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Abstract

Many cities face high levels of flooding and pollution from stormwater runoff due

to factors such as ongoing urbanization and aging stormwater management infras-

tructure. As climate change continues to alter precipitation, temperature, and sea

levels, existing stormwater systems will be pushed beyond their designed capacity,

further increasing flooding and pollution. This dissertation focuses on real-time pre-

diction and control of stormwater related systems as a means to enhance community

resilience to these issues. The research advanced the application of emerging deep

machine learning techniques to water resources engineering using the coastal city

of Norfolk, Virginia as a test-bed for these novel approaches. Norfolk faces recur-

rent flooding from storm events and ongoing sea level rise, while having to reduce

polluted stormwater runoff entering the Chesapeake Bay. The first study uses su-

pervised deep machine learning to create forecasts of groundwater table response to

storm events, providing additional information for flood forecasting and stormwater

management. The second and third studies explore deep reinforcement learning as

a method for real-time control of stormwater systems. In the second study, rein-

forcement learning is used to create control strategies that mitigate flooding in a

simple stormwater system scenario inspired by a watershed in Norfolk. The third

study uses reinforcement learning for real-time stormwater system control with the

competing objectives of mitigating flooding while also improving water quality by

capturing sediment. This was done using a real-world simulation of Norfolk’s Hague

neighborhood instead of the simplified system from the second study. Key findings

from this research are (i) deep machine learning can be used to create real-time

hourly forecasts of the groundwater table response to storm events in a coastal city

using forecast rainfall and tide conditions as input data with a mean root mean

squared error of 0.05 m, (ii) reinforcement learning can learn real-time stormwater

system control strategies that reduce flooding compared to conventional, uncon-

trolled stormwater systems by 32%, (iii) system-level stormwater real-time control

with reinforcement learning can reduce flooding by 13% compared to local-scale

control rules, and (iv) reinforcement learning can use real-time water quality obser-

vations to reduce sediment loads by an average of 52% with only a small increase in

flooding (5%) compared to conventional, uncontrolled stormwater systems. While

this dissertation has focused on coastal cities, the knowledge and methods devel-

oped could be applied to inland stormwater systems as well. These advancements

contribute to a growing body of knowledge related to smart stormwater systems,

which can aid communities through improved prediction and control of stormwater

to reduce flooding and pollution.

i



Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor 

of Philosophy (Civil Engineering)

Benjamin Donald Bowes

This dissertation has been read and approved by the Examining Committee:

Jonathan L. Goodall, Adviser

Teresa B. Culver, Committee Chair

Peter A. Beling

Madhur Behl

Matthew Reidenbach

Accepted for the School of Engineering and Applied Science:

Jennifer L. West, Dean, School of Engineering and Applied Science 

August 2021

ii



 

 

 

 

 

 

 

 

 

 

 

 

 

To Caitlin, Arthur, and baby Bowes 

iii



Acknowledgements
This dissertation has been possible through the love and support of my family.
Thank you to my wife, Caitlin, who encouraged me to leave a stable, boring job and
start grad school. Five years later, your support has been constant and invaluable,
even while you’ve worked full time and became a mom! Thank you to Arthur, our
three year old son, who has made life, especially pandemic life, fun and exciting.
With baby number two on the way, I know that we are ready for our next adventure
as a family!

Thank you to my parents, Anne and Andy, for your love, support, and faith.
You set me on a firm foundation with years of home school and outdoor adventures.
Thank you for being amazing role models. Thanks to my sister, Katie, for adventures
around C-Ville and always being ready to provide veterinary support for Olive and
Violet. I would also like to thank my in-laws, Boomer (Richard, Mech/Aerospace
Engineering ’89) and Jolie, and brother-in-law Rowan. I know we can always count
on your support, whether it’s with babysitting or touring local breweries (or both)!
Thank you to Andy, Anne, Richard, and Jolie for your brave and loyal service in
our country’s military.

I would also like to acknowledge my good friends and colleagues from the UVA
Hydroinformatics group including Jeff Sadler, Mohamed Morsy, Bakinam Esawy,
Gina O’Neil, Alex Chen, Youngdon Choi, Iman Maghami, Faria Tuz Zahura, Linnea
Saby, Jake Nelson, Natalie Lerma, Ciara Horne, Chase Dong, Yidi Wang, Binata
Roy, Victor Sobral, and Ruchir Shah. I especially thank Jeff Sadler and Mohamed
Morsy, who were fantastic mentors in my early grad years. You showed me the
meaning of hard work and dedication; I hope I’ve been able to reflect those high
standards and pass them on to others. We’ve all become part of the Link Lab and
I thank the many friends I’ve made there as well, including my RL coauthors Arash
Tavakoli and Cheng Wang. I’ve been fortunate to be part of such a diverse group
of people. Keep up the great work! Wahoowa!

My dissertation committee deserves special thanks time and guidance. Thanks
to Dr. Teresa Culver for agreeing to chair the committee and for mentoring me as
a TA for your Intro to Environmental Engineering class. Thank you Dr. Madhur
Behl for your expertise with all things cyber-physical. Thank you Dr. Peter Beling
for introducing me to reinforcement learning. Thank you to Dr. Matt Reidenbach
for your expertise with coastal resilience. Thank you all for asking hard questions
and seeking new knowledge!

I especially thank my advisor, Dr. Jon Goodall. From the time I took your
Water Resources Engineering class as a continuing studies student while working
full time, you’ve enabled me to see myself as an engineer, even when I didn’t believe
it myself. You’ve provided me countless opportunities to learn and grow as a student,
researcher, and teacher. Thank you Jon for taking a chance on me as a PhD student
and for leading a diverse, engaged, and friendly research group!

iv



Contents

List of Tables vii

List of Figures ix

1 Introduction 1

2 Forecasting Groundwater Table in a Flood Prone Coastal City with
Long Short-term Memory and Recurrent Neural Networks 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Observed Data . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Forecast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Input Data Preprocessing . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Input Variable Cross-Correlation Analysis . . . . . . . . . . . 13
2.4.3 Storm Event Response Identification . . . . . . . . . . . . . . 13
2.4.4 Bootstrapping Datasets . . . . . . . . . . . . . . . . . . . . . 13
2.4.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . 13
2.4.6 Long Short-term Memory Neural Networks . . . . . . . . . . . 14
2.4.7 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . 15
2.4.8 Model Training and Evaluation . . . . . . . . . . . . . . . . . 16
2.4.9 Results Post-Processing . . . . . . . . . . . . . . . . . . . . . 17

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Data Preprocessing Results . . . . . . . . . . . . . . . . . . . 18
2.5.2 Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Data, Model, and Code Availability . . . . . . . . . . . . . . . . . . . 28
2.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Flood Mitigation in Coastal Urban Catchments using Real-time
Stormwater Infrastructure Control and Reinforcement Learning 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Stormwater Simulation . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 SWMM Input Data . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Flood Event Classification . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Implementing RL in Stormwater Systems . . . . . . . . . . . . 35

v



3.2.5 MPC Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.6 Rule-based Control . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Comparison of RL and Passive System . . . . . . . . . . . . . 39
3.3.2 Comparison of RL and MPC . . . . . . . . . . . . . . . . . . . 40
3.3.3 Comparison of RL and RBC . . . . . . . . . . . . . . . . . . . 40
3.3.4 Flood Event Classification Results . . . . . . . . . . . . . . . . 44

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Reinforcement Learning-based Real-time Control of Coastal Ur-
ban Stormwater Systems to Mitigate Flooding and Improve Water
Quality 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 SWMM Model . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Real-time Control Scenarios . . . . . . . . . . . . . . . . . . . 56

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Baseline Flood and TSS Control . . . . . . . . . . . . . . . . . 60
4.3.2 Local Control with RBC . . . . . . . . . . . . . . . . . . . . . 61
4.3.3 System-level Control with RL . . . . . . . . . . . . . . . . . . 63
4.3.4 Multi-objective Comparison of RTC Methods . . . . . . . . . 64
4.3.5 Impact of Groundwater Exchange on RTC Methods . . . . . . 66

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.1 Towards System-level Control . . . . . . . . . . . . . . . . . . 68
4.4.2 Trade-offs of Local-scale RBC . . . . . . . . . . . . . . . . . . 69
4.4.3 Groundwater Exchange Limitations and Impact . . . . . . . . 69

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Data, Model, and Code Availability . . . . . . . . . . . . . . . . . . . 71
4.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusion 72

Appendices 74

Bibliography 110

vi



List of Tables

2.1 Groundwater table monitoring well details. . . . . . . . . . . . . . . . 9
2.2 Rain gauges associated with each well based on geographic proximity. 12
2.3 Input and label tensors for neural network modeling. . . . . . . . . . 12
2.4 Hyperparameter choices explored. . . . . . . . . . . . . . . . . . . . . 16
2.5 t-test null hypotheses for model type and training data comparison. . 18
2.6 Rainfall δR and sea level δS lags found for each well. . . . . . . . . . . 19
2.7 Storm characteristics for each well. . . . . . . . . . . . . . . . . . . . 19
2.8 Tuned hyperparameters for RNN models. . . . . . . . . . . . . . . . . 20
2.9 Tuned hyperparameters for LSTM models. . . . . . . . . . . . . . . . 21

3.1 Overview of methodology for stormwater system control scenarios . . 32
3.2 Properties of SWMM model . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 DDPG RL agent architecture and hyperparameter settings . . . . . . 37
3.4 MPC cost function parameters . . . . . . . . . . . . . . . . . . . . . . 37
3.5 MPC trials and performance comparison with the passive and RL

systems for the first week in August, 2019. . . . . . . . . . . . . . . . 41

4.1 Comparisons of stormwater control scenarios. . . . . . . . . . . . . . 60

vii



List of Figures

2.1 Location of gauges in Norfolk, Virginia. . . . . . . . . . . . . . . . . . 8

2.2 Hourly groundwater table level, sea level, and rainfall at individual
wells for Tropical Storm Julia. . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Study workflow detailing major steps in the data preprocessing, neu-
ral network modeling, and results post-processing. . . . . . . . . . . . 11

2.4 Recurrent neural network (RNN) (A) and long short-term memory
(LSTM) (B) model architectures. Merging lines show concatenation
and splitting lines represent copies of matrices being sent to different
locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Model training and evaluation with bootstrapped datasets. . . . . . . 17

2.6 Detail of identified storm periods found for well GW1. . . . . . . . . . 20

2.7 Mean root mean squared error (RMSE) values for each model type
and training dataset treatment at each well and forecast period. Sub-
plot letters correspond to the hypothesis being tested (Table 5) and
are comparisons of (A) RNN and LSTM models trained and tested
with Dfull (B) RNN and LSTM models trained and tested with Dstorm

(C) RNN models trained with either Dfull or Dstorm and tested on
Dstorm (D) LSTM models trained with either Dfull or Dstorm and
tested on Dstorm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Mean RMSE values from the forecast test set Dfcst for each model
type and training dataset treatment at each well and forecast period.
Subplot letters correspond to the hypothesis being tested (Table 5)
and are comparisons of (E) RNN and LSTM models trained with Dfull

(F) RNN and LSTM models trained with Dstorm (G) RNN models
trained with either Dfull or Dstorm (H) LSTM models trained with
either Dfull or Dstorm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Comparison of groundwater table observations and forecasts at GW1
from LSTM models trained with the Dfull and Dstorm training sets. . 24

3.1 SWMM simulation schema . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Gauge locations in Norfolk, VA USA. . . . . . . . . . . . . . . . . . . 34

3.3 Rule-based control hierarchy and settings. . . . . . . . . . . . . . . . 38

3.4 Comparison of RL controlled and passive system performance on Au-
gust, 2019 training data. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 RL and MPC control policies and states for the first week of August,
2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Comparison of RBC and passive system performance on August, 2019. 42

3.7 Comparison of RL and RBC system performance on August, 2019. . . 43

viii



3.8 Comparison of RL, RBC, and passive system performance on all
months of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Number (A), duration (B), and volume (C) of flood events at down-
stream node J1. Flood volumes at node J1 were categorized as causing
≥ 0.2, 0.3, or 0.4m of water depth on the roadway. . . . . . . . . . . 45

4.1 Study area - Hague area of Norfolk, Virginia USA with (A) the
SWMM model and (B) land cover data. . . . . . . . . . . . . . . . . 53

4.2 General schema of the Detention Rule-based Control (RBC-DTN)
scenario. Forecasts allow predictive control of the pond water level
to mitigate flooding while a fixed detention time after storm events
helps improve water quality. . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 General schema of the TSS Rule-based Control (RBC-TSS) scenario.
Detention is based on observed TSS concentration, not a fixed length
of time, making it adaptive to individual storm events. . . . . . . . . 57

4.4 Reinforcement learning paradigm. . . . . . . . . . . . . . . . . . . . . 58
4.5 Comparison of passive and RL Agent 1 system operation for August,

2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Total flood volumes (A) and TSS loads (B) for the passive and RL

Agent 1 baseline scenarios, 2010-2019. . . . . . . . . . . . . . . . . . . 61
4.7 Comparison of local RTC methods (RBC-TSS, RBC-DTN) and pas-

sive system operation for August, 2019. . . . . . . . . . . . . . . . . . 62
4.8 Total flood volumes (A) and TSS loads (B) for local RTC methods

(RBC-TSS, RBC-DTN) and passive system operation, 2010-2019. . . 63
4.9 Comparison of RL Agent 2, RL Agent 3, and passive system operation

for August, 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Total flood volumes (A) and TSS loads (B) for RL Agent 2 and RL

Agent 3, 2010-2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Comparison of flood volume and TSS load trade-offs for each control

method, 2010-2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.12 Comparison of time below or above the Pond 2 target depth (3.56ft)

for each control method, 2010-2019. . . . . . . . . . . . . . . . . . . . 66
4.13 Comparison of percent difference from the passive system for each

RTC method’s total flood volume (A) and TSS loads (B and C)
for simulations with and without groundwater (GW) exchange for
September, 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.14 Comparison of passive pond operation for simulations without ground-
water exchange (No GW) and with L = 5ft or L = 1ft in the Dupuit
equation, September, 2016. . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



Chapter 1

Introduction

Coastal communities are experiencing increased flooding and pollution due to sea
level rise, increased precipitation, more frequent extreme weather events, and ur-
banization (Wuebbles et al., 2017; Sweet and Park, 2014; Moftakhari et al., 2015;
Moftakhari et al., 2017; Alamdari et al., 2020). Recurrent nuisance flooding (i.e.,
low-level flooding caused by small storm events, high tides, etc.) disrupts transporta-
tion and other infrastructure systems and, over time, can lead to severe economic
impacts and infrastructure damage (Moftakhari et al., 2015; Moftakhari et al., 2017).
The pollutants in urban stormwater runoff, such as nutrients, sediment, and met-
als, can negatively impact aquatic ecosystems through toxicity and eutrophication
(Brudler et al., 2019; Murphy et al., 2011). In order to increase the resilience of
coastal communities and protect natural ecosystems to these challenges, this dis-
sertation focuses on leveraging emerging machine learning techniques to forecast
physical processes within an urban setting and improve the ability of stormwater
systems to mitigate flooding and protect water quality.

Stormwater systems play a critical role in mitigating flooding and pollution im-
pacts in urban areas and are conventionally designed based on historic conditions
to operate passively using only the force of gravity. These systems are required be-
cause urbanization increases impervious area (e.g., roofs, parking lots), which limits
stormwater infiltration and increases the speed and volume of water that becomes
runoff. In turn, this often leads to greater flooding and increased pollutant loads
discharged to receiving waters (Boyer and Kieser, 2012; Walsh et al., 2005). Con-
ventional stormwater systems attempt to alleviate this by temporarily storing runoff
in ponds, allowing infiltration, settling of sediment, and uptake of nutrients while
slowing its flow to receiving waters. Traditionally, increased flooding and pollution
would be mitigated by expanding stormwater system capacity. However, such cap-
ital improvement projects are expensive and disruptive, especially considering the
estimated $8 billion funding gap for operation and maintenance of existing stormwa-
ter infrastructure in the U.S. (ASCE, 2021). Additionally, conventional stormwater
systems are designed to operate under specific conditions and are not able to adapt
to the wide range of possible storm events or future environmental regulations.
These factors indicate that conventional stormwater systems will struggle to keep
pace with changing land use and climate change (Berggren et al., 2012; Mynett and
Vojinovic, 2009; Neumann et al., 2015).

Due to the growth and ubiquity of the Internet of Things (IoT), it is now possi-
ble to monitor and operate stormwater systems more efficiently and in real-time as
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cyber-physical systems. By retro-fitting parts of conventional stormwater systems
with sensors and actuators (e.g. remotely controlled valves and pumps), they can
be monitored and controlled in real-time based on current and forecast conditions
(Kerkez et al., 2016). This has been shown to be a cost-effective way to increase
the efficiency of existing stormwater infrastructure and is an emerging stormwa-
ter management tool (Jose Meneses et al., 2018). In current practice, stormwater
real-time control (RTC) is based on control rules for single components of an infras-
tructure system (e.g., level control of a retention pond), which has been shown to
reduce flooding and improve water quality locally (Marchese et al., 2018; OptiRTC
and Geosyntec Consultants Inc., 2017). However, as the complexity of controlled
stormwater systems increases, the task of creating rules and policies able to con-
sider all system interactions and changing land use and climate conditions will be
extremely difficult.

Efficient RTC within a complex system that mitigates flooding and protects the
quality of receiving waters, is a challenging task that can benefit from system-level
control (Wong and Kerkez, 2018). Recent research has explored system-level meth-
ods of optimizing stormwater RTC. However, these methods typically focus solely
on water quantity, can be very computationally expensive, or require simplifying the
non-linear dynamics of stormwater systems, thus not completely capturing the sys-
tem behavior (Sadler et al., 2019). The hardware technology to enable system-level
RTC based on water quantity is readily available and continuing improvements in
real-time water quality sensors may soon allow more direct observation and control
of not only water quantity but water quality (Wong and Kerkez, 2016). System-level
control methods will be needed to make the best use of these data streams instead of
attempting to engineer rules that cover all possible interactions between stormwater
system components, pollutants, and environmental conditions.

Coastal cities face additional challenges in implementing system-level stormwa-
ter RTC beyond the multiple of objectives of flood mitigation and water quality
protection. First, outfalls of coastal stormwater systems that drain to tidal water-
bodies can be blocked during high tides. In some cases tidal water can flow back into
inland parts of the stormwater system and cause flooding or reduce system capac-
ity; this is expected to become more severe with sea level rise (Sadler et al., 2020a;
Shen et al., 2019). If stormwater RTC does not take tidal conditions into account,
too much water may be released from upstream areas while the outfall is fully or
partially blocked, causing increased flooding. Second, coastal areas often have high
groundwater tables that can infiltrate into stormwater systems, decreasing the ca-
pacity available for stormwater runoff (Karpf and Krebs, 2013; Flood and Cahoon,
2011). If groundwater exchange with the stormwater system is not considered and
ponds are drawndown to prepare for a storm, there maybe a significant amount of
inflow from groundwater that could alter the intended outcome of RTC strategies.
Stormwater RTC relies on forecasts (predominantly rainfall forecasts) to make pre-
dictive decisions. Therefore, there is a need to incorporate current and forecast tidal
conditions into stormwater RTC, as well as developing a methodology for forecasting
the groundwater table, which, unlike rain and tide, is rarely forecast. Advances in
machine learning provide emerging alternatives to improve our understanding and
ability to model such processes in coastal cities.

Machine learning (ML), specifically deep ML, techniques are increasingly used in
hydrology and water resources engineering to complement or replace physics-based
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models (Shen, 2018; Sadler et al., 2018; Fahimi et al., 2017; Maier et al., 2010;
Maier and Dandy, 2000; Yang et al., 2017; Yaseen et al., 2015; Mullapudi et al.,
2020). While physics-based models are valued for their interpretability and ability
to simulate many kinds of scenarios (e.g., the future impacts of climate change),
they have long-standing limitations such as scale dependency, simplified physics
for computational efficiency, and challenging parameterization and calibration in
heterogeneous urban settings (Shen, 2018). In contrast, ML is able to use observed
data to learn the relationships between model inputs and outputs. The physical
relationships and parameters of a system do not need to be explicitly defined, but
they can be approximated through an iterative learning process (Solomatine and
Ostfeld, 2008). This is especially beneficial in complex environments like coastal
cities where many processes interact and are difficult to model with other techniques
(Sadler et al., 2018). Despite the broad potential and proven capabilities of ML, open
questions regarding its use in coastal urban hydrology and stormwater management
remain. In this dissertation two types of ML are explored: supervised learning for
time series forecasting of natural processes and reinforcement learning for real-time
stormwater system control. These techniques are applied within the City of Norfolk,
Virginia and are explained and evaluated in this dissertation.

The City of Norfolk, Virginia is a prime example of a coastal city with recurrent
flooding and impaired water quality and serves as the study area for this dissertation.
Norfolk has a high rate of relative sea level rise due to regional land subsidence
(Eggleston and Pope, 2013) and climate change; its low elevation, flat topography,
and regular hurricane season also contribute to increasingly frequent and severe
recurrent flooding (Sweet and Park, 2014). Because of Norfolk’s location on the
Chesapeake Bay, pollutants in stormwater runoff (i.e., sediment and the nutrients
nitrogen and phosphorous) must be managed to limit harmful impacts on the Bay,
such as algal blooms and dead zones. By addressing these flooding and water quality
concerns, Norfolk can act as a model for other communities facing similar conditions
in the future.

This dissertation is composed of three studies that collectively advance under-
standing of the use of machine learning techniques for real-time control of stormwa-
ter systems, with a focus on urban coastal watersheds. The first study (Chapter 2)
focuses on creating forecasts of groundwater table response to storm events. This
study evaluates supervised ML approaches for time series forecasting using neural
networks that can learn to approximate groundwater table fluctuations. Observed
groundwater table, sea level, and rainfall data are used as input to train these mod-
els. The NN models are tested with forecast sea level and rainfall data to quantify
their real-time forecasting accuracy.

The second study (Chapter 3) focuses on using reinforcement learning (RL) to
develop stormwater system control strategies to mitigate flooding. This study eval-
uates RL’s ability to learn control policies for a tidally influenced coastal stormwater
system that improves system-level performance (flood mitigation and pond depth
control), instead of setting simple control rules for individual components of stormwa-
ter systems. Observed and forecast rainfall and tide are used so that RL can learn
proactive control strategies. RL’s performance is bench-marked against (i) a pas-
sive, gravity-driven system, (ii) model predictive control (MPC), and (iii) rule-based
control.

To further advance real-time control of stormwater systems with RL, the third
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and final study (Chapter 4) incorporates water quality, in addition to flood mitiga-
tion, in the control strategies learned with RL. This study uses a real-world simula-
tion representing the stormwater system in Norfolk’s flood-prone Hague neighbor-
hood. The flood mitigation and water quality performance of RL is compared to
(i) the passive, uncontrolled system currently in place, (ii) a predictive rule-based
control strategy with extended detention time, and (iii) a reactive rule-based control
strategy based on observed water quality measurements. The impact of groundwa-
ter exchange on the performance of the controlled ponds is evaluated to assess its
importance in RTC of stormwater systems in coastal areas.
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Chapter 2

Forecasting Groundwater Table in
a Flood Prone Coastal City with
Long Short-term Memory and
Recurrent Neural Networks 1

2.1 Introduction

Storm events in low relief coastal areas can quickly raise the groundwater table,
which is often relatively shallow (Giambastiani et al., 2017; Taormina et al., 2012).
During these events, infiltration and groundwater table response decrease the vol-
ume available for stormwater storage, therefore increasing runoff and, by extension,
loads on stormwater systems (Rotzoll and Fletcher, 2012). Many coastal urban
areas are also experiencing increased flooding due to land subsidence and climate
change effects, such as sea level rise (Sweet and Park, 2014), increased precipitation,
and more frequent extreme climactic events (Wuebbles et al., 2017). While there
are several causes of flooding in coastal cities (Sadler et al., 2018), the groundwater
table level is a largely unrepresented factor and forecasting its variations can provide
valuable information to aid in planning and response to storm events. Furthermore,
because the groundwater table will rise as sea level rises (Rotzoll and Fletcher,
2012; Bjerklie et al., 2012; Hoover et al., 2017; Masterson et al., 2016), stormwater
storage capacity will continue to decrease and inundation from groundwater may
occur. Damage from groundwater inundation, which occurs through different mech-
anisms than overland flooding, can have significant impacts on subsurface structures
(Kreibich and Thieken, 2008; Abboud et al., 2018). Even if groundwater inundation
does not regularly reach the land surface, increased duration of high groundwa-
ter table levels could have significant impacts on infrastructure (Hoover et al., 2017;
Bloetscher et al., 2012; Flood and Cahoon, 2011; Sadler et al., 2017) making ground-
water table forecasting an increasingly important part of effectively modeling and
predicting coastal urban flooding.

In the field of groundwater hydrology, models based on the physical principles of
groundwater flow have traditionally been some of the main tools for understanding

1This chapter has been published as Bowes, B.D., Sadler, J.M., Morsy, M.M., Behl, M., Goodall,
J.L., 2019. Forecasting Groundwater Table in a Flood Prone Coastal City with Long Short-term
Memory and Recurrent Neural Networks. Water 11, 1098. https://doi.org/10.3390/w11051098
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the mechanics of these systems (Masterson et al., 2016; Chang et al., 2016b; Doble
et al., 2017; Heywood and Pope, 2009; Masterson and Garabedian, 2007; Park
and Parker, 2008; Pauw et al., 2014). Developing these models, however, requires
extensive details about aquifer properties. In urban areas, this level of detail is hard
to achieve at high resolutions because the subsurface is a complex mix of natural and
anthropogenic structures such as varied geologic deposits, buried creeks or wetlands,
roadbeds, building foundations, and sanitary and stormwater pipes. These factors
should be considered when developing a physics-based model; if the necessary data
are not available then assumptions and estimations must be substituted based on
domain knowledge. Even if the data necessary to build a physics-based model are
available, there is still the challenge of calibrating the model to adequately reflect
reality.

Machine learning approaches are being increasingly used by hydrologists in order
to mitigate the difficulties associated with physics-based models (Sadler et al., 2018;
Fahimi et al., 2017; Govindaraju, 2000b; Govindaraju, 2000a; Maier and Dandy,
2000; Maier et al., 2010; Yang et al., 2017; Yaseen et al., 2015). The advantage of
such data-driven modeling is that physical relationships and the physical parameters
needed to describe the physical environment do not need to be explicitly defined;
the machine learning algorithm approximates the relationship between model in-
puts and outputs through an iterative learning process (Solomatine and Ostfeld,
2008). Neural networks (NN) have been used to model and predict nonlinear time
series data, such as the groundwater table, and have been found to perform as well
as, and in some cases, better than physics-based models (Karandish and Šimůnek,
2016; Mohanty et al., 2013). Several studies have applied NN models on a daily or
monthly time step to aquifers used for water supply in order to make forecasts ap-
propriate for groundwater management (Chang et al., 2016a; Coulibaly et al., 2001;
Daliakopoulos et al., 2005; Guzman et al., 2017; Nayak et al., 2006; Sahoo and Jha,
2013)[31–36]. Few studies, however, have used NNs for predicting the groundwater
table in unconfined surficial coastal aquifers where flooding is a major concern and
a finer time scale is needed to capture the impacts of storm events (Taormina et al.,
2012).

Recurrent neural networks (RNNs) have been a popular choice for modeling
groundwater time series data because they attempt to retain a memory of past
network conditions. While RNNs have been successfully applied to groundwater
modeling (Chang et al., 2016a; Coulibaly et al., 2001; Daliakopoulos et al., 2005;
Guzman et al., 2017), it’s been found that standard RNN architectures have diffi-
culty capturing long term dependencies between variables (Bengio et al., 1994). This
is due to two problems, (i) vanishing and (ii) exploding gradient, where weights in
the network go to zero or become extremely large during model training. These two
problems occur because the error signal can only be effectively backpropagated for
a limited number of steps (Hochreiter and Schmidhuber, 1997).

One of the most successful approaches to avoiding the vanishing and explod-
ing gradient problems has been the long short-term memory (LSTM) variant of
standard RNNs (Hochreiter and Schmidhuber, 1997). LSTM is able to avoid these
training problems by eliminating unnecessary information being passed to future
model states, while retaining a memory of important past events. In the field of
natural language processing, LSTM has become a popular choice of neural network
because of its ability to retain context over long spans (Graves et al., 2013). LSTM
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has also been effective for financial time series prediction (Fischer and Krauss, 2018)
and for short-term traffic and travel time predictions (Liu et al., 2017; Zhao et al.,
2017) Despite the wide variety of applications, however, LSTM has only recently
been used for hydrologic time series prediction (Hu et al., 2018; Liang et al., 2018).
For example, LSTM was found to outperform two simpler RNN architectures for
predicting streamflow (Tian et al., 2018). LSTM networks have also recently been
used to model the groundwater table on a monthly time step in an inland agricul-
tural area of China (Zhang et al., 2018b). This agriculture focused study provides
valuable information on the advantages of LSTM for groundwater level prediction
over a basic feed-forward neural network (FFNN), but only presents predictions for
one time step ahead. In a real-time flood forecasting application, however, longer
forecasts of the groundwater table at short time intervals would be needed (Taormina
et al., 2012) and should include the use of forecast input data. LSTM models have
yet to be evaluated for this type of application.

With the growing availability of large datasets and high performance comput-
ing, data-driven modeling techniques can now be evaluated for groundwater table
forecasting. The objective of this study, therefore, is to compare RNN and LSTM
neural networks for their ability to model and predict groundwater table changes in
an unconfined coastal aquifer system with an emphasis on capturing groundwater
table response to storm events. Based on prior research on this topic, it is expected
that LSTM will outperform RNN for forecasting groundwater table levels. In this
study, LSTM and RNN models were built for seven sites in Norfolk, Virginia USA, a
flood prone coastal city. The models were trained and tested using observed ground-
water table, sea level, and rainfall data as input. In addition to comparing RNN
and LSTM neural networks, the effect of different training methods on model accu-
racy was evaluated by creating two unique datasets, one of the complete time series
and one containing only periods identified as storms. The two types of datasets
were bootstrapped and a statistical comparison of the two model types was made
with t-tests to determine if differences in the results were significant. To ensure fair
comparison, the hyperparameters of the RNN and LSTM networks were individually
optimized with an advanced tuning technique instead of traditional ad-hoc methods.
Once trained and evaluated, the RNN and LSTM models were tested with forecast
sea level and rainfall input data to quantify the accuracy that could be expected in
a real-time forecasting scenario.

2.2 Study Area

The City of Norfolk, Virginia is located on the southern portion of the Chesapeake
Bay along the eastern coast of the United States (Figure 2.1, inset). The city cov-
ers 171 km2 of land with an average elevation of 3.2 m (above the North American
Vertical Datum of 1988) and has 232 km of shoreline. Home to almost a quarter mil-
lion people (USCB, 2018), Norfolk serves important economic and national security
roles with one of the U.S.’s largest commercial ports, the world’s largest naval base,
and the North American Headquarters for the North Atlantic Treaty Organization
(NATO). The larger Hampton Roads Region, of which Norfolk is a major part, has
the second greatest risk from sea level rise in the U.S. and is surpassed only by New
Orleans (Fears, 2012). This risk is partly due to coupled sea level rise and regional
land subsidence from groundwater withdrawals from the deep Potomac Aquifer for
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water supply and glacial isostatic adjustment (Eggleston and Pope, 2013). Because
of these and other factors, including low relief terrain and a regular hurricane sea-
son, the city and larger Hampton Roads region face increasingly frequent and severe
recurrent flooding (Sweet and Park, 2014) which threatens its economic, military,
and historic importance.

Figure 2.1: Location of gauges in Norfolk, Virginia.

2.3 Data

In order to predict groundwater table levels, the neural networks created in this study
were trained and tested with the available groundwater table, rainfall, and sea level
data as input. Input data was collected in two forms: observed and forecasted.
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2.3.1 Observed Data

A unique dataset of groundwater table level observations for seven shallow mon-
itoring wells in Norfolk was provided by the Hampton Roads Sanitation District
(HRSD) (Figure 2.1, Table 2.1). Groundwater observations, in meters, are mea-
sured at a two minute time step and referenced to the North American Vertical
Datum of 1988 (NAVD88). Observed rainfall data, in millimeters, also came from
HRSD and was measured at a fifteen minute time step. Observed sea level data,
in meters, was measured at a six minute time step, and is referenced to NAVD88.
Sea level data came from the National Oceanic and Atmospheric Administration
(NOAA) Sewells Point gauge (NOAA, 2018b). The mean, minimum, and maximum
sea level at this station is 0.11 m, -0.98 m, and 1.88 m, respectively. All of the
observed data are for the period between 1 January 2010 and 31 May 2018.

Table 2.1: Groundwater table monitoring well details.

Well ID
Land Surface

Elevation (m)a
Well

Depth (m)b
Distance to

Tidal Water (m)
Impervious
Area (%)c

Groundwater Table Level (m)a,d

Minimum Maximum Mean
GW1 2.21 4.27 36 27 -0.678 0.883 -0.102
GW2 1.24 4.08 32 23 -0.670 1.476 0.635
GW3 4.35 5.18 668 42 1.197 3.844 2.026
GW4 3.24 4.57 777 53 0.659 2.021 1.075
GW5 1.72 2.53 32 20 -0.167 1.5562 0.492
GW6 2.35 3.23 41 30 0.259 2.012 0.742
GW7 2.57 4.60 650 73 0.200 1.750 0.707

a Referenced to North American Vertical Datum of 1988 (NAVD88); b Below land surface;
c Percent of area classified as impervious within a 610m buffer around the well; d Statistics
calculated from January 2010 to May 2018.

An examination of the observed data shows that each well has a different response
to storm events (Figure 2.2). For instance, GW2 shows a large, rapid increase in
the groundwater table from the first pulse of rainfall and GW4 shows more of a
step response in the groundwater table to the three distinct pulses of rainfall. The
groundwater level at GW6, however, shows a small, gradual increase in response to
the storm event. While rainfall appears to be the main driver of groundwater table
levels in all of these wells, sea level is also an important forcing factor which has a
diminishing impact with increasing distance from the coast (Rotzoll and Fletcher,
2012; Freeze and Cherry, 1979).

2.3.2 Forecast Data

In order to simulate a real-time forecast scenario, archived forecast data were col-
lected for three months: September, 2016, January, 2017, and May 2018. These
months were selected because archived forecast data was available and had both dry
periods and storm events. The storm events in the archived forecast data ranged
from unnamed storms to Hurricane Hermine and Tropical Storm Julia, which has an
estimated return period of 100–200 years, based on the 24 and 48 h rainfall (Smirnov
et al., 2018). Forecast rainfall was generated by the High-Resolution Rapid Refresh
(HRRR) model, a product of the National Center for Environmental Prediction
(NCEP), which generates hourly forecasts of meteorological conditions, including
total surface precipitation, for the coming 18 h with a resolution of 3 km2. These
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Figure 2.2: Hourly groundwater table level, sea level, and rainfall at individual wells
for Tropical Storm Julia.

data are archived by the Center for High Performance Computing at the University
of Utah (Blaylock et al., 2017) and was accessed from that database.

Forecast sea level data for the Sewells Point station was gathered from NOAA
(NOAA, 2018d) for the same three months as the rainfall forecasts. These sea
level data were downloaded at an hourly time step, and is referenced to NAVD88.
The model used to generate sea level predictions at this station is based on the
harmonic constituents of the observed tide cycle (NOAA, 2018c; NOAA, 2018a).
While harmonic predictions can closely match the observed sea level under normal
weather conditions, they do not include any storm surge effects.

2.4 Methods

This study was carried out through the workflow detailed in Figure 2.3. As such, this
section is divided into three main subsections: Data preprocessing, neural network
modeling, and results post-processing. Links to model code and data are given in
the Supplemental Data section at the end of this article.

2.4.1 Input Data Preprocessing

Data preprocessing involves a number of steps for observed and forecast data (Figure
3). Raw groundwater table observations were filtered with a Hampel filter (Math-
Works, 2015) to remove large erroneous values. This filter used the standard devi-
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Figure 2.3: Study workflow detailing major steps in the data preprocessing, neural
network modeling, and results post-processing.

ation of the observations within a single day (720 two minute observations) rolling
window as a threshold; any observations greater than the threshold were replaced by
the rolling median. All of the raw observed data were aggregated to an hourly time
step to match the format of the forecast data. Groundwater table and sea levels
were aggregated using the hourly mean value and rainfall is the cumulative hourly
total. Because some wells did have several months of missing data, any time steps
with any missing values were removed. For wells without an immediately adjacent
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rain gauge, the rainfall at the well was assumed to be the mean of the surrounding
rain gauges (Table 2.2).

Table 2.2: Rain gauges associated with each well based on geographic proximity.

Well ID Rain Gauge (s)

GW1

R1
R2
R4
R7

GW2 R4
GW3 R2

GW4

R1
R3
R5
R7

GW5
R2
R6

GW6 R7
GW7 R6

To prepare the filtered and continuous data as model input, the time series of each
variable (groundwater table, sea level, and rainfall) was shifted to include relevant
past observations, based on an appropriate lag δ, and observations up to the forecast
horizon τ (18 h in this study to correspond to the HRRR model forecast horizon).
Lags for each well represent the delay between a rainfall or sea level observation
and the corresponding response of the groundwater table and were identified by
cross-correlation analysis (see Section 3.1.1). After shifting the time series of each
variable, all data were normalized to values between 0–1 and combined into an input
matrix or tensor and a label tensor. Each row in the input tensor contains three
vectors: Groundwater table gwlI , rainfall rain, and sea level sea. Each row in the
label tensor is a vector of groundwater table values gwlL to be predicted (Table 2.3).

Table 2.3: Input and label tensors for neural network modeling.

Inputs Labels
gwlI = {t− δ...t}

gwlL = {t+ 1...t+ τ}rain = {t− δ...t+ τ}
sea = {t− δ...t+ τ}

Preprocessing of forecast data, which is retrieved at an hourly time step, consists
of two steps (Figure 2.3). First, the time series of HRRR rainfall data, which is a
gridded product over the continental United States, has to be extracted for the
coordinates of each well. Second, the forecast data have to be inserted into the
correct locations in the input tensor. Specifically, the observed rainfall and sea level
data in columns (t+1) to (t+τ) has to be replaced with the corresponding forecast
data. This creates a dataset Dfcst that includes both observed and forecast data
as specified in Figure 2.3. The same normalization from 0–1 used for the observed
data was applied to the forecast data.
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2.4.2 Input Variable Cross-Correlation Analysis

Parsing the relationships between a rainfall or sea level observation and the cor-
responding groundwater table response is a crucial component of input data pre-
processing. This response time is called the lag δ and can be separated into two
components: δR between rainfall and groundwater table response and δS between
sea level and groundwater table response. The appropriate δR and δS, in hours, for
each well was approximated by a cross correlation analysis (Maier and Dandy, 2000).
This process involves shifting one signal in relation to the other until a rainfall or
sea level observation lines up with its corresponding groundwater table response.
The highest cross correlation value (CCF) corresponds to the most influential δR or
δS.

2.4.3 Storm Event Response Identification

In order to evaluate the performance of RNN and LSTM models for groundwater
table forecasting during storm events, two training datasets were used (Figure 3).
The first training set Dfull represents the continuous time series data and includes
both dry and wet days. The second training set Dstorm consists only of time periods
that were identified as storm events. Dstorm was created through a filtering process
using the gradient and peaks of the observed groundwater table values. For any
storm event, the starting time of the event was based on locating the local maxima
of the gradient of the groundwater table and looking backward in time to the first
occurrence of zero gradient. A peak finding algorithm (SciPy, 2019a) was then used
to locate the peak of the groundwater table that occurred after the corresponding
starting time; peak values were used as the end point of the storm.

2.4.4 Bootstrapping Datasets

Bootstrapping was used to generate many datasets with characteristics similar to
the observed datasets. While bootstrapping is generally done by selecting values
at random and combining them into a new dataset, special techniques are needed
to preserve the dependence in time series data. In order to bootstrap the Dfull

datasets in a manner appropriate for time series data, circular block bootstrapping
with replacement was used (Rohilla Shalizi, 2018). The block size was based on the
average storm length found when creating the storm datasets for each well. Because
the Dstorm datasets were already separated into blocks of different time periods, they
were bootstrapped by randomly sampling the blocks with replacement. By creating
one thousand bootstrap replicates of each dataset, a normal distribution of error
can be approximated when the models are trained and tested. The first 70% of each
bootstrapped dataset was taken as the training data and the remaining 30% was
used as the test set.

2.4.5 Recurrent Neural Networks

RNNs (Elman, 1990) have been specifically designed to capture the structure that is
often inherent in time series data. They do this by passing the output, or state, of the
hidden layer neurons, which represent what has been learned at the previous time
steps, as an additional input to the next time step (Figure 2.4A). RNN training
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was done with back-propagation through time (BPTT) (Werbos, 1990), or some
variant, to adjust network weights based on the error gradient with respect to both
the network weights and the previous hidden states. Because gradients can change
exponentially during this process, they tend to either vanish or explode. In this
study, a fully connected RNN (Chollet, 2015) was used and the output was calculated
by stacking a fully connected layer on top of the RNN cell. The product of the output
layer is the groundwater table level for the forecast horizon τ . The RNN calculations
can be written as:

ht = tanh(Wxt + Uht−1 + b) (2.1)

yt = V ht + b (2.2)

where ht is the hidden state, yt is the output, and xt is the input vector. The
input, hidden, and output weights are represented by W , U , and V , respectively,
and b is the bias. The hyperbolic tangent activation function is noted as tanh.

2.4.6 Long Short-term Memory Neural Networks

LSTM neural networks are a type of RNN that were developed to overcome the
vanishing and exploding gradient obstacles of traditional RNNs (Hochreiter and
Schmidhuber, 1997). The LSTM architecture (Figure 4B) minimizes gradient prob-
lems by enforcing constant error flow between hidden cell states, without passing
through an activation function. In addition to this constant error path, an LSTM
cell contains three multiplicative units known as gates: The forget gate, the input
gate, and the output gate. Because each gate acts as a neuron, it can learn what
inputs and cell states are important for predicting the output through the process of
passing inputs forward, back propagating the error, and adjusting the weights. The
processes within the LSTM cell can be represented with the following equations:

ft = σ(Wfxt + Ufht−1 + bf ) (2.3)

it = σ(Wixt + Uiht−1 + bi) (2.4)

ot = σ(Woxt + Uoht−1 + bo) (2.5)

C ′t = tanh(Wcxt + Ucht−1 + bc) (2.6)

Ct = ft
◦ Ct−1 + it

◦ C ′t (2.7)

ht = tanh(Ct)
◦ ot (2.8)

yt = V ht + b (2.9)

where ft, it, and ot represent the forget, input, and output gates, respectively.
The new cell state candidate values and updated cell state are represented by C ′t
and Ct, respectively. Element-wise multiplication of vectors is represented by ◦ and
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the sigmoid activation function is noted as σ. While studies have experimented with
different gate configurations, significant improvements over the standard configura-
tion were not found (Greff et al., 2017). This study uses LSTM cells with three gates
(Chollet, 2015). The network output was calculated by stacking a fully connected
layer on top of the LSTM cell. The product of the output layer is the groundwater
table level for forecast horizon τ .

Figure 2.4: Recurrent neural network (RNN) (A) and long short-term memory
(LSTM) (B) model architectures. Merging lines show concatenation and splitting
lines represent copies of matrices being sent to different locations.

2.4.7 Hyperparameter Tuning

Hyperparameter tuning has traditionally been done in an ad-hoc manner through
manual trial and error or random search (Govindaraju, 2000b; Maier and Dandy,
2000; Maier et al., 2010). This type of tuning can be efficient, but is hard to re-
produce or compare fairly (Bergstra et al., 2013a); with the increasing complexity
of network architectures, more formal methods of hyperparameter optimization are
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also emerging. In this study, tuning was accomplished for each model type and for
each well using a sequential model-based optimization (SMBO) search with the tree-
structured Parzen estimator (TPE) algorithm, a Bayesian optimization approach
(Bergstra et al., 2013b). Given the search history of parameter values and model
loss, TPE suggests hyperparameter values for the next trial which are expected to
improve the model loss (reduce root mean squared error (RMSE), in this case). As
the number of trials increases, the search history grows and the hyperparameter
values chosen become better. The Hyperas library (Pumperla, 2015) implements
the SMBO/TPE technique and was used in this study to advance what has been
done in previous research. For example, when comparing four types of neural net-
works, Zhang et al. 2018 simply stated that a trial and error procedure was used
to select the best network architecture. When predicting groundwater levels, Zhang
et al. 2018 presented results for a trial and error optimization of LSTM hyperpa-
rameters, but then state that the same hyperparameters were used for the much
simpler architecture of FFNN models. By not optimizing the hyperparameters of
the FFNN it is more difficult to draw comparisons with the LSTM. Optimizing the
hyperparameters of both the LSTM and RNN models in this study allowed each
model the best chance to perform well. The hyperparameters tuned for each model
in this study were the number of neurons, the activation function, the optimization
function, the learning rate, and the dropout rate (Table 2.4). The number of neu-
rons influences the model’s ability to fit a complex function. The dropout rate helps
prevent overfitting by randomly dropping some connections between neurons during
training (Srivastava et al., 2014). A minimum value of 10% ensures some dropout
is used, as the natural tendency would be for models to not have any connections
dropped during training. The combination of hyperparameters for each model type
that resulted in the lowest RMSE, based on 100 trials, was used in the final models.

Table 2.4: Hyperparameter choices explored.

Hyperparameter Type Options Explored
Number of Neurons Choice 10, 15, 20, 40, 50, 75
Activation Function Choice Rectified Linear Unit (relu), Hyperbolic tangent (tanh), Sigmoid

Optimization Function Choice
Adam, Stochastic Gradient Descent (SGD),
Root Mean Square Propagation (RMSProp)

Learning Rate Choice 10−3, 10−2, 10−1

Dropout Rate Continuous 0.1-0.5

2.4.8 Model Training and Evaluation

All the models for this study were built with the Keras deep learning library for
Python (Chollet, 2015) using the Tensorflow backend (Abadi et al., 2016a). Model
training was carried out on the Rivanna HPC at the University of Virginia using
either one NVIDIA Tesla K80 or P100 graphical processing unit (GPU), depending
on which was available at the time of execution (Figure 3). RNN and LSTM models
were trained for each well using each of the one thousand bootstrap datasets for
both the Dfull and the Dstorm datasets (Figure 2.5). At each time step, models were
fed input data and output a vector of forecast groundwater table levels, as shown in
Table 3. During training, the models sought to minimize the cost function, which
is the RMSE between predicted and observed values, by iteratively adjusting the
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network weights. After training, the Dfull models were tested on the Dfull, Dstorm,
and Dfcst test sets. Likewise, the Dstorm models were tested on the Dstorm and Dfcst

test sets.

Figure 2.5: Model training and evaluation with bootstrapped datasets.

Besides being the training cost function, RMSE was also the main metric used for
model evaluation. Additionally, the mean absolute error (MAE) was also calculated.
Values approaching zero are preferred for both metrics. Both RMSE and MAE were
calculated by comparing the predicted water table level (18 predictions at each time
step) to the observed values for the corresponding time periods. To help prevent
overfitting and increase the ability of models to generalize, early stopping was used
in addition to dropout. Early stopping ends the training process once the cost
function has failed to decrease by a threshold value after 5 epochs.

2.4.9 Results Post-Processing

Results post-processing consisted mainly of aggregating model predictions and RMSE
values, performing t-tests for model comparison, and visualization (Figure 2.3). Be-
fore these actions, however, all predicted values were post-processed to cap predicted
groundwater table levels at the land surface elevation for each well.

A number of hypotheses were formulated to test the effects of model type and
training dataset on forecast accuracy (Table 2.5). For example, it was hypothesized
that LSTM models would have a lower mean RMSE than RNN models when trained
and tested with the Dfull dataset (Table 2.5, Comparison ID A). The hypotheses
were evaluated using t-tests to evaluate whether or not there was a statistically
significant difference between the mean of the 1000 RMSEs between two models
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(SciPy, 2019b). In order to reject a null hypothesis that the two models have
identical average values, the p-value from the t-test would need to be significant
(less than 0.01).

Table 2.5: t-test null hypotheses for model type and training data comparison.

Comparison ID Null Hypothesis Testing Data
A RMSE(LSTM, Dfull) = RMSE(RNN, Dfull) Dfull

B RMSE(LSTM, Dstorm) = RMSE(RNN, Dstorm)
C RMSE(RNN, Dstorm) = RMSE(RNN, Dfull) Dstorm

D RMSE(LSTM, Dstorm) = RMSE(LSTM, Dfull)
E RMSE(LSTM, Dfull) = RMSE(RNN, Dfull)
F RMSE(LSTM, Dstorm) = RMSE(RNN, Dstorm)

DfcstG RMSE(RNN, Dstorm) = RMSE(RNN, Dfull)
H RMSE(LSTM, Dstorm) = RMSE(LSTM, Dfull)

2.5 Results

The results of this study are divided into two subsections. The first subsection,
data preprocessing results, describes the findings of the cross correlation analysis,
the storm event identification, and the hyperparameter tuning for each well and
model type. The second subsection, model results, describes the model performance
and the statistical evaluation of differences between models and training data types.
This subsection concludes with a visualization of model predictions.

2.5.1 Data Preprocessing Results

Input Variable Cross-Correlation Analysis

Using cross correlation analysis, appropriate median lags δ for the entire period of
record were found for each well (Table 2.6). Rainfall lags δR were generally expected
to increase with a greater distance between the land surface and the groundwater
table. It was found δR did increase with greater depth to the groundwater table
when GW2 and GW3 were compared. At GW2, δR was 26 h and the mean ground-
water table depth was 0.61 m (Table 2.1) while at GW3 δR was 59 h and the mean
groundwater table depth was 2.32 m. At the other wells, however, this relationship
did not hold. For example, GW1 had the same δR as GW2, but the mean ground-
water table depth was very similar to that of GW3 (2.31 m). Other characteristics
that influence infiltration rate, such as vertical hydraulic conductivity, porosity, im-
permeable surfaces, or the configuration of the stormwater system appear to have
had a large effect on δR at these wells. In addition, sea level may also be influencing
groundwater table levels at some or all of these wells.

The impact of sea level lags δS on the groundwater table was more difficult to
determine than rainfall lags δR, indicating that sea level does not have as much im-
pact on certain wells; there did not seem to be clear correlations for GW3, GW5, or
GW6. It was expected that the impact of sea level would decrease with greater dis-
tance between a given well and the closest tidal waterbody influencing it. However,
this did not seem to have a strong relationship. GW4, for example, was the farthest
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Table 2.6: Rainfall δR and sea level δS lags found for each well.

Well ID δR (h) δS (h)
GW1 26 19
GW2 26 18
GW3 59 -
GW4 25 17
GW5 28 -
GW6 48 -
GW7 58 51

well from a tidal water body but had the shortest δSS, suggesting that tidal water
may have a more direct route to this location. While a strong correlation between
sea level and groundwater table was not found for three wells, it was deemed that
sea level could still be an important input variable for models at those wells because
of their proximity to tidal water bodies (Yoon et al., 2011; Moss and Marani, 2016).
In order to keep the data preprocessing consistent, and because δS values could not
be found for all wells and the δS values found were always shorter than δR values,
δR was taken as the lag value for all input variables.

Storm Event Response Identification

The storm identification process produced a unique dataset and a different average
storm duration and total number of events for each well (Table 2.7). Average storm
duration, the average length in hours of the identified periods, was used as the
block size for bootstrapping the Dfull datasets. The storm events identified for each
well also accounted for the majority of total rainfall, indicating that the method is
capturing large rainfall events. Storm surge is also being captured at most wells as
shown by the positive increase in mean sea level for the storm events compared to
the Dfull datasets (Table 2.7). Figure 2.6 shows an example of storms found with
this process; large responses of the groundwater table are captured, but smaller
responses are excluded.

Table 2.7: Storm characteristics for each well.

Well ID
Average Storm
Duration (h)

Number of Events % of Total Rain
% Increase in Mean
Sea Level Over Dfull

GW1 83 239 75 27
GW2 82 307 85 36
GW3 137 155 57 18
GW4 89 254 67 18
GW5 91 149 60 64
GW6 120 295 60 0
GW7 132 166 63 0

Hyperparameter Tuning

Tuned hyperparameters were generally consistent across wells and model types (Ta-
bles 2.8 and 2.9). Dropout rates ranged from just above the minimum of 0.1 to a
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Figure 2.6: Detail of identified storm periods found for well GW1.

high of 0.355. The preferred activation function was the hyperbolic tangent, except
for the GW5 RNN. In all cases the Adam optimization function performed the best
with its recommended learning rate of 10−3 (Kingma and Ba, 2014). The largest
number of neurons possible (75) was used in five of the seven RNN (Table 2.8) and
LSTM (Table 2.9) models. The other models of each type used a mid-range number
of neurons (40 or 50).

Table 2.8: Tuned hyperparameters for RNN models.

Well Dropout Rate
Activation
Function

Optimization
Function

Learning Rate Neurons

GW1 0.126 tanh adam 10−3 40
GW2 0.340 tanh adam 10−3 75
GW3 0.320 tanh adam 10−3 75
GW4 0.111 tanh adam 10−3 75
GW5 0.127 relu adam 10−3 75
GW6 0.145 tanh adam 10−3 75
GW7 0.104 tanh adam 10−3 40
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Table 2.9: Tuned hyperparameters for LSTM models.

Well Dropout Rate
Activation
Function

Optimization
Function

Learning Rate Neurons

GW1 0.355 tanh adam 10−3 75
GW2 0.106 tanh adam 10−3 40
GW3 0.166 tanh adam 10−3 75
GW4 0.102 tanh adam 10−3 75
GW5 0.103 tanh adam 10−3 50
GW6 0.251 tanh adam 10−3 75
GW7 0.177 tanh adam 10−3 75

2.5.2 Model Results

Network and Training Data Type Comparison

The results in this subsection address hypotheses A–D (Table 5), which compare
performance of the two model types trained using the two different datasets. All
of these comparisons had significant p-values (<0.001). This shows that the null
hypotheses that two models have identical average values was rejected and there are
significant differences in RMSE for different model types and training datasets. The
distributions of RMSE values for all bootstrap models in this subsection is available
in Appendix A; corresponding MAE values are available in Appendix C.

When trained with either Dfull or Dstorm, LSTM models have lower mean RMSE
values than RNN models (Figure 2.7A,B), as hypothesized (Table 5, A and B).
LSTM models trained and tested with Dfull had average RMSE values that were
lower than RNN models by 49%, 38%, and 18% for the t+1, t+9, and t+18 predic-
tions, respectively. LSTM’s advantage over RNN decreased as the prediction horizon
increased. Similarly, LSTM models trained and tested with Dstorm had lower aver-
age RMSE values than RNN models by 50%, 55%, and 36% for the t+1, t+9, and
t+18 predictions when tested on Dstorm, respectively.

When tested with Dstorm, the models trained with Dstorm outperformed the mod-
els trained with Dfull (Figure 7C,D), with the exception of the RNN for GW4. In
this scenario, the models trained with Dstorm had RMSE values that were lower than
models trained with Dfull by an average of 33%, 39%, and 42% for the RNN models
and by an average of 40%, 58%, and 56% for the LSTM models for the t+1, t+9, and
t+18 predictions, respectively. The improvement in performance when using Dstorm

as opposed to Dfull, increased with the prediction horizon. While this was true for
both model types, the performance improvement for LSTM was greater than for the
RNN. In most cases the model error increased as the prediction horizon increased.
This held for all of the LSTM models, but not with the RNN at GW4 and GW6
for certain datasets. For example, the RNN trained and tested on Dstorm (Figure
7B,C) had a larger RMSE for the t+9 prediction than the t+18 prediction. This
pattern is the same for the GW6 RNN (Figure 7A,C) and may have been caused by
some combination of hyperparameters and/or some unknown error in the dataset.
Causes of individual errors in these types of models, however, are very difficult to
pinpoint (Maier and Dandy, 2000).
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Figure 2.7: Mean root mean squared error (RMSE) values for each model type
and training dataset treatment at each well and forecast period. Subplot letters
correspond to the hypothesis being tested (Table 5) and are comparisons of (A)
RNN and LSTM models trained and tested with Dfull (B) RNN and LSTM models
trained and tested with Dstorm (C) RNN models trained with either Dfull or Dstorm

and tested on Dstorm (D) LSTM models trained with either Dfull or Dstorm and
tested on Dstorm.

Real-time Forecast Scenario

By training and testing models with observed data, comparisons can be made be-
tween model types and training datasets in terms of performance (as shown in Figure
2.8). The performance of these models, however, also needs to be evaluated in a real-
time scenario that includes forecast conditions of rainfall and sea level level. The
mean RMSE values from testing the models and data treatments with the Dfcst

test set are shown in Figure 8 and correspond to hypotheses E–H (Table 5). The
distributions of RMSE values for all bootstrap models in this subsection is available
in Appendix B; corresponding MAE values are available in Appendix C.
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Figure 2.8: Mean RMSE values from the forecast test set Dfcst for each model type
and training dataset treatment at each well and forecast period. Subplot letters
correspond to the hypothesis being tested (Table 5) and are comparisons of (E)
RNN and LSTM models trained with Dfull (F) RNN and LSTM models trained
with Dstorm (G) RNN models trained with either Dfull or Dstorm (H) LSTM models
trained with either Dfull or Dstorm.

In the real-time use simulation, models trained on Dstorm (Figure 2.8F–H) per-
formed much better than those trained with Dfull (Figure 8E), which had RMSE
values of up to nearly 1.25 m. In contrast to the difference training data type made,
model architecture only made a small difference in performance (Figure 8E,F). All
differences seen in Figure 8E were statistically significant at the 0.001 level, ex-
cept GW3 at t+9 and GW6 at t+1 where the results were almost identical. The
comparisons in Figure 8F–H all had significant p-values.

Visualizations from the real-time forecasting scenario (Figure 2.9) complement
the aggregate metrics from bootstrap testing of models and training data treatments
and demonstrate the response of predicted groundwater table levels to a storm when
using Dfcst as input data. The forecasts at GW1 are shown in Figure 9 for Tropical
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Storm Julia, which impacted Norfolk in late September of 2016. The initial rainfall
from this storm on the 19th caused the groundwater table to spike early on the 20th.
Subsequent rainfall on the 20th, 21st, and 22nd maintained the elevated groundwater
table level. The LSTM model trained with Dfull has greatly increasing error as the
forecast horizon grows (Figure 9 t+1, t+9, t+18) and tends to be overly impacted
by sea level fluctuations. In contrast, the predicted groundwater table level from
the LSTM model trained with Dstorm has much better agreement with the observed
groundwater table levels, even as the forecast horizon increases.

Figure 2.9: Comparison of groundwater table observations and forecasts at GW1
from LSTM models trained with the Dfull and Dstorm training sets.
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2.6 Discussion

The results of hypothesis testing (Table 5) indicate that both model type and the
training data influenced the accuracy of groundwater table forecasts. The LSTM
architecture was better able to learn the relationships between groundwater table,
rainfall, and sea level than the simpler RNN. Additionally, models trained with
storm data Dstorm outperformed models trained with the full dataset Dfull when
tested on either observed for forecast data. In the real-time scenario one reason for
this difference in performance could be the structure of the test set Dfcst. These
results indicate that the structure of the time series data in Dstorm and Dfcst are
more closely aligned, as opposed to the time series structure of Dfull and Dfcst. The
models trained on Dfull also have to learn groundwater table response with many
observations where no rainfall occurred. In contrast, models trained on Dstorm, which
have a higher proportion of observations with rainfall, may have a clearer pattern
to learn.

In the real-time forecasting scenario, both RNN and LSTM models trained with
Dstorm demonstrated predictive skill, forecasting groundwater table levels with low
RMSE values (Figure 8F). Models trained with Dfull however performed much worse
because of the noisier signal they had to learn (Figure 9) and are not suitable for use
in a real-time forecasting scenario. Across all wells, averaged RMSE values for the
RNN models were 0.06 m, 0.1 m, and 0.1 m for the t+1, t+9, and t+18 predictions,
respectively. Averaged RMSE values for the LSTMs were slightly lower at 0.03 m,
0.05 m, and 0.07 m for the t+1, t+9, and t+18 predictions, respectively. While
there is limited research on the use of LSTMs for forecasting groundwater table,
these results are comparable with the work of J. Zhang et al. (2018), who reported
RMSE values for one-step ahead prediction of monthly groundwater table at six sites
ranging from 0.07 m to 0.18 m. The current work makes advances by showing that
both LSTM and RNN can accurately forecast groundwater table response to storm
events at an hourly time step, with forecast input data, and at longer prediction
horizons all of which are necessary in a coastal urban environment.

Because the effect of sea level on the groundwater table is heavily dependent
on well location and soil characteristics not included in this study, a sensitivity
analysis was performed by removing sea level from the Dfull and Dstorm data sets
and retraining and retesting the models. Of the wells that were not correlated with
sea level, GW3 and GW6 performed better without sea level data. Using RNN
models trained with Dfull, there was an average decrease in RMSE of 12% for GW3
and 41% for GW6. The only exception to this is the GW6 RNN trained with Dstorm

which performed much worse without sea level. For LSTM models trained with
Dfull however, there was only a 3% decrease in RMSE for GW3 and a 2% decrease
for GW6. The third well that was not correlated with sea level, GW5, was worse
without sea level for the RNN trained with Dfull; the average increase in RMSE was
17%. Removing sea level at this well had no change in RMSE for the LSTM models
trained with Dfull. This particular well is only 32 m from the coast so the influence
of sea level seems reasonable. When models were trained with Dstorm excluding sea
level, across all well there was an average increase in RMSE of 8% for RNN models
and no change for LSTM models. This demonstrates that sea level data is important
for groundwater table prediction during storms for wells close to the coast and this
is captured effectively by the Dstorm datasets (Table 7). This analysis indicated that
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RNN models were much more sensitive to the inputs used than LSTM models. As
designed, the structure of LSTM models allowed them to filter out noisy data and
have little to no change in RMSE if sea level data was removed, especially when
using the best performing combination of LSTM and Dstorm training data.

The results of this study illustrate the trade-off between model complexity and
performance that has implications beyond creating forecasts. The increased com-
plexity of LSTM models, in terms of gates that learn and the constant error path-
way, allowed them to have more predictive skill than the RNN models for forecasting
groundwater table response to storm events. Additionally, the structure of LSTM
models allowed them to filter out noise from the sea level signal which RNN struggled
to do. Most of the comparisons presented in the Results had significant p-values; be-
cause of the large sample size (1000) however, even a very small difference in RMSE
values between two models was considered significant. For example, the differences
between LSTM and RNN models trained with Dstorm in the real-time forecasting
scenario were statistically significant (Figure 8F). The average difference in the RNN
and LSTM RMSE values, however, was only 0.03 m, 0.05 m, and 0.03 m for the t+1,
t+9, and t+18 predictions, respectively. If these groundwater table forecasts were
to be used as additional input to a rainfall-runoff model to predict flooding, it seems
unlikely that the small differences between RNN and LSTM models would have a
large impact, especially when compared to other factors like rainfall variability and
storm surge timing.

The increased complexity of the LSTM models, while they had better perfor-
mance than the RNN models, also increased their computational cost. The main
difference in computational cost of the LSTM and RNN in this study was the length
of training time. When trained on an HPC with either an NVIDIA Tesla K80 or
P100 GPU or a smaller NVIDIA Quadro P2000 GPU on a desktop computer, wall-
clock training time for LSTM models was approximately three times that of RNN
models. Factors in training time include hyperparameters, such as the number of
neurons in the hidden layer, which were relatively similar between model types.
Once models are trained, groundwater table forecasts are obtained by a forward
pass of input data through the network; this time was short and comparable for
both models. For this groundwater table forecasting application training time was
not a major concern, but if the application was time sensitive and the models were
frequently retrained, RNNs could be an appropriate choice that does not sacrifice
much in terms of accuracy.

Because forecast data were used as model input in the real-time scenario, it’s
important to note some of the uncertainties that dataset might introduce. HRRR
rainfall data are a product of a numerical forecast model and as such is subject to the
uncertainty of that model, which includes the transformation of radar reflectivity
data into precipitation amounts (Krajewski and Smith, 2002). Additionally, the
uncertainty of HRRR forecasts will increase the farther into the future they are.
NOAA sea level forecasts, as previously mentioned, are based only on the harmonic
constituents of the astronomical tide cycle. For rainfall-dominated storm events
this type of forecast may be accurate enough as a model input, but any storm surge
from hurricanes or nor’easters would not be included. This could result in under
prediction of groundwater table levels. While archived storm surge predictions were
not available for this study, in a real scenario predictions of storm surge could be
incorporated into the model input.
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The neural networks and data processing techniques presented in this paper
are applicable to other coastal cities facing sea level rise and recurrent flooding.
Because there is a lack of groundwater table data in most locations however, the
direct transferability of the models created for Norfolk should be explored in other
locations were observational data are not available. Even in Norfolk, questions still
remain about how much data, both temporally and spatially, is needed to accurately
forecast groundwater table levels using the methods presented in this study. In this
study, at least eight years of data were available for each well, but other researchers
have found acceptable results when training neural networks with more (Coulibaly
et al., 2001; Daliakopoulos et al., 2005) and less (Taormina et al., 2012; Yoon et
al., 2011) time series data. Based on our sensitivity analysis, rainfall is the most
important input for the models. However, sea level data was from a single station;
if there were more sea level gauges throughout the city it could provide a more
accurate input for these models to learn from. The groundwater table monitoring
network in Norfolk consists of only seven wells; while this network is a valuable
source of data, it may not be dense enough to accurately represent the groundwater
table across the complex urban landscape. The city is divided by many tidal rivers
and stormwater conveyances and the effects these features have on the groundwater
table maybe highly localized. Areas where groundwater table level is important to
flooding are likely not well represented by a distant monitoring well. Research has
been done with kriging to determine potential densities of groundwater monitoring
(Ran et al., 2015) and rain gauge networks (Sadler et al., 2017). A similar approach
may be valuable in Norfolk or comparable cities to determine the optimal density
of monitoring networks when planning for and adapting to climate change and sea
level rise.

2.7 Conclusions

The objective of this study was to compare two types of neural networks, RNN and
LSTM, for their ability to predict groundwater table response to storm events in a
coastal environment. The study area was the city of Norfolk, Virginia where time
series data from 2010–2018 were collected from seven shallow groundwater table
wells distributed throughout the city. Two sets of observed data, the full continuous
time series Dfull and a dataset of only time periods with storm events Dstorm, were
bootstrapped and used to train and test the models. An additional dataset Dfcst

including forecasts of rainfall and sea level was used to evaluate model performance
in a simulation of real-time model application. Statistical significance in model
performance was evaluated with t-tests. Major conclusions from this study, in light
of the hypotheses described in Table 4 are:

• Both model type and training data are important factors in creating skilled
predictions of hourly groundwater table using observed data:

– Using Dfull, LSTM had a lower average RMSE than RNN (0.09 m versus
0.14 m, respectively)

– Using Dstorm, LSTM had a lower average RMSE than RNN (0.05 m versus
0.10 m, respectively)

27



• The best predictive skill was achieved using LSTM models trained with Dstorm

(average RMSE = 0.05 m) versus RNN models trained with Dstorm (average
RMSE = 0.10 m)

• LSTM has better performance than RNN but requires approximately 3 times
more time to train

• In a real-time scenario using observed and forecasted input data, accurate
forecasts of groundwater table were created with an 18 h horizon:

– LSTM: Average RMSE values of 0.03, 0.05, and 0.07 m, for the t+1, t+9,
and t+18h forecasts, respectively

– RNN: Average RMSE values of 0.06, 0.10, and 0.10 m, for the t+1, t+9,
and t+18h forecasts, respectively

Forecasts of groundwater table levels are not common; in many locations even
direct measurements of the groundwater table are not widely available. As sea levels
rise and storms become more extreme, however, forecasts of groundwater table will
become an increasingly important part of flood modeling. In low-lying coastal areas,
sea level rise, stormwater infiltration, and storm surge could cause groundwater
inundation. Even if groundwater inundation does not occur, increased duration
of high groundwater table levels could have significant impacts on infrastructure.
Forecasts of groundwater table, an often overlooked part of coastal urban flooding,
can provide valuable information on subsurface storage available for stormwater and
help inform infrastructure management and planning.

2.8 Data, Model, and Code Availability

Supplementary Materials: Model code is available on Github at: https://github.
com/UVAdMIST/Norfolk Groundwater Model. Data is available on Hydroshare
at: http://www.hydroshare.org/resource/813dedd3568b4ef3897202988c14a522.
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Chapter 3

Flood Mitigation in Coastal Urban
Catchments using Real-time
Stormwater Infrastructure Control
and Reinforcement Learning 1

3.1 Introduction

As the frequency and intensity of storms increases due to changes in climate, the
ability of existing stormwater infrastructure to mitigate urban flooding is being
increasingly stressed (Wuebbles et al., 2017; Berggren et al., 2012; Neumann et al.,
2015; Mounce et al., 2020; Mynett and Vojinovic, 2009). In coastal cities, gravity-
driven stormwater systems are critical for flood management, but their functionality
is also being reduced by sea level rise (Sadler et al., 2020). These stressors, combined
with the flat, low elevation topography of many coastal cities, means that these
communities are already experiencing increased flooding during high tide events
(Sweet and Park, 2014; Moftakhari et al., 2015, 2017).

Advances in urban hydroinformatics (Mynett and Vojinovic, 2009), including
smart stormwater systems (Kerkez et al., 2016), provide promising tools and ap-
proaches to improve stormwater system performance in coastal communities. In
the smart stormwater system approach, existing stormwater systems are retro-fitted
with real-time sensors and actuators (e.g., remotely controlled valves and pumps) to
allow active monitoring and control. Active control is a cost-effective way to more
efficiently use the existing capacity of stormwater infrastructure (Jose Meneses et
al., 2018). In addition, active control can allow a system to function as a whole,
which can be much more effective than piece-wise capital improvement of passive
infrastructure systems (Wong and Kerkez, 2018).

Key to the effectiveness of active systems is the use of real-time control (RTC)
(Kerkez et al., 2016; Mounce et al., 2020; Schwanenberg et al., 2015). Real-time
control uses streaming sensor data (i.e., current rainfall and retention pond depths)
to approximate the current system states. The system state can then be used to

1This chapter has been published as Bowes, B.D., Tavakoli, A., Wang, C., Heydarian, A., Behl,
M., Beling, P.A., Goodall, J.L., 2020. Flood mitigation in coastal urban catchments using real-time
stormwater infrastructure control and reinforcement learning. J. Hydroinformatics 23, 529–547.
https://doi.org/10.2166/hydro.2020.080
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inform changes to control assets (e.g., valves, pumps) that adapt the behavior of the
system to current or forecast conditions. The decisions on when and what structures
to control, and how to change them in order for a system to meet certain objectives
(e.g., minimize flooding, maintain certain flow conditions), is based on a control
policy. In a smart stormwater system, control policies map system states, such as
water levels in a pipe network, to actions that need to be taken in order to meet
management objectives (Sadler et al., 2019). In current practice, control policies
are often predefined simple heuristics, such as opening a valve when a storage pond
reaches a certain depth (level control or feedback control), and may be based on the
experience of a human operator (Garćıa et al., 2015; Abou Rjeily et al., 2018). This
heuristic approach may be effective in simple systems (i.e., a system with only a
few controlled assets); however, it requires that control actions are predefined for all
scenarios and becomes increasingly difficult as the number of assets grows and/or
more external factors start influencing the system.

Heuristic control can be improved by incorporating some aspects of feedback con-
trol (i.e., system observations) and feed-forward control (i.e., forecasts and predicted
system states) (Schwanenberg et al., 2015), termed rule-based control (RBC) in this
research. RBC can be implemented in stormwater systems based on watershed char-
acteristics and forecast rainfall data in order to meet flooding, water quality, and/or
channel protection objectives (Marchese et al., 2018). By continuously monitoring
retention pond depths and rainfall forecasts, inflow from storm events can be esti-
mated using simple rainfall-runoff models and used to inform control decisions. For
example, if a storm event has been forecast, the available volume in a pond can be
then adjusted based on the estimated inflow from the storm event. This adjustment
is made by actuating a valve at the pond’s outlet that can be opened to drain water
until the necessary storage volume in the pond is reached. RBC is intuitive to end-
users and can be effective for controlling individual stormwater system components
(OptiRTC and Geosyntec Consultants Inc., 2017). However, as system complexity
increases (e.g., releases of water need to be coordinated if multiple ponds drain to
the same downstream location in order to prevent flooding), RBC becomes more
difficult to implement.

Two approaches for finding control policies for RTC beyond simple heuristics
and rule-based control include model predictive control (MPC) and reinforcement
learning (RL). MPC uses a process model to evaluate various control strategies for a
specified control horizon (Camacho and Bordons, 2007; Garćıa et al., 2015). It has
been successfully applied to large scale water systems for multi-objective optimiza-
tion (Schwanenberg et al., 2015) and for stormwater system control (Sadler et al.,
2019, 2020). Sadler et al. (2019) examined the effectiveness of MPC for a tidally
influenced stormwater system and successfully found control policies that reduced
flooding compared to the passive system. This particular formulation of MPC used
a physics-based stormwater system model optimized with a genetic algorithm. Us-
ing high performance and cloud-based computing, the authors were able to speed
up this computationally expensive MPC formulation. However, as a limitation of
this approach, the authors indicate that for large real-world stormwater systems
such MPC techniques could be prohibitively slow for RTC. When scaled to part of a
real-world stormwater system, Sadler et al. (2020) were able to run MPC for three
simulated actuators and determined that RTC could help reduce flooding for future
sea level rise scenarios.
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RL is a category of machine learning that aims to learn from trial-and-error
experience by interacting with an environment (Sutton and Barto, 2018). An RL
agent does not have known answers to learn from, but instead tries to maximize the
amount of reward it can receive from its environment by taking certain actions. One
of the differences between RL and MPC is that RL can learn control policies offline,
which moves the computational burden to prior to taking any actions. The use of
RL in water resources engineering has been compared with Dynamic Programming
(DP) for multi-objective reservoir management (Lee and Labadie, 2007; Castelletti
et al., 2014; Castelletti et al., 2013; Pianosi et al., 2013; Delipetrev et al., 2017).
These studies used tabular RL methods, which can be more computationally efficient
than DP but are constrained to simple systems (i.e., a small number of potential
system states and actions), and demonstrated that a physics-based model could act
as the environment for RL agents to train on. Recent advances in deep learning
have allowed RL to use neural networks as function approximators to overcome the
limitations of tabular RL. For instance, Mullapudi and Kerkez (2018) demonstrated
control of a stormwater system with a Deep Q-Network (DQN) (Mnih et al., 2015).
By throttling valves, they were able to make control decisions for a discrete action
space (a limitation of DQN). Their work also highlighted how rewards can be shaped
for real-time stormwater control through deep RL and illustrated how RTC with RL
can increase a stormwater system’s effective capacity. However, their DQN agent
was only reactive to the current conditions of the stormwater system; effective RTC
strategies should be based on both the current conditions and forecasts. Addition-
ally, discretizing control actions may not always provide the most efficient policy.
Further research is needed, therefore, to determine if RL control can be further re-
fined using a continuous action space that allows any valve position to be used and
create forecast-based predictive control policies.

In this paper, RL is used to create control policies for RTC of a tidally influ-
enced stormwater system. In addition to presenting the first work exploring RL for
RTC of tidally influenced stormwater systems, we advance on prior work in smart
stormwater by exploring the Deep Deterministic Policy Gradient (DDPG) RL algo-
rithm to control valves over a continuous action space, allowing the agent to learn
more refined control policies. Additionally, forecasts of rainfall and tide are included
as part of the state information received by the RL agent, allowing the agent to learn
proactive control strategies. The RL agent’s performance is compared to (i) a pas-
sive, gravity-driven system (ii) MPC (as implemented by Sadler et al. (2019)), and
(iii) RBC. Through this comparison, we illustrate the applicability of RL for RTC
of a simulated coastal urban stormwater system.

3.2 Methodology

In this section, the simulated stormwater system is introduced, a hypothetical sce-
nario for categorizing the impact of flood events is detailed, and each RTC method
is described. The stormwater system is similar to that used by Sadler et al. (2019)
and is the same for all scenarios (RL, Passive, MPC, RBC), except that retention
ponds in the passive system have weirs at a fixed elevation to maintain a depth of
water in the ponds while the ponds for the RTC scenarios have a controllable valve
at the bottom of the pond side. An overview of the methodology used to compare
the performance of an RL controlled stormwater system with the other scenarios is
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provided in Table 3.1. Open-source code for these scenarios is available on github
(Bowes, 2020b). SWMM simulation files and data are available as a resource on
HydroShare (Bowes, 2020a).

Table 3.1: Overview of methodology for stormwater system control scenarios

Method Valve Training/Optimization Control Policy Testing

RBC system
Controllable valve
at 0m

N/A
Fixed for simulation
duration Test on 2010-2019 data

MPC system
Controllable valve
at 0m.

Online optimization with
genetic algorithm

Adjusted valve positions
for specified time horizon
based on modeled
scenarios and objective
functions

Test on first week of
August, 2019 data
(due to computational cost)

RL system
Controllable valve
at 0m.

Offline training on
August, 2019 data for
197,000
control steps

Learned policy relating
states to actions

Test on 2010-2019 data

Passive system Fixed weir at 0.61m. N/A N/A Test on 2010-2019 data

3.2.1 Stormwater Simulation

Stormwater system simulations are carried out using the U.S. Environmental Protec-
tion Agency’s Stormwater Management Model (SWMM), version 5. The hypothet-
ical stormwater system used in this study is a simple model inspired by conditions
within an urban catchment located in Norfolk, Virginia, USA. It consists of two
subcatchments, two storage units (retention ponds), and pipes going to the system
outfall that discharges to a tidally influenced waterbody (Fig. 3.1). In the passive
scenario, each pond has a weir at a fixed elevation and cannot be completely emp-
tied. Infiltration and evaporation are excluded in this simple system as the focus is
on flood control. Ponds in the RTC scenarios have been retro-fitted by removing the
weirs and adding controllable valves (orifices) at the bottom of the pond side. This
allows the full pond volume to act as active storage that can be adapted for different
storm events. Input to this system is rainfall, which falls onto a subcatchment and
is transformed into runoff that flows into a storage unit. Flow out of the storage
units can be regulated by the valves; both ponds drain directly into a single node
before flowing through two pipe segments to the outfall. The tail water condition
at the outfall is influenced by the tide level. At high tide, the tail water condition
can cause sea level to partially block the outfall, backing up stormwater drainage.
The physical parameters of the SWMM model can be found in Table 3.2.

In this SWMM model, flooding can be caused by (i) rainfall, (ii) high tide, or (iii)
a combination of rainfall and tide. Flooding caused by these factors can be in the
form of the ponds over-topping or the downstream node J1, which can be thought
of as a roadway storm drain, surcharging. Ponds can over-top if the subcatchment
runoff volume for a storm event exceeds current pond capacity and inflow is greater
than outflow. Flooding at the downstream node can occur if flow from the ponds is
not regulated and coordinated by adjusting the two valves. Node J1 can also flood
if tidal conditions at the outfall are preventing the normal flow of water from the
system or causing backflow if the tide is especially high.

The pyswmm (McDonnell et al., 2020) Python wrapper for SWMM is used for
step-by-step running of simulations as needed for the RTC methods. Each control
scenario can be updated once every 15 minutes (an adjustable control time step).
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Figure 3.1: SWMM simulation schema

Table 3.2: Properties of SWMM model

Subcatchment Properties

Name
Area
(hectares)

Width (km) Slope (%) Impervious (%)

S1 32 0.46 0.5 30
S2 20 0.61 0.5 45

Storage Unit Properties

Name
Surface Area
(m2) (constant)

Initial Depth (m) Max Depth (m) Bottom Elev (m)

St1 6039 0.61 1.41 0.91
St2 4645 0.61 1.41 0.91

Pipe Properties
Name Length (m) Diameter (m) Roughness
C1, C2 122 0.3 0.01

Node Properties
Name Max Depth (m) Bottom Elev (m)
J2 1.5 0.91
J1 0.6 0.30
Outfall NA 0

Orifice Properties
Name Height (m) Discharge Coefficient
R1, R2 0.61 0.65

3.2.2 SWMM Input Data

Input data for the SWMM simulation comes from observed data for stations in Nor-
folk, Virginia (Figure 3.2). Rainfall data is collected at a fifteen minute timestep by
the Hampton Roads Sanitation District (HRSD); rainfall data for subcatchment S1
is from gauge Rain1 and data for subcatchment S2 is from gauge Rain2. Rainfall
data is cleaned through a number of checks. First, any values over the 1000-year,
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15-minute rainfall for Norfolk (59.18mm) are assumed to be erroneous and removed.
Next, missing data in each rainfall time series are replaced; if both rain gauges are
missing values at the same time stamp, both get zero. Otherwise, if one station is
missing a value but the other is not, the missing value is replaced with the known
value from the other station. Observed tide level data comes from the National
Oceanic and Atmospheric Administration (NOAA) Sewells Point gauge and is mea-
sured at six minute intervals. For use as a SWMM boundary condition, tidal data
are resampled to an hourly interval and referenced to the North American Vertical
Datum of 1988 (NAVD88). All of the observed data are for the period between
1 January, 2010 and 6 November, 2019 and are divided into individual months to
make simulation run times tractable.

Figure 3.2: Gauge locations in Norfolk, VA USA.

Forecasts were created from the observed data for use in the various control
methods, therefore assuming perfect knowledge of future events. A single forecast
in this case is an array of values representing the rainfall or tide measurement over
the next n time steps. For example, a 24 hour forecast of 15 minute rainfall would
contain 96 values. In future work, noise could be added to these forecasts to explore
how RL (or any other RTC method) handles uncertainty, but this is beyond the
scope of this research (for future directions, see van Andel, et al., (2008; 2014),
Hartono and Hashimoto, (2007)).
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3.2.3 Flood Event Classification

In order to quantify flooding impact, a hypothetical scenario is developed from phys-
ical data for Norfolk. In this scenario, the subcatchments considered are residential
neighborhoods where any flooding of the ponds will impact roadway intersections.
The downstream node J1 is considered a storm drain at a roadway intersection;
flooding at this node will make the intersection impassible if the depth of flood wa-
ter is above a certain threshold. For this hypothetical scenario, 0.2m of roadway
flooding slows traffic considerably, the threshold for safe passenger vehicle passage
is 0.3m (Pregnolato et al., 2017), and 0.4m is the limit for safe emergency vehicle
passage. The relationship between flood volume and depth was developed from dig-
ital elevation data from Norfolk as described in Appendix E. The number, volume,
and duration of these flood events is used as an additional metric for quantifying
flooding along with the total volume.

3.2.4 Implementing RL in Stormwater Systems

In reinforcement learning, an agent learns to optimize its behavior by interacting
with its environment (Sutton and Barto, 2018). The environment is usually modeled
as a Markov Decision Process (MDP): < S,A, P, r, γ >, where S is the state space,
A is the action space, P (s′|s, a) is the stochastic probability of transitioning to a
new state s′ after taking action a at the current state s, r(s, a, s′) is the reward
function, and γ ∈ [0, 1] is the discount factor that weighs the importance of short
term and long term reward. The RL agent’s goal is to find an optimal policy that
maximizes the expected discounted return

Gt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k (3.1)

where rt = r(st, at, st+1).
In this paper, the states S are defined as the current depths and rate of flooding

(if any) at the ponds and downstream nodes (St1, St2, J1), the current valve po-
sitions (R1, R2), the sum of the 24hr rainfall forecast (F ) for each subcatchment,
and the mean value of the 24hr tide forecast. These values are gathered from the
SWMM simulation at each control time step. The actions A that the RL agent can
take at any step is to close or open any valve to any degree. Finally, the reward r the
RL agent receives in this system is based on how well the agent prevents flooding
and maintains certain target pond water depths. It is defined as

r =

{
−Σ(flooding) F > δ

−J1flooding − (|St1depth − target|+ |St2depth − target|) F = 0
(3.2)

where flooding is the flooding rate at each particular node (St1, St2, J1) and δ
represents a forecast rainfall threshold (>0 in this case); target is the target water
depth for the storage ponds (St1 and St2). In this relatively simple stormwater
system, the target depth is 0.61m for both ponds. In a real system, different ponds
would most likely have different target depths; this can be taken into account in the
RL implementation by having different target depths for each pond in the reward
function.
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As an example, consider a case where the agent is in a specific state s in S
(e.g., the water depth in a specific pond is 1.0m), and takes an action a in A (e.g.,
completely opens the valve) with a probability given by the policy π(a|s). The agent
will then transition to a new state s′ with a probability of P a

s,s′ = P (s′|s, a) (e.g., the
water depth in a specific pond is 0.75m) and receives a reward r(s, a, s′). The value
of this action depends on the reward that the agent receives and the discounted value
of all the future rewards if the agent follows the policy afterwards. Using a discount
factor γ, the value of a future reward of x after n steps is xγn−1. The expected
discounted return when starting in state s, then taking action a, and following π is
called the Q-value function:

Qπ(s, a) = E[Gt|s, a]

= r(s, a, s′) + γ
∑
s′∈S

P a
s,s′

∑
a′∈A

π(a′|s′)Qπ(s′, a′), (3.3)

where the second equation is known as the Bellman equation (Sutton and Barto,
2018).

By having the optimal Q-values, one can find the optimal policy by finding the
specific actions in each state that give the maximum Q-value. However, due to the
curse of dimensionality this tabular type of Q-learning is limited to problems with
relatively small state and action spaces. Recent advances in deep learning have
been applied to RL to overcome this problem by using deep neural networks to
approximate value functions instead of storing them in tables (Mnih et al., 2015).

In order to have an RL agent that can set the valves to any position over a
continuous action space , the Deep Deterministic Policy Gradients (DDPG) (Lilli-
crap et al., 2015) actor-critic algorithm is used. DDPG uses deep neural networks
to approximate a policy and the difference between policies, the gradient, is used
to update the agent. In this case the agent consists of two parts: an actor which
represents the policy, and a critic which estimates the q-value of actions taken by
the actor. During the training process, the actor is fed information on the state of
the stormwater system and outputs the actions to be taken. These actions, along
with the state information, are used as input to the critic. The actions and q-value
estimates output from the critic are used to update the agent.

The keras-rl (Plappert, 2016), openai gym (Brockman et al., 2016), and Ten-
sorflow (Abadi et al., 2016b) python packages are used to implement the DDPG
algorithm for this research. Each part of the DDPG agent, the actor and the critic,
is composed of a deep feed-forward neural network (Table 3.3). The hyperparame-
ters of each neural network are determined by trial and error (Maier et al., 2010).
Through experimentation, it can be found that training the RL agent on the August,
2019 dataset and looping through the SWMM simulation approximately 100 times,
provided enough experience of a wide range of rainfall and tidal events for the agent
to learn from. This month has a total of 256.54mm of rainfall over 7 events. The
average tide level is 0.16m with a maximum value of 1.01m from Tropical Storm
Erin late in the month. A visualization of this data is given in Figure 3.4. RL
training and testing are carried out on a standard PC with 8 cores, 16GB RAM,
and an NVIDIA Quadro P2000 Graphical Processing Unit (GPU).
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Table 3.3: DDPG RL agent architecture and hyperparameter settings

NN Layer
Actor Critic

Neurons Activation Neurons Activation
Input Current state s N/A Current state s and action a N/A

Hidden 1 16 RELU 32 RELU
Hidden 2 16 RELU 32 RELU
Hidden 3 8 RELU 32 RELU
Output 2 [R1, R2] Sigmoid 1 [q-value] Linear

3.2.5 MPC Settings

The swmm mpc software developed by Sadler et al. (2019) is used to implement
MPC for comparison with RL; readers are referred to this paper for full details
on the MPC implementation. Briefly, swmm mpc uses SWMM as a process model
and an evolutionary algorithm to search for a control policy. At each time step in
a SWMM simulation, swmm mpc runs many variations of the SWMM simulation
in order to determine which control actions minimize an objective function for a
specified time horizon. In this case, the objective function is based on the amount
of flooding and deviations from target water level depths as

MPC objective function = α(a · v(u,x)) + β(b · d(u,x)) (3.4)

v and d are 1-dimensional vectors of flood volumes at each node and deviations
from target depths, respectively. The 2-dimensional vectors u and x represent the
control policies for all controls and the system states, respectively. The user defined
parameters and their definitions are given in Table 3.4. The scalar multipliers α and
β are overall weights for the cost of flooding and the cost of water level deviations.
These will be adjusted in order to optimize the MPC control.

Table 3.4: MPC cost function parameters

Parameter (description) Value

α (overall flood weight) Scalar

a (individual node flood weight [St1, St2, J1, J2]) [1, 1, 1, 1]

β (overall deviation weight) Scalar

b (individual deviation weight [St1, St2, J1, J2]) [1, 1, 0, 0]

Target depths (m) [0.61, 0.61, NA, NA]

Because of the computational expense of running swmm mpc, where many vari-
ants of the SWMM model have to be executed at each simulated time step to find
the best control actions, a high performance computer (HPC) was used to run the
software. The HPC computational resources consisted of 28 cores with a CPU speed
of 2.4 GHz, an Intel Xeon processor, and 128 GB RAM.

3.2.6 Rule-based Control

Rule-based control (RBC) was implemented based on documented industry standard
methods (OptiRTC and Geosyntec Consultants Inc., 2017; Marchese et al., 2018;
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Wright and Marchese, 2017). In practice, this type of control uses forecasts of rainfall
and watershed characteristics to inform the control of valves on stormwater assets
(wet/dry ponds, bioswales) in order to meet flood control, water quantity, and/or
quality objectives.

Because the current research is done on a simulated system, the expected flood
volume from a forecast of rainfall, if any, is used to control the level of water in an
individual pond. For example, if a forecast storm event is expected to cause 1000m3

of flooding, the pond’s outlet valve would open before the storm in order to drain out
a corresponding volume of water plus a 20% safety factor. After the pond’s depth is
drawn down by the appropriate level, the valve can be closed to retain the incoming
stormwater, which helps improve water quality. In this way, storm runoff should not
flood the pond and will be retained to prevent flooding downstream. After a storm
event, water can be held in the pond for a specified settling period (24hrs in this
case) and then slowly released (over 24hrs) to bring the pond back to its standard
operating range. Outside of storm events, rules can also be in-place to maintain
the pond level within the operating range or maintain certain flow conditions. The
exact control rules and their hierarchy, as implemented in this research, are detailed
in Figure 3.3.

Figure 3.3: Rule-based control hierarchy and settings.
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3.3 Results

3.3.1 Comparison of RL and Passive System

A comparison of the RL agent’s policy against the passive system shows that the
agent can learn to effectively control valves to maximize its reward. As indicated in
Figure 3.4, the training data shows valves are opened when rainfall is in the forecast,
allowing additional storage space in the retention ponds. After a storm is over, valve
positions are adjusted again in order to maintain a pond depth close to the target
of 0.61m. Following this policy allows the RL agent to reduce total flood volume
for this month by approximately 70% (5936 vs. 19957m3) compared to the passive
system. For example, in the first storm of August, 2019, both valves (R1 and R2)
are opened to drain water in response to the rainfall forecast (a detailed figure with
this comparison is available in Appendix D, Fig. 1). However, due to the difference
in rainfall on the subcatchments, R2 closes earlier than R1 in order to maintain the
target depth. Directly after storm events, the RL agent tries to balance returning
the ponds to the target depth and preventing flooding downstream at J1. Because
the RL agent also needs to maintain the target pond depths compared to the passive
system, there is an increase in the number of minor events at the downstream node,
despite these being minor events.

Figure 3.4: Comparison of RL controlled and passive system performance on August,
2019 training data.
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Applying the policy learned on the August, 2019 training data to the test sets
shows that this RL agent has learned a policy that works well in many other con-
ditions (Appendix D, Fig. 2). Compared to the passive system, total flooding was
reduced by RL in 85 of the 120 months of data (71%). In particular, this policy
works well on test sets with similar (e.g., 08-2018) or larger (e.g., 09-2016) amounts
of flooding than the August, 2019 training set (the mean total flood volume for
these months was 4278m3). In a few cases (such as 04-2019 or 09-2017), the RL
policy increases the amount of flooding. These are months with little or no flooding
(mean of 606m3) and the agent has learned to respond to rainfall events in a manner
that is not ideal for these months with less flood risk. The agent’s performance on
these months can be improved by increasing the threshold value for rainfall forecasts
used in the conditional reward. For example, if the conditional reward threshold is
increased from 0 to 1.3mm of rain, the agent’s performance on months with low
flooding is improved (Appendix D, Fig. 2, ”RL: 1.3”). However, this is at the
expense of performance on the larger storms. Overall, the agent trained with the
1.3mm threshold had lower flooding than the agent trained with the 0.0mm thresh-
old in 28 months (23% of the data), but increased flooding in the remaining 92
months (77%).

3.3.2 Comparison of RL and MPC

In order to make computational expense tractable, the MPC setup from Sadler et al.
(2019) was only run using data from the first week in August, 2018. However, due to
the nature of this MPC formulation (online optimization using a genetic algorithm),
computational times are still high. Finding an MPC policy for this week of data
took almost 50 hours (2 days, 1 hour, and 48 minutes); computational time for
each 15 minute simulated control step is 3.9 minutes. This is tractable for a simple
system, but is partly a function of the simulation length and would increase with
system complexity (Sadler et al., (2019)).

To investigate MPC’s performance for this specific dataset, several combinations
of objective function weights were tried in order to prevent flooding and maintain
target storage pond depths (Table 3.5). The best performing of these combinations
is having the flood weight set to 1 and the deviation weight set to 10 (MPC4). This
result was unexpected given that an even weighting seems like it would provide the
best balance of flood mitigation and pond depth maintenance. Further, this MPC
formulation was the only one in which both ponds were not kept empty for the
dry periods in the simulation. A visualization of the policies carried out by MPC
and RL shows that, while MPC modulated orifice R2 and kept pond St2 close to
the target depth, orifice R1 was slightly open and static for much of the time (Fig.
3.5). This allowed pond St1 to essentially empty during dry periods, which is an
undesirable behavior. In contrast, RL was better at maintaining the target depth
before the first storm and between the storm events.

3.3.3 Comparison of RL and RBC

Rule-based control results were generated for the same monthly datasets used in the
RL training and testing. RBC was able to reduce flooding by 57% for the month
of August, 2019 compared to the passive system (8540 vs. 19957m3). This method
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Table 3.5: MPC trials and performance comparison with the passive and RL systems
for the first week in August, 2019.

Model
Alpha (overall

flood weight)

Beta (overall

deviation weight)

Control

Horizon (hrs)

Total Flood

Volume (m3)

Accumulated

Deviation (m)

Passive N/A N/A N/A 13586 126.3

MPC1 1000.0 0.5 1.0 2767 620.2

MPC2 0.75 0.25 1.0 2582 614.5

MPC3 1.0 1.0 1.0 2714 591.5

MPC4 1.0 10.0 0.5 3929 439.2

RL N/A N/A N/A 4058 234.5

Figure 3.5: RL and MPC control policies and states for the first week of August,
2019.

of control is also able to extend the retention time of stormwater in the ponds and
maintain target pond depths during dry periods or small rainfall events. Because
this RBC is based on rainfall forecasts (with perfect knowledge of future events),
it is able to drawdown ponds prior to a storm event based on the expected flood
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volume (Fig. 3.6).

Figure 3.6: Comparison of RBC and passive system performance on August, 2019.

The RL agent’s performance on the August, 2019 training data is similar to
RBC but has an advantage in that the entire system state is used to inform control
decisions, as opposed to using only the depth in the individual ponds (Fig. 3.7). Be-
cause of this increased system knowledge and flexibility in its valve control settings,
the RL agent was able to reduce flooding by 30% over RBC (5936 vs. 8540m3). The
RBC logic is based on individual pond depths; conditions at other parts of the sys-
tem (e.g., flooding downstream or tidal influence on the outfall) are only considered
indirectly if they impact pond depth.

Over all the months of data, RBC reduced flooding over the passive system in
45 months (38%) (Fig. 3.8). However, these were months with large total flood
volumes (mean total flood volume of 8559m3). Similar to RL, RBC performs less
well on the months with little or no flooding of the passive system (e.g., 02-2019,
03-2014, 03-2019) and a few months with more flooding (e.g., 09-2018, 10-2012). In
comparison with RL, RBC had more or equal flooding in 101 months (84% of data,
with a mean increase in flooding of 60%) and reduced flooding in the remaining 19
months (16% of data, with a mean decrease in flooding of 25%).

Examining the month of 07-2010 shows a situation where RBC outperforms RL
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Figure 3.7: Comparison of RL and RBC system performance on August, 2019.

(see appendix D, Fig. 3). For this month, the difference in flooding between RL and
RBC is relatively small (17844 vs. 16311m3, respectively) and both reduced flooding
compared to the passive system (21997m3), but RBC better maintained the target
pond depths. This example illustrates the difficulty in shaping rewards for RL;
because the conditional reward function is based on the rainfall forecast, very small
amounts of rainfall will cause the agent to only be rewarded for preventing flooding.
As mentioned in the RL/Passive system results, the rainfall threshold used in the
reward function can influence this behavior. However, using a threshold value of
>0mm let the agent keep pond St1 higher than the 0.61m target depth. Because
RBC maintained the target pond depths better than RL in this case, RBC did not
have as much water to drain out of the ponds before the large storm event at the
end of the month.

Examining the months where the passive system had lower total flooding than
RBC helps illustrate its limitations. For these 75 months, the mean total flooding
was 80m3. For example, in March, 2014 RBC increased total flooding of the system
by nearly 5.5 times over the passive system (2396 vs. 439m3MG) (see Appendix D,
Fig. 4).
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Figure 3.8: Comparison of RL, RBC, and passive system performance on all months
of data.

3.3.4 Flood Event Classification Results

Based on the flood event analysis at the two storage ponds, RL had the fewest flood
events (St1: 22, St2: 26), followed by the passive system (St1: 41, St2: 42). RBC
had the greatest number of pond flooding events (St1: 56, St2: 59). In terms of
maximum flood volume for a single event, RL had the lowest, followed by RBC,
and the passive system at pond St1 (27558, 28883, 30094m3, respectively) and pond
St2 (26119, 27331, 27596m3). The mean single event flood volume showed a similar
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pattern at pond St1 (719, 719, 1060m3) and pond St2 (871, 871, 1136m3) for the
RL, RBC, and passive systems, respectively. Flood event duration at the two ponds
was similar for the three scenarios, with RL having the lowest mean duration (St1:
0.45hr, St2: 0.47hr) followed by RBC (St1: 0.51hr, St2: 0.53hr) and the passive
system (St1: 0.73hr, St2: 0.66hr).

Results of flood event classification for downstream node J1 (a hypothetical
roadway storm drain inlet) are shown in Figure 3.9. RL had the lowest number
of flood events classified at the 0.2m and 0.3m thresholds but the highest for the
0.4m threshold (Figure 3.9, A). RBC had more flood events for the 0.2m and 0.3m
thresholds than RL or the passive system, but the lowest for the 0.4m threshold.
This was expected, as these control rules manage the two ponds individually and
not as a unified system considering downstream conditions. Flood volume for the
0.2m and 0.3m thresholds was similar across the 3 systems (Figure 3.9, C). At the
0.4m threshold however, the two RTC methods (RL and RBC) had lower minimum,
maximum, and mean flood volumes than the passive system.

Figure 3.9: Number (A), duration (B), and volume (C) of flood events at
downstream node J1. Flood volumes at node J1 were categorized as

causing ≥ 0.2, 0.3, or 0.4m of water depth on the roadway.

Flood event duration for node J1 was lowest for the passive system, followed
by RBC, and RL (Figure 3.9, B). This result makes sense when viewed in context
with the flood volumes coming from the upstream ponds. RL prevented flooding
at the ponds by routing more water downstream to node J1. RL had a similar
mean flood duration to the passive systems, but a 60% higher maximum, indicating
that RL allowed more low volume, but long duration flood events at J1 in order to
reduce flooding at the two storage ponds. This behavior is influenced by the reward
function; if the reward function was based on whether or not a node was flooding
instead of the rate of flooding, the agent may have learned a different trade-off for
managing flooding between the three nodes. Due to the lack of system coordination,
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RBC had longer duration flood events at J1 than the passive system, but at lower
volumes. In the passive system, the short duration, but high volume of flood events
at node J1 shows that, without control, this system is flashy, which is a challenge
in many urban systems.

3.4 Discussion

One important aspect of any RTC application is the computational cost, both in
terms of when the computation needs to happen and the time needed to compute
a policy. With the RL algorithm used here, the agent learns off-line on a training
datasets. Once learned, the RL policy can be quickly applied. This formulation of
MPC, in contrast, uses a genetic algorithm to perform on-line optimization (i.e., the
best control actions are not known until the time that they need to be implemented).
In this research, RL was able to learn a policy in approximately 34 minutes using
one month of data on a standard desktop computer. Once developed, testing the
RL policy simply requires running a SWMM simulation, passing the system state
at each control time step through the agent, and implementing the resulting control
actions (this takes 9 seconds for the 08-2019 training data). Running MPC with the
genetic algorithm and physics-based model as implemented in Sadler et al. (2019)
required access to a high performance computer and took almost 50 hours for one
week of simulation. Because optimization is on-line, additional testing of MPC
on other datasets would take a similar amount of time and would increase as the
complexity of the system increases (Sadler et al., 2019). In practice, MPC may only
need to run using the available forecast data (e.g., 18, 24, 36 hours), not an entire
week, reducing the computational burden (Sadler et al., 2020). Additionally, other
formulations of MPC could use a different process model than SWMM (for instance
using a state-space model learned from observed data) which could dramatically
reduce MPC’s computational cost (Li et al., 2013; Balchen et al., 1992; Corbin
et al., 2013; Cigler et al., 2013; Behl et al., 2014). The training time for RL is
also dependent on system complexity, but needs further research to determine the
feasibility and limitations for larger, more complex stormwater systems.

The RBC logic used in this research, like RL, can be considered an off-line policy.
Instead of an RL agent learning the control policy by interacting with the system,
a human operator must understand the system well enough to formulate the rules.
The growing adoption of Internet of Things (IoT) sensors for monitoring water levels
provides the data needed to create control rules. In practice, the amount of time
required to create these rules, and their quality, is dependent on factors like the
availability of data on the physical watershed characteristics and the complexity of
the system to be controlled. For the relatively simple system used in this research,
and real single ponds (Marchese et al., 2018; OptiRTC and Geosyntec Consultants
Inc., 2017), developing control rules is feasible. Ensuring coordinated and effec-
tive system-level control, however, will become increasingly difficult as complexity
increases. As an example, the rule for valve position when trying to maintain the
target depth was originally to completely open the valve. Through simulation it was
found that this often caused increased flooding at the downstream node. Adjusting
that rule to only open the valve 50% when maintaining the target depth helped
eliminate downstream flooding but is system specific and most likely not optimal.
Adding a depth sensor in the downstream pipe as an additional factor in the con-
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trol rules would be possible in this case; with enough time and IoT sensors, it may
be possible to create control rules considering system wide performance. However,
there could be many such factors in a real urban stormwater system and accounting
for each one and their interactions under different flow conditions will quickly be-
come unmanageable. RL has an advantage here because the relationships between
components of the system do not have to be known or stated explicitly, but can be
learned. The disadvantage of RL, however, is that it is much less transparent than
RCB in terms of how and why certain control decisions are made.

While this paper has explored RTC with RL, MPC, and RBC there are other
methods from the field of control theory that could be applied to stormwater systems.
Wong and Kerkez (2018) provide an elegant example by using a linear quadratic
regulator to manage storage pond depths in urban headwater catchments. This
uses a state-space model as a linear representation of a watershed and performs
control with a feedback controller. Another key contribution of this work is the
ability to optimize the location of control structures and show that the entire system
does not have to be controlled to achieve system-wide benefits. The state-space
representation used by Wong and Kerkez (2018) or the discrete time dynamic system
shown in Schwanenberg et al. (2015) could be used in RL or MPC as a replacement
to the more computationally expensive SWMM model to speed up control of larger
systems, but the full dynamics of the system represented in physics-based models
may be lost.

Groundwater could contribute a significant amount to retention ponds that are
being actively controlled, especially in coastal cities with high groundwater tables
like Norfolk, Virginia, that respond quickly to storm events (Bowes et al., 2019).
For a retention pond in Norfolk, we’ve estimated that groundwater would contribute
approximately 0.16m or 11% of the pond’s volume per hour if the pond is completely
emptied (See Appendix E for details on these approximations). Considering the
storm event of August 4-5th, 2019, the RL agent lowers the depth of water in the
simulated ponds by almost 0.61m over a 24 hour period (Figure 1). Over that time,
groundwater would have contributed an additional 0.71m or 50% of the pond’s
total volume. This is not currently reflected in the SWMM simulations, but has
important implications in practice. While the additional inflow would most likely
not change the general policy learned by the RL agent (i.e., lowering depths before
a storm and maintaining depths otherwise), a larger valve may be needed to drain
the ponds more quickly or the agent may need a longer forecast in order to drain
the ponds prior to a storm event. Additionally, evaporation should be included in
these simulations before being applied to real world systems.

When implementing any of the RTC methods presented in this research, the
method’s interpretability will influence its adoption and use by decision makers.
While RBC is easy to understand and highly transparent, MPC is less so, and RL is
the least transparent. The control policies created by RL, while effective, can cause
the system to make decisions that are non-intuitive to a human operator. Therefore,
fully automating smart stormwater systems with RL may not be advisable at this
time until more testing and safety controls can be put in place. However, RL
could assist human operators in determining control policies and support decision
making, for example as part of a recommendation system (Solomatine and Ostfeld,
2008). RL-based policies should continue to be trained with new data as it becomes
available to increase confidence that the RL policies will produce desirable outcomes.
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This study shows, however, that even with a single month’s worth of training data,
RL shows great potential for determining effective control policies.

3.5 Conclusions and Future Work

This research has explored the application of an RL agent for real-time stormwater
system control where both rainfall and tidal level can impact flooding and retention
pond depths in the system. In contrast to previous work, this paper used a continu-
ous action space to create more refined control policies, by implementing the DDPG
RL algorithm. A conditional reward structure based on the rainfall forecast and
inclusion of forecasts in the system state allowed the RL agent to learn proactive
control strategies. The performance of RL was compared to a passive system as well
as two other RTC methods: MPC and RBC.

Results of this research show that both RL and RBC can improve stormwater
system performance compared to the passive system. Using a control policy devel-
oped from a single month of rainfall and tide data, RL reduced total flood volume
by 32% over the passive system for the 2010-2019 data. RBC, while only controlling
ponds individually, still reduced total flood volume by 13% compared to the passive
system. Additionally, this research showed that RL was able to learn to balance
flooding throughout the system to maximize the conditional reward and meet the
control objectives of mitigating flooding and maintaining target pond water levels.
When implemented using the SWMM physics-based model, as described in Sadler
et al. (2019; 2020), MPC was too computationally expensive to run for more than a
small portion of the datasets. In this research, RL provided an 88x speedup in the
creation of control policies compared to MPC.

Although the simple stormwater system, which is inspired by conditions in the
coastal city of Norfolk, Virginia, demonstrates that RL can outperform other meth-
ods, more complex systems will face different computational burdens that could be a
barrier to using such methods in real-time. This needs to be explored through future
research testing RL on real-world systems. In addition, an alternative implemen-
tation of MPC using a state-space model, instead of the SWMM model used here,
could dramatically reduce computational cost for this control method. Lastly, the
feasibility of using, and potentially combining, any of the real-time control methods
for decision support to enhance stormwater system performance should be investi-
gated.

In order to move this work toward implementation within real-world systems,
it may be valuable to explore more complex reward functions than the one used in
this study. For example, it may be better to base the reward on different variables
beyond flood volume and pond water depth. It may be the case that costs due
to valve operation and drainage of ponds in specific cases are higher than a small
amount of flooding that does not have societal impact. Additionally, the flow rates
and velocities in the system may have additional restrictions to consider in the re-
ward function (e.g., maintaining certain flow conditions for water quality or stream
biota health or preventing flow velocities that can cause soil erosion). More complex
reward functions can be explored in future work to account for more complex situa-
tions, move towards the control of real systems, and integrate specific characteristics
of valves and ponds in real-world systems. Finally, this paper trained an RL agent
on a single month of data. In future research the sensitivity of the algorithm to the
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amount and diversity of the data during training should be investigated. This will
help construct a trade-off analysis between the amount of data needed, the training
time required, and the accuracy of the predictive models needed for the training
procedure.
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Chapter 4

Reinforcement Learning-based
Real-time Control of Coastal
Urban Stormwater Systems to
Mitigate Flooding and Improve
Water Quality1

4.1 Introduction

Communities rely on stormwater systems to mitigate flooding and treat polluted
runoff from urban areas. However, as urbanization increases and climate change
continues to alter precipitation, temperature, and sea levels, communities will be
faced with increased stormwater runoff causing greater flooding and water pollution
(Sweet and Park, 2014; Moftakhari et al., 2015; Moftakhari et al., 2017; Alam-
dari et al., 2020). Conventional stormwater systems are designed based on historic
data assuming stationarity of future conditions. They are largely static systems,
unable to dynamically adapt to unanticipated conditions. Increasing the resilience
of stormwater systems to these unanticipated and changing land use and climate
conditions will require new approaches to dynamically control both flood mitigation
and pollutant treatment.

The adoption of smart cities approaches is allowing stormwater managers to
begin to monitor and control individual components of conventional stormwater
systems, which are gravity-driven and behave statically, in real-time (Kerkez et al.,
2016). While the use of real-time control (RTC) is fairly established in combined
sewer systems (Troutman et al., 2020; Kroll et al., 2018; Montestruque and Lem-
mon, 2015), recent research has shown that retro-fitting conventional stormwater
components (e.g., a retention pond) for RTC can allow more efficient local opera-
tion, mitigating flooding from storms (Sadler et al., 2020a; Bowes et al., 2020) and
preventing erosive, high velocity flows (Wong and Kerkez, 2018). RTC can also pro-
vide more efficient treatment of pollutants such as sediment and nutrients, primarily
through increased detention time (Marchese et al., 2018; Shishegar et al., 2019). For
instance, RTC of a retention pond increased removal of total suspended solids (TSS)

1This chapter is in preparation for submission to a peer reviewed journal.
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and nitrate (NO3) by roughly 40%, compared to passive pond operation (OptiRTC
and Geosyntec Consultants Inc., 2017).

In practice, stormwater RTC is generally performed using local rule-based control
(RBC), which is almost exclusively based on volumetric data (e.g., depth, current
and forecast rainfall) (OptiRTC and Geosyntec Consultants Inc., 2017; Muschalla
et al., 2014; Gaborit et al., 2013). For instance, a rule may open a valve when the
water level in a storage pond reaches a certain height or proactively drain water
from a pond based on a rainfall forecast to create additional storage capacity before
a large storm. In most studies using RBC, water quality is not considered or is
inferred through hydraulic retention time, rather than directly observed or used in
control rules. However, pollutant characteristics are highly variable between sites
and storms and there is a need for more generalizable RTC methods for enhancing
pollutant treatment. Toward this end, the benefits of using real-time water quality
observations in control rules has recently been explored in simulation. For example,
using the concentration of TSS to trigger a valve controlling outflow from a storage
pond can improve TSS capture in the pond compared to the passive system and
other volumetric control rules (Sharior et al., 2019). Given the effectiveness of RTC-
enabled individual infrastructure components to adapt to different storm events,
system-level RTC has the potential to more holistically enhance flood and pollution
mitigation through coordinated control of multiple components (Mullapudi et al.,
2017).

As the complexity of controlled stormwater systems increases, the task of creating
rules to (i) mitigate flooding, (ii) protect the quality of receiving waters, or (iii)
balance both flooding and water quality, becomes nontrivial. Instead of attempting
to engineer rules that cover all possible interactions between stormwater system
components, pollutants, and environmental conditions, recent research has explored
system-level methods of optimizing stormwater RTC. For instance, in a coastal
urban stormwater system, model predictive control has been shown to reduce total
system flooding, even under sea level rise conditions (Sadler et al., 2020b). In terms
of water quality, Mullapudi et al. (2017) demonstrated that rules controlling flow
from ponds to a treatment wetland increased the efficiency of nitrate removal by
46%. While these studies illustrate the vast potential of stormwater RTC, work
remains for system-level optimization of both water quantity and quality. Shishegar
et al. (2021) developed a system-level RTC method that controls outflow from
retention basins as a linear optimization problem while controlling water quality
with rules to extend detention time (i.e., hold water after a storm for a set amount
of time). While this work presents a significant step for system-level RTC, direct
observation and system control based on real-time water quality measurements was
not included. Continuing improvements in real-time water quality sensors, however,
are now allowing control to move beyond simple rules and heuristics to more direct
observation and control of not only water quantity but also many water quality
parameters (Wong and Kerkez, 2016; Chen and Han, 2018) .

Recent advances in machine learning provide an alternate approach to system-
level stormwater RTC where control policies can be learned, instead of assumed.
Deep Reinforcement Learning (referred to as RL here) is a type of machine learn-
ing which aims to learn from trial-and-error experience through interaction with
an environment (Sutton and Barto, 2018). In RL, an agent (i.e., algorithm) does
not have known answers to learn from, but instead is rewarded based on how well
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its control actions meet specified stormwater system goals (e.g., flood mitigation,
improved water quality). The reward signal is used to guide the agent’s learning
towards actions that maximize the return from the reward function. This approach
to learning allows RL increased flexibility to optimize control actions and has the
potential to continually adapt system controls to evolving environmental conditions
(e.g., increased runoff from urbanization or climate change).

Initial research with RL for stormwater system control shows promise in terms
of flood mitigation and peak flow reduction (Bowes et al., 2020; Mullapudi et al.,
2020; Wang et al., 2020), while being robust to uncertainty in sensed and forecast
environmental data (Saliba et al., 2020). In Bowes et al. (2020) a system-level
RL agent outperformed local RBC in reducing total flood volume of a conceptual
coastal stormwater system. However, that research did not consider any water qual-
ity observations or impacts of the RTC methods. Given real-time water quality
observations, RL may be able to learn to balance competing water quantity and
quality goals throughout a stormwater system. No previous research has been done
with RL RTC for the combined goals of flood mitigation and water quality pro-
tection. Therefore, this paper aims to illustrate RL’s ability to learn system-level
control policies considering these two objectives.

4.2 Methods

This research compares RL and RBC for their ability to both mitigate flooding and
improve water quality compared to conventional static stormwater infrastructure.
A simulation of Norfolk, Virginia’s stormwater system including water quantity and
quality processes is used as the controlled system. Two methods of local-scale, rule-
based control are implemented: (i) predictive RBC with a fixed detention time and
(ii) RBC based on water quality observations. RL is implemented for system-level
control that incorporates measures of water quality and flood mitigation. After
comparing the performance of these methods, their robustness to changes in system
behavior is evaluated by simulating groundwater exchange with the controlled ponds.

4.2.1 Study Area

The City of Norfolk, Virginia, specifically its Hague neighborhood, is used as the
study area for this research. Norfolk is situated near the mouth of the Chesapeake
Bay on the eastern coast of the U.S. (Fig. 4.1). The city has a high rate of relative
sea level rise partly due to regional land subsidence (Eggleston and Pope, 2013)
and its low elevation, flat topography, and regular hurricane season contribute to
increasingly frequent and severe recurrent flooding (Sweet and Park, 2014). The
Hague neighborhood is a historic part of Norfolk and is adjacent to many city gov-
ernment buildings and the region’s main hospital; the Hague also experiences some
of the most frequent flooding in the city (Sadler et al., 2018; Sadler et al., 2020b).
Additionally, Norfolk has a high groundwater table that responds quickly to storm
events (Bowes et al., 2019) and could contribute significant amounts of water to
retention ponds that are being actively controlled (Bowes et al., 2020). The quality
of stormwater runoff from the city contributes to the health of the Chesapeake Bay,
which has a long history of impairments such as hypoxia caused by eutrophication
(Chesapeake Bay Foundation, 2018; Murphy et al., 2011). Pollutants carried by the
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city’s stormwater (such as TSS, nitrogen, and phosphorous) are regulated to meet
the Total Maximum Daily Loads (TMDLs) set for the Bay.

Figure 4.1: Study area - Hague area of Norfolk, Virginia USA with (A) the SWMM
model and (B) land cover data.

4.2.2 SWMM Model

The Hague’s recurrent flooding prompted Norfolk to build a simulation of the ex-
isting conventional stormwater system using the U.S. Environmental Protection
Agency’s (EPA) Stormwater Management Model (SWMM) (Fig. 4.1, A). This
SWMM model was calibrated to match observed flooding in the Hague from Hur-
ricane Matthew, which caused wide-spread flooding in October, 2016. The Hague
SWMM model was updated by Sadler et al. (2020) to simulate real-time control
infrastructure (i.e., an additional retention pond and a valve, pump, and inflatable
dam). In the current study, the SWMM simulation from Sadler et al. (2020) is
driven by long-term observed rainfall with a tidal boundary condition and has been
enhanced to include groundwater and water quality processes. SWMM input files
with full configuration details can be found in the open source code repository (see
Section 4.6).

Input Data

Observed rainfall, tide, and groundwater data were collected from gauges in Norfolk
for the period between 1 January, 2010 and 6 November, 2019 (Fig. 4.1). Fifteen
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minute rainfall data came from two stations near the Hague that are operated by
the Hampton Roads Sanitation District (HRSD). Rainfall data is processed by first
removing any values over the 1000-year 15-minute value for Norfolk (2.33in); these
large values represented less than 0.01% of the rainfall datasets. Any missing val-
ues from one rain gauge are filled with the value from the other gauge if available;
there were no periods were both rain gauges were missing data. Finally, the mean
of the two rain gauges is taken to create a single time series for the SWMM model.
Observed 6-minute tide data came from the Sewells Point gauge operated by the Na-
tional Oceanic and Atmospheric Administration (NOAA). Tide data are referenced
to the North American Vertical Datum of 1988 (NAVD88) and were resampled to
an hourly interval for use as a SWMM boundary at the stormwater system outfall.

Forecasts for use in the RTC control methods were created from the observed
data. A single forecast is an array of values representing the rainfall or tide mea-
surement over the next n time steps. In this work, a 24 hour forecast of 15 minute
rainfall contains n=96 values. Because the focus of this work is on comparison of
the RTC scenarios, the forecasts were assumed to represent perfect knowledge.

Groundwater Exchange Simulation

Groundwater data was collected from two shallow monitoring wells operated by
HRSD and referenced to NAVD88. Outliers from these data were removed with a
Hampel filter (as in Bowes et al. (2019)) to remove large erroneous values and replace
them with the median of a one-day rolling window. Groundwater observations are
then aggregated to an hourly time step. A single time series for the Hague area was
interpolated using inverse distance weighting between Pond 1, the two groundwater
monitoring wells, and the tidal level at the stormwater system outfall (assumed to be
equal to the groundwater table level at the land/water interface). The groundwater
table is higher than the water level in Pond 1 93.7% and lower than Pond 2 73.8%
of the 2010-2019 dataset; the groundwater table level is only below the bottom of
the ponds 0.09% of the 2010-2019 dataset.

The Hague SWMM model provided by the City of Norfolk did not originally
simulate groundwater processes and was not configured to easily allow simulation
of groundwater exchange with the controlled ponds using SWMM’s aquifer compo-
nents. To address this, a conceptual model of the unconfined aquifer surrounding
the existing Hague pond (Pond 1) was developed. Groundwater exchange was calcu-
lated externally from the SWMM simulation using the Dupuit equation and added
(or subtracted, in the case of infiltration) to the pond as an inflow using pyswmm
functionality (McDonnell et al., 2020). The Dupuit equation is commonly used
to calculate exchange between a water body and an unconfined aquifer (Pells and
N. Pells, 2016) and is written as

Q =
K

2L
(h21 − h22) · A (4.1)

where Q is the seepage rate into or out of the pond, K is the saturated hydraulic
conductivity of soil surrounding the pond, h1 and h2 are the heights above a fixed
datum for the pond water level and groundwater table level, respectively. L is the
horizontal distance between h1 and h2, and A is the surface area over which seepage
can occur (a function of pond water level).
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Saturated hydraulic conductivity of the soil surrounding the existing pond (Pond
1) was estimated from the National Resource Conservation Service (NRCS) Web
Soil Survey as 1.96ft/day. This soil is classified as a fine sandy loam with 61% sand,
22% clay, and 17% silt. Values for h1 were based on SWMM’s simulation of pond
water level and h2 was the observed groundwater table level. The sensitivity of
groundwater exchange (Q) to the distance between measured water levels (L), was
tested for L = 25, 10, 5, and 1ft using the SWMM model. A single value of L was
chosen and used to demonstrate the impact of groundwater exchange on flooding
and water quality with the control methods.

Water Quality Simulation

Water quality processes, specifically for TSS, were modelled using SWMM’s buildup,
washoff, and treatment equations (Rossman and Huber, 2016). TSS was chosen for
this study to allow comparison with previous RTC literature, and because it is
straight-forward to simulate (through gravitational settling) and known to carry
other sorbed pollutants (Guan et al., 2018). Pollutant buildup within each sub-
catchment is modelled as a power function

B = min(C1, C2 · tC3) (4.2)

where B is the buildup of TSS (mass per unit area), C1 is the maximum buildup
possible, C2 is the buildup rate (buildup per day), t is the antecedent dry period,
and C3 is a dimensionless buildup time exponent. Washoff of accumulated TSS from
subcatchments is modelled with an exponential function

W = E1 · qE2 ·B (4.3)

where W is the washoff rate (mass per area per hr), E1 is the washoff coefficient (per
unit of rain), q is the runoff rate (per hr), E2 is the washoff exponent, and B is the
amount of built-up pollutant remaining. Treatment of TSS occurs in the retention
ponds and is modelled as a first order decay based on a generalized settling velocity
(similar to Sharior, et al. (2019)) with resuspension as a factor of depth and inflow
velocity (inspired by Troutman et al., (2020))

C =


TSS · exp(−vs/DEPTH ·DT/3600)) FLOW ≤ τ

TSS FLOW > τ

TSS · (1− exp(−vs/DEPTH ·DT/3600)) FLOW > τ, DEPTH ≤ δ

(4.4)

where C is the TSS concentration (mg/L) in the pond after treatment, TSS is the
inflow concentration, vs is the generalized settling velocity (ft/hr), DEPTH is the
pond water depth (ft), DT is the SWMM routing time step (seconds), FLOW is
the inflow rate (cfs), τ is a flow threshold to distinguish when settling occurs, and
δ is a depth threshold to distinguish when resuspension occurs (one quarter of the
maximum pond depth in this implementation). Resuspension is included because
RTC creates the potential for low water depths in retention ponds; if a pond is
drawndown before high storm inflows, sediment may be resuspended and carried
downstream.

Each land-use category within the SWMM model domain (Fig. 4.1, B) is given
individual characteristics for the buildup and washoff processes. The SWMM pollu-
tant processes were calibrated based on the annual loading and treatment of TSS in

55



Pond 1 (the existing pond) because no observed water quality data were available.
TSS loading was estimated using the loading rates provided in Norfolk’s Virginia
Stormwater Management Permit (Norfolk, 2018). The treatment efficiency of the
passive retention ponds was assumed to be 60% as specified in the Chesapeake
Bay Program Established BMP Efficiencies (Virginia Department of Environmental
Quality, 2015, Table V.C.1). The load into Pond 1 was calibrated using the buildup
coefficient C2 so that the mean annual load over 2010-2019 was within 2% of the
estimated value. The treatment was calibrated using the flow threshold (τ) and
the settling velocity (vs) so that the mean annual reduction was within 5% of the
estimated value for the passive simulation. While calibrating this SWMM model
to observed values would be desirable, the scope of this paper is on comparison of
the RTC methods and not exact quantification of TSS. Final values for the buildup,
washoff, and treatment equations are specified in the SWMM input file.

4.2.3 Real-time Control Scenarios

Real-time control of the Hague stormwater system was simulated with three strate-
gies and compared to the passive system. The three control strategies are (i) predic-
tive RBC with a fixed detention time, (ii) TSS concentration-based RBC, and (iii)
RL approaches that includes simulated real-time measurement of TSS concentration
in the system state and/or reward function. In the passive system scenario, weirs
control flow out of the retention ponds and maintain a permanent pool of approx-
imately half capacity. In the RTC scenarios, the passive weirs are replaced with
valves. The valve on Pond 1 is at the same elevation of the passive weir (due to pipe
configuration constraints). The valve on Pond 2 is at the bottom of the pond side,
which allows Pond 2 to be fully emptied or filled. Both RBC scenarios represent
local (i.e., individual) control of the retention ponds, while RL can coordinate its
control actions based on system-level information. The pyswmm Python package is
used to implement all RTC scenarios.

Detention Rule-based Control

In this scenario, RBC is based on industry standard methods that use rainfall fore-
casts for predictive control of stored water to mitigate flooding, while controlling
water quality with a fixed detention time (OptiRTC and Geosyntec Consultants
Inc., 2017; Marchese et al., 2018; Wright and Marchese, 2017). The general process
of this RBC (RBC-DTN) is shown in Figure 4.2 and detailed in Bowes et al. (2020).
Briefly, if a forecast storm is expected to flood the pond, the valve will open to drain
an equivalent volume of water (plus a safety factor). When the pond is drawndown
sufficiently, the valve will close to retain the incoming runoff for a fixed time (24hr
in this case). At the end of the retention period, the valve opens to the minimum
setting to bring the water level back to the target operating depth within a fixed
time (24hr). Outside of storm events, the valve operates in order to maintain a
target depth in the pond.

TSS Rule-based Control

The TSS RBC (RBC-TSS) scenario was inspired by Sharior et al. (2019). Instead
of using a fixed detention time, this RBC is innovative because it uses the real-
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Figure 4.2: General schema of the Detention Rule-based Control (RBC-DTN) sce-
nario. Forecasts allow predictive control of the pond water level to mitigate flooding
while a fixed detention time after storm events helps improve water quality.

time concentration of TSS in a retention pond to trigger valve operation (Fig. 4.3).
For example, when the TSS concentration is above a threshold, the valve can be
closed to retain stormwater and allow treatment by settling. Otherwise, the valve
is open and acts as a weir to maintain a permanent pool of water. In this study,
the TSS threshold was set to 1 mg/L because observed data from the ponds were
not available for a more realistic threshold; in Sharior et al. (2019), the threshold is
15 mg/L based on regulatory constraints for their study area. A contingency rule
limits flooding of the pond by opening the valve if a threshold depth is reached.

Figure 4.3: General schema of the TSS Rule-based Control (RBC-TSS) scenario.
Detention is based on observed TSS concentration, not a fixed length of time, making
it adaptive to individual storm events.

Reinforcement Learning

Reinforcement learning can be visualized as an agent that interacts with an envi-
ronment (Fig. 4.4). The RL agent learns through sequential interactions with the
environment. At each step in the learning process, the RL agent receives information
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about the state (s) of the environment and can take actions (a). The next state (s′),
therefore, depends on the agent’s actions and the agent is rewarded (positively or
negatively) based on how well its actions meet user-specified objectives in a reward
function (r). The agent’s ultimate goal is to find a policy (π(a|s)) that maximizes
the expected return

Gt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k (4.5)

where rt = r(st, at, st+1) and γ ∈ [0, 1] is a discount factor weighting the importance
of short-term and long-term reward.

Figure 4.4: Reinforcement learning paradigm.

In this case the environment is the SWMM model described in section 4.2.2 and
provides state information at a 15-minute simulation time step. The state space (S)
is defined as: the current depths (ft) and outflow (cfs) of the two retention ponds,
the concentration of TSS (mg/L) in pond outflow, the current valve positions, the
sum of the 24 hr rainfall forecast (in), and the mean value of the 24 hr tide forecast
(ft). The action space (A) of the agent is to open or close either valve to any degree.
The reward (r) is based on how well the agent meets user-specified objectives such
as flood and pollutant reduction.

The deep reinforcement learning algorithm used in this research, Deep Deter-
ministic Policy Gradients (DDPG), is an actor-critic RL agent using deep neural
networks as function approximators (Lillicrap et al., 2015). DDPG allows controls
(i.e., valve positions) over a continuous action state and has been used in previous
research to learn control policies that mitigate flooding (Bowes et al., 2020; Saliba
et al., 2020; Wang et al., 2020). The actor in DDPG is a deep feed-forward neu-
ral network that learns a policy (π(a|s)); the critic is a deep feed-forward neural
network that approximates the value of being in a specific state and taking specific
actions called the Q-value

Qπ(s, a) = r(s, a, s′) + γ
∑
s′∈S

P a
s,s′

∑
a′∈A

π(a′|s′)Qπ(s′, a′) (4.6)

where P a
s,s′ is the probability of transitioning between two states. This equation is

known as the Bellman equation and is a key component of RL (Sutton and Barto,
2018). By approximating the Q-value, the critic can reduce the variance of policy
gradients from the actor, which helps speed the learning process. During training,
the actor receives the state of the stormwater system and outputs the actions to be

58



taken based on its learned policy. The critic then receives the actions and states and
outputs an estimated Q-value. The actions and Q-value estimates output from the
critic are used to update the agent. An in-depth description of the DDPG algorithm
can be found in Lillicrap et al. (2015).

In this research, three RL agents are trained and tested. The reward functions
used by these agents have a conditional format that aims to simplify what the agent
has to learn under different conditions (Bowes et al., 2020). Agent 1 is rewarded for
reducing total flooding throughout the stormwater system and maintaining target
pond depths

r =

{
−ΣFlooding[system, Pond1 ∗ 1000, Pond2] F ≥ δ

−(|Pond1depth − τ |+ |Pond2depth − τ |) F < δ
(4.7)

where Flooding[system] is the incremental system flood volume, Flooding[Pond1] is
the flooding rate at Pond 1, and Flooding[Pond2] is a binary reward (0 or 1000) for
having Pond 2 depth above a level that causes upstream flooding (5.75ft). F is the
sum of rainfall in a 24hr forecast, δ is the rainfall threshold (0.5in in this research),
and τ is the target depth (6.0ft and 3.56ft for Ponds 1 and 2, respectively). Agent 2 is
rewarded for reducing total flooding throughout the stormwater system, maintaining
target pond depths, and minimizing the export of TSS from the ponds

r =


−ΣFlooding[system, Pond1 ∗ 1000, Pond2]

+TSS[V alve1, V alve2] F ≥ δ

−(|Pond1depth − τ |+ |Pond2depth − τ |
+TSS[V alve1, V alve2] + Flooding[system/35000]) F < δ

(4.8)

where TSS[V alve1, V alve2] is the incremental TSS load of the controlled valves.
Agent 3 aims to balance Agents 1 and 2 by initializing the trained neural network
weights and memory from Agent 1 and training for 50,000 additional time steps
using the reward for Agent 2. This can be considered as pre-training for Agent 3, a
common practice in deep machine learning to provide appropriate initial conditions
and reduce computational time (for examples in hydrology see Read et al., 2019 or
Jia et al., 2019).

The RL agents are trained on one month of data (August, 2019), which has
the fifth highest monthly total rainfall (10.1in) of the dataset distributed across 7
storm events. The mean tide level in this month is 0.52ft, with a maximum value of
3.31ft from Tropical Storm Erin late in the month. A visualization of the training
data is given in Figure 4.5. RL Agent 1 is trained for 100,000 steps of the training
data with a discount factor (weighting of current and future rewards) of 0.5. RL
Agents 2 and 3 are trained for 150,000 steps, when the pre-training from Agent
1 is considered for Agent 3, with a discount factor of 0.99. RL agents are tested
on the remaining data (2010-2019). Each RL agent has the same neural neural
network architecture; these and the shared RL hyperparemeters are documented
in the open source code repository linked in section 4.6. The DDPG algorithm
is implemented with the keras-rl (Plappert, 2016), openai gym (Brockman et al.,
2016), and Tensorflow (Abadi et al., 2016b) python packages.
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RTC Comparisons

The RTC scenarios are evaluated in three main comparisons as shown in Table
4.1. First, a baseline for flood mitigation and TSS reduction is first established
by comparing the passive system and RL Agent 1. This comparison focuses on
differences between the passive system and a system-level control strategy that aims
to mitigate flooding, but does not consider water quality. Second, trade-offs between
the RBC methods, which focus on flood and TSS mitigation at the pond scale, are
compared to the passive system. Third, system-level control trade-offs with RL
Agents 2 and 3, which considered both flooding and TSS in their training, are
compared to the passive system and RL Agent 1. These three comparisons are
made without simulating groundwater exchange to keep the focus on control actions
and reduce computational expense. The impact of groundwater exchange is then
examined on a subset of the data to evaluate its potential impact on RTC of the
stormwater system.

Table 4.1: Comparisons of stormwater control scenarios.

Comparison Control Method
Baseline Passive RL Agent 1

Local RBC-DTN RBC-TSS
System RL Agent 2 RL Agent 3

4.3 Results

4.3.1 Baseline Flood and TSS Control

Figure 4.5 illustrates how the passive system and RL Agent 1 respond to the storm
events in August, 2019. Operation of Pond 1 is similar between these two methods
because the controllable valve is at the same elevation as the fixed weir; water is
released as soon as depth increases from a storm event. However, RL Agent 1
learned to close the valve when high tide levels caused backflow into the pond to
prevent water level fluctuations (e.g., Aug. 26-27). RL Agent 1 learned to lower
Pond 2’s depth, which is fully controllable, before certain storm events (e.g., the
Aug. 5 storm) while remaining close to the target depth during dry periods.

The system-level control policy learned by RL Agent 1 allowed it to reduce the
total volume of flooding by 4.0% (19.1MG) compared to the passive system (Fig.
4.6, A). While RL Agent 1’s training did not include any water quality information,
it’s policy does provide improved TSS capture at both ponds (i.e., lower loads at
the valves). Compared to the passive system, RL Agent 1 reduced TSS by 15.1%
(36,235lbs) and 14.8% (31,027lbs) a Valves 1 and 2, respectively (Fig. 4.6, B).
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Figure 4.5: Comparison of passive and RL Agent 1 system operation for August,
2019.

Figure 4.6: Total flood volumes (A) and TSS loads (B) for the passive and RL Agent
1 baseline scenarios, 2010-2019.

4.3.2 Local Control with RBC

An example of the RBC methodologies compared to the passive system is shown in
Figure 4.7. Both RBC methods operate the ponds individually (i.e., rules are not
coordinated between the ponds) to mitigate flooding of the pond by releasing water
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or to improve water quality by retaining runoff after a storm event. RBC-DTN
has a fixed detention time, while RBC-TSS adapts detention time based on the
concentration of TSS in the pond. For example, after the Aug. 4 storm RBC-TSS
retains stormwater slightly longer than the fixed 24hr in RBC-DTN, but releases
water sooner after the Aug. 8 storm. Because of the limited buildup time for TSS
after the first storm, runoff did not have to be retained as long after the second
storm. The opposite is seen in the Aug. 15 storm, where RBC-TSS holds water
longer than RBC-DTN to provide more treatment after a long buildup period.

The two rule-based control methods both provide reductions in TSS export from
the controlled ponds compared to the passive system. However, this is at the expense
of increased flooding because operation of the two valves is not coordinated and
does not consider flooding in other parts of the stormwater system (Fig. 4.8).
Compared to the passive system, RBC-TSS increased total system flood volume by
12.0% (56.8MG), while decreasing TSS by 95.5% (229,770lb) and 32.8% (68,600lb)
at Valves 1 and 2, respectively. RBC-DTN increased flooding by 9.0% (42.6MG)
and decreased TSS for Valves 1 and 2 by 49.2% (118,410lb) and 4.5% (9,320lb)
compared to the passive system. RBC for Pond 2 does not treat TSS as efficiently
as Pond 1 because water needs to be released if the Pond 2 depth exceeds 5.75ft;
this is necessary to alleviate upstream flooding due to this SWMM model’s specific
pipe configuration.

Figure 4.7: Comparison of local RTC methods (RBC-TSS, RBC-DTN) and passive
system operation for August, 2019.

62



Figure 4.8: Total flood volumes (A) and TSS loads (B) for local RTC methods
(RBC-TSS, RBC-DTN) and passive system operation, 2010-2019.

4.3.3 System-level Control with RL

Both RL Agent 2 and RL Agent 3 learned policies with multiple objectives of flood
mitigation, TSS reduction, and target pond depths. When tested on the training
data (Fig. 4.9), the Agents generally kept valve 1 open to maintain the target depth
and closed valve 1 during storms to capture TSS. The agents have similar policies for
valve 2 that favor holding water above the target depth to treat TSS while draining
the pond before storm events to prevent flooding.

Figure 4.9: Comparison of RL Agent 2, RL Agent 3, and passive system operation
for August, 2019.
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On the test dataset (2010-2019), however, RL Agent 2 had 11.3% (56.2MG) more
total system flooding and 74.6% (47.4MG) more flooding at Pond 1 than RL Agent
3 (Fig. 4.10). Both RL Agents 2 and 3 increased system-wide flooding compared to
the passive system by 16.8% (79.3MG) and 4.9% (23.1MG), respectively. In terms
of TSS reduction, both RL Agents provide improvements compared to the passive
system. RL Agent 2 reduced TSS by 95.1% (228875.5lb) and 81.3% (170164lb)
at valves 1 and 2, while Agent 3 reduced TSS by 39.5% (95083.5lb) and 65.0%
(136027.5lb).

Figure 4.10: Total flood volumes (A) and TSS loads (B) for RL Agent 2 and RL
Agent 3, 2010-2019.

4.3.4 Multi-objective Comparison of RTC Methods

A comparison of performance trade-offs for each stormwater control method is shown
in Figure 4.11. In terms of flood volume, only RL Agent 1 reduced flooding com-
pared to the passive system at both the system-level and at Pond 1. RL Agent 3
outperformed the local-scale RBC methods and RL Agent 2. Pond 2 did not flood
in any of the scenarios because of the configuration of this SWMM model; several
nodes upstream of Pond 2 have lower maximum depths and flood with any rainfall
when the pond is above a certain level.

All RTC methods reduced TSS loads at both valves compared to the passive
system. TSS load reduction at valve 1 was greatest for RBC-TSS and RL Agent
2; RBC-TSS used water quality observations to inform control, while RL Agent 2
learned a control policy from scratch that included penalties for high TSS loads. At
valve 2, the local-scale RBC methods had fixed rules to release water when Pond
2’s depth reached the threshold for upstream flooding. This limited their ability to
capture the first flush of TSS during large storm events. The system-level RL agents
outperformed the passive system and had similar trends in performance for both
valves. RL Agent 1 did not consider TSS in its policy and had the smallest reduction,
followed by RL Agent 3, and RL Agent 2 which had the greatest reductions in TSS.

In terms of maintaining the target depth at Pond 2, RBC-TSS was most similar
to the passive system because the valve was at the same height as the target depth
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Figure 4.11: Comparison of flood volume and TSS load trade-offs for each control
method, 2010-2019.

(Fig. 4.12). However, RBC-TSS was able to close the valve to treat TSS and
therefore had a greater percentage of time above the target compared to the passive
system. RBC-DTN and the RL Agents could fully drain or fill Pond 2 and had
a greater percentage of time at lower depths. This helped prevent the pond from
flooding, but long periods of time at low depths are undesirable in reality. The
target depth comparison also illustrates differences in policy learned by RL Agent
2 and 3. Across the entire test set, RL Agent 2 had a tendency to keep Pond 2 at
very low water levels. In contrast, RL Agent 3’s policy kept the water level at or
above the target depth approximately 90% of the time, indicating that it learned a
policy to only drain the ponds when needed (a benefit of pretraining RL Agent 3
from RL Agent 1).
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Figure 4.12: Comparison of time below or above the Pond 2 target depth (3.56ft)
for each control method, 2010-2019.

4.3.5 Impact of Groundwater Exchange on RTC Methods

The impact of groundwater exchange with the controlled ponds was evaluated for
the month of September, 2016 (an example time series visualization and statistics
of valve operation by the RTC methods is available in Appendix G, Figs. 1 and 2).
This month had two hurricanes and one tropical storm, which caused the groundwa-
ter table level to reach a height of 3.54ft (compared to the mean of 1.99ft). Because
groundwater exchange also allows increased infiltration, these simulations have less
flooding than without groundwater exchange. With less water flowing through the
valves in the simulations with groundwater exchange, the TSS load is also reduced.
To account for these changes, the total flooding and TSS loads of each RTC method
are compared to the corresponding passive system results (with or without ground-
water exchange) as shown in Figure 4.13.

All RTC methods have a smaller change in total flood volume compared to the
passive system when groundwater exchange is included (with the exception of RBC-
DTN, which had a larger percent change and reduced flooding, instead of increasing
it) (Fig. 4.13, A). All RTC methods were still effective at reducing TSS loads for
valves 1 and 2 (Fig. 4.13, B and C, respectively). Of the RBC methods, RBC-DTN
had a smaller decrease in Valve 1 TSS load with groundwater exchange than without.
RL Agent 2 was the only RL method to perform worse for TSS reduction when
groundwater exchange was added to the simulation. This may indicate overfitting
to the training data (which did not include groundwater exchange), limiting RL
Agent 2’s ability to control new pond behaviors.

In comparing the sensitivity of pond-aquifer flow to the Dupuit fitting parameter
L, it was found that L = 25ft and L = 10ft had no noticeable impact on pond
operation. When L = 5ft, Pond 1 tends to gain a small amount of water and Pond
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Figure 4.13: Comparison of percent difference from the passive system for each RTC
method’s total flood volume (A) and TSS loads (B and C) for simulations with and
without groundwater (GW) exchange for September, 2016.

2 loses a small amount of water (Fig. 4.14, A and B, respectively). These trends are
further amplified for L = 1ft; as L decreases, flow between the ponds and aquifer
increases. Because L = 1ft had the largest impact on pond level, it was chosen for
use in the RTC simulation with groundwater exchange.

Figure 4.14: Comparison of passive pond operation for simulations without ground-
water exchange (No GW) and with L = 5ft or L = 1ft in the Dupuit equation,
September, 2016.

67



4.4 Discussion

4.4.1 Towards System-level Control

As the complexity of an environment and control objectives increases, it becomes
much harder for a single RL agent to learn an effective control policy. This can
be seen in the performance of RL Agents 1 and 2. Agent 1 had fewer goals and
a simpler reward function that allowed it to learn an effective policy. In contrast,
Agent 2 had a more complicated reward function and more goals. While it learned
an effective policy for minimizing TSS, that was at the expense of both increasing
system flooding and allowing Pond 2 to remain at undesirably low depths for long
periods of time. As demonstrated by Agent 3, pretraining from an agent that
performs well on simpler, but related, goals is one way to approach this challenge.
Other methods such as Multi Agent RL (MARL), Multi-Objective RL (MORL),
and boosting/ensemble methods may also be beneficial. In MARL, each pond could
be controlled by an individual agent tuned to that pond’s specific goals, while also
operating cooperatively towards system-level goals (Su et al., 2020; Baldazo et al.,
2019). In MORL, sets of policies are learned to approximate a Pareto frontier
(Parisi et al., 2016); this is especially valuable for comparing trade-offs among agents.
Similar multi-objective optimization is well studied for reservoir operation and could
provide an alternative to MORL (Quinn et al., 2019). Boosting and other ensemble
methods attempt to combine agent policies or neural network outputs to increase
performance (Wiering and Hasselt, 2008; Wang and Jin, 2018). In the context of RL
for stormwater systems, this maybe beneficial for combining agents that are trained
for different purposes (e.g., an agent for extreme events, an agent for average events,
an agent for dry periods).

Of the RTC methods implemented here, both RBC-DTN and the RL agents use
current observations and forecasts to inform control decisions ahead of storm events.
Perfect forecast data were used in this research to keep the focus on the control
methodology. However, forecasts can contain a significant amount of uncertainty in
reality. As an example specific to coastal systems, tide forecasts are based on the
astronomical tide cycle which does not account for storm tides. In practice, RBC
implementations have handled forecast uncertainty by using a probability threshold
(e.g., take an action if the rainfall forecast probability is greater than 50%), as well
as other fail-safes (OptiRTC and Geosyntec Consultants Inc., 2017). Stormwater
RTC research using linear optimization and water quality control rules found that
errors in rainfall prediction (i.e., an unforeseen storm event) could cause flooding
of stormwater ponds, but that the system-level control could quickly adapt and
recover based on observations of current conditions (Shishegar et al., 2021). Recent
work with RL (specifically the DDPG algorithm used in this study) for stormwater
RTC has indicated that this algorithm is robust to uncertainty in both sensed and
forecast data (Saliba et al., 2020). In the current research, the RL agents were robust
to altered pond behavior when groundwater exchange was simulated (groundwater
exchange was not included in the RL training process). However, as stormwater
RTC continues to move towards system-level control to accommodate the increasing
density of controlled infrastructure components, changing environmental conditions,
and more stringent environmental regulations, understanding the impact of sensed
and forecast data uncertainty on RTC methods will be essential.

RL is known to suffer from issues including reward gaming, where the agent
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learns to exploit its environment in unintended ways to gain reward (Amodei et al.,
2016). In the context of stormwater RTC, reward gaming was observed in early
attempts at training RL agents related to simulation processes within the SWMM
model. For example, flood water in the Hague SWMM model does not pond and
reenter the stormwater system as it would in reality, but is simply recorded as flood-
ing and lost from the simulation. One consequence of this model process is that
any TSS within flood water is also lost from the system. If rewards are poorly
shaped (i.e., TSS much more heavily weighted than flooding), the RL agent can
learn policies that induce flooding because the rewards gained by the corresponding
TSS reduction outweigh penalties for flooding. This highlights the need for do-
main specific knowledge when crafting reward functions and careful consideration
of simplifications within simulated environments.

4.4.2 Trade-offs of Local-scale RBC

Both RBC methods used in this research performed RTC at the local-scale (i.e.,
operating each pond individually) and reduced TSS loads, but at the expense of
increased system-level flooding. RBC-DTN showed similar TSS reductions for Pond
1 (49%) as previous studies in other locations (approximately 40% reported by
Marchese et al., (2018)). However, as water quality sensor technology becomes less
expensive and more robust, control based on water quality observations, such as
the RBC-TSS implemented here, may provide a more adaptive solution. RBC-TSS
reduced TSS by 96% for Pond 1 compared to the passive system, similar to the
value found by Sharior et al., (2019) for a different site. The RBC methods did not
perform as well for Pond 2 in this study due to the configuration of the SWMM
model. Specifically, when water reached 5.75ft (which is less than the maximum
depth), the contingency rules to prevent upstream flooding would open valve 2.
Without this rule, the RBC methods greatly increased upstream flooding, but it
also releases stormwater with high concentrations of TSS during large storm events.

The results of RBC demonstrate that fixed rules, like those used in RBC-DTN,
may not provide the most efficient treatment because pollutants are highly variable
between sites and storms (Wong and Kerkez, 2016). One solution could be the
combination of the two RBC methods used here (e.g., the predictive drawdown ca-
pability of RBC-DTN coupled with adaptive detention time based on observed water
quality as in RBC-TSS), but this is still limited as a local-control scheme. While
adapting rules based on water quality may be fairly straight-forward for a single
pollutant at a single site, controlling a stormwater system for multiple pollutants
with different treatment processes (e.g., nitrogen species) will require system-level
control (Mullapudi et al., 2017).

4.4.3 Groundwater Exchange Limitations and Impact

Due to the specific configuration of the studied SWMM model, groundwater ex-
change was calculated externally from the SWMM model and added (or subtracted
in the case of infiltration) to the ponds’ inflow at each control time step. While
this process is based on in-situ soil properties for Pond 1 in Norfolk’s Hague region,
the Dupuit equation (which is intended for systems at a steady state) may not pro-
vide the most accurate representation of groundwater exchange. Under real-time
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control, ponds can be rapidly drained and refilled before and during a storm event.
The Boussinesq equation for transient unconfined aquifer flow would provide a more
realistic representation and is commonly implemented as a simpler alternative to
Richards equation (see for example, Litwin et al., 2020). Coupling such a model
with the SWMM model used here would allow for more precision, but as an initial
demonstration of groundwater impact on ponds controlled in real-time, the Dupuit
equation was quick to implement and run.

In the simulated RTC scenarios set up in this research, groundwater exchange
with controlled ponds decreased flooding through infiltration; TSS loads were also
reduced because less water was exiting the ponds through the valves. While ground-
water interactions with the retention ponds in Norfolk have not been studied specif-
ically, it has been demonstrated that increased groundwater table levels due to sea
level rise could contribute to retention ponds in coastal areas, decreasing their ability
to appropriately manage consecutive storm events (Davtalab et al., 2020). Because
Norfolk has a high groundwater table and is already experiencing impacts from a
high rate of relative sea level rise, considering the robustness of stormwater RTC
methods to this will be increasingly important.

4.5 Conclusions

In this research, real-time control (RTC) methods were applied to a coastal stormwa-
ter infrastructure system and evaluated on their ability to mitigate flooding and
improve water quality by capturing TSS in controlled retention ponds. The RTC
methods used include local control with rules (RBC) and system-level control with
deep reinforcement learning (RL). The impact of groundwater exchange on the per-
formance of the controlled ponds was evaluated as a condition that may be important
in coastal areas. This research contributes to the growing field of stormwater RTC
by being the first to evaluate the ability of RL to learn system-level control policies
considering both water quantity and water quality goals, as well as being the first
to consider the impact of groundwater on the performance on controlled ponds in a
coastal city.

Two methods of RBC were used (i) RBC-DTN, which is based on industry stan-
dard stormwater RTC and predictively manages ponds to prevent flooding while
retaining runoff for a fixed detention time to improve water quality and (ii) RBC-
TSS, which uses observations of water quality to inform valve operation in order
to improve TSS capture. Both RBC methods are transparent and provide water
quality benefits compared to the passive system. RBC-TSS provided more adaptive
operation and demonstrates the potential for water quality observations to be in-
corporated with RTC as sensor technology improves. However, the local operation
of both RBC methods caused increased total system flooding.

Three RL Agents were trained and tested for their ability to learn effective
system-level control policies. The goal of RL Agent 1 was to mitigate flooding and
maintain target pond depths; it reduced flooding compared to the passive system,
but did not consider water quality in its control policy. RL Agents 2 and 3 attempted
to learn policies for more objectives: mitigate flooding, maintain target pond depths,
and reduce TSS loads at the controlled valves. RL Agent 2 learned a policy from
scratch, while RL Agent 3 was pretrained by using the neural network weights and
memory from RL Agent 1, but was trained to consider water quality as well using
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the reward function from RL Agent 2. Both RL Agent 2 and 3 provided water
quality benefits but increased flooding compared to the passive system. RL Agent
2 decreased TSS loads by an average of 88%, but increased system-wide flooding by
17%. RL Agent 2’s pretraining was effective at reducing training time and allowed
it to learn a policy that reduced TSS by an average of 52%, with only a 5% increase
in total flood volume, compared to the passive system.

Given the growing adoption of rule-based stormwater RTC and the ability of
RL to learn system-level control policies, future work could investigate control of
more complex stormwater systems and integrations of RL and RBC. More com-
plex stormwater systems could include retention ponds in series, pollutants that are
treated through chemical and biological processes (e.g., nitrogen)/multiple pollu-
tants, and different controllable assets such as pumps. Integration of RL and RBC
could include using RL to better parameterize variables within an existing control
rule (see Likmeta, et al., 2020, for an example in autonomous vehicles), as well as
adding or removing rules from a set of rules. These avenues for future research could
allow stormwater RTC providers to increase the complexity of controlled networks,
improving flood mitigation and water quality, while maintaining the operational
transparency needed for critical stormwater infrastructure systems.

4.6 Data, Model, and Code Availability

The data, models, and code used in this study are available on GitHub at https:
//github.com/UVAdMIST/swmm wq rl.
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Chapter 5

Conclusion

This dissertation advanced understanding of the use of emerging machine learning
techniques to forecast hydrologic processes within an urban setting and improve the
ability of stormwater systems to mitigate flooding and protect water quality. Data
from the City of Norfolk, Virginia, were used to demonstrate the applicability of
these techniques to a flood-prone coastal urban environment. The key contributions
from this research are (i) a method for creating real-time hourly forecasts of the
groundwater table using deep machine learning, (ii) an evaluation of reinforcement
learning to create real-time stormwater system control strategies for reducing flood-
ing, and (iii) a novel method for using real-time water quality, rainfall, and tide
observations in a reinforcement learning framework to balance flood mitigation and
water quality goals with real-time stormwater control.

Chapter 2 of this dissertation demonstrated the importance of data quality on
the predictive accuracy of groundwater table forecasts created with deep neural
networks. Using a unique dataset of groundwater table observations from Norfolk,
the LSTM type of neural network was trained on data from storm events to predict
groundwater table level with an average RMSE of 0.05m. This machine learning
approach can be used instead of more traditional physics-based models, which are
often time and cost prohibitive to calibrate and run at the city scale. Chapter
2 contributed to urban hydrology and stormwater management through the first
demonstration of LSTM for hourly groundwater table level forecasts in a coastal
city.

Chapter 3 of this dissertation explored the application of deep reinforcement
learning (RL), an emerging machine learning technique, to learn control policies for
real-time stormwater system control. RL and other control methods were applied
to a stormwater system simulation inspired by conditions in Norfolk where both
rainfall and tidal level can impact flooding and retention pond depths. This chapter
showed RL is able to learn system-level control policies that mitigated flood volume
by 32% compared to the conventional passive system while also maintaining normal
pond operation during dry periods. Compared to industry-standard control rules
that operate retention ponds individually, RL was able to reduce flooding by 19%
by coordinating the control of the retention ponds. Chapter 3 contributed to the
growing field of stormwater RTC through the first demonstration of the applicability
of RL to coastal stormwater systems for flood mitigation.

In Chapter 4 of this dissertation, the impact of stormwater system RTC at
varying scales on flooding and water quality was evaluated. Using a simulation of
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Norfolk’s Hague neighborhood, system-level control with deep reinforcement learn-
ing was compared to two methods of local rule-based control: (i) industry standard
rules that predictively managed ponds to prevent flooding while retaining runoff for
a fixed detention time to improve water quality and (ii) rules based on observations
of water quality to inform valve operation in order to improve water quality. The
local-scale control rules improved water quality, but increased system-wide flooding.
In comparison, RL learned system-level control policies that improved water quality
with less flooding than the local control rules. Chapter 4 contributed to stormwater
RTC through the first evaluation of RL’s ability to learn system-level control policies
considering both water quantity and water quality goals, as well as being the first
to consider the impact of groundwater on the performance of real-time controlled
ponds in a coastal city.

Collectively, the studies in this dissertation provide methodologies and demon-
strations of leveraging machine learning techniques to better predict and control
flooding and water quality in coastal cities. Each chapter has a corresponding open-
source code repository to facilitate reproducibility and provide building blocks for
future work. The methods and insights from this dissertation contribute to a grow-
ing body of knowledge about smart stormwater systems. Together, this research has
the potential to help increase the resilience of coastal communities and protect natu-
ral ecosystems from increased flooding and pollution from urbanization and climate
change.
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Appendices

Appendix A: Groundwater Table Forecast

Histograms

Figure 1: RMSE distributions for GW1 using observed data. Columns represent the
forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 2: RMSE distributions for GW2 using observed data. Columns represent the
forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 3: RMSE distributions for GW3 using observed data. Columns represent the
forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 4: RMSE distributions for GW4 using observed data. Columns represent the
forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 5: RMSE distributions for GW5 using observed data. Columns represent the
forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 6: RMSE distributions for GW6 using observed data. Columns represent the
forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 7: RMSE distributions for GW7 using observed data. Columns represent the
forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Appendix B: Groundwater Table Forecast

Histograms, Dfcst

Figure 1: RMSE distributions for GW1 using forecast input data. Columns represent
the forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 2: RMSE distributions for GW2 using forecast input data. Columns represent
the forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 3: RMSE distributions for GW3 using forecast input data. Columns represent
the forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 4: RMSE distributions for GW4 using forecast input data. Columns represent
the forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 5: RMSE distributions for GW5 using forecast input data. Columns represent
the forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 6: RMSE distributions for GW6 using forecast input data. Columns represent
the forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Figure 7: RMSE distributions for GW7 using forecast input data. Columns represent
the forecast horizons t+1, t+9, and t+18. Rows are specified as model type, training
data, and testing data.
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Appendix C: Groundwater Table Forecast Mean

Absolute Error (MAE) Data

Model
Type

Training
Data

Testing
Data

Forecast
Period

GW1 GW2 GW3 GW4 GW5 GW6 GW7

RNN Dfull Dfull t+1 0.031 0.060 0.072 0.019 0.035 0.116 0.029
t+9 0.049 0.089 0.099 0.036 0.054 0.410 0.044
t+18 0.069 0.118 0.127 0.052 0.075 0.236 0.060

RNN Dfull Dstorm t+1 0.038 0.072 0.080 0.022 0.047 0.121 0.034
t+9 0.064 0.114 0.119 0.042 0.074 0.397 0.054
t+18 0.092 0.151 0.157 0.060 0.102 0.228 0.076

LSTM Dfull Dfull t+1 0.020 0.029 0.021 0.008 0.016 0.013 0.014
t+9 0.040 0.067 0.053 0.027 0.039 0.032 0.028
t+18 0.061 0.102 0.087 0.046 0.063 0.052 0.045

LSTM Dfull Dstorm t+1 0.025 0.033 0.026 0.010 0.020 0.013 0.016
t+9 0.056 0.083 0.070 0.032 0.053 0.034 0.036
t+18 0.084 0.128 0.116 0.054 0.084 0.057 0.058

RNN Dstorm Dstorm t+1 0.030 0.060 0.069 0.069 0.039 0.026 0.026
t+9 0.041 0.068 0.080 0.288 0.045 0.028 0.033
t+18 0.051 0.085 0.095 0.208 0.048 0.036 0.043

LSTM Dstorm Dstorm t+1 0.024 0.031 0.023 0.008 0.017 0.012 0.013
t+9 0.036 0.049 0.037 0.015 0.027 0.019 0.021
t+18 0.045 0.066 0.052 0.023 0.033 0.027 0.029

Table 1: Mean MAE values for each model type and training dataset treatment at
each well and forecast period when tested on observed data.

Model
Type

Training
Data

Testing
Data

Forecast
Period

GW1 GW2 GW3 GW4 GW5 GW6 GW7

RNN Dfull Dfcst t+1 0.211 0.308 0.881 0.206 0.613 0.369 0.356
t+9 0.439 0.513 1.001 0.333 0.668 0.960 0.608
t+18 0.998 0.537 1.131 0.800 0.913 0.493 1.113

LSTM Dfull Dfcst t+1 0.235 0.454 0.716 0.199 0.394 0.346 0.295
t+9 0.374 0.362 0.976 0.285 0.759 0.440 0.853
t+18 0.939 0.421 1.178 0.764 1.011 0.488 1.222

RNN Dstorm Dfcst t+1 0.027 0.064 0.064 0.068 0.027 0.026 0.023
t+9 0.032 0.060 0.096 0.241 0.037 0.026 0.036
t+18 0.038 0.073 0.106 0.160 0.034 0.037 0.034

LSTM Dstorm Dfcst t+1 0.022 0.029 0.027 0.007 0.014 0.012 0.012
t+9 0.028 0.044 0.038 0.012 0.019 0.019 0.017
t+18 0.037 0.059 0.055 0.022 0.025 0.027 0.025

Table 2: Mean MAE values for each model type and training dataset treatment at
each well and forecast period when tested on forecast data Dfcst.
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Appendix D: Additional RTC Figures

Figure 1: Detailed comparison of RL controlled and passive system performance for
the first two storms of August, 2019.
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Figure 2: Total flood volumes in RL controlled and passive systems. Two values of
rainfall threshold for the RL reward function (0 and 1.3mm) are shown to illustrate
the impact of this parameter on the RL agent’s performance.
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Figure 3: Comparison of RL and RBC system performance for the month of July,
2010.
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Figure 4: Comparison of RBC and passive system performance for the month of
March, 2014.
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Appendix E: Classification of Flood Events for

Roadway Intersections in Norfolk, Virginia

Using a 1m LiDAR-derived digital elevation model (DEM) and flood event informa-
tion (Sadler et al., 2018) provided by the City of Norfolk, Virginia, three intersections
were identified as potential locations impacted by stormwater system flooding (Fig.
1). As these intersections are in depressions in the land surface, the Whitebox GIS
sink tool was used to find the area of each depression. The difference between the
minimum and maximum elevation in a sink was assumed to be its depth and the
volume was approximated as the depth times the area. It should be noted that this
is a rough calculation of the depth adequate for the purposes of this study, but is
most likely an over estimate. The sink depths and volumes were plotted and a linear
relationship was assumed (Fig. 2). Using the equation for this line, volumes for 0.2,
0.3, and 0.4m depths of roadway flooding were calculated.

Figure 1: Locations of intersections in the Hague area of Norfolk, Virginia where
sinks where identified and elevation data were extracted.
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Figure 2: Relationship between roadway intersection flood depth and the corre-
sponding stormwater flood volume.
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Appendix F: Calculation of Groundwater Contri-

bution to Pond Volume

A depth-volume relationship for the Elmwood Cemetery stormwater retention pond
was estimated from design plans provided by the City of Norfolk. The pond’s volume
was estimated to be 11612.09m3 and the surface area over which seepage can occur
(pond sides and bottom) was 28340.30m2. The normal pond water surface elevation
given in these plans was assumed to also correspond to the groundwater table at
the pond. Hydraulic conductivity of the soil surrounding the pond was accessed
from the NRCS Web Soil Survey and is approximately evenly split between two soil
complexes, resulting in a mean hydraulic conductivity of 0.60m/day. The seepage
rate Q of groundwater into the pond was calculated as:

Q = KIA (1)

where K is the hydraulic conductivity, I is the gradient between the pond surface
and groundwater table elevation, and A is the surface area over which seepage can
occur. This relationship is shown in Figure 1.

Figure 1: Relationship between Elmwood Pond depth and assumed groundwater
(GW) contribution.
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Appendix G: Groundwater Exchange Impact on

RTC Ponds

Figure 1: Comparison of RL Agent 1 and Passive system operation for September,
2016 with groundwater exchange at the controlled ponds.
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Figure 2: Comparison of control policies (% of time a valve is fully closed (A),
fully open (B), and the mean valve position (C)) for simulations with and without
groundwater (GW) exchange for September, 2016.
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