the performance of the each algorithm.

Figure 2.14: Voronoi tessellation of the complex plane

21



Now that we have defined the structure and functionality of the transmitter, relay, and the receiver, we

now address how to obtain the inverter g−1(·) as shown in Figure 2.8. In the next two chapters, we describe,

analyze, and evaluate the two inverters that we have proposed. We start with the MAP inverter, the particle

filter discussion follows in Chapter 4.
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Chapter 3

MAP Detection Algorithm

3.1 Algorithm

This algorithm takes a ‘noiseless’ perspective on the inversion problem, and recognizes that based on the

observation of the received signal there can be at most two amplifier input samples that could have produced

this observation. We assume we know the amplifier characteristic, and solve for these two complex values.

However, assuming we have some knowledge of the maximum possible amplitude of the input signal, which

depends on the chosen backoff and the peak-to-average power ratio, we argue that only when the absolute

value of the output of the nonlinear channel falls in some range slightly below the saturated output value,

there exists two possible roots, and we call this an ambiguous sample. In other cases we can infer with

reasonable certainty that the correct root lies in the certainty zone as shown in Figure 3.2 , and as will be

discussed later.

When the input signal amplitude is large, there are typically several contiguous ambiguous samples, each

of which has an associated pair of roots for the input sample. Over this ambiguous interval or span, we

evaluate the prior probability of all possible 2N input sequences, where N is the ambiguous span length.

This probability density is a multidimensional complex Gaussian model with covariance matrix matched to

the characteristics of the original pulse-shaped signal. More detail is provided on this below.

In Figure 3.1, we present the flow chart of the MAP inverter. The first step in the processing is to find

complex input values corresponding to the observed complex output, i.e. we invert the nonlinearity sample-

by-sample. Our model for the nonlinearity is the well-known Saleh model, which is a memoryless complex-

baseband model for amplifiers, primarily traveling wave tubes, [22]. Figure 2.7 shows the characteristic

plots of AM-AM and the AM-PM relations of the Saleh model assumed in this research. Note that the
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Figure 3.1: Flowchart of MAP inverter’s algorithm
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characteristic has been normalized so that the input amplitude corresponding to saturation is 1, and the

output is also 1 at this point.

3.1.1 Inversion of Saleh model

We start by reiterating the assumption that the noise power is small compared to the signal power, i.e. the

downlink SNR is high. This allows us to conclude that the additive noise is negligible and the received signal

Y ≈ S̃. Then we can write

Y = αu

1 + βu2 exp (j∠Y ) = α|S|
1 + β|S|2

exp (j∠Y )

Where we have used a slight change of notation and introduced u = |S|.

As evident from Figure 2.7 the AM-AM characteristic of Saleh model is highly nonlinear, though for IBO

much smaller than 0 dB, we operate in a quasi-linear regime. We wish to avoid this operational mode though

as output power is small, and DC-to-RF efficiency is poor.

The mathematical inversion of the AM-AM relation is shown below.

A = |Y | = αau

1 + βau2

So we have a series of equations

A(1 + βau
2) = αau

A+ βaAu
2 = αau

(βaA)u2 − αau+A = 0

Using the quadratic formula we readily obtain the two roots for the input amplitude u as

u =
αa ±

√
α2
a − 4A2βa

2Aβa
(3.1)

Because A will not exceed 1 under the high SNR assumption, both roots lie approximately on the Saleh

curve depicted in Figure 2.7 and are real. In the case where additive noise cannot be neglected there exists

the possibility that the magnitude of the noisy observation may be greater than 1. In such a situation we

clip the magnitude down to 1. We define the two roots as

rlp =
αa −

√
α2
a − 4A2βa

2Aβa

rhp =
αa +

√
α2
a − 4A2βa

2Aβa
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which could be called ‘inner’ and ‘outer’ roots, since one will have magnitude smaller than 1, and the other’s

magnitude exceeds 1.

Once we have obtained the two possible input amplitudes we substitute them into the AM-PM charac-

teristic. This yields the corresponding AM-PM conversion that was introduced by the amplifier. Once we

have the AM-PM conversion, it is just a matter of subtracting it from the phase of the received signal S̃.

The phase distortion quantities φ1 and φ2 are

φ1 =
αφr

2
lp

1 + βφr2
lp

,

φ2 =
αφr

2
hp

1 + βφr2
hp

,

The quantities φ1 and φ2 are then used to calculate the two final complex input samples, specifically

rl = rlpe
j(∠S̃−φ1)

rh = rhpe
j(∠S̃−φ2)

Thus, we produce a pair of complex samples for the unknown input sequence to the amplifier for every

ambiguous received measurement.

Once we have the roots for the transmitted sequence, the next step is the decide the string of samples

that was most likely sent. (By operating over a span of samples we have some chance of inverting this

fundamentally nonlinear system by exploiting the known probability structure of the input sequence.)

This is greatly simplified if we realize that many of the samples are invertible, namely those corresponding

to small input amplitude. But we can only observe the output amplitude A. If we place some upper bound

on the size of u = |S|, based on known IBO and PAPR, we can identify a zone of ambiguity as shown in

Figure 3.2. Let this maximum value that |S| can take on be Smax, and the output produced by this value,

A?, be the threshold point above which there is ambiguity in the selection of correct root.

A? = αaSmax
1 + βaS2

max

The value of A? is developed using Monte Carlo methods. Long sequences with a given backoff are generated

and the maximum values are recorded and used to calculate A?. Look-up tables are created to store the

values of A? for different operating backoffs. The motivation behind this is that in saturation, i.e. beyond

A?, for each Y value there are two possible values for S and we have further processing to do, but when

|Y | ≤ A?, ambiguity about the input does not exist.
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Figure 3.2: Identification of various zones in the Saleh AM-AM characteristic

3.1.2 MAP sequence selection

The received sequence is parsed into segments of contiguous ambiguous spans, beginning with traversal into

the dual-root zone, and ending with leaving this zone. To process each ambiguous span, where there is

uncertainty about the input sequence, we prepend three non-ambiguous samples, and append at the end two

non-ambiguous samples. We call these anchor points for the probability calculation. These anchor points

provide certainty at the starting and ending of the ambiguous sequence. Since we have certainty about the

points before the sequence enters into the ambiguous zone we can use this known history and smoothness

information based on the correlation between consecutive samples to help decide the best choice of roots in

the ambiguous zone.

The length of the ambiguous subsequences can range from a few samples to a few hundred samples based

on the operating input backoff at the satellite. In these long spans the ambiguous sequence is parsed into

subsequences of length N to reduce the computational complexity. For the first N samples in the ambiguous
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zone the leading anchor points are used and once these N samples are estimated they serve as anchors for

the subsequent N samples. Therefore is imperative to estimate these initial samples with as little error as

possible. More anchor points therefore furnish more information about the past and help estimating the

initial ambiguous samples with little error. An ambiguous sequence is shown in Figure 3.3 for the case when

the ambiguous span is N samples.

a−H a−H+1 a−1 a a+1 a+2 a+N−2 a+N−1 a+N a+N+1 a+N+2

N ambiguous samples

Leading Anchor Points Trailing Anchor Points

L

Figure 3.3: Depiction of an ambiguous sequence

Since each ambiguous sample can take two possible values, for a sequence of length N there are 2N

possible sequences. For example, if N = 2 then there are 4 possible sequences sequences of inner and outer

roots, shown below in matrix form.



rl rl

rl rh

rh rl

rh rh


Now to decide an ambiguous sequence of length N we append the leading and trailing anchor points and

obtain a sequence of length L = N + 5 as shown in Figure 3.3. For computational purposes we define a

2N × L matrix J , in which the first three columns have the same entries in all 2N rows, corresponding to

leading anchor points. Moreover, the last two entries in each row correspond to the trailing anchor points.

The N entries in the middle, however, can take on two possible values and there are 2N such possible

combinations akin to all the possible binary number sequences represented by N root pairs. The structure

of J is illustrated below.
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J =



rla−H
· · · rla−1 rla

rla+1 · · · rla+N−2 rla+N−1 rla+N
rla+1 rla+2

rla−H
· · · rla−1 rla rla+1 · · · rla+N−2 rla+N−1 rha+N

rla+N+1 rla+N+2

... · · ·
... rla rla+1 · · · rla+N−2 rha+N−1 rla+N

...
...

... · · ·
... rla

rla+1 · · · rla+N−2 rha+N−1 rha+N

...
...

... · · ·
...

...
. . . . . . . . .

...
...

...
...

rla−H
· · · rla−1 rla

rha+1 · · · rha+N−2 rha+N−1 rha+N
rla+N+1 rla+N+2

rla−H
· · · rla−1 rha rha+1 · · · rha+N−2 rha+N−1 rha+N

rla+N+1 rla+N+2


The decision problem in the ambiguous zone is a binary decision problem. We have to decide which of

the 2N sequences is most probable (hence the name MAP).

3.1.3 MAP root selection procedure

The method used to select which of rl or rh is more appropriate is described now. We make another

assumption here that the samples are normally-distributed, after pulse shaping, despite the discrete-alphabet

constellation.This is especially true in the bidirectional case where we have two users at the input of the

nonlinear channel. The assumption of Gaussianity was further tested experimentally and it was observed

that the samples approximately fit a Gaussian distribution.

The L-dimensional multivariate Gaussian pdf is given by

f(x) = 1
(2π)

n
2 |Σ|

exp[− 1
2 (x− µ)†Σ−1(x− µ)]

where µ is the vector of means and Σ is the covariance matrix.

Maximum a posteriori probability (MAP) estimation is used to estimate the sequence û based on the

observed sequence Y , that maximizes the above pdf i.e.,

Ŝ = arg max
x

f(x|y)

Alternatively, this can be implemented by simply minimizing the quadratic form in the exponential of the

density function. Moreover, taking into account the fact that the constellation has mean zero the MAP

estimation problem evolves into the following:

x̂ = arg min
x

x†Σ−1 x

The correlation matrix is obtained by using the correlation properties introduced by the pulse shaping filter.

The convolution of the pulse shaping filter and its flipped version, i.e. the matched filter, is used to compute
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the correlation and the cross-correlation between the samples in the sequence. In this case due to the

symmetry of the pulse shaping filter the convolution and the correlation operations are the same. If we

assume that the pulse shaping filter is of length M , then the convolution results in a sequence of length

2M − 1. The maximum value of the above convolution occurs at the M th sample. This is depicted in

Figure 3.4 below.

Figure 3.4: Result of above convolution provides value of required correlation between samples

The convolution result is normalized and then a suitable number of values in the neighborhood of the

peak value are selected to match the length L of the ambiguous span as described previously. Moreover, this

is also scaled by the input backoff to have the right scale, or variance.

A L× L Toeplitz matrix, K, is created from the auto-correlation function for the samples. The Toeplitz

matrix is portrayed below.

KL×L =



zM zM+1 zM+2 zM+3 · · · · · · zM+L−2 zM+L−1

zM−1 zM zM+1 zM+2
. . . . . . zM+L−3 zM+L−2

zM−2 zM−1 zM zM+1
. . . . . . zM+L−4 zM+L−3

zM−3 zM−2 zM−1 zM
. . . . . . zM+L−5 zM+L−4

. . . . . . . . . . . . . . . . . . . . . . . .

zM−(L−1) zM−(L−2) zM−(L−3) zM−(L−4) · · · · · · zM−1 zM
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Moreover, because the result Z = h[n] ? h[−n] is symmetric, the Toeplitz matrix is also symmetric, and it

can be rewritten as follows and then scaled by the input backoff.

KL×L =



zM zM+1 zM+2 zM+3 · · · · · · zM+L−2 zM+L−1

zM+1 zM zM+1 zM+2
. . . . . . zM+L−3 zM+L−2

zM+2 zM+1 zM zM+1
. . . . . . zM+L−4 zM+L−3

zM+3 zM+2 zM+1 zM
. . . . . . zM+L−5 zM+L−4

. . . . . . . . . . . . . . . . . . . . . . . .

zM+L−1 zM+L−2 zM+L−3 zM+L−4 · · · · · · zM+1 zM



KT OEPL×L
= σ2

ρK

Now the MAP estimation can be restated as

û = arg min
Ji

JT

i K
−1
T OEP J

T

i where i = {1, 2, · · · , 2N}

The above calculation is performed for each row and the result is a scalar quantity which serves as the

a-posteriori probability of the ith row as the transmitted sequence. We store the metrics in a 2N × 1 vector,

and the row with minimum entry in is the row in J that corresponds to the best estimate of the transmitted

sequence among the 2N possible sequences.

Finally, we concatenate all the sequences we have certainty about with the estimates of the ambiguous

sequences to obtain the estimated signal Ŝ.

3.1.4 Matched filtering and down-sampling and adaptive cancellation

We assumed a high SNR at the receiver which allowed us to use the algorithm defined above to ‘invert’ the

nonlinearity, resulting in a virtual linear channel. We pass the estimated signal to the matched filter which

we have described in detail previously. The output of the matched filter is then downsampled by 8 with the

correct downsampling phase depending on the delay of the received signal. For the purposes of this document

we ignore the link delay by assuming that we exactly know what it is and that we have compensated for

it. The downsampled signal D̂ in the ideal case would be all the possible combinations that result from

adding the symbols in two constellation points. The ideal combination of the two synchronized 16-APSK

signals with the same average energy yield the constellation as shown in Figure 3.5. Realistically, however,

the recovered total constellation is not as well defined as there is linear and nonlinear ISI that result from
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the effects of windowing and the nonlinear channel respectively. The signal D̂ is then sent to the adaptive

filter. The adaptive filter at each terminal uses the side information to delete the signal that originated at

the terminal from the aggregate signal. The residual of the adaptive canceller is the estimate of our desired

data signal.

Figure 3.5: The ideal sum of two (synchronized) 16-APSK constellations

3.2 Performance Evaluation

We now demonstrate the performance of the algorithm by simulating it in Matlab. Here we use two methods

to evaluate the performance of the inverter. Since the MAP inverter is a waveform tracker we first evaluate

the tracking performance by using the mean squared error (MSE) between the true signal and the estimated

signal. The second criterion used to judge the performance of the MAP inverter is the symbol error rate

(SER) based on the final constellations obtained at the output of the linear adaptive canceller. We perform

these analysis by varying the received SNR, which is analogous to Esat/No, and the input backoff. Before

we go and evaluate the performance of the inverter for bidirectional communication over a nonlinear channel

we gauge its performance on the nonlinear channel with a single user i.e. a setup with one transmitter and

one receiver. The performance over the bidirectional setup with the nonlinear channel ensues.

3.2.1 Single user

The single-user problem is studied first as the PAPR of the this case is lower and the signal spends a lower

amount of time in the saturation zone shown in Figure 3.2. Moreover, it allows us to make important
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conclusions about the general performance of the algorithm. The two parameters we are interested in are

the SNR at the receiver and the input backoff at the input of the nonlinear channel.

3.2.1.1 Effect of SNR

Intuitively, one should guess that the SNR is inversely proportional to the MSE and the SER. We first study

the locus tracking results. For this we fixed the backoff at -5 dB and swept across the SNR values from

20 dB to 40 dB with increments of 4 dB. We demonstrate the results below in figure. The plot in Figure

3.6 confirms our intuition that the as SNR increases the MSE gets smaller. Moreover, the MSE decreases

montonically, at least over the range shown in Figure 3.6. Moreover we see that the slope is approximately

linear. There is about an order of magnitude decrease in the MSE with the increase in SNR by a decade.

Figure 3.6: MSE vs ESat/No for single user case
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3.2.1.2 Effect of backoff

As discussed previously, the backoff controls the severity of the nonlinearity i.e. with smaller backoffs the

amplifier is driven harder into saturation and therefore the nonlinear distortion introduced is more severe.

Before actually running the simulations we reiterate that with a harder drive level we will have more episodes

where the signal is in the ambiguous zone depicted in Figure 3.2. This implies that the inverter has to make

a greater number of estimations and therefore increases the chances of making error in locus tracking. We

now present the results of the simulation below in Figure 3.7 where the SNR was fixed at 35 dB, and the

backoff was varied from -10 dB to -2 dB. The algorithm was simulated using the same realization of the

input signal for each backoff.

Figure 3.7: MSE vs IBO with SNR =35 dB for single user case

3.2.2 Bidirectional case

We now divert our attention back to the bidirectional case which is the problem of interest. We now try to

repeat the same experiments for bidirectional case and see if and to what extent the results produced in the

single-user case hold. Again the criteria used for evaluation is MSE. In addition we now also calculate the

34



SER based on the constellations recovered at the output of the adaptive canceller. We start by first studying

the implications of SNR in the bidirectional case.

3.2.2.1 Effect of SNR

As mentioned earlier, in the bidirectional case the signal tends to stay longer in saturation. The reason is

that the aggregate signal can be much larger where the two individual signals interfere constructively and

therefore drives the amplifier harder. This introduces nonlinear distortion that is more severe than in the

single user case. As the number of ambiguous episodes increase, so does the chance of MAP inverter making

more tracking errors. We now present the plot of MSE as a function of SNR for the bidirectional case. We

fixed the backoff at -5 dB and then simulated the algorithm over a series of SNRs. The results are shown in

Figure 3.8. As expected the MSE does not decrease with the same slope as the single user case and decreases

more slowly with the increased SNR.

Figure 3.8: MSE vs ESat/No with IBO = -5 dB for bidirectional case

We now present some of the results of locus tracking in the two user case at different SNRs. These locus

plots are good q qualitative indicators of performance and we notice that they are increasingly noisy as SNR
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drops, but no huge loss of track is in evidence.

Figure 3.9: Locus tracking of a sub sequence using MAP inverter at various SNRs

A plot of the tracking error magnitude over a span of 10000 samples is shown in Figure 3.10, showing

generally small error due to channel noise, but occasional large errors where the wrong sequence is selected

by the MAP inverter. So we conclude that the tracking performance gets better with increasing SNR.

Figure 3.10: Standard tracking error between the true and the estimated signal,
SNR = 30 dB, backoff = −5 dB
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3.2.2.2 Effect of backoff

In the bidirectional case, the two signals can interfere constructively and produce an aggregate signal with

peak power higher than the average power. The frequency of aggregate power being higher than the average

power increases at lower backoffs. The consequence of this is that the amplifier is now driven harder into

saturation thus producing more nonlinearly distorted signals more often. To reduce the effect of saturation

the signal has to be backed off considerably more than in the single user case to achieve similar results. Also

in the two user case higher PAPR implies that the threshold amplitude for ambiguity , A?, is going to be

lower. Consequently, our certainty zone, as shown in Figure 3.2, has shrunk and now the MAP estimator

is evoked more often and has to invert instances where the distortion is more severe than in the single user

case. We now compare the effect of different input backoffs for a fixed SNR. In addition, for a given SNR,

additive noise has the same average power for each backoff. However, higher backoffs reduce the signal

power and as result we see a much lower effective SNR at the receiver. However, since larger backoffs lead to

signal operating mostly in the certainty zone, there are less inferential errors from the MAP inverter as it is

evoked less frequently and are mostly attributed to the additive noise. But with smaller backoffs, the power

average signal power does increase but the signal has a higher degree of nonlinear distortion. We depict this

in Figure 3.11. Notice the MSE increases much faster as compared to the single user case when backoff is

reduced. We also show the MSE versus SNR trend for various backoffs for the MAP inverter in Figure 3.12.

The MSE decreases monotonically over the range of SNRs used to run the simulation. However, at lower

backoffs the slopes are much flatter and the MSE is not reduced significantly by increasing the SNR. This is

a consequence of the nonlinear distortion.
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Figure 3.11: MSE vs IBO with SNR = 35 dB for bidirectional case

Figure 3.12: MSE vs SNR at various backoff levels, bidirectional case
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3.2.2.3 Constellation quality and error rate curves

We now show the final constellations obtained at the output of adaptive canceller for 4 different SNRs at

an input backoff of -5 dB. The constellations are shown in Figures 3.13 and 3.14. From visual inspection

we notice that the quality of constellations get better as the SNR is increased. At lower SNRs we see a

additive Gaussian noise around the constellation points. However, at higher SNRs, e.g. 40 dB, we notice the

reduction in the additive noise but nonlinear artifacts appear in the constellation. The outer constellation

points exhibit radial distortion. Also, notice that the inner points experience less distortion as expected

since their loci are smaller magnitude. The reason the distortion on the constellation points is more radially

distributed is less clear. The noise can cause the inverter to incorrectly choose the wrong root and since the

two phase corrected roots almost lie on a radial line we observe a radial scatter around the outer constellation

points.

Figure 3.13: Recovered constellation for SNRs 25(left) and 30(right) dB with IBO =-5 dB
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Figure 3.14: Recovered constellation for SNRs 35(left) and 40(right) dB with IBO =-5 dB

Next we evaluate the performance of the inverter from the stand point of final constellation recovery and

the symbol error rate (SER). At the output of the adaptive canceller, the centroid based approach defined

in Chapter 2 is used to make decision about each estimated symbol. Each time the transmitted symbol and

the estimated symbol don’t match we register an error. We use 100,000 symbols to generate the SER curves.

The SER curves for various backoffs are shown below in Figure 3.15.

Figure 3.15: SER plots for MAP inverter
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We observe that at small backoffs the error rates hit a floor and increasing the SNR does not improve the

error rate. This is a consequence of the severity of nonlinear distortion at smaller backoffs. At intermediate

backoffs i.e. from -8 to -5 dB we do see a decrease in symbol error probability with increased SNR.

3.3 Summary

In this Chapter we addressed the two-terminal satellite communication problem where the satellite relay is

used by the terminals simultaneously. We allow for the signals to interfere at the relay and the aggregate

signal is amplified and forwarded to each ground terminal. The amplification model is highly nonlinear

and we presented a probabilistic algorithm to successfully invert the nonlinearities introduced at the relay.

Moreover, we demonstrated that MAP detection approximately creates an overall linear channel with gain

1. Then we used side-information along with adaptive echo cancellation to get rid of the interfering signal

and recover an estimate of the desired signal from the other user.

A primary concern about this method is computational complexity when the span length L is large, as

the number of hypotheses to be evaluated grows exponentially with L. Parsing into subsequences is a work-

around on this, but this introduces performance degradation due to uncertain anchor points for subsequent

segments. Also, the method is sensitive to downlink noise and does not perform well when the SNR’s fall

below 25 dB, although the mean-square tracking error improves monitonically with SNR. Therefore we need

a more robust method that can tackle the complications introduced by AWGN at the receiver. To tackle

additive noise better we propose a particle filter based waveform tracking solution which is discussed in the

next chapter.
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Chapter 4

Particle Filtering

4.1 Overview

In contrast to the hypothesis-testing approach in Chapter 3 for recovery of the amplifier input signal, this

Chapter explores a Monte Carlo method for estimating the state of a dynamical system, observed in noise

after a nonlinear transformation. The method specifies model dynamics and distributions associated with

the state and observation noise, and propagates a swarm of particles that are samples, or realizations, from

the approximate posterior p.d.f. for the state, given the observation sequence.

State estimation has a long history, and in the case of linear models with Gaussian noises, it’s known

that the Kalman filter supplies the MMSE estimate and the MAP estimate for the state. Our problem

assumes a linear model for the signal dynamics, but it’s driven by a discrete-alphabet sequence. Moreover,

the observation equation is nonlinear (the output of the nonlinear amplifier). Thus, no simple procedure

exists for updating the state’s p.d.f. as observations arrive.

Particle filtering [10] has emerged in the last 15 years as a popular state estimation methodology in

nonlinear or non-Gaussian situations, and we study its application for the central problem here, namely

recovery of the amplifier input from noisy observations of the amplifier output.

A general dynamic system model is governed by a state-space model consisting of a transition equation

and an observation equation, [20] .

xk = f(xk−1,wk−1)

zk = h(xk,vk−1)
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where x is a state vector, zk is an observation vector, andwk,vk are state and observation noises respectively.

Either or both of the equations can be nonlinear, and the noises may or may not be separable. The evolution

of the state is modeled as a stochastic process and the goal is to estimate the state according to some criterion

(MMSE, MAP). In the completely linear case the Kalman filter provides the MMSE estimate, and if the

noise processes in addition are Gaussian, then the Kalman filter also produces the MAP state estimator.

However in the nonlinear case one has to resort to several suboptimal algorithms like the extended Kalman

filter (EKF), unscented Kalman filter (UKF), or particle filter, etc [17]. In our research we tried using the

EKF but it displayed a propensity to diverge when operating in the saturation zone, since linearization about

the current estimate often can give corrections in the wrong direction. We moved to the particle filter as the

state estimation tool.

In the following sections, we first develop a suitable state-space model for the signal of interest. Then

we review the operation of particle filtering and show its application to Saleh nonlinearity inversion and the

results it yields. We first study its application on linear 4-PAM transmission for a single user, then extend

to 4-PAM with nonlinearity, and eventually end up with two-user 16-APSK cases.

4.2 State Dynamics Modeling for the Particle Filter

Particle filtering requires a state-space formulation of the signal to be estimated. This involves approximating

an FIR (pulse shaping) system with a low-order IIR system, which we next describe.

First recall, as in Chapter 2, the transmitted signal is produced by an FIR filter, after upsampling. The

RRC filter is designed in Matlab using the command ‘firrcos’ with the following parameters.

Rolloff : β = 0.25

Cutoff frequency : Fc = 0.125

Sampling frequency : Fs = 8

We need an IIR model that is not only stable and easy to implement, but also has dynamical properties

similar to the FIR pulse shaping filter. An easy choice that can fit the requirement is a simple second-order

discrete-time Butterworth filter. The filter has a normalized cutoff frequency of 1/8, consistent with 8 times

over-sampling. Moreover, other advantages of a having a second-order filter is a simpler state model which

can be easily analyzed, and the relation between the two states is very easily understood by their graphical

depiction on the two dimensional plane. The behavior of the second-order model is a good indicator of how

higher-order models will behave under similar conditions.
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The transfer function of the obtained Butterworth filter is

H(z) = 0.03 z2 + 2z + 1
z2 − 1.454z + 0.5741 (4.1)

The next step is to obtain the state-space model. We can easily obtain the state space model from the

transfer function in (4.1) using the methods described in [11], or simply Matlab’s tf2ss command. However,

the complication that arises with this is that the state model typically has a feed-forward term. The feed-

forward term occurs whenever the number of zeros and the number of poles are equal, i.e., the degree of the

numerator and the denominator are the same in the transfer function. Such a transfer function is defined as

a proper transfer function.

The reason why a proper function is not desired is that the feed-forward term in the state space model

makes the output of the state space explicitly dependent on the process noise. As is evident from the transfer

function in (4.1), the degree of the numerator and the denominator is equal and therefore we will have a

feed-forward term present in our dynamic model. This can be remedied by choosing a strictly-proper transfer

function in the z-domain, where a strictly-proper transfer function is one where the degree of the numerator

is strictly less than the degree of the denominator [15],

deg(D(z)) < deg(N(z)) (4.2)

where D(z) and N(z) in (4.2) correspond to the denominator and the numerator respectively.

We now need to modify the transfer function in (4.1) so that the degree of the numerator becomes less

than that of the denominator. We display the pole-zero plot of the transfer function in Figure 4.1. We see

that the Butterworth filter has two zeros located at ω = π. We achieve a strictly-proper form in (4.1) by

discarding one of the zeros and keeping both the poles exactly where they appear in the original transfer

function as shown in Figure 4.1. However, the consequence of this is that the passband gain is not 1 anymore.

To compensate for this we have to rescale the strictly-proper version of the filter.

The two frequency responses are shown in Figure 4.2 below and the strictly-proper transfer function is

now

H(z) = 0.06× z + 1
z2 − 1.454z + 0.5741 (4.3)

As is evident from Figure 4.2, the frequency response of the strictly-proper version of the filter matches

almost perfectly to about 0.4π rad/sample which is greater than our signal cutoff frequency.
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Figure 4.1: Pole-zero plots for original Butterworth filter and strictly-proper approximation

Figure 4.2: Frequency response plots for original Butterworth filter and strictly-proper approximation

We have devised an algorithm to automate this conversion process for converting to anN -th-order strictly-

proper transfer function, where N corresponds to the degree of the denominator, and have included it in

Appendix B.

Now that we have the transfer function in the appropriate form, the state dynamics model can be obtained

using the methods mentioned in [11]. The transfer function is unique. However, the state representation is

not and therefore making a good choice for the state model can help us simplify the problem and extract

valuable information about the dynamics of the system. From the perspective of the communications model
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we only have the observed noisy signal and we are using the state model to estimate the state of the received

signal. In other words we have no influence on what the states are, however, we have the ability to peek into

the state model and observe some of the states if we design our state model in observable form. For this

reason, we desire that the output of our state model be such that it provide us insight about the states of

the dynamic model. This is attained when we have the system represented in the observer-canonical form

(OCF). This allows us to make the output of the model to be equal to one of the state which allows us to

study the evolution of the states over time with ease. The conversion from CCF to OCF is also elaborated

in Appendix B.

Now that we have defined the process of obtaining the state model and how to obtain the OCF, we now

move on to define the algorithm of the particle filter in the next section.

4.3 Particle Filtering Algorithm

The particle filter is implemented at the receiver with the following components. The state-space model

generated previously which serves as an approximate replica of the pulse shaping filter at the transmitter.

At time t = 0 we produce a set of Np Gaussian random variables that are independent and identically

distributed (iid). The particles are propagated via the state model and by the virtue of an observable model

the first state is also the output of the system.

Propagated particles are assigned a weight wt proportional to the likelihood of the observation for a given

particle. The weights of all the particles are summed and then each particle weight is divided by the sum

to obtain a normalized measure of likelihood and so the weights wt resemble probability mass. So-called

resampling creates a new swarm of Np particles corresponding to the observed normalized weights, or p.m.f.

For each particle the normalized weights represent the probability measure. The goal is to preserve

particles with higher weights and propagate them along the state model and to suppress the progression of

particles with low weights. We try to achieve this via importance sampling, thus preserving the particles

with the high likelihoods and obliterating the particles with low likelihoods. So after importance sampling we

may be left with a much smaller population of particles Ñp. This leads to so called particle impoverishment

where each time importance sampling is performed the particle population shrivels . The number of unique

particles is greatly reduced below the Np and the 2d swarm gets slimmer with each iteration. The particle

filter will thus have fewer particles that are used in the a-posteriori probability estimation, and after a few

iterations there might be just one surviving particle. To counter this we resample. Resampling is important

because it prevents particle impoverishment [21]. The number of particles propagating at each time is equal

to the initial number of particles. Each particle is assigned a weight by comparing their output to the
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observed output. The particles with higher weights survive and the particles with negligible weights are

stopped from propagating. However, there is one important difference that the particles that wither away

in the weighting process are replaced by resampling from a uniform distribution such that the particles with

significant weight are now replicated. The number of times a particle is replicated depends on the of particles

discarded and also on the weight of the partical that is replicated. This ensures that the same number of

particles are present at each time iteration. This is analogous and is referenced in the literature as the

survival of the fittest.

We now present the particle filtering algorithm in the form of a flowchart in the left portion of Figure

4.3. Moreover, the pseudo-code provided below as Algorithm 1 is a modified version of pseudo-code provided

in [21], and summarizes the iterative behavior of the particle filter algorithm, often known as the bootstrap

particle filter. We also provide the slightly modified pseudo-code of the resampling algorithm as discussed

in [21] as Algorithm 2.

Algorithm 1 Algorithm for Bootstrap or Sequential importance sampling (SIR) particle filter [21]

[{xik}
Np

i=1]=SIR[{xik−1}
Np

i=1, zk].

• FOR i=1 :N

- Draw xik ∼ p(xk|xik−1)

- Calculate w̃ik = p(zk|xik)

• END FOR

• FOR i=1 : N

- Normalize wik = w̃ik∑Np

i=1 w̃
i
k

• END FOR

• Resample using the resampling algorithm provided below.

To apply this to our problem, we create an initial swarm of particles (the actual distribution does not

matter as it vanishes over time). These serve as the initial states at time t = 0 and are propagated using

the state model to time t = 1. The states at time t = 1 are then applied the appropriate backoff to be

comparable power to the sequence that was generated at the transmitter.

Meanwhile the true state process has been generated using pulse shaping, backoff as desired, and sub-

jecting it to the Saleh model, then adding the desired amount of noise. To review, this is represented

by

g(Ỹ i) = αa|Ỹ i|
1 + βa|Ỹ i|

exp(j∠Ỹ i) (4.4)
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Figure 4.3: Flowchart of particle filter based inverter algorithm
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Algorithm 2 Resampling Algorithm [21]

[{xj
∗

k , w
j
k}
Np

j=1]=RESAMPLE[{xik, wik}
Np

i=1].

• Initialize c1 = w1
k

• FOR i= 2 : N

- Create CDF: ci = ci−1 + wik

• END FOR

• Draw a random sample from u1 ∼ U [0, Np]

• FOR j=1 : N

- Move along the CDF: uj = u1 + j − 1
Np

- WHILE uj > ci

∗ i = i+ 1

- END WHILE

- Assign sample: xj
∗

k = xik

- Assign weight: wjk = 1
Np

• END FOR
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For each particle, the output of the Saleh model is generated, and it’s weight is found using the likelihood

function based on a Gaussian distribution with appropriate noise variance. We simplify the weighting

function by removing the normalizing factor in the p.d.f. The weighting procedure is shown below.

w̃(Ỹ i) = exp(− (|Zn − g(Ỹ i)|2

σ2 ) (4.5)

w(Ỹ i) = w̃(Ỹ i)∑N
i=1 w̃(Ỹ i)

(4.6)

With these particulars, the particle filtering algorithm proceeds as outlined above.

4.4 Linear Channel Testing

Before we tackle the nonlinear estimation problem using the particle filter, we try to get an insight into

the functionality and performance of the particle filter on a linear channel, in addition to confirming the

correctness of the software. There is no need for particle filtering in this situation as matched filtering

followed by echo cancellation is optimum, but it serves as a good test of particle filtering.

To create a linear channel within the Saleh model framework we merely set βa = 0 and αa = 1 in (2.5).

This yields the simple model depicted in Figure 4.4 and also shown below mathematically.

S̃ = S + n (4.7)

A(u) = αau (4.8)

Data Source Modulator ↑8 h1[n] × αa
d1 Y1

ρ

Y Z

Figure 4.4: Transmitter set up for linearized channel

We initialize the filter with Np Gaussian random particles that serve as the initial state (t = 0) and are

used to estimate the state at time t = 1. The Np particles are propagated through the dynamic model and

the estimation is carried out according to the algorithm given in Section 4.3. This simple setup allows us to

make several important observations regarding the particle filter’s behavior. We study the behavior of the

particle filter in the linearized case by varying the different parameters; namely, the SNR at the receiver,

and the number of particles. The input backoff at the satellite relay is meaningless in the linearized channel

as there is no notion of saturation. In addition we also briefly study the effect of having a higher-order state

model to approximate the pulse shaping filter. To achieve deeper insight into the functionality of the particle
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filter we start with a simple pulse amplitude modulated (PAM) data and then a simple 2-D constellation

and eventually transition to the constellation of interest, 16-APSK.

4.4.1 PAM

We start with 4-level pulse amplitude modulation (PAM) as it provides real (1-D) signals. We define our

alphabet C = {−3,−1, 1, 3}. The data sequence is upsampled, filtered by the pulse shaping filter, and scaled.

Z is corrupted by zero-mean AWGN at the receiver. Zn is now passed onto the particle filter where the filter

tries to estimate the actual signal state. The block diagram of the receiver is shown below in Figure 4.5. We

now study the effects of the various parameters mentioned earlier, starting with SNR.

+

n∼cN (0,σ2)

Particle Filter h[-n] ↓8
Z Zn Ŷ d̂up d̂1

Figure 4.5: Single-user receiver with particle filter

4.4.1.1 The Effect of SNR

To understand this effect we kept Np fixed to a modest value of 100. To reduce variation that arises from

different realizations of data, we keep the same realization of the data sequence d1 and vary the SNR by

changing the power of the additive noise. In Figure 4.6 we show the tracking results as a function of SNR. It is

observed that as SNR of the received signal gets higher, the tracking results get better. This is reemphasized

in Figure 4.7, where the mean squared error between the true waveform Y and the estimated waveform Ŷ

is plotted over a wider range of SNR. So we can conclude, as expected that as SNR gets higher the particle

filter tracks better. In Figure 4.7 we note that tracking MSE improves as 1/SNR, exactly as expected for a

Kalman filter. However, if the noise is negligible then the particles immediately loose diversity and therefore

particle filter may not be the best option. In high SNR situations it’s best to use an inflated noise level in

the likelihood calculation to avoid collapse of the particle swarm to one or a few particles. This provides a

nice segue into our next section which analyzes the influence of particle population on tracking.
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Figure 4.6: Tracking results with various SNR’s with 100 particles.

Figure 4.7: MSE vs. SNR(dB)
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4.4.1.2 The Number of Particles

We now study the implications of the number of particles on the performance of the particle filter. As was

claimed previously, by making the number of particles very large, the Monte Carlo approximation of the

posterior p.d.f. gets closer to the true description of the posterior p.d.f., and the particle filter approaches the

optimal Bayesian estimator, which in the linear case is the Kalman filter. For this analysis we fix the SNR

to 15 dB and once again use the same realization of the transmitted signal to have a better understanding

of the effect of number of particles. We use the following set Np of "number of particles" to perform this

analysis.

Np ∈ {10, 20, 50, 100, 200, 500, 1000, 2000}

The results of the simulation are shown below. We can see that the plots of the estimated signal don’t

improve much as the number of particles increase beyond 50. Furthermore, we see that there is a perfor-

mance floor, i.e. keeping all other parameters constant, increasing the number of particles doesn’t yield an

improvement in the performance.

Figure 4.8: Tracking results with varying number of particles at an SNR of 15 dB.
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Figure 4.9 recapitulates this phenomenon and shows MSE undergoes diminishing returns and soon the MSE

encounters a floor. This floor is a consequence of the additive noise of the channel; even the optimal Kalman

filter for this problem would have this same floor.

Figure 4.9: MSE vs. number of particles

4.4.1.3 Effect of Higher-Order State Models

We now repeat the experiments above for a higher-order realization of the state model. The model is still

a modified Butterworth filter obtained via Algorithm B but with higher order. For simplicity we choose a

fourth-order model. A higher-order model has more correlated states and a greater ‘inertia’, and generally can

more closely match the dynamics of the actual FIR signal. However, intuition suggests there should be more

particles required to have sample diversity and avoid particle impoverishment. The results were compared

for same SNR value for both second and fourth-order filters with strictly-proper transfer functions and the

results are reflected in Figure 4.10. The number of particles required are significantly higher for fourth-order

to achieve the same MSE. The performance reaches a floor at around 150 particles and then the fourth-order

achieves better performance for the same number of particles. However, both the systems seem to hit a

floor beyond which their performance is not improved any more when the number of particles is increased.

Moreover, to achieve a relatively small marginal gain reduction in MSE the additional computational cost
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incurred while operating a higher-order model coupled with a large number of particles might not be worth

the cost.

Figure 4.10: MSE vs. Np for 2nd and 4th-order state models

The PAM study of the particle filter, though simple and performed on a linear channel, provides valuable

insight about the functionality of the particle filter. We have empirical evidence now regarding the perfor-

mance as a function of various parameters. This 4-PAM exercise confirms the correctness of our particle

filter algorithm. Next, we test a constellation with complex symbols. A simple choice is QPSK because of

easiness in implementation and testing.

4.4.2 QPSK

We now examine the performance of the particle filter with a complex constellation, still on a linear channel.

The state model used is the second-order model in (4.3). Everything else, except for the alphabet, at the

transmitter stays the same as in the linear channel with PAM described previously. At the receiver, we now

have zero-mean complex AWGN. The particle filter is implemented the same way as in the case of PAM.

The only change is in the weighting function which is now modified to reflect the complex sequence. The

complex sequence is a proper Gaussian and we use σ2 instead of 2σ2 in the denominator of the argument of

the exponential in (4.5). We start again with the study of SNR.
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4.4.2.1 The Effect of SNR

For a range of SNR’s we present below, in Figures 4.11 and 4.12, the tracking results in the complex plane for

a small segment of the QPSK locus in the bidirectional case. As opposed to the PAM signal, where we had

1-D noise, the corruption due to noise is much more noticeable as the two noise components are independent

of each other and can deteriorate the performance of the particle filter. The tracking is not smooth at low

SNRs, however, the locus of the estimate gets smoother and the tracking result improves with increasing

SNR. We don’t show the tracking results of single user case, but the plot provided in Figure 4.13 shows that

the MSE monotonically decreases with increasing SNR, in both the single-user case and the bidirectional

case. In fact, we obtain almost identical plots in Figure 4.13. This is because in the linear channel there is

no notion of saturation.

Figure 4.11: Tracking results for QPSK for SNRs 15 dB (left) and 20 dB (right), Np=100,
Bidirectional case

56



Figure 4.12: Tracking results for QPSK for SNRs 28 dB (left) and 35 dB (right), Np=100,
Bidirectional case

Figure 4.13: MSE vs SNR for Single-user (left) and Bidirectional (right) cases with Np = 100

For the bidirectional case, we now present the constellations obtained at the output of the adaptive

canceller. We observe from Figures 4.14 and 4.15 that the constellations’ qualities increase with increasing

SNR and the decision zones are well defined even in the low SNR case. This exercise also confirms the

successful functionality of the particle filter in the case of a complex constellation. We now study the effect

of number of particles in the complex constellation case.
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Figure 4.14: Constellations for QPSK for SNRs 15 dB (left) and 20 dB (right), Np=100,
Bidirectional case

Figure 4.15: Constellations for QPSK for SNRs 28 dB (left) and 35 dB (right), Np=100,
Bidirectional case

4.4.2.2 The Number of Particles

Intuitively, in the two-dimensional case we need a larger particle population to maintain a similar performance

as PAM. This is because with two dimensions the domain of the signal increases and therefore the number of

particles must be increased in order to get a good coverage of the 2-D space. However, again we experience
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the phenomenon of performance saturation where by increasing the number of particles beyond 200 there

is no significant improvement in tracking error. The results for the bidirectional case are shown below in

Figure 4.16.

Figure 4.16: MSE vs number of particles at SNR= 30 dB, Bidirectional case

4.4.3 16-APSK

Now that we have established the performance of the particle filter for quadrature modulation, we now focus

our attention on the 16-APSK constellation. We analyze the performance for the same set of parameters.

The performance should be similar to QPSK in the linear case, where we encounter a monotonic decay in

MSE with increasing SNR. However, we expect have an increased probability of symbol error because the

symbols in the constellation are much closer to each other compared to QPSK. We first present the tracking

results in Figures 4.17 and 4.18. As can be seen the tracking results get better with increased SNR. We

highlight this trend in Figure 4.19 below.
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Figure 4.17: Tracking results for 16-APSK, for SNRs 15 dB (left) and 20 dB (right), Np = 100,
Bidirectional case

Figure 4.18: Tracking results for 16-APSK, for SNRs 28 dB (left) and 35 dB (right), Np = 100,
Bidirectional case
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Figure 4.19: MSE vs SNR for 100 particles, 16-APSK, linear channel

Having looked at the tracking results, we now look at the constellations that are obtained at the output

of the adaptive canceller. Figures 4.20 and 4.21 are in agreement with our expectation of the constellation

getting deteriorated with low SNR because of the presence of more symbols and their proximity to each

other. However, the constellations do get better with SNR and the probability of symbol error goes down

with increasing SNR.

Figure 4.20: Constellations for 16-APSK, for SNRs 15 dB (left) and 20 dB (right),Np = 100,
Bidirectional case

61



Figure 4.21: Constellations for 16-APSK, for SNRs 28 dB (left) and 35 dB (right),Np = 100,
Bidirectional case

Figure 4.22: MSE vs Np , with SNR = 30 dB,
Bidirectional case

In the 16-APSK case, the number of particles has a similar effect on the tracking MSE as was observed in

the case of QPSK and 4-level PAM. This is illustrated graphically in Figure 4.22. In summary, for all cases
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on a linear channel, particle filtering with 50-100 particles seems a good design choice.

4.5 Nonlinear Channel

We now return to the core of the problem with having a better understanding of the behavior of the particle

filter. The analysis that we have done so far presents valuable insight in using the particle filter to invert the

actual Saleh nonlinearities introduced at the satellite relay. We first treat the special case of a single-user

transmitting and a single-user receiving in a nonlinear setup. We now restore the original Saleh parameters

given as following α
β

 =

αa αφ

βa βφ

 =

2 4.0033

1 9.1


We again study the effect of the SNR, number of particles, and also another important parameter that

was absent in the case of the linearized channel, namely the backoff. Based on the analysis so far, we have a

fairly good understanding of the effects of SNR and the size of particle swarm. However, we need to see the

influence of backoff on the performance of particle filter as it is the parameter that dictates the severity of

the nonlinearity.

4.5.1 Effect of backoff

Typically the signals are backed off significantly to avoid the nonlinear distortion introduced by the HPA,

however, a significant loss of power occurs when the signals are backed off. The more the signal is backed off

the closer we are to the linear channel but our goal is to see if we can be more power efficient by operating in

the nonlinear zone of the HPA. For this part of the analysis we fix the SNR to 35 dB, a fairly high number,

to minimize the artifacts of additive noise. Furthermore, we also start with a fairly high number of particles

as we are trying to minimize the consequences introduced by the dearth of particles. We vary the backoff

from quasi-linear operation to highly nonlinear. We start with a high backoff to see if the particle filter is

performing as it would in a linear setup and there are no unexpected observations made. This will allow

us to focus on the effect of SNR. So we start with a backoff of -12 dB and slowly work our way into the

nonlinear zone.
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Figure 4.23: MSE vs. IBO with Np = 100 and SNR = 35 dB, Single-user case

After going through the particle filter inverter, the signal is quasi-linear and therefore is passed through

the matched filter. The matched filter output is downsampled and some of the constellations recovered at

SNR =35 dB with 100 particles at various outputs are presented below. The constellations do not show

any nonlinear distortion for larger backoffs; however, when backoff is gradually increased we see that the

outer ring of the constellation undergoes distortion which is radial in nature. This is a consequence of gain

compression which becomes more substantial as the input backoff gets smaller. This leads to erroneous state

estimation and thus we see an outward radial drift in the outer ring’s constellation points.

For the backoffs ∈ {−12,−10,−8,−7,−6,−5,−4,−3}, we plot their corresponding SER. We again use

the centroid method explained earlier to calculate the SER. Note the scale difference in Figures 4.24 and

4.25 . Also note that each constellation in figure has a different energy which is inversely proportional to the

backoff level. This figure demonstrates the trade off between power and distortion. The signals in Figure

4.25 undergo a more severe distortion, however, the decision boundaries seem less vague. To quantify this

observation we use the centroid based approach to attain the SER for all the eight cases and the SER plot

is shown in Figure 4.26.

The constellation plots show interesting radially-distributed behavior, with largest scatter for the outer

ring points, as should be expected. Decisions based on this constellation however would be high quality,

especially given the nature of the scatter.The Voronoi zones previously depicted in Figure 2.14 are still going
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to be valid despite the distortion as the constellations points can be still fairly easily classified into their

respective zones. Even in the case when backoff goes as low as -3 dB, we see that the Voronoi decision

boundaries as discussed in Chapter 2 are still valid.

Figure 4.24: Constellation plots for SNR = 35 dB, Np=100
IBO =-12 dB (top-left), -10 dB (top-right), -8 dB (bottom-left), -7 dB (bottom-right)
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Figure 4.25: Constellation plots for SNR = 35 dB, Np=100
IBO =-6 dB (top-left), -5 dB (top-right), -4 dB (bottom-left), -3 dB (bottom-right)

Figure 4.26: Ps vs. IBO with Np = 100 and SNR = 35 dB, Single-user case.
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4.5.2 Effect of SNR

Next we study the effect of SNR, still for a single user to better understand the performance and behavior of

the particle filter over the nonlinear channel. We now check the robustness of the particle filter by subjecting

it to perform under various levels of AWGN. The backoff is also kept constant at 4 dB which is about 40%

of the saturated signal power level. We show some tracking results which are followed by the constellations

of the data produced at the receiver. We expect the performance to increase with the SNR as there is more

certainty associated with certain particles. Although high SNR has the advantage of giving more confidence

in the measurement, it can also lead to the loss of diversity among the particles as all the particles in a

very focused region tend to carry all the weight. This makes the particle filter susceptible to loosing track.

This can be countered by artificially inflating the measurement noise by scaling up the respective variance.

We now demonstrate the tracking results and follow them by plotting the MSE as a function of SNR. It

seems by inspection of Figure 4.27 that there is a performance floor. This is most likely a consequence of the

number of particles being fixed and therefore we claim that the performance can be improved by increasing

the number of particles.

Figure 4.27: MSE vs. SNR for 16-APSK, IBO = −4 dB, Np = 100
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4.5.3 Effect of number of particles

In general an increased number of particles lead to a better estimation of the posterior density. However,

as we saw in the linear case that the MSE experiences diminishing returns with respect to the number of

particles. In the linear case, the MSE decays by increasing the number of particles, however, after the number

of particles have reached about 50 we don’t see any major improvement in tracking resulting from increasing

the number of particles. This was because the posterior pdf was unimodal and it was completely characterized

with about 50 particles and increasing the number of particles beyond that did give any improvement in the

posterior pdf of the state. However, with increased drive level we can have a multimodal distribution. In our

particular case the Saleh model is a non-invertible nonlinearity and therefore for a possible value of output

there are two possible input values. This fact was discussed in great detail in section 4.4.1.2 and also in the

MAP based inversion algorithm discussed in Chapter 3. The distribution demonstrates more strong bimodal

behavior at low backoff levels as the signal tends to evolve more frequently into the saturation zone as shown

in Figure.3.2. Therefore intuitively we need more particles to get a more accurate posteriori distribution. To

test this hypothesis we give the particle filter a specific SNR and an input backoff and run the algorithm for

different number of particles. The results obtained for tracking mean-squared-error by varying the number

of particles is presented in figure are reflected in Figure 4.28. We notice that the MSE again observes a floor

between 100 and 200 particles. This time, i.e. in the case of nonlinear waveform, the floor is reached at a

higher number of particles since more particles are needed to represent the a-posteriori pdf.

Figure 4.28: MSE vs. Np for 16-APSK, with SNR= 30 dB, IBO= −5 dB, Single-user case
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We also present the symbol error rate as a function of the particle population in Figure 4.29. The SER

initially decreases with the number of particles but after a 100 particles the SER becomes zero.

Figure 4.29: Ps vs. Np for 16-APSK, with SNR =30 dB, IBO =-5 dB, Single-user case

4.5.4 Bidirectional transmission

Up to this point we have built the discussion of the particle filter in order to justify its use and get intuition

and assurance that it has the potential to work as we have proposed. We have shown previously the

performance of single user results over linear and nonlinear channels and inferred important information

about the performance in tracking the transmitted waveform. Our results of waveform tracking in the case

of nonlinear channel study for one user were encouraging. We now take the next step of having two users

transmit information to the relay simultaneously as per Figure. 2.1. At the relay we put the aggregate signal

into the HPA and then transmit the aggregate amplified signal back to each terminal.

We now study the tracking results using the particle filter for this aggregate signal. The difference from the

single user case is that the signal now has a higher peak to average power and thus stays in the saturation

or ambiguity zone, as shown in Figure 3.2, longer relative to the single-user problem addressed earlier. The

amplifier for the same input backoff is therefore going to be driven harder and the output will undergo
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a relatively more severe compression and distortion as compared to the single user case. Therefore the

challenge for the particle filter is more difficult in the sense that it has to be able to track a more severely

distorted signal. We propose that the number of particles required for tracking the aggregate signal is going

to be higher. Moreover, we expect that we might have to backoff to a larger backoff in order to achieve the

same performance as the single user case. We begin the analysis by studying the effect of SNR, backoff, and

the number of particles propagated in that order. Then we look at the implications of these parameters on

the error rate.

4.5.5 Effect of SNR

As we saw in the implementation of particle filter for the linear channel that as noise power gets smaller and

smaller, the estimate of the particle filter gets better and better as the next observation is actually closer

to where the particle filter predicts its presence. However, when we have too high an SNR the particles

experience impoverishment as was explained earlier. This can cause loss of track as the population density

of the particles get concentrated and they don’t provide a very good coverage. Also in case of lost track the

filter will take longer to regain track because the noise variance used in the weighting function is small and

therefore might take several samples before the particle filter gets back on track. Moreover, this loss of track

could happen again and therefore the overall tracking performance deteriorates. We therefore artificially

inflate the noise variance used in the weighting function in (4.5) to calculate the likelihood of each new state.

This dispersion of particles leads to better tracking. In Figure 4.30 we present tracking results for a segment

of locus at different SNRs. It conforms with our previous discussion that increased SNR implies low MSE.

Figure 4.30: Tracking for varying SNR at IBO= −6dB and Np = 500
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Figure 4.31: MSE vs SNR, IBO= −6 dB and Np = 500

4.5.6 Effect of number of particles

Over the single source nonlinear channel, we saw that the number of particles have to be increased signif-

icantly from the linear to nonlinear channel. Now we believe because of the presence of second signal the

PAPR increases even further, and therefore the signal is going to be in the saturation zone for longer time,

hence making the distribution more bimodal. The bimodality of the distribution creates ambiguity between

the choice of correct state and therefore a greater number of particles would lessen the problem to a certain

degree.

Figure 4.32: MSE vs. Np for 16-APSK, with SNR= 30 dB, IBO= −5 dB, Bidirectional case
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Figure 4.33: Ps vs. Np for 16-APSK, with SNR = 30 dB, IBO = −5 dB, Bidirectional case

4.5.7 Effect of backoff

As mentioned previously the number of episodes where the signal travels into the saturation zone is going

to be higher and therefore we most likely won’t be able to operate in low backoffs with while maintaining

reliable communication. Therefore the effect of lower backoffs might be more severe in this case. With the

addition of the second signal the average peak to average power ratio gets even higher than in the single

user case and therefore a larger backoff might be required for the dual user to attain a similar performance.

We present the MSE vs input backoff curve below in Figure 4.37. The plot confirms our intuition that with

larger backoffs there is significant power lost in transmission and the effective SNR at the receiver gets lower.

Therefore when we are backed off more we gain linearity but at the expense of loosing signal power and

reducing the SNR at the receiver. Howerver, when we operate at smaller backoffs we don’t loose much power

but we introduce the nonlinear distortion that is a consequence of driving the amplifier into saturation.
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Figure 4.34: Constellation plots for SNR= 35 dB, Np = 100
IBO= −12 dB (top-left), -10 dB (top-right), -8 dB (bottom-left), -7 dB (bottom-right)
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Figure 4.35: Constellation plots for SNR= 35 dB, Np = 100
IBO = −6 dB (top-left), -5 dB (top-right), -4 dB (bottom-left), -3 dB (bottom-right)

74



Figure 4.36: Ps vs. IBO with Np = 200 and SNR = 35 dB, Bidirectional case

Figure 4.37: MSE vs. IBO with Np = 200 and SNR= 35 dB, Bidirectional case
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4.6 Performance Evaluation

We try to recreate the same evaluation criteria that we used for the MAP inverter. We start by looking at

the MSE encountered in tracking the waveform. The plot in Figure 4.38 depicts the MSE as a function of

SNR for various backoffs. The MSE encounters a floor at higher SNR because of the loss in diversity and

therefore we inflate the measurement noise in weight calculation to appease the problem. This is specially

helpful when there is only one particle that survives to be propagated along ,i.e., all the other particles in

the following time step are just its descendants. Also in the ambiguity zone the state distribution is bimodal,

and since our estimate is based on the mean of output of the state model, we are always underestimating

when the true state is greater than one or overestimating when it is smaller than one( akin to the concept

of lower and higher roots discussed in Chapter 3). This produces some tracking error which is reflected in

the plots below.

Figure 4.38: Tracking MSE of particle filter

We now look at the final criterion for evaluating the performance of the particle filter, namely the symbol

error curves. We evaluated the effects of backoff and SNR in detail previously. We see the manifestation of

those results in the Figure 4.39. As the SNR gets higher we have more confidence in our measurements so the

error rate is non-increasing. Large backoffs imply operation at a level much smaller than saturation. This

means very limited nonlinear distortion results but at the same time we have a much smaller transmission

power. By backing off more, we are lowering the effective SNR at the receiver and therefore we see a higher
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error rate as exemplified by the -12 dB curve in Figure 4.39. At -7 dB we are able to achieve an error

rate of about 10−4 and we are still operating in the nonlinear regime of the satellite amplifier. This result

concludes our discussion of particle filter and in the next chapter we summarize our results and compare the

two algorithms.

Figure 4.39: Ps vs SNR for particle filter
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Chapter 5

Summary and Future Work

5.1 Summary of Results

In this research, we focus on receiver-based techniques for combatting nonlinearity in satellite relay channels.

Our particular interest is in bidirectional (same-frequency) communication, where we need to combat self-

interference using known side-information. This is most easily done with an echo cancellation approach,

but this relies on the channel model being approximately linear. So, we present the two approaches and

their performance for inverting the nonlinearity introduced by nonlinear satellite channels. In the case of

bidirectional communication, this is followed by echo cancellation.

For this work, we focused on the Saleh model which characterizes a noninvertible nonlinearity. The

noninvertibility of the Saleh model stems from the fact that there is two-to-one mapping and therefore there

is ambiguity in choosing the correct input for an observed output. One traditional approach is to ‘backoff’

the amplifier into a more linear regime of operation, but this has performance impacts (loss of output power

and amplifier efficiency).

We attempt to create an overall artificial linear channel by countering the nonlinearity. We devised two

stochastic algorithms that attempt to invert the Saleh nonlinear channel. These algorithms focus on correct

estimation of the waveforms or locus generated at the input of the nonlinear relay. The first algorithm is a

MAP-based decision method. The mathematical inversion of the Saleh model yields two possible roots that

correspond to the input for each received output sample. And the sequence of roots that maximized the

probability of received sequence or a-posteriori probability was chosen. We saw that the algorithm estimated

the input locus with small error at high SNR. The error increased, of course, as we decreased the received

SNR. The results are discussed in detail in chapter 3.
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This low-SNR performance degradation motivated us to look for another algorithm that is more robust

to additive noise. Our next approach was the particle filter which is a Bayesian estimator of the input

waveform to the HPA based on the noisy measurements available at the receiver. The discussion and results

for particle filter are documented in chapter 4.

Based on analysis performed in Chapters 3 and 4, we now present a brief comparison between the two

algorithms in terms of performance. For the MAP algorithm we choose a parsing length of 8 and for the

particle filter we use 200 particles. Moreover, we fix the data set that would be processed by both the

algorithms. We start by first comparing the tracking MSE of each algorithm. In the case of each algorithm

we calculate the MSE in waveform tracking as a function of SNR and input backoff, and the results are

displayed in Figure 5.1.

Figure 5.1: Comparison of tracking MSE of MAP inverter (left) and particle filter (right)

From Figure 5.1 we notice that at the low end of SNRs (say < 25 dB), the particle filter has lower MSE

and does better for almost all combinations of SNR and backoff. However, as we increase SNR we see that

the MAP inverter catches up and the MSEs in each case are very similar. In fact, towards the higher end of

the SNR range presented in the figure, the particle filter experiences a floor on MSE which is a consequence

of the fact that we are using a fixed particle population size, namely 200. If we use more particles we expect

to lower this floor. On the other hand, the MAP detector does not encounter a floor; infact the MSE seems

to decrease with the same slope over the range of SNRs presented in the figure.

Next we compare the symbol error rates of the two algorithms. Again the plots are reproduced in Figure

5.2 from their respective chapters. The nonlinear distortion at backoffs greater than 4 dB introduces severe

distortion which is reflected in the SER curves, which makes these IBO’s undesirable operating points. The
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two algorithms attain a Ps of 10−3 around an SNR of 30 dB for various backoffs e.g., -6,-7, and -8. It seems

that the particle filter achieves a SER of 10−3 at a slightly lower SNR, but it encounters a performance floor

soon after, due to population size of particles. For this particular simulation the MAP inverter achieved an

SER of 0 for a run of 105 symbols for backoffs of -7,-8, and -10 dB for SNR’s beyond 39, 33, and 36 dB

respectively.

Figure 5.2: Comparison of SER plots for MAP inverter(left) and particle filter(right)

We next discuss the computational times associated with each algorithm. As it stands, the particle filter

operates continually, rather than over ambiguous spans in the data. This is an inherent complexity penalty

on the particle filter. On the other hand, this complexity is invariant to IBO, as long as particle population

size is fixed, whereas the MAP detector’s complexity depends strongly on IBO .1

On the other hand, if we fix the parsing length deployed in the MAP inverter, we get different run times

based on the amount of time the signal spends in the ambiguity zone. For larger backoffs there is little

ambiguity and therefore the MAP inverter is not invoked and the computational time is smaller. Whereas in

the case of smaller backoffs the time spent in saturation is considerably higher and the MAP inverter would

be a lot more occupied trying to estimate the ambiguous sequences. So the time complexity experienced by

the MAP inverter is a function of backoff and to some extent when the noise power is significant enough to

push the signal into the Run time on a single PC for 100000 symbols (800000 samples) is shown in Figure

5.3.
1This is not to be confused with the previous discussion where it was suggested that increasing the population of particles

can appease the floors in performance. Here we are comparing complexity with the number of particles kept fixed.
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Figure 5.3: Computational time comparison of MAP inverter(left) and particle filter(right)

5.2 Future work

5.2.1 MAP detector

Two things seem worth study. First, further noise reduction prior to root-finding could be helpful. We

tried simple linear filtering to pass the signal band while rejecting out-of-band noise, but this did not prove

fruitful. It seems that the intermodulation signal components rejected by the linear filter are fairly important

at waveform inversion of the nonlinearity. We have experimented some with wavelet de-noising methods that

show some promise. However, in the end we can probably only improve the effective SNR seen by the root-

finder by a few dB.

A bigger issue is compuational. We are already forced to parse long ambiguous spans into shorter segments

of say length N = 8 for MAP processing. This still requires evaluation of 256 candidate root sequences,

which helps on compuation load. However, the tail estimates from one string become the anchor points

for the next segment, and these are occasionally wrong. If the entire ambiguous span can be processed,

experimental evidence is that much better MSE can be achieved. So, signal processing schemes that find

good approximations to the MAP sequence, if not perhaps the best, are needed for longer spans.

5.2.2 Particle filtering

We incorporated the AM-PM modulation into the MAP inverter, however, the particle filter based inverter

in its current state just focuses on countering the AM-AM distortion. We plan on incorporating the AM-PM

inverter soon in the particle filter based inversion algorithm and repeat the simulations.
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Also, smoothing, in conjuction with particle-based methods, rather than filtering, should provide smaller

MSE by allowing the estimate of the waveform to emerge after a short delay, [7]. This is analogous to

the improved performance of Kalman smoothers over Kalman filters. The complexity increase seems quite

reasonable, and it could be that smoothing allows a reduction in the required number of particles.

Regarding computation, particle filtering is unfortunately not amenable to parallel processing, in for

example FPGA platforms. Particle propagation and likelihood calculations can be done in parallel, but

resampling is not parallelizable. Further investigation of this aspect is probably necessary for implementation

in high-speed satellite communication applications.
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Appendix A

Algorithm For Reduction to

Strictly-Proper From

Consider a tranfer function of the form

H(z) = B(z)
A(z) .

In the special case that H(z) is either a Butterworth or a Chebyshev filter there are zeros at ω = π, or z=-1.

The numerator, B(z) can be expressed as following

H(z) = kH(z)
(z + 1)N

A(z) (A.1)

Another piece of information that is used in the algorithm is making the passband gain of the strictly-

proper transfer function equal to that of the original transfer function. At ω = 0 we have z = 1 and thus

from the numerator in (A.1), (z + 1)N becomes 2N . If m zeros are removed from B(z), the new polynomial

B̃ has to be scaled by 2m to obtain the same bandpass gain. Since we are only using the trivial case of

removing one zero, the new passband gain becomes 2N−1 and therefore we just scale by 2 in (A.2) in the

Algorithm below.

We now present an algorithm to obtain a strictly proper transfer function with the same passband gain.
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Algorithm 3 Algorithm for finding strictly-proper transfer function from Chebyshev/Butterworth filter

• Find the degree of the Numerator B(z). Call it N .

• Create a polynomial B̃(z) of degree (N − 1) in z as follows

B̃(z) = (z + 1)N−1

• Find kH(z), the gain of H(z).

• Calculate the gain of strictly-proper function

kp = 2kH(z) (A.2)

• Calculate the new numerator Bp(z) that produces a strictly proper transfer function

Bp(z) = 2B̃(z)

• Create proper transfer function Hp(z) as follows

Hp(z) = Bp(z)
A(z)
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Appendix B

Obtaining Observer-Canonical Form

The most common canonical forms; the controller canonical form(CCF) and the observer canonical form

(OCF) can be obtained using the methods described in [11]. For this research we used Matlab’s built-in

command ‘tf2ss’ which accepts the numerator and the denominator of a transfer function and generates the

corresponding state model in the form of the matrices A,B,C and D.

[A,B,C,D]= tf2ss(B(z),A(z))

By default the model is in CCF, but for reasons mentioned in section 4.2 we want to convert this into OCF.

To attain the corresponding OCF we need to change A,B,C, and D such that transition matrix in OCF is

the transpose of the transition matrix in CCF, and the input and output matrices in OCF are obtained via

transposing the output and input matrices in CCF respectively. The feed-forward term D stays the same

for both canonical forms.

Ao = ATc

Bo = CTc

Co = CTc

Do = Dc

Here the subscripts c and o correspond to the canonical and observer forms respectively, and the su-

perscript T corresponds to the transpose. As both the CCF and OCF are state models that emerge from

strictly-proper transfer functions we have the feed-forward term Do = Dc = 0.
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