
Towards Semantic Search in Building Metadata

A Thesis

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment

of the requirements for the degree

Master of Science

by

Akshat Pandey

May 2019

APPROVAL SHEET

This Thesis

is submitted in partial fulfillment of the requirements

for the degree of

Master of Science

Author Signature: ~/11:~~~~,_£-------

This Thesis has been read and approved by the examining committee:

Advisor: Hongning Wang

Committee Member: Kevin Sullivan ----------

Committee Member: _Y_an_f_en_,_g,_J_i ______ _

Committee Member: _________ _

Committee Member: _________ _

Committee Member: _________ _

Accepted for the School of Engineering and Applied Science:

C
Craig H. Benson, School of Engineering and Applied Science

May 2019

Abstract

This report presents the design of a search engine that can be used to search across internet-

of-things sensor data and metadata in the context of building managment. Search engines are

most commonly used to allow humans to retrieve relevant web-pages from the internet given

a natural language query. The system presented here also takes natural language queries

as input but instead of returning web-pages, its primary function is to return visualizations

of time-series data in the form of line charts. The system also allows users the ability to

name visually-defined phenomena in the returned line charts and search across sensor data

for similar data shapes.

Acknowledgements

I would like to thank my advisor Professor Hongning Wang. He has been an excellent

mentor throughout this process and has taught me a lot about information retrieval and

performing research in general. I would also like to thank the University of Virginia Facilities

Management team for making this project possible. In addition, I would like to thank my

colleagues at the University of Virginia, Elijah Lewis, Dezhi Hong, Karthik Chinnathambi

for their assistance in this effort. Finally, I would like to thank my family for all their love

and support.

1

Contents

1 Introduction 4

1.1 Background . 4

1.2 Intelligent Buildings . 5

1.3 Natural Language Queries and Sensor Data 6

1.4 Problem . 7

1.5 Proposed Solution . 7

2 Related Works 9

2.1 Query Segmentation . 9

2.2 Time-Series Feature Selection and Classification 11

2.3 Dasboarding Tools . 12

3 System Overview 14

3.1 Data . 14

3.2 Document Generation . 15

3.2.1 Attribute Expansion with WordNet 15

3.2.2 Attribute Expansion with User Input 16

3.3 System Functionality . 17

3.4 Document Term Co-occurrence . 18

4 Querying 21

4.1 Simple, Conditional, and Grouped Querying 21

4.1.1 Simple Querying . 22

4.1.2 Conditional Querying . 22

4.1.3 Grouped Querying . 23

4.1.4 Chaining . 24

4.1.5 Imposed Query Structure . 24

2

5 Attributes and Labelling 26

5.1 Attributes . 26

5.2 Labels . 27

5.2.1 Creation and Usage . 27

6 Event Labelling 29

6.1 Event Creation . 29

6.2 Event Matching . 30

6.2.1 Feature Vectors . 30

6.2.2 Time-Series Features . 30

6.2.3 Matching . 31

6.3 Event Label Testing . 32

7 Query Segmentation and Evaluation 34

7.1 Segmentation . 34

7.2 Evaluation . 36

7.3 Query Evaluation Testing . 38

8 Conclusion and Future Works 40

3

Chapter 1

Introduction

1.1 Background

Arguably one of the largest increases in data in the past decade has been the data generated

by social media platforms. Likes, comments, posts, videos, and shared links are all part of

this data landscape, each with their own variant set of usable and constraining characteristics.

Understanding, interpreting, and deriving benefit from this feature-diverse web of data has

become a key focus of modern information technology, and will remain so for many years to

come.

The coming decade will see a similar massive increase in data. However this new expanse

of data will be generated from sensors as part of the internet of things and a vast number

of new cyber physical systems rather than humans alone. Unlike the diversity of data types

seen in social media, data generated from these sensors is relatively uniform. In most cases

sensors deliver only a steady stream of time stamps with corresponding integer or floating

point readings.

The uniformity of the data generated by sensors makes the problem of searching and

interpreting this data very unique. Humans cannot draw insight from the raw data alone,

as they might be able to with a text document or an image. The data needs to be visualized

for human interpretation. Determining what portion of the data is significant, why it is

significant, and how it should be displayed will become increasingly important as the amount

of data quickly exceeds any amount that could reasonably be investigated by humans in its

raw format. This report will explore methods of traversing this data using natural language

queries, and allowing users to retrieve sensor data visualizations as they see fit on-the-fly by

means of a search engine.

The particular context for search discussed in thie report is building management. Mod-

ern buildings have a wide array of sensors available constantly collecting time-series data.

4

Building management groups use output from these sensors to both maintain regular up-

keep of buildings, as well as to make decisions as to future enhancements to improve building

energy efficiency. Currently building managment teams rely on hardware-specific or exter-

nal dashboarding tools to provide them with visualizations in order to gain insight on the

day-to-day functioning of buildings under their purview. The aim of the proposed system is

to allow such teams to search dynamically across their data to retrieve relevant information

using natural language, rather than having to monitor a large array of dashboards in real

time.

1.2 Intelligent Buildings

The internet-of-things (IOT) has ushered in a new wave of “intelligent” buildings designed

to make intelligent and informed decisions about aspects of building management such as

power management and increasing energy efficiency using data provided by sensors located

throughout a building.

According to Flax[11], an intelligent building is not only one that attempts to maximize

its own potential in regards to cost or efficiency, but also one that allows for increased

productivity in regards to the management of its facilities. In Wong, Li, and Wang[10]

the notion of what makes a building “intelligent” is examined from a historical perspective.

While older iterations of the term “intelligent building” referred exclusively to the peices

of technology that may be used to enhance a building’s efficiency, researchers in the field

began to acknowledge the importance of including human interaction in the definition of an

“intelligent building”. Human interaction ultimately has now become an important part of

the definition, both context of those that manage building facilities as well as those in the

general public that simply occupy and use the building on a regular basis.

While a great portion of the research in the realm of intelligent buildings have been

focused on the integration of facilities systems such as heating, ventilation, and air condi-

tioning (HVAC) and alarm systems, there has not been as much work produced to enable

more efficient managment of these systems. Currently in order for facilities management

teams to parse through the data produced by these intelligent building sensors, team mem-

bers use dashboards containing metrics from multiple sensors to manually determine the

productivity of an intelligent building. This report aims to increase their productivity by

introducing a natural-language query based search engine to traverse the data produced by

building sensors.

5

1.3 Natural Language Queries and Sensor Data

Two popular methods of searching across time series data sets in the field currently are query-

by-sketch, and query-by-example. Query-by-sketch systems are relatively new in the area,

and allow users to search across time-series shapes by drawing shapes and producing similar

windows of time-series data. Mannino and Abouzied [12] describe Quetch, one such query-

by-sketch tool which allows users to define a search using scale-less hand-drawn patterns to

return similar results.

In contrast to query-by-sketch methods, which rely on user abilities to produce signifi-

cant patterns for search, query-by-example time-series search methods allow users to select

significant patterns from existing time-series data. Selected patterns are then defined as the

ground truth in the search for similar patterns across other time-series sources. Hochheiser

and Shneiderman[13] describe such a system that allows users to visually select rectangular

portions of time-series data, which are then used to return similar shaped subsequences of

time-series data in their data set.

While query-by-sketch and query-by-example methodologies of searching across time-

series have been studied and can currently be applied to time-series data, these two methods

of search alone are not sufficient to productively traverse across sensor time-series data in the

domain of intelligent buildings. This is because data shape alone does not convey all that

is significant about a time-series. In addition, different line shapes may have vastly different

meanings given a sensor type.

For example, suppose a member of a facilities management team were interested in the

current status of temperatures in rooms across campus. Based on the location of a tempera-

ture sensor, temperature values may fluctuate greatly with a wide range, or they may remain

fairly stable at a particular level. In this scenario, specifying a data shape may not then

return all the relevant sensors. Specifying a high variance shape will return data from sensors

with high variance, regardless of whether they are temperature sensors or not. Conversely,

specifying a flatter data shape might return any sensor data with low variance, regardless of

the sensor type.

Where query-by-sketch and query-by-example methods of time-series search fail is in their

inability to take categorical data into account. The information provided by a time-series

shape can be of significant importance, but does not reflect all that is important about a

sensor data stream. Natural language querying can provide users with the ability to specify

categorical requirements for sensor search, mitigating some of the issues that arise from a

pure time-series based search method such as query-by-sketch or query-by-example.

However, natural language based querying cannot be accomplished through the use of

6

time-series data alone, especially if users are required to search across categorical metadata

for building sensors. The system proposed in this report will use IOT sensor metadata as

well as pure analysis of the time-series data itself to allow users the best of both data-based

search as well as natural language based search. Providing both methods of search gives the

user maximum flexibility in determining what kind of data they need, whether it be data

from particular sensor types, or data represntative of a particular time-series phenomenon

across all sensors.

1.4 Problem

The specific problem this report aims to address is the retrieval of relevant time-series sensor

data given a natural language query. Given such a query, this system must be able to search

across all the sensors part of the system and return data from those sensors determined to

contain data most relevant to the query. Due to the nature of time-series data, returned

data must come in the form of a visualization that can be used to provide insight.

Due to the limited and often techinical vocabulary used to name and describe sensors

in the context of building managment, a system allowing natural language search over such

data must be able to effectively derive semantic meaning from query terms relevant in this

particular setting. The acceptable query vocabulary must be pertinent to the domain, but

also allow for flexibility in terms of natural language to allow for a general user. In addition,

in order to remain effective as the number and types of sensors increase over time, the query

vocabulary must also be extensible.

1.5 Proposed Solution

The solution proposed in this work is a search engine similar in usage to Google or Bing, but

instead of providing relevant webpages to the user as a list of results, this engine provides a

set of time-series line charts from sensors determined to be relevant to the user query.

This system allows users to query across time-series data using a semi-structured language

that maintains the simplicity of natural language while still providing users with the ability

to enforce logical constraints on the returned results. It also will allow users to extend the

search vocabulary to include terms and determine their semantic significance as they see fit.

Finally, this system will also leverage the largely visual-reliant nature of time-series inter-

pretation to allow users to label and search over what they determine to be significant visual

events in sensor data. Users will be able to label shapes in time series charts and search

7

for similar shapes in the data, further enhancing their ability to traverse large amounts of

sensor data effectively.

The remainder of this text is organized as follows: Chapter 2 discusses prior works in this

area and how they relate to the system proposed in this work. Chapter 3 provides a system

overview, including further detail on the sensor data used in the system, an overview of how

search is performed, and a high-level map of the search functionality. Chapter 4 discusses

in detail the rules of structured querying language used in this system, Chapter 5 details

how users may extend the searchable vocabulary, and Chapter 6 discusses the process of

labelling and retrieving visually defined events in the sensor data. Chapter 7 describes how

the queries is evaluated in conjunction with user-defined vocabulary and events. Finally,

Chapters 8 and 9 discuss the evaluation of the system, what conclusions can be drawn from

this work, and where it may lead in the future.

8

Chapter 2

Related Works

While there is no previous all-inclusive work detailing all the different facets of the system

presented here, many of the components of this system have been studied significantly both in

academia and in industry. There are also multiple products that are widely used in industry

today that are designed to solve some of the same problems as the proposed system.

2.1 Query Segmentation

Query segmentation is the process of dividing queries into significant semantic subsections,

and is often used in the process of understanding what a user’s intention is when performing

a query on a search engine. It has been studied significantly in recent years within the

context of information retrieval and is an important component of the system proposed in

this work.

Prior works can be partitioned into those that recommend continued use of an external

data source for segmentation, and those that do not. While both groups do not necessarily

require an external data source for continued use, they both groups may still require an

initial data set for machine learning.

Bergsma and Wang [1] propose a machine learning-based approach to query segmentation

using AOL search query data to train a support vector machine model to determine where

segments should be placed in a user’s query. The learning in this method involves looking

at a set of lexical, statistical features to determine whether position x of a given query

represents a segment or not.

The lexical features are hand-crafted binary features that are triggered given the presence

of particular things, like the word “the” or a part of speech tag. Some of the statistical

features they use are counts of the pair of words wx−1 and wx+1 surrounding x appearing

together in the training data, or how often they appear in the genitive format wx−1’s wx+1 in

9

the training data. Similarly, they also have features that are meant to examine the context

provided by prior and later words near position x in the query.

The system proposed in this work also examines position x of a query given particular

features, but simply relies on the features alone to determine whether the position should

be considered a segment or not. However, given significant usage of the system, user query

data could be collected and used to train a model to segment similarly. This could allow

greater flexibility in future iterations of querying in the system.

Tan and Peng [3] suggest an unsupervised machine-learning based approach with the ad-

dition of assistance from Wikipedia in order to determine the segment points. Their method

relies on the assumptions that queries are generated from single or multi-word concepts, and

that these concepts are independent and identically distributed. In this method, a query is a

sequence of words w1, w2, ...wn, and also a sequence of concepts s1, s2, ...sm. Assuming a un-

igram model of concepts, the probability of a sequence of concepts P (SQ) can be calculated

as

P (SQ) =
∏
si∈SQ PC(si)

=
∏
si∈SQ P (si|s1, s2, ...si−1)

The segmentation that maximizes P (SQ) is then determined to be the proper segmen-

tation of query x. They incorporate the use of query-relevant subcorpuses in order to make

calculating this feasible. In addition, Wikipedia is then incorporated to ensure the soundness

of concepts by introducing a term in their calculation of PC(si) that takes the frequencies of

sequences in Wikipedia article titles into account.

This approach is an effective and interesting way to segment queries in an unsupervised

manner, but requires quite a large data set in order to work effectively. However the use of

Wikipedia article titles to improve segmentations could be incorporated into this system in

the future given that an appropriate alternate data source could be found. Wikipedia does

not have enough, or in come cases any at all, articles relating to the different kind of sensors

evaluated in this system.

It should be noted that semantic concepts in the context of IOT sensors are significantly

different than the semantic concepts needed in web-page retrieval. For example, in a web

search engine, “computer science courses” correctly segmented as “computer science”, and

“courses”. This segmentation could help retrieve better results for a user. However, in an

IOT sensor search, segmentation can have an entirely different meaning. For example “Room

temperatures > 72” can be split into “room temperature”, and “> 72”. In this scenario,

“room temperature” defines a search over sensor metadata to determine the type of sensor to

10

return. “> 72” defines a search over data, rather than metadata. In this way segmentation in

sensor search can help define the appropriate search space, similar to an ontological search.

In Fernandez, Lopez, Sabou, Uren, Vallet, Motta, and Castellis[19] a search engine is

described that takes a user query and performs search in a two-tiered approach. First the

appropriate ontological subject of search is determined, and then the appropriate data is

retrieved. This two-tiered approach can be used in sensor search to identify the appropriate

sensor via metadata and then constraints on the data can be applied on the data itself to

return appropriate results.

2.2 Time-Series Feature Selection and Classification

Feature selection is the process of choosing significant variables from data in order to avoid

using all available variables and reduce complexity. It has been widely studied for a significant

period of time, and there is also a considerable amount of work available considering feature

selection specifically in the context of time-series data. The prior work in this field was taken

into great consideration in the event labelling feature of the proposed system.

Classification is a heavily studied aspect of machine learning relating to assigning labels

to data given prior data. It has been studied significantly in the context of time-series data.

Similar to feature selection, the prior work in this field had a large influence on the decisions

made in the development of the event labelling strategy in the proposed system.

In Baydogan, Runger, and Tuv[4] time series classification is done using a bag-of-features

representation of time-series data. To generate a bag-of-features for a series, data is divided

in to subsequences in order to account for local features. For each subsequence, the slope

of the fitted regression line, mean, variance are calculated. In addition, the overall mean

and variance of the series as well as the starting and ending points are also collected and

added as features for the subsequence. Class probability estimates are calculated for each

subsequence feature vector and each possible class, and are designated as feature vectors

for each subsequence. The vector formed from the concatenation of all the subsequence

feature vectors is designated as the feature vector for the entire sequence and used to train

a classifier.

General search over time series data does not involve class labelling in the sense that a

machine learning practitioner might consider class labelling. But the features and methods

of feature selection in Baydogan et al.[4] can be used to create summarizing feature vectors

for time series data in the context of event detection.

Schafer and Leser[7] use a bag-of-patterns in order to classify time-series data. In this

work, a bag-of-patterns is generated by first taking windows for a time-series and approxi-

11

mating it using a Fourier transform. The real and imaginary Fourier values that provide the

best separation amongst classes are used to define discretized bins. Bins are translated into

words, and finally a bag of patterns is generated by looking at the unigrams and bigrams

taken from all the windows of a series.

Transforming time-series into a discretized sequence of unigrams and bigrams is an inter-

esting and effective way to summarize a time-series for the context of time-series classifica-

tion. However the complexity of the creation of the bag-of-patterns can only be warranted

in the scenario that simpler methods provide significantly worse results. This method of

time-series summarization may be ideal for the purposes of training a classifer once, but

is not necessarily feasible for the continuous transformation of data. In the case of a live

building management system of many sensors continously producing data, the complexity

of creating such a bag-of-patterns for the purposes of searching over is not ideal.

2.3 Dasboarding Tools

Dashboarding tools are suites of software tools designed to be placed on top of a data set in

order to provide a visual display of metrics and various kinds of information derived from the

data set. There are a variety of such tools in the market that could be used on time-series

data in the context of building management. These existing systems are a general solution

that could provide some of the same features as the system proposed in this work.

One of the most popular of these software suites is Tableau, which is used widely in

business and and analytics settings in industry to generate live visualizations of datasets

without the need for the user to have any programming ability.

Tableau allows users to create dashboards, or groups of charts and visualizations by

dragging, dropping, and sizing components onto a canvas. Once a set of visualizations is

selected, a required data source is specified, and the visualizations become active.

Visualizations provided in this dashboarding tool as well as many of the similar com-

petitors can include line charts, scatter plots, maps, heatmaps, bar graphs, and others. In

addition some of these tools also provide the ability for users to specify the display of par-

ticular mathematical operations on their visualizations, like the addition of a regression line

on a scatter plot.

Dashboarding tools are very general, easy to use and provide a certain level of customiz-

ability and interactivity to data analysis. In the context of building management, charts

and visualizations created using one of these tools could be connected to sensors in order to

display live information about a particular sensor.

However, in the context of managing a large set of sensors, where dashboards suffer

12

is in their inflexibility in regards to defining visualizations. Determining insight from a

created visualization is not difficult, and visualizations are easy to create, but if one wishes

to examine date from sensors other than those in already created visualizations, new ones

must be defined. For the purpose of examining and identifying issues in particular sensors,

this workflow is not ideal.

In addition to this, supposing that one had the screen space to display data from many

many sensors simultaneously, the use of such visualizations becomes increasingly question-

able. A worker can only effectively evaluate output from so many visualizations at one time.

Too many may be just as ineffective as not enough.

The system presented here aims to mitigate some of these issues by enabling users to

use natural language to search for and annotate sensor data as they see fit on-the-fly. The

system aims to provide some of the interactivity of existing dashboarding technology with

the added functionality of language-based search for added flexibility.

13

Chapter 3

System Overview

Generally speaking, a search engine returns relevant documents given a user query. Most

commonly in terms of public usage, documents consist of text and image-based web pages.

In the most naive sense, the relevance of said web pages is determined by performing some

function of comparison between the natural language query provided by the user and the

text in the web pages being searched upon. Documents are then returned to the user in the

order of their successive relevance the the query provided.

In the context of searching across sensor data, documents are fundamentally different,

as they do not contain any words, but are rather just a stream of floating point values. In

order to ensure functionality of a search engine across time-series data while leveraging the

current work on natural language based search engines, a system would need to be able to

effectively evaluate time-series data as a document using any available text as well as text

derived from time-series phenomena.

With time-series data we cannot immediately apply traditional information retrieval

methods and instead must consider other possible ways to retrieve data. Basic statisti-

cal methods of previous works in information retrieval and natural language processing are

not easily afforded due to the basic differences in document structure. Given stream data

and data of the attributes associated with these streams, the system must be able to deter-

mine a sensor data’s relevance and return sensor data to users in order of relevance to their

natural language query.

3.1 Data

The data used in this project was all obtained from the University of Virginia Building

Management Group. The data contains time series data from 2858 different sensors in

buildings on the University of Virginia campus. The overall group of sensors contain 34

14

distinct sensor types. The number of time-series data points for each stream range from 1

data point to 127,662 data points, and there are a total of 21,909,993 time-series data points

in the entire system. The timestamps on the streams range from 6/1/2013 03:00:19 to

10/12/2014 17:38:05. However it should be noted that the data is not completely continuous

within those date ranges.

1942 of the 2858 sensors also have additional descriptive text attributes associated with

them. There are a total of 151 distinct such attributes for all the sensors. Attributes can be

single or multiple terms and may have corresponding values. Some example attributes are

“occupancy sensor” and “room-id:386”. “occupancy sensor” is a two word attribute with

no corresponding value, while “room-id:386” is a single word attribute (“room-id”) with an

associated value (“386”). Sensors in the data set range from having no attributes at all, to

having a maximum of 8.

3.2 Document Generation

Given the list of attributes for a sensor, the system defines “documents” using a bag-of-

words model incorporating all the terms in each attribute name. Multiple term attributes

are split into a list of their distint terms and added to a bag-of-of words document for their

corresponding sensor. An example sensor with its corresponding attributes and document

transformation is shown in Figure 3.1.

Sensor Name Attribute Text
Siemens 229387 site:SDH, room-id:282, supply fan, supply fan-id:1

↓
Sensor Name Document
Siemens 229387 fan, fan-id, room-id, site, supply

Figure 3.1: Document creation

For the purposes of basic document search, all attribute values are removed, and the

document associated with the sensor is simply the set of all terms in the attribute names

associated with the sensor.

3.2.1 Attribute Expansion with WordNet

One issue that arises when using the given attribute names is the relatively small number of

attributes associated with each sensor. Exact search or even a fuzzy search method across

15

the available attribute names will not lead to many matches unless the user is already very

knowledgeable of the data set.

WordNet is a lexical database developed at Princeton containing various different re-

lationships between words rooted in their categorization in to “cognitive synonyms”, or

“synsets”. Relationships between words in WordNet can be representative of various differ-

ent kinds of established linguistic relationships, such as hypernomy, hyponomy, meronymy,

antonymy and others. For the purposes of this system, no differentiation was taken into

account with regard to the specific kind of linguistic relationship between words when ex-

panding documents.

In order to help mitigate the problem of small document sizes, synsets extracted from

WordNet were used to expand the available list of attribute names to help provide a larger

and more general set of document terms to search across when determining relevance to a

user query.

3.2.2 Attribute Expansion with User Input

Due to the fact that the vocabulary used in attribute names was so domain-specific, often

times even expansion using WordNet is not sufficient to provide sufficient expansion of doc-

uments. For example, the word “site” is an attribute for many of the sensors in the data set.

WordNet identifies “locale” in the group of synsets for “site”. “site” in the context of the

data is closely associated with the concept of a “building site”. “locale” is somewhat related

to this notion, but not entirely.

While “locale” is still somewhat relevant, another term in the group of synsets for “site”

is “web-site”, which is wholly irrelevant to the context of this system. Including “web-site”

will not really help provide better search results here because if one were looking for sensor

streams at a particular place on the University of Virginia campus, they would not use the

word “web-site” in their search query.

Because there is no data-set of terms that are exclusively significant to the context of

building management or sensor data, the only other way to mitigate this problem of low

attribute counts is to allow users to tag sensors with attributes that they determine to be

relevant.

The system allows users to enter their own attributes along with corresponding values if

they determine it to be necessary and associate these newly-created attributes to sensors.

Once an attribute is entered into the system it is then added to the document corresponding

to the appropriate sensor, and can be used as a search term to return data from the relevant

sensor.

16

3.3 System Functionality

The system’s high-level approach to basic querying is to treat the list of attributes and values

associated with a sensor as a document. This document is to be associated strictly with the

sensor from which the attributes are taken. A basic search can then be simplified to mimic

the standard document search retrieval process - sensors are deemed relevant to user queries

depending on how relevant the documents associated to the sensors are to the terms in the

user query. Figure 3.2 and Figure 3.3 display how a simple query is evaluated in the system.

User performs search: “room temp” →

“room temp”

Sensor A fan, room-id, site, supply

Sensor B fan, room-id, site, supply

Sensor C temp, room-id, site, room

Sensor D temp, room-id, site, room

Sensor E c02, room-id, site, room

Figure 3.2: Query evaluation 1

The user performs search with the query “room temp”. The query terms “room” and

“temp” are evaluated against the documents for each sensor in the system generated using

the attributes provided in the data set.

“room temp”

Sensor A fan, room-id, site, supply

Sensor B fan, room-id, site, supply

Sensor C temp, room-id, site, room

Sensor D temp, room-id, site, room

Sensor E c02, room-id, site, room

→

Sensor C

Sensor D

Sensor E

Figure 3.3: Query evaluation 2

17

“Sensor C”, “Sensor D”, and “Sensor E” are deemed as relevant sensors to the query

“room temp” due to the co-occurrences of the words “room” or “temp” in the documents

corresponding to each respective sensor. It should be noted that “Sensor C” and “Sensor D”

would be regarded as being more relevant than “Sensor E” because their documents contain

both “room” as well as “temp”, unlike “Sensor E”, whose corresponding document only

contains “room”. Finally, the search results page will display line charts for time-series data

retrieved for “Sensor C”, “Sensor D”, and “Sensor E”. This displays the basic functionality

of the system - how a natural language query is interpreted to return relevant time series

data.

3.4 Document Term Co-occurrence

In this system’s implementation of relevant attribute term search, the system uses a simple

co-occurrence count of user search terms against attribute document terms. In modern

information retrieval systems, a wide array of techniques have been developed to determine

a document’s relevance based upon a comparison between user search terms and search

document terms. One very popular metric used in such instances is term frequency inverse

document frequency, or the tf-idf metric.

tf-idf has had wide use in information retrieval systems for many years as a way to

determine the importance of a word by taking into account the frequency of word occurrence

in searched documents as well as the frequency of a word across all documents. The term

frequency is used to determine whether or not a document is relevant to user search terms,

and the inverse document frequency is used to determine how much importance should be

given to a particular user search term in finding relevant documents in a corpus.

In its most naive formation, the tf-idf metric can be calculated using the forumula in

Figure 3.4. In Figure 3.4, t represents a term, d is a document, D is all the documents in

the corpus, nt is the number of documents containing term t, and N is the total number of

documents.

tf − idf = tf(t, d)× idf(t,D)

= ft,d × log
(

N

1 + nt

)
Figure 3.4: tf-idf calculation

As shown in Figure 3.4, the tf portion is simply the frequency of the word in the doc-

ument, which is what this system uses to determine document relevance. However the idf

18

portion of the metric uses the total number of documents containing term t to specify how

important t is in calculating document d’s relevance.

In a practical setting, the idf term helps systems ignore terms that are so frequent in

every document that they are not relevant in document search. For example, if a user were to

query Wikipedia for “The New York Times”, the idf metric may help the Wikipedia search

engine determine that articles only containing the word “the” may not be strictly relevant

to the user query, because “the” is generally such a frequently used word. In this way, the

idf metric can help increase a search engine’s precision by assisting in the identification of

irrelevant documents.

The use of the idf metric in this context makes the assumption that the more frequent a

term is in a corpus of documents, the less meaningful it is, and therefore it is less important

in regards to document relevancey determinations. This assumption can be summarized

using Zipf’s law, which states that word frequency is inversely proportional to its rank.

Figure 3.5: Zipf’s Law in Wikipedia Text[14]

Figure 3.5 displays Zipf’s law in the context of Wikipedia text as of the year 2006. This

figure is in the log-log scale, and the x axis represents word rank, and the y axis total word

frequency across Wikipedia. In this figure Zipf’s law corresponds to the dark green line, while

the red is calculated using actual Wikipedia term frequencies. It is clear from this figure that

Zipf’s law has empirical precedent in the case of Wikipedia terms, and even across natural

language in general.

19

However this assumption does not necessarily apply in the case of the attribute-based

documents used in the proposed system. Because they are bags of words and not documents

written in natural text, the assumption that a frequent word is not important is not one that

can be immediately taken without further examination. In this domain, document sizes do

not reach the lengths that one would expect in a Wikipedia article for example. And because

they are bags-of-attributes, there are no direct equivalencies in this limited vocabulary to

words like “the” in the general English language.

Furthermore the inapplicability of what is often considered a very basic assumption in

language-based information retrieval (Zipf’s law) to this domain states that many of the

classical assumptions must be closesly examined before they can be deemed relevant in this

space. In light of this, document co-occurrence, or simply term frequency was chosen as the

exclusive metric for determining document relevance, as it does not make any assumption

on the inherent importance of attribute terms.

20

Chapter 4

Querying

In this system a query may consist of search terms, mathematical operators, as well as

predefined keywords. Users may search across documents by attribute tags or stream names.

In addition they may place constraints on their search results by using conditional operators

to define the numeric bounds for retrieval and they may group results by attribute tags to

return results.

Querying is performed in a manner similar to most web-page search engines on the

market. Users enter natural language queries, and relevant results are returned to them

in the form of relevant line graphs. Unlike most search engines, however, there are a few

constraints on how language may be used in the system. The system is queried using a

structured language consisting of the keywords “and”, “by”, as well as the mathematical

operators >,<,>=, <=, and =. The “and” keyword is used in chained querying, which

will be discussed in section 4.1.4. The “or” keyword is used in grouped querying, which is

discussed in 4.1.3, and the matematical operators listed are used in conditional querying,

which is detailed in 4.1.2.

4.1 Simple, Conditional, and Grouped Querying

Acceptable user queries can be divided into three different categories: simple queries, condi-

tional queries, and grouped queries. In addition to these three categories users may use the

“and” keyword to chain combinations of these three query types together in order to return

more specific search results.

21

4.1.1 Simple Querying

Simple queries are the least complex and consist exclusively of search terms. Examples

of such queries may be “temperature” or “supply fan”. Such queries will be evaluated by

comparing the search terms against a WordNet expanded list of terms stored for each stream

in the system. Results will be returned based simply on the co-occurrence count of search

terms in the expanded list of terms for each stream. Figure 4.1 displays the functionality of

the simple query “temp” in the system. After searching for “temp” in the search bar, the

top two relevant results are shown in the figure - scrolling down will display further results.

They are ranked occording to co-occurrences counts between search terms and the attribute

documents associated with each vector.

Figure 4.1: Simple query search results

4.1.2 Conditional Querying

Conditional queries are simple queries that include a numerical constraint on the values of

the time-series data retrieved by the system. Examples of such queries may be “temperature

> 75” or “occupancy <= 2”. Similar to the evaluation of simple queries, search terms will

be compared against a WordNet expanded list of terms stored for each stream in the system.

However these results will then be filtered to only retrieve those streams whose values do

not break the constraint specified by the operator.

It should be noted that currently the system will only evaluate the operator values at

22

the most recent timestamp available for each stream in the system. For example, the query

“temperature > 75” will only return sensor data with the appropriate attribute matches for

“temperature” but also where the latest timestamp available contains a value greater than

75. Previous values are not evaluated in the current implementation of conditional querying.

Conditional queries will provide results similar to those displayed in Figure 4.1 - however,

the last value in each chart will be compliant with the value specified by the conditional

statement of the query.

4.1.3 Grouped Querying

Grouped querying allows users to return results in groups with respect to their specified

search terms. A grouped query may consist of a simple or conditional query with the addition

of the keyword “by” followed by an attribute search term with which to group their returned

results. Examples of such queries may be “occupancy by room-id”, or “temperature <=

68 by building-id”. The simple or conditional query to the left of the grouping statement

will be evaluated as listed above, and then additional search will be done upon the resulting

streams to identify those whose expanded attribute terms contain the terms in the specified

grouping statement. The secondary evaluation of grouping terms is evaluated similar to the

simple queries - grouping terms are evaluated based on co-occurrences in WordNet expanded

terms stored for each stream.

In addition, users may also specify equality constraints on the grouping statements to

further constrain the returned results. An example of such a query may be “occupancy by

room-id = 504”. This query would first evaluate the statement “occupancy by room-id”, and

then take the further step of removing all those stream matches where “room-id” is not equal

to “504”. The conditional matching on grouping statements in the current implementation

only accounts for exact matches.

Figure 4.2 displays the results obtained from the grouped query “temp by site”. Results

here look similar to the results displayed in Figure 4.1, however, here each result box has a

list of tabs on the top. Once a tab is clicked, the line graph for the corresponding sensor

is displayed rather than the current chart being displayed. The chart tabs in each card

correspond to the grouping value listed on the title. In Figure 4.2, the card on the left

displays all sensors with “SDH” listed as a “site” value, and the card on the right displays

all sensors with “SOD” listed as a “site” value.

23

Figure 4.2: Grouped query search results

4.1.4 Chaining

The system also allows for the chaining of simple and conditional queries using the “and”

keyword. An example of such a query may be “occupancy and temperature >= 75”. This

query will act as an “or” operation on the separate queries “occupancy” and “temperature

>= 75”. Chained queries can contain as many “and” statements as the user deems necessary.

In addition grouping statements can also be appended to any chained query. For example

“occupancy <= 0 and temperature >= 72 by room-id” will display room and occupancy

measures for each available room-id with the specified constraints applied.

Chained queries will return results similar to those shown in Figure 4.1 if there is no

grouping statement attached to the query. However if a grouping statment is at the end of

the chained query, results will look similar to Figure 4.2, where result cards are tabbed with

each sensor containing the same grouping value as the rest of the sensors on the card.

4.1.5 Imposed Query Structure

Bergsma et al.[1] as well as Tan et al.[3] both suggest methods of automatically determining

the segmentation of queries into their significant semantic subunits with the use of machine

learning methods. Bergsma et al.[1] use AOL search log data to train their segmentation

model, and Tan et al.[3] use AOL search log data as well as Wikipedia article titles in their

implementation of a query segmentation model. Both wish to split user subqueries into

24

semantic concepts rather than simply terms, for improved search results.

In the context of search in this system semantic concepts can be similar to those suggested

in prior works on query segmentation. However segmentation in this system must also be

able to distinguish between what could be defined as commands and simple search terms.

For example, in the search query “room temperature > 75”, “room temperature” could be

regarded as a semantic concept whose meaning is much more relevant than the meanings of

“room” and “temperature” as seperate search terms. The latter part of the query “> 75”

however, does not consist of search terms at all. Rather it specifies a contraining command to

be placed upon the results of a search for “room temperature” sensor data. This requirement

distinguishes search in the sensor domain from search across text-based documents.

Taking this additional query segmentation constraint into regard, the models suggested

Bergsma et al.[1] and Tan et al.[3], or any similar model cannot be used in this space, due

to the fact that there is no similar training data to train such a segmentation model with.

Due to the lack of data available in this space, it is not clear how to apply machine learning

methods to train any model to learn the ability to segment IOT sensor-based user queries

into semantic concepts.

The enforcment of a particular query structure was chosen for this system because it helps

mitigate the difficulty of query segmentation in the sense of distinguishing search terms from

commands while coming at very little cost to the user. Since there are only three keywords

(as well as 5 mathematical operators) that are not allowed in search phrases, the user can

still employ natural language with a wide range of flexibility while still being able to express

commands specific to search in this domain effectively.

25

Chapter 5

Attributes and Labelling

Given only the time series data without any extension or modification, search would be lim-

ited to the names of streams, which are often unintuitive and impossible to extend on their

own. An example of such a stream name is “Siemens+SDH.PXCM-09+SDH+WIN+7FS5 TEMP.2”.

This is not a search term that one could reasonably expect a user to enter to find window

temperatures (which is the sensor the stream name is attached to). Without prior informa-

tion about the stream name, it is also not immediately intuitive how to extend this stream

name to correspond to searches for “window” or “temperature”.

Even assuming that basic stream names are available, such as “temperature” or “occu-

pancy sensor”, it is not easy to then associate these names with relevant descriptive search

terms that a user may want to use, such as “warm rooms” or “empty rooms”. The “at-

tribute” and “label” features provide the system with the flexibility to accomodate more

natural and expressive queries, and allow users to extend the searchable vocabulary as they

see fit.

5.1 Attributes

In this system “attributes” are defined as key value pairs that are attached to individual

sensors. An attribute has a name and can have a value if specified. Since stream names are

often not in natural language, all search queries are matched against the attributes associated

with each sensor. An example sensor and their corresponding attributes are displayed in

Figure 5.1.

26

Sensor Attribute Name Attribute Value
Siemens+SDH.PXCM-09+SDH+ TEMP.2 Type Temperature

Room-Id 300
Building-Id Rice

Figure 5.1

5.2 Labels

Labels are defined as user defined terms that expand to conditional queries when evaluated

at search time. An example of a label would be “warm”, which, if so defined, would return

all temperature sensors with a value greater than or equal to 75. Labels can be created by

users, and once created are immediately usable as part of simple or conditional query chains.

5.2.1 Creation and Usage

Labels can be created by specifying a label term, an attribute, and a corresponding numeric

operator and value. Once these have been specified, the label term can be used in searches.

If the user defined the label term “warm” to the attribute “temperature” and the operator

and value “>=” and 75. Upon searching “warm”, the system would expand the label to the

equivalent conditional query “temperature >= 75”.

Once a label has been defined its usage is similar to that of a conditional query. It

can be chained along with other simple queries or conitional queries. In addition, grouping

statements can also be used to further constrain search results.

Attributes are created using a simple form as shown in Figure 5.2. In Figure 5.2, the user

is defining the label “warm” to be equivalent to the conditional query “room temp > 75”.

Upon saving the defined label, searching “warm” will return results equivalent to searching

for “room temp > 75” from then on.

27

Figure 5.2: Label creation form

28

Chapter 6

Event Labelling

Event labelling allows users to visually define what they consider to be a significant event and

search across the data for subsections of sensor data with similar shapes using the specified

event title. Automatic detection anomaly detection can detect a limited amount of shapes

within data, but does not allow users the flexibility to define what kind of event is relevant.

6.1 Event Creation

Events are created by highlighting a portion of time series data for a single sensor and

specifying a name for the event. Once the event has been named, users can search for the

event by name. The results will display the original created event as well as any subsequences

of other sensor data with a similar data shape. Data is displayed in the order of relevance

to the user-defined event. Events are created with the use of a single form, where the user

simply specifies the name of the event.

Figure 6.1: Event creation

Figure 6.1 displays the creation of an event “gate” created using one of the first results

from the search “temp”. Searches for the “gate” event will now return a list of sensor charts

29

(as in Figure 4.1) where the graphs are visually similar to the chart labelled as a “gate”

event.

6.2 Event Matching

In order to determine similarity between defined events and the rest of the data in the data

set, the time series data specified by the start and end points of the event must be vectorized

and compared to similar vectors of the rest of the data.

Computing feature vectors for all the available data at every event search would not be

feasible, so feature vectors must be precomputed for the data set so they can be used for

comparison immediately at search time.

6.2.1 Feature Vectors

Feature vectors were defined using data from each sensor examined in 500 data point win-

dows. Windows were generated for the entireity of data available for each sensor with a step

size of 100.

The following features were used in defining an event vector: minimum, maximum, me-

dian, mode, mean, standard deviation, skewness, kurtosis and entropy. Each of these values

was calculated for a window, and then again on each fifth of the window. Overall, each of

the nine features was calculated six times for each vector resulting in feature vectors of size

54 for each window.

After precomputing feature vector values for the entire data set, the feature vector values

were all normalized to remain between zero and one. This was in order to prevent features

with inherently large values from overshadowing those with inherently smaller values overall.

6.2.2 Time-Series Features

There is a large body of work available detailing the creation of appropriate features for time

series data in the field of classification. Baydogan et al.[4] suggest the use of class probability

estimates on a group of local features to define a feature vector, and Schafer et al.[7] suggest

the use of patterns generated through approximated Fourier transform values.

The clearest difference between prior work in this field and the event search proposed in

this work is the existence of prior class labels. In the proposed system users define events

classes on-the-fly. Not only that, but users only identify one shape in a time series to define

an event, so there is not enough data to train a model to identify the event being specified

by a user using a machine learning approach.

30

In addition, in a live implementation of this system, feature vectors would need to be

continuously calculated and stored for sensor data as it comes in, with as little delay as

possible. So a solution for feature vector creation in this context must be both rapid and

expressive. Given these constraints, only mathematically computable features that do not

require further data outside of a given time-series were pursued.

Dividing time-series into sub-windows was used due to the successes previous works have

described in this method’s ability to determine local events in a larger time-series[4]. The

selected features were chosen due to their ability to summarize sensor data shapes while

being very efficient in terms of complexity.

6.2.3 Matching

Upon search of an event, a feature vector is created for the sensor and time period specified

by the user and then compared to all the precomputed vectors. Each of the precomputed

vectors is ranked based upon their cosine similarity to the event feature vector. The cosine

similarity calculations are done on all the precomputed feature vectors using the map reduce

paradigm in order to return results in a reasonable amount of time. The top one hundered

precomputed vectors are then returned, and the corresponding sensor data is returned to

the user.

In Figure 6.1, an event called “gate” was created by the user. In order to search the

sensor data for similar shapes, the user must specify the name of the event followed by the

keyword “event”. In order to return similar shapes to the gate event, the user would then

query “gate event”.

Figure 6.2: Event search

Figure 6.2 displays the results for the “gate event” query. Results are returned in order

31

of their cosine similarity to the feature vector created for the user defined event at creation

time.

6.3 Event Label Testing

In order to test the effectiveness of event search, a user study was performed with three

current students at the University of Virginia in the computer science department. Each

student was given 20 ground-truth event shapes as well as the top 10 results returned by

the system which were identified as similar. Participants were asked to look at the ground

truth shape and identify whether each of the top 10 shapes (the first page of results) deemed

similar by the system were relevant or not relevant to the original shape. Particpants were

explained the use case that event search provides users, namely that users of the system may

define data shapes they deem significant and that the system must return similar shapes.

All participants were told that relevance judgements could be made at their own discretion,

and were not provided any other instructions out side of the use case.

Top 10 Results Top 5 Results
User 1 .64 .68
User 2 .51 .55
User 3 .38 .43
Overall .51 .55

Figure 6.3: Average Event Relevance

Figure 6.3 displays the results of the user study. Overall, when looking at the top 10

results returned by the system, users determined that 51% of the results were similar enough

to the ground truth time-series shape to be considered relevant. When considering only the

top 5 relevant results returned by the system, 55% of the results were deemed relevant.

Figure 6.4 displays the time-series shapes that test participants determined as having

the most relevant and least relevant returned results. The 4 shapes on the top row are the

shapes that performed best as determined by the test participants, and the 4 shapes on the

bottom row are the shapes that performed the worst.

As displayed in figure 6.4, the system does well in retrieving relevant results for shapes

that are consistent from start to finish, while the system fails to retrieve the similar results

for shapes with sharp changes near the start and finish, or those with distinct hyper-local

events.

Directionality of events also seem to have a detrimental effect in returning relevant results.

For example the third shape from the left on the bottom row of figure 6.4 performed poorly

32

Figure 6.4: Best and Worst Performing Data Shapes

largely due to returned similar shapes appearing in the opposite direction to the ground

truth shape rather than a far deviation from the original.

Distinct hyper-local features, such as the smaller increases and decreases midway through

the fourth shape from the left on the bottom row of figure 6.4 also had a significant impact

on how relevant results were determined to be by users. Very small sub-features makes it

more difficult to find similar shapes because shapes must be able to match very distinct and

small sub-features rather than just a general shape.

33

Chapter 7

Query Segmentation and Evaluation

There has been a significant amount of work done on query segmentation using machine

learning techniques in the context of search engines. However, any machine learning tech-

nique requires training data, which is absent in this scenario. Without prior data available

on how to segment queries for time series data, a machine learning approach to segmenting

user queries was not a viable option.

This system instead uses a simple but structured query language that constrains user

querying to a particular format. In order to maintain queries in a natural language format,

the constraints are fairly small. Users should be able to effectively retrieve the information

they want from the system without having to spend time learning how to use it.

The introduction of constraints on how queries may be formatted makes the process of

segmenting user queries simpler. Search terms, conditional constraints, grouping statements,

and event searches can all be identified by their position in the query. Each query, once

segmented into its relevant subsections, can be evaluated by first returning results for the

search terms, and then adding the constraints provided by conditional terms, and grouping

statements afterwards.

7.1 Segmentation

The three keywords the system takes into account are “and”, “by”, and “event”. To demon-

strate how segmentation of a query using the “and” and “by” keywords works in this system,

take the following example query: “temp > 75 and occupied by room-id”.

In this scenario, the assumption must be made that the user has created a label “oc-

cupied”. For the purposes of examining the posed query, one can assume that the label

“occupied” was defined as meaning “occupancy > 0” by the user of the system.

“and” separates simple and conditional queries, while “by” adds a grouping constraint

34

on the resulting returned values. Since the grouping is done on an already returned set of

results, the grouping clause must be evaluated afterwards and is split from the rest of the

query first:

temp > 75 and occupied by room-id

temp > 75 and occupied by room-id

The grouping clause “by room-id” cannot be broken down further. The clause “temp ¿

75 and occupied” is then split on the keyword “and”:

temp > 75 and occupied by room-id

temp > 75 and occupied by room-id

temp > 75 occupied

“temp > 75” is in itself a conditional query and cannot be broken down further, how-

ever “occupied” is neither a simple or conditional query nor is it a grouping clause, so it

will be evaluated against the labels currently collected in the system and translated to its

corresponding conditional query:

temp > 75 and occupied by room-id

temp > 75 and occupied by room-id

temp > 75 occupied

occupancy > 0

35

Once the original query has been segmented as described, the following query segments

are extracted: “temp > 75”, “occupancy > 0” and “by room-id”, and can be evaluated.

7.2 Evaluation

Once a query has been segmented into its relevant subqueries, each subquery can then be

evaluated. The order of evaluation is as follows: simple and conditional queries, and then

finally grouping statements.

For a simple query, the search terms are compared against the WordNet extended list

of attribute terms available for each sensor in the system. Sensors are ranked simply by

the number of cooccurrences between the the search terms in the user query and the the

attribute terms for each sensor. Assuming the simple query “temp”, some sample sensors

and their corresponding attributes are as follows:

Sensor Name Attributes

Sensor A site:SDH, supply air temp setpoint, room-id:302

Sensor B site:SDH, supply air temp setpoint

Sensor C site:Rice, occupancy sensor, room-id:504

Sensor D site:Rice, occupancy sensor, room-id:404

Sensor E site:Rice, occupancy sensor, room-id:304

Sensor F site:Rice, occupancy sensor

By searching “temp” the sensors retrieved from the set would be “Sensor A” and “Sensor

B”, due to the inclusion of the word “temp” in their attribute list.

Conditional queries are evaluated similarly to simple queries, but once the correct sensors

are determined, their most recent values must be checked to identify if they match the

conditional constraint. If the “temp” were made into conditional query “temp >= 75” then

the two sensors “Sensor A” and “Sensor B” would again be returned, but then the further

step of evaluating their most recent values would need to be completed. Their time-series

data may look like the following:

36

Sensor A Sensor B

04/04/2018 10:00:01am 74 69

04/04/2018 10:00:02am 74 68

04/04/2018 10:00:03am 73 69

04/04/2018 10:00:04am 73 69

04/04/2018 10:00:05am 74 70

04/04/2018 10:00:06am 74 70

04/04/2018 10:00:07am 75 71

04/04/2018 10:00:08am 75 70

04/04/2018 10:00:09am 75 69

04/04/2018 10:00:10am 75 69

In this scenario, a query of “temp >= 75” at the time 04/04/2018 10:00:10am would

then only return “Sensor A”, because that is the only sensor that meets both the “temp”

attribute requirement as well as the conditional requirement of having a value greater than

or equal to 75 at query time.

Simple and conditional queries with the addition of a grouping statement or conditional

grouping statement are evaluated in a similar way to conditional queries. Sensors with

relevant attributes are identified first, and then are further reduced by examining grouping

statement requirements. Assuming the same set of sensors, the query “occupancy by room-

id” would only return “Sensor C”, “Sensor D”, and “Sensor D”. While “Sensor F” also

contains the term “occupancy” in its list of attributes, it would not be returned because it

does not have an associated “room-id”.

Specifying a particular grouping value works in the same way as well. The query “occu-

pancy by room-id:504” would only return data from “Sensor C”, as it is the only one that

matches all the constraints specified by the query, namely that it contain “occupancy” in

its attribute list, that it also contains “room-id” in its attribute list, and that the “room-id”

attribute has a value of “504”.

Overall, the query evaluation process depends heavily on the availability of attributes to

function effectively. Given a large starting data set with very few attributes will limit the

number of query terms that can be used to search the data. The more relevant attributes that

are available for search, the more successful query evaluation will be in returning relevant

results. Attributes that are more general and can be extended through the use of synset

expansion are also beneficial to the overall relevance of results returned.

37

7.3 Query Evaluation Testing

In order to evaluate the effectiveness of the query evaluation of the system, sample queries

were created that reflect the possible needs of a member of a building management team.

There are 25 queries, in a variety of formats. The query types include simple queries, con-

ditional queries, simple queries with grouping statements, conditional queries with grouping

statements, as well as chained variations of all the query formats.

The ground truth in this evaluation is determined using manual database queries. Given

prior knowledge of the data and knowledge of the intention of each of the queries, the exact

sensors relevant to each query can be determined.

Evaluation of the queries was performed by comparing the ground truth sensor results

for each of the queries with the results returned by the system using the same queries. Then

the precision, recall, F-measure, and mean averaged-precision (MAP) were calculated for

the two sets of query results. Figure 7.1 displays the results of the evaluation. Figure 7.2

displays the average precision of results for each query.

Precision Recall F-Measure MAP
.181191 .660417 .284365 .227215

Figure 7.1: Query Evaluation Results

Figure 7.2 shows that while shorter queries often score average precision greater than zero,

longer queries seem to have a higher probability of having high average precision scores.

Longer, more specific queries seem to have a much greater variance in terms of average

precision. Shorter more general queries do retrieve some relevant results at a higher rate,

but average precision scores do not go as high as they do with larger queries.

This is due to the fact that that grouped conditions such as “by room-id = 180” reduce

the search space very effectively. Adding more search terms prior to a grouping condition

only serves to increase the search space, making the chances of returning relevant results

inherently lower. Increased terms prior to the introduction of a grouping condition can also

serve to include a larger set of irrelevant sensors. This can mean sensors that share one of

the words in the query search terms, but not a sufficient amount to actually deem them

relevant in the context of the search.

38

Query Average Precision
“temp < 70” 0.242818
“temp by room-id = 180” 0.333333
“fan > 0 by vav” 0.000000
“temp set point by room-id = 181” 0.500000
“air pressure by room-id = 280” 1.000000
“alarm by room-id = 288” 1.000000
“fan speed by ahu-id = 1” 0.027778
“heating by floor = 1” 0.203571
“loop gain by room-id = 514” 1.000000
“operation status by floor” 0.000000
“fan speed by site = SOD” 0.018868
“air volume by site = SOD” 0.000000
“room temp by room-id = 535” 0.333333
“occupancy > 0 by room-id” 0.000000
“occupancy < 1 by room-id” 0.000000
“temp > 75 by site = SDH” 0.000000
“supply fan > 0 by site = SDH” 0.291667
“temp by room-id = 252” 1.000000
“exhaust fan > 0” 0.074554
“air pressure” 0.067625
“temp > 72 and occupancy sensor > 0 by site = SOD” 0.000000
“avg air pressure discharge” 0.012093
“window temp” 0.013559
“exhaust fan by site = SOD” 0.308817
“building wide sensor” 0.032258

Figure 7.2: Query Evaluation Results by Query

39

Chapter 8

Conclusion and Future Works

In this thesis a new system is proposed for the natural language querying of internet of things

time series sensor data and metadata. The system allows users to use natural language to

search across sensor data through expanded metadata attributes, as well as add constraints

to search results based on numeric bounds on the sensor data. It also allows for users to

define additional attributes and define relationships between text phrases and attribute and

data value pairs.

Results of the query evaluation test show that the system is able to retrieve relevant

sensor data through the use of natural language querying fairly well. Results vary somewhat

depending on the number of search terms, and increase in relevance depending on how

particular users are in their search specifications.

The system allows search by natural language query and also allows users to associate

search terms with particular time-series data shapes. Given a named time-series shape, the

system can return similar shapes in the time-series data set.

Results of the event matching feature of the system user study show that the system can

successfully identify consistent or regular time-series shapes, but struggles to provide relevant

matching time-series data shapes when ground-truth shapes contain a significant amount of

distinct small hyper-local features or are significantly defined by their directionality.

Future works can improve on the querying of described system by increasing its ability

to expand IOT sensor metadata terms in the context of building management. The event

matching feature of the system could be improved by examining smaller windows of the

events during the creation of feature vectors and including a wider array of features to

match against relevant events.

40

Bibliography

[1] Shane Bergsma and Qin Iris Wang. Learning Noun Phrase Query Segmentation. In Pro-

ceedings of the Conferenceon Empirical Methods on Natural Language Processing and

Computational Natural Language Learning(EMNLP-CoNLL 07). 819-826.

[2] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic Parsing via

Staged Query Graph Generation: Question Answering with Knowledge Base. In Proceed-

ings of the 53rd Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing (Volume 1: Long

Papers). 1321-1331.

[3] Bin Tan and Fuchun Peng. Unsupervised Query Segmentation Using Generative Language

Models and Wikipedia. In Proceeding of the 17th international conference on World Wide

Web (WWW ’08). 347-356.

[4] Mustafa Gokce Baydogan, George Runger, and Eugene Tuv. A Bag-of-Features Frame-

work to Classify Time Series. IEEE Trans Pattern Anal Mach Intell 25(11). 2796-2802.

[5] T. Warren Liao. Clustering of time series data-a survey. Pattern Recognition Volume 38,

Issue 11, November 2005. 1857-1874.

[6] Abdullah Mueen, Eamonn Keogh, and Neal Young. Logical-Shapelets: An Expressive

Primitive for Time Series Classification. KDD, 2011, 1154-1162.

[7] Patrick Schafer and Ulf Leser. Fast and Accurate Time Series Classification with

WEASEL. [Online]. Available: https://arxiv.org/abs/1701.07681

[8] Lexiang Ye and Eamonn Keogh. Time Series Shapelets: A New Primitive for Data Min-

ing. KDD, 947-956.

[9] Rohit J. Kate. Using dynamic time warping distances as features for improved time series

classification. DataMining and Knowledge Discovery, online first, 2015.

41

[10] Wong, Li, and Wang. Intelligent building research: a review. Automat

Constr2005;14(1):143-59.

[11] Flax. Intelligent Buildings IEEE CommunicationsMagazine, (1991 (April)) 24-27.

[12] Miro Mannino and Azza Abouzied. Expressive Time Series Querying with Hand-Drawn

Scale-Free Sketches. In Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems, CHI 18. 388:1-388:13. ACM, New York, NY, USA, 2018.

[13] Harry Hochheiser and Ben Shneiderman. A Dynamic Query Interface for Finding Pat-

terns in Time Series Data In Proceedings of ACM SIGCHI Conference on Human Factors

in Computing Systems (CHI03). 522-523, 2003.

[14] Wikipedia, the Free Encyclopedia. File:Wikipedia-n-zipf.png. Wikipedia, the Free En-

cyclopedia, 04/06/2019. Web.

[15] Melanie Swan. Sensor Mania! The Internet of Things, Wearable Computing, Objective

Metrics, and the Quantified Self 2.0. J. Sens. Actuator Netw.,vol. 1, no. 3, 217-253, 2012.

[16] Dave Evans. The Internet of Things. 2011. Cisco Blog. Available online:

http://blogs.cisco.com/ news/the-internet-of-things-infographic/.

[17] Cisco. Cisco Global Cloud Index: Forecast and Methodology, 20162021 Available

online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-

cloud-index-gci/white-paper-c11-738085.html.

[18] Deborah Snoonian. Smart buildings. IEEE Spectr., vol.40, no.8, 18-23, Aug. 2003.

[19] Miriam Fernndez, Vanessa Lpez, Marta Sabou, Victoria Uren, David Vallet, Enrico

Motta, Pablo Castells. Semantic search meets the Web. Proceedings of the 2nd IEEE

International Conference on Semantic Computing (ICSC 2008). 253-260.

42

