
 The Exploitation of the Open-Source Philosophy

 A Research Paper submitted to the Department of Engineering and Society

 Presented to the Faculty of the School of Engineering and Applied Science

 University of Virginia • Charlottesville, Virginia

 In Partial Fulfillment of the Requirements for the Degree

 Bachelor of Science, School of Engineering

 Eric Knocklein

 Spring 2023

 On my honor as a University Student, I have neither given nor received unauthorized aid on this

 assignment as defined by the Honor Guidelines for Thesis-Related Assignments

 Advisor

 Joshua Earle, Department of Engineering and Society

 1. Introduction

 Complex digital systems are an invaluable part of modern life. This thesis explores the

 vulnerabilities of one crucial aspect of these systems: Open Source Software (OSS). OSS is

 “software developed and maintained via open collaboration, and made available, typically at no

 cost, for anyone to use, examine, alter and redistribute however they like” (IBM). Throughout

 this paper it will be made clear how crucial OSS and the open source ecosystem is for the tech

 ecosystem in both the production of proprietary software – that is software that is not open

 source – and open source software. Given the importance of OSS, it is crucial that those who

 work within that community are treated fairly.

 A small part of this paper is concerned with the security vulnerabilities of the technology

 – how companies utilize OSS without maintaining it or properly researching it, thereby putting

 their software and, in turn, the users of their software at risk. A more substantial part of the paper

 will relate to the ecosystem of OSS developers and the companies that use OSS. It will question

 whether the interaction between these two groups in its current state is ethical.

 A. The Open Source Philosophy

 I start by analyzing the driving force behind the development of OSS. This is the

 so-called “Open Source Philosophy,” which informs and builds the environment in which OSS is

 developed. Some of its foundations are laid out in The GNU Manifesto , a document written by

 Richard Stallman in 1985. This philosophy stands in stark opposition to traditional methods of

 software development and distribution. At its core, it is a unifying philosophy between developer

 and user, a coalition meant to stand against traditional software vendors, who “want to divide the

 users and conquer them” (Stallman, 1985). Stallman asserts that “the fundamental act of

 1

 friendship among programmers is the sharing of programs” (Stallman, 1985). These software

 should be shared in such a way to promote collaboration without fear of retaliation from the

 developer.

 The first three and most important of the “Debian Free Software Guidelines” as described

 in the Debian Social Contract , which details the core concepts of the open source philosophy, are

 the “Free Redistribution,” the “Source Code,” and the “Derived Works” guidelines (Debian

 Social Contract , n.d.). Under these guidelines, users of OSS can edit their own software – since

 it is distributed with both the compiled and uncompiled versions of the source code – and

 distribute these modifications.

 A large group of open source developers built a community around these and other

 similar guidelines. This community is crucial for the development of proprietary software. I

 explore the dynamics in the interplay between these two communities – only one bound and self

 regulated by the guidelines above – and how this can lead to vulnerabilities and exploitation.

 2. Methods/Results

 Before I make any judgments about any potential vulnerabilities and acts of exploitation,

 I perform a literature review. In this section I review general topics relating to OSS before

 identifying the stakeholders in the issues presented. Primarily, I examine the worker perspective

 on these issues, as well as the security vulnerabilities that are commonplace in the use of OSS

 within proprietary software. I discuss those who are affected by OSS, their desires, the impacts

 of these desires, and the system created by the confluence of these desires. After this core is

 established, I identify some ethical and social frameworks through which to analyze the issues,

 particularly, the Motivation-Practice Framework and Virtue Ethics.

 2

 A. Literature Review

 i. Identification of Stakeholders and Their Desires

 Since I am examining the interplay between two communities, I break the stakeholders

 into two parties. I make a distinction between those who consume or produce OSS under OSS

 guidelines and those who consume and produce OSS without being part of the OSS community,

 without being beholden to the OSS guidelines.

 When describing the constituents of traditional development organizations, one faces

 little difficulty, for their developers are clearly listed and documented. The same cannot be said

 about OSS development. In order to examine the motivations of OSS developers and the

 contexts in which they operate, I must, however, make sense of this decentralized system. Khan

 et al show that it is a decentralized system. The study conducted by Khan concluded that “the

 community structure of the developer network is decentralized” (Khan et al., 2021, 351). Further,

 they were unable to show that there was an influential core of developers that formed the

 backbone of the community. Not only are these OSS developers decentralized on a global scale,

 they also do not usually form large or rigid teams, preferring rather to primarily work

 independently or in a small group.

 This decentralized structure contrasts heavily against the structure of more traditional

 software development. Tech companies are clearly structured in a hierarchy, at least in global

 structure, though individual teams may be constructed more loosely.

 In Carrots and Rainbows , the authors identify a key motivation that brings developers

 into OSS and keeps them there. This boils down to the standards of the OSS community and the

 internal and external good that it produces. The OSS community creates a social practice that is

 3

 self-sustaining in that it encourages developers to maintain it. Considering the code of conduct of

 the open source community that was discussed earlier in this paper, this makes sense.

 Development of OSS is not done primarily for monetary gain but due to a social pressure and a

 communal desire to upkeep the standards of the community. As Stallman would say, it is an

 expression of goodwill and friendship (Stallman, 1990).

 In contrast, the motivation of traditional software vendors is to maintain their company

 and maximize the profits for its shareholders. A company that is not profitable is not viable. As

 such, the motivation of traditional software vendors is to minimize their expenses and maximize

 their revenue. While companies can act against this motivation, the forces of the system and the

 community in which they exist encourage them to follow it.

 Lastly, I consider the users, who generally want software that is fairly priced and of high

 quality. These desires are quite simple, which makes the user group more easy to understand than

 the other two groups. A desire for high quality software encapsulates one for secure software.

 While the user may be a simple part of this complex system, they play an important role. In the

 case of proprietary software, the user is the customer and provides the software company with

 the resources to do their development. This changes somewhat in the OSS community, where the

 users are also often the developers. However, unlike with proprietary software, users are not

 crucial to the development or survival of OSS, since the desire for money or recognition is not

 the only motivation behind the development of software.

 ii. Identification of Interactions

 Interactions between the OSS community and proprietary organizations are most

 important in this analysis, so I will not be discussing interactions with users much in this section.

 4

 The OSS community is co-opted by proprietary organizations in two important ways: through

 the integration of OSS code and through integration of OSS developers. If any exploitation exists

 between the OSS community and proprietary software vendors, then it will be in one of these

 two interactions. According to Hauge et al, the former interaction can be broken down into a few

 distinct pathways.

 Organizations could “integrate OSS components” (Hauge et al., 2010, 41). A component,

 in this context, is an almost self-contained piece of software able to or meant to be used in a

 larger software. Hauge and coauthors make clear the extent of this interaction. One study showed

 that 33% of companies it reviewed provide products or services that are based on OSS.

 “Moreover, 48% of 62 software companies use OSS in their business, and in a sample of 569

 software companies, 46.8% integrate OSS in their software systems” (Hauge et al., 2010, 22).

 Choosing which components to integrate is an ongoing problem for proprietary software

 vendors. While methods exist to ease the integration process, “these methods and techniques are

 seldom applied in practice” (Merilinna & Matinlassi, 2006, 7). Instead, software vendors rely on

 “experience and rules of thumb” (Merilinna & Matinlassi, 2006, 1).

 Hauge et. al. also show how these organizations often modify the OSS that they use,

 which can be partly attributed to a poor choice in component choice. Due to the nature of OSS,

 this is allowed and even encouraged, though vendors must be cautious to not breach their license.

 Depending on the method chosen to handle these modifications, organizations can contribute to

 the OSS community.

 In closer collaboration with the broader OSS community, organizations could also

 contribute to OSS products which they do not control. They could also develop directly in the

 OSS community by creating OSS products. While Hauge and coauthors point out that this is

 5

 possible, most of their discussion focuses on how little companies contribute to the OSS

 community. The most common form of contribution is bug reporting, with more substantial

 involvement being rare. Releasing their own OSS products is another way in which companies

 can interact with the community. Hauge et. al. examine this possibility as well, claiming that it is

 primarily a marketing and distribution strategy rather than a development strategy.

 iii. System Perspective

 As self-contained as these interactions may seem, they are taken within a larger system.

 Chokepoint Capitalism by C. Doctorow and R. Giblin describes the role of systems in creative

 work, specifically how chokepoint capitalism – as they name it – interacts with creative works

 and workers. They argue that the current system’s purpose is to consolidate culture and the

 creative works under that culture. After all, “the purpose of a system is what it does,” (Doctorow

 and Giblin, 2022, Chapter 19) and the book describes many instances where this consolidation is

 exactly what the system has done. This connects well with the motivations I outlined earlier in

 this section because the system is a consolidation of motivations, and analysis of the system

 allows for a more clear understanding of the motivations that govern it and which it informs.

 iv. Security Perspective

 Much of the literature into OSS is done on how open-source software influences the

 security of software. Primary amongst this literature is the aforementioned 2022 Open Source

 Security and Risk Analysis (OSSRA) Report . This report is a wide-ranging review of the state of

 the security of open source code and components. It emphasizes the need for continual

 maintenance of codebases, particularly in how they are affected by open source code and the

 6

 width of influence of open source code. According to these reports, 99% of codebases contain

 some form of OSS component and “80% of the codebases were composed of open source”

 (Synopsis, 2022, Page 12). Additionally, “Twenty-three percent of open source projects have

 only one developer contributing the bulk of code. Ninety-four percent of the projects have fewer

 than 10 developers accounting for more than 90% of the lines of code” (Synopsis, 2022, Page

 20). These statistics reveal the scope of the technology and thereby the necessity of reports such

 as the others reviewed in this paper. They also emphasize the fact that many OSS projects are

 developed individually or in small groups instead of being developed by large companies.

 While having OSS components or utilizing OSS is not inherently a risk to security, the

 report continues to provide troubling statistics for the state of OSS integration. For instance, 85

 percent of codebases audited by the report contained open source elements that were more than

 four years out of date, and 88 percent used open source components which had an updated

 version available. It is not difficult to see why this could be a security issue. If a hacker or

 penetration tester discovers and reports a vulnerability in one of these components – which are

 not being updated regularly – it could linger in the software indefinitely even if a new version of

 the component has been released that addresses the issue. Hackers could then use the patch notes

 – the update information – of the component to examine how old components are vulnerable.

 Only by updating frequently can developers stay ahead of vulnerabilities.

 The last portion of security that I see as a concern is independence and stability. In 2016,

 a developer by the name of Azer Koçulu almost broke the internet by taking an open source

 component off of a prominent library for such components called npm. This alone would not be a

 problem if it was not the case that a large number of other software and components were

 dependent on this component to function properly. A large chain of components all failed in

 7

 unison due to one developer revoking access to his code. “Loading your own app might require a

 certain set of packages from npm, but those packages may require their own sets of packages,

 and so on” (Collins, 2016). In this way, relying on OSS components could mean building on a

 shaky foundation.

 B. Frameworks

 To guide the judgements gleaned from this information, I discuss OSS in relation to the

 Motivation-Practice Framework proposed by von Krogh, Haefliger, Spaeth, and Wallin. Within

 this framework, actions and motivations are considered in how they interact with social practice,

 institutions, and internal and external good. Krogh and coauthors created the framework to

 formulate and answer three questions about OSS that will be summarized here.

 First, Krogh and coauthors conclude that OSS developers interact with the social practice

 of OSS by producing internal good to that social practice (i.e. they enhance the social practice

 through their work). In turn, the enhancement of the social practice through the development of

 this good alters the standards of the work done for that social practice. This contrasts with work

 in regular institutions, in which more of a one-way relationship from worker to institution exists.

 In some ways, it seems more apt to think of OSS development not as individuals but as the social

 practice as a whole being composed of individuals.

 The second conjecture of Krogh et. al. under the framework deals with the method by

 which OSS developers change institutions. As before, this is not a one-way relationship. Krogh

 and coauthors conjecture that “OSS developers change institutions when and where these

 institutions no longer protect sufficiently the standards of excellence of the social practice” (von

 Krogh, et al, 2012, Page 667).

 8

 Lastly, Krogh and coauthors the functioning of the social practice and how it is sustained

 by developers. They conjecture that social practice and its standards create the motivation for

 developers to uphold it. These motivations foster a community where actions have true and

 visible consequences upon the standards and course of the community as a whole. In such a

 community, actions are meaningful, even mundane ones like bug-fixing. Work with meaning is

 more appealing than work without, which encourages people to work in this field.

 There are also the future prospects of the developers to consider. Many companies look

 for developers who have worked within OSS communities. In order to seem appealing to these

 companies, some developers might accept a low paying or volunteer role within OSS in hopes of

 landing a job at a large company. In this way, the company is benefiting both from the free

 software developed by the OSS community but also the training, the standards, and the culture of

 the OSS community. Now that the motivations and nature of the OSS community are more

 understood – or are able to be better understood through the use of the framework – it can be

 critically examined.

 This examination will also focus on the Virtue Ethics of the OSS community and those of

 the companies who use OSS or hire OSS developers. Where motivation-practice theory

 considers the motivation of individual actors, virtue ethics examines their actions. In this

 analysis, we must ask whether the use of OSS software corresponds to virtuous human ideals

 such as fairness and justice.

 3. Analysis

 A. Impacts of Motivation

 9

 The differing motives between the OSS community and the more traditional software

 vendors creates possibilities for the exploitation of the OSS community. OSS is community

 focused, whereas traditional software is – for the most part – profit focused. Of course,

 traditional companies still have the capacity to act in a community-focused manner. Indeed,

 many companies set up their own OSS projects as outlined above. However, the motivation is

 only aligned with this pursuit if the pursuit promises profit. In contrast, many OSS projects are

 created without the need or the promise of any type of profit. The motivation is to do good by

 and for the community.

 To summarize, proprietary software is defined by a closed motivation while OSS is

 defined by open motivation. Proprietary software benefits generally from taking and keeping,

 while OSS benefits from giving and taking in equal parts. This is the core imbalance in the

 interaction between these two systems: proprietary software takes what OSS gives and doesn’t

 give much, if anything, back. It could be seen as an extraction of talent, a privatization of a

 public space.

 B. Hiring and OSS

 Having developers first cut their teeth in OSS is extremely beneficial for traditional

 software vendors. Working in OSS allows developers to show their prowess to potential

 recruiters, thereby decreasing the amount of time and money that has to be spent in the hiring

 and training process. This reduces the costs of hiring, aligning this sort of recruitment with the

 goals of traditional software vendors. If the precedent is set that OSS developers are hired much

 more frequently than developers who do not have OSS experience, then developers could see

 10

 OSS development as almost mandatory. While more OSS developers sounds like a good thing

 for both communities, that may not be the case.

 What this could implement is a quasi unpaid internship position for developers. One

 could argue that this hypothetical is inherently different from a regular unpaid internship because

 it does not provide direct benefit to the proprietary software vendor. However, I have shown that

 OSS development eventually benefits proprietary vendors, who extensively use OSS in their

 software or use the standards created by OSS developers in their systems and software. Such a

 system would drive developers into OSS by monetary instead of moral or philosophical pressure,

 thereby degrading the very notion of the Open Source Community. Thus the motivation of

 proprietary software vendors is detrimental to the workers of both proprietary software and OSS.

 While something as extreme as described above is not likely, as the balance between

 proprietary and open software vendors seems quite balanced and mutual at the moment, the

 inherent power imbalance in the interactions between these communities potentially makes this

 status quo quite unstable.

 C. Power Imbalance

 Even under the current status quo, though, some of these problems persist, and they all

 stem from this aforementioned power imbalance. The differences in motivation force the two

 communities to act in different ways. Because of the lack of strong communal guidelines,

 proprietary software companies are more free to act in their own interests. More crucially,

 proprietary software companies are usually composed of much larger teams, giving them a much

 greater ability to pursue those interests.

 11

 The broadest reaching of the problems created by this imbalance is the stagnation or

 limitation proprietary software places on education and the improvement of software more

 generally. OSS, being built on sharing and teaching one another, is much more conducive to

 learning and improving itself, and doing so aligns with its goals. Proprietary software

 development has no such goals. By siphoning OSS developers, proprietary software is also

 siphoning innovation from the public and thereby privatizing a common good.

 One of the most egregious acts of exploitation in the same general vein is the blatant

 disregard for Open Source licenses shown by some proprietary software companies. OSSRA

 found that 53% of the codebases they audited contained license conflits. Since much of OSS is

 developed by small teams or even by individuals, who do not have the means to defend

 themselves against theft – or, indeed, even to be aware that the theft took place – OSS is an easy

 target for theft of intellectual property. Though OSS is generally free to use and modify, using it

 without a proper license is intellectual property theft. This does not mean that the practice is

 widespread amongst proprietary software but simply that the motivation exists to perpetuate

 these actions, which degrade the values of the open source community. In Garrett Hardin’s

 famous thought experiment of the “tragedy of the commons,” the open source community is not

 a grazer upon the commons but the commons themselves (Hardin, 1968). It is a crucial resource

 for all software, but without protection, the motivations of those who use it lead to an inevitable

 outcome.

 D. Software Users

 That is to say nothing of the actual users of the software, by far the largest section of

 shareholders in this discussion. I analyze two crucial effects of this interaction between OSS and

 12

 proprietary software. The first is that the interaction between proprietary and open software

 communities stifles innovations – as already discussed – which decreases the quality of the

 products the users have access to. Not only this, but the prices of the products that the users do

 have access to, though they are worse in quality, are more expensive due to the motivation of the

 vendors to make as much money as possible. As Stallman discussed, the motivations between

 vendors and users are not aligned, for this exact reason, just as they aren’t aligned with

 developers (Stallman, 1990).

 The second effect is on the security of the software users have access to. As already

 discussed, proprietary software vendors often do not update their open source software as

 frequently as would be ideal. With a solid framework now established, I can now examine why

 this is the case: there is little motivation to do so. Having potential security vulnerabilities does

 not decrease profits until those vulnerabilities are discovered or exploited, and by that time it is

 too late to undo the damage. The profit motive demands that developers always produce

 something new in order to gain more customers or to fix apparent issues that pose the risk of

 losing existing customers. OSSRA acknowledges this, saying, “with many teams already

 stretched to the limit building and testing new code, updates to existing software can become a

 lower priority, aside from the most critical issues. But it’s highly possible that a large percentage

 of that 88% is due to the DevSecOps team being unaware that a newer version of the open source

 component is available—if they are aware of the component at all” (OSSRA , 2022, Page 20).

 Another effect of the differing motives behind the two systems of software development

 can be seen here. The culture of OSS maintains that the user is also in a way a developer, a

 paradigm that the proprietary software community does not share. Thus, in OSS “the user is

 expected to be aware of a component’s security and stability status and apply new versions as

 13

 they become available,” (OSSRA , 2022, Page 20) while in proprietary software, the producer has

 that responsibility. OSS components may not be as easily implementable as proprietary

 components, since they are meant to be edited to suit the user’s needs. The difference in culture

 between the two communities may cause this fact to be lost on some developers, which could

 lead to a poorly-maintained system.

 4. Discussion and Conclusion

 The core problem with the current status quo in OSS is the imbalance of power between

 OSS and proprietary software both monetarily and ethically. This section of the paper discusses

 possible solutions to this problem, though it does not claim that any one of these solutions would

 be completely effective in mitigating the issues posed.

 A. Internal vs External Use of OSS

 When OSS is taken from the community with little given in return, exploitation can

 occur. One potential solution to this problem is a type of license that includes a clause for

 “copyleft.” What this means is that any work derivative of the licensed work must also be

 released under the same license or a compliant license. This is an intriguing solution because it

 forces proprietary software into the realm of OSS if they wish to use the component. The way

 this solution acts on all parties equally yet only affects proprietary software is quite elegant. OSS

 can freely use the code since it would likely be released under a compliant license either way,

 while proprietary software cannot without a large step against their motivations. If these were

 implemented on a large scale, they could preserve the open source community and minimize

 intrusions into it.

 14

 However, there are a few issues with this approach. Firstly, as I have discussed before,

 forcing developers to be part of the open source community could degrade the values of the

 community, thereby decreasing its strength. Such licenses could force actors that disagree with

 the philosophy to enter and unwittingly disrupt the community. Secondly, these licenses could be

 ignored on a large scale. Since the OSS community does not, in large part, possess the means to

 hinder large companies from breaking these licenses, there is little motivation to do otherwise if

 the component is useful enough. As such, there should be stronger enforcement of these licenses

 if this is to be a viable solution.

 B. OSS Experience in the Hiring Process

 The benefits in the hiring process given by work in OSS is a double-edged sword. On one

 hand, it allows the individual to better their position and prove their worth. On the other hand, it

 plays into and strengthens the motivations of proprietary software company recruiters;

 motivations which, when carried to their logical conclusion based on the system they reside

 within, would severely damage the OSS community. They could render OSS as being mostly a

 proving ground for those wishing to leave OSS, thereby driving many into OSS that have none

 of the motivations that thus far have animated the community, subsequently degrading it.

 There is also the ethical consideration of unpaid labor to discuss. It is unethical to require

 unpaid labor before being hired. Promise of reward in the distant future does not change this fact.

 Requiring OSS experience in order to be hired is therefore unethical.

 C. Minimum Wage for Creative Work

 15

 A proposed solution to this problem is a minimum wage for OSS developers, thereby

 making the development of OSS a subsidized activity. While being a drastic solution to the

 problem, one that most people likely would dismiss out of hand, it has some promise. What has

 not been discussed up to this point is that development of OSS is a privileged pastime. One must

 have enough time at hand to spend many hours without any promise that that time will have any

 monetary return. Having a minimum wage for such work would ease this temporal burden and

 open the doors to many more developers and their ideas, thereby strengthening the community as

 a whole. However, the opposite could also be true. Having such a minimum wage could alter the

 motivations of the community to be more driven by profit than by a desire to do good by and for

 the community itself. This would make the OSS community much more akin to the proprietary

 software providers, which is counter to its entire conception.

 5. References

 2022 Open Source Security and Risk Analysis Report . (2022). Synopsis.

 https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf

 Aberdour, M. (2007). Achieving Quality in Open-Source Software. IEEE Software , 24 (1),

 58–64. https://doi.org/10.1109/ms.2007.2

 Bijker, W. E., Hughes, T. P., & Pinch, T. (2012). The Social Construction of Technological

 Systems, anniversary edition: New Directions in the Sociology and History of Technology

 (The MIT Press) (Anniversary). MIT Press.

 Collins, K. (2022, July 21). How one programmer broke the internet by deleting a tiny piece of

 code. Quartz .

 16

 https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-

 of-code

 Dahlander, L., & Magnusson, M. (2005). Relationships between open source software companies

 and communities: Observations from Nordic firms. Research Policy , 34 (4), 481–493.

 https://doi.org/10.1016/j.respol.2005.02.003

 Debian Social Contract . (n.d.). Debian. Retrieved February 4, 2023, from

 https://www.debian.org/social_contract

 Giblin, R., & Doctorow, C. (2022). Chokepoint Capitalism: How Big Tech and Big Content

 Captured Creative Labor Markets and How We’ll Win Them Back . Beacon Press.

 Hardin, G. (1968). The Tragedy of the Commons. Science, 162(3859), 1243–1248.

 http://www.jstor.org/stable/1724745

 Hauge, Y., Ayala, C., & Conradi, R. (2010). Adoption of open source software in

 software-intensive organizations – A systematic literature review. Information and

 Software Technology , 52 (11), 1133–1154. https://doi.org/10.1016/j.infsof.2010.05.008

 Khan, B., Rafiq Mufti, M., Habib, A., Afzal, H., Abdul Moiz Zia, M., Almas, A., Hussain, S., &

 Ahmad, B. (2021). Evolution of Influential Developer’s Communities in OSS and its

 Impact on Quality. Intelligent Automation &Amp; Soft Computing , 28 (2), 337–352.

 https://doi.org/10.32604/iasc.2021.015034

 Merilinna, J., & Matinlassi, M. (2006). State of the Art and Practice of OpenSource Component

 Integration. Software Engineering and Advanced Applications .

 https://doi.org/10.1109/euromicro.2006.61

 Porter, T. M. (1995). Trust in numbers: the pursuit of objectivity in science and public life.

 Choice Reviews Online , 33 (03), 33–1499. https://doi.org/10.5860/choice.33-1499

 17

 Stallman, R. (1990). The GNU manifesto. Oxford University Press, Inc. EBooks , 308–317.

 https://web.cs.ucdavis.edu/~rogaway/classes/188/materials/gnu-manifesto.pdf

 Van Elderen, M. (2020, May 12). Synopsys Study Shows That Ninety-One Percent of

 Commercial Applications Contain Outdated or Abandoned Open Source Components.

 PR Newswire .

 https://www.prnewswire.com/news-releases/synopsys-study-shows-that-ninety-one-perce

 nt-of-commercial-applications-contain-outdated-or-abandoned-open-source-components-

 301057386.html

 Von Krogh, Haefliger, Spaeth, & Wallin. (2012). Carrots and Rainbows: Motivation and Social

 Practice in Open Source Software Development. MIS Quarterly , 36 (2), 649.

 https://doi.org/10.2307/41703471

 What is open source software? | IBM . (n.d.). IBM. Retrieved February 4, 2023, from

 https://www.ibm.com/topics/open-source

 Winner, L. (2017). Do Artifacts Have Politics? Computer Ethics , 121–136.

 https://doi.org/10.4324/9781315259697-21

 18

