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Abstract

The key protocols, TCP and IP, underlying the Internet were invented and introduced into

ARPAnet, a precursor to the Internet, in the 1970s. The very success of these protocols has

constrained the introduction of new high-throughput, low-latency and/or scheduled-delivery

network services. While many green-field network designs have proven to be better suited

for these types of high-performance services, these designs have been difficult to deploy

incrementally into the Internet. Therefore, in this study, we designed and evaluated new

networking services, taking into account deployment constraints, so that these services can

be introduced incrementally into different regions of the Internet for improved application

performance. This is an evolutionary approach to enabling services on deployed networks

to improve application performance rather than a revolutionary “design-a-new-network”

approach.

Given the large number of network technologies and even larger number of deployed

networks, we selected networks within the following three categories: (i) datacenter networks,

(ii) Wide-Area Networks (WANs), and (iii) Local-Area Networks (LANs). For each network

type, we defined problems that address specific application needs, and proposed and evaluated

our evolutionary solutions. For the datacenter networks, we tackled the problem of measuring

congestion in InfiniBand production clusters, where congestion is known to reduce the

performance of parallelized applications. For WANs, we proposed new network services to

support high throughput for large data transfers, and scheduled delivery for delay-sensitive

transfers. Finally, for LANs, we focused on the performance of Virtual Desktop (VD)

applications. New methodologies are needed to evaluate advances in VD technologies,

the results of which would allow for better engineering of VD deployments for improved
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application performance.

In datacenter networks, low-latency communications are required for scientific, highly

parallelized applications. Furthermore, predictable execution times are essential for workflow

management. Since HPC clusters deployed by the scientific community use InfiniBand

networks, our study targets these networks. Network congestion has been identified as one

of the main reasons for performance variability of highly parallelized applications. Charac-

terizing network congestion events will help network administrators identify bottlenecks, and

accordingly deploy congestion-control solutions. We developed a methodology for measuring

congestion and executed this methodology in a production, highly utilized, InfiniBand cluster

called Yellowstone, in which congestion control is currently disabled due to a lack of proven

techniques for countering congestion.

Methods for achieving high throughput across WANs are necessary for decreasing transfer

times of large datasets. WAN provider links are often operated at low utilization levels,

which leaves large unused capacity (headroom). Leveraging this observation, we propose

using Software Defined Networking (SDN) controllers to support novel Static Headroom (SH)

and Dynamic Headroom (DH) services. These services allow customers to fill the headroom

and achieve high throughput without adversely affecting the provider’s ability to meet its

Best-Effort (BE) service-level agreements. Our solution calls for the use of lower-priority

service for large data transfers, and is designed to operate in currently deployed networks

with minimal changes.

To allow scheduled delivery of large datasets across WANs, we developed Calibers:

Calendar and Large- scale Bandwidth Event-driven Simulations. Calibers leverages SDN-

based network architectures and flow pacing algorithms. It uses techniques to intelligently

and dynamically shape flows to maximize the number of flows that meet their deadlines

while simultaneously improving network resource utilization.

LAN connections are used to offer users VDs from edge-cloud computers to user-owned

I/O devices. Zero clients are custom, hardware units with no CPUs, which are designed

to enable high-performance delivery of VDs to user-owned I/O devices. We measured the

performance of VDs accessed through zero clients to study the feasibility of using this

solution to provide desktop-PC experience for disadvantaged communities as a part of a
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smart-city service. Current deployments of such services are constrained by the inability to

run monitoring software packages at the zero clients to assess performance. Therefore, we

introduced a new metric and methodology to measure VD performance based on analyzing

network traffic, and conducted objective and subjective studies to explore the feasibility of

such a solution to provide users a desktop-PC experience from edge clouds.
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Chapter 1

Introduction

This chapter gives a high-level overview of the research work presented in this dissertation.

Section 1.1 provides the high-level background and motivation for the work. Section 1.2

defines the high-level problem statement, solution approach and hypothesis. The next four

sections discuss problems that address specific application needs in the context of datacenter

networks (Section 1.3), Wide-Area Networks (WANs) (Sections 1.4 and 1.5), and Local-Area

Networks (LANs) (Section 1.6). The key contributions are listed in Section 1.7, and Section

1.8 presents the overall layout of the dissertation.

1.1 High-level background and motivation

The key protocols, TCP and IP, underlying the Internet were invented and introduced

into ARPAnet, a precursor to the Internet, in the 1970s. Changes to these key protocols

were implemented during the early development of the network in response to immediate

pressing problems. For example, congestion control was developed due to the congestion

collapses in the mid 1980s [6]. Other changes include addition of Domain Name System

(DNS) and the deployment of the inter-domain routing protocol, Border Gateway Protocol

(BGP) [7]. Large-scale changes were only feasible during the early stages. For instance, the

reliable-transport feature was separated from the Internet Protocol (IP) and implemented

in TCP. This change to the core network occurred in one day in 1983 where four hundred

1
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nodes were switched to use TCP/IP. That was the last time such a switchover happened in

one day [7].

No significant changes to the core protocols have occurred since 1993 [7] as the network

grew in size and deployment of new protocols became difficult. Attempts have been made, but

have not resulted in large-scale deployments. For example, Explicit Congestion Notification

(ECN) was standardized, but it is not widely deployed; IPv6 and related protocols have been

developed over the last two decades, but the current global IPv6 traffic remains low [8,9].

The IPv6 traffic share at major Internet eXchange Points (IXPs) was reported to range

between 1-2% in a 2017 study [8]. Google March 2019 statistics [10] show that 22.57% of

user accesses to Google are via IPv6 addresses, and 30 countries have an IPv6 adoption rate

greater than 15%. These studies indicate that a long technology-adoption phase was needed

as IPv6 was standardized in the late 1990s.

Besides making core changes to the currently deployed network, other work targeted

challenges, such as the introduction of Quality-of-Service (QoS) guaranteed delivery by

designing a new networking technology called Asynchronous Transfer Mode (ATM). While

ATM and other green-field network designs proved to be better suited for newer types of

network services, these designs have been difficult to deploy incrementally into the Internet.

For example, given the global scale of the Internet with its IP routers, it was not cost

effective to switch over to ATM networking.

Despite these previous failures to incorporate new networking technologies into the

Internet, in 2010, the National Science Foundation (NSF) launched a Future Internet

Architectures (FIA) research program [11]. The concept of Named Data Network (NDN)

was introduced by one of the FIA projects [12]. Ever since, many research studies have been

conducted to develop solutions to support NDN networks.

In addition, there have been ongoing conversations within the networking research

community about whether to support the development of clean-slate designs or incremental

evolutionary approaches [13]. Our work does not compare these approaches; rather it just

takes the second approach of designing solutions to improve existing network services while

considering constraints imposed by the current deployment.
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1.2 High-level problem statement and hypothesis

The problem statement of this study was to design and evaluate new networking services,

while taking into account deployment constraints, so that these new services can be introduced

incrementally into the Internet for improved application performance. This is an evolutionary

approach to enabling services on deployed networks to improve application performance

rather than a revolutionary green-slate “design-a-new-network” approach.

A general solution approach to tackle this problem consists of the following steps:

1. develop new metrics and methods if needed, and collect measurements to quantify

application performance in deployed networks,

2. design and evaluate solutions in experimental, emulated, or simulated environments to

improve application performance, and

3. finally, deploy the designed solutions.

In this PhD research, depending on the context, we focused on step 1 or 2 of this general

solution approach, as step 3 is out-of-scope.

The overall hypothesis of this research is as follows: under low to moderate loads, it is

feasible to introduce new network services with an evolutionary approach that can improve

the performance of applications. This hypothesis is tested in different contexts, each of

which addresses a specific application need for improved performance.

Given the large number of network technologies and even larger number of deployed

networks, we selected four examples in the context of the following three types of networks:

(i) datacenter networks, (ii) Wide-Area Networks (WANs), and (iii) Local-Area Network

(LANs). Section 1.3 identifies an application problem in the usage of InfiniBand datacenter

networks, and presents our solution for collecting measurements to quantify the extent of the

problem (step 1 of the solution approach). Section 1.4 presents two new high-throughput

services to support large data transfers across WANs; and Section 1.5 offers a solution for

scheduled delivery across WANs (step 2 of the solution approach). Section 1.6 identifies a

problem with how to collect measurements that quantify the performance of virtual-desktop

services across LANs, and offers a solution (step 1 of the solution approach).
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InfiniBand Solutions – TOP100, 200, 300, 400, 500
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Figure 1.1: Cluster interconnect of the Top500 list including only HPC Systems (excluding
Cloud, Hyperscale, and other types of systems) [1]

1.3 Datacenter network: InfiniBand measurement study

InfiniBand is a high-bandwidth, low-latency packet-switched networking technology designed

for data centers and High Performance Computing (HPC) clusters. InfiniBand HPC clusters

are widely deployed. In November 2018, InfiniBand was reported as the cluster interconnect

of choice in 27% of the Top500 clusters [14], where the top three fastest systems use InfiniBand

technology. Fig. 1.1 shows the interconnect of choice for HPC clusters in the Top500 list,

where InfiniBand is seen to be used in a majority of the Top500 HPC systems.

After describing how InfiniBand achieves low latency, and why low latency and low

execution-time variability are important to scientific applications, we describe how InfiniBand

performs flow control and congestion control, both of which contribute to execution-time

variability.

InfiniBand achieves low latency because the protocol layers from the transport layer

to the physical layer are implemented in hardware. The transport layer is implemented in

hardware in the Host Channel Adapters (HCAs) at the end nodes, while the other lower

layers are implemented in all HCAs and switches. The features that specifically enable low-

latency communications include: (i) zero-copy: allows memory-to-memory direct transfers

without software based copying in end-host memory; (ii) small switch buffers: packets

experience smaller queueing delays at switches, but packets can be held up at the sending
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Figure 1.2: Execution time variation for a climate application running on an InfiniBand
HPC cluster

ends of links if there are insufficient flow-control credits from the receiving ends; message

passing: there is no concept of byte streams, and therefore, no overhead is incurred in

tracking message boundaries within streams; and kernel bypass: allows user-level access

to the HCA with no operating-system interrupts during data transfers.

Low latency and low execution-time variability are important to scientific applications,

such as climate models. These applications run in HPC clusters and are highly parallelized to

execute on thousand or more cores. Message Passing Interface (MPI) is the primary software

library by which HPC applications portably pass messages between processes of a parallel

program. MPI calls, such as MPI Barrier or MPI Waitall, are used for synchronization

of the processing actions performed by different processes. When a process reaches a

synchronization call, it has to wait for all the other processes to complete before proceeding.

Such stalls in processing can noticeably increase the total execution time of an application.

Fig. 1.2 shows an example of execution time variability for the Community Earth System

Model (CEMS) running on an HPC cluster. The high variability in execution time leads

to unpredictable performance. When submitting a job to an HPC cluster, the user needs

to estimate and specify the time required to run the job. If the job takes longer than the

estimated time, the cluster scheduler can terminate the job before the job completes. On
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the other hand, overestimating a job execution time degrades the cluster utilization and

scheduler efficiency.

InfiniBand uses link-by-link flow control to avoid losses in switch buffers. A switch port

is not allowed to transmit packets unless the corresponding receiving port has sufficient

buffer space. The receiving port sends a Flow Control Packet (FCP) indicating how much

space is left in its buffer. If the receiving buffer is full, the transmitting port has to wait until

it receives an FCP from the receiver. While this mechanism avoids the end-to-end delays

incurred with retransmissions in TCP, InfiniBand’s link-by-link flow control mechanism

could cause congestion to spread in the network, which in turn, could impact application

performance.

Network congestion in HPC clusters has been identified as one of the main reasons for

performance variability of highly parallelized applications [15,16]. In order to improve the

performance of MPI applications, achieve predictable performance, and increase cluster

utilization, solutions are needed to address congestion. Following the high-level solution

approach described in Section 1.2, measurements are needed to quantify congestion events

in production HPC clusters and methods for handling congestion are required if the mea-

surements show congestion to be an issue. In our research group, a Dynamic Congestion

Management System (DCMS) [4] was proposed to avoid network congestion spread through

a network to prevent victim flows (flows not contributing to the congestion event) from

experiencing reduced throughput. When DCMS detects victim flows, it aggressively reduces

the sending rates of congestion-contributing flows to allow victim flows to pass through

congested ports. However, a methodology is needed to measure congestion to determine

the extent of congestion in deployed InfiniBand networks (step 1 of the high-level solution

approach). In most InfiniBand HPC clusters, congestion control has beed disabled because

of its complexity and the lack of a proven study that provides guidance on how to set

congestion-control parameters [17]. Hence, for this work, we answer the question of how to

measure and characterize congestion events in InfiniBand HPC clusters given the deployment

constraint of disabled congestion control.
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1.4 WAN: High-throughput bulk data transfers

Large datasets are generated every year at an exponentially increasing rate. For example, the

A Toroidal LHC ApparatuS (ATLAS) experiment, conducted on the Large Hadron Collider

(LHC), located near Geneva, Switzerland, generates a 100-MB dataset each second, which

adds up to about 1 PB each year [18]. The European Bioinformatics Institute (EBI) in the

UK, which is one of the world’s largest biology-data repositories (include genes, proteins,

and small molecules datasets) store more than 200 PB of raw data and backups [19]. A

total of 3.5 PB were downloaded from EBI datasets in 2016 [20]. These large datasets are

transferred to supercomputing facilities and laboratories across the world for processing and

analysis. Data backups are another source of large WAN transfers.

To accommodate the long-term growth in data volume, Internet Service Providers (ISPs)

upgrade the capacity of their network links to maintain an average utilization level of

30%-40% [21]. ISP customers are limited to the sending rate specified in their access-link

Service-Level Agreements (SLAs). For example, a customer may pay connectivity charges

for a 1 GE port on the provider network, but have an SLA with Committed Information

Rate (CIR) set to 200 Mbps and Peak Information Rate (PIR) set to 600 Mbps. The

customer could have occasional, delay-tolerant large data transfers, e.g., backups. However,

the customer would be limited to 600-Mbps throughput, while simultaneously intra-domain

provider links would remain underutilized.

This work answers the question of how to allow WAN delay-tolerant transfers to achieve

high throughput while allowing providers to leverage their underutilized links. By following

the general solution approach outlined in Section 1.2, we first analyzed network traces

collected by CAIDA [5] on several backbone links. Our data analysis showed that links are

underutilized. We also ran simulations to determine whether occasional bulk data transfers

that fill underutilized links could have adverse effects on background traffic, and found this

to be the case. But with traffic engineering, i.e., controlling the paths taken by bulk transfers,

the adverse impact on background traffic can be limited. Therefore, we designed headroom

services that use traffic engineering to allow occasional, delay-tolerant data transfers to reach

high throughput without impacting best-effort flows.
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Figure 1.3: Achieved throughput with and without packet loss across different delays with
10 Gbps link [2]

1.5 WAN: Delay-sensitive data transfers

In contrast to delay-tolerant data transfers, delay-sensitive data transfers are required for

another set of applications. Delay-sensitive data transfers require scheduled delivery, which

is not offered by the best-effort IP services of the Internet. For example, researchers reserve

computing resources in HPC systems for data analysis. Without scheduled-delivery services,

it is difficult to estimate the time needed to transfer datasets from storage systems to

the HPC sites. If a researcher overestimates this time, then the HPC cluster would be

underutilized, and computing resources would be wasted. A study on four production

systems (Intrepid at Argonne National Laboratory (ANL), Blue Horizon at the San Diego

Supercomputing Center (SDSC), IBM SP2 at the Cornell Theory Center (CTC) and Linux

cluster at High Performance Computing Center North, Sweden (HPC2N)) showed that on

all four systems, it is common for a significant percentage of system resources (20% to 80%

of nodes) to be idle while there are other jobs waiting in the queue. Such underutilization

occurs because users overestimate job completion times [22].

TCP is the standard protocol used for reliable bulk-data transfers. TCP’s typical

“sawtooth” behavior, which results from the TCP sender increasing and decreasing its

sending rate based on estimated path congestion, leads to a lack of predictability in meeting

deadlines. Fig. 1.3 shows the achieved throughput of a transferred file under different

network conditions. With no packet loss, the transfer experienced a throughput of 8 Gbps

on a path with bottleneck link capacity of 10 Gbps and Round-Trip Time (RTT) of 90 ms.

With a packet loss rate of 0.0046% and an RTT higher than 10 ms, the transfer achieved a
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throughput around 1 Gbps, even with the HTCP transport protocol which is designed for

paths with high bandwidth-delay products [23].

Another feature of TCP, fair sharing of link capacity, makes it difficult to support

scheduled-delivery services on the Internet. This is because, given the goal of fair sharing,

no single flow can be assigned a higher fraction of link capacity than other flows, and there

is no admission control to limit the number of concurrent flows.

To answer the question of how to support scheduled delivery for transfers while maintain-

ing high network utilization, we followed the general solution approach of Section 1.2. First,

we collected measurements on the Energy Sciences Network (ESnet) testbed [24] by running

experiments. The experimental study was conducted by our collaborators at the University

of California, Davis, and ESnet. The testbed closely resembles ESnet’s high-speed production

network in both hardware and topology, as it is an overlay on the ESnet production WAN.

An experiment was conducted with two transfers: (i) 5 GB file over a long RTT path, with

a critical delivery window of 2-min, and (ii) 10 GB file over a shorter RTT path with a less

strict deadline. Both file transfers shared a 500 Mbps bottleneck link. With HTCP’s “fair”

operation configured, the flows should complete in roughly the same time, as the differences

in latency counteract the differences in file size. However, if the critical flow was paced to

(assigned a sending rate of) 380 Mbps and the non-critical flow was assigned 120 Mbps, the

critical flow will complete within its deadline, the available bottleneck bandwidth will then

be relinquished, and the non-critical flow will still complete. Fig. 1.4 shows the results of

the experiment. The critical deadline for the 5 GB file is shown with a vertical dashed line.

Results for both the paced and unpaced scenarios of the experiment are shown. In both

cases, the 5 GB and 10 GB files are transmitted simultaneously. In the unpaced case, much

of the link capacity is wasted initially as the two hosts, located thousands of miles from the

bottleneck, attempt to negotiate their equal share of the link. In the paced case, however,

the link sharing is efficient and the critical-flow reached its destination within its deadline.

This experimental study addressed the first step (collecting measurements) in our general

solution approach. In this research, we addressed the second step in our general solution

approach, which is to design and evaluate a solution for offering a scheduled-delivery network

service. For this new service, we developed scheduling algorithms to support deadline-based
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Figure 1.4: Flow completion times of two file transfers sharing a bottleneck link. The vertical
line is the deadline for the 5 GB file [3]

delivery of files while maximizing network utilization. The solution works with current

deployed network by leveraging Linux systems and router pacing algorithms that allow for

the assignment of a specific rate to each flow. The proposed algorithms were evaluated with

simulations.

1.6 LAN: Virtual desktop measurement study

Virtual Desktop (VD) technologies have been developed in the past ten years. This computing

paradigm includes four main parts: (i) an edge-cloud server to host the virtual desktops, (ii)

an end-user device to access a virtual desktop, (iii) a LAN connecting a virtual desktop to

the end-user device, and (iv) a remote desktop protocol to deliver the display content to

the end-user video monitor, and receive keyboard and mouse input from the corresponding

end-user devices. End-user devices could vary from thin clients to custom hardware units,

called zero clients, which run remote desktop protocols, encryption and video decompression.

Zero clients typically do not have general-purpose processors or operating systems, making

them less vulnerable to cyberattacks. Latency considerations for VD applications made us

focus on offering VD services at edge-cloud servers across LANs.
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Zero clients have been in limited use today. Most zero-client deployments are in the

health, business, or education sectors, where a specific set of applications are expected

to be used. The use of zero clients is appealing for the potential of these devices to

deliver high-performance computing experiences at favorable costs. Zero clients, with shared

computing resources at servers, could be used to provide computing services to disadvantaged

communities. These services can be provided as a part of a smart-city deployment as an

effort to achieve community social inclusion. However, application performance when using

zero clients and VD service has not been characterized before in experimental studies.

To address this question of how to design VD services over existing LANs (limited by

technology and deployment constraints) to improve desktop application performance, we

followed the general solution approach described in Section 1.2. In this work, we addressed

step 1 of the general solution approach, i.e., measuring the performance of VD applications.

Measuring the performance of VD applications delivered through zero clients is challenging.

This is because zero clients do not include general-purpose CPUs, typically required for the

installation and execution of performance-monitoring software packages. Running monitoring

software packages at the edge-cloud servers alone is insufficient for accurate user-perceived

performance measurement. Nevertheless, most of the computing tasks are performed on the

edge-cloud server, where display pixels are encoded and sent to end-user devices over a LAN.

Performance degradation could occur when the display-update pixels travel through the LAN.

For example, Casas et al. [25] showed that a virtual desktop provided by XenDesktop and

accessed by Citrix client running on a laptop suffered from an increase by 5x in the response

time to change the display image when RTT increased to 50ms, indicating a significant

network impact on performance. The Casas et al. study was conducted with laptops used

as the end-user devices, which allowed for the execution of performance monitoring software.

Therefore, methods are needed to quantify VD-application performance, while considering

the constraints posed by the processor-less zero clients. Based on our measurements, we

identified a need to carry out step-2 of the general solution approach, which is to develop

methods to improve the design of VD services in order to offer users high-quality application

performance at affordable costs.
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1.7 Key Contributions

The key contributions of this work are as follows.

1. We developed a methodology for measuring congestion and executed this methodology

in a production, highly utilized, InfiniBand cluster called Yellowstone. This work

was published in the IEEE Network Traffic Measurement and Analysis Conference

(TMA) [26].

2. We proposed two new Internet provider services to allow high-throughput large transfers:

Static Headroom (SH) service, and Dynamic Headroom (DH) service. Large-transfers

packets using these headroom services are tagged with a low-priority Class Selector

(CS) to avoid adverse effects on other flows. This work was published in the IEEE

23rd Asia-Pacific Conference on Communications (APCC) [27].

3. We developed Calibers: Calendar and Large-scale Bandwidth Event-driven Simulation,

for deadline-specific scientific large-data transfers. We proposed four heuristic algo-

rithms and compared their performance. This work was published in the IEEE/ACM

Innovating the Network for Data-Intensive Science (INDIS) workshop [3]. The work

was then extended and published in a Elsevier Future Generation Computer System

(FGSC) journal paper [28].

4. We conducted objective and subjective studies on desktop/edge computing for smart

cities and communities. A new objective performance metric, Virtual Desktop Display

Update Time (VD-DUT), was proposed. This work includes the first subjective,

large-scale study on zero-client performance, where subjective measurements were

correlated to objective measurements. This work is in preparation to be submitted to

IEEE Access journal.

1.8 Dissertation Organization

This dissertation is organized into six chapters. Background, motivation, problem statement,

and a summary of the key contributions are provided in this chapter.
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Chapter 2 presents a measurement-based study on network congestion conducted in a

production, highly utilized, InfiniBand 72-K core cluster called Yellowstone. A methodology

was developed to measure congestion events in clusters with disabled congestion control.

This methodology was used to characterize congestion events in Yellowstone, and our results

and findings are presented and discussed.

Chapter 3 presents the design of static and dynamic SDN-enabled headroom services.

A simulation study was conducted to compare the two services. Results, analysis, and

advantages of these services are discussed in this chapter.

Chapter 4 describes the Calibers architecture and scheduling algorithms. Four heuristic-

based algorithms are proposed, and a simulation study is presented in this chapter, along

with results and analysis.

Chapter 5 presents objective and subjective studies on application performance over

virtual-desktop services offered with edge-cloud servers and zero clients at user locations.

The chapter describes the methodology used for each study and quantifies the correlation

between the objective and subjective measurements.

Chapter 6 summarizes our work, discusses potential future work, and concludes the

dissertation.



Chapter 2

A Measurement Study of

Congestion in an InfiniBand

Network

2.1 Introduction

InfiniBand was reported as the cluster interconnect of choice used in the majority of the

Top500 HPC systems [1]. InfiniBand is a switched networking technology that is designed

for lossless, low-latency communications. For highly parallelized MPI applications that

are executed on HPC systems, communication delays can become the key determinant of

application execution time when computing cores are not limited.

The InfiniBand link-by-link flow control, which is effective in preventing losses in switch

buffers, has an insidious side effect of causing congestion to spread in the network. When an

output port P1 of a switch becomes congested, the input-side buffer of another port P2 of

the same switch could fill up. This will cause the port of the upstream switch connected to

port P2 to be denied flow-control credits, thus effectively reducing the rate of the upstream

port. Such a port is referred to as a “victim port” and flows passing through victim ports

become “victim flows” (bulk-data flows suffer reduced throughput, and short-messages suffer

increased delays).

14
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Studies have shown that network effects, e.g., congestion, can increase variability of the

total execution time for large core-count applications [15]. Therefore, many research papers,

[4, 17, 29–36], have modeled, analyzed, and proposed solutions for InfiniBand congestion

control, and evaluated these solutions using simulations or experiments on small testbeds.

In this chapter, we report on a measurement study of congestion in a production HPC

cluster. To the best of our knowledge, no such measurement study has been reported in

prior work. It is challenging to characterize congestion events because supercomputing

centers typically disable congestion control in their InfiniBand clusters. The reason cited for

disabling congestion control is that there is no proven study that provides guidance on how

to set congestion-control parameters [17]. Therefore, a measurement study of congestion in

a production network is not easy.

Specifically, our measurement-based study of congestion was carried out on a highly

utilized 72K-core machine called Yellowstone. The Yellowstone network is a fat-tree topology,

which consists of Top-of-Rack (ToR) switches, leaf switches, and spine switches. In addition

to the main cluster of compute nodes, there is a disk I/O subsystem, and a data analysis

and visualization subsystem. A methodology based on observing a port counter called

PortXmitWait is proposed. For data analysis, a new metric called Forced Idle Time Fraction

(FITF) is defined.

Our key contributions are as follows. (i) Our methodology and software offers a means

for network administrators to obtain a conservative gauge of the level of congestion in a

production network on which congestion control is disabled. (ii) We expected congestion to

be predominantly in the disk I/O system, but found that ports in the compute-node cluster

also suffered from congestion. In about 60% of the 100-ms intervals in which ToR-switch

ports were observed, the ports were stalled waiting for flow-control credits. While in most

100-ms intervals, a port was denied flow-control credits for less than 10% of the interval, there

were some instances in which a port was denied credit for significant portions (in the range

60-80%) of the 100-ms interval, with several intervals reaching 100%. Such long stalls in data

transmission can impact the completion time of one or more MPI ranks adversely, which

can increase execution time of highly parallelized communication-intensive applications that

have MPI Barrier calls for synchronizing MPI ranks. The material presented in this chapter
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is an excerpt from our published work A measurement study of congestion in an InfiniBand

network [26] c©2017 IEEE.

Section 2.2 provides background information on InfiniBand and Yellowstone. Section 2.3

describes our measurement study (methodology, data analysis, and metrics). The numerical

results are presented in Section 2.4, and the impact of our findings is discussed in section

2.5. Section 2.6 reviews related work, and the chapter is concluded in Section 2.7.

2.2 Background

This section provides background information on InfiniBand networks, and describes the

Yellowstone system.

2.2.1 InfiniBand

InfiniBand is a packet-switched networking technology designed for high-speed low-latency

operation. Packet headers carry 16-bit source and destination Local Identifiers (LIDs), and

packets are forwarded by switches with a destination-LID-based table lookup. A centralized

subnet manager computes and downloads forwarding tables to the switches. To avoid

packet loss, a link-by-link flow-control scheme is used. A transport-layer congestion-control

mechanism includes actions at switches, receiving hosts, and sending hosts.

As mentioned in Section 1.3, in the link-layer protocol, a transmitter (switch port or

host port) is not allowed to send out packets unless the corresponding receiving port has

sufficient buffer space. The receiving port sends a FCP indicating how much space is left in

its buffer. If the receiving buffer is full, the transmitter has to wait until it receives an FCP

from the receiver.

Congestion control in InfiniBand is based on Explicit Congestion Notification (ECN).

The mechanism used to detect congestion at a switch port is not defined in the InfiniBand

specification, but rather, it is left up to the vendors. When congestion is detected on a port

P , packets transmitted out on port P are marked by setting the Forward ECN (FECN) bit

in the transport-layer header. The rate at which the packets are marked is controlled by a

configurable parameter called the Marking Rate. When a receiving host receives marked
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Figure 2.1: Illustrative InfiniBand Network [4]

packets for a flow, it sets a Backward ECN (BECN) bit in the acknowledgment (ACK) or

other packets that are being sent in the opposite direction. When the sending host receives

a BECN-marked packet for a particular flow, the sender reduces its sending rate according

to a mechanism that dynamically adjusts inter-packet injection delay.

To understand how the link-by-link flow control mechanism causes the effects of a port’s

congestion to spread even to ports that have no shared flows with the congested port, consider

the example shown in Fig. 2.1 [4]. Assume that port p of switch s becomes congested because

the aggregate incoming rate of packets destined to port p exceeds the port capacity. This can

happen when multiple high-throughput transfers (e.g., disk read/write and checkpointing)

destined to the same switch port occur concurrently, as demonstrated in experiments in

our prior work [4]. Now, assume flow F1 traverses ports j and q of switch r and ports v

and p of switch s. When port p gets congested, the buffer on the incoming side of port v

of switch s will start to fill up with flow-F1 packets. When this buffer fills up, the rate at

which FCPs are generated by port v of switch s to port q of switch r, to offer the latter

credits for packet transmission, will decrease. Effectively, the rate of port q of switch r is

lowered. Now, consider flow F2, which traverses ports k and q of switch r and ports v and

w of switch s. The rate of F2 will be reduced even though this flow does not traverse the

congested port p. Flow F2 is a victim flow, and port q of switch r is a victim port. This

example illustrates how the presence of the link-by-link flow control algorithm causes the

effects of a congested port to spread to other parts of the network.

This type of spreading of the effects of a congested port does not occur in IP/Ethernet

networks. This is because in IP/Ethernet networks, when a switch buffer is full, packets

are simply dropped. There is no credit-based flow control mechanism, and therefore a link

transmitter can freely send packets to a link receiver causing a buffer to overflow. This
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Figure 2.2: Yellowstone topology

approach has the advantage of not creating victim ports. Consider the example of flows F1

and F2 shown in Fig. 2.1. If the switches were Ethernet-based or IP routers, when port

p of switch s becomes congested, its buffer will overflow, which causes F1 packets to be

dropped. Flow F2, which is not destined to the congested port p, will not experience any

dropped packets and hence will be unaffected, unlike in the InfiniBand network. However, if

flow F2 also used port p, it would suffer packet losses. Therefore, there are victim flows in

TCP/IP networks but not victim ports; the latter is worse as flows that do not even traverse

the congested port become victimized.

Therefore, the work presented here is only relevant to InfiniBand-based HPC systems,

which as noted in Section 2.1, is deployed widely in academic, research and government

institutions. Commercial datacenters typically use Ethernet-based interconnects. The reason

for this difference is that parallel programs written for scientific research typically use MPI

and require low-latency communications, while commercial datacenters typically support

applications that use TCP sockets for communications.

2.2.2 Yellowstone

Yellowstone is a high-performance IBM iDataPlex cluster, where the network interconnect is

a Mellanox InfiniBand full fat-tree. All links carry 4-lane Fourteen Data Rate (FDR) (56

Gbps) signals.

Fig. 2.2 shows the Yellowstone topology. Each ToR switch has 36 ports, 18 of which are
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Figure 2.3: Glade subsystem topology

connected to compute hosts, and the remaining 18 are connected to leaf switches in ORCA1

racks. Each ToR switch with its 18 compute hosts is called an A-group. The term B-group

is used to represent a group of 18 A-groups. All ToR switches in a B-group are connected to

the same two leaf switches of an ORCA rack, which consists of 29 leaf switches and 18 spine

switches. For example, ToR1 to ToR18 of B-group 1 are connected to Leaf 1 and Leaf 2 of

ORCA 1, Leaf 30 and Leaf 31 of ORCA 2, etc. In other words, all ToR switches of B-group

1 are connected to the first two leaf switches of each of the 9 ORCAs. Similarly, ToR19 to

ToR36 of B-group 2 are connected to Leaf 3 and Leaf 4 of ORCA 1, Leaf 32 and Leaf 33 of

ORCA 2, etc. Each leaf switch also has 36 ports, 18 of which are connected via downlinks

to ToR switches, and the remaining 18 are connected to spine switches of the same ORCA

rack to which the leaf switch belongs.

There is a disk I/O subsystem shown as Centralized Filesystems and Data Storage

(CFDS) in Fig. 2.2. This system is named “Glade.” The Glade leaf switches are connected

to the 29th leaf switch in each ORCA as shown in Fig. 2.3. There is also a Data Analysis

and Visualization (DAV) subsystem, which is connected to the CFDS subsystem, as shown

in Fig. 2.2.

Fig. 2.3 shows the details of the Glade disk I/O subsystem (marked as CFDS in Fig. 2.2).

The Glade subsystem has 6 Glade spine and 4 Glade leaf switches, which are connected to

GPFS Network Shared Disk (NSD) servers.

1ORCA does not appear to be an acronym.
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2.3 Measurement study of congestion

This section describes the basis for our methodology, the data collection process executed on

Yellowstone, our data analysis method, and the definition of a new metric used as a proxy

measure for congestion.

2.3.1 Basis for methodology

InfiniBand switches implement two types of port counters among others, namely, PortXmitCong

Time, and PortXmitWait. PortXmitCongTime is the amount of time a port has spent in a

congested state, while PortXmitWait indicates the amount of time a port has data to send

but lacks flow-control credits.

If an administrator disables congestion control, as is the case on the Yellowstone system,

PortXmitCongTime counters will not register any values, and hence cannot be used to

measure congestion. However, we contend that PortXmitWait counters can be used as a

proxy indicator for congestion, and offer the following justification.

First, how does a switch decide that a port is congested? As noted in Section 2.2,

the specific mechanism used to detect congestion is left up to vendor implementation. An

approach proposed by Gran and Reinemo [32] for congestion detection is as follows: when

the fill-ratio of an input-port Virtual Output Queue (VOQ)2 holding packets destined to a

particular output port exceeds a certain predefined level, the switch will consider the output

port to be congested. The predefined level for fill ratio is related to the InfiniBand standard

congestion-control parameter called Threshold. This parameter controls how quickly a

switch reacts to congestion, with a value 15 indicating the fastest reaction to congestion

onset, and a value 0 for disabled congestion control. Therefore, whether a switch declares a

port to be in a congested state or not (i.e., whether or not packets sent on that port should

be marked with FECNs) is dependent on these parameters. The PortXmitCongTime counter

increases for ports declared to be in a congested state.

Second, if the PortXmitWait counter of an upstream port increases, does it necessarily

mean that there is congestion on some corresponding downstream switch port? The answer

2VOQs are used to avoid the Head-of-Line (HOL) blocking problem.
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is yes. The PortXmitWait counter of an upstream port (e.g., port q of switch r in Fig. 2.1)

increases only when the transmitter has no flow-control credits from the receiver to send

packets. This can only happen if the whole input-side buffer of the corresponding receiving

port (e.g., port v of switch s) is full. But if the input-side buffer is full, it means that

irrespective of the Threshold parameter setting, the fill ratio of at least one VOQ in this input-

side buffer is guaranteed to have crossed the threshold by the time the downstream switch

denies flow-control credits to the upstream switch. In other words, some downstream-switch

port would have been declared as being congested before a corresponding PortXmitWait

counter of an upstream switch port starts to increase.

Finally, consider the flipped question: does a downstream congested port necessarily

cause the PortXmitWait counter of an upstream port to increase? The answer is no because

the predefined level for the fill ratio of input-side VOQs of a downstream port is typically

less than 100%, which means congestion would be declared even before the input-side buffer

fills up completely, while PortXmitWait counter of the upstream port will not increase until

the corresponding receiving port has no space in its input-side buffer. The implication is that

an increasing PortXmitWait counter is a conservative monitor for congestion, not an overly

optimistic one. In other words, there were likely more congestion events than reported here

by a reading of the PortXmitWait counters. Therefore, applying our methodology, if large

and/or frequent increases in PortXmitWait counters are observed, network administrators

can be sure that there is network congestion.

In general, since InfiniBand switch buffer sizes are small, e.g., on the order of 64 KB, which

is sufficient to hold just 32 frames [37], it is likely that soon after congestion is declared for a

downstream-switch port, the PortXmitWait counter on at least one corresponding upstream

port will increase. Our group previous paper [4] presented graphs that show the simultaneous

increase in PortXmitCongTime counter of a downstream port and the PortXmitWait counter

of an upstream port. A similar observation was made in an experimental study by Subramoni

et al. [38], in which the PortXmitWait counter was seen to register increases when congestion

was caused by an All-to-All Remote Direct Memory Access (RDMA) communications event.
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2.3.2 Script implementation and execution for data collection

A Linux command called perfquery is available to read InfiniBand port counters. This

command was used to read the PortXmitWait counter of switch ports at periodic intervals.

Since the number of ports in Yellowstone is very large, and we had only limited CPU time

to run this script, we decided to observe a set of randomly selected ports for short durations

every hour. We wrote a shell script to first randomly select a switch port from across the

whole Yellowstone topology, including the Glade and DAV subsystems, and then to issue

the perfquery command to read the PortXmitWait counter of the selected port multiple

times with a specified inter-query interval, before selecting the next port for observation.

The approximately 700 switches were divided into 6 sets, to allow for concurrent moni-

toring. Six instances of the script were executed, with each script running on a different host.

The sets of switches are disjoint, and hence no script can randomly draw a port outside its

domain.

The steps executed by the script are as follows: (i) Parse the script input arguments to

obtain the lower and upper bounds of the assigned set of (approximately 115) switch LIDs.

(ii) Select a switch LID at random (using uniform distribution) from the set of assigned

LIDs, and select one of the switch ports also at random (using uniform distribution). (iii)

Execute a command to check if the selected port is in an operational state. If not, select

another switch and port. (iv) Reset the PortXmitWait counter for the selected port using

the perfquery command with the reset (-R) flag. (v) Submit a sequence of 100 perfquery

calls to read the PortXmitWait counter of the randomly selected port, with an inter-call time

spacing of 100 ms (i.e., the process sleeps for 100 ms after each command completes). Each

sequence of 100 calls is referred to as a round. In other words, each port was observed for

approximately 10 sec. (vi) Append the results of each query into an open Comma Separated

Values (CSV) file. (vii) After the 100th query, select another switch and port at random,

and repeat steps (iii)-(v).

A cron job was used to run the 6 instances of the script (one corresponding to each set

of approximately 115 switch LIDs) every hour. After 20 minutes of execution, the scripts

terminate. To prevent excessive disk I/O, the results of each perfquery are appended to a
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file that is stored on the local filesystem of the compute node on which the script is run.

When the total size of the file exceeds a threshold, the file is copied to permanent storage.

This data collection process was executed for a period of 23 days in March 2016. The

aggregate size of the CSV files was 2 GB, and each file had approximately 5M records3.

2.3.3 Data analysis

Each row in the CSV file, which we refer to as a record, stores the parameters as well as

results of one perfquery call. Record i in round r is defined to have the following fields:

{tr, sr, pr, tqr,i, t
p
r,i,Wr,i} (2.1)

where the first three parameters are common for a round r: tr is the time instant when the

100-call perfquery round r was initiated, sr is the switch LID (unique across the Yellowstone

network), pr is the port number on switch sr, where pr ∈ Psr and Psr is the set of all ports

on switch sr, and the remaining parameters are specific to a query i within round r: tqr,i

is the time recorded just before the ith perfquery call of round r was issued, tpr,i is the

turnaround time of the ith query of round r (i.e., the difference between the time recorded

when the perfquery call returns and tqr,i), and Wr,i is the PortXmitWait counter value of

port pr on switch sr at time t, where t is estimated to be (tqr,i + tpr,i/2) since the exact time

when the switch sr received the message to read the PortXmitWait counter is not directly

measurable.

All records were merged into one CSV file, and a switch-port-classification script was

executed to classify the switch LID into one of 7 categories (ToR, Leaf, Spine, GladeLeaf,

GladeSpine, DAVSpine, and DAVLeaf) based on the role of the switch in the Yellowstone

topology. The port number pr in each record was used to determine whether the port was

connected to an up or down link in the fat-tree topology of Yellowstone. For example, the

up link of a ToR switch connects the ToR switch to a leaf switch, while the down link of a

ToR switch connects the ToR switch to a host. This switch-port-classification script parsed

the output of the ibnetdiscover tool to map LIDs and ports into the 7 switch categories

3The data is publicly available at this web site: http://pages.shanti.virginia.edu/HSN/tma17-data/
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and up/down classifications, respectively, and then added two columns to each record in the

merged CSV file indicating the switch category and up/down port classification.

The augmented record, denoted Rr,i, in the merged CSV file has the following fields:

Rr,i , {σr, λr, tr, sr, pr, tqr,i, t
p
r,i,Wr,i} (2.2)

where the first two fields are new relative to the fields in the original CSV files, as specified

in (2.1). The first field σ is the switch category and has one of these 7 values: ToR, Leaf,

Spine, GladeLeaf, GladeSpine, DAVSpine, and DAVLeaf, and the second field λ represents

the port type as up or down.

2.3.4 Metrics

We define a new term Forced Idle Time Fraction (FITF), represented by Fr[i], as the fraction

of time when a transmitter is made to wait for flow-control credits from the receiver between

the ith and (i+ 1)th perfquery calls within querying round r of a switch port. FITF vector

Fr is defined as a vector with 99 entries corresponding to the 100 perfquery calls issued to

a switch port in one round.

Consider two consecutive records Rr,i+1 and Rr,i in the final CSV file that belong to the

same round r. The ith element of the vector Fr is given by:

Fr[i] =
τ (Wr,i+1 −Wr,i)

(tqi+1 +
tpi+1

2 )− (tqi +
tpi
2 )
, 1 ≤ i ≤ 99 (2.3)

where τ corresponds a system tick, which is roughly 22 ns for an FDR switch port.

The Fr vectors from the various querying rounds of different switch ports are combined

based on their σ switch category and λ port type to create a matrix Aσ,λ shown below:

Aσ,λ =



F1

F2

...

Fkσ,λ


(2.4)
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(a) Switch category: ToR, port type:
down

(b) Switch category: Spine, port type:
down

Figure 2.4: PortXmitWait build-up

where the switches in all kσ,λ rounds belong to category σ, and the queried ports belong to the

category λ. There are 11 (σ, λ) combinations C={(Spine, down), (Leaf, up), (Leaf, down),

(ToR, up), (ToR, down), (DAVSpine, down), (DAVLeaf, up), (DAVLeaf, down), (GladeSpine,

down), (GladeLeaf, up), (GladeLeaf, down)}. There are no (Spine, up), (DAVSpine, up), or

(GladeSpine, up) possibilities since Spine is the top-level of the topology.

2.4 Numerical results

Section 2.4.1 shows examples of how the PortXmitWait counter grows within a 10-sec

interval for two ports. Section 2.4.2 presents a comparison of FITF across the 11 switch-port

categories. Section 2.4.3 presents an analysis of the rounds in which FITF was non-zero

(without considering outliers), and Section 2.4.4 discusses the outlier FITF values.

2.4.1 Examples illustrating PortXmitWait growth

Fig. 2.4 shows two examples of how PortXmitWait counter value increases within one

querying round. Even though the counter was reset at the beginning of each round, the

PortXmitWait value returned from the first perfquery call was not zero because there was

a time interval between the resetting action and when the call to read the counter was issued.

In Fig. 2.4a, for example, the counter stays unchanged at 25072028 until the 71st query,

and then increases to 25092026, where it stays unchanged until the 94th query (the values

shown on the y-axis of Fig. 2.4a should be added to 2.506e7, as shown at the top of the axis,
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Table 2.1: Total number of querying rounds for each switch category and port type

Port
type

Switch category
Spine Leaf ToR DAV-

Spine
DAV-
Leaf

Glade-
Spine

Glade-
Leaf

down 63129 63527 60217 1422 1192 1455 1165

up NA 63679 60131 NA 1133 NA 1172

to obtain the actual PortXmitWait counter readings). On the other hand, Fig. 2.4b shows

that the counter value increases almost continually within each 100-ms interval.

2.4.2 Zero vs. non-zero FITF values

Table 2.1 shows the number of querying rounds kσ,λ for each combination of switch category

σ and port type λ. Since the number of ToR switches is roughly equal to the number of leaf

switches, the number of querying rounds for these two types of switches were roughly the

same. There are much fewer DAV and Glade switches, and hence there were fewer querying

rounds for these switches.

Fig. 2.5 shows a stacked bar-plot for the percentage of zero and non-zero FITF values

for each switch category and port type. In the ToR switches, the number of non-zero

FITF values is greater than the number of zero FITF values for both up and down port

types. For example, a ToR switch down port was queried in 60217 rounds, which means the

PortXmitWait counter value growth over 100 ms was observed 60217× 99 times, which is

roughly 6M. In these 6M observations, we found that the port was forced to wait for credits

(which is an indication of congestion) in 60% of these 100-ms intervals. The implication of a

ToR switch downlink port being held up waiting for credits is that the corresponding HCA

buffer was full.

Fig. 2.5 shows that for GladeLeaf switches, there is more congestion on the uplink

ports than on the downlink ports. A possible explanation for congestion on the uplink

ports is as follows. The Glade disk I/O subsystem shown in Fig. 2.3 offers users multiple

filesystems such as scratch and home. The scratch filesystem is used for temporary data

storage. Users move data from the scratch filesystem to the home filesystem for permanent

storage. These data transfers could cause congestion on the uplink GladeLeaf ports, as the
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Figure 2.5: The percentage of zero and non-zero FITF values for each switch category and
link (port) type

two filesystems are likely to be connected to nodes served by different GladeLeaf switches,

which would necessitate transfers through GladeSpine switches.

Fig. 2.5 shows that on DAVLeaf switches, congestion occurs at equal rates on downlinks

and uplinks. One DAVLeaf switch is connected to one GladeLeaf switch, via 6 links, and

these links are classified as downlinks on both switches. Uplinks connect DAVLeaf switches

to DAVSpine switches. Since users move data for analysis from the Glade disk I/O nodes

into the DAV nodes, and store analysis results back into the Glade disk I/O nodes, traffic

flows both ways on the DAV-to-Glade links.

We expected congestion to be predominantly in the Glade disk I/O subsystem switches,

but the results in Fig 2.5 show that ToR switch ports experience congestion even though

they primarily serve compute nodes. This could be the effect of cascading rate reductions

caused by the link-by-link flow control procedure. Victim ports could occur anywhere in the

network far from a congested port.

2.4.3 Non-zero FITF values

To gain some insights into the fraction of each 100-ms interval that a port was denied credits,

we undertook a study of just those rounds in which the FITF value was non-zero for at least

one 100-ms interval. We refer to these rounds as non-zero rounds.
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Figure 2.6: The maximum FITF value per non-zero round for each switch category and link
type (outliers removed)

Fig. 2.6 shows a boxplot of the maximum non-zero FITF values across all non-zero

rounds of all switch ports belonging to a particular switch category and port type. Using

(2.4), a maximum FITF was computed for each row of the matrix Aσ,λ, i.e., the maximum

value across the elements of vector Fr, 1 ≤ r ≤ kσ,λ. From Fig. 2.6, in which outliers were

removed, we conclude that in most of the 10-sec observation rounds, a port was denied

credits in less than 10% of a 100-ms interval.

The plot in Fig. 2.6 shows that the Glade subsystem switch ports had the highest

variability in maximum FITF. This is because bulk data transfers do not occur continuously,

but, when they do occur, these transfers can cause congestion, and increase the forced idle

time significantly. For example, the maximum FITF across all querying intervals of GladeLeaf

downlink ports was 85%. The DAV leaf switches also experienced a high variability due to

the bulk data transfers that occur occasionally. The ToR switches have more variability

when compared to the compute subsystem leaf and spine switches.

Fig. 2.7 shows a boxplot of the average FITF across non-zero rounds for all switch ports

belonging to a particular switch category and port type. The averaging was done across

only the non-zero FITF values. The ToR switches experience more variability in average

FITF when compared to the spine and leaf switches. This is an interesting result as it is the

opposite of our expectation that leaf and spine switch links would have more congestion due

to oversubscription at the higher levels of the fat tree.
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Figure 2.7: The average FITF value per non-zero round for each switch category and link
type (outliers removed)

Table 2.2: Details about outliers left out of the boxplot in Fig. 2.6 and Fig. 2.7

Port
type

Switch category
Spine Leaf ToR DAV-

Spine
DAV-
Leaf

glade-
Spine

glade-
Leaf

down
min 0.027 0.037 0.047 0.049 0.086 0.102 0.078
max 0.865 1.179 0.879 0.432 0.409 0.807 0.852
Number of querying rounds
with non-zero maximum FITF

2765 40258 51814 565 550 806 627

Number of outliers 670 2771 3185 56 43 119 81
Number of FITF values ≥ 1 none 37 none none none none none

up
min NA 0.022 0.046 NA 0.026 NA 0.116
max NA 1.163 1.158 NA 0.424 NA 0.959
Number of querying rounds
with non-zero maximum FITF

NA 47167 44807 NA 959 NA 1132

Number of outliers NA 3751 2561 NA 111 NA 128
Number of FITF values ≥ 1 none 23 6 none none none none

Table 2.3: Example of two consecutive records belong to the same querying round r of a
down Leaf port

i tq tp W Wi+1-Wi
(tqi+1 +

tpi+1

2 )−
(tqi +

tpi
2 )

FITF

1 1.45640989347e+18 18350267 2426695474 6656811 124199424 1.179

2 1.4564098936e+18 24841529 2433352285

2.4.4 Outlier FITF values

The key finding presented in this section is that there were some 100-ms intervals in which

the port was completely stalled, i.e., the transmitter was prevented from sending data

due to a lack of flow-control credits for the whole 100-ms interval. Occurrences of these
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extreme cases (outliers) were not included in the boxplots of Fig. 2.6 and 2.7 to allow for a

better visualization of the differences between the switch-port categories. Nevertheless, these

outliers are important because highly parallelized communication-intensive applications with

MPI synchronization calls, e.g., climate-science applications that use 1000 cores or more, will

experience significant increases in their execution delays if such long stalls occur. An outlier

is defined as a data point that lies 1.5 × IQR above the 75% number or below the 25%

number, where IQR is Inter-Quartile range (difference between the 25% and 75% values).

Table 2.2 shows the outliers statistics for the different switch ports categories. For

example, there were 44807 querying rounds of ToR switch uplink ports that had a non-zero

maximum FITF, and out of the 44807 querying rounds, there was a total of 2561 outliers.

The max rows in Table 2.2 for both downlink and uplink ports show FITF values that are

greater than 1, which represents 100%. For an explanation of how this is possible, we provide

the details of one example query.

Consider the example query shown in Table 2.3. The rows correspond to the values

of two consecutive records Rr,1 and Rr,2 per (2.2). To find FITF, the difference between

the PortXmitWait counter readings W in the two consecutive records is computed, and the

difference is divided by the time difference between the estimated times at which the counter

was read. As shown in (2.3), the exact time at which the port counter is read cannot be

determined accurately. Instead, the time is estimated by halving the query turnaround times

tpr,1, and tpr,2. If the first query took a shorter time reaching the switch, and the second query

took a longer time reaching the switch than estimated by the halving operation, then the

time between the two consecutive readings of the port counter could be longer than the

estimated time difference. Such an occurrence would result in an estimate of FITF that is

greater than 1. Effectively, such FITF values should be interpreted as the port being stalled,

waiting for flow-control credits, during the entire 100-ms interval.

2.5 Discussion: Impact of findings

In this section, we describe the potential value of our findings for InfiniBand network

operations and for scientific applications. Specifically, the results could be interesting both
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to InfiniBand network administrators, and to scientific researchers who run applications on

InfiniBand HPC systems.

Network operations As stated in Section 2.1, most InfiniBand HPC administrators do not

enable congestion control due to a perceived lack of proven methods for setting parameters.

But if congestion control is disabled, network administrators are blind as to whether or not

congestion is occurring, because the PortXmitCongTime counters will not register any values.

Our proposed method for using PortXmitWait counters as a proxy, and our software for

collecting the data and analyzing the collected data to derive FITF values, can thus be used

by administrators to gain insights into the state of their networks. Further, administrators

could correlate FITF values with application execution time. Such a correlation study would

show whether or not high variability in application execution can be attributed to network

congestion. If a high correlation is observed, network administrators could then enable

congestion control.

Administrators can test the various solutions (for setting congestion-control parameters)

that have been proposed in research literature (reviewed in Section 2.6). For example, our

research group designed, implemented and evaluated a scheme called Dynamic Congestion

Management System (DCMS) [4]. DCMS was designed to detect if a victim flows were

created because of a congestion event and modify congestion parameters to dissipate the

congestion event rapidly. Recall from Section 2.2 that the switch has a parameter called

Marking Rate. The key idea of DCMS is to dynamically adjust this parameter based on

whether-or-not victim flows are being created by a congestion event. This solution was found

to be effective through an experimental evaluation. For example, the evaluation results

showed that a victim flow’s throughput decreased from 8 Gbps to 2.67 Gbps because of

congestion at a switch port that the victim flow did not even traverse. However, when

DCMS detected the congestion and took action by adjusting the switch Marking Rate,

the congestion-causing flows dropped their sending rates, and the victim flow throughput

rebounded back to 8 Gbps.

Applications We offer three examples of the impact of our FITF-related findings on

scientific-research applications. First, Petrini et al. [39] presented evidence that even
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frequent, short-duration congestion events can have a detrimental impact on applications

that have fine-grained communications (frequent short message exchanges). In fact, our

results show that in Yellowstone, while FITF values were of short duration, i.e., less than

10% (see Fig. 2.6), the network link stalls occurred quite frequently (Fig. 2.5 showed that

the PortXmitWait counter registered increases in a significant percentage of the observed

100-ms intervals).

Second, we experimented with the climate-science High-Order Method Modeling Environ-

ment (HOMME) application, and found that it issues a synchronization MPI call 140K times

in one 90-core run (which is a small configuration; in actual runs by scientists, 1000s of cores

are used for each run). If messages sent by one source MPI rank took longer to reach their

destination MPI ranks (e.g., these messages were affected by one of the outlier congestion

events reported in Table 2.2), then all MPI ranks will be delayed when an MPI Barrier

or MPI Waitall call is encountered. This could lead to a significant increase in the total

execution time of the application. Furthermore, since synchronization calls cause MPI ranks

to stop processing and wait until the slowest MPI rank completes, communication delays

can result in under-utilization of compute nodes.

Third, Subramoni et al. [38] stated that their proposed technique for reducing “the

amount of network contention observed during the All-to-All/FFT operations” resulted in a

“9% improvement in the communication time of P3DFFT at 512 processes.”

In summary, our methodology, new metric, data collection and analysis software, and

specific numerical findings for Yellowstone, are all useful contributions to the InfiniBand

provider and user community.

2.6 Related work

As noted in Section 2.1, there have been many studies of InfiniBand congestion control

[4, 17, 29–36], but none of these papers measured congestion on a production InfiniBand

network as we have done. Some papers [33, 38, 40] used PortXmitWait as an indicator of

congestion, which is also the basis of our FITF metric.
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Papers that suggested mechanisms for seting congestion-control parameters include work

by Pfister et al. [17], Gusat et al. [29], and Gran et al. [31]. All three studies used simulations

to characterize the effects of various parameter settings on application metrics.

Several papers, such as VOQsw [41], dFtree [42], vFtree [43], BBQ [44], Flow2SL [35],

and pFtree [45], proposed using InfiniBand virtual lanes to combat congestion.

Other papers proposed new/enhanced congestion control mechanisms, unconstrained

by the InfiniBand standard. Yan et al. [30] proposed a Power Increase and Power Decrease

(PIPD) function for controlling sending rate. Michelogiannakis et al. [46] proposed a Channel

Reservation Protocol (CRP) to prevent congestion. Russell et al. [47] developed Red and

Green light-Based Congestion Control (RGBCC), which is less sensitive to small changes in

parameters when compared to the standard InfiniBand congestion control mechanism. Liu

et al. [48] proposed improvements to the InfiniBand standard by adding a Link Bandwidth

Availability Report (LABR).

Finally, modifications were proposed to job schedulers, such as SLURM, to take into

account network conditions [40] when assigning MPI ranks to nodes. The work by Bhatele

et al. [16], which demonstrated the impact of neighborhood jobs on application performance

in Cray networks offers a good model for a similar study in InfiniBand networks.

2.7 Summary and Conclusions

This chapter presented a 23-day measurement study of congestion on a production, highly

utilized, 72K-core InfiniBand cluster called Yellowstone. We proposed a methodology based

on reading the PortXmitWait counter of ports, and a new metric called Forced Idle Time

Fraction (FITF). While congestion is likely caused by bulk data flows in the disk I/O and

Data Analysis and Visualization subsystems of Yellowstone, our findings were that ports of

even ToR switches that serve compute nodes suffered from such flow-control related stalls.

In about 60% of the 100-ms intervals in which ToR-switch ports were observed, the ports

had to wait for flow-control credits, but most of these transmission stalls were shorter than

10 ms. Prior work showed that short but frequent congestion events are detrimental to

applications with fine-grained communications. Also, some congestion events lasted for
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significant portions (in the range 60-80%) of the 100-ms intervals, with several events even

reaching 100%. Such events can significantly increase execution time of applications that

have MPI synchronization calls.



Chapter 3

SDN-Enabled Headroom Services

for High-Speed Data Transfers

3.1 Introduction

WAN links are typically operated at 30-40% average utilization levels [21]. This leaves a

large headroom as illustrated in Fig. 3.1. There are three reasons for such low-utilization

operation: (i) to accommodate long-term growth in the traffic volume, (ii) to handle the

extra load created by the traffic that is rerouted onto a link in response to failures in other

links, and (iii) to support Elephant Flows (EFs), which are typically high-rate large-sized

dataset transfers. Examples include inter-datacenter movement of user files, backups for

disaster recovery, and scientific data movement for high-performance computing.

While, in theory, EFs should be able to take advantage of headroom, in practice, customer

access-link SLAs are limiting factors. For example, a customer may pay connectivity charges

for a 1 GE port on the provider network, but have an SLA with CIR set to 200 Mbps

and PIR set to 600 Mbps. In this case, the customer EFs would be limited to 600-Mbps

throughput, while simultaneously intra-domain provider links would remain underutilized.

To exploit the headroom with customer EFs, we propose two new Internet provider

services: Static Headroom (SH) service, and Dynamic Headroom (DH) service. To avoid

adverse effects on other flows, we propose that EF-packets using these headroom services be

35
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Figure 3.1: 2014 packet trace collected by CAIDA [5] on a 10 Gbps link

tagged with the low-priority CS1 DiffServ Differentiated Services Code Point (DSCP) [49].

The CS1 service class is lower than the standard best-effort CS0 class, i.e., CS1 packets

are sent to a lower-priority queue. Thus, even if EFs fill the headroom on provider links,

best-effort flows will not suffer increased packet losses or packet delays.

To implement SH and DH services, providers would need to offer a new type of SLA

to their customers in which the aggregate traffic rate can reach the access-link capacity as

long as packets in excess of CIR are tagged with CS1 DSCP. With our proposed headroom

services, in the example described above, customer EFs could enjoy up to 1-Gbps throughput.

Such increased EF-throughput is the benefit of SH/DH services to customers.

The benefit of SH/DH services for the provider is that the link headroom can be utilized

without adversely affecting the provider’s primary best-effort service, or the network’s ability

to absorb additional traffic resulting from reroutes caused by link failures. Thus, both

providers and customers can benefit from our proposed SH/DH services.

The difference between SH and DH services is that the former requires a Software

Defined Network (SDN) controller in only customer networks (to handle the marking of

EF-packets with the CS1 DSCP), while the latter requires the additional deployment of an

SDN controller in provider networks. The advantage gained is that the provider-network

SDN controller can compute a path with maximum available headroom between its own

ingress and egress routers to offer customer EFs better throughput.
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Analytical and simulation based comparisons of Best-Effort (BE), SH and DH services

for EFs were conducted. The key findings are as follows:

• The advantage of SH over BE service is that, with SH service, EF-induced packet loss

in BE traffic is eliminated. The higher the general-purpose IP traffic burstiness level,

the bigger this advantage.

• The advantage gained with DH relative to SH is higher average EF throughput. This

advantage is higher the greater the non-uniformity in EF traffic patterns. Under high

non-uniformity, the DH gain factor in average EF throughput relative to SH was a

factor of 2.4 on a 6-node simulated network.

• A combination of SH and DH services is recommended because only SH service is

suitable for short-duration high-rate flows as DH service incurs the cost of path-setup

delay; on the other hand, DH service allows simultaneous EFs to be routed on different

paths, which could result in higher EF throughput.

The material presented in this chapter is an excerpt from our published work SDN-enabled

headroom services for high-speed data transfers [27] c©2017 IEEE. Section 3.2 reviews related

work. The proposed novel SH and DH services are described in Section 3.3. Section 3.4

presents results of our simulation study comparing BE, SH and DH services, and the chapter

is concluded in Section 3.5.

3.2 Related Work

The Microsoft SWAN [50] and Google B4 [21] network architectures were designed to increase

the utilization of their dedicated inter-datacenter links. Since there was full control of all

end-to-end resources, these solutions focused on orchestrating data transfers to increase link

utilization. There are other solutions for increasing utilization of dedicated inter-datacenter

links [51,52]. Our headroom services based solution is different from these prior solutions

because it requires an inter-domain solution involving customer and provider networks with

benefits to both.
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Solutions [53,54] proposed the use of the customer access link for EFs during off-peak

hours. Consider SLAs in which the provider charges the customer based on its 95 percentile

usage level within a set time period T (usually a month). With this SLA, even a few EFs

during peak hours can increase the 95 percentile bandwidth significantly, thus increasing

the cost to the customer. Therefore, these solutions proposed postponing delay-tolerant

data transfers (EFs) to off-peak hours so that the 95 percentile usage level is lower. The

disadvantage of these solutions is that large data transfers incur a waiting delay, while no

such delays are incurred in our solution.

Solutions [55–60] proposed dynamic configuration of paths, but unlike our DH service,

these solutions require advance knowledge of available bandwidth. Our DH service does not

require SDN controllers to estimate headroom capacity since EFs only affect each other and

not the general-purpose IP traffic, which gets higher priority.

Our solution is most similar to Internet2 QBSS [61] and SIFT [62]. For example, SIFT

identifies large flows and redirects them to a lower-priority queue to reduce packet delay for

small flows. While these solutions demonstrate the benefits of directing EFs to lower-priority

queues, they do not address the practical aspects of how the SIFT solution can be deployed

to the benefit of both providers and customers in the multi-domain Internet, as we do.

Additionally, our proposal for the DH service is new relative to this prior work.

3.3 SDN-enabled SH and DH Services

The subsections below describe the two variants of the proposed headroom service.

3.3.1 Static Headroom (SH) service

Fig. 3.2 shows an example Tier-2 provider network in which two queues have been configured

on an output port of a router, and packets marked with the CS1 DSCP are sent to the

lower-priority queue. This two-queue configuration is illustrated in only one router port for

space reasons, but SH service requires this configuration in all routers.

Fig. 3.2 also shows two methods by which the customer-network SDN controller can

determine the flow IDs of EFs. In the first method, the file-transfer application running on
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Figure 3.2: Static Headroom (SH) service architecture

hosts explicitly provides the flow ID f to the SDN controller before starting the EF. In the

second method, the customer deploys an online EF identifier that identifies EFs from live

traffic mirrored to it from the router, and provides the flow IDs to the SDN controller. The

SDN controller can then set a filter rule to match all packets corresponding to the EF ID,

and mark the DSCP field in the IP headers to CS1.

A typical customer SLA is as follows: {CIR,PIR} where PIR < C, where C is the

access-link capacity. Since PIR is smaller than the link capacity C, without SH service,

the customer’s EFs can only enjoy throughput up to PIR. Furthermore, traffic sent at

rates in the range {CIR,PIR} could cause packet losses and/or delays to other customers’

traffic in the provider network. Our proposed SH service differs from current-SLA based

BE service in two ways: (i) PIR = C, and (ii) EFs sent at rates above CIR are tagged

with CS1 DSCP. With the provider’s configuration of routers to treat these packets with

lower-priority than BE packets, a customer’s SH-service EF will not cause adverse effects on

other general-purpose flows.

If the Tier-2 provider network also has an SLA with its Tier-1 provider wherein PIR < C,

then the new SH-service based SLA could be negotiated between the Tier-2 provider and its

Tier-1 provider. If, for example, two or more simultaneous EFs from different customers of

the Tier-2 provider network shown in Fig. 3.2 are routed to the same egress link to Tier-1

Provider Network P1, then both flows would have packets tagged with CS1 DSCP. Therefore

the SDN controller in Tier-2 provider network (not shown in Fig. 3.2) is not required to
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execute DSCP packet marking as was needed in customer networks. Since EFs typically

use TCP, the standard TCP congestion control algorithms would enable sharing of the

lower-priority queue bandwidth offered to the headroom-service flows.

3.3.2 Dynamic Headroom (DH) service

To offer DH service, a provider would need to deploy an SDN controller, which is added

complexity. The customer network SDN controller would need to notify the provider SDN

controller of an incoming EF. The provider SDN controller can then create flow-specific

forwarding entries in the routers on the path with the most available headroom. Since the

goal of these headroom services is to fill the excess capacity of intra-provider network links,

such custom routing could yield throughput benefits for customer EFs and increased usage

for providers.

The provider-network SDN controller would then set OpenFlow (or equivalent) flow-

matching rules in the routers on the selected path for the EF identifier (ID: five tuple of

source and destination IP addresses, source and destination port numbers and protocol),

and direct packets from this EF to the appropriate output port. As the packets of the EF

would be tagged as CS1, these packets would be queued in the low-priority queue at the

output port.

Fig. 3.3 illustrates the potential gain using DH service with an example. Elephant flow 1

starts at time t from customer C1 to customer C4, while EF 2 starts from C2 to C3 at time
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t+ x. If both flows are routed on the default paths, then they will share the headroom on

the link between routers R2 and R3. On the other hand, with DH service, EF2 could be

custom routed on the path R2-R6-R5-R3. If all EFs are considered equally capable of filling

the headroom, then a simple SDN controller can just track the number of EFs sharing a

link. More sophisticated versions of DH service could allow customers to provide maximum

rate information for EFs, which would then allow for even further improvements in EF

throughput.

3.4 Evaluation

Section 3.4.1 describes an analytical single-link model of SH service, the purpose of which

was to understand the impact of link utilization on average EF throughput. Section 3.4.2

describes an NS3 packet-level simulation study to compare BE and SH services. Section 3.4.3

describes a Matlab based flow-level simulation comparison of SH and DH services. In all

models, we assumed that the EF-arrival process was Poisson with parameter λ, and that EF

sizes fit a Pareto distribution with shape α and scale xm, which is the minimum value of file

size.

3.4.1 Impact of utilization on throughput

Analytical model A provider network is modeled as a single link with headroom capacity

Chr. Given our EF-related assumptions of a Poisson arrival process and Pareto file sizes, we

can use the M/G/1 queueing model to determine the average number of concurrent EFs

competing for the provider-link headroom. The mean number of jobs in an M/G/1 queueing

system is given by:

E[N ] =
ρ

2
+
ρ+ λ2σ2

2(1− ρ)
(3.1)

where ρ is traffic load (ρ = λ/µ), µ is mean service time (EF duration), and σ2 is service-time

variance. We set α > 2, and therefore, the mean and variance of service time are given by:

1/µ =
αxm

(α− 1)Chr
; σ2 =

x2mα

(α− 1)2(α− 2)C2
hr

(3.2)
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Figure 3.4: Analytical model of SH service; (α, xm); xm unit: GB

Since TCP allows EFs to simultaneously share the server (i.e., link headroom), the average

EF throughput is:

Average EF Throughput =


Chr
E[N ]

, if E[N ] > 1

Chr, otherwise

(3.3)

Input parameters were set as follows: (i) Chr = 600 Mbps; (ii) EF-arrival rate λ was

increased from 0.022/sec to 0.036/sec in steps of 0.002; and (iii) Three sets of file-size

distribution parameters were chosen such that (1/µ, α) are: (i) {2.6 sec, 4}, (ii) {26.6 sec,

4}, and (iii) {19 sec, 2.1}, respectively.

Fig. 3.4 shows average (EF) throughput (left-hand y-axis, solid lines) and EF link

utilization (right-hand y-axis, dashed lines) under increasing traffic load. When the EF-

arrival rate is 0.034 sec and mean service time is 26.6 sec, link utilization (which is same as

traffic load ρ) is 0.92. At this operating point, the average number of concurrent EFs would

be 5.86, which makes the average EF throughput about 102 Mbps. At the same EF-arrival

rate, if the mean service time is only 2.6 sec, utilization is only 0.1, and consequently EFs

enjoy throughput close to the link headroom of 600 Mbps.

To illustrate an intermediate operating point, we lowered α to 2.1, and mean service time

to 19 sec. For the EF-arrival rates shown on the x-axis, utilization is lower. For example,

when the EF-arrival rate is 0.034 sec, link utilization is only 0.65, and the average EF
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throughput was correspondingly higher.

3.4.2 Comparison of BE and SH services

Simulation setup Topology: the provider network was modeled as a two-router dumbbell

with multiple host nodes simulating customer networks connected to each provider node

(router). Both the inter-router provider link rate and the access link rate were set to 1 Gbps.

Host configuration: The TCP buffer size and Ethernet-layer traffic-control queue size

were set to be large enough to ensure that each EF could fill the headroom in the inter-router

link. Router configuration: to support priority queuing, we used the NS3 pfifo model in

the routers. This model has 3 queues, each of which can grow up to a size specified by the

pfifo attribute Limit. The Limit parameter represents the total buffer size for a port,

which any single queue is allowed to consume. To avoid EF packets completely filling the

buffer, we modified the NS3 code to allow for a static partitioning of the port buffer between

the CS0 and CS1 queues. We assumed a port buffer size of 10000 packets in our BE-service

simulation, and in the SH-service simulation, we assumed a size of 5000 packets for each of

the two queues for a fair comparison.

Workload: host nodes generated EFs and general-purpose IP traffic. (i) EF: size

parameters α and xm were set to 4 and 1.5 GB, respectively. Mean EF size was 2 GB. The

EF-arrival rate λ was varied from 0.083/sec to 1/sec. (ii) General-purpose IP traffic trace:

was generated using an NS3 model [63] of a Poisson Pareto Burst Process (PPBP) [64].

This model has 4 parameters: mean burst length, Ton, and Hurst parameter, H, were held

constant at 0.2 and 0.7, respectively, while the other two parameters, burst constant bit

rate and mean number of bursts, were varied as shown in Table 3.1. The goal was to vary

burstiness, which was defined as the Coefficient of Variation (CV) of the number of bytes

in 200-ms intervals. Thus, if B200 represents the number of bytes in each 200-ms interval,

burstiness is SD(B200)/Mean(B200), where SD is standard deviation computed across the

simulation duration. Given that WAN link utilization averages between 30-40% [21], we

chose the PPBP parameters such that regardless of burstiness, the average throughput of

the general-purpose IP traffic trace was around 400 Mbps.
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Metric: Packet loss rate in the general-purpose IP traffic was used to evaluate the

performance. A total of 30 EFs were generated in each simulation run. The average packet

loss rate across 30 runs per configuration is reported.

Table 3.1: PPBP parameters and burstiness

Burst constant bit rate r Mean number of bursts λp Burstiness

1 Mbps 2000 0.073

50 Mbps 40 0.298

110 Mbps 18 0.432

200 Mpbs 10 0.572

Results When SH service was used for EFs, general-purpose IP traffic suffered no packet

losses because of the use of a lower-priority queue for EF packets. However, when EFs used

BE service, there were packet losses in the general-purpose IP traffic. Fig. 3.5 plots the

average packet loss rate in the general-purpose IP traffic against EF-arrival rate for different

values of burstiness in the general-purpose IP traffic. While the TCP senders of EFs

will adjust their sending rates based on available bandwidth, due to round-trip delays in

making these adjustments, packet loss rate will be larger during high burstiness periods in

the general-purpose IP traffic. For example, when the general-purpose IP traffic burstiness

was 0.572, packet loss rate was 0.8% even when the EF-arrival rate was only 1 per 12 sec

(x-axis value = -2.5).
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Figure 3.5: Average (with 95% confidence-interval error bars) general-purpose IP packet-loss
rate when EFs use BE service; under SH, this packet loss rate is 0
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(a) Simulated network (b) Pi for all links i

(c) SH: w = 1 and λ = 0.1 (d) DH: w = 1 and λ = 0.1

Figure 3.6: DH-service simulation

3.4.3 Comparison of SH and DH services

Simulation setup Given the high execution time of packet-level simulation, a flow-level

simulation was conducted where a simplified assumption of equal sharing of link capacity by

concurrent flows was made. Only EFs were generated, i.e., there was no background traffic.

Topology: Fig. 3.6a shows the network topology. The numbers denote links, e.g., 5

denotes the link from router E to router F, while 13 denotes the link from router F to route

E. Path computation for SH-service: EFs were routed on default IP paths, and these paths

were assumed to use the top set of links in the network. For example, flows from router A to

router D were routed on links 1 (A→ B), 2 (B → C), and 3 (C → D). Let N s,d
i represent

the number of source-destination paths that traverse link i, and L represents the set of links

in the network. The percentage of paths that use link i is given by:

Pi =
N s,d
i∑

1≤i≤|L|N
s,d
i

(3.4)

For example, link 1 carries packets for three source-destination pairs (A − B), (A − C)
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and (A − D), while link 2 carries packets for the most number (6) of source-destination

pairs, (A− C), (A−D), (B − C), (B −D), (B − E), and (F − C). Fig. 3.6b shows these

percentages. Path computation for DH-service: in the DH-service simulation, the number of

ongoing EFs was maintained for each link. For a newly arriving EF, the maximum number

of ongoing EFs across all links of each potential path was computed, and the path with the

smallest value was selected. Thus, EF load was spread to more links.

Workload: (i) The source and destination: for each EF were determined using the

following rules. An EF was assigned nodes B and C as source and destination, respectively

(or vice versa), with probability 1/30 + 14w/30, while the probability of any other of the 28

node pairs being selected was 1/30− w/30. The weight w was varied from 0 to 1, in steps

of 0.1. When w is 0, all node pairs are equally likely to be selected, and hence the traffic

pattern would be uniform. When w is 1, all EF transfers will occur between nodes B and C,

with no EFs between other pairs. Link 2 (B → C) and Link 10 (C → B) were chosen for

this worst-case non-uniform traffic pattern because these links had the highest percentage of

source-destination paths as seen in Fig. 3.6b. The impact of the degree of non-uniformity on

the relative performance of DH and SH was determined in this simulation study. (ii) The

EF-arrival process parameter: λ was varied from 0.01/sec to 0.1/sec, in steps of 0.01. (iii)

The EF-size parameters: α and scale xm were set to 4 and 15 GB, respectively. With these

parameters, the mean flow size was about 20 GB.

Metrics: In each simulation run, 100,000 EFs were generated, and 30 runs were executed

for each combination of parameter settings. The two output metrics of interest are average

(EF) throughput and DH gain factor, which is a measure of the improvement in average

(EF) throughput with DH relative to SH service.

Results Before presenting simulation results for the metrics, using a third metric, link

utilization, we demonstrate why DH service has an advantage over SH service.

Utilization of link i is:

Ui =

∑k=K
k=1 δi,k
K

(3.5)

where δi,k = 0 if the number of EFs Mi,k traversing link i at the end of timeslot k, 1 ≤ k ≤ K

is zero, and 1 otherwise. Since EFs can arrive and depart in the middle of a 1-sec timeslot
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(which is the granularity used for statistics collection), the computed utilization is an

approximation.

Figs. 3.6c and 3.6d show link utilization for simulation runs under SH and DH service,

respectively. In both runs, w was set to 1, which means the traffic pattern was highly

non-uniform (all EFs were between routers B and C) and λ was set to 0.1/sec. Fig. 3.6c

shows that with SH service, as default routing is used for EF paths, links 2 and 10 were

highly utilized, while all other links were unutilized. Fig. 3.6d shows that with DH service,

as EFs are routed on other paths, all links are utilized. Given this spreading of EF load,

average EF throughput is better with DH service than with SH service. To prevent thrashing

at very high loads, a cut-off threshold should be used to limit the number of hops on which

EFs are routed. This condition was not encountered for the simulated loads.

Next, we quantify the two main metrics, average EF throughput and DH gain factor.

Fig. 3.7a compares the average EF throughput of SH and DH services under increasing levels

of non-uniformity in the traffic matrix. The error bars, which represent 95% confidence

intervals for the average EF throughput computed over 30 runs, were very small, and hence

not easily visible in Fig. 3.7a.

Even under uniform traffic pattern (when w = 0), when the EF-arrival rate was 0.1/sec,

the average EF throughput was higher with DH service when compared to SH service. This

is because some links carry a greater percentage of source-destination paths, which leads to

overloaded links under SH, and hence a lower average EF throughput. With DH service, the

SDN controller can spread concurrent EFs to other paths.
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As the degree of non-uniformity increases to w = 1, the advantage of DH over SH

becomes even more obvious. For example, under an EF-arrival rate of 0.1/sec, with the

uniform traffic pattern, the average EF throughput for SH and DH are 8.46 and 9.45 Gbps,

respectively, while in the extreme non-uniform setting (when all EFs are between routers B

and C), the the average EF throughput for SH and DH are 3.68 and 8.71 Gbps, respectively.

With SH service, each EF lasts longer as there are more concurrent EFs, and hence each EF

receives lower throughput.

Finally, consider the metric DH Gain Factor, which is defined as the ratio of average

EF throughput under DH service to that under SH service. This factor is plotted against

EF-arrival rate in Fig. 3.7b. At higher EF arrival rates and under non-uniform traffic

patterns, the DH gain factor is higher, reaching about 2.4 (= 8.71 Gbps/3.68 Gbps) at

the highest load. The Pareto distribution shape parameter, α, does not have a significant

impact, but if the mean EF size is larger, e.g., 40 GB instead of 20 GB, the DH gain factor

is higher as seen in Fig. 3.7b. This is because EF durations will be longer, and hence there

is a higher probability of overlapping EFs under the SH service.

In summary, the higher the load, or greater the degree of non-uniformity of traffic

patterns, the greater the average EF throughput gain when using DH relative to SH service.

3.5 Conclusions

This work addressed the question of whether provider-link headroom can be used effectively

by customer EFs without adversely affecting best-effort traffic and the ability of provider

networks to absorb extra traffic during failures. By marking EF-packet headers with a

lower-priority service class, providers can offer a new Static Headroom (SH) service to allow

customers to fully leverage their access-link capacities. When EFs use SH service instead

of BE service, EF-induced packet losses in general-purpose IP traffic are eliminated. Our

simulation study showed that if the burstiness level of the general-purpose IP traffic was

0.572, then even a low EF-arrival rate of 0.083/sec can cause a 0.8% packet loss rate if BE

is used for EFs. A second simulation study showed that with Dynamic Headroom (DH)
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service, wherein a low-utilization path is computed for EFs, the average EF throughput gain

factor of DH over SH was a factor of 2.4 under a highly non-uniform traffic pattern.



Chapter 4

Calibers: A Bandwidth

Calendaring Paradigm For Science

Workflows

4.1 Introduction

Scientific analysis in experiments such as high-energy physics or climate modeling, usually

involve extremely complex workflows to ensure successful and reliable results. These

workflows include a number of tasks, involve multiple actors, software and infrastructures,

that work together as a workflow from data generation to delivery. For example, in the

Advanced Light source (ALS), data is generated from multiple detectors which is then

collected on the National Energy Research Scientific Computing Center (NERSC) via high-

speed network connections. It is imperative that the data is delivered in a timely manner,

with minimum loss, such that further computations can be performed using supercomputing

resources that have to be a priori reserved. In order that the supercomputing resources

are maximally utilized, this requires the network service to allow deadlines for large data

transfers.

There are two approaches to ensure predictable performance and scheduled delivery for

data transfers. One approach is to use advanced reservations of links, such as On-Demand

50
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Secure Circuits and Advance Reservation System (OSCARS) or open NSA [65], that allow

setting up circuits of specified capacities between routers. Advanced reservation schemes

require additional time to setup circuits, are only associated with WAN border routers and

are difficult to automate due to required user knowledge, network topology and request

details. Furthermore, applications do not generate traffic all the time which leads to wasted

reserved capacity.

The second approach is to run the network at a low utilization and use standard TCP.

New TCP protocols, such as HTCP [23] and BBR-TCP [66], can efficiently adapt to the

bottleneck capacity. When multiple competing flows are involved, they equally split the

bottleneck capacity. However, even with the new TCP algorithms, sustained bottlenecks lead

to unpredictable throughput performance and difficulties in arbitrarily splitting bottlenecked

bandwidths among competing flows. Finally, as the growth in data transfer volume out-

paces the increase in the data link rates, running the network at low utilization is not cost

effective [67].

To help accelerate the effort to run the network at high utilization and enable scheduled

data transfers, network automation through SDN are being advanced to control network

traffic depending on data demand. In principle, SDN allow individual switches to be managed

and controlled following centralized traffic engineering principles [21]. Furthermore, SDN

switches provide the ability to pace traffic at ingress of the network. These features in

addition to TCP protocol, or the pacing algorithm at the source nodes [68], together provide

the necessary tools to dynamically allocate bandwidth to flows for meeting deadlines while

ensuring the network operates at high utilization [69,70].

This study aims to implement a centralized traffic engineering approach and control

distributed agents at the edge (ingress point of the network) to dynamically pace flow for

meeting transfer deadlines, while achieving high network utilization. The dynamic pacing

algorithm is able to analyze traffic patterns and follow a rolling horizon model to pace flows at

appropriate rates to optimize network performance and meet deadlines. A significant portion

of this chapter is an excerpt from our published work Calibers: A bandwidth calendaring

paradigm for science workflows [28].

Following are the main contributions of this work:
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1. We describe an architecture that implements bandwidth calendaring for scientific

workflows. The architectures leverage SDN switches that can pace flows at the ingress

point. The architecture implements a central controller with distributed agents at

the edge of the network that monitor flow performance and implement dynamic flow

pacing set by the controller.

2. We propose different heuristic algorithms based on combining two orthogonal principles

(i) local vs global optimization and (ii) Shortest Job First (SJF) vs Longest Job First

(LJF). We perform a preliminary performance comparison of these algorithms with

respect to a performance metric efficacy that is defined as the ratio of the request

success rate to the wasted bandwidth. Our results show that simple heuristics, that

optimize locally on the most bottlenecked link can perform almost as well as heuristics

that attempt to optimize globally.

The remainder of this chapter is organized as follows. In Section 4.2, we present the

architecture of Calibers in a software defined network. In Section 4.3 we present work on a

dynamic flow pacing algorithm and present preliminary simulation results. In Section 4.5,

we present the related work followed by conclusions in Section 4.6.

4.2 Architecture

Fig. 4.1 shows Calibers architecture. Each site has a workflow orchestrator that sends

transfer requests to Calibers and receives flow pacing updates. Calibers consists of the

following components:

• A REST/JSON API: Orchestrators use this API to schedule file transfers. They

provide source, destination, file size, deadline and maximum I/O rate of the endpoints

of the transfer.

• An event publisher: Allows orchestrators to obtain real-time information on the

maximum rate the network has allocated to data transfers without experiencing

network congestion.
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Figure 4.1: Calibers architecture illustrating the various components.

• SDN-based rate shaper: This component enforces flows to not exceed their bandwidth

allocation.

• Calibers optimization algorithm: This dynamically adjusts the maximum rate of each

flow, ensuring that all flows are on track to meet their respective deadlines. This in

turn increases network utilization and maximizes the request admission rate.

Calibers is an experimental network service that makes several assumptions to realize its

goals. These assumptions are not always true in a production environment. For example,

Calibers assumes that endpoints are sufficiently provisioned with I/O, networking and

processing resources; and Calibers is given a minimum guaranteed capacity on the overall

network and therefore prevents it to be impacted by non Calibers traffic.

When the flow pacing rate is dynamically changed at the network edge, it may result

in packet loss which may result in throughput loss. Note that TCP algorithms such as

HTCP and BBR-TCP can quickly adapt to these changes. Additionally, new source pacing

algorithms based on model predictive control [71] can also be used to ensure that the source

quickly adapts to edge pacing rates. In this work, we focus on the scheduling algorithms,

refer to our work [3] for more details on the prototype of Calibers, pacing techniques, and

experimental results.
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Table 4.1: Notation used.

Symbol Description

tnow Current scheduling epoch

U Set of requests

ui User i request which is defined by 5 tuples (IPsrc, IPdst, S, t
d
fi

) where IPsrc
and IPdst are the source and destination IP addresses, S is the data size,
and td is the deadline

F The set of the currently scheduled flows

fi flow i ∈ F
pi A path pi is sequence of links corresponds to fi source and destination

pair

Rminfi
For flow fi, this is the minimum rate that will guarantee that the deadline
is met. This is S/(td − tnow)

Rallocfi
The rate allocated for flow fi

Rslackfi
The slack rate assigned to flow fi, R

slack
fi

= Rallocfi
−Rminfi

L The set of the links in the network

li Link i in the network, li ∈ L
lCi Link li capacity

lFi List of flows span link li
Rresidli

The residual capacity for link li. R
resid
li

= lCi -
∑
∀fi∈lFi

Rallocfi

lbottleneck The link with the flow that has the maximum tc
tcfi The completion time of flow fi, which depends on Rallocfi

4.3 Scheduling Algorithm for Dynamic Pacing

The notations used are shown in Table 4.1. The objective of the scheduler is to decrease the

number of rejected data transfer requests while increasing the network utilization. This can

be achieved by minimizing the sum of the completion time of all flows. This will push the

completion time of all flows to the left (considering a time line), which increases the link

utilization and frees up resources to accommodate future requests. The objective function is

given by

min
∑
fi∈U

tcfi subject to

∑
fi∈lFi

Rallocfi
≤ lCi ∀li ∈ involved links

tcfi ≤ t
d
fi
∀fi ∈ involved flows



4.3 Scheduling Algorithm for Dynamic Pacing 55

where involved links is the set of links that the new requests traverse, and involved flows

is the set of flows that span the involved links. As the number of requests and the size of

the network increases, the solution to the objective function is not guaranteed to converge.

Hence, we propose four heuristic schedulers that also aim to minimize the sum of the

completion time of the flows.

The scheduler operates at fixed discrete epochs with the following assumptions: (i) each

link has a free capacity lCi to be used by the scheduler, (ii) start time for each data transfer

request is immediate, i.e., the scheduler does not support advance reservation, and (ii) the

scheduler updates the network status periodically every scheduling interval (epoch).

The scheduling problem is divided into to sub-problems: (i) new flow : when a new

request arrives, how to decide whether to accept or reject the request? and (ii) completed

flow : when a request completes, how to distribute the free capacity among the ongoing

flows? We study four heuristic algorithms by combining two concepts: (i) global and local

optimization and (ii) Shortest Job First (SJF) and Longest Job First (LJF).

In the global approach, the scheduler consider all the flows when distributing any residual

capacity. On the other hand, the local approach focus on the bottleneck links in the network

and distribute the residual capacity by reallocating locally only the flows that span the

bottleneck link(s). The LJF and SJF are known concepts where longest jobs are favored

with LJF and shortest jobs are favored when SJF is used. Those concepts are used by both

the global and local scheduler in the following way. When the scheduler decides (locally or

globally) which flows should be considered when distributing the residual capacity, SJF or

LJF will be used to decide the order in which the flows will be assigned the residual capacity.

The scheduler keeps track of multiple parameters as shown in Table 4.1. One of the most

important parameter the scheduler uses to make decision is Rminfi
, which is the minimum

required rate to ensure the flow fi will not miss its deadline. The pseudo-code of both the

global and local-approach is provided in Alg. 1. Both schedulers use the same approach

when a new request arrives, however, they differ in the way the capacity is redistributed

when a request completes.
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4.3.1 Approach 1: Global Optimization

Sub-problem 1: new flow, when a new flow fi corresponding to request ui arrives, the

scheduler computes Rminfi
, and checks if the residual bandwidth in the flow path Rresidpi is

greater than Rminfi
, it assign Rresidpi to the new flow as shown in line 2-8 of Alg. 1. The

scheduler gives the maximum available rate to the new request instead of giving it Rminfi

for two reasons: (i) to increase the link utilization, and (ii) to complete the file transfer as

soon as possible in order to free up the resources to accept future requests. If Rminfi
is not

available, the scheduler move to the second phase, which is pacing other flows in order to

accept the new flow.

The pacing phase is shown in line 10-26 of Alg. 1, where for each link li in the path

pi of the flow fi, the scheduler finds the list of flows lFi span link li. SJF or LJF concepts

are used to decide which flow(s) of the list lFi to pace (slow down). When using SJF, the

scheduler favors short flows with longest flows being slowed down first and vice versa. The

scheduler paces the first flow in the sorted list by taking its slack rate Rslackfj
and assigns it

to the new flow. If the first flow slack (Rslackfj
) in the sorted list is less than the new flow

required minimum rate (Rminfi
), then the scheduler takes the slack rate of the second flow in

the sorted list until the sum of the slack rates is equal to the new flow required minimum

rate, or until there are no more flows in the sorted list. Hence, the request will be rejected

because even with pacing, Rminfi
cannot be assigned to the new flow.

Sub-problem 2: completed flow, at the beginning of each epoch, the scheduler checks if a

flow has completed by checking the flow completion time tc. The flow completion time is

a dynamic parameter, that changes based on the allocated rate (Rallocfi
). For all the flows

completed at the scheduling epoch, the scheduler traverse the path of each completed flow

and finds the set of other flows, that span the links in the path (involved flows). After

finding all involved flows, the scheduler now has a global view and starts distributing the

residual capacity using SJF or LJF concepts. For example, if SJF is used, the scheduler

finds the flow with the shortest completion time and assign to it the residual bandwidth

available in its path then move to the next shortest flow and so on. The procedure of the

global optimization approach is shown in Alg. 1, line 40-45.
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Algorithm 1: Dynamic Pacing Scheduler

Input :U
1 remove completed flows(t now)
2 foreach ui ∈ U do
3 Rresid

pi
= min(Rresid

li
∀li ∈ pi)

4 if Rresid
pi

¡ Rmin
fi

then

5 pace(fi)

6 else
7 Ralloc

fi
= min{Rmax

fi
, Rresid

pi
}

8 return success

9 Function pace(fi)
10 ∀li ∈ pi
11 Rtemp = 0
12 Rpi

temp = []

13 found = False

14 involved flows = lFi
15 sorted involved flows = sort the list in

ascending (if LJF) or descending (if SJF)
order based on tc

16 foreach fj ∈ sorted involved flows do
17 Rtemp = Rtemp +Rslack

fj

18 if Rtemp ≥ Rmin
fi

then

19 found = True
20 add Rtemp to Rpi

temp

21 break

22 if found = True then
23 Ralloc

fi
= min(Rpi

temp)

24 return success

25 else
26 return reject

27 Function remove completed flows()
28 involved flows = []
29 involved links = []
30 foreach fi ∈ F do
31 if tc = tnow then
32 ∀lj ∈ pi
33 remove fi from lFj and F

34 add lj to involved links

35 add to lFj involved flows

36 if local-sched then
37 local reshape(involved links)

38 if global-sched then
39 global reshape(involved flows)

40 Function global reshape(involved flows)
41 Ralloc

fi
= Rmin

fi
∀fi ∈ involved flows

42 sorted involved flows = sort the list in
ascending (if SJF) or descending (if LJF)
order based on tc

43 foreach fi ∈ sorted involved flows do
44 Rresid

pi
= min(Rresid

li
∀li ∈ pi)

45 Ralloc
fi

= Ralloc
fi

+Rresid
pi

46 Function local reshape(involved links)
47 find lbottleneck
48 Ralloc

fi
= Rmin

fi
∀fi ∈ lbottleneck

49 involved flows = lFbottleneck
50 sorted involved flows = sort the list in

ascending (if SJF) or descending (if LJF)
order based on tc

51 foreach fi ∈ sorted involved flows do
52 Rresid

pi
= min(Rresid

li
∀li ∈ pi)

53 Ralloc
fi

= Ralloc
fi

+Rresid
pi

4.3.2 Approach 2: Local Optimization

As mentioned earlier, the same approach is used when a new request arrives. However, the

local scheduler takes a different approach when a flow completes.

Sub-problem 2: completed flow, at the beginning of each epoch, the scheduler checks if

a flow has completed. The scheduler finds the bottleneck link (lbottleneck) from the paths

of all completed flows. The link which has a flow with the maximum tcfi , is the link that

will stay busy the longest, hence, is the bottleneck link that might cause future requests

to be rejected. If multiple links have a flow with the same maximum tcfi , then the link



4.3 Scheduling Algorithm for Dynamic Pacing 58

with the highest average tcfi (without considering the maximum tcfi) is decided to be the

bottleneck link. By freeing up only the bottleneck link the probability of accepting flows in

the future increases. The scheduler considers only the flows spanning the bottleneck link

when distributing the residual capacity, which in contrast to the global approach, where

scheduler considers all flows spanning all links of all completed flows paths. The procedure

of the local optimization approach is shown in Alg. 1, line 46-53.

4.3.3 Algorithm complexity

The complexity of the worst-case scenario for new flows is O(FL) for both the global and

local optimization approaches as both algorithms follow the same approach when a new

request arrives. When a new request arrives, the algorithm finds the new flow path, then it

goes through all the flows traversing each link of the path to find if a residual bandwidth is

available. The worst-case is when the path of the new request includes all the links (L), and

each link is traversed by all the flows (F ).

In the reshape phase when a flow is completed, both the local and global optimization

approaches have a worst-case complexity of O(F 2L). The worst-case scenario in the global

approach is when the completed flow path consists of all the links of the network (L), which

means all the flows (F ) are considered for reshaping. Hence, for each flow fi in F , each

link liin the path pi of fi is visited, and each flow traverses li is visited to find the residual

bandwidth (if any), which yields to a complexity of O(F 2L).

In the local optimization approach, even though only the bottleneck link is considered,

the worst-case scenario occurs when the bottleneck link is traversed by all the flows on the

network (F ). Thus, all the flows will be considered for reshaping which would result on the

same complexity of the global optimization. However, as the size of network increases, the

probability of having all the flows (or large number of flows) traversing the bottleneck link

is lower compared to the global approach where all the flows traversing the paths (many

links) of the completed flow(s) are considered.
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4.4 Simulation Analysis

Flow-level simulation was conducted to evaluate the performance of the four schedulers: (i)

local-SJF, (ii) local-LJF, (iii) global-SJF, and (iv) global-LJF. The simulator was written

using Python and for each simulation setup, 10 runs were executed where in each run 30k

requests were generated.

4.4.1 Simulation Setup

Network Google’s inter-data center network G-scale [21] with 12 nodes and 19 links was

used to evaluate. The link capacity lCi was set to 10 Gbps for all links in the network.

Workload Requests were generated as follow: (i) Request inter-arrival time was modeled

with an exponential distribution with arrival rate λ varying between 0.05 to 1.6 with step

of 0.1, i.e. the mean inter-arrival time between requests varies from 20 sec to 0.625 sec.

(ii) Request deadline time was modeled following an exponential distribution with average

deadline (td) of 1 hour. (iii) As the file size is related to the deadline, it was modeled as

follows [70]. First, a transfer rate (i.e. Rminfi
) is sampled following an exponential distribution

with average rate of 100 Mbps. Next the file size was computed as transfer rate × td. This

results in a product distribution with a mean file size of 45 GB. (iv) Source and destination

pairs were picked uniformly.

Metrics Three performance metrics were measured: (i) Network utilization is computed

by measuring the link utilization per second for each link in the network lutilizationi (t),

then taking the average utilization for each link across the entire simulation time (∀li ∈ L,

Lutilizationi = mean(lutilizationi (t))). Finally, the network utilization is measured as the average

of Lutilizationi for all the links in the network (network utilization = mean[Lutilizationi ∀li ∈ L]).

(ii) Reject rate which is defined as the number of rejected requests divided by the total

number of requests. (iii) Performance index is defined as the ratio of the request success

rate to the wasted bandwidth (Performance index = success rate
(1−Utilization)).
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Figure 4.2: Performance comparison of the four algorithms for the G-scale network.

4.4.2 Results

Figure 4.2 shows the performance of five schedulers for the G-scale network with mean file

size of 45 GB (transfer rate of 100 Mbps) and an epoch of 3 minutes. The four heuristic

schedulers are compared against a fixed scheduler which assigns Rmin for each flow and does

not dynamically change any flow rate.

Figure 4.2a shows that the reject rate increases as the request arrival rate increases.

Also, the global-LJF has the highest utilization while the fixed scheduler has the lowest

utilization because the fixed scheduler assigns Rmin for each flow and does not utilize the

residual bandwidth.

Figure 4.2b shows the performance difference between the five schedulers where the fixed

scheduler is achieving the lowest performance. For example, with the low arrival rate of 0.05,

the global-LJF scheduler outperformed the fixed scheduler by 20% (2.16-1.80)/1.80).

Many observations can be made on the performance of the four heuristic schedulers,

first, while the request arrival rate increases, the performance increases until the arrival rate

reaches 0.4 where the performance starts decreasing. This is because at a low arrival rate,

the number of requests arriving is low, therefore, the link utilization is low. However, as the

arrival rate increases, the reject rate increases, which yields to performance degradation.
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Second, the global-LJF has a slightly higher performance compared to the local-LJF.

The global scheduler consider all the flows when distributing the residual bandwidth. On

the other hand, the local scheduler consider only the flows spanning the bottleneck link,

which results on smaller number of considered flows. If the considered flows cannot utilize

the residual bandwidth (because of other bottleneck links in their paths), then the residual

bandwidth is wasted, hence, the performance decreases. With the simulated network, the

performance difference between global-LJF and local-LJF is negligible, where global-LJF

outperformed local-LJF by only 3%. This shows that redistributing the capacity only in the

bottleneck link of the path of the completed flow, is enough to perform as good as when

considering all flows traversing the path.

Third, by comparing global-SJF against global-LJF, or local-SJF against local-LJF, we

can conclude that LJF schedulers have a better performance. LJF reduces the makespan

time of all flows by assigning more rate to the flows with the longest completion time. This

results on freeing up the links faster to accommodate future requests. On the other hand,

SJF frees up some capacity of the link earlier than LJF but the makespan of the flows

stays the same. Also, since SJF favors the flows with the lowest completion time when

redistributing the residual capacity, then the probability of the flow finishing during the

epoch is higher compared to if LJF is used. Therefore the flow will finish during the epoch

and the capacity used by the completed flow will be wasted as no reshaping is done within

the epoch. To further explore the performance difference between SJF and LJF, we executed

both LJF and SJF schedulers with a small epoch duration of 1-sec. The results showed a

negligible performance difference between SJF and LJF. SJF assigns more bandwidth to the

shortest flows, which could result on the completion of the shortest flows at the beginning of

the epoch. However, since the epoch is small (1-sec), only a fraction of the bandwidth could

be wasted because in the next epoch (after 1-sec) the scheduler will redistribute the residual

bandwidth, which increases the performance of SJF.

In summary, the local optimization approach performs as good as the global optimization.

The performance when using SJF versus LJF is negligible in short epoch duration (e.g.,

1-sec), but the performance improvement shows with longer epoch duration, therefore, we

choose local-LJF as the best heuristic for scheduling compared to the other three heuristics.
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4.5 Related Work

The over-arching goal of this work is to enable deadline-aware network service, while ensuring

high network utilization. We leveraged SDN with the ability to perform dynamic traffic

pacing at the network edge. There are a number of recent studies with similar goals. In the

following paragraphs, we review the related work and point out the key differences from our

work.

There has been a number of prior studies on flow pacing [72–74]. Broadly speaking, flow

pacing can be performed at the source host or at the edge where the access network connects

to the core network. The former is referred to as host pacing, or more commonly TCP

pacing, while the later is referred to as edge pacing and can be performed by the network

service provider [74]. In this study, we propose using edge pacing both at the end hosts and

network ingress switches.

SDN networks allow dynamic and centralized Traffic Engineering (TE) via flow pacing.

B4 [21] presents Google’s effort in leveraging SDN to centralized TE and drive links to near

full utilization. As similar study SWAN [50] also improves network utilization of inter-DC

WAN by scheduling the service traffic in a centralized manner. However, all of these studies

do not consider deadline associated with their transfers. The study in Tempus [69] considered

deadlines and developed an optimization framework to maximize the fraction of transfer

delivered before deadline, ensuring fairness among all requests. This work, however also

does not guarantee meeting deadlines.

In a recent study [70], deadlines have been investigated in the context of inter-data center

data transfers. Building on a deadline aware network abstraction (DNA) where transfer

deadlines can be specified, the study proposes AMEOBA which uses traffic shaping at the

source to meet data transfer deadlines. While this study is the most similar to ours, there

are a few key differences: we considered edge pacing and we showed that simple dynamic

pacing algorithms that optimizes locally on the most bottleneck link perform as well more

complex algorithms that attempt to optimize globally.
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4.6 Conclusions

TCP congestion avoidance algorithms, while performing well at maximizing network utiliza-

tion, cannot provide the desired behavior for workflow orchestration. In particular, TCP

relies on network characteristic, such as RTT and packet retransmission, and ignore flow

needs. As result some flows may go faster than they need, while others may go slower

than they should, such to meet deadlines and maximize resource utilization. However, the

performance of modern TCP, in conjunction with the ability of SDN to implement centralized

traffic engineering, allows Calibers to optimize network utilization to provide predictable

performance. Our preliminary study on dynamic pacing algorithms suggests that simple

heuristics that optimize locally on the most congested link can perform almost as well as

attempts to optimize globally.



Chapter 5

A Study on Virtual Desktop

Service using Edge Clouds for

Smart Communities

5.1 Introduction

Virtual desktop technologies have been growing in popularity as several remote desktop

protocols, such as VNC, Microsoft Remote Desktop Protocol (RDP), and TeamViewer,

have been developed to support this paradigm. Custom hardware units, called zero clients,

have also been implemented to run remote desktop protocols. These hardware units are

built with Application Specific Integrated Circuits (ASICs) or Field Programmable Gate

Arrays (FPGAs) with limited or no CPU functionality. In principle, the zero client acts as a

peripheral to its associated server with minimal local processing support beyond decryption

and decoding. In practice, some local processing support or thin client functionality may be

provided.

Zero client hardware has primarily been developed for enterprise applications that require

many terminals with centralized control. Thus, zero clients are used in schools, hospitals,

libraries, and data entry business environments [75–78]. Zero clients have also been used for

high performance graphics applications to allow multiple users to share the more expensive

64
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processing engines [79]. The graphics application frequently exploits co-location of the zero

clients with the graphics servers usually connected through a LAN or other reliable network

interface. Zero clients also provide secure access for data center management, usually through

a zero client switch.

The introduction of edge cloud or fog computing creates a new opportunity to expand the

range of potential applications for zero clients into personal or home computing (PC). The

use of zero clients with edge clouds is appealing for the potential to provide high performance

computing experiences at favorable costs. A zero client computing approach could enable

sharing hardware and software licensing costs among many users. Each user or household

would only require a zero client having network access to the edge cloud. Zero clients are less

expensive than standard personal computers, and this hardware combined with access to

edge servers may be a more affordable option than a PC for households without computers.

Thin clients have been marketed as affordable computing platforms, citing similar

benefits [80–83]. However, consumer thin clients compromise performance and offer a lower

quality computing experience for multimedia usage [84, 85]. In contrast, zero clients are

designed to deliver the full computer performance of the associated server and can offer

high-quality computing experiences that include support for graphic intensive applications.

Moreover, the zero client approach enhances security because zero clients neither run a

standard OS nor expose a CPU on which attackers can install malicious software. However,

using a zero client requires an active, reliable, and high speed network for interaction between

the servers and the virtual desktops. The requirement for zero client connectivity can impose

a mobility challenge as network access must be available to support operation with the zero

client. Fortunately, edge cloud computing is being introduced precisely to provide reliable,

high speed, low latency network connections, and the so-called “mobile” edge clouds are

planned to provide similar access for a mobile networking environment.

Even though virtual desktop technologies have evolved significantly over the past ten

years, commercial zero clients are still limited to business and health sectors today. For

example, North Kansas City Hospital deployed 700 zero clients allowing staff members to

use any nearby “PC” in the hospital throughout the day to access centrally secured medical

data, instead of having one dedicated PC per staff member [78]. In the health or business
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sector, employees tend to mostly use a specific set of applications. On the other hand, a full

PC experience is expected for residential use. As edge cloud computing becomes available,

it is important to understand the viability for zero client use in this environment and what

computing experience can be supported over edge clouds.

Previous work [86, 87] on virtual desktops performance was conducted with methods

that depend on monitoring the performance at the end-user devices, which is not feasible

with zero clients. Other proposed methods depend on monitoring the performance at the

server [88–90] by monitoring CPU utilization, monitoring the display buffer to detect if a

task has completed, or running commercial PC benchmarks on the server. Monitoring at

the server does not consider the involvement of the network to transmit the display to the

end-user devices. Some works have been done to measure VD performance by analyzing the

network traffic [87,89,91], however, the network traffic was analyzed only to measure the

video quality.

Therefore, in this chapter, we introduce performance measurement methods for zero

clients that depend on analyzing the network traffic between the zero client and the server,

and include not only video quality measurements, but also responsiveness as perceived by the

end user. These methods do not require running software-monitoring packages at the end

user device, or collect measurements at the server. We provide the results of our study on the

zero client computing approach for a residential use-case to address the following concerns:

(i) How to measure the zero client performance without the ability to run measurement

software programs at the end-user device (ii) What is the impact of the network on the zero

client performance (iii) Do objective measurements reflect user Quality of Experience (QoE)

as determined through subjective measurement studies.

Objective and subjective measurements were obtained to evaluate the performance

of the zero client for residential usage. Objective measurements were defined within the

measurement categories of: response time, video quality, and audio quality. For response

time, we defined a new metric, Virtual Desktop Display Update Time (VD-DUT), which

depends on analyzing the network traffic between a server and a zero client. Video quality

was measured by analyzing the network traffic and by capturing frame per second rate.

Audio was captured using a hardware device connected to the zero client to measure the
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performance. The subjective measurement study involved 115 participants. For both the

objective and subjective studies, four activities were performed to evaluate the performance:

browsing 2D images, exploring 360-degree images, watching a video, and participating in a

video-conference call.

We found that the network packet loss rate has a different impact on the zero client

performance based on the application, where video applications experienced the highest

impact. By performing statistical analysis on the subjective measurements, we found that

at 0.5% packet loss rate and higher, the subjects’ quality of experience values had no

statistically significant difference for all the tested applications (except the video), indicating

that the subjects interpreted the quality at 0.5% packet loss rate and higher in a similar way.

A strong correlation between objective and subjective measurements was found. However,

as packet loss rate increased, the rate at which the objective measurements changed was

different in compare to the rate at which the subjective measurements changed.

A secondary observation from this work suggests that commodity data center servers are

unlikely to be adequate for use in zero client personal computing. This observation is based

on the recognition that zero client performance critically depends upon server performance,

and typical data center servers are optimized for serving applications rather than full desktop

experiences.

Our main contributions are as follows: (i) Defined a new metric, Virtual Desktop Display

Update Time (VD-DUT), to measure zero client responsiveness. (ii) Conducted the first,

large-scale subjective study on zero client performance with 115 participants. (iii) Quantified

the correlation between objective and subjective metrics.

A significant portion of this chapter is submitted for publishing in IEEE Access journal

c©IEEE 2019. Section 5.2 describes the zero client computing approach and the challenges of

collecting measurements. Section 5.3 describes the objective evaluation approach including

metrics, setup, and applications; and Section 5.4 describes the subjective evaluation approach.

Section 5.5 presents the results of both the objective and subjective studies and quantifies

their correlation to one another. After reviewing related work in Section 5.6, the chapter is

concluded in Section 5.7.
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Figure 5.1: Zero client computing approach

5.2 Zero client computing approach

Fig. 5.1 illustrates the zero client computing approach. In this approach, virtual desktops

are hosted on an edge cloud or directly by local/enterprise machines. The zero client uses

custom hardware to drive user devices such as Keyboard Video Mouse (KVM) terminals.

The zero client runs remote desktop protocols with encryption and video encoding/decoding

at the user end. Supporting these protocols without exposing a general-purpose CPU in

the user-owned and operated end device reduces costs while also reducing exposure to

cyberattack.

PC over IP (PCoIP) [92] is a high-performance display protocol used to deliver virtual

desktops to end-user devices (e.g., zero clients). PCoIP compresses, encrypts, and encodes

the desktop for transmission over the IP network. Only display pixels and control signals

(i.e. mouse clicks) are sent over the network with all the processing being executed on a

remote desktop server. This protocol has a hardware implementation (the zero client).

Measuring the performance of a zero client is challenging because measurement software

cannot be installed and run on the zero client itself, since it has no standard operating

system that allows running user applications. Also, performance measurement at the edge



5.3 Objective evaluation approach 69

Figure 5.2: Setup

cloud (i.e. the remote desktop server) may not provide a faithful representation of the

zero client performance. For example, consider a zero client connected via the network to

a virtual desktop running on a Virtual Machine (VM) hosted on a server, measuring the

response time by AppTimer at the VM as done by vSIP study [88], will measure the time

to launch an application when a display physically connected to the server rather than the

time to see the application window at a remote zero client. With this technique, the time

needed for the VM to open and display the application window at the server is measured.

However, this time will not include the time to compress the display pixels, the time to send

the display pixels over the network, the time for the zero client to receive, decode, and paint

the display pixels. Therefore, running measurement software tools at the server could lead

to inaccurate results. Since monitoring applications cannot be run on the zero client, new

monitoring approaches are needed.

5.3 Objective evaluation approach

An objective evaluation of the zero client computing model was conducted by measuring the

performance of the system while running different applications. User input was emulated

using Autoit [93], which is a scripting language used to automate Windows GUI input by

simulating keystrokes, mouse movements and clicks. Measurements were obtained from

within the edge-cloud host (server), from packet traces between the edge-cloud host and the

zero client, and by capturing the audio output of the zero client.
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5.3.1 Setup

Fig. 5.2 shows the setup used to run experiments and obtain measurements. An ASUS

STRIX laptop was configured to operate as the edge-cloud server with VMWare ESXi 6.5.0,

16 GB RAM, four Intel i7 2.80GHz multithreading CPUs, and a 1 Gbps Network Interface

Card (NIC). Two VMs were created within the server: (i) VM1 with Windows 10 OS, and

(ii) VM2 with Ubuntu 16.04. The two VMs were connected via a virtual switch within the

server. Port mirroring cannot be configured within an ESXi virtual switch, so we configured

the virtual switch using the promiscuous mode to allow VM2 to receive all packets. This

configuration supported monitoring and processing of VM1-client network traffic. We used

the Wyse 5030, which supports PCoIP and equipped with Teradici TERA2321 chip, as the

zero client. Both the server and the zero client were connected via an Ethernet switch with

1 Gbps ports. We used a USB audio capture device to obtain the audio output from the

zero client. The audio jack from the zero client was connected through USB to a PC (PC1)

running Audacity to record the audio from the zero client.

5.3.2 Metrics

Different metrics were used to measure the performance of the system. The metrics can be

divided into 3 categories:

• Response Time (RT)

• Video Quality (VQ)

• Audio Quality (AQ)

Response Time We used the slow-motion technique proposed by Nieh at al. [94] to measure

the system response time. The (emulated) user initiates a single task and then waits for

the server to perform the task. The user further waits for the response to be received and

painted on the display before the user initiates another task. This technique allows for the

network packets associated with each task to be identified within the traffic trace captured

between the server and client. For example, Fig. 5.3 shows the network traffic from a server

to a zero client with a 20-sec gap between the first and second task and a 40-sec gap between
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Figure 5.3: Network traffic capture from server to the client when three tasks were performed

the second and the third tasks. Response times are computed from the time instants of

traffic spikes. RT metrics include: RT-Autoit, RT-Marker and VD-DUT.

RT-Autoit is measured at the VM running in the edge-cloud host using an Autoit

built-in function to detect when a task has completed. For example, Autoit uses the

WinWaitActive() function to detect the rendering of a window for a launched application.

This function locks the execution thread until Autoit detects that the application window

has appeared on the display. When Autoit calls the WinWaitActive function, it is checking

the VM frame buffer at the server to check if the application window has appeared on the

display. Our traffic analysis showed that this does not include the time taken to send all

the display updates to the client and the time taken by the client to process and draw the

display.

RT-Marker is measured using the VDBench [95] method. This method sends a marker

packet (UDP packet to a predefined port) before performing a task. When Autoit detects

that the task has been performed, another marker packet is sent to indicate the end of

the task. From the collected network trace, RT-Marker is obtained by computing the time

between the two marker packets. Since there is background traffic between the edge-cloud

and zero client to support the protocol, we need a threshold (τ) to identify the end of a

display update.

VD-DUT, our newly defined metric, also sends a marker packet to indicate the start time

of a task. However, instead of relying on an end marker packet, the VD-DUT computation
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Figure 5.4: Packet size from the server to the client under idle condition with no display
updates

method finds the last display update packet in the traffic trace.

Example: Fig. 5.3 shows the network traffic trace from a server to a client when the

following tasks were performed: (i) sleep for 20 sec, (ii) send a start marker packet, (iii) load

GIMP application (which is a photo editor), (iv) send an end marker packet, (v) sleep for

20 sec, (vi) send a start marker packet, (vii) open the “Open” dialog box, (viii) send an end

marker packet, (ix) sleep for 20 sec, (x) choose a picture, (xi) send a start marker packet,

(xii) click on “open” button to load the picture, (xiii) send an end marker packet, (xiv) sleep

for 20 sec. Fig. 5.3 shows that, for task 1 (loading GIMP), even after the end marker packet

was sent, more packets were sent from the server to the client. Hence, to consider all the

sent display updates when computing response time, we used a simple heuristic to decide

which packets were part of the display update and should be considered when computing

VD-DUT.

To determine an appropriate value for τ for VD-DUT computation, we examined the

network traffic from the server to the client. We found two types of packets: (i) periodic,

small PCoIP communication packets, and (ii) display update packets. To understand the

characteristics of the small periodic packets, we characterize the traffic from the server to

the client under idle condition.

Fig. 5.4 shows a 10-min snippet of a collected packet trace showing packets sent from

the server to the client under idle condition. The horizontal line in the plot represents small
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continuous 110-byte packets sent with a short inter-arrival time (on the order of hundreds of

milliseconds). On the other hand, each vertical line represents two larger packets (of size

200 - 600 bytes) sent back-to-back approximately every 1 minute (the two packets overlap in

the plot). In the illustrated 10-min packet trace, there were 1417 packets of size 110-byte,

and only 20 packets with a size larger than 110-byte. Therefore, we built our heuristic based

on the smaller packets by assuming that any packet with a size greater than 110-byte could

be a display update packet.

The threshold to measure VD-DUT was defined based on the inter-arrival time of packets

with a size greater than 110-byte. If the inter-arrival time between two consecutive, larger

than 110-byte packets (pi and pi+1) is greater than 500 ms, then the second packet pi+1 is

not part of the display update and VD-DUT is determined from the time at which the start

marker packet was sent to the time at which pi packet was sent.

We chose 500 ms as our threshold after examining the inter-arrival time between the

large packets (>110-byte) in many captured packet traces between the edge-cloud host and

the zero client. We know that large packets sent between the start and end marker packets

were task-related packets since we only send a start marker packet after performing a task at

the VM running in the edge-cloud host. We found the mean inter-arrival time between these

large display update packets was 5 ms, the 99th percentile was 175 ms, and the maximum

inter-arrival time was 490 ms. Since the inter-arrival time between the large packets under

idle condition was approximately 1-min, we chose a number larger than 490 ms but smaller

than 1-min. Specifically we chose 500 ms. To conduct a sensitivity analysis, we redid the

analysis with 1-sec, but found the same results, therefore, we chose 500 ms

VD-DUT has its limitations in measuring the display time because it does not consider:

(i) the time from a mouse click until the packet carrying the mouse click is sent, (ii) the time

taken to send the mouse click from the zero client to the server, and (iii) the time the zero

client takes to receive, decode, and paint the display. The second time can be considered by

adding half the Round Trip Time to VD-DUT, however, the first and third times are difficult

to measure because the zero client is a commodity hardware with no general purpose CPU

to run any monitoring software within it.

VD-DUT can be broken down into the server processing time (or RT-Autoit), transmission
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time, and retransmission time as shown in (5.1). Ttrans is computed by dividing the total

display update transmitted bytes by the link rate (1 Gbps).

VD-DUT = Tproc + Ttrans + Tretrans (5.1)

VQ To measure the video quality, we used two metrics: (i) received PCoIP frame per second

(recv-PCoIP-fps), and (ii) video quality measured following Nieh et al. [94] equation (5.2)

(slow-mo-VQ). Frame per second rate is a good representation of the video quality because

PCoIP adjusts fps based on the network condition. To obtain fps data, running software at

the zero client to capture fps data is not feasible given the zero client limitations. However,

PCoIP has a session statistics viewer (SSV) tool which collects fps data of the zero client. On

the other hand, slow-mo-VQ can be generally used regardless of the remote desktop protocol

and it does not depend on a specific tool. It depends on analyzing the network traffic, where

P in (5.2) represents the tested video. Slow-mo-VQ compares the slow-motion video to

the regular speed video to quantify how many frames were dropped or not transmitted by

looking at the total bytes transferred and the time required to play the video. A video is

first played back at 1 fps and a network trace is captured. The video is then replayed at

regular speed over various network conditions. The video playback at the low fps rate is

used to establish a reference data transfer rate (total data transferred divided by the total

playback time) corresponds to a perfect video playback with no dropped frames. Then,

compare the data transfer rate of the regular fps video to the reference transfer rate, where

the data transfer rate is assumed to reflect the video quality.

slow-mo-VQ =

Data Transferred(P ) / P layback T ime(P )
Ideal FPS(P )

Data Transferred(slow-mo) / P layback T ime(slow-mo)
Ideal FPS(slow-mo)

(5.2)

AQ A survey on perceptual quality assessment for audio/visual services [96] showed that

the video is the dominant factor that decides QoE when watching videos, however, in a

video-conference call, the dominant factor is the audio quality. Therefore, for video playback

testing, only the video quality was measured, and for the video-conference call, only audio

quality was considered when measuring the performance.
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Figure 5.5: Application automation process

To measure the audio quality, we used three objective audio/speech evaluation metrics:

(i) Weighted Spectral Slope (WSS) [97], (ii) Log-Likelihood Ratio (LLR) [98], and (iii) Virtual

Speech Quality Objective Listener (ViSQOL) [99]; which are signal-based, full reference

metrics. WSS and LLR were not developed with VoIP in mind, on the other hand, ViSQOL

was designed to be a general objective speech quality metric with a focus on VoIP. ViSQOL

was developed as an alternative to the commercial, industry-standard speech quality metrics:

Perceptual Evaluation of Speech Quality (PESQ) [100] and Perceptual Objective Listening

Quality (POLQ) [101]. Both WSS and LLR measure the distance between the reference

signal and the degraded signal. ViSQOL uses the Neurogram Similarity Index Measure

(NISIM) to measure the similarity between the two signals and map the result to a value

within the range of 1 to 5.

5.3.3 Applications automation

Fig. 5.5 shows how different components were used to automate and execute the experiments,

and how these components interacted with each other. VM1 has five main components: (i)

Autoit script, which emulates different user activities, (ii) the application, which is being

tested and controlled via an Autoit script, (iii) Clumsy [102], which is a network emulation

tool used to change the network conditions within the VM, (iv) Putty, to allow VM1 to

remotely access VM2 and initiate the network traffic monitoring script, and (v) PCoIP

agent, which is used to enable the remote desktop access.
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Four activities were considered for the performance evaluation study: 2D image viewing

via Windows Photos, video playback via MPlayer, 360-degree image exploring via Chrome,

and video-conference call via Skype. Five packet loss rate (PLR) values of 0%, 0.5% 3%,

5%, and 10% were used for the evaluation.

2D image viewing and 360-degree image exploring

Each activity was automated by an Autoit script as follow: (i) the Autoit script starts

by changing the network configuration with Clumsy, which leverages Windows WinDivert

package that allows user layer applications to manipulate sent and received network packets.

(ii) After setting up the network, the Autoit script initiates tcpdump at VM2 via an ssh

connection with Putty. (iii) The Autoit script: sends a UDP start marker packet, (iv)

controls the application to perform a specific task (e.g., open an image or play a video), (v)

waits for the task to be executed using Windows system calls to check the status of the task,

(vi) then sends an end marker packet, (vii) stops clumsy, (viii) stops the packet capture at

VM2 via Putty, and (ix) initiates an analyzing script at VM2, which parses the captured

packet trace, finds the total bytes, finds VD-DUT and saves the results..

For the 2D image viewing, six images were used with a high resolution between 1024x1545

- 5719x3803, and unique pixels in the range 309K - 877K. During this test, all the images

were pre-loaded in the RAM by opening them before taking measurements. In each run,

all the six images were viewed one by one with a 20-sec gap in between. Each run was

repeated 70 times, the geometric mean of VD-DUT and total sent bytes of the six images

were computed, then the arithmetic mean values were computed across runs.

For the 360-degree image exploring, we used a web-hosted 360-degree image tool to

explore the images, instead of running a 360-degree image exploring tool locally in the

edge-cloud server. Our edge-cloud host is not equipped with a virtualization-supported

GPU, which would impact the performance of the application profoundly. Since our goal

is not to evaluate the computing resources of the edge-cloud, but rather to measure the

responsiveness of the system, we used commercial-cloud 360-degree image viewing software

rather than running our local copy of the software. Three images were used and explored via
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Pano2VR running in a web server 1. In each run, for each image, the Autoit script would

open a new tab in a Chrome web-browser, visit the image URL, drag-and-drop to change

the scene, zoom-in, and zoom-out, where every two tasks were separated by a 20-sec gap

and repeated 90 times. For each run, VD-DUT was computed for each task performed on

each image, the geometric mean of all images and all tasks was computed for each run, and

then the arithmetic mean was computed across runs.

Video

To obtain video measurements, the following steps were followed: (i) at VM1, the Autoit

script initiates tcpdump at VM2, (ii) plays a video via MPlayer at 1 fps rate , (iii) after the

video finishes, the script logs the time that was taken to play the video and stops tcpdump

at VM2, (iv) configures the network with Clumsy, (v) initiates tcpdump at VM2, (vi) starts

SSV at VM1 to capture fps, (vii) starts the video at the regular fps rate, (viii) after the

video finishes, the script logs the time that was taken to play the video and stops tcpdump

at VM2, and (ix) executes the analysis script at VM2 to parse the collected packet traces by

extracting total bytes and use it to compute the video quality via (5.2). Steps (iv-viii) are

repeated for the different network conditions. Each run was repeated for 75 times and mean

values were reported. A 36-sec video from the animated movie “Zootopia” with 23.9 fps

rate was used.

Skype

Evaluating Skype performance involves performance metrics that do not require collecting

network packet traces. The audio coming from the AUX jack of the zero client was captured

and processed to measure the call audio quality. PC1, which is shown in Fig. 5.2, was used

to emulate the other end of the Skype call and record the audio output of the zero client.

A USB audio capture device was used to capture the audio output of the zero client. The

captured audio was forwarded to PC1 which runs Audacity to record the audio.

AQ metrics require comparing the recorded audio file to a reference file. To obtain

a reference file, a Skype call between two PCs was performed. An audio file was fed to

1https://rodedwards.com/interactive-files/Chatsworth House/index.html
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Skype at one PC, and the audio output of the second PC was recorded. The recorded audio

file represented the reference audio. The above steps were repeated four times with two

audio files with male and female speakers from ITU-P.862 conformance data (u am1s03

and u af1s02). Each audio file was recorded twice to account for the variability of Skype

calls. Four reference audio files were obtained from the above experiment and were used

as the reference to compute the audio quality metrics (u af1s02 f ref1, u af1s02 f ref2,

u am1s03 m ref1, and u am1s03 m ref2)

The following steps were taken to conduct the zero client Skype experiment: (i) a Skype

call was initiated from PC1 (Fig. 5.2) to VM1 in the edge-cloud host. (ii) A master Autoit

script at VM1 was executed. (iii) The master script starts by configuring the network using

Clumsy, then connects to PC1 via Microsoft RDP. (iv) The master script then starts another

Autoit script we developed (play-and-record script) at PC1, (v) The script at PC1 starts

recording by running Audacity and then instantly feeds an audio file to the Skype call

(u am1s03 or u af1s02). (vi) After the audio file ends, the Autoit script at PC1 stops

recording and exports the recorded audio as a wav file. (vii) Finally, the script analyzes

the collected audio file by computing the AQ metrics. Each run consists of repeating the

above steps five times back-to-back for each network condition. Five runs were executed

before changing the network condition to give PCoIP enough time to adapt to the network

changes since the used audio files have a length that varies between 7-10 sec. The experiment

was repeated 50 times for each audio file (u am1s03 and u af1s02), and the two references

corresponding to each audio file were used in each run to compute the AQ metrics.

5.4 Subjective evaluation approach

We conducted studies (i) to evaluate users’ subjective experiences with the zero client

computing approach, and (ii) to quantify the relationship between objective and subjective

measurements. A total of 115 participants (66 males and 49 females) at the University

of Virginia completed the subjective study in the fall of 2018. Participants rated their

experiences using the Mean Opinion Score (MOS) with a 5-point Absolute Category Rating

(ACR) scale following ITU-T Recommendation P.800 and P800.1 [103,104]. Each participant
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was asked to assess the QoE for each application on a scale from 1 (bad) to 5 (excellent).

The same applications were used to evaluate the performances in both the objective and

subjective studies.

5.4.1 Setup

Two testing stations (cubicles) were configured with identical keyboards, mice, and monitors

(Dell LCD) with 1680x1050 resolution. A Wyse 5030 zero client was used in one cubicle, and

an LG CBV42-B PCoIP zero client was used in the other. Both zero clients are equipped

with the same Teradici TERA2321 PCoIP processor.

The arrangement for this study was similar to that used for the objective study shown

in Fig. 5.2. This study includes an additional VM (VM3) with the same configurations

as VM1. Also, the LG PCoIP zero client was connected to the physical Ethernet switch

shown in the setup. VM2 was not used to collect packet traces during this subjective study.

Subjective and objective experiments were executed during different time periods using the

same arrangement.

5.4.2 Methodology

Upon arrival, each participant was seated in one of the cubicles and directed to click on

an application icon located in the middle of the Desktop. The application was our master

script to select study applications and collect user input. Participants first read the informed

consent agreement and, if they agreed to the terms, they were directed to a short survey

that captured information about their computer experience. The actual test started by

asking the participant to execute three activities in sequence.

Four activities (applications) were used to evaluate the experience: (i) image viewing

via Windows Photos, (ii) 360-degree image exploring via Chrome, (iii) video playback via

Windows Movies & TV, and (iv) a video-conference call via Skype. The first two activities

were used to collect data related to the responsiveness of the system. The other two activities

collected data related to the audio and video qualities. During each activity, PLR was

changed to test the performance under different network conditions as emulated by Clumsy.
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Watching a video: Each participant was asked to watch a 36-sec video three times

with the PLR changed for each iteration. Each participant was asked to rate each viewing

iteration based on the quality of the video and audio without considering the content.

Image viewing : Each participant was asked to view the same six images that were used

for the objective experiment and rate the quality of each image without considering the

image content. Each participant was asked to look at each of the images three times with

the PLR changed for each of the views.

360-degree image exploring : Each participant was asked to explore three 360-degree

images. Every 15 seconds during the exploration, a window appeared asking the participant

to rate the responsiveness of the system and the quality of the images. A new PLR value

was established before each image was presented for exploration.

Skype: Each participant was asked to join a 2-min video call via Skype with one of

two research assistants. Every 40 seconds during the call, a window appeared asking the

participant to rate the call quality. Call variability was limited during the test by having

the research assistance receiving the call always sitting in the same room, using the same

laptop and connected to the same network. We controlled the call conversation by asking

the participant to play the “20 questions” game. The participant would think of a person

or item, and the research assistant would have 20 questions to ask to identify the person

or item. We chose this interaction instead of using a written script because we wanted the

participant to focus on the call quality rather than reading a script. The research assistant

asked the questions to the participant to ensure that the participant was listening and paying

attention to the audio quality.

Upon completion of each activity, the participant was invited to continue with the next

activity or opt out. Thus, participants had the option of rating their experiences for one,

two or three activities. The activities were automated using an Autoit script. Participant

interaction with the study personnel was not necessary, and this helped to reduce any

influence of study personal over participant ratings. The automation also maintained test

consistency and controlled the testing time. The automation script performs the following

tasks: (i) it shows the participant a dialog box to describe the activity, it runs the tested

application (e.g., visits the 360-degree image URL, or opens the directory that includes the
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2D images that need to be explored), it interrupts the test at specific time intervals to ask

about user experience, and it changes the network configuration.

5.4.3 Data analysis approach

MOS values for each combination of applications and PLR values were computed and

reported in Sec. 5.5.2. To study the subjective measurements, we conducted a pairwise t-test

to check if the MOS values across different PLR values are significantly different. We used

the t-test to test the null hypothesis that there is no difference between the mean values

(MOS) across PLR.

Because of the repeated measures in our study where the same subject rates the expe-

rience under different network conditions, a subject dependency is expected. The subject

dependency in the results occurred because each participant provided experience ratings for

3 PLR values; the subject might have rated the experience with a 3% PLR while recalling

the previous experience with a 0% PLR baseline. To account for the subject dependency in

our study, we performed further analysis using a Linear Mixed effect Model (LMM). LMM

has two types of effects: fixed and random. We used PLR as our fixed effect and the subject

as our random effect (QoE ∼ PLR+ subject). We conducted Tukey’s Honestly Significant

Difference (HSD) test to check if the differences between the groups (PLR) were significant.

HSD adjusts the p-value based on the total number of pairwise comparisons. It is very

conservative with respect to Type I error (rejecting the null hypothesis when it is true). We

used R package “lme4” version 1.1-19 to fit the data to LMM.

5.5 Results

5.5.1 Objective evaluation results

Image viewing Fig. 5.6 shows the mean of the different RT metrics. In the figure, when

the packet loss rate increases, VD-DUT increases. On the other hand, both RT-Marker and

RT-Autoit remained constant when the packet loss rate increased because both of these

timers are based on monitoring the server frame buffer, hence, network activities would
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Figure 5.6: Response Time breakout for image viewing. RT-Autoit and RT-Marker are
overlapping in the plot

not impact the timers. RT-Autoit and RT-Marker could be affected by the processing

time within the server, e.g., if many applications are sharing the VM CPU resources, then

RT-Autoit and RT-Marker could log increases in the time.

Since processing time (RT-Autoit) and transmission delay (Ttrans) are almost constant

under different PLR conditions, and by using (5.1), we could conclude that the increase of

the delay in VD-DUT is due to the retransmission time. This time also includes the time of

processing the packets at the client and determining the missing display pixels.

We also note from the plot that VD-DUT is increasing even though the total sent

bytes are decreasing as the packet loss rate increases. It is expected that if the total

bytes decreases, VD-DUT will decrease since fewer packets are sent. However, VD-DUT

is increasing because of the extra time required to retransmit the packets. Also, the total

number of the transmitted bytes is also decreasing due to PCoIP decreasing the display

resolution when detecting the high packet loss rate. Therefore, users would notice an increase

in display update time and decrease in the display resolution with high packet loss rate even

with a simple 2D image viewing activity.

360-degree image exploring Fig. 5.7 shows mean values of VD-DUT and display update

size. Similar to the 2D image viewing, VD-DUT for the 360-degree images increases as the

packet loss rate increases. However, the increase rate was lower compared to the 2D image
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Figure 5.7: 360-degree image exploring

viewing (9.1% increase rate between 0 to 10% packet loss rate for the 360-degree images,

whereas for 2D images the increase rate was 46.7%). This behavior could be due to the

nature of the 360 images in which the display is changing rapidly; hence PCoIP is not taking

time to retransmit the lost packets, as with the 2D images, once we display an image, the

display stays unchanged for some time.

Skype Fig. 5.8 shows Skype performance measured using different AQ metrics. In general,

AQ metrics values were decreasing as PLR increased. The changing rate in the audio quality

when PLR increased from 0% to 10%, was 47.04% for ViSQOL, 4.59% for WSS, and 7.65%

for LLR. Both LLR and WSS showed low-value changes when PLR increased. On the other

hand, ViSQOL showed a wider range of values when PLR increased. At PLR of 0%, ViSQOL

was computed to be 3.2, which is approximately the average ViSQOL value based on the

ViSQOL range (ViSQOL was designed to have a maximum value of 5 and a minimum of 1).

This indicates that video-conference calls via zero clients have an average quality under the

ideal network condition.

Video Fig. 5.9 shows the video quality measured via slow-mo-VQ and recv-PCoIP-fps rates,

where both metrics were found to be decreasing as PLR increased. At PLR 3, 5, and 10%

the changes in recv-PCoIP-fps and slow-mo-VQ were minimal compared to the changes

between 0, 0.5 and 3%. The video quality dropped when PLR changed from 0% to 10%
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Figure 5.8: Skype AQ measurements obtained via three different metrics
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Figure 5.9: Video quality across different PLR

at a rate of 64.4% for recv-PCoIP-fps and 71.8% for slow-mo-VQ, where both show a high

drop rate when PLR increased. At a 0% PLR, the video reached 20.75 recv-PCoIP-fps rate,

which is less than the original video rate (23.9), similarly, slow-mo-VQ achieved 70%. The

amount of received data decreased to 6 MB (note that the bytes were captured after the

packets were dropped by the network emulator). The low amount of received data implies

many frames were dropped or partially dropped (some pixels were dropped which makes

constructing the frame difficult) which explains the very low recv-PCoIP-fps rate of 7.4 at

10% PLR.
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Table 5.1: Total number of collected QoE values for each activity and packet loss rate value

packet loss rate (PLR) %

Activity 0 0.5 3 5 10

Image viewing 75 31 44 44 31

360-degree image exploring 58 24 34 34 24

Video playback 66 28 38 38 28

Skype 53 26 27 27 26
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Figure 5.10: MOS values of different applications with 95% confidence interval

5.5.2 Subjective evaluation results

Table 5.1 shows the total number of collected QoE values corresponding to each tested

PLR case. The 0% PLR case has a higher number of collected QoE values because both

stations had 0% PLR as an initial condition, whereas the other PLR values were divided to

be tested between the two stations. The minimum number of collected QoE values is 24

(ITU recommends that a minimum of 15 participants are required to evaluate image quality

on a screen [105]).

MOS analysis Fig. 5.10 shows MOS values for different applications with 95% confidence

intervals (CI). Image viewing is the only application that achieved MOS value higher than 4

with 0% PLR (MOS=4.43). Even with the high PLR of 10%, image viewing MOS value did

not drop below 3. This indicates that when browsing through images, participants were less

sensitive to decreased-resolution, still images. For 360-degree images, MOS with an ideal

network condition (0% PLR) has a lower rating (MOS=3.31) compared to the 2D image

viewing. The highest drop rate of MOS occurred when PLR increased from 0 to 3%. After
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Table 5.2: T-test pairwise p-value for different applications

0 0.5 3 5

0.5 1.99e-01
3 6.74e-04 1.07e-01
5 2.74e-06 6.95e-03 2.25e-01

10 7.73e-06 6.13e-03 1.69e-01 7.85e-01

(a) Image Viewing

0 0.5 3 5

0.5 9.28e-01
3 4.53e-01 4.69e-01
5 5.70e-02 8.59e-02 3.13e-01

10 1.25e-05 1.08e-04 1.26e-03 2.37e-02

(b) Skype

0 0.5 3 5

0.5 0.075699
3 0.000317 0.188981
5 0.000837 0.272655 0.810676

10 0.000231 0.141992 0.834638 0.659491

(c) 360-degree image

0 0.5

0.5 1.02e-05
3 1.18e-19 8.65e-06

(d) Video playback

3% PLR, MOS value continued to decrease but at a lower rate.

For Skype, it is interesting to note that even with the very high PLR value of 10%, MOS

value did not drop below 1. This could be due to: (i) participants expecting video-conference

calls to have poor quality, and (ii) audio quality being the dominant factor when evaluating

video-conference calls as shown by a previous study [96]. More bandwidth is assigned to the

audio channel during video-conference calls, and the impact of 10% PLR was not as high as

we expected.

The MOS for video playback showed the most dramatic decrease as it dropped to 1.58

with 3% PLR. Video applications require much data because the display changes rapidly;

the objective measurements showed that the video has the highest number of sent bytes

among the applications. Therefore, video playback should be the most sensitive application

to PLR compared to the other tested applications. We did not collect QoE values beyond

3% PLR because the MOS value had dropped to 1.58.
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T-test analysis Table 5.2 shows the p-value for a pairwise t-test conducted on the different

PLR values across each application with a cutoff of 0.05. Highlighted table cells have p-values

< 0.05 indicating a significant difference between the two PLR values. For image viewing,

we cannot reject the null hypothesis for the consecutive pairs (0,0.5), (3,5), and (5,10). We

could also see in Fig 5.10 that the decrease rate was low, i.e., MOS values were close. These

results were expected considering the activity of browsing through still images. Participants

could sense a difference between no packet loss (0%) and packet loss (3, 5, or 10%), but they

could not necessarily sense a difference among the PLR values higher than 0%.

In contrast, for the interactive Skype application, the t-tests among the groups of PLR

showed more significant differences. By comparing 0, 0.5, 3, and 5% loss rate values, we

cannot conclude that participants noticed a difference in the performance. However, with the

higher PLR of 10%, we can conclude that the QoE rating is significantly different compared

to the lower PLR of 0, 0.5, 3 and 5%. The results from 360-degree image exploration allow

rejection of the null hypothesis only when comparing 0% PLR to the other PLR values,

and we can conclude that the participants had a better experience with no packet loss rate

compared to any tested PLR case. Fig 9 supports these results as the QoE mean values

(MOS) of 3, 5, and 10% PLR, are close. On the other hand, the video playback t-test results

showed a significant difference between the QoE values across the different PLR cases with

a very low p-value between 0, and 3% (1.18e-19).

LMM with HSD test analysis For different applications, Fig. 5.11 shows the 95% CI of

the difference between the mean values for each PLR pair. The mean values were obtained

using the LMM, and CI lines were computed by applying an HSD test between the mean

values for each group (PLR case). In the plots, if CI includes zero within its range, then we

cannot conclude that the two means are statically significantly different because there is

a chance that the difference between the two mean values of a PLR pair is zero. Fig. 5.11

shows more conservative results compared to the t-test results reported in Table 5.2. For

the video, the HSD test on the fitted LMM showed similar results to the t-test such that

there were significant differences between the mean across all PLR pairs. For the other three

applications, there were statically significant differences between the mean values when PLR
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Figure 5.11: Pairwise 95% confidence interval of the difference between every two mean
values across PLR using a Linear Mixed-effect Model with HSD test

was 0% and when PLR was greater than 0%. Even though for the other PLR pairs, we

cannot reject the null hypothesis, Fig5.11 shows that the difference between MOS values

across many pairwise PLR groups is near-marginal significance (for some CI, only a small

part of the line crossed 0).

Subjective and objective correlation To study the correlation between the objective

(VD-DUT, VQ, AQ) and subjective MOS values, we used Pearson’s correlation coefficient

(r). For the tested applications, r values were found to be as follows: image viewing (r

= -0.990), 360-degree image (r=-0.733), Skype-LLR (r=-0.963), Skype-WSS (r=-0.946),

Skype-ViSQOL (r=0.974), video-recv-PCoIP-fps (r=0.987), video-slow-mo-VQ (r=0.986).

These results imply strong correlations between the objective metrics and the subjective

MOS values. However, the rates of increase/decrease in the objective and the corresponding

subjective metric were different when PLR increased.

Table 5.3 shows the slope of a linear model for each application and method (LMM

was used to fit the subjective results). For image viewing, both objective and subjective

metrics have approximately the same absolute line slope indicating that PLR impacted
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Table 5.3: The slope of fitted linear models of each application for both objective and
subjective measurements

App Method slope

Objective-VD-DUT 0.1260
Image viewing

Subjective -0.1041

Objective-VD-DUT 0.0483
360-degree image

Subjective -0.0866

Objective-ViSQOL -0.1494
Objective-WSS 0.0961
Objective-LLR 0.0001Skype

Subjective -0.0979

Objective-recv-PCoIP-fps -2.9060
Objective-slow-mo-VQ -0.1102

Video
Subjective -0.6565

both metrics at the same rate. For Skype, subjective measurements, ViSQOL, and WSS

have approximately the same increase/decrease rate caused by PLR increase. On the

other hand, LLR has a minimal slope value, indicating a minimum impact of PLR on the

performance (i.e., LLR underestimated the effect of PLR compared to the subjective results).

For 360-degree image exploring, the subjective metric (MOS) was decreasing faster than

the rate at which the objective metric (VD-DUT) was increasing indicating a different

impact by PLR (i.e., the subjective metric was more sensitive to PLR changes compared

to the objective metric (VD-DUT)). For the video analysis, we only used the objective

data points collected at PLR of 0, 0.5, and 3% since we only collected subjective data

at these three PLR values. Comparing the objective recv-PCoIP-fps and slow-mo-VQ to

the subjective QoE results, the subjective metric was decreasing when PLR increased at

a rate higher than slow-mo-VQ decreasing rate, and at a rate lower than recv-PCoIP-fps

decreasing rate. In conclusion, nevertheless, objective metrics showed a decreasing trend on

the performance as PLR increased (which matches the subjective results), some objective

metrics underestimated or overestimated the impact of PLR on the performance.

5.6 Related Work

Many studies have been conducted on objective measurements to quantify virtual desktop

performance and/or to evaluate new solutions for virtual desktops. Nieh et al. [94] proposed
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a methodology to measure the performance of thin clients via slow-motion techniques

based on monitoring network traffic. Packet traces are collected in an ideal environment

as a baseline and then compared against packet traces collected under different network

conditions and server loads. Slow-motion techniques have been used by other researchers as

well [87, 89,91,95,106].

VDBench [95] is a thin-client benchmarking tool that uses slow-motion techniques.

Realistic loads of multiple applications were generated to compare different remote desktop

protocols by measuring video quality and application response time under various server

loads and network conditions. CloudRank-V [107] is another benchmarking tool that uses

network traces to find response time (latency). A method to generate complex workloads

was proposed by mixing nine applications, and the maximum number of VMs the server can

execute before user performance degradation is noticeable was determined. Our objective

study is similar to VDBench and CloudRank-V, where we measured response time based on

analyzing network traffic by defining our own metric VD-DUT (VDBench response time is

based on when the action is performed at the server side, on the other hand, CloudRank-V

threshold to define start and end of display updates was not stated). Despite the previous

work on measuring the performance of virtual desktops, to the best of our knowledge, this is

the first study on virtual desktops accessed through zero clients as studies used thin clients

or other computing platforms.

VNCPlya [108] and DeskBench [86] are VD benchmarking tools that measure application

response time based on the status of the display buffer. When a specific task is performed

(e.g., opening a text editor), the display buffer is captured and used as a reference. To

measure the response time, the tool performs the same specific reference task, and then

keeps on comparing the display buffer to the reference until they match (DeskBench uses a

hash function of the display buffer instead of using the image itself). Pandey et al. [109]

proposed a framework to facilitate VD benchmarking and allow adaptation to changes in

VDI software architecture. Song et al., [87] presented FastDesk, a remote desktop system for

multi-tenants, which was evaluated by measuring CPU utilization, response time and video

quality for different applications. However, all previous works rely on running a piece of

code on the client to monitor the display buffer or capture mouse clicks and display changes,



5.6 Related Work 91

which are not feasible in a zero client setup.

Sui et al. [88] evaluated their proposed virtual scheduler for interactive performance

(vSIP) at the server side without considering the remote desktop protocol nor the client

end-device. The evaluation metrics included video quality measured by the rate of dropped

frames at the server side, cold and warm launch time of applications, and Web page loading

time. Server-side measurements were also obtained in Zhou et al. study [90]. Our goal is to

evaluate the end-user device performance; thus, server-side measurements are not sufficient.

Some studies focused only on video quality and developed methods to measure it as

the only metric [89,90,106,110,111]. For example, Laine et al. [110] used displayed image

frames, the frame rate and play duration as performance metrics. Yu et al. [106] used a

modified slow-motion video quality metric.

Subjective assessments have been used to measure user quality of experience [88,112–118].

The number of participants on the assessments varied between 10 to 40 and Mean Opinion

Score (MOS) was used to evaluate the performance. These studies focused only on the

quality of video or gaming experience [119], other applications in addition to video were

considered in our subjective study.

Casas et al. [25] undertook a subjective study with 52 participants to measure QoE using

Citrix technologies. Each participant performed several tasks (text editing, drag and drop,

scroll down, and Web browsing) and evaluated the experience using MOS under different

RTTs. The authors characterized traffic by collecting packet traces, measured the response

time, and compared the response time when using Citrix with response time when running

the applications on a desktop. Our work is similar to Casas et al. as different applications

were considered. However, our study focused on zero client performance and in addition

to the subjective study we conducted a correlation study on the subjective and objective

results. Also, we conducted a Skype subjective conversation-opinion test on VDs specifically

with zero clients setup.

In the VDpilot study [120], virtual desktop performance was evaluated by 38 participants

to asses QoE of using some applications via a virtual desktop compared to being in a lab to

access the applications via a physical desktop in the lab. Five applications were evaluated,

where the participants used their own devices to access the virtual desktops over a WAN
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connection. In contrast, our study focused on the zero client performance and also quantified

the impact of the network on the QoE via subjective and objective studies.

Previous work on subjective Voice over IP (VoIP) performance evaluation were conducted

with audio or video files fed into the call, without interaction with a person on the other

side of the call [121–125]. This test is defined as the listening quality test [103], which

achieve less degree of realism compared to the more complex conversation-opinion test.

Very few studies have been conducted using conversation opinion test. For example, Cano

et al. [126] conducted a subjective study on Skype performance with real calls, but for a

different purpose of evaluating four different VoIP applications. Khitmoh et al. [127] and

Daengsi [128] performed subjective studies on VoIP service where every two subjects had

a 3-5 minute conversation on a controlled laboratory setup to develop a model for VoIP

quality evaluation for the Thai language.

5.7 Conclusions

Objective and subjective measurements were obtained to evaluate zero client performance in

which four activities were performed: (i) image viewing, (ii) 360-degree image exploring, (iii)

video playback, and (iv) video-conference calling. Many objective metrics were used: Virtual

Desktop Display Update Time (VD-DUT), Audio Quality (AQ) metrics, and Video Quality

(VQ) metrics. VD-DUT, our newly defined metric, is measured by analyzing the network

traffic between the zero client and the edge cloud; and it was used to measure the system

responsiveness for the first two activities. Methodologies to measure AQ and VQ were also

described, and experiments were conducted to measure the video quality and the audio

quality of a Skype call. The first large-scale subjective study on zero client performance

was conducted with 115 participants at the University of Virginia, in which Mean Opinion

Score values were collected and analyzed. The network conditions were altered during the

objective and subjective studies by increasing the packet loss rate (PLR).

The PLR impact on the zero client performance varied based on the application. By

analyzing the objective measurements, we found that VD-DUT increased and both AQ

and VQ decreased when PLR increased, as expected. The video experienced the highest
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impact from the PLR as the video quality (measured by recv-PCoIP-fps) decreased by a

rate of 71.8% when the PLR changed from 0% to 10%. Statistical analysis conducted on the

subjective measurements showed that the MOS values at 0.5% PLR and higher were not

statistically significantly different, implying that the subjects interpreted the quality at 0.5%

PLR and higher in a similar way. Video is the exception, where MOS values across different

PLRs were significantly different and the impact of PLRs on the subjects’ experiences was

the highest as MOSs dropped from 3.53 (at 0% PLR) to 1.58 (at 3%), decreasing at a rate of

55.2%. A strong correlation between the objective and subjective measurements was found

but the speed at which the objective and subjective measurements fell with increasing PLR

differed depending on the application.



Chapter 6

Conclusions and Future Work

In this chapter, we first summarize the work presented in this dissertation and draw four

key conclusions, and then discuss potential future work to advance our current research.

6.1 Summary and Conclusions

We designed and evaluated new networking services, taking into account deployment con-

straints, so that these services can be introduced incrementally into different regions of

the Internet for improved application performance. Given the large number of network

technologies and even larger number of deployed networks, we selected networks within the

following three categories: (i) datacenter networks, (ii) Wide-Area Networks (WANs), and

(iii) Local-Area Networks (LANs). For each network type, we defined problems that address

specific application needs, then proposed and evaluated our evolutionary solutions.

Chapter 2 presented a measurement study of congestion on a production, highly uti-

lized, 72K-core InfiniBand cluster called Yellowstone. In datacenter networks, low-latency

communications are required for scientific, highly parallelized applications. We developed a

methodology for measuring congestion and executed this methodology in Yellowstone. The

measurement study consists of a 23-day data collection phase in which port counters of the

Yellowstone switches were read multiple times every hour to check for stalls during which the

port is unable to send data due to a lack of flow-control credits. A total of 30M data records

were obtained and analyzed. Our conclusion is that congestion occurs in production clusters

94
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where we found that in a significant number of the 100-ms intervals over which a port counter

was observed, there were transmission stalls. Out of 6M observations of Top-of-Rack (ToR)

switch uplink ports, we found that the port was forced to wait for credits in 60% of these

100-ms intervals. Such transmission stalls could increase application execution time, and

also decrease cluster utilization.

Chapter 3 described our proposed SDN-enabled headroom services: (i) Static Headroom

(SH) and (ii) Dynamic Headroom (DH) services to allow customers to fill provider-link

headroom with Elephant Flows (EFs) without adversely affecting the provider’s ability

to meet its Best-Effort (BE) service-level agreements, and ability to absorb extra traffic

load created during failure recovery periods. Our solution calls for the use of lower-priority

service for EFs. We used simulations to compare SH service with BE service, and DH

service with SH service. When EFs are sent on BE service, they could cause packet losses in

general-purpose IP traffic, especially when the burstiness of the latter is high, while with SH

service, this packet loss rate is reduced to 0. While DH service requires the added complexity

of a provider SDN controller, the ability to dynamically route EFs on lower-utilized links

results in higher average EF throughput. The higher the non-uniformity (from a node-pair

perspective) in network traffic, the greater the DH gain factor. Therefore, we conclude

that under low-to-moderate traffic loads, provider-link headroom can be used effectively

by customer elephant flows without adversely affecting best-effort traffic and the ability of

provider networks to absorb extra traffic during failures.

Chapter 4 presented Calibers, our developed solution to allow scheduled delivery across

WANs. Calibers uses shaping, metering, and pacing at the edge of networks and end-systems

to allow scheduled delivery. We introduced four scheduling algorithms by combining two

principles: (i) local and global optimization, and (ii) Shortest Job First and Longest Job

First. We compared the performance of these algorithms using simulations. We concluded

that a simple heuristic, which optimizes usage locally on the most bottlenecked link, can

perform almost as well as heuristics that attempt global optimizations.

Chapter 5 presented our measurement studies conducted to evaluate desktop application

performance when using zero-client based virtual-desktop services. We defined a new metric,

Virtual Desktop Display Update Time (VD-DUT), which depends on analyzing the network
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traffic between the zero client and the edge cloud, and used this metric to characterize

system responsiveness. Both objective and subjective measurement studies were conducted,

the results were analyzed, and the correlation between the two measurements was quantified.

During the objective and subjective studies, network conditions were altered by changing

the emulated packet loss rate (PLR). We concluded that PLR impact on the zero-client

performance varied considerably based on the application. Video applications experienced

the highest impact of packet losses, and we found a strong correlation between objective

and subjective measurements.

6.2 Future Work

This work can be extended in the following directions:

1. The InfiniBand measurements study can be extended by undertaking a thorough

simulation study to understand the conditions (combinations of network traffic) under

which congestion occurs, and to quantify the relationship between Forced Idle Time

Fraction (FITF), a measure of congestion, and application performance.

2. For large data transfers using our new headroom services across WANs, a simulation

study can be conducted to evaluate a merged solution of SH and DH services that

leverages knowledge of network utilization and file sizes.

3. For Calibers, the scheduling algorithms can be prototyped and integrated with the

prototyped architecture, and then evaluated experimentally. The work assumed prior

knowledge of background traffic. Hence, methods to predict background traffic can be

investigated.

4. For the virtual-desktop measurements study, our newly proposed metric can be used

to execute a scalability study, in which both network and computing resources are

considered. A small experimental study is required to first characterize and model the

network traffic and computing-resource usage. A subsequent simulation study can be

carried out to quantify scalability.
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