
Improving Reliability and Security with Aging and Pre-RTL

Modeling

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Engineering)

by

Alec Roelke

May 2018



© 2018 Alec Roelke



APPROVAL SHEET

This Dissertation 

is submitted in partial fulfillment of the requirements 

for the degree of

Doctor of Philosophy 

Author Signature: 

This Dissertation has been read and approved by the examining committee:

Advisor: Mircea R. Stan

Committee Member: John Lach

Committee Member: Kevin Skadron

Committee Member: Samira Khan

Committee Member: Schuyler Eldridge

Committee Member: 

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, School of Engineering and Applied Science

May 2018

Alec Roelke

i



Abstract

With the increasing importance of cloud computing, where low-power devices offload power-hungry compu-

tations to remote servers, the reliability of these servers becomes more important. At the same time, the

emergence of the Internet of Things (IoT) has introduced a need for long-lasting electronics in devices with

long lifetimes. Both types of systems are susceptible to aging: the slow degradation of circuit parameters

that eventually leads to failure. As a result, architects need tools to evaluate the effectiveness of techniques

for improving reliability, but post-RTL simulation is slow. In this work, I present a pre-RTL tool called

OldSpot which enables optimization of aging resilience using high-level models that improve simulation speed

by reducing unnecessary detail while decreasing accuracy loss. Existing aging models make assumptions

about aging rates that do not hold in a system whose operational parameters change over time. OldSpot

uses directed graphs to indicate how the failures of units within the system contribute to the failure of the

whole to create a lifetime distribution, removing these assumptions. This enables analysis of architectural

techniques like structural duplication to improve lifetime.

OldSpot can be included in a pre-RTL tool flow that includes power, performance, and temperature

simulations to create a high-level characterization of all design metrics. To enable its use in this flow, I

also present an implementation of the RISC-V ISA in the gem5 simulator, a high-level microarchitecture

and memory modeling tool widely used for pre-RTL performance simulation. The flow is demonstrated by

simulating a heterogeneous system containing a RISC-V CPU and an accelerator to show the importance of

co-designing the two units rather than designing them separately.

Another limitation on the lifetime of IoT devices is their security, which can be ensured using a compact,

low-power device called a Physical Unclonable Function (PUF). PUFs use natural silicon variations to create

fingerprints. Despite PUFs’ power and area advantages, they are also susceptible to aging, which affects

variations and modifies their fingerprints. In this work, I show how directed aging can degrade the reliability

of a PUF or even duplicate its fingerprint. I also demonstrate a method of resisting this degradation using

active recovery.
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Chapter 1

Introduction

The recent growth in usage of mobile devices has caused a paradigm shift in the way computations are

performed. Rather than performing large computations with high-end hardware, users use low-power personal

devices that send data to remote servers such as Microsoft’s Windows Azure [1, 2] that compute the results

and send them back to the client. For example, a virtual personal assistant in a cell phone or laptop would

make use of such services to convert a user’s speech into commands that are sent back to the device for

execution. Additionally, this also opens a path for embedding low-power microprocessors into devices such as

household appliances. This way, they can communicate with each other and their owners to exchange data

about usage and preferences and receive commands, creating an “Internet of Things” (IoT).

This, along with the impending end of Moore’s Law [3], has caused significant changes in both hardware

and software design methodologies. Whereas historically it has been possible to rely on operational parameters,

such as supply voltage, to shrink along with transistor size according to the principal of Dennard scaling [4]

to enable power reduction and performance improvement, it is no longer possible to do so [5]. The resulting

increase in power density has repercussions for devices all along the power spectrum. At the high end,

in devices such as servers, it increases operating temperatures and introduces a concept known as “dark

silicon,” [5] where sections of a chip must be powered off to keep the system within power and thermal budgets.

It also directly increases the cost of power delivery and cooling. At the low end, in IoT or mobile devices,

increased power consumption can mean lower battery lifetime. This has caused an increased emphasis on

design techniques such as low-voltage operation [6].

High power densities and temperatures also have adverse effects on reliability. Reliability problems can

be classified into two groups: soft errors and hard errors [6]. Soft errors are caused by radiation, such as

neutrons from cosmic sources or alpha particles from trace elements in packaging. If these particles strike a

1



Chapter 1 Introduction 2

circuit, they can cause bits to flip, resulting in incorrect behavior. Even though soft errors are not affected

by temperature, they have been shown to become worse as process sizes continue to shrink [7]. Techniques

for handling soft errors exist from the circuit level [8] up to the software level [9]. Other kinds of transient

reliability problems include voltage noise [10] and temperature variation [11], which cause timing errors

through voltage droop and reduced transistor speed and are affected by variation in workload characteristics.

These problems are generally aggravated by high power densities and, as a result, also become worse as

process sizes shrink. In order to manage them, tools such as HotSpot [11] and VoltSpot [10] can be used to

minimize them at design time while techniques such as dynamic voltage and frequency scaling (DVFS) can

be used to manage them at runtime. In addition to transient errors, hard errors caused by manufacturing

defects and aging also occur. Unlike transient errors, hard errors are permanent in nature and are often tied

to processes that evolve over time. Aging, the focus of this work, is one of the major causes of hard errors.

1.1 Aging

Aging is the slow degradation of device parameters over time. This degradation causes slowdown and other

failures, reducing performance and causing system failures through circuit timing violations and physical

damage. In high-end devices such as large-scale servers, this can mean increased latency for a client that can

cause failure to meet their requirements [12]. When that happens, the system must be replaced; this has

been estimated to cost up to 45% of the total cost of ownership of these systems [13]. It also has implications

for low-end devices such as embedded systems. Because such devices can be permanent installations like

household appliances and are often required to last many years, the electronics inside them must last at least

as long [14]. IoT and cloud computing have also caused a change in the utilization of electronic devices from

sporadic to near-constant, accelerating aging [15] and reducing lifetime. The following sections will discuss

aging mechanisms, their impacts on circuits and devices, and current techniques for mitigating them.

1.1.1 Aging Mechanisms

There are many mechanisms by which aging occurs that impact different parts of a device or circuit. The most

prominent aging mechanisms are negative bias temperature instability (NBTI) and electromigration (EM)

[16, 17], which, respectively, increase the threshold voltage of a transistor [18] and warp metal interconnects

[19, 20]. Also prominent are time-dependent dielectric breakdown (TDDB), which breaks down the gate

dielectric [21], and hot-carrier injection (HCI), which also increases threshold voltage [22].
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(a) (b)

Figure 1.1: Diagrams of the two mechanisms behind NBTI. Threshold voltage is raised when hydrogen
diffuses through the gate (a) [23] or charge carriers are trapped in the channel (b) [24], reducing the current
that can be conducted.

Negative Bias Temperature Instability (NBTI)

Negative bias temperature instability, or NBTI, creates a gradual increase in the magnitude of the threshold

voltage, VT , of a PMOS transistor. It is caused by the capture of holes in three types of defects: ones that are

generated at the gate oxide interface (denoted as ∆NIT ), preexisting in the bulk (∆NHT ), and are generated

in the bulk (∆NOT ) [18, 23] (Figure 1.1). When a negative bias is applied to the gate of a PMOS transistor,

energy wells in the device deepen, forming hole traps and interface traps by exchanging hydrogen bonds at

the gate interface. Traps fill according to:

∆NHT ∝ (VG − VT0 −∆VT )
ΓHT e−

EAHT
kT

(
1− e−( tτ )

βHT
)

(1.1)

where VG is the gate voltage, VT0 is the original threshold voltage, ∆VT is the threshold voltage shift due to

NBTI, EAHT is the activation energy of hole traps, k is Boltzmann’s constant, T is temperature, and ΓHT ,

τ , and βHT are technology-dependent constants [18]. The value of τ is typically very small, indicating that

the hole traps capture and release charges quickly and effectively causing ∆NHT to appear time-invariant.

This has affected the accuracy of NBTI measurements in the past due to relatively slow measurement times,

resulting in underestimation of ∆VT [25] and accrual of degradation during measurement [26]. Improvements

on NBTI measurement techniques have enabled fast measurement that allows capture of ∆NIT effects and

more accurate modeling [27].

At the same time, hydrogen ions diffuse through the gate oxide from the interface to the channel (∆NIT )

and eventually reach the interface with the gate terminal on the other side, reacting with hydrogen ions there

to create hydrogen molecules. Interface traps are generated according to the following relationship:

∆NIT ∝ (VG − VT0 −∆VT )
ΓIT e−

EAIT
kT t1/6 (1.2)
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(a) (b)

Figure 1.2: Illustration of the physical mechanism behind electromigration (a) [28] and SEM photograph of a
wire that has been affected (b) [29].

where EAIT is the activation energy of interface trap generation and ΓIT = ΓHT [18]. The effects of bulk

generated traps are considered negligible, so ∆NOT can be ignored. As these charges accumulate in traps,

the threshold voltage of the transistor increases according to ∆VT,NBTI ∝ ∆NIT + ∆NHT + ∆NOT , reducing

the current the device can conduct and slowing it down. Similar processes cause electrons to become trapped

in defects in NMOS transistors. This is called positive bias temperature instability, or PBTI, but it has a

smaller effect than NBTI.

When the negative bias is removed, some holes are released from the bulk traps and some of the hydrogen

diffuses back to the gate interface, partially recovering the degradation:

∆NHT + ∆NOT = B′e−( t
τr

)
βr

(1.3)

where B′ depends on the amount of accumulated degradation and τr and βr are technology-dependent

constants [18]. Due to the high rate at which interface traps capture and release charges, the NBTI

degradation they cause is dominated by the rate at which interface traps are generated.

Electromigration (EM)

Electromigration, or EM, is another important factor in electronics aging. As electrons travel through metal

(typically copper and aluminum) interconnect while current flows, they cause metal atoms to slowly migrate

in the same direction through transfer of momentum [20], as shown in Figure 1.2(a). This can cause changes

to the thickness of affected wires, creating mechanical stress, increasing resistance, and breaking circuits. An

example photograph of metal wires affected by EM is shown in Figure 1.2(b) [29].
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Figure 1.3: Diagram of the mechanism behind HCI. Nit represents the trapping of hot electrons in the oxide,
causing an increase in threshold voltage [32].

A widely-used method of computing the mean-time-to-failure of an electronic system due to EM is Black’s

Equation [19]:

MTTFEM = Aj−ne
Ea
kT (1.4)

where j is the current density, Ea is the activation energy of EM, and A is a technology constant that depends

on physical characteristics. The value of j can be derived from technology parameters and the operating

conditions of the wire [30]:

j =
CVDD
wh

fα (1.5)

where C, h, and w are the parasitic capacitance and cross-sectional dimensions, respectively, of the wire and

f and α are the frequency and switching probability, respectively, of the signal passing through it. Black

determined experimentally that n = 2, but more recently n has been determined to be affected residual stress

and current density [20].

Like NBTI, EM experiences some recovery when current is reduced or removed that is caused by a reverse

flow of metal atoms [31]. It is also magnified by application of reverse currents, causing extended lifetimes in

wires with bidirectional flow. Because of this, signal wires, which typically pass bidrectional currents, are less

susceptible to EM than power wires that usually only pass current in one direction.

Hot-carrier Injection (HCI)

Hot-carrier injection, or HCI, is caused by the injection of energetic “hot” electrons, accelerated by the lateral

electric field in the channel, into the oxide near the drain (illustrated by Figure 1.3), creating interface traps

and raising threshold voltage [22]. Since this occurs mainly when high current is passing through the channel,

HCI is more dominant during switching. It is characterized using a widely-used substrate current-based

model [33]:

∆VT,HCI = AHCIe
Eox
E0 e−

Ea
kT (αft)n

′
(1.6)
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Figure 1.4: Illustration of aging rate over time. The aging rate of a system typically varies over time and is
less than the worst-case that is often designed for [34].

where Eox, E0, and Ea are technology-dependent coefficients, α is the average switching activity of the gate,

f is the clock frequency, t is the time since the beginning of operation, and n′ ≈ 0.5. Unlike NBTI, HCI is

more prominent in NMOS transistors.

Time-dependent Dielectric Breakdown (TDDB)

Time dependent dielectric breakdown, or TDDB, is the process of wearing down a transistor’s gate oxide over

time. Eventually a conductive path forms, causing failure [21]. This is particularly problematic with high

power densities that raise temperature and in devices with thin gate oxides. The authors of [21] show that

TDDB is highly dependent on voltage and temperature. It’s effect is expressed using meant-time-to-failure:

MTTFTDDB ∝ V a−bTDD e
X+Y T−1+ZT

kT (1.7)

where a, b, X, Y , and Z are fitting parameters.

1.1.2 Managing Aging

The typical method for accounting for aging is to statically calculate the worst-case degradation that could

occur and add timing margins at design time to account for it and ensure a target lifetime [35,36]. This can

amount to increasing margins by over 20% to ensure a 10-year lifetime. This is unsatisfactory because, as

shown by Figure 1.4 [34], a system is not always aging at its worst-case rate. The slack between the worst-case

degradation that could occur and the real amount of degradation that does occur means that power and

performance is being wasted in order to ensure operation for the entire target lifetime. Unfortunately, due

to varying and unpredictable workloads, it can be difficult to predict the real amount of aging that occurs.

Rather than predict it, a system can track aging as it occurs and dynamically modify operating parameters
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to adapt to it [37,38]. Techniques for dynamic adaptation exist at all levels of abstraction from the circuit

level up to the software level and usually involve redundancy [35, 39], failure tolerance [40], or intelligent

management of resources [41,42].

The most diverse methods for aging management are at the circuit level. To extend lifetime or reduce the

margin necessary to account for aging, proactive techniques such as inclusion of redundant circuit copies or

error correction can be applied [35]. These techniques incur area overheads and do not take into account

the dynamic nature of aging; it is possible, over the course of a system’s lifetime, that a non-critical circuit

path will degrade faster than the critical path and change into the critical path [43]. If this happens to a

path that doesn’t have redundancy, then the system’s lifetime will no longer be extended by the original

critical path that does. More reactive circuit-level solutions for detecting aging often involve sensors that

degrade at a predictable rate. This degradation will reduce circuit parameters of the sensor (e.g. with critical

path copies [44]) or change its output characteristics (e.g. with ring oscillators [45]). When the changes in

parameters or output of an aging sensor reach a threshold, an aging event is generated and the system can

adjust its performance requirements to continue functioning at a reduced performance level, thus extending

lifetime or reducing the required margins at design time. Such sensors incur area overhead like static solutions

and have additional problems in that they may not be representative of the circuits they are intended to sense.

While they can be placed adjacent to those circuits to create similar temperature and voltage environments,

the activities of the sensors may not be the same as those of the circuits they sense, especially in the cases of

simple circuits like ring oscillators. A dynamic, proactive solution that has been proposed [46] to mitigate

NBTI aging is to periodically apply a reverse bias to the gates in a circuit. Doing so reduces the trap energies

of the defects in the gate, increasing the rate at which charges are freed. The authors of [46] show that

periodically applying reverse bias can reduce the permanent component of NBTI, ∆NIT (see (1.2)) and

greatly extend lifetime. Applied frequently enough, it can completely remove the permanent component.

Second, at the architecture level, redundancy is again a common method for mitigating aging. In a

multicore system with heterogeneous workloads, each core will degrade at a different rate based on the

workloads it is given. As cores fail, they can be deactivated to allow the system to continue to function at a

reduced performance level [40]. Similarly, duplicating structures inside a core can increase its lifetime by

allowing duplicates to take over when originals fail [39]. Memories can additionally be protected from aging

by augmenting them with aging monitors and additional logic to place data in such a way as to balance the

aging of memory cells and thus maximize lifetime, as [41] proposes for scratchpad memories.

Finally, at the software level, workloads can be optimized to balance aging across system components as

evenly as possible. This often takes the form of aging-aware scheduling [42], which assigns tasks to cores in

such a way as to balance their aging effects. This adds new dimensions to task schedulers beyond performance,
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power consumption, and temperature, as optimal solutions for those metrics are not necessarily optimal for

aging and vice versa [30].

Adding aging mitigation or management techniques to a design typically incurs overheads in the forms of

increased power and area, reduced performance, or both. Increasing static timing margins has a disadvantage

in adding unnecessary timing slack to ensure worst-case lifetime when the average case will not need as much.

It also sacrifices early-life performance to ensure end-of-life reliability. Dynamic adaptation to aging allows a

circuit to increase early-life performance at the expense of end-of-life performance while still maintaining a

target lifetime, but has its own disadvantages. Aging detection incurs power and area overheads from extra

hardware for sensing degradation or extra circuitry like redundant units to ensure continued functionality

after a unit fails [47]. Additionally, the calculation necessary to adapt to aging and modify architectural and

circuit parameters or schedule workloads creates an additional performance overhead.

1.2 Importance of High-level Modeling

The overheads caused by adding timing margins or mitigation techniques create tradeoffs for lifetime, power,

performance, and area. As designs get more complex, the amount of available design space increases rapidly.

Simulating them also becomes more time-consuming, reducing a designer’s ability to explore design space

using iterative techniques such as the Monte Carlo method that are often used for lifetime calculation [30,40].

The most accurate estimations of these quantities come from circuit-level simulation, where libraries are

available that characterize the behaviors and performance metrics of devices and gates and include parameters

that describe how those metrics degrade as they age. This type of simulation, however, requires an RTL

implementation of a design, which has high design and simulation overhead. On top of this, some phenomena

have effects across multiple layers of abstraction. Two examples of this are temperature [11] and voltage

noise [10], which affect circuit operation but are affected by microarchitecture, floorplan, power delivery,

and pad placement. Design decisions for managing them must be made as early as the architecture design

stage [48], while their effects are primarily circuit-level. In order to enable effective design decisions at the

architecture level, it is important to be able to simulate them without needing RTL. High-level models not

only improve simulation overhead over RTL simulation, but enable high-level decisions that depend on these

low-level effects.

Aging is an important low-level effect that has implications across all layers of design abstraction. Because

it often depends on circuit topology and activity, accurately predicting the amount of degradation that will

occur is difficult without a complete simulation of a workload. Such simulations at the circuit level are

time-consuming and infeasible for large numbers of instructions, reducing the usefulness of device-level aging
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libraries. High level models remove much of the overhead of circuit simulation by making assumptions about

a circuit’s power, performance, and aging based on architecture-level behavior to reduce unnecessary detail

and increase throughput. Further discussion of assumptions that are made to reduce simulation overhead

and enable realistic lifetime prediction will be included in Chapter 2. With lower simulation overhead, not

only does iteration become feasible for design exploration, but software effects on power can be studied. This

is important because the rapid increase in low-power requirements, for example due to the rise of mobile

computing and IoT, coupled with the end of Moore’s Law means that software designers can no longer

afford to ignore the power consumed by their workloads or rely on technology scaling to improve power

consumption. The same is true for aging: it has been shown that lifetime is significantly affected by workload

characteristics [49]. With small transistors that have higher power densities than their predecessors due to

the lack of comparable voltage scaling [5], circuits are more sensitive to aging than ever.

Unfortunately, the increased speed over RTL simulation afforded by high-level modeling comes at the

price of reduced accuracy. Several high-level tools [50–52] show error in their reports of metrics like power,

performance, and area caused by assumptions they make about the behavior of circuitry that enables

abstraction and reduced detail. These assumptions allow aggregation of the behavior of the devices within

each architectural unit and memory that simplifies computation of these metrics. By abstracting away device

activity and layout from a simulation, however, some error is introduced because the assumed aggregate

behavior may not match the real behavior caused by a workload. This error can be improved by characterizing

real hardware or RTL simulation and calibrating high-level tools using measured power, performance, and

area [50], but this reduces the general usability of the tool. As a result, high-level simulation cannot be used

as a total replacement for RTL simulation. Fortunately, accuracy is high enough that comparisons between

different sets of choices can still be made [51, 52], enabling the use of these tools in a flow for exploring

large design spaces caused by complex modern designs and allowing architects to incorporate them in their

decisions, reducing the amount of space that needs to be explored by RTL simulation.

1.3 Hypothesis and Contributions

The hypothesis of this work is that the reliability of an electronic system can be improved with pre-RTL

lifetime and reliability simulation using high-level models and the security of these systems can be manipulated

by applying directed aging. To enable pre-RTL design space exploration to include lifetime as well as power,

performance, and area, Chapter 2 introduces a tool called “OldSpot” that improves upon existing reliability

models by removing restrictions on how failures can propagate through a system. This tool can also be used
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to reveal areas in a design that are highly vulnerable to aging and bottleneck lifetime or to evaluate reliability

management mechanisms such as hardware redundancy or reliability-aware task scheduling.

With a fast aging and lifetime simulator, designers can easily explore techniques to improve lifetime or

to improve power and performance while maintaining a target lifetime. To get the best results for those

models, accurate performance simulation is necessary. A widely-used tool for this purpose is gem5 [53],

which traces performance at the architectural unit level, models a complete memory hierarchy, and supports

execution of binaries compiled for several architectures like ARM, x86 and SPARC. In addition to providing

behavioral models of architectural units for improved simulation time, it has several features that reduce

simulation overhead such as system call emulation and checkpointing. It also can be used in conjunction with

power [54–56], temperature [11], and voltage noise [10] models that are useful in computing aging acceleration

factors to model the results of time-varying aging rates caused by changes in those quantities. High-level

modeling tools and a flow for simulating power, performance, area, and lifetime of a design are discussed in

Chapter 3.

Aging has implications not only for lifetime and reliability, but also security. This work explores the

effects of aging on an architectural unit used for authentication, the SRAM PUF [57]. A PUF is a device that

uses silicon process variations to create uniqueness, similar to a fingerprint of a human being, and is useful

for security applications like device authentication. In an SRAM PUF, this fingerprint is defined by the data

it contains immediately after powering on, which is affected by the relative strengths of the transistors in its

cells. As a result of this, its output is subject to change by aging degradation, which changes the strength of

a transistor. PUFs, and how they are affected by aging, are further discussed in Chapter 4, which shows

how the fingerprint of an SRAM PUF can be affected by aging by controlling its reliability in successful

authentication using directed NBTI.

The contributions of this work are summarized as follows:

• An open-source lifetime simulation tool named “OldSpot,” which will be discussed in Chapter 2.

• An implementation of the RISC-V ISA in the gem5 simulator to use with a simulation flow, which will

be discussed in Chapter 3.

• A method by which an SRAM PUF can be attacked and even cloned using directed aging, which will

be discussed in Chapter 4.



Chapter 2

Reliability Modeling

The goal of architecture-level reliability research is to characterize and improve the lifetime of a system or

reduce costs associated with designing for a lifetime target. For that purpose, a description of the degradation

of a device, i.e. ∆VT for NBTI, is not useful because circuit-level effects such as process variation, noise, and

activity can cause different amounts of degradation for different devices in a unit. Simulating aging for all

transistors across a system to determine failures takes too long and provides more detail than a designer

needs. Additionally, failures tend to be infrequent, occurring on the order of years, rendering simulation of a

system until failure infeasible. To address this, reliability is often described for a unit or system using one

of two metrics: mean time to failure (MTTF) or failures in time (FITs). These metrics are derived from

device-level models of failure mechanisms such as those in Chapter 1.1 by making assumptions about how

block-level behaviors like activity and temperature affect the devices inside and by extrapolating long-term

behavior from short simulation times. MTTF and FITs are inverses of each other; MTTF describes the

average lifetime of the system while FITs describes the number of expected failures that will occur in a given

amount of time (usually 109 hours [30]). This chapter presents existing methods of computing unit- and

system-level MTTF and a tool called “OldSpot” [58] that improves upon these methods to enable fine-grained

modeling and nonuniform failure tolerance.

2.1 High-level Reliability Modeling

A common way of computing the reliability of a system over time is by using a probability distribution, R(t),

to express the probability that a system still functions at time t or, equivalently, the expected fraction of

systems in a given population that still function at time t [59]. In the past, exponential [30] and lognormal [39]

distributions have been used for this purpose, but more recently the Weibull distribution has been used

11
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because it most accurately fits the reliability distribution of a system whose failure rate increases over time,

as it does with aging [60]. The reliability function and MTTF for the Weibull distribution are:

R(t) = e−( tη )
β

MTTF = ηΓ

(
1 +

1

β

) (2.1)

where η is called the rate parameter and β the shape parameter. Larger values of η indicate longer lifetimes

while β indicates how failure rate changes over time.1 For aging, β = 2 [61], which indicates an increasing

failure rate over time.

This is useful for a static system that ages at a constant rate, but a typical electronic system experiences

changes in temperature, power consumption, voltage, and other operational parameters over time that affect

the rate. Together, the values of these parameters represent the execution state of the system. During a

particular execution state, these parameters are considered constant except temperature. In order to account

for changes in execution state, it is possible to derive an average aging rate that is constant in time from the

instantaneous aging rates that occur due to varying conditions [62]:

R (t) = R

(
η ·
∑
s∈S

∫ ∞
0

ψ (T, s)

θ (T, s)
dT · t

)
= R (η · Ω · t) (2.2)

where S is the set of execution states the system undergoes with discrete voltages and activity factors, θ (T, s)

is the rate at which it ages in state s and temperature T , and ψ (T, s) is the probability it is in state s at

temperature T . This results in a constant, Ω, that represents the average aging rate of the system across

the simulation time. By assuming that the workload of the system is periodic and that the duration of the

simulation is small compared to lifetime (i.e. seconds or minutes compared to years), Ω can be used to

extrapolate lifetime. By further assuming that the system’s temperature settles quickly and so is effectively

piecewise constant, (2.2) can be simplified [60]:

R (t) = e
−
(∑

ti/ηi∑
ti

t
)β

(2.3)

where ti is the duration of execution state i, during which the aging rate, ηi, can be considered constant.

Equation (2.3) has an advantage over (2.2) in that it is easier to compute, but it is only true for Weibull

distributions whereas (2.2) is shown in [62] to be true for any reliability distribution.

1A constant aging rate should not be confused with a constant failure rate. Aging rate indicates the speed at which degradation
accumulates over time and failure rate indicates the probability that a failure will occur at any given time. When aging rate is
constant (and β > 1), failure rate increases with time.
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Figure 2.1: Illustration of changes to reliability caused by a long-term change in workload. When this occurs,
the new reliability curve must be time-shifted to ensure a continuous R (t) [40].

Both (2.2) and (2.3) depend on static expressions of reliability, where operating conditions are constant, to

describe aging during each execution state. They can be determined using device-level models such as those

in [20–23] to create aging rates that can be combined. A simple method for doing translating device-level

models to the architectural unit level is presented in [63], which simply models each unit as a single transistor.

By substituting the unit’s operating conditions for the transistor’s in each device model, the degradation of

the transistor can be used as a proxy for the degradation of the unit, allowing the computation of its aging

rate using (2.1). Another method is to represent the unit using a circuit called a FIT of reference circuit

(FORC) [64], which is an easy-to-evaluate circuit that represents a particular aging mechanism. By computing

the aging of the FORC and then relating its topology to that of the unit of interest, the authors of [64] claim

that it is possible to completely separate the lifetime calculation of the unit from process-dependent effects.

Combining low-level models with (2.2) or (2.3) using [63, 64] enables the creation of a constant aging rate

that can be used to extrapolate lifetime, but it doesn’t capture the effects of long-term changes in workload

characteristics that occur outside the simulation window [40]. When a resource fails, the surviving components

of the system need to cover for the failed unit, increasing their workloads, raising their activities, and elevating

their temperatures as a result. As Figure 2.1 shows, simply changing the aging rate to accommodate the

new operating conditions causes a discontinuity in R (t). The system’s reliability at time t1, when the shift

occurs, and temperature T1 is equivalent to the reliability at time t̂1 = R−1 (R (t1, T1) , T2) at temperature

T2. By shifting R (t, T2) by t− t̂1 to produce R
(
t− t1 + t̂1, T2

)
, the discontinuity disappears and the model

can account for the degradation that has occurred prior to t1. While [40] only considers temperature changes

in this model, it can be generalized to any change in workload characteristics that affects aging rate.
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memorylogic
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Figure 2.2: Example failure dependency graph for a system with a single core and an accelerator that include
several functional units [58]. Red numbers represent the number of failures each group can tolerate. By adding
a node between system, core, and accelerator that can tolerate one failure, it is possible to represent a
system that can tolerate the failure of accelerator but not core.

2.2 The OldSpot Framework

The work in Chapter 2.1 enables lifetime and reliability estimation for homogeneous multicore systems at

the core level. It allows an architect to evaluate a tradeoff between late-life performance and lifetime by

predicting the benefit of allowing a certain number of cores to fail. But because these tools work at such a

coarse granularity, the only recourse they provide for extending lifetime is to add more cores and tolerate

more failures, adding significant area and power overheads. OldSpot improves upon existing tools by allowing

specification by the user of failure dependency, or the ways in which the reliability of each unit in the design

contribute to the overall reliability of the system. The tool does this by using a directed acyclic graph (DAG)

that places components into a tree-like structure to specify how errors in units propagate across the system.

This relaxes the assumption that all units contribute equally to the system’s reliability and allows tolerance

for failure in some places but not necessarily others. OldSpot is open-source, developed in C++, and available

for download at https://github.com/hplp/oldspot or http://lava.cs.virginia.edu/OldSpot/.

2.2.1 System Specification

OldSpot’s system specification is inspired by the idea of “structural duplication” proposed by [39], where

the lifetime of an entire system may be improved by duplicating individual functional units within it. The

authors of [39] propose to link units together in series and in parallel to indicate which units are duplicated.

The system only fails when all of the units in a parallel group fail or when one of the units connected in series

fails. OldSpot expands on this idea by receiving as input a failure dependency graph to combine parallel

and series connections that specify how errors in individual units propagate across the system. A failure

dependency graph is a DAG where leaf nodes represent instances of units in the design and internal nodes

https://github.com/hplp/oldspot
http://lava.cs.virginia.edu/OldSpot/
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Algorithm 2.1 OldSpot Monte Carlo iteration

let U ≡ {all units} . Leaves, i.e. reg. file, branch, pipeline in Figure 2.2
let G ≡ {all groups} . Internal nodes, i.e. system, core, accelerator in Figure 2.2
let R ≡ root group . i.e. system in Figure 2.2

1: F ← ∅
2: H ← U
3: tf ← 0
4: while R /∈ F do
5: for h ∈ H do
6: SetConfiguration (h,H) . Set Weibull η parameter based on current activity

7: ∆t←∞
8: for h ∈ H do
9: rf ← rand [0, rh)

10: δt← R−1
h (rf )−R−1

h (rh)
11: if δt < ∆t then
12: f ← h
13: ∆t← δt
14: for h ∈ H do
15: th ← th + ∆t−

[
R−1
h,prev (rh)−R−1

h (rh)
]

16: rh ← Rh (th)

17: Add f to F
18: Remove f from H
19: for g ∈ G do
20: if |children (g) ∩ F| > tolerance (g) then
21: Add g and its children to F
22: Remove g and its children from H
23: tf ← tf + ∆t

represent groups of units that are connected to each other. For example, a core might be represented by

an internal node connected to several leaf nodes that represent its pipeline, caches, and other functional

units. Internal nodes can also be connected together to indicate how groups depend on each other. The

entire system is represented by a root node at the top of the graph. A node can have multiple parent nodes

to specify that its failures propagate in multiple ways. Each group also contains a number that specifies

how many failures of its children that it can tolerate before it fails. An example failure dependency graph

that depicts a system with one core and one accelerator that can tolerate the failure of the accelerator but

not the core is shown in Figure 2.2. The core node is connected to both the system node and unnamed

internal node to indicate that its failure causes overall system failure, but that it operates in parallel with the

accelerator node in case accelerator fails.

A comparable method for describing failure propagation is the creation of a fault tree [65]. In general, a

fault tree is a representation of the events that can lead to a specific failure. When applied to system lifetime

due to aging, each event is represented as the failure of a unit or group that eventually leads to the failure of

the whole system. A leaf node in a fault tree represents a fault event, similar to how leaf nodes in OldSpot’s
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failure dependency graphs represent failures of individual units. Internal nodes indicate how faults propagate

through a system to eventually cause failure, which is the same for a failure dependency graph. The major

difference between a fault tree and failure dependency graph is that a fault tree’s internal nodes consist

of boolean logic gates such as AND, OR, and XOR rather than accumulation of failures until a threshold

is reached. This allows analytical derivation of the reliability of a system, but increases the complexity of

representing tolerance for failures of certain resources like cores.

2.2.2 Reliability Modeling and Simulation

In order to compute the reliability distribution for each unit, OldSpot also makes use of traces of power,

performance, temperature, and voltage, which are discussed in Chapter 1.1. For each time step in each unit’s

trace, the instantaneous aging rate of each aging mechanism is computed to produce a Weibull distribution.

These distributions are combined according to the sum-of-failure-rates (SOFR) model [30], where the overall

reliability of a system is the product of the reliability of its components, to create an overall reliability

distribution for the unit (See Appendix B for details). Then, using (2.3), these reliability distributions are

combined to create an average aging rate and corresponding average reliability distribution that describes

the lifetime of the unit. Finally, in a similar manner to [39, 40], a Monte Carlo simulation determines the

lifetime distribution of the entire system, using the failure dependency graph to determine when it fails. The

procedure for each iteration of the Monte Carlo simulation is specified by Algorithm 2.1, which is adapted

from Algorithm 1 in [40] to accommodate OldSpot’s failure dependency graph.

During each iteration of the simulation, each healthy unit, h, is assigned a Weibull η parameter based on

the set of remaining healthy units, H, and the unit’s activity for that configuration. This accounts for the

change in activity that occurs when a unit fails and the system is executing its workload with a restricted set

of resources. Then h is assigned a reliability value rf at which it fails and the time to that reliability, δt,

is computed. When δt has been computed for each unit, the minimum value is used to determine the next

failure. The failed unit, f , is removed from H and added to the set of failed units, F . The “age,” th, of each

healthy unit is updated based on its reliability for the previous configuration, Rh,prev (t) and its reliability for

the current configuration, Rh (t) (see line 15).

As each unit fails, the groups they belong to keep track of how many of their children have failed and

report failure they exceed their failure tolerance. When the root node reports failure, the system is considered

failed and the next iteration begins with a fresh system. All of the fail times are collected to produce a

reliability distribution at the end of the simulation and the mean time to failure can be computed as the

average of all of the fail times.
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2.2.3 Assumptions

In order to reduce simulation time and overhead in gathering data, OldSpot makes several assumptions

about the nature of aging in its components. The foremost assumption it makes is that the reliability of an

electronic system due to aging follows the Weibull distribution. Aging has been shown to cause an increased

failure rate over time [39] rather than a constant one [30], which can be addressed using Weibull [40,60] or

lognormal [39] distributions. Of these, the Weibull distribution has been shown to be more accurate [60].

Next, as is common in the state of the art, OldSpot assumes that each aging mechanism is isolated and

unaffected by changes to circuit parameters caused by other aging mechanisms. This has been partially

shown by [66] to be untrue, particularly for NBTI and HCI because they affect the same parameter (∆VT ),

but [66] focuses on improving accuracy over the assumption that the only aging mechanism that acts on a

device is the dominant one, which was the state of the art at the time of its writing; the authors show that

that assumption can underestimate aging by up to 75%. OldSpot addresses this by combining the reliability

models for all of its aging mechanisms rather than simply using the one with the lowest rate parameter, but

does not address any possible “interference” between aging mechanisms that may occur.

The third assumption it makes is borrowed from [63], which assumes for NBTI that the activity factors

for transistors in a logical unit are evenly distributed across the unit. This assumption can be improved

by characterizing RTL implementations of different kinds of units, such as ALUs, FPUs, decoders, and so

on, for the distributions of activity factors across the transistors within them. Similarly, OldSpot assumes

that high-order bits of memories tend to not change often and thus their aging is dominated by NBTI and

EM, which occur due to constant applied voltage and current. Like with logic units, this assumption can be

improved by characterizing memories for their activity factors. Unlike with logic, the activities of transistors

in memories cannot be estimated by usage but must be computed from data content. This requires periodic

examination of the contents of a memory or register file, which can drastically increase simulation time for

performance characterization.

2.3 Finding Reliability “Hot Spots” with OldSpot

Due to differences in activity across a chip that affect power consumption and temperature, the rate at which

different functional units age is not uniform. In fact, some areas may age significantly faster than others

due to much higher activity. These can be referred to as reliability “hot spots,” [58] which can be targeted

for aging mitigation to reduce power, performance, and area overheads that such techniques typically cause.

For example, rather than adding an entire extra core for redundancy to extend lifetime, simply identifying
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Table 2.1: Simulated System Parameters [58]

Parameter Value

Instruction set x86
Microarchitecture Nehalem
Technology size 65 nm
Supply voltage 1.1 V
Core count 4
CPU clock frequency 2.66 GHz
Instruction cache 32 kB
Data cache 32 kB
Private L2 cache 256 kB
Shared L3 cache 8 MB

Sniper Area

McPAT

ArchFP

HotSpot OldSpot

Performance

Floorplan

Power

Temperature

Performance

Figure 2.3: Simulation tool flow diagram used to evaluate reliability hot spots [58]. Performance data from the
Sniper [67] x86 simulator is input into McPAT [54] to produce power and area data for HotSpot [11]. Power,
performance, and temperature data from these tools are all input into OldSpot [58] to compute lifetime.

hot spots and duplicating them can improve lifetime almost as much at significantly lower cost. Alternately,

early-life performance can be maintained longer by reducing the number of failures that must be tolerated

while still meeting a target lifetime. This section shows how OldSpot can be used to analyze a system for

reliability hot spots and then evaluate the effectiveness of duplicating them to extend lifetime.

2.3.1 Tool Flow

A four-core x86 processor with shared L3 cache based on Intel’s Nehalem architecture described in Table 2.1

is simulated with the Sniper multicore simulator [67] to execute several benchmarks from the PARSEC [68]

and SPLASH2 [69] suites. Performance data from Sniper is input into an integrated McPAT [54] to compute

the area of the chip and power consumption of each benchmark. The power and area data are then input

into HotSpot [11] to estimate temperature using ArchFP [70] to create a floorplan. Traces from the above

tools are input into OldSpot along with a user-specified failure dependency graph for the processor, which

creates a lifetime distribution for it using the Monte Carlo simulation described in Chapter 2.2. At the

same time, OldSpot produces lifetime distributions for each unit in the system, enabling analysis of aging at
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(a) (b)

Figure 2.4: Temperature (a) and aging (b) maps [58] representing the average temperature and relative aging
rate, respectively, when running cholesky [68]. In (a), red indicates hotter temperatures and blue indicates
cooler ones. In (b), red indicates faster aging while blue indicates slower aging.

the architectural unit level. This tool flow is illustrated by Figure 2.3. By inspecting each unit’s reliability

distribution, identifying the one with the earliest failures, and duplicating it, it is possible to extend lifetime

with minimal area overhead.

2.3.2 Accuracy Validation

To confirm that OldSpot behaves as expected, the temperature of each unit in the system running cholesky

can be compared to the rate at which OldSpot indicates it to be aging. Figure 2.4 contains heat maps from

HotSpot and OldSpot that, respectively, show the temperature and aging rate for each unit computed by the

tool. Because aging mechanisms accelerate exponentially with temperature, it is to be expected that units

with higher temperatures will also age faster. Comparing Figures 2.4(a) and (b) shows this to generally be

true.

An exception to this is the L3 cache, which indicates relatively low temperature. Even though its

temperature is close to those of the L2 caches, they age slowly while it ages quickly. This can be explained by

the differences in area and total power consumption of the two caches. Because they have similar temperature,

their power densities are likely comparable. But because the L3 cache is much bigger, it consumes more

power overall, which means it also consumes more current. Even though models for NBTI, HCI, and TDDB

do not indicate dependence on current draw, the one for EM shows a power-law dependence on current (see
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Figure 2.5: Weibull rate parameter of each unit for each aging mechanism modeled by OldSpot [58] (see
Chapter 1.1) running cholesky [68]. Higher values mean slower aging rates. Units with no marker for HCI
experience very low switching activity, which lead to a very slow HCI aging rate; as a result, the markers
were omitted.

Chapter 1.1). Since the current drawn by the L3 cache is much higher than that of any of the L2 caches, its

aging rate for EM will be much higher and cause a higher overall aging rate. This is confirmed to be the case

in Figure 2.5, which shows the Weibull rate parameter for each aging mechanism in each functional unit. A

large rate parameter value in Figure 2.5 indicates a longer lifetime, or slower aging rate. As it shows, the

aging rates in the L2 and L3 caches due to NBTI, HCI, and TDDB are close to the same, but the L3 cache is

shown to age much faster due to EM. As a result, its overall aging rate is also much faster.

There is also some variation in NBTI aging rates between different types of units. Since NBTI is related

to the amount of time a transistor is conducting, high activities in devices will reduce their aging rates. Since

the ALUs and decoders have high utilization when executing cholesky, they tend to be affected less by NBTI.

As expected, Figure 2.5 shows slow aging due to NBTI for these units. On the other hand, the FPUs have

low utilization, creating high rates of aging due to NBTI. The opposite is true for HCI, where high activity

causes fast aging and low activity causes slow aging, which Figure 2.5 also shows. Finally, there is little

variation in aging due to TDDB except for the ROBs, which appear to be most affected. Equation (1.7)

shows that TDDB is primarily affected by temperature, which means that the units most affected by it will

be the hottest as Figure 2.4(a) shows the ROBs to be.

Figure 2.6 shows the error of the MTTFs computed by OldSpot compared with those computed by the

existing multicore lifetime simulation tool called CALIPER [40] for the system running each benchmark that

can tolerate the failures of zero through three of its four cores. Because CALIPER [40] can only simulate

homogeneous multicore systems without shared resources, the L3 cache is omitted in these simulations. Both

tools were executed using 1000000 Monte Carlo iterations. In order to compute core-level aging rates for

CALIPER, the unit-level aging rates were computed using [63] and (2.3) and combined using SOFR per

core (see Appendix B for details). OldSpot was configured to tolerate the same number of failures per core

as CALIPER, with each core failing when any of its units failed. As Figure 2.6 shows, OldSpot’s results
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Figure 2.6: Accuracy validation of OldSpot [58] against CALIPER [40] using a four-core x86 system with no
shared resources running several PARSEC [68] and SPLASH2 [69] benchmarks that can tolerate the failures
of zero through three cores.
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Figure 2.7: Error when using CALIPER [40] to estimate the lifetime of a four-core x86 system with shared
L3 cache that can tolerate the failures of zero through three cores but not the L3 cache when running several
PARSEC [68] and SPLASH2 [69] benchmarks. When the system can tolerate core failures but not failure of
the L3 cache, CALIPER overestimates the system’s lifetime.

are, on average, less than 0.08% in error compared to CALIPER and about 0.14% in the worst case. This

confirms that accuracy is maintained when monitoring failures at the architectural unit level rather than

at the core level and when using a failure dependency graph to propagate failures through the system. It

does not confirm the accuracy of computing the unit-level aging rates from device-level models, but verifying

those computations requires either RTL simulation or hardware measurement to verify device-level model

parameters.

Figure 2.7 shows the benefit of estimating lifetime using OldSpot’s failure dependency graph rather than

using a tool such as CALIPER. It contains lifetime estimations from OldSpot for the same four-core x86

systems presented in Figure 2.6 except that the shared L3 cache, whose failure cannot be tolerated, is no

longer omitted. Because CALIPER does not normally model shared resources, the MTTF it reports was

combined with that of the L3 cache using SOFR as described in Appendix B, assuming the cache and set

of cores both follow Weibull distributions with β = 2 [61]. The L3 cache’s MTTF was computed using
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OldSpot’s reported aging rate and (2.1). As Figure 2.7 shows, increasing the number of core failures that can

be tolerated tends to cause CALIPER to overestimate the lifetime of the system by an increasing amount.

This is due to inaccuracy of the assumption that the system follows a Weibull distribution with β = 2 when

failure tolerance is introduced, which is not evident from CALIPER’s computations. OldSpot can account

for this by including the dependence on the L3 cache in its simulation, improving accuracy. On average,

CALIPER’s overestimation is about 1.5% with one tolerable core failure, 3.6% with two tolerable failures,

and 4.8% with three. There is negligible error for a failure-intolerant system because the assumption about

the shape of its reliability distribution holds. Similarly, the L3 cache in cholesky ages very slowly, making its

contribution to the system’s lifetime negligible and causing the results from OldSpot and CALIPER to be

comparable.

2.3.3 Finding Reliability Hot Spots

The tool flow in Chapter 2.3.1 is executed with two processor configurations for each benchmark. First,

the configuration defined by Table 2.1 is used with an additional failure tolerance of one core, named

“one-out-of-four” in this work. In this case, when one of the four cores fails, the work of the failed core is

picked up by the remaining three, increasing their workloads and aging rates but allowing the system to

continue functioning until a second core fails. Next, the configuration is modified to include only three cores

but to be intolerant of the failure of any, named “zero-out-of-three.” By inspecting the lifetime distributions

of each unit in the zero-out-of-three case and iteratively duplicating the unit with the highest number of

failures, the lifetime of the zero-out-of-four case can be duplicated by the zero-out-of-three case with less area.
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Figure 2.8 shows, for each benchmark, the area overhead incurred by duplicating enough structures in

the zero-out-of-three system to allow it to last at least as long the one-out-of-four one (shown in green)

with the overhead of adding an extra core for comparison (shown in red). In the best case it is possible to

match the lifetime of the one-out-of-four case with less than a 1% area overhead while several others only

incur a little more. Even so, several benchmarks incur significant overhead using structural duplication;

in two cases (lu.cont and lu.ncont), the overhead of structural duplication exceeds that of adding a fourth

core. These benchmarks’ lifetimes are dominated by the L3 cache, which is shared by all cores and not

considered for structural duplication due to its large size. Duplicating the L3 cache would increase the total

area of the system by about 38%, which is almost twice the overhead of adding a fourth core. The result

of this is that the benefits of duplicating structures inside cores for these benchmarks is lower than doing

so for the other benchmarks whose lifetimes are primarily determined by the cores. It is likely that the

lifetime of an L3-dominated system could be significantly improved by dividing the L3 cache into blocks and

allowing graceful reduction of L3 cache size until all blocks fail, but this simulation was not performed to

maintain focus on structural duplication. On average, the area overhead of extending lifetime using structural

duplication was only 5%, about 25% of the overhead caused by adding a fourth core.

2.4 Related Work

One of the first methods of architecture-level reliability modeling was proposed by the authors of [30, 39],

who created a tool called Reliability-Aware MicroArchitecture (RAMP) . In its first version, RAMP assumes

a constant failure rate over time and uses an exponential distribution to express reliability. As the authors

of [30] admit, this is inaccurate because failure rate due to aging typically increases with time. It is also

limited by the use of the SOFR model to express the reliability of a system with multiple components,

assuming that the failure of any component means the failure of the whole system. Despite these inaccuracies,

these assumptions were used due to their acceptance as standard by industry at the time [30]. The authors

of [30] use RAMP to propose dynamic reliability management to go along with dynamic thermal management

and show that reliability-aware design and dynamic adaptation can improve a system’s lifetime. Later, in [39],

RAMP is improved to relax the two previous assumptions: the exponential distribution was replaced with

a lognormal distribution and the series system was replaced with a series-parallel system as discussed in

Chapter 2.2.1. Even so, it is still limited by the fact that it assumes constant aging rates over time and

cannot model shifting workloads.

This is improved by [60] and [62], which propose similar methods for computing the reliability function for

a system whose aging rate changes over the course of a workload. As discussed in Chapter 2.1, they introduce
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methods of computing an average aging rate from the transient aging rates that occur during execution. By

assuming that a workload is periodic and that the period is negligible compared to the lifetime of the device,

this average aging rate can be used to derive its reliability function and predict its lifetime. Both methods

are still limited, though, by the complex computations necessary to compute the reliability of a series-parallel

system and by the fact that they can’t account for changes in aging rate that happen outside the simulation

window due to component failure or workload rebalancing.

CALIPER [40] further improves the capabilities of architecture-level reliability modeling by introducing a

time-shifting factor to account for long-term changes in workload as discussed in Chapter 2.1. The authors

of [40] include this in a Monte Carlo simulation to create a lifetime distribution of a homogeneous multicore

system with some tolerance for failure after showing that computing the reliability function of such a system

to create a closed-form equation is intractable. Like previous models, though, CALIPER is still limited by

its assumption of homogeneity and inability to simulate systems at a finer granularity than the core level.

Unlike OldSpot, which draws inspiration from CALIPER, it cannot model systems that can tolerate different

amounts of failures in different groups of units such as systems that can tolerate core failures but not failures

of shared resources.

In order to compute the reliability of a unit during an execution state, it is necessary to convert models

for aging mechanisms from device-level models such as those presented in Chapter 1.1 to the unit level

or higher. RAMP accomplishes this by simply computing the MTTF due to each failure mechanism and

directly translating it from the device level to the unit level. ExtraTime [63] improves upon this technique

by introducing several transformations on the device reliability function. First, it applies the architectural

unit’s execution state to a device-level degradation model. Then, rather than attempt to derive the MTTF

directly from the model, which requires knowledge about the design and the process used to fabricate it, [63]

converts the degradation model into relative delay, which expresses the increase in delay caused by aging as a

fraction of the healthy device’s delay. Finally, the relative delay model is integrated over the activities of the

transistors in the unit. Since that information often depends on the physical layout of the unit, assumptions

must be made about the distribution of activities. The authors of [63] assume that activities are uniformly

distributed between 0 and 1 within a unit. This is useful for creating accurate estimations of the aging rate of

a unit during a particular execution state, which can then be combined with higher-level models to compute

the reliability of the entire system. OldSpot incorporates this along with principals from [39], [40], and [60]

to compute the MTTF and aging rate of each unit from device level models. These can be used to create

a reliability distribution for each unit which are combined as outlined in Chapter 2.2 to create a lifetime

distribution for the system.
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2.5 Benefits of OldSpot

Because OldSpot does not make assumptions about the organization of the components of a system, it

can model more complex systems than previous tools were capable of. Prior tools assume that each major

component, such as a core, is treated equally in terms of the system’s dependence on its reliability: either any

unit’s failure means the failure of the entire system or the system can tolerate any combination of a given

number of failed units without regard to what those units are. OldSpot is capable of modeling the following

types of systems that previous tools could not:

• Systems that can tolerate the failures of some units but not others, such as modern systems that consist

of general-purpose cores paired with application-specific accelerators. In some instances, it may be

possible for the workloads of those accelerators to be moved onto the general-purpose cores when they

fail to extend lifetime, albeit at reduced performance, but the converse is not true.

• Shared resources among multiple cores such as last-level caches. If the shared resource fails, the entire

system also fails, but the cores may be able to tolerate failures amongst themselves.

• Individual cores at the architectural unit level or lower. A core’s health does not depend on the

continued functionality of the units in another core or accelerator.

The analysis of such a system is difficult with previous frameworks due to computational complexity (i.e. [62])

or restrictive assumptions (i.e. [40]). Monte Carlo simulation paired with OldSpot’s failure dependency graph

alleviates this complexity and allows fast simulation of lifetime.



Chapter 3

Pre-RTL Simulation with High-level

Models

In order to get an accurate estimation of aging in an electronic system, an estimation of power and temperature

are necessary. To that end, a designer can create a stats-based model tailored to a particular design [55] or

use a general, ISA-agnostic model such as McPAT [54]. Stats-based models characterize power consumption

for each type of operation a system might perform and compute the power consumption of a workload given

traces of those operations. They are accurate for the systems they represent, but require RTL simulations

or hardware measurements. Generic power models have their own descriptions of functional units that

they use to compute power using usage data from performance simulation. They do not require hardware

characterization, but sacrifice accuracy as a result. In either case, power information for a particular workload

requires the use of activity information for the system and its components that can be generated by a

performance simulator. The gem5 simulator [53] is a widely-used tool that supports many ISAs and provides

detailed performance information about the execution of a program. Power and performance simulation tools

enable the use of other tools to compute temperature [11], voltage noise [10], and lifetime [40, 58], forming a

flow discussed in this chapter.

It is also important that these tools be open-source and freely available. This facilitates research and

collaboration between academia and industry by avoiding complex and expensive licensing issues that

can interfere with the acquisition of proprietary software or hardware and hinder communication between

individuals who wish to use it. Being open-source additionally enables improvement through community

effort and allows users to verify functionality and security through their own simulations and design rather

26
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Figure 3.1: Illustration of a tool flow for simulating an application running on a chip [48]. Main simulation
tools include gem5 [53], McPAT [54], HotSpot [11], VoltSpot [10], and OldSpot [58]. Additional tools include
SimPoint [73] and ArchFP [70]. Together, these applications characterize the power, performance, lifetime,
etc. due to running the application and the area due to the physical configuration. Bolded tools are included
in the example presented in Chapter 3.1.

than having to trust vendors’ assurances of those metrics. When code bases are large and complex, it also

enables researchers to focus on specific portions without having to understand all of the code.

In addition to the tool flow, I present an extension of gem5 that enables high-level performance simulation

of the RISC-V ISA [71] called “RISC5” [72]. Prior to its development, RISC-V simulation methods were

limited to high-detail but slow RTL simulation or high-speed but low-detail binary translation. Using its

high-level models of memories and micorarchitecture, gem5 runs faster than RTL simulation while providing

enough detail to enable RISC-V designers to simulate power, temperature and reliability. This chapter shows

how RISC-V designs can be simulated with high-level models using an example execution of simulation tools

to estimate the power consumption and temperature of two RISC-V designs. It then presents an extension

of the flow to show how high-level modeling can enable design space exploration for complex systems and

improve the power, performance, and area of a heterogeneous RISC-V system with an application-specific

accelerator by co-designing its components.

3.1 Tool Flow

This chapter details an open-source tool flow, illustrated in Figure 3.1, that can be used to perform a complete

high-level simulation of a design. The flow includes the gem5 simulator [53], which contains microarchitecture

and memory performance models; McPAT [54], which contains models to estimate power and area for

microarchitecture and memory at the functional unit level; HotSpot [11, 74], which models temperature

including package and die; VoltSpot [10], which models voltage noise; and finally OldSpot [58], which models

lifetime and was discussed in greater detail in Chapter 2. I also present example results from this flow running

through HotSpot using two RISC-V designs: one configured from a popular design called Rocket Chip [75]
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and one based on the Berkeley Out-of-Order Machine (BOOM) [76]. RISC-V is a free-to-use, open-source

instruction set developed at Berkeley that will be discussed in greater detail in Chapter 3.2.

3.1.1 The gem5 Simulator

Gem5 [53]1 is a performance simulator that models several different kinds of CPUs at the micorarchitecture

level, the entire memory hierarchy from private and shared caches to main memory, and I/O. It is free and

open-source with a BSD-like license to facilitate collaboration between researchers in academia and industry

and its modular design enables focus on specific sections of its code without requiring understanding of the

entire code base. With its support of a wide variety of instruction sets including popular ones like x86 and

ARM, it can be used to model realistic workloads that might appear on real systems. Finally, it supports

many features that reduce simulation overhead not present in other simulators, including several CPU models

of varying levels of detail that can be freely switched during simulation, system-call emulation (SE) and

full-system (FS) execution modes, and saving and loading system state.

Simulations can be performed using four CPU models: AtomicSimpleCPU, which models a single-cycle

CPU and ignores memory timing; TimingSimpleCPU, which also models a single-cycle CPU but stalls to wait

for memory requests; MinorCPU, which models a four-stage, in-order pipeline; and DerivO3CPU, which models

an out-of-order CPU.2 If greater functionality, such as simulation of application-specific accelerators, is needed,

gem5 also supports the creation of new models using a combination of C and Python to describe the internal

behavior and external interface and parameters, respectively. Gem5 supports switching between its CPU

models on-the-fly during simulation either when the simulation reaches a provided number of instructions or

by using a special instruction in the simulated program. By doing this, the simulation can be “fast-forwarded”

through uninteresting regions using a fast, low-detail model such as AtomicSimpleCPU and then switching to

a higher level of detail using MinorCPU or DerivO3CPU during regions of interest. Similarly, gem5 can save

a checkpoint containing architecture, execution context, and memory state at any time during simulation,

also using either a specified instruction interval or special instructions in the executed binary, and resume

from any of them later with a different CPU model. This enables techniques such as phase analysis [73,77]

to statistically sample a program and create performance and power profiles without simulating the entire

workload.

Gem5’s accuracy has been evaluated against a dual-core ARM Cortex A9 in [51] using several scientific,

media, and engineering benchmarks to represent hardware and workloads that might be found on mobile

devices. Across all benchmarks measured, gem5 was shown to have between 1.39% and 17.95% error in

1Gem5 is available at http://www.gem5.org.
2These models used to be aliased as, respectively, “simple,” “timing,” “minor,” and “detailed,” but these aliases have been
removed.

http://www.gem5.org
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Table 3.1: Example Simulation Flow Design Parameters [72]

Rocket Chip [75]3 BOOM [76]4

Process Size (nm) 45 45
Frequency (MHz) 1500 1500
Main Memory Size (MB) 4096 4096
Inst. Cache Size (kB) 16 32
Inst. Cache Associativity 4 8
Data Cache Size (kB) 16 32
Data Cache Associativity 4 8
L2 Cache Size (kB) 2048 512
L2 Cache Associativity 8 8

reporting execution time. The authors determined that benchmarks with high error in gem5’s execution

time report tended to have high L2 miss rates, indicating that gem5’s DDR memory model is simplistic

and inaccurate. This conclusion was supported by increasing the input sizes of benchmarks that had low

L2 miss rates until those rates increased. With low input sizes and low miss rates, gem5’s error remained

relatively low and constant. When the input size increased high enough to introduce L2 cache misses, the

simulation time error greatly increased. Even with this source of error, however, gem5’s accuracy remains

within acceptable limits to enable design space exploration [51].

In the example flow shown in Figure 3.1, gem5 simulated two RISC-V systems configured from Rocket

Chip [75] and BOOM [76] using a 45nm process whose parameters are summarized in Table 3.1. RISC-V,

and its implementation in gem5, will be further discussed in Chapter 3.2. The two designs were simulated

using MinorCPU and DerivO3CPU, respectively, in SE mode running a one-million-instruction region of the

libquantum SPEC CPU2006 benchmark [78] that was chosen using SimPoint [73].

3.1.2 Estimating Power and Area with McPAT

McPAT [54]5 is an integrated Multicore Power, Area, and Timing simulation tool that includes models

for microarchitectural units such as functional units, networks on chip, and peripherals. It also includes

CACTI-P [79] to create models for SRAM memories. These models are intended to be universal and able to

describe any system in a similar manner to gem5, enabling use in a wide variety of settings and removing

the requirement of power characterization using real hardware as in [55], albeit at the cost of accuracy. By

including technology parameters from 180nm to 22nm and not relying on technology scaling to estimate

them and by modeling both leakage and dynamic components of power, McPAT improves accuracy over

3Rocket Chip parameters were taken from default values found in the repository at https://github.com/freechipsproject/

rocket-chip using commit hash 73e9508.
4BOOM can be found at https://github.com/ucb-bar/riscv-boom, but its parameters were taken from [76].
5McPAT is available at http://www.hpl.hp.com/research/mcpat/.

https://github.com/freechipsproject/rocket-chip
https://github.com/freechipsproject/rocket-chip
https://github.com/ucb-bar/riscv-boom
http://www.hpl.hp.com/research/mcpat/
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Table 3.2: McPAT Results Summary [72]

Rocket Chip [75] BOOM [76]

Core Area from McPAT (mm2) 4.18 1.37
Core Area without L2 cache (mm2) 0.29 0.77
Power (W) 1.02 5.11

earlier models such as Wattch [80]. Its area estimates can be used to estimate a floorplan using a tool like

ArchFP [70], enabling further simulation for quantities that depend on physical layout like temperature.

Unfortunately, McPAT is known to have some level of inaccuracy beyond what is caused by using

generic, ISA-agnostic microarchitecture models to allow general use for power modeling. The authors of [50]

identify several sources of error that can cause inaccurate calculations: modeling abstraction errors, modeling

assumption errors, input or user errors, and coding errors. Many of these errors are fixed by the work in [50],6

but even with these fixes the authors note that McPAT’s estimations will still be inaccurate. This can be

further improved by calibrating its internal models using data from a real design, but this must be done at a

fine granularity or accuracy will not be significantly improved.

McPAT, with the fixes from [50] applied, is calibrated for a 45 nm process in the example flow using the

area of BOOM estimated from a floorplan photograph in [76], excluding “uncore” areas not modeled by gem5,

which was designed using 45 nm. These calibrations were applied to McPAT’s results for Rocket Chip to

create area estimations for it. The calibrated results, along with McPAT’s power estimation, are summarized

in Table 3.2. These results were then used with ArchFP to create a floorplan for each design, which can be

seen in Figure 3.3. An interesting observation about the two designs is that BOOM is less than half the

size of Rocket Chip even though it contains significantly more logic to handle out-of-order operation. This

difference can be attributed to the larger L2 cache that Rocket Chip has. As shown by Table 3.2, when the L2

caches of both designs are removed from the area estimation, BOOM becomes over twice the size of Rocket

Chip, as one might expect. BOOM also consumes greater power than Rocket Chip due to the overall higher

activity caused by this logic and higher utilization of the execution units enabled by out-of-order execution.

3.1.3 Simulating Temperature with HotSpot

HotSpot [11]7 is a compact thermal modeling tool for computing the steady-state or transient temperature of

a chip given a power trace acquired from a tool like McPAT. High temperatures and thermal hot spots not

only exacerbate aging and limit lifetime, they also directly harm performance by reducing carrier mobility

and increasing interconnect resistivity, increase leakage power, and negatively effect package reliability. By

6These fixes are available at http://vlsiarch.eecs.harvard.edu/mcpat.
7HotSpot is available at http://lava.cs.virginia.edu/HotSpot/.

http://vlsiarch.eecs.harvard.edu/mcpat
http://lava.cs.virginia.edu/HotSpot/
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(a) (b)

Figure 3.2: Illustration of HotSpot’s compact thermal model [11]. HotSpot contains models for every layer of
a chip, shown in (a), and divides the die into sections that are connected using thermal resistances (b) and
thermal capacitances to ground (not shown). The resulting circuit is solved using the input power trace to
provide the temperature of each component.

creating a compact thermal model using the well-known duality between thermal phenomena and electrical

components, HotSpot can quickly evaluate the temperature of a chip and avoid complex and slow numerical

analyses that hinder architectural research and design optimization.

Figure 3.2 shows an illustration of how HotSpot’s compact thermal models are formed. HotSpot includes

models for every layer of a chip, including the package, silicon, interconnect, etc. (Figure 3.2(a)). The die is

divided either by functional unit, into a grid, or into sub-grids within each functional unit. Each cell contains

a node of an RC circuit that is connected to the nodes of adjacent cells, both within layers and between them,

using resistors (Figure 3.2(b)) based on the the sizes of the cells and thermal properties of the material. Each

node also contains a capacitance similarly determined that is connected to ground. To simulate the cooling

solution, HotSpot includes a simple lumped thermal resistance model that represents natural convection and

also supports the use of a more complex model that contains detailed package information. These components

form an RC circuit that can be solved using standard techniques to rapidly evaluate the temperature of the

chip.

The example flow uses the floorplan generated by ArchFP along with the power consumption computed

by McPAT to create a thermal map for each design using HotSpot, shown in Figure 3.3. BOOM’s generally

higher temperature corresponds with its higher power consumption and lower area; in particular, the thermal

hot spot over its execution units shows the higher utilization enabled by its out-of-order execution. Combined

with the next-highest temperature belonging to the instruction cache, this suggests that the computation is

performing many low-latency instructions such as arithmetic instructions and not waiting much for memory

accesses. Figure 3.3 shows that the relatively high temperature of the data caches in both designs is mostly
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Figure 3.3: Heat maps of the temperatures of Rocket Chip [75] (a) and BOOM [76] (b). Blue areas indicate
relatively cooler temperatures and red areas indicate relatively warmer temperatures.

due to temperature bleeding from adjacent high-temperature units, contributing to the conclusion that there

are few data accesses in the simulated region.

3.1.4 Computing Voltage Droop with VoltSpot

VoltSpot [10]8 is a power delivery network (PDN) model for voltage noise simulation. It utilizes a fine-

grained grid model capable of capturing the relationship between PDN design details (such as pad count

and placement) and supply-voltage noise. As illustrated by Figure 3.4, the die is divided into two grids that

represent VDD and ground and connects to an RLC circuit representing the PDN at grid locations containing

pads. In between these two grids are ideal current sources representing the load created by device activity

and leakage, whose current values are I = P/VDD, where P is the total power consumed by the region of the

chip represented by the current source. Combined with other architecture-level tools, VoltSpot provides a

platform for investigating the effect of application- and time-dependent noise, evaluating design and run-time

noise mitigation techniques, estimating vulnerability to aging, and performing multi-dimensional design space

exploration that includes I/O-pad allocation. It has been used to show the impact of power and I/O pad

count on noise amplitude and event frequency, to compare noise mitigation techniques, and to study the

effects of pad failures on noise. Because VoltSpot requires a cycle-by-cycle power trace to create accurate

results, which drastically increases simulation time for earlier tools in the chain, it is not included in the

example RISC-V tool flow.

8VoltSpot is available at http://lava.cs.virginia.edu/VoltSpot/.

http://lava.cs.virginia.edu/VoltSpot/
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Figure 3.4: VoltSpot modeling mechanism for voltage noise [10]. VoltSpot divides the die into VDD and ground
grids that are connected by the RLC power delivery network model and ideal current sources representing
circuit loads.

3.2 RISC5: An Implementation of the RISC-V ISA in gem5

In addition to open-source simulation tools, it is also important that there be available open-source instruction

sets and hardware to allow the same kinds of collaboration between academic and industry researchers that

tools like gem5 enable. To that end, the RISC-V ISA [71] was introduced to create such an instruction set

while still being competitive with industry standards like ARM and x86. Other open ISAs exist, but mistakes

in their design, such as branch delays in SPARC and MIPS, have caused them to be unable to compete

and lose popularity [81]. RISC-V is designed in a flexible, modular fashion that allows researchers to easily

develop improvements and extensions while also allowing hardware designers to focus only on functionality

they need, improving its usefulness over earlier open-source ISAs. Furthermore, it contains no specification

of the microarchitectural implementation it should run on, allowing development of both in-order [75] and

out-of-order [76] designs.

Several RISC-V designs [75, 76] are implemented using Chisel [82], a hardware construction language

developed as library for the Scala programming language [83] that improves the flexibility of hardware design

through generators created using concepts used in object-oriented and functional programming models. It
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Table 3.3: Simulation Features and Compatibility [72]

Feature gem5 [53] Chisel [82] spike [84] QEMU [85] rv8 [86]

Binary translation " " " "

Checkpoints " "

Multicore simulation "10 " " "

Performance statistics " "11 "12 "12 "12

RTL simulation "

System call emulation " "13 "13 " "

ASIC synthesis "

FPGA tools "

Phase analysis "

Stats-based tools " "11

can generate Verilog code that can be compiled into an RTL simulation9 of the design, mapped to an FPGA,

and used in ASIC design flow.

Existing RISC-V simulation tends to fit into two categories: detailed RTL simulation as discussed above

or binary translation using emulators like spike [84], QEMU [85], and rv8 [86] (Figure 3.5). Using high-level

models of architectural units and memory hierarchy, gem5 is capable of bridging the gap between these two

categories by providing accurate results at faster speeds than RTL simulation does, facilitating exploration

of large design spaces created by high complexity in modern designs [48]. Table 3.3 shows a comparison of

simulation features between several RISC-V simulators, including gem5, a Chisel-generated RTL simulator,

spike, QEMU, and rv8. Notably, gem5 is the only tool that is capable of utilizing phase analysis [73, 77]

by taking advantage of its ability to switch level of detail during simulation to save simulation and restore

simulation state. For more information on gem5’s features, see Chapter 3.1.1. On the other hand, tools such

as spike, QEMU, and rv8 are capable of much greater performance with binary translation than gem5 because

they do not include microarchitectural models, making them ideal for testing software functionality and

estimating its performance on RISC-V. This drawback renders it impossible to perform hardware design with

them, whereas gem5 is capable of informing RISC-V hardware design with its microarchitecture and cache

models through high-detail performance statistics that can be used with other high-level models. This can be

used to further improve designs created using Chisel, which is capable of producing RTL-level simulations

that provide performance information specific to a design that is necessary for hardware optimization.

9Earlier versions of Chisel were capable of directly creating a C++ RTL model of a design, which is used for validation in
Section 3.2.2. This functionality has since been removed in chisel3 in favor of compiling Verilog code for simulation.

10Gem5 supports multicore simulation in both SE and FS modes, but RISC-V does not support it yet as of this writing.
11Chisel can only output performance statistics if a design has means of counting and outputting them.
12The simulated program is responsible for tracking performance counters available in RISC-V.
13System call emulation is supported via the RISC-V proxy kernel.
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Figure 3.5: Illustration of the tradeoff between simulation accuracy and speed [72]. Other than gem5, most
simulators most simulators achieve either high speed or high accuracy. With its high-level models of execution
units and customization, gem5 can achieve some degree of both.

3.2.1 Implementation Details

An advantage RISC-V has over earlier open architectures is its modularity, which it achieves by dividing its

instructions into a base instruction set and several extensions. It further allows customization of address and

data width, referred to as XLEN, supporting 32-, 64-, and eventually 128-bit versions of each module [71]. A

RISC-V implementation can identify which modules it supports with an ISA string that comprises of the

letters “RV” followed by XLEN and then a list of letters representing the extensions that are included. Software

is able to read this information from a dedicated register to determine compatibility with hardware [87]. The

only mandatory module is the base instruction set, I, which defines basic integer arithmetic, memory, and

control operations, although it can optionally be substituted by the E instruction set that defines a reduced

architecture intended for low-power embedded systems. Standard extensions include the integer multiply

and divide extension, M; the atomic memory extension, A; and the single- and double-precision floating point

extensions, F and D. These form the “general-purpose” RISC-V ISA and, together with the base instruction

set, are referred to using the letter G. Additional extensions include quad-precision floating point arithmetic, Q;

compressed instructions, C; and support for dynamically-translated languages (e.g. Scala), J. Gem5 currently

supports RV64GC based on their definitions in [71], which includes 64-bit instructions in the base instruction

set, standard extensions, and compressed extension. At the time of this writing, gem5 also currently only

supports executing RISC-V in SE mode with a single thread, so only nominal support for the privileged
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Table 3.4: Invalid Division Operations [71]

Operation Division by 0 Overflow

Signed Divide −1 −2XLEN−1

Signed Remainder Dividend 0
Unsigned Divide 2XLEN − 1 N/A
Unsigned Remainder Dividend N/A

ISA [87] exists. This section includes details about the implementation of each module followed by validation

against a Chisel simulation of Rocket Chip.

Base 64-bit Instruction Set (RV64I)

Because RISC-V instructions share many similar behaviors to those of other ISAs such as MIPS [88], much of

the code gem5 uses to implement those ISAs was adapted for RISC-V. When instruction definitions in [71]

were not sufficient to create their implementations in gem5, typically due to required knowledge of gem5’s

internal behavior, their definitions were created by referring to their analogues in [88] and inspecting gem5’s

code (usually for MIPS or Alpha). For example, the RISC-V fence instruction is similar to the MIPS

sync instruction, so the implementation of fence in gem5 is based off its implementation of sync. This

implementation does not yet include fence’s flags for specifying how memory and device accesses should be

ordered because gem5 does not contain that behavior, so instead fence synchronizes all operations. The only

instructions not implemented from RV64I are uret, sret, and mret, which return from traps and exceptions

that typically execute with elevated privilege [87]. Privilege levels, traps, and exceptions do not exist in

gem5’s SE mode, so these instructions are unnecessary until full-system simulation is implemented. If one is

encountered, the simulation halts.

Integer Multiply Extension (RV64M)

The multiply extension does not add additional instruction formats or new instruction behavior, since invalid

operations in integer arithmetic do not cause exceptions. The only invalid operations are division by zero and

division overflow (−2XLEN−1÷−1), which produce special results that are enumerated in Chapter 6.2 of [71]

and reproduced in Table 3.4. Rather than trusting the host system’s implementation of these operations

to produce the required results, gem5 explicitly checks for these cases and stores the correct value in the

destination register.
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Figure 3.6: Illustration of the execution of an atomic memory operation in gem5 [90]. During the read
micro-op, the memory address is read from Rs1 and the data from that address is stored in the special AMO
register, Rt. Then, during the write micro-op, the data stored in Rt and the other source register, Rs2, are
operated on using f(x, y) and the result is stored into memory.

Atomic Memory Extension (RV64A)

RISC-V includes two different ways of executing atomic operations [71]: load-reserved/store-conditional

(LR/SC) instruction pairs and atomic read-modify-write (RMW) instructions. LR/SC sequences, which are

similar to load-link/store-conditional sequences in MIPS [88], are a load-store instruction pair in which the

load instruction reserves a memory location and the store instruction releases it if the location hasn’t been

written to by another thread since the reservation was made. Indication of a successful LR/SC sequence

is stored in a destination register. This can be used for compare-and-swap, a common method of testing

for atomicity in concurrent applications [71]. The atomic read-modify-write instructions atomically load a

value from a memory location, store it in a register, perform an operation on it, and store the result back

to memory. All of these instructions include flags to acquire and/or release a memory location according

to release consistency [89]. Release consistency is a weak memory model that ensures that the results of a

writer’s operations on a memory location are seen by a reader if the reader acquires that location after the

writer releases it.

Only two instruction sets have analogues to RISC-V’s atomic instructions [88], neither of which are present

in gem5. While the definition of these instructions in [71] is sufficient for implementing the modify step

of RMW, each instruction requires two memory accesses (read and write). Since gem5 does not support

multiple memory accesses per instruction when simulating memory with timing, splitting each atomic memory

instruction into two micro-ops, one to read from memory and one to write the result back to memory, enables

support for these instructions. The operation that performs the modification of the value read from memory
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is arbitrarily the second micro-op. The process of executing an atomic RMW instruction is illustrated in

Figure 3.6.

In order to enable the write micro-op of each atomic memory instruction to keep track of the data loaded

from memory by the read micro-op, a new integer register is added to the implementation, denoted by Rt in

Figure 3.6. This register is separate from the main register file and only used for storing a value loaded by the

first micro-op of an atomic memory instruction. It is not accessible for use as an operand for any instruction.

Each micro-op is marked with an ACQUIRE or RELEASE flag to indicate if the RMW instruction is acquiring

and/or releasing a memory location. Load-reserved and store-conditional instructions are similarly flagged,

and all instructions in RV64A can have either flag, both flags, or neither flag. Because gem5 only supports

single-threaded simulation for RISC-V, the actual atomicity and memory consistency of the implementations

of these instructions cannot be empirically verified.

Floating Point Extensions (RV64FD)

RISC-V includes two standard extensions for single- and double-precision floating point arithmetic (F and D,

respectively). Except for the sizes of instruction operands and presence of instructions to convert between

single- and double-precision values, these two extensions and the details about their implementations are the

same. Generally gem5 depends on the host system’s implementation of floating point arithmetic to match

that of RISC-V. But since RISC-V conforms to the IEEE-754 2008 floating-point standard [91] while the

x86 machine used for development did not, there are some cases where explicit checks to source register

values and computation results need to be made to ensure that exceptions were being thrown correctly. This

normally only applies to operands with value 0, NaN, or ∞.

Another important difference between the two standards is the rounding modes that are present. The IEEE

2008 floating-point standard defines five modes for rounding inexact results (roundTowardPositive, round-

TowardNegative, roundTowardZero, roundTiesToEven, and roundTiesToAway [91]), while the development

machine only has four (roundTiesToAway is missing). Additionally, it trusts that the host’s implementations

of the existing rounding modes are the same as RISC-V’s definitions of them and makes use of the C

floating-point environment library to control them. Since roundTiesToAway is not a standard part of that

library, gem5 will halt simulation if an attempt is made to use it.

Other minor differences include floating point classification, where the development machine ignores sign

while RISC-V does not, and exceptions thrown for producing inexact results. In the former case, the C

fpclassify function is combined with explicit checks for information it does not provide, such as the sign of

non-NaN values and whether a NaN is signaling or quiet, to produce results. In the latter case, gem5 uses the

host’s inexact result exception behavior to simplify the implementation.
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Gem5’s floating point behavior was verified against results from spike and Chisel simulations. While spike

emulates RISC-V instructions on a host system like gem5 does, the Chisel simulator performs simulations at

RTL level and so implements its own floating point arithmetic. The results of the floating-point computations

between the two simulators were the same, but they disagreed on how exceptions should be generated,

sometimes not conforming to the specifications in [71] and [91]. For example, spike may throw a divide-by-zero

exception when performing a single-precision division by zero, correctly storing ∞ in the result register, but

the Chisel simulation may not. In these cases, gem5’s implementation conforms to the specifications without

regard to the other simulators. In the above example, gem5 will throw a divide-by-zero exception.

Compressed Extension (RV64C)

Unlike the standard extensions, the compressed extension introduces different instructions depending on

the value of XLEN. Gem5 implements the 64-bit version, RV64C. Additionally, rather than introducing new

functionality, this extension creates additional encodings for frequently-used existing instructions that are

half as long as standard encodings. All compressed instructions introduced can be rewritten using standard

32-bit instructions except for C.JALR, which has only a minor difference from its standard cousin JALR in

that it can jump to addresses on two-byte boundaries rather than four-byte ones. Compressed instructions

are only compatible with systems that implement the standard extensions [71].

This extension provides similar functionality to RISC-V as the Thumb instruction set does for ARM [92].

Thumb is comprised of half-length versions of popular ARM instructions and provides a restricted view of

the register file like RISC-V compressed instructions do. The main difference between RISC-V’s compressed

extension and Thumb is that Thumb instructions can only be used when in a Thumb state, during which regular

instructions cannot be used. This prevents interleaving compressed instructions with regular ones, which RISC-

V allows. Additionally, the restricted set of registers enabled in Thumb is global to all Thumb instructions,

whereas RISC-V’s compressed extension has different restrictions for different types of instructions.

The addition of compressed instructions required two changes. First, special source and destination

register operands were added to account for the smaller subset used by compressed instructions that reference

Rs1’, Rs2’, and Rd’. Since these operands refer to registers x8-x15 using indices 0-7, the “real” register

indices can be derived by adding 8 to the compressed register indices. Second, the decoder state machine

needed to be rewritten to account for multiple instruction widths. Without this extension, all instructions

are 32 bits; the decoder only required a simple state machine that advances the PC by 4 bytes every time an

instruction is fetched. The addition of 16-bit instructions requires some additional predecoding to determine

instruction length and storage of instruction bytes in case a 32-bit instruction crosses a 32-bit boundary.
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bytes[1:0] = 0x3

inst := bytes

PC += 4

bytes[1:0] < 0x3

inst := bytes[15:0]

PC += 2

Aligned Unaligned
Mid-

instruction

bytes[17:16] < 0x3

inst := bytes[31:16]

PC += 2

bytes[17:16] = 0x3

inst[15:0] := bytes[31:16]

inst[31:16] := bytes[15:0]

pc += 4

Figure 3.7: New predecoder state machine used by gem5 with the compressed instruction set [90]. bytes

represents the bytes that have been fetched and are being predecoded and inst represents the instruction
to be decoded. When aligned, the two least-significant bits of bytes indicate the length of the instruction.
When unaligned, bits 17 and 16 are used instead. New bytes are fetched whenever entering the Aligned or
Mid-instruction states.

The new state machine is illustrated in Figure 3.7. It begins by assuming the first instruction is aligned on

a 32-bit boundary. If that instruction’s two least significant bits are 0x3, then it is a standard-size instruction,

it is decoded, and the PC is incremented by 4 bytes. Otherwise, only the least significant half is decoded and

the PC is only incremented by two bytes. When the PC is not aligned on a 32-bit boundary, then the bits 17

and 16 of the most recently-fetched 32-bit instruction word are checked to see if they form a compressed

instruction. If they do, then the PC is incremented by two bytes and must be aligned; the predecoder returns

to its initial state. Otherwise, it combines the upper 16 bits of the instruction word with the lower 16 bits of

the next word and decodes the result, incrementing the PC by 4 bytes and returning to the previous state.

3.2.2 Validation of RISC5

Selected benchmarks from the SPEC CPU2006 suite [78] are simulated on gem5, a Chisel-generated C++

simulator,14 and on a RISC-V soft core on an FPGA.15 In order to keep track of performance statistics shown

in Figure 3.8, the Chisel design was modified to add additional performance counters and each benchmark’s

source was modified to read and print their values. To improve parity with gem5, which would not accumulate

these statistics while emulating system calls, the Chisel design was also modified to pause these counters

during execution of privileged code. Gem5 and the simulator were both run on a four-core machine running

at 3.7 GHz with 32 kB, 256 kB, and 10 MB of L1, L2, and L3 cache, respectively, and 32 GB of main memory.

Since Rocket Chip also includes a flow for configuring a Xilinx Zynq FPGA on a Zedboard development kit

14As noted previously, chisel3 no longer generates a C++ RTL description of a design, preferring to generate only Verilog code
and allowing external tools to compile it for simulation. This validation was performed using chisel2, which does have this
functionality.

15Rocket Chip and chisel2 versions used to generate the simulator are, respectively, 73e9508 and b18e98b.
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Figure 3.8: Validation of gem5 performance statistics against the same values from Chisel simulation (left)
and FPGA (right) [72]. Some benchmarks are omitted due to excessively long simulation times. Gem5 is
generally more accurate for statistics that accumulate later in Rocket’s pipeline than for earlier.

as a RISC-V core, the Chisel design was also mapped to FPGA for further comparison. The design on the

FPGA has a clock rate of 25 MHz and up to half the development board’s 512 MB of DRAM.

Figure 3.8 shows each performance statistic obtained from gem5’s output normalized to the value extracted

from the C++ simulator and FPGA. It shows that gem5 is accurate in the number of instructions retired,

number of memory operations performed, and number of branch instructions executed, but less so in the

number of cycles it took to complete each benchmark and number of instructions fetched. This is due to

differences between the microarchitectures and memories modeled by gem5 and implemented by Chisel. In

particular, the branch prediction may be different, causing a significant difference in the number of instructions

fetched and cycles executed while not affecting the number of retired instructions or memory operations.

This also accounts for the slight difference in branch operations.

The FPGA, on average, took about 26.5 times less time to execute benchmarks than gem5 did while

the Chisel simulator took, on average, about 32 times longer than gem5 to perform each benchmark. As a

result, several benchmarks took too long to execute and produce data, so they are excluded from Figure 3.8

for C++. This slowdown is due to the very high level of detail of the Chisel simulator, which enables the

capability for very accurate simulation but adds significant overhead. Gem5’s abstraction of low-level signals

using CPU models reduces overhead and allows it to run faster.

3.3 Co-optimizing CPUs and Accelerators with Constraints

This section demonstrates the use of pre-RTL simulation along with RISC5 to show that it is insufficient

to design general-purpose and application-specific units of an SoC separately and explore the benefits of

co-designing them. Because electronic systems often make use of several accelerators to improve power

or performance when executing certain tasks, it can be easier to design the system in a modular fashion;

separating the designs of each accelerator and the CPU from each other can reduce design complexity. The
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costs of integrating these units with each other, such as interconnect or bus latency, is left up to software like

device drivers to manage [93]. Unfortunately, this can make these costs difficult to estimate at accelerator

design time [93]. The authors of [93] show that latencies caused by data movement and cache coherency

management can account for up to 40% of the total runtime of an accelerator and have a significant impact

on design optimization. By ignoring these in designing an accelerator, a hardware designer can be misled into

making deceptively suboptimal design choices.

When designing devices with power, performance, or area constraints, it may no longer be possible to

design each component in a modular fashion. Doing so may cause the overall system to become too large

or consume too much power, failing to meet its design constraints. But removing resources from one unit

in order to make way for another unit may create an overall suboptimal design. In order to determine

the best distribution of resources given constraints on some design metrics, the entire system must be

considered simultaneously. By co-optimizing the accelerator and CPU, the overall performance of an area- or

power-constrained system can be significantly improved. The work presented in this section is also published

in [94].

3.3.1 High-level Accelerator Modeling Tools

One of the main tools used in this work, Aladdin [52], is a pre-RTL accelerator power, performance, and

area estimation tool that transforms a kernel specification written in C into an estimation of the hardware

necessary to implement it given design constraints and input. It includes power, performance, and area

characterizations for several types of logical units and makes use of CACTI-P [79] to estimate these metrics for

memories. The authors compare Aladdin’s results against those computed from RTL synthesis and simulation

and show that Aladdin can achieve 0.9%, 4.9%, and 6.6% error in performance, power, and area, respectively

while eliminating the need for slow RTL design and simulation. A weakness of Aladdin, as pointed out by [93],

is that it does not account for external effects such as memory latency that will affect its design.

After pointing this out, the authors of [93] improve Aladdin by combining it with gem5 to create a tool

called gem5-Aladdin, using gem5’s built-in cache and memory models to compute the overheads of transferring

data between the accelerator and shared memory and of maintaining cache coherency with the accelerator.

Using gem5-Aladdin, the authors show that these costs reduce the amount of parallelism that an accelerator

can support due to increased data transfer overheads caused by increased memory sizes on the accelerator.

By reducing the amount of parallelism in the accelerator, its overall energy-delay product (EDP) decreases.

The authors also explore the usage of caches rather than scratchpad memories on the accelerator to improve

performance for workloads with irregular memory access patterns that DMA engines typically perform poorly
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with. They show that considering all of these effects in designing an accelerator can improve its EDP by up

to 7.4×. Even so, the authors of [93] assume that the only significant portion of the workload is performed

by the accelerator and do not account for constraints that might affect the design of the entire system.

Another tool for simulating accelerated workloads is the Platform for Accelerator-Rich Architectural

Design and Exploration (PARADE) [95]. Like gem5-Aladdin, PARADE integrates with gem5 to enable

simulation of a full workload that includes accelerated segments. To model an accelerator, existing tools like

Aladdin or RTL simulation can be used or the accompanying toolchain can be used to convert a high-level

description of the accelerator kernel into RTL to be simulated. Unlike gem5-Aladdin, PARADE has a

three-stage programming model where all of the accelerator input is initially loaded into scratchpad memories,

the accelerator operates on that data, and finally all of the output data is loaded back into last-level cache.

This limits the designs of accelerators it can model and can inflate the cost of data transfer by forcing the

accelerator to wait until all of its data is available instead of allowing it to operate on the data as it arrives.

PARADE is also capable of modeling composable accelerators that directly communicate with each other,

whereas gem5-Aladdin only enables multiple discrete accelerators that can exchange data with shared memory.

The authors of [95] use PARADE to evaluate the power and performance improvements that can be gained

by using accelerators for several workloads and analyze the benefits of using composable rather than discrete

accelerators, but, like gem5-Aladdin, consider only the work that is being accelerated and do not include

constrained optimization.

3.3.2 Modeling Infrastructure and Tool Flow

To show the importance of co-optimizing the general-purpose cores alongside the application-specific accelera-

tors in an SoC, power, performance, and area are simulated using several systems that each include a single

RISC-V CPU core and a unit that is tailored to accelerate a portion of the workload in a benchmark from

CortexSuite [96]. CortexSuite includes workloads meant to model functions commonly performed by the

human brain in order to create a baseline for machine learning applications. Each benchmark is modified

to replace a portion of its workload with an invocation of an accelerator that performs that function. This

accelerator is designed using a C description of the workload portion to be analyzed by Aladdin. Each

benchmark is compiled for RV64GC and executed on a modified gem5-Aladdin that has enabled compatibility

for RISC5. Gem5 is configured to simulate a four-stage, in-order RISC-V CPU core that communicates

with Aladdin through the interface provided by gem5-Aladdin and executes the general-purpose portion

of the workload. When an accelerator invocation is encountered, gem5-Aladdin intercepts it and invokes

Aladdin to analyze the accelerator and produce its power, performance, and area computations for the input.
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Figure 3.9: Illustration of the tool flow used to simulate the power, performance, and area of the single-core
RISC-V system with one accelerator that is tailored to accelerate a portion of each benchmark’s workload [94].

Gem5-Aladdin includes enhancements to Aladdin that trace the data flow through the accelerator and report

the result of its computation back to gem5.

Aladdin’s analysis consists of the construction of a dynamic data dependence graph (DDDG) from an

instruction trace of the accelerator kernel using an ISA-independent intermediate representation [97]. Nodes

of this graph represent computations in the accelerator kernel and edges represent data dependencies between

them. After its initial construction, the DDDG is transformed to represent an idealized version of the kernel

algorithm using optimizations such as removal of dependencies on loop index variables to expose parallelism

and elimination of memory store operations using forwarding. After this, the DDDG is transformed two

more times, adding nodes and edges to account for program dependencies such as branch decisions and

user-specified hardware constraints. These constraints describe how much parallelism Aladdin is allowed

to include in the accelerator, how many concurrent memory requests the accelerator’s local memory can

support, and the accelerator’s clock frequency. In gem5-Aladdin, users can additionally include a cache with

the accelerator and specify its configuration and which data structures it contains. After generating the

DDDG, Aladdin can estimate the latency of the computation as well as the hardware required to perform it,

producing power, performance, and area estimations for the accelerator.

After Aladdin performs its analysis, gem5-Aladdin traces the accelerator’s execution so that the results

can be reported back to gem5. Gem5 includes models for data transfer using both caches and DMA, which

gem5-Aladdin leverages alongside its own latency computations for logic and memory in the accelerator

in order to compute the overall computational delay. Once the benchmark is complete, gem5’s reports on

the performance statistics of the RISC-V CPU are input into McPAT. Gem5’s, McPAT’s, and Aladdin’s

results are collected to produce the overall power, performance, and area of the system as a whole. This

flow, illustrated in Figure 3.9, is a subset of the flow shown in Figure 3.1 that does not include temperature,

voltage noise, or lifetime simulation. It is also modified to include Aladdin’s results for power and area to

combine them with McPAT’s for the CPU to compute overall system power and area. As Aladdin’s power
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and area models are characterized from a 40nm process, McPAT is configured to compute CPU power and

area using that process and calibrations from [72].

3.3.3 Co-optimizing Accelerators with CPUs

This section details the simulation parameters used to characterize each benchmark with different distributions

of resources between CPU and accelerator, presents the resulting design space, and then shows how optimizing

the accelerator as a standalone unit and not considering the workload performed by the CPU can result in

suboptimal designs. The included benchmarks from CortexSuite are described below. Other benchmarks are

not included because changing the data block size affects results, they do not present a significant enough

workload for the CPU, or they are too large to run with detailed simulation. Each benchmark has a portion

of its workload that is executed on an accelerator dedicated to that function which is also described in this

section.

rbm The rbm benchmark uses a restricted Boltzmann machine [98] to classify movie preferences for several

users of a movie service. Because a restricted Boltzmann machine is similar to a two-layer fully-connected

neural network, much of the workload is taken up by matrix multiplication. This is accelerated using a

dedicated matrix-multiplication accelerator that can operate on a subset of the left matrix operand’s rows

simultaneously, repeating its operation on subsequent row blocks until the entire matrix multiplication is

complete. The amount of area devoted to the accelerator is varied by controlling the size of the left matrix

operand’s row block.

pca The pca benchmark performs principal component analysis [99] on a set of data. The main workload of

pca consists of the computation of a correlation matrix, which is performed using a dedicated accelerator. The

amount of area devoted to it is varied by controlling the number of simultaneous columns of the correlation

matrix that can be computed.

lda The lda benchmark performs latent Dirichlet allocation [100] to classify a given set of documents using a

given set of topics. Latent Dirichlet allocation attributes words to the topics and classifies the document

according to the topics its words are associated with. The accelerator for lda creates a maximum-likelihood

estimation model of the input document for the set of topics used to classify it. The number of words in the

document that can be processed in parallel can be varied to simulate controlling the devotion of resources to

the accelerator. Because this benchmark makes use of pseudorandom numbers that affect its convergence

rate, which in turn affect the number of times the accelerator is invoked, it is further modified slightly to use

a constant seed for the random number generator and to restrict the number of iterations. This ensures the

same execution for all system configurations.
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Table 3.5: Simulated System Parameters [94]

Parameter Value

Instruction set RISC-V
Architecture RV64GC
Process size 40 nm

Supply voltage 1 V
CPU Clock frequency 1 GHz
Instruction cache size 32 kB

Instruction cache associativity 2
Data cache size See Table 3.6

Data cache associativity See Table 3.6
Main memory size 4 GB

Table 3.6: Simulation Sweep Parameters [94]

Benchmark Data Cache Range Input Size
Accelerator
Parameter

Accelerator
Range

rbm 1–64 kB, {1,2,4} ways 51×31 network Matrix row count 1–50 rows

pca 4–256 kB, {1,2,4} ways 128×64
Correlation matrix
column count

1–16 columns

lda 4–128 kB, {1,2,4} ways
3 topics, 500 docs,
6907 terms

Term log-likelihood
count

1–50 terms

The parameters for the RISC-V CPU used for simulation are summarized in Table 3.5. In addition to

varying the parallelism of the accelerator for each of these benchmarks, the data cache size of the main CPU

is varied to control the assignment of resources to it and affect the performance of off-accelerator portions of

each workload. A summary of simulation parameters that are swept and the ranges for those parameters

is included in Table 3.6. Because the system does not have a shared L2 cache, the accelerator shares main

memory with the CPU.

Appendix C summarizes the results for all three benchmarks. It shows Pareto-optimal curves for area

and performance in Figures C.1, C.2, and C.3 and for power and performance in Figures C.4, C.5, and C.6.

Square- or diamond-shaped markers indicate Pareto-optimal design points for standalone accelerators, black

circles indicate Pareto-optimal points for co-designed systems, and gray dots indicate suboptimal designs.

The power-performance Pareto plots show accelerator designs for both small (squares) and large (diamonds)

data caches, as the data cache size has an affect on both quantities in the accelerator. All three benchmarks

show cases where designing its accelerator separately from the CPU could create a deceptively suboptimal

design for both power and area.

As Figure C.4 shows for rbm, some of the Pareto-optimal points on the standalone accelerator design lie

inside the Pareto-optimal curve for the overall design. The square markers show that designing the accelerator

with a large data cache in mind can cause smaller designs to produce worse performance for a given power
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constraint than could be achieved by exploring both design spaces simultaneously. For example, by increasing

the size of the accelerator but decreasing the size of the CPU, it is possible to maintain a 40mW power

constraint while improving performance by about 10%. Similarly, when designing an accelerator with a small

data cache in mind, the performance of the CPU is impacted negatively enough that the overall performance

of the system will suffer significantly, which is not apparent from Figure C.4(a). For example, it may appear

from the diamond markers that it is impossible to achieve power consumption less than about 50 mW with

a maximum 0.12-second performance constraint, but by increasing the data cache size and decreasing the

accelerator size, it is possible to meet that constraint with a little over 30 mW consumed, about a 40%

improvement.

The rbm and pca benchmarks behave similarly in that larger standalone accelerator designs that are

Pareto-optimal tend to coincide with overall Pareto-optimal designs, but smaller designs may not. This makes

sense because weak area constraints allow large accelerator sizes that enable large amounts of parallelism

without significantly impacting the performance of the CPU. With tighter area constraints, however, the size

of the accelerator begins to restrict that of the CPU and reduces performance of the CPU’s workload enough

to negatively impact overall performance. By decreasing the size of the accelerator and increasing the size of

the CPU, the area constraint can be met while improving performance. For pca, with an area restriction of

0.4 mm2, Figure C.2 shows that execution time can be reduced by about 25% this way. Figure C.1 indicates

that rbm benefits less from this co-design, but can still improve execution time by about 6% with an area

restriction of 0.16 mm2 or area by about 12% with a performance restriction of 85 ms.

Co-designing the accelerator with the CPU has a greater effect on power than it does on area for rbm

and pca. There is a weak relationship between data cache size and accelerator performance that translates

to a small effect on accelerator power, as shown by Figure C.4(a). When the accelerator is designed with

a large data cache in mind, designs with tighter power constraints suffer. On the other hand, when the

accelerator is designed with a small data cache in mind, designs with tighter performance constraints suffer.

In addition to the improvements to rbm listed previously, Figure C.5 shows that co-optimization can improve

performance in pca with a power constraint of about 30 mW by about 40% or improve power consumption

with a performance constraint of 0.08 seconds by about 66%.

Compared to rbm and pca, lda shows some different behaviors in Figures C.3 and C.6. Like rbm, whose

performance begins to degrade when the system gets too big due to high data transfer latency, lda does not have

any overall Pareto-optimal points once it gets bigger than 0.35 mm2 or consumes more than 31.6 mW. Unlike

either of the other two benchmarks, however, the performance gains for improving accelerator parallelism

are much smaller, especially with physically-smaller overall designs, than the gains are for improving the

general-purpose CPU performance. This indicates that the workload computed by the accelerator is a much
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smaller portion of lda’s kernel than the other two benchmarks’ accelerators portions are. As a result, when

area or power are constrained, it is generally better to choose smaller accelerator designs. In this case, the

design of the accelerator can be separated from that of the CPU. This is more prominent in Figure C.6 than

Figure C.3, where it is clear that, except for the largest designs we simulated, the data cache size has a much

larger effect on performance than parallelism in the accelerator. Even with this effect, small improvements

can be made by co-designing the accelerator and CPU for certain constraints. With a performance constraint

of about 9.5 seconds, reducing the parallelism of the accelerator and increasing the CPU data cache size can

reduce overall area by up to 25%, although the effect on power is smaller at only about 5%.

Some of the results for lda are unexpected in that some of the standalone-accelerator Pareto-optimal

points are overall worse in power, performance, and area than points with lower amounts of parallelism and

that Pareto-optimal accelerator designs are either large or small; sizes in between are never optimal. This can

be attributed to Aladdin’s attempts to optimize for power and area by reusing functional units to perform

computations while waiting for data transfers or for results from slower units. In the former case, due to the

accelerator’s interactions with the data cache in order to maintain coherency, the CPU experienced more data

cache misses. Since overall performance is more strongly impacted by the CPU with lda, these data cache

misses caused overall worse performance for these designs. In the latter case, with some designs, there were

fewer opportunities to perform this kind of optimization, resulting in larger, more power-hungry accelerators

that overall performed worse.

3.4 Summary

The implementation of RISC5 enables high-level simulation and design space exploration, such as the results

presented in Chapters 3.1 and 3.3, for RISC-V. This allows architects who are interested in RISC-V to make

improvements without needing to depend on the implementation and simulation of RTL, which present

significant time and development overheads. It also allows cross-layer design space exploration using tools

such as HotSpot, VoltSpot, and OldSpot by giving architects the ability to see the effects of their designs on

metrics that previously were considered low-level and needed to be simulated using RTL such as temperature,

voltage noise, and lifetime and needed to be simulated with RTL. Architecture design is further facilitated by

the open-source nature of RISC-V and the tools in this flow, removing the burdens of obtaining licenses and

allowing collaboration between researchers in industry and academia. The pre-RTL design capabilities were

demonstrated by following the simulation flow in Figure 3.1 through HotSpot to create temperature maps of

two RISC-V designs. A subset of this flow including gem5, McPAT, and HotSpot was modified to include

gem5-Aladdin to simulate several RISC-V systems with application-specific accelerators to show how overall
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power, performance, and area can be improved by co-designing the two units rather than prioritizing the

accelerator. As Appendix C shows, this can improve power, performance, or area by up to 66%, 40%, or 25%,

respectively.



Chapter 4

Manipulating PUF Reliability with

Directed NBTI

In addition to reliability concerns, aging can have impacts on security as well. As IoT devices are given

greater amounts of autonomy and interconnectivity in order to relieve their owners from having to manage

them, they record more personal and sensitive information which must be protected. Unauthorized access

not only allows an attacker to gain access to this data, but also control of the device itself, enabling attacks

such as Trojan insertion, reverse engineering, and counterfeiting [101]. Such activity has been estimated to

cost the electronics industry over $100 billion each year [102].

To combat this problem, a device can make use of secret-key authentication or encryption to ensure

identity and security when communicating. Both of these cases require that a device have a secret key that

it can use to verify the identity of another device or encrypt data. This is commonly accomplished using

nonvolatile memories such as read-only memories, battery-backed volatile memories like SRAMs, or flash

memory [103,104]. Unfortunately, these devices come with power and area costs that not all use cases can

afford. As a result, some of them forego security to meet these requirements [105]. These problems are

addressed by devices known as physical unclonable functions (PUFs) [106, 107], which derive uniqueness

from silicon process variations like how humans derive uniqueness from fingerprints. Because these variations

affect properties that are also affected by aging, PUFs are susceptible to change via aging. This chapter

discusses the potential for using aging in a directed manner to deliberately affect the security of a PUF based

on SRAM.

50
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4.1 The Physical Unclonable Function

PUFs are analogous to fingerprints in human beings. Just like how a fingerprint is defined by natural

variations in human skin that are unique to each individual, the fingerprint of a PUF is defined by natural

variations in silicon that occur during fabrication and are unique to each device. On top of this, their nature

as being derived from silicon variations makes them difficult to tamper with and impossible to duplicate

during fabrication. They have low overheads in power, performance, and area, making them useful for secure

systems with tight power budgets. For less power- or area-constrained systems, they still have advantages

over more conventional devices in that they typically only provide their secret information upon request and

only for a short time, increasing resiliency against attack [105].

Unfortunately, the same source of randomness that gives each PUF its uniqueness is also a source of

vulnerability to aging. The degradation caused by aging changes physical device parameters that are affected

by variations and can be leveraged for uniqueness. These changes can become severe enough to significantly

affect the output of the PUF, effectively changing its fingerprint and denying service to whatever resource it

is attached to. As a result, the lifetime of an electronic device, especially a secure one, is not only affected by

functional failures caused by aging but also by its reliability in evaluating its fingerprint.

4.1.1 Types of PUFs

PUFs can be implemented using a variety of technologies, such as optics [107], memristors [108], spintronics

[109], and CMOS [57,110]. CMOS PUFs can generally be divided into two categories: timing-based PUFs,

which are typically circuit paths whose output depends upon the delays of their components; and memory-

based PUFs, which are typically bistable circuits such as RAMs or sense amplifiers that store a value after

powering on or being enabled. Delay-based PUFs can be implemented using ring oscillators (RO-PUFs) [110]

and multiplexers (arbiter PUFs) [111]. A common type of memory-based PUF is the 6T SRAM cell [57]

shown in Figure 4.2(a).

PUFs are often characterized by the number of challenges they can accept and responses they have to

those challenges [103,105]. A challenge to a PUF is an input to the PUF, such as the assertion of an enable

signal or a number indicating how to set internal structures. A response is the PUF’s output as a result of

the challenge. PUFs can typically be divided into two categories, “weak” or “strong,” based on how many

challenge-response pairs they have [103,105]. Weak PUFs are characterized by the relatively small number

of challenges they can accept and the similarly small number of responses they can generate. Because of

this, the output of the PUF must be kept secret using cryptographic techniques such as hash functions. As a
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Figure 4.1: Diagram of a fuzzy extractor. Items in rectangles indicate functions and items in ovals indicate
the data those functions operate on. Arrows indicate the direction of data flow. A gray background indicates
data that must be kept secret. Note that the functions making up a fuzzy extractor can be made public as
long as the data corresponding to identifiers is kept secret.

result, weak PUFs are useful for cryptographic key generation. Strong PUFs, on the other hand, have many

challenge-response pairs. Even if an attacker were able acquire a sample of these pairs from a PUF, he or she

would not be able to derive the rest and would not be able to gain any information about the PUF’s internal

behavior. While weak PUFs can be used for authentication when paired with other cryptographic functions,

strong PUFs can be directly used without any processing on their outputs because their challenge-response

pairs do not expose secret information.

4.1.2 Security with PUFs

A common problem with using a PUF as a security credential is variation in its responses caused by electrical

noise. Temperature and voltage changes also affect responses in a more predictable manner. In order to get a

reliable response from a PUF, error correction is necessary. Additionally, the fingerprint of a weak PUF must

not be readable or inferrable by an attacker during the authentication process. Even though a strong PUF

does not require additional processing to hide its fingerprint, it may still be susceptible to noise that must be

corrected. This section outlines a general procedure for correcting errors and, when applicable, encrypting a

fingerprint to hide it from external view, enabling the use of a PUF for authentication. The procedure is

illustrated in Figure 4.1.

An identifier whose output is affected by noise, such as a PUF, is known as a “fuzzy identifier” [112,113].

To use such a device for authentication, a “fuzzy extractor” must be created to correct noise in the identifier’s
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(a) (b)

Figure 4.2: Circuit layout (a) and noise margin diagrams (b) for a 6T SRAM cell [114]. When VDD is enabled,
the two sides race to pull up to 1. The strengths of the opposing transistors affect the rate at which the
voltage can rise. In the balanced case (b, left), Q and QB rise at the same time and the metastable state
where the “wings” cross is reached. In an imbalanced case (b, right), the left side is stronger and the voltage
will settle with Q = VDD and QB = 0.

response and hide its fingerprint. In general, a fuzzy extractor is a set of functions that maps non-uniformly-

distributed random numbers, like fuzzy identifiers’ fingerprints, to uniformly-distributed ones, like hashes,

and removes noise from the fuzzy identifiers’ responses.

A set of fuzzy identifiers defines a space in which their fingerprints resides; for example, with a set of

memory-based PUFs this space would contain all of the values the memories could store (e.g. 0 through

255 for an 8-bit SRAM). Also within this space lies a “codebook,” C, or a set of evenly-distributed elements

called “codewords” that are no further apart from each other than the minimum distance between any two

fingerprints. It is also important that the codebook and set of fingerprints are distinct. This way a mapping

between fingerprints and codewords can be defined by selecting the codeword closest to each fingerprint.

Ensuring that the codewords are closer to each other than the two closest fingerprints are ensures that each

fingerprint maps to exactly one codeword and prevents ambiguity.

This mapping makes up the first of a pair of functions called a “fuzzy sketch.” The other function

performs error-correction on the noisy response of the fuzzy identifier and recovers the codeword it was

originally mapped to. The fuzzy extractor itself is a pair of functions that make use of the fuzzy sketch to

generate private and public data from an identifier’s fingerprint and corresponding codeword, or “enrolls” the

identifier, and to regenerate an identifier’s fingerprint and public data from its response and private data.

The regenerated public data can then be verified by an observer to authenticate the holder.
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Figure 4.3: Illustration of the skew of a 6T SRAM cell [57]. The width of the curve, σNoise, illustrates the
effect of noise while the offset from the vertical axis, ∆PV , represents the effects of size mismatch caused
by process variation. The left side corresponds to Figure 4.2(b, right), with higher chance of storing a 1
(1-skewed), while the right side shows an equal chance for both 1 and 0 (not skewed).

4.2 The SRAM PUF

The SRAM PUF is a weak PUF whose fingerprint is defined by the value each bit contains when it is powered

on. As a result, it only has one challenge-response pair. The most common type of SRAM PUF uses 6T

SRAM cells (Figure 4.2(a)) for each bit. When such a cell is powered on, the two sides, Q (left) and QB

(right), race to pull up to VDD. Eventually the cell must settle at a stable state with one side containing

VDD and the other containing 0 depending on the relative strengths of the transistors.

Before power is enabled, Q and QB are both 0. When power becomes enabled, the PMOS transistors, PL

and PR, allow current to flow and begin raising the voltage of their corresponding sides. As this happens, the

NMOS transistors, NL and NR, begin to conduct as well and start pulling their corresponding sides back

down. If each pair of transistors were equally strong, the current pulling each side up would be the same,

resulting in a metastable state as shown in Figure 4.2(b, left). Because of small variations between transistors

caused by the manufacturing process, this is rarely the case. One side of the cell (the “stronger” side) will be

stronger and have a higher current than the other and as a result is able to raise its voltage faster. When this

happens, the other side’s PMOS transistor begins to turn off while its NMOS transistor continues to pull

the voltage down. As a result, the weaker side will drop to 0 while the stronger side will rise to VDD. An

additional factor in this process is noise, which can sometimes push the weaker side high enough to overcome

the stronger side and rise to VDD. This creates a random element in the state of the cell at power on that is

heavily influenced by variation.

The power-on tendency of a 6T SRAM cell is indicated by a metric called “skew” [57] that indicates the

imbalance in the two cross-coupled inverters. Skew is illustrated by Figure 4.3, which indicates power-on

tendency with the area underneath the curve on the left or right side of the vertical axis; if more area is on

the 1 side, the cell is more likely to contain a 1 when it powers on and is called “1-skewed”; the same is
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Figure 4.4: PUF static noise margin diagram [115]. Noise margins computed using the voltage transfer curves
of the cross-coupled inverters in a 6T SRAM cell can be used to characterize startup tendency.

true for 0. The left graph indicates an SRAM cell where process variations, represented as ∆PV , cause it to

always power on containing a 1 and the right graph shows an ideal, balanced cell. The random effects of

noise are represented using σNoise.

Skew can be measured using the probability, p, of the cell to contain a 1 after it powers on, also referred

to as “one-probability” [116]. It can be modeled using special “PUF static noise margins” (PSNMs) [115].

This is different than read or write noise margins because it describes power-on tendency and not read or

write behavior. They are computed using the transfer functions of the cross-coupled inverters arranged in

a butterfly shape shown in Figure 4.4. The voltages at critical points A through D in the diagram can be

computed by determining the mode of operation of each of the transistors in the SRAM cell and setting their

drain currents to be equal. This process is described in more detail in [115]. From there, the noise margins

NM and NM ′ can be computed [115]:

NM = min (VOH − V ′IH , VIL − V ′OL)

NM ′ = min (V ′OH − VIH , V ′IL − VOL)

(4.1)

This enables the computation of a metric that indicates startup tendency and can be used to compute p:

PSNMratio =
NM

NM ′
(4.2)

A cell where PSNMratio > 1 will have p closer to 1 and be “1-skewed,” while a cell where 0 ≤ PSNMratio < 1

will have p closer to 0 and be “0-skewed.” The authors of [115] show that cells where PSNMratio is less than

0.995 or greater than 1.005 are typically strongly skewed.
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Figure 4.5: Example fingerprint for an SRAM array [117]. Across a chip, the skews of the SRAM cells produce
a unique pattern where most cells are skewed toward 1 (black) or 0 (white), but some some are close to 0.5,
or are balanced (gray).

With the noise margins computed from (4.2), the value of p can be found using a standard normal

distribution [116]:

p = Φ

(
PSNMratio − 1

σnoise

)
(4.3)

where Φ (x) is the standard normal cumulative distribution function and σnoise represents the variance of

VDD due to noise. Process variations that cause variance in physical dimensions, threshold voltage, and other

transistor characteristics change the drain current and critical voltages, and therefore the PSNMs, of the

SRAM cell. If PL is weaker than PR due to shorter length or higher threshold voltage, the corresponding

noise margin will be lower and p will be closer to 0, causing the cell to be 0-skewed. In the same way, a

weaker PR causes p to be closer to 1.

The skews of the cells across an entire SRAM array can be used to create its fingerprint, shown in Figure 4.5.

Variations in SRAM cells across a chip are not necessarily correlated to the variations of corresponding cells

in another chip from the same die. As a result, these skews create a unique pattern for each chip and are

useful as PUF fingerprints [57]. As shown in Figure 4.5, most cells in an array are heavily 0- or 1-skewed,

implying that skew is very sensitive to process variations.

4.3 Aging in SRAM PUFs

Just like any CMOS device, the parameters of SRAM are affected by NBTI. As discussed in the previous

section, process variations affect the skew of each cell to create a tendency to power on using a particular
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Figure 4.6: Change in skew over time for a 65nm process due to NBTI for different mismatches in size [119].
Mismatches in transistor sizes due to variations are modeled as differences in VT of one, two, and three
standard deviations in the measured distribution of VT for 65nm designs [120].

pattern that can be used as a fingerprint for a PUF. NBTI causes a long-term degradation of the parameters

of a transistor, reducing the current that passes through it; this weakens the affected side of the cell, changing

its skew.

NBTI is a process where applying a negative bias to the gate of a PMOS transistor modulates the energy

of charge traps inside it. If a trap gains enough energy, it can capture a charge carrier in the channel [24].

This process is illustrated in Figure 1.1(b). Each trapped charge causes a shift in the transistor’s threshold

voltage. At any given time, an empty trap has some probability of capturing a charge and a filled trap has

some probability of freeing its captured charge based on temperature, gate bias, and number of full or empty

traps. While a negative bias is applied and the device is degrading, the threshold voltage degradation can

be described using the sum of an exponential function of the form 1− e−t/τ , where τ is a time constant for

degradation, and a power-law function of the form t1/6. When the bias is reduced or removed, some recovery

from degradation is experienced which takes the form of exponential decay, e−t/τ [66]. The stress process

exhibits both recoverable and permanent components, which limit the effectiveness of recovery. Others have

shown that reversing the bias of the gate can further improve recovery from degradation (“active recovery”)

and reduce this permanent component [118]. For more information on the mechanism behind NBTI and how

it affects a transistor, see Chapter 1.1.1.

In an SRAM, an increase in a PMOS transistor’s threshold voltage caused by NBTI reduces its drain

current, reducing NM or NM ′ and causing a corresponding shift in p. The authors of [114] show that this

effect is data-dependent; while an SRAM cell stores a value, the PMOS transistor of the corresponding side
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is degrading due to NBTI. As a result, if the cell contains a 1, PL’s threshold voltage increases, causing a

decrease in NM , PSNMratio, and p. This process is shown in Figure 4.6, which presents the change in p

caused by NBTI over one year due to storing a 1 for a balanced cell and for cells with mismatches modeled

as differences in VT . Figure 4.6 shows that NBTI can be effective in switching 1-skewed cells to 0-skewed

within one year in a 65-nm process operating continuously at 1.1 V and 300 K for differences in VT of up to

three standard deviations of the distribution of VT for that process as measured by [120]. Similarly, because

6T SRAM cells are symmetrical, aging while containing a 0 causes NM ′ to decrease, increasing PSNMratio

and p. In [103], it is suggested that this might be usable to attack an SRAM PUF, whose fingerprint depends

on these values for its cells, by coercing individual bits’ skews toward certain values.

4.4 Manipulating SRAM PUF Reliability

The following sections detail four experiments that are performed to explore the idea of coercing SRAM cells’

skews using directed aging:

1. Test the effectiveness of modifying an SRAM’s fingerprint using aging.

2. Since the effects of aging on SRAM cells are data-dependent [114], measure the effects of various storage

patterns on reliability in reconstructing an SRAM PUF’s fingerprint using its aged power-on state.

3. Test the effectiveness of active NBTI recovery in restoring the reliability of a degraded SRAM PUF.

4. Measure the effectiveness of using the fingerprint of one SRAM PUF to generate an aging pattern for

another SRAM PUF and effectively clone the first PUF’s fingerprint.

Each of these experiments uses increased voltage and temperature to activate and accelerate, respectively,

the aging process.

4.4.1 Affecting a Fingerprint with NBTI

This experiment explores the ability of directed NBTI to cause significant, controllable changes to an SRAM

PUF’s fingerprint. It also shows that the permanent component of NBTI is significant enough that changes

to a PUF’s fingerprint will remain even after natural recovery while powered off for a long period of time.

Two experiments are performed: first, NBTI is accelerated with only high temperature while the SRAM

stores all ones; second, NBTI is accelerated with high temperature and activated with high voltage while the

SRAM is filled with zeroes.

Both experiments make use of an 8-kB AS6C6264 commercial SRAM IC whose relevant parameters are

shown in Table 4.1. Both experiments have the same procedure:

1. Read the initial state of the SRAM.
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Table 4.1: AS6C6264 Specification [121]

Parameter Value

Capacity 9182 × 8 bits
Nominal VDD 3 V

Maximum VDD 5 V
Operating Temperature 0-70 °C

Table 4.2: Experiments 1 and 2 Wearout Conditions

Experiment Parameter Value

1 (Accelerated
Aging)

Temperature 120 °C
VDD 5 V
Time 3 days

Pattern All ones

2 (Accelerated,
Active Aging)

Temperature 120 °C
VDD 7 V
Time 3 days

Pattern All zeroes

Figure 4.7: Fraction of strong ones (blue, solid) and strong zeroes (green, dashed) over the course of
experiments 1 and 2 [117]. Dashed vertical lines indicate times at which stress switched to recovery or vice
versa. The increased changes in strong bit count for experiment 2 support the effectiveness of raising VDD to
modify a fingerprint. In both experiments, most recovery occurs during the first few hours and then slows
down nearly to a stop, suggesting high retention of NBTI effects.

2. Stress the SRAM for 72 hours using its pattern and conditions from Table 4.2.

3. Read the final state of the SRAM and allow it to naturally recover at room temperature while powered

off. Read its state every 15 minutes until all recoverable stress has been relieved.

All measurements are performed at nominal VDD (3 V) and after allowing the chip to cool to room temperature

for 30 minutes. Each one consists of one hundred power-on state readings. Table 4.2 enumerates the stress

conditions and pattern of each of the two experiments performed.

Figure 4.7 shows the changes to the number of bits that are heavily 0- or 1-skewed, which will be referred

to as “strong bits,” over time as the SRAM ages. A strong bit is one whose skew is either at least 0.9 (“strong

one”) or at most 0.1 (“strong zero”). During the first experiment, where the SRAM stored all ones, the

number of strong ones decreased by 8.8% and the number of strong zeroes increased by 6.87%. The effects

were much greater during the second experiment, where the SRAM stored all zeroes but the voltage was
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elevated. During that experiment, the number of strong ones increased by 36.42% from the value at the

start of the second experiment and strong zeroes decreased by 25.96%. This corresponds to an increase in

strong ones of 29.31% from the value of the fresh chip and a 24.17% decrease in strong zeroes. Due to the

symmetry of the 6T SRAM cell and because the numbers of strong zeroes and ones are close for the fresh

chip, it is reasonable to assume that these numbers would be similar, but for opposite strong bits, if the bit

patterns had been reversed; that is, if the first experiment had written all zeroes and the second experiment

had written all ones. Since the change in strong bits after the second experiment is so much larger than

that of the first experiment, even accounting for the fact that the second experiment had to overcome the

changes caused by the first experiment, we can conclude that elevating the voltage had a significant effect on

increasing NBTI aging on the SRAM. Raising VDD from 5 V to 7 V, only a 40% increase, nearly tripled the

changes in strong bits that occurred.

Describing a cell only in terms of p may not capture the true nature of the imbalance between its

transistors, especially for strong bits. For example, even though two bits may have skews of 1, one of them

may be more imbalanced than the other and thus will be less susceptible to NBTI aging. In [122], the authors

propose a method for identifying those bits. They show that bits whose skews are exactly 0 or 1 that are

physically surrounded by other bits with the same skew tend to be more reliable. When exposed to extreme

temperature and voltage conditions, these bits are consistent in their power-on values even when others that

are strong in normal conditions are not. In order to find these bits, the authors offer a heuristic method when

the physical layout of the SRAM is unknown: arrange the bits of the SRAM so that each row appears in

address order and assume that bits that are adjacent in this string are also adjacent physically. If a bit with a

strong skew in this string is surrounded by enough bits with the same strong skew, then that bit can be used

as part of a fingerprint. The authors label these bits as “stable.” A bit in this experiment’s SRAM can be

considered stable if it has a strong skew (0 or 1) and is surrounded by at least twenty neighbors on each side,

using the aforementioned heuristic, that have the same strong skew. By this definition, the SRAM chip that

was used contains 280 stable bits. At the end of the second experiment, 74 of these bits were no longer stable.

During the recovery phase after each experiment, Figure 4.7 shows that most of the recovery a device

experiences occurs quickly and then slows down significantly. During the first hour of the first recovery cycle,

the number of strong ones drops by 2.56% and strong zeroes rises by 1.17%, but during the second hour they

change by only 0.31% and 0.29%, respectively, and after the first day there are nearly no changes at all. After

the second experiment, the results are similar. During the first hour of recovery, the number of strong ones

increases by 3.16% and the number of strong zeroes decreases by 6.07%, but during the second hour they

change only by 0.19% and 0.63%, respectively. This suggests a high retention of the skew changes caused by

NBTI and that an SRAM will not recover naturally from an attack.
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Algorithm 4.1 SRAM PUF fingerprint recovery reliability

1: function Reliability(f,S, e, r,m)
2: C ← RM (i,m)
3: for j ← 1 to 50 do
4: c← random element of C
5: w ← c⊕ f
6: for s ∈ S do
7: C∗ ← Recover (w, s, e, r,m)
8: if c⊕ C∗ = 0 then
9: successes← successes+ 1

10: reliability ← successes/ (50 · |M|) · 100%

11: function Recover(w, s, e, r,m)
12: C ′ ← w ⊕ s
13: for i← 1 to |s| do

14: Li ← (log (1− ei)− log ei)
C′i

15: L∗ ← GMC-Decode-RMr,m (L) . Algorithm 2 from [123]
16: for i← 1 to |L∗| do
17: C∗i ← 0 if L∗i < 0 else 1

18: return C∗

Algorithm 4.2 Reed-Muller code order

1: i← 1
2: repeat
3: reliability ← Reliability (f,S, e, i,m) . Algorithm 4.1
4: i← i+ 1
5: until reliability < 100%
6: r = i− 1

4.4.2 Attacking an SRAM PUF with NBTI

Having shown that even the strong bits of an SRAM’s fingerprint can be affected by NBTI, NBTI is applied

as an attack by increasing the failure rate of the SRAM to reconstruct its fingerprint from a reading of its

power-on state. SRAM fingerprints are enrolled and reconstructed using the fuzzy extractor defined in [123].

Four AS6C6264 chips are stressed storing different data patterns. Their fingerprints are defined using

one hundred reads of their power-on states at room temperature before any NBTI is applied. Chip S1 is

stressed while storing its fingerprint to simulate the effect of a standalone PUF; chip S2 stores arbitrary bits

to simulate the effect of using the PUF as data storage, as there have been proposals to use SRAM PUFs as

part of the normal system memory after evaluation [104]; and chips S3 and S4 store all ones and all zeroes,

respectively, to simulate the effect of a PUF that is cleared after evaluation to hide its fingerprint. Clearing

chip S3 with all ones is expected to have a different effect on its reliability than clearing chip S4 with all

zeroes, as both chips have more 0-skewed cells than 1-skewed cells. As a result, the reliability of the chip

storing all zeroes, chip S4, to recover its fingerprint should reduce faster.
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In order to make use of the fuzzy extractor defined in [123], a codebook and helper data are created

using a Reed-Muller block code to map fingerprints to codewords and aid with fingerprint reconstruction. A

Reed-Muller code RM (r,m) with parameters r and m has a block length of 2m bits, has a minimum distance

between codes of 2m−r bits, and can encode a message of length

k =

r∑
i=0

(
m

i

)
(4.4)

bits. The effective strength of the SRAMs’ secret keys can be determined by multiplying this message length

with the min-entropy, H∞, [57] of the SRAM chips:

H∞ = − log2

n∏
i=1

min (pi, 1− pi) (4.5)

where n is the number of bits in the SRAM and pi is the skew of bit i. The order, r, of the Reed-Muller code

is determined using Algorithms 4.1 and 4.2 with f representing the chip’s fingerprint and S representing the

set of readings that are used to define it. The helper data for the algorithm consists of w, the bitwise XOR of

a code from the codebook and f , and a vector, e, describing the probability of each bit to be in error, or

min (pi, 1− pi). The use of a hash family as described by [123] is not included with this procedure, as its

only purpose is to hide the chip’s fingerprint and does not improve reliability in recovering it. This procedure

is repeated for each chip, and the lowest value of r found across the four chips is used to generate the final

codebook for the experiment.

With the helper data generated, each chip is stressed using its corresponding pattern. NBTI aging is

accelerated using temperature elevated to 120 °C and activated using voltage raised to 7 V. Every day for one

week, the chip is returned to nominal VDD and room temperature to perform a measurement of one hundred

readings of the SRAM’s power-on state. Each reading is used to attempt to recover the original fingerprint of

the SRAM with each of the 50 codes generated during the previous step. If the success rate for recovering

the fingerprint drops below 85% [123], the SRAM is unreliable. After one month, a final measurement is

performed to measure the permanence of the damage done to each chip’s fingerprint.

Algorithm 4.2 produces r = 4 for the set of chips used for this experiment. Since the entire SRAM is

being used as a PUF and its fingerprint is to be combined with a codeword, codewords need to be 65536 bits

long, or m = 16. This corresponds to a message length of 2517 bits, computed with (4.4). With the chips’

min-entropy of 5.08%, this is equivalent to a 127-bit secret key.

Figure 4.8(a) shows the average number of bit errors in each chip’s fingerprint as it ages with its stored

pattern. Chip S1, which stored its fresh fingerprint while aging, has the fastest initial increase in errors and
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(a) (b)

Figure 4.8: Accumulation of bit errors (a) and rate of successful reconstruction (b) for each chip’s fingerprint
as it ages [117]. The horizontal line at 85% in (b) indicates the minimum success rate necessary for an SRAM
to be reliable as a PUF [123]. The empty markers in (b) indicate the success rate after one month of natural
recovery and represent the degradation caused by permanent NBTI effects.

the highest final error count with some crossing over with chip S2, which stored random bits. After chip

S1, chips S2, S4, and S3 have lower error counts, in that order. Chip S1’s fast accumulation of errors is

due to the inverse nature of the effect NBTI has on the skew of an SRAM cell. Because the side of the cell

corresponding to the value stored gets weaker as it ages, the skew of the cell moves away from that value and

the probability it will contain that value at power-on decreases. A cell that contains the value it is skewed

toward while aging can eventually be flipped and become skewed toward the opposite value this way, while

a cell containing the value opposite its skew will only become stronger. If an SRAM stores its fingerprint

and ages, the maximum number of cells that are susceptible to flipping will flip, explaining the fast rate of

error accumulation. Chip S2’s close final error count to chip S1 suggests that the random bits used for aging

were closer to its fingerprint than all ones or all zeroes were to their chips’ respective fingerprints. These

results correspond with those published in [124]. Chip S1 also experienced a greater amount of variation in

its error count than the other chips, suggesting that, after the first day of stress, NBTI had pushed many of

the chip’s bits close to being balanced. As time passed, those bits would become more skewed away from

their initial skew while other bits would become balanced. A greater number of balanced bits increases the

effects of noise, thus increasing variation in the resulting fingerprint measurement. As expected, clearing the

chips with all ones caused a different effect than clearing with all zeroes. For similar reasons why storing the

fingerprint had the fastest effect, all zeroes was closer to chip S4’s fingerprint than all ones was to chip S3’s.

Because of this, there were more bits whose skews were susceptible to being flipped in chip S4.
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Figure 4.8(b) presents the success rate of each chip to recover its fresh fingerprint after each day of stress as

computed by Algorithm 4.1. This rate is calculated using the number of times each chip’s original fingerprint

could be reconstructed using its aged data and each of the 50 codes generated during the enrollment process

presented in the previous section. The horizontal line in Figure 4.8(b) at 85% indicates the success rate

above which an SRAM is considered reliable enough to be useful as a PUF [123]. All four chips passed

below this line after three days of stress while chips S1 and S2 took only one day. As predicted by [124] and

corresponding with the rate of error count accumulation in Figure 4.8(a), storing chip S1’s fingerprint during

aging caused it to fail faster than the others. Closely following it is chip S2, which dropped to about 15%

success rate after the first day and then to 0% after the second, suggesting that using an SRAM PUF for data

storage after evaluation is nearly as damaging as leaving it on after evaluation. This is corroborated by [124],

which shows that using an SRAM PUF for storage is nearly as damaging as storing its calculated fingerprint.

Chips S3 and S4, which were cleared with 1 and 0, respectively, during aging, both took over a day to become

unreliable. Chip S3 trailed far behind chip S4, taking three days to become unreliable. This corresponds with

the rates at which they accumulated errors shown in Figure 4.8(a). However, chip S3 does not trail chip S4

in Figure 4.8(a) relative to the other chips as much as it does in Figure 4.8(b), which suggests that there is a

region of error accumulation in which success rate is sensitive and outside of that region it is insensitive.

Figure 4.8(b) also shows using hollow symbols at 37 days the success rate at reconstructing the fresh

fingerprint of each chip after it has been allowed to naturally recover at room temperature and while powered

off for one month. With all four chips, the success rate shows no significant improvement and remains close

to 0%. This implies that once a PUF has been affected by NBTI and becomes unreliable that it will not

naturally recover enough to become usable again.

4.4.3 Restoring Reliability via Active Recovery

The previous section showed that natural recovery from NBTI while powered off will not restore an SRAM

PUF’s fingerprint enough for it to be reliable as an identifier. In [118], the authors show that NBTI recovery

can be enhanced by applying a negative voltage to an aged device, which they call “active recovery.” Just like

with stress, recovery can be accelerated by increasing temperature. This principle is applied in this section to

repair several SRAMs’ original fingerprints by applying a slight negative VDD to activate recovery and by

increasing temperature to accelerate it, thereby creating a potential defense against the attack outlined in

the previous section.
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Table 4.3: IDT71256 Specifications [125]

Quantity Value

Size 32k × 8 bits
Nominal VDD 5 V

Maximum VDD 5.5 V
Operating Temperature 0-70 °C

Table 4.4: Recovery Experiment Stress Patterns

Chip Stress Pattern Recovery Threshold

R1 Fingerprint About 0%
R2 Random bits About 0%
R3 All ones 85%
R4 All ones About 0%
R5 All zeroes 85%
R6 All zeroes About 0%

This experiment is performed with several commercial 256-kB IDT71256 SRAM chips1 whose parameters

are shown in Table 4.3. The experiment begins the same way as in in Chapter 4.4.2, where several SRAMs’

fingerprints are characterized using one hundred reads at room temperature and nominal VDD and each one

is assigned a stress pattern that is shown in Table 4.4. As in Chapter 4.4.2, each chip is stressed while storing

its assigned pattern at elevated temperature and voltage for 24 hours and then its fingerprint is read again at

room temperature and nominal VDD. Unlike in Chapter 4.4.2, where stress ends after one week, the stress

phase ends when the SRAM has reached a desired success rate as enumerated in Table 4.4, after which the

active recovery phase begins. This process is the same for each chip:

1. At room temperature and nominal voltage, read the fingerprint.

2. Apply slight negative voltage and high temperature and allow the chip to recover for 24 hours.

3. Measure the SRAM’s success rate in reconstructing its original fingerprint using Algorithm 4.1. If it

isn’t 100%, repeat from step 1.

Stress and recovery occur at 120 °C to accelerate both processes. Each chip’s VDD is elevated to 7 V to

activate stress and reduced to -0.5 V to activate recovery. The same method outlined in Chapter 4.4.2 is

used to create helper data for each SRAM’s fingerprint and compute each SRAM’s success rate in fingerprint

reconstruction.

For the patterns with slower effects that take several days to render an SRAM unreliable, this experiment is

performed twice. First, active recovery begins once the SRAM has become unreliable, at an 85% reconstruction

success rate. Second, active recovery begins once the SRAM’s success rate has dropped to close to 0%. By

doing this it is possible to measure the resilience of the damage caused by the stress pattern. Not every

pattern supports this procedure because faster patterns cause success rate to reduce to 0% after only a single

cycle. Each chip’s target success rate before beginning recovery is noted in Table 4.4.

Algorithm 4.2 produces a Reed-Muller code order of r = 5 for the IDT71256 chips used in this experiment.

Combined with the chips’ size of 256 kB, this corresponds to a message length of 12,616 bits. Due to the chips’

1Note that even though the IDT71256 chips used in Chapter 4.4.3 are different than the AS6C6264 ones used in Chapter 4.4.2,
the fundamental behavior of NBTI depends only on the 6T cell layout, which is the same for both chips. Any differences in
technology size only affects vulnerability to NBTI and how fast PUF reliability is degraded.
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(a) (b)

Figure 4.9: Average number of errors from the fresh fingerprint (a) and success rate at reconstructing it (b)
for each chip as it ages and recovers [119]. Time 0, marked with a vertical dotted line, indicates the day at
which stress switched to recovery. The horizontal line at 85% in (b) indicates the minimum rate which an
SRAM is usable as a PUF.

min-entropy of 3.25%, this yields a 410-bit secret key. Figures 4.9(a) and (b), respectively, show the average

number of errors that occur when reading each chip’s fingerprint and the rate of success at reconstructing

the original fingerprint from the stressed one. Time 0 in both figures represents the day at which the active

recovery phase began, and the horizontal line at 85% marks the minimum success rate at which an SRAM is

considered reliable for use as a PUF.

The stress phase behaved similarly to the previous experiment, with the fingerprint and random bits

reducing success rate and increasing errors the fastest, followed closely by all zeroes and then finally all ones.

One might expect that the active recovery phase would behave oppositely; the fingerprint would recover the

slowest, followed by arbitrary bits, all zeroes, and finally all ones. Interestingly, in terms of success rate, the

SRAM storing random bits while aging actually recovered the fastest rather than second slowest. All zeroes

and all ones were close to being tied for second slowest recovery. The success rates of each of those three

returned above 85% in only one day. As expected, the SRAM storing its fingerprint recovered slowest by far,

taking several days to return to being reliable.

In terms of error count, the behavior is similar. After aging, the SRAM storing its fingerprint during

aging shows the highest number of errors, followed by all zeroes, then arbitrary bits, and finally all ones. The

fact that the ordering of all zeroes and arbitrary bits is reversed with error count compared to success rate

suggests that there is a greater tendency toward storing zero in the tested SRAMs’ fingerprints than in those

from the previous experiment. This is supported by the findings of [126], who found a similar tendency in

another chip produced by the same manufacturer. The result is that the effect of storing random bits or
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Figure 4.10: Effect of NBTI degradation and active recovery on each chip’s uniqueness [119]. Time 0, marked
with a dotted line, indicates the time at which stress switched to recovery.

all zeroes is similar enough that variance in the result caused by noise becomes a significant factor. There

is a similar effect for all zeroes and all ones after recovery: even though all zeroes recovered more errors

than all ones did after the first day of recovery, all ones had a higher success rate, suggesting that variance

is significant there as well. The SRAM that stored its fingerprint recovered the greatest number of errors

while also taking the longest to recover its success rate, indicating a narrow “window” where success rate

varies with error count while remaining constant (at 100% or 0%) outside of it. This also explains why the

chip storing arbitrary bits became unreliable nearly as fast as the one storing its fingerprint, but experienced

fewer errors and recovered faster. The next section will discuss this further and use it to predict the amount

of time it will take to apply directed NBTI to effectively clone an SRAM’s fingerprint.

An important metric for evaluating the usefulness of a PUF is its uniqueness, dinter, which is a measure

of the difference in responses between different PUFs of the same type [127]. In the case of SRAM, this is the

average distance between fingerprints of all pairs of PUFs in a group:

dinter =
2

k (k − 1)

k−1∑
i=1

k∑
j=i+1

HD (Ri, Rj)

n
(4.6)

where k is the number of PUFs in the group, n is the number of bits in the PUF’s response, HD (Ri, Rj)

is the Hamming distance between fingerprints of PUF Ri and Rj , and HD (Ri, Ri) = 0 for any i. The

uniqueness of a single PUF, dinter,i, is then the average distance between that PUF’s fingerprint and every

other one’s fingerprint:

dinter,i =
2

k − 1

k∑
j=1

HD (Ri, Rj)

n
(4.7)
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Figure 4.10 shows the uniqueness of each chip among the group as it ages and recovers. Since there is no

correlation between the fingerprints of the chips in the group, the effect of aging a PUF while storing its

fingerprint would not be expected to have much effect on its uniqueness. Random bits would be expected

to behave similarly. Figure 4.10 confirms this, showing only small changes in uniqueness of chips R1 and

R2. Because all of the chips’ fresh fingerprints had significantly more zeroes than ones, however, aging while

storing all zeroes and all ones does have an effect on uniqueness. As Figure 4.10 shows, storing all ones in

both cases reduced uniqueness while storing all zeros increased it. When an SRAM PUF is aged while storing

all ones, the number of zero-skewed cells increases. Since all the chips used in this experiment have more

zeroes than ones in their fresh fingerprints, changing the skew of a cell in one of the chips from nonzero to

zero has a high chance of causing that cell to have the same skew as the corresponding cells of the rest of

the chips. As more cells across the chip become more zero-skewed, its fingerprint will become more similar

to those of the rest of the chips with a limit at the average number of ones that the rest of the chips have.

Oppositely, if the chip is aged while storing all zeroes, zero-skewed cells will start to become more one-skewed,

which have a high chance of having a different skew than the corresponding cells of the other chips. Therefore,

aging while storing all zeroes will increase the uniqueness of a chip in this group.

During recovery, the NBTI degradation that accrued during the aging phase decreases, strengthening

the transistors that had been weakened and moving the SRAM cells’ skews back toward their initial values

and restoring each chip’s uniqueness. Just as with error count, uniqueness does not recover fully due to

the permanent component of NBTI stress. Even though active recovery with negative voltage reduces this

component, it does not eliminate it entirely.

Other work improving the reliability of an SRAM PUF using aging has focused on taking advantage of

the data-dependent nature of the skew shift caused by NBTI to strengthen an SRAM’s fingerprint [128,129].

These works attempt to reinforce the skew of each bit by aging it with a 1 if it is 0-skewed or 0 if it is

1-skewed. Additionally, the authors of [129] use this process to improve the balance of 0- and 1-skewed bits

on the chip in order to improve uniqueness. This reduces the number of errors that occur when evaluating

the PUF and improves its security, but is not compatible with the use of active recovery to relieve existing

degradation. Applying a negative voltage to a cell that has been improved using directed aging will remove

the reinforcement to its skew.

A more direct comparison is with [124], which measures the effectiveness of applying directed NBTI to

resisting changes in fingerprint due to aging over a device’s lifetime. Figure 4.9(a) shows that the number of bit

errors after active recovery ranges from about 0.7% of bits on the chip to about 1.2%, depending on how many

errors accumulated during stress. This is comparable with the effectiveness of writing continuously-changing

random values to the SRAM, which, as shown in [124], results in about 1% of bits in error. As [46] shows,
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however, more proactive application of active recovery will reduce the permanent component of stress, further

reducing the number of bit errors accumulated.

4.4.4 Cloning a Fingerprint with NBTI

Chapter 4.4.1 and [114] show that it is possible to exert control over the direction of a skew shift that is

caused by NBTI. Chapters 4.4.1 and 4.4.2 showed that NBTI can significantly affect the fingerprint of an

SRAM enough to effectively erase it. In this section, these principals are combined to use directed NBTI to

clone the fingerprint of an SRAM PUF. After reading the fingerprint of the “source” SRAM using a process

such as in [130] and taking advantage of the fact that storing a particular bit value shifts skew toward the

other one, it should be possible to manipulate the fingerprint of a “target” SRAM such that it is close enough

to that of the source that it can reliably impersonate it, effectively cloning the source’s fingerprint.

This experiment makes use of two commercial 256-kB IDT71256 SRAM chips whose parameters are shown

in Table 4.3: one which serves as the source and the other which serves as the target. Each SRAM’s fingerprint

is characterized at room temperature and nominal VDD using one hundred reads of its power-on state as in

the previous experiments. Due to the inverse nature of the effect of NBTI on SRAM, the source’s fingerprint

is inverted and then written to the target. The target is then exposed to high voltage and temperature to

activate and accelerate the aging process while remaining powered on. Every 24 hours, it is cooled to room

temperature and nominal VDD to read its aged fingerprint and then returned to aging conditions. Just like

with the previous experiment, NBTI is accelerated by raising the temperature to 120 °C and activated by

raising VDD to 7 V. This process is repeated each day for one month.

As in Chapter 4.4.3, fifth-order Reed-Muller codes are used as helper data, corresponding to a 410-bit

secret key. The process for determining the success rate of the target SRAM impersonating the source is the

same as the process used in Chapter 4.4.2 for determining the success rate of an SRAM in identifying itself,

except that the source’s fingerprint and helper data are substituted for the target’s. A rising success rate

indicates that the target’s fingerprint is increasingly resembling the source’s fingerprint.

Figure 4.11(a) shows the number of bit errors of the target SRAM’s fingerprint from those of the source

SRAM (the “source errors”) over time as the target ages. As expected, the number of source errors begins at

a high value, with about 36% of the bits on the chip in error, and decreases over time at a decreasing rate

while the number of target errors begins at 0 and increases over time at a decreasing rate. The decreasing rate

of change of the fingerprint errors appears to have a logarithmic behavior much like [24] uses to characterize

the change in VT over time caused by NBTI.
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(a) (b) (c)

Figure 4.11: Prediction of success rate for one SRAM’s impersonation of another SRAM’s fingerprint [119].
The fitted black lines in (a) and (b) can be combined to predict when the error rate drops low enough for the
target SRAM to be able to impersonate the source SRAM. The horizontal line at 85% in (c) indicates the
minimum success rate at which such an impersonation could be considered successful.

The success rate for attempting to authenticate the target SRAM as the source SRAM is not shown because

it never rises above 0% during the experiment. Even so, Figure 4.11(b) implies that enough degradation

could increase the success rate. Figure 4.11(b) shows, for each SRAM in the recovery experiment and for the

target SRAM, the success rate of each SRAM after each day of stress against the number of bit errors from

that SRAM’s fresh fingerprint. It implies that the success rate is closely tied to the bit error count with little

dependence on the pattern it stored while aging. The outlying points in Figure 4.11(b), labeled as “clone,”

correspond to chip S1, which was stressed while storing its fingerprint and was shown in Chapter 4.4.2 to have

been affected the most by aging. The algorithm in [123] for reconstructing a fingerprint weighs each bit by its

probability to be in error; a bit with a lower error probability has a higher weight than one with a higher one.

The stable bits as defined by [122] are given the highest weights and are also likely the least affected by aging.

Because of this, they also likely recover their skews the fastest during recovery. The result of this is that the

overall number of errors recovers more slowly during recovery than the number of errors in bits with high

weights during fingerprint reconstruction, leading to a higher success rate for the same overall error count.

Patterns that are not based on the aging SRAM’s fingerprint, as the uniform and random patterns are, have

a lower effect on stable bits and thus produce similar relationships between error count and success rate.

Using Figure 4.11(a) to estimate a relationship between source error count and time and Figure 4.11(b)

to estimate one between success rate and error count, it is possible to create a relationship between success

rate and time as shown in Figure 4.11(c) and use it to predict how long the target SRAM must be aged to
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Table 4.5: Clone Prediction Equation Parameters [119]

Equation Parameter Value

(4.8)
Aε 93882
Bε 4405.6
Cε 112.29

(4.9)
AS 8.03× 10−4

BS 18.9

(4.10)
A 3.24× 1024

B 112.29
C 3.54

successfully impersonate the source. The relationship is derived as follows:

ε (t) = Aε −Bε ln (1 + Cεt) (4.8)

S (ε) =
1

1 + eASε−BS
(4.9)

∴ S (t) = S (ε (t)) =
1

1 +A (1 +Bt)
−C (4.10)

where Aε, Bε, Cε, AS , and BS are fitting parameters, t is time, A = e(ASAε−BS), B = Cε, and C = ASBε.

Because the relationship between source errors, ε, and time appears to be logarithmic, like the behavior of

threshold voltage shift caused by NBTI in a single transistor [24], a function of similar form was chosen for

(4.8). The fitted values of the parameters for this experiment are shown in Table 4.5.

Equation (4.10) is illustrated in Figure 4.11(c). The horizontal line at 85% indicates the success rate below

which an SRAM PUF is considered to no longer be reliable. In the case of cloning a fingerprint, a success

rate above 85% will indicate that the target SRAM can reliably impersonate the source. Solving (4.10) for t

with S = 0.85 suggests that it will take about 124,568 days to clone the source SRAM’s fingerprint, which is

about 341.3 years. Relaxing the requirement to a 50% success rate reduces the wait time to about 209 years.

Simply getting any success at all takes over 50 years. So, while it is certainly possible to clone the fingerprint

of an SRAM PUF using NBTI, it is impractical due to the large amount of time it will take.

The time it takes to perform this experiment can be reduced in three ways: by increasing the temperature

to further accelerate NBTI, by increasing VDD to further activate NBTI, and by choosing an SRAM with

higher min-entropy to increase sensitivity to skew shift. Increasing temperature or voltage may be impractical

due to availability of resources or, more importantly, because raising either one too high may cause damage to

the chip or the devices inside. With the final option, an SRAM fabricated using smaller devices will generally

have higher min-entropy than one using larger devices due to being operated at lower voltages and being

more sensitive to noise. Additionally, the degradation caused by NBTI has been shown to be affected by



Chapter 4 Manipulating PUF Reliability with Directed NBTI 72

Figure 4.12: Device vulnerability to NBTI for process sizes ranging from 32 nm to 350 nm [119]. Vulner-
ability is expressed as lifetime under constant stress normalized to that value for a 350-nm device using
process parameters taken from [131]. Circles express vulnerability using nominal VDD while squares express
vulnerability when VDD is increased by 40% to activate NBTI.

silicon process [131]. Figure 4.12 shows the vulnerability of each process starting from 350 nm, which was

used to fabricate the chips for the experiments in this work, through 32 nm using NBTI data and process

parameter projections taken from [131]. As it shows, decreasing process size increases vulnerability to NBTI

down to 130 nm. Below 130 nm, high-κ dielectrics enable thicker gates, reducing the oxide electric field

and vulnerability to NBTI. Even so, devices are still more vulnerable than those at 350 nm until 32-nm

technology. Using the data from Figure 4.12, it is possible to estimate how long it would take for SRAMs

fabricated using smaller process sizes to be able to successfully impersonate an SRAM PUF. Repeating this

experiment using a modern process size could take 6.75 years to create a reliable clone, 4.1 years to create a

50% reliable clone, and about one year for any successful impersonations.

4.5 Related Work

The driving concept behind this work, that the transistors in a 6T SRAM cell that are experiencing NBTI

effects are determined by the data contained by the cell and can be controlled, is presented by [114]. The

authors show that storing a value in a 6T SRAM cell causes NBTI stress that weakens one side of the cell.

This can be used to improve the balance of imbalanced cells and even to repair cells that are so imbalanced

that they cannot reliably read, write, or hold data. In a diagram like Figure 4.2(b), this corresponds to a

shape where one of the wings is closed. Applying NBTI to weaken the side of the open wing will reduce that

wing while opening the closed one, enabling the cell to be used to store data. The authors propose that this

could be performed during the burn-in process to reduce minimum operational voltage for read, write, and
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hold operations by up to 128, 75, and 91 mV, respectively, and increase overall yield. This work makes use of

this process to control the skew of SRAM cells across a PUF and modify its fingerprint.

Another important principal in these experiments is shown by [118]. The authors of [118] show that

natural recovery from NBTI, which occurs while no bias is applied to the gate of a device and while the

device is typically at room temperature, is slow compared to stress. They also show that, even with repeated

cycles of recovery, the permanent component of NBTI stress will accumulate and eventually render the device

unusable. Using a ring oscillator implemented on an FPGA and measuring how its frequency changes with

stress, the authors show that not only does increasing gate voltage increase NBTI stress, but applying an

opposite bias to the gate improves the rate of recovery and reduces the permanent component of stress. This

is known as active recovery. Both processes are accelerated by increasing temperature. In [46], the authors

apply this principle by periodically applying active recovery to the ring oscillator. Doing so for only one hour

every 31 hours can nearly entirely remove the permanent stress component and reduce the design margins for

a given target lifetime by over 100×.

The fuzzy extractor algorithm defined in [123], which builds upon the concepts introduced in [112]

and [113], is used extensively in this work. The authors implement their algorithm on an FPGA using SRAM

as the fuzzy identifier. To hide the SRAM’s fingerprint, a secret key is generated by applying a hash function

from a family of hashes. The public key is generated using helper data from the algorithm; namely, an

identifier indicating which hash function from the family was used, the output of the sketch function on the

fingerprint, and a vector containing the probability of each bit of the SRAM to be in error from its fingerprint.

Using the probability vector and sketch output, the original fingerprint of the SRAM PUF can be recreated

from one reading and then the secret key can be recreated using the hash function selected with the identifier.

The authors create a 128-bit secret key from 1536 bits of SRAM using their algorithm.

Then, in [124], they explore the data-dependent properties of SRAM aging and their effects on PUF

reliability. With several different data patterns stored during stress, they discover that the best way to

improve reliability is to stress a device while it stores the inverse of the pattern it contained at power-on

while the best way to reduce reliability is to not invert that value. If it is not feasible to invert the entire

SRAM’s stored bit pattern at power-on, inverting part of it and storing that is almost as good if this can be

periodically repeated and errors can be corrected. The metric the authors use for reliability comparison is bit

error count rather than measuring actual success rate for identification. Additionally, they do not explore the

effects of recovery, active or otherwise, on their methods for improving or reducing reliability.

The authors of [128] also explore techniques for improving the reliability of two types of memory-based

PUFs: one based on SRAM and the other based on sense amplifiers. The first technique is similar to

what [124] proposes, where directed aging is applied to reduce the number of errors in a PUF’s response. By
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applying accelerated and activated NBTI stress to an SRAM PUF storing the bit inverse of its fingerprint,

they are able to reduce the error count by 40% after 120 hours. Next, they propose to reduce error count by

evaluating the PUF several times after a challenge. By reading a PUF 1000 times and averaging the result

to define its fingerprint and by reading it 40 times and averaging the result to define each response to a

challenge, bit errors can be reduced to 0.5%. Finally, the authors propose to increase reliability by controlling

the rate at which a PUF is activated. For SRAM, this means controlling the time it takes for VDD to rise to

nominal and for sense amplifiers this means controlling the time it takes for the enable signal to rise to 1. By

increasing ramp time to 14 seconds, they are able to reduce bit errors to 0.67%. Chapter 4.4.3 explored an

additional method of increasing reliability by applying active recovery to aged SRAM.

Reference [129] also explores the idea of taking advantage of data-dependent NBTI to increase the

reliability of an SRAM PUF and add a step to balance the number of 1-skewed cells with those that are

0-skewed. The authors propose a method for measuring the number of cells that are 1-skewed and 0-skewed

and balancing them by controlling the pattern stored in the device while it ages. Then, once the number of

1-skewed and 0-skewed cells are close to equal, the reliability of the PUF can be increased using a process

similar to the one proposed in [128]. This work also does not account for the effects of recovery and only

measures the effectiveness of their proposed method using simulations and not real hardware.

In [132], the authors evaluate the resilience of different kinds of PUFs against aging degradation. They find

that ring oscillator PUFs, which define their fingerprints based on the differences between output frequencies

of same-sized ring oscillators, and SRAM PUFs can degrade by 12.76% and 7%, respectively, in 4.5 years

while arbiter PUFs and two-choose-one (TCO) PUFs only degrade 4.5% and 2.41% in 10 years. The authors

also do not consider the effects of recovery in their work or verify their results using real hardware.

Finally, [130] presents an attack on an SRAM PUF in which the fingerprint is characterized and then

modified using a focused ion beam (FIB). The authors characterize the fingerprint of an SRAM by measuring

photon emissions from it during power-on. Using those emissions, the state of the SRAM after power-on,

and then its fingerprint, can be reconstructed. After that, a FIB is used to expose the transistors of another

SRAM and modify them so the skews of its cells match those of the original SRAM. This can be done by

either destroying a transistor in a cell, causing it to always power on at the desired value but rendering it

unable to write data, or by thinning a transistor and shifting the skew of the cell away from its corresponding

value. The authors show that this can breach the security of an SRAM PUF, but it requires expensive

machinery and may require the destruction of the target device. If that device is dual-used for security and

data storage, the system making use of it may no longer function.
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4.6 Applications of Directed NBTI to PUF Reliability

Several potential use cases for SRAM PUFs have been proposed in [104], including key protection for

applications or critical assets, encryption of data, and device identification. All three of these have implications

for IoT, such as protecting devices from unauthorized access, protecting data transmitted by devices from

unauthorized access, and ensuring that a device on a network is who it claims to be. The process shown in

Chapter 4.4.2 can be used as a denial-of-service attack, whereby an attacker with the ability to control the

voltage and temperature conditions of a device using an SRAM as a PUF can effectively erase its fingerprint

and remove it from the network. The result of such an attack would range from loss of owner access to a

device to loss of telemetry data provided by a device to its manufacturer or loss of a critical component in a

security system. An owner of a broken device can simply replace it, but loss of telemetry data or connection

to a security device can cause monetary loss. Further, Figure 4.12 shows that using small process sizes for an

SRAM can significantly increase its vulnerability to NBTI. This attack is least effective on the devices used for

the experiment, but would be most effective on devices fabricated using 130 nm technology. Such an SRAM

PUF could become unreliable in as little as 28.5 minutes if fabricated in 130 nm. Even though the high-κ

dielectrics used for the gates of 90-nm through 45-nm transistors decrease the oxide electric field and reduce

vulnerability to NBTI, they are still significantly more vulnerable than the devices used for experimentation.

They would fail in 48.4 minutes and 7.1 hours, respectively. Devices manufactured in 32-nm technology have

low enough oxide electric fields that they can resist NBTI more strongly.

Fortunately, work has been published to increase the resiliency of SRAM PUFs to aging degradation

[124, 128, 129]. Chapter 4.4.3 showed a method by which active, accelerated recovery from NBTI can be

used to quickly relieve stress on an SRAM PUF and restore its original fingerprint close enough to pass

authentication. This can improve the reliability of a PUF beyond even what natural recovery is capable of.

In all cases tested, simply powering down a device at room temperatures causes almost no improvement

of fingerprint reconstruction success rate, while applying negative voltage recovered success rate above the

reliability threshold within two days or less.

This method can be applied nearly transparently to the user of a device by taking advantage of inactive

time, as suggested by [46]. Waiting until a device has been compromised by NBTI and then applying active,

accelerated recovery could cause inconvenience, as the discovery of failure is likely to occur when an attempt

is made to use the device which must be followed by a period of inoperability while it recovers. The authors

of [46] propose that by proactively applying recovery techniques during times in which a device is not in

use, its lifetime can be extended without this inconvenience. An SRAM PUF that is used as memory after
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responding to a challenge can be proactively recovered along with the rest of the units on the device. A

standalone PUF has a much larger opportunity for recovery; since it is only in use during authentication, its

active recovery can start as soon as authentication is complete. With a proactive technique, the lifetime of an

SRAM PUF can be extended significantly.



Chapter 5

Conclusion

In my work, I presented methods for estimating the lifetime, improving the reliability, and manipulating the

security of electronic systems using high-level modeling and directed aging. With the rise in adoption of IoT

and mobile devices that connect to large-scale remote servers to perform computations, the reliability of

these devices has become increasingly more important both to maintain customer satisfaction [12] and reduce

maintenance and replacement costs [13]. These problems are exacerbated by aging, which causes the slow

degradation of transistor parameters over time. This occurs through several mechanisms, including NBTI,

electromigration, HCI, and TDDB, that affect a device or circuit in different ways but generally cause reduced

performance and eventually circuit failure. Worse, all of these mechanisms accelerate at high temperatures

that are caused by the lack of comparable scaling between supply voltage and transistor size [5]. The typical

method for accounting for aging in electronics design is to add static timing margins [35, 36], but this is

unsatisfactory because it requires designing for worst-case degradation when the typical case is often much

less, as shown by Figure 1.4 [34]. These factors have created great interest in modeling aging [20–23] and

developing techniques to manage it or reduce its effects [35,39–42,118].

In order to evaluate these management techniques and measure their effects on a design, it is necessary

to simulate them. The most accurate results come from circuit-level simulations using device-level models,

but the high complexity of modern designs with hundreds of millions to billions of transistors renders that

infeasible. Furthermore, reliability concerns can have repercussions at all stages of design, including stages

such as architecture design where RTL may not yet have been created [6]. Therefore, high-level, pre-RTL

simulation tools are necessary to reduce simulation overhead and enable early-stage reliability choices to be

made. Such tools exist for performance [53], power, area [54], temperature [11], and voltage noise [10], with

efforts being made to develop architecture-level models and tools for lifetime and reliability [30,40,49,62].

77
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5.1 Summary of Contributions

Chapter 2 introduces a new lifetime simulation tool called “OldSpot,” which can be integrated into an existing

flow containing power, performance, and area simulators [58]. Earlier tools make assumptions about the

organization of architectural units across an electronic system and what types of failures can be tolerated. By

breaking a system down into a “failure dependency graph,” where nodes represent units and groups of units

in the system and edges represent how failures propagate, it is possible to remove both of these assumptions.

For example, OldSpot can simulate a CPU that operates alongside several accelerators where failure in any

combination of the accelerators is tolerable, as failed accelerators’ workloads can be completed at reduced

performance by the CPU, but the CPU’s failure cannot be tolerated. Such a system can be represented

using a diagram like Figure 2.2. I showed how OldSpot can be used to model structural duplication at the

architectural unit level and achieve the same lifetime as a one-core-out-of-four failure-tolerant system using a

zero-out-of-three system with less area cost.

In order to accurately estimate aging, simulations of power, performance, and temperature are necessary.

In Chapter 3, I presented a flow of pre-RTL simulation tools that enable high-level estimation of these

quantities and can be used with OldSpot. An important aspect of each of these tools is their free availability

with open-source licenses. This facilitates architecture research by removing the need for expensive licenses

that can take time to acquire and allows modification for a researcher’s own needs. The RISC-V ISA [71]

addresses this by being open-source and modular to enable collaboration and customization. To facilitate

designs using RISC-V, I created a limited implementation for it in the gem5 simulator [53] that supports

single-threaded execution with system call emulation. This allows the simulation flow to include RISC-V

designs, which will be useful for architects who wish to use RISC-V.

Degradation due to aging does not only have an effect on timing requirements and circuit failures, but can

also affect security. Because of their low power requirements and high performance, PUFs have great potential

for ensuring security and identity for low-power devices such as mobile and IoT devices. But since they rely

on silicon variations to create uniqueness and randomness which affect many of the same parameters that are

vulnerable to aging, their functionality can be significantly impacted. In Chapter 4, I explored the potential

for using directed NBTI aging to reduce the success rate of a PUF based on an SRAM to reconstruct its

fingerprint, effectively “erasing” it. Using active, accelerated aging, the success rate was reduced from 100%

to 0% in less than three days and remained 0% after one month of relaxation while powered off. While this

suggests that natural recovery will not normally restore a PUF’s functionality if it has been damaged by

aging, I then showed that applying a small negative voltage to actively recover NBTI as proposed by [46,118]
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can restore PUF functionality within two days. As indicated by the results in [46], applying this treatment at

frequent enough intervals could extend the lifetime of the PUF nearly indefinitely. Finally, to explore the

limits of potential use cases of directed NBTI aging in an SRAM PUF, I attempted to coerce the fingerprint

of one SRAM to resemble that of another and developed a model to predict the amount of time required for

successful “cloning.” With the commercial SRAM ICs used in the experiment, it could take about 340 years

to create a successful clone, but by using newer process nodes it could take as little as one year.

5.2 Future Work

While some aging mechanisms exhibit some form of recovery or self-healing, particularly NBTI [18] and

electromigration [31], little work has been done on modeling or measuring the potential of active recovery

using reversed voltages or currents. Prior work exists at the device and circuit level [46, 118, 119], but no

architecture-level tools yet allow designers to explore the possibility of incorporating it into their designs.

OldSpot’s unique way of representing systems at the architectural unit level enables easy extension to include

passive and active recovery. Since it has been shown that periodic application of active recovery, for example

during hours of low to no usage while a device’s owner is asleep, can extend lifetime nearly indefinitely, this

presents an interesting mechanism designers can take advantage of to increase device lifetime.

Further improvements are also necessary to fully include RISC-V in the simulation flow presented in

Chapter 3. At the time of this writing, gem5 only supports single-threaded RISC-V binaries executing

in system call emulation mode. Support for multithreaded binaries requires either native gem5 support

for existing threading libraries such as pthreads or extension of the special gem5 threading library called

m5threads [133]. Full-system simulation will require full support for the RISC-V privileged architecture [87]

as system call emulation only requires support for user-level code. It will also require implementation of

gem5’s special pseudo-instructions that allow control of the simulation and interaction with the host machine

and its file system from within a full-system simulation. This will enable power and performance simulation

of more realistic workloads using RISC-V and facilitate its use with OldSpot.

5.3 Final Remarks

Open-source, high-level modeling tools allow architecture researchers to rapidly iterate and explore design

space while avoiding the overheads of implementing and simulating RTL and the impediments of proprietary

licensing. They also allow architects to perform cross-layer design exploration, measuring the effects of their

ideas on low-level metrics like temperature and voltage noise and, conversely, enabling them to evaluate how
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those ideas are affected by these low-level effects. Tools for measuring power, performance, temperature, and

voltage noise are already mature. The addition of OldSpot improves architects’ abilities to measure lifetime as

well. By adding RISC-V to gem5, it is now possible to perform these analyses while entirely avoiding licensing

issues, facilitating collaboration between researchers in industry and academia. RISC-V is a rising star in the

hardware design community, and increasing the options for simulating and making design choices with it

can only help to improve adoption. With all of these new and continually-improving options for designing

computing hardware, electronic systems can become more resilient to the worsening effects of aging.
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Overall Aging Rate Computation

In order to compute the overall reliability, R (t), of a system undergoing multiple simultaneous aging processes,

the sum-of-failure-rates (SOFR) model [30] can be used. The SOFR model assumes that the failure of any

component means the failure of the entire system, so the reliability of the system is the product of the

reliability of each component, Ri (i). The overall aging rate of the system, η, can be computed from the

aging rate of each component, ηi, assuming all of them follow a Weibull distribution with the same shape

parameter, β:

R (t) =

N∏
i=1

Ri (t) (B.1)

e−( tη )
β

=

N∏
i=1

e
−
(
t
ηi

)β
(B.2)

= exp

(
−

N∑
i=1

(
t

ηi

)β)
(B.3)

exp

(
−tβ 1

ηβ

)
= exp

(
−tβ

N∑
i=1

1

ηβi

)
(B.4)

∴
1

ηβ
=

N∑
i=1

1

ηβi
(B.5)

η =

(
N∑
i=1

1

ηβi

)− 1
β

(B.6)

This can be used to compute the average aging rate of a single unit undergoing several aging mechanisms

(see Chapter 1.1) or the aging rate of a system that fails when any of its component fails.
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Gem5-Aladdin Results
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Figure C.1: Pareto-optimal frontiers for rbm area and performance; (a) shows Pareto-optimal designs for
a standalone matrix-multiplication accelerator designed while considering external effects and (b) shows
Pareto-optimal designs for a co-designed RISC-V CPU and accelerator. Boxes of the same color in (a) and
(b) correspond to the same design point.
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Figure C.2: Pareto-optimal frontiers for pca area and performance; (a) shows Pareto-optimal designs for a
standalone covariance matrix accelerator designed while considering external effects and (b) shows Pareto-
optimal designs for a co-designed RISC-V CPU and accelerator. Boxes of the same color in (a) and (b)
correspond to the same design point.
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Figure C.3: Pareto-optimal frontiers for lda area and performance; (a) shows Pareto-optimal designs for a
standalone maximum-likelihood estimation model accelerator designed while considering external effects and
(b) shows Pareto-optimal designs for a co-designed RISC-V CPU and accelerator. Boxes of the same color in
(a) and (b) correspond to the same design point.
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Figure C.4: Pareto-optimal frontiers for rbm power and performance; (a) shows Pareto-optimal designs for
a standalone matrix-multiplication accelerator designed while considering external effects and (b) shows
Pareto-optimal designs for a co-designed RISC-V CPU and accelerator. Boxes of the same color in (a) and
(b) correspond to the same design point.
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Figure C.5: Pareto-optimal frontiers for pca power and performance; (a) shows Pareto-optimal designs
for a standalone covariance matrix accelerator designed while considering external effects and (b) shows
Pareto-optimal designs for a co-designed RISC-V CPU and accelerator. Boxes of the same color in (a) and
(b) correspond to the same design point.
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Figure C.6: Pareto-optimal frontiers for lda area and performance; (a) shows Pareto-optimal designs for a
standalone maximum-likelihood estimation model accelerator designed while considering external effects and
(b) shows Pareto-optimal designs for a co-designed RISC-V CPU and accelerator. Boxes of the same color in
(a) and (b) correspond to the same design point.
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[81] Krste Asanović and David A. Patterson. Instruction sets should be free: The case for RISC-V.
Technical Report UCB/EECS-2014-146, EECS Department, University of California, Berkeley, Aug
2014.

[82] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,
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