
Towards General Compilation for Heterogeneous Backends: The Unified Compiler

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Neil Phan

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science



Towards General Compilation for Heterogeneous Backends: The
Unified Compiler

CS4991 Capstone Report, 2024

Neil Phan
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
nnp3axx@virginia.edu

ABSTRACT
Working with new hardware devices is
difficult, leaving only a small subset of
programmers able to program on devices like
GPUs and FPGAs. I propose a unified
compiler capable of compiling to multiple
backends can improve accessibility and
increase the benefit of these new devices.
Through the use of MLIR, a library that can
create dialects for use by a compiler, multiple
dialects can be designed to take advantage of
each hardware’s backend. Each new dialect
can then be connected to a higher-level
dialect that will serve as the domain-specific
language to be standardized. Through this one
domain-specific language proposal, many
programmers would be able to flex the
abilities of different hardware backends
without needing extensive knowledge of
them. Next steps in the proposal involve
learning more about the different
heterogeneous devices so that the initial
dialects for each backend can be developed
and built upon in the domain-specific
language.

1. INTRODUCTION
With the decline of Moore’s Law, hardware
accelerators have become more popular in the
past couple of decades. Most common
hardware accelerators include the graphics
processing unit (GPU) and the
field-programmable gate array (FPGA) each
of which have their own niche uses. There

also exist many other backends that are
currently in development, such as
processing-in-memory (PIM) for DRAM and
SRAM. Each new backend creates a need to
know the general architecture behind it in
order to take full advantage of the hardware
accelerators' potential. This leaves many who
are not proficient in hardware unable to fully
utilize the potential of hardware accelerators.

2. RELATEDWORKS
Compilers were developed to address the
difficulties in using hardware. The first major
ones to come out included CUDA, a
programming API built on top of C++ and C
that allows programmers to write C++
functions that run on the GPU (NVIDIA,
n.d.). This was a major step in improving the
readability of hardware accelerator code and
providing more access to the public.
However, compilers such as CUDA from
NVIDIA have generally been developed by
companies and were close-sourced. While the
new programming interface provided
extensive programmability for the hardware,
it would still require many users to learn the
tricks of the language in order to master it and
take full advantage of the hardware.

This led into the era of MLIR, an
infrastructure that supports the development
of multiple dialects that can connect with
each other (MLIR, n.d.). An open-source
project that expanded from LLVM, this was
an innovative change in how one could create



compilers for backends. Dialects could
“connect” with each other and create a
clearly-defined pipeline, like a general GPU
dialect that could lower down into more
specific languages like nvvm for NVIDIA
and rocdl for AMD. This would spark others
to build new domain-specific languages, such
as HeteroCL, which takes advantage of
different heterogeneous backends and applies
different optimizations in a high-level
domain-specific language (MLIR, n.d.). The
project supports generating code for CPUs
and FPGAs. HeteroCL takes advantage of the
kernel concept, where one can specify a
generic algorithm like matrix multiply and
then apply a series of optimizations to it
through imperative programming. The
development of projects like MLIR and
HeteroCL have continued to push further for
the idea of general programmability in
heterogeneous backends.

3. PROPOSED COMPILER DESIGN
For the unified compiler proposal, it will
follow similar structures to other compilers
today: the design of a front-end, middle-end,
and back-end. By using MLIR, we can define
the dialects necessary for each hardware
device. For now, the proposal will focus on
compiling code down to the CPU and the
GPU.

Figure 1 illustrates the compiling pipeline
proposed for the unified compiler. Users of
the compiler will create code in the front-end,
which will then be converted to middle-end
code via MLIR. Once the code is processed in
the middle-end, we can reduce it to its binary
form for the respective hardware accelerator
that is being targeted via the back-end. We
define each component of the compiler in the
future subsections below.

Figure 1. Pipeline Diagram for the Unified
Compiler

3.1 FRONT-END DESIGN

The front-end focuses primarily on the user
experience and ensuring that all the
functionality the user desires exists in a clean
and concise manner. Many modern languages
today such as Rust and C++ have their
front-end language defined so that users can
create human-readable code, rather than
having to write in lower-level languages like
Assembly for computers to read.

For the unified compiler proposal, there will
also exist a front-end language that users will
program in and then compile down to via the
unified compiler. To simplify the need of
having to learn a new language, it will be a
domain-specific language, since the goal of
the proposal is to provide an interface that is
easy for the users to program in and can be
lowered down into different accelerators. The
DSL will be based in Python, given that it is a
simple-to-use language that many users
already know and can pick up easily
otherwise.

The DSL is available to use via a python
library import. From there, users can specify
a function that they want to write and lower it



down with DSL functions provided by the
compiler. Figure 2 demonstrates how one
could write a vector add and reduce it to a
GPU program. The code maintains a Pythonic
style while allowing users to easily define the
code with minimal additions to the function.

def VA(A, B): -> vector
N = len(A)
C = vector(N)
for i in range(N):

C[i] = A[i] + B[i]
return C

com = unified_compiler.init()
com.target(“GPU”)
com.compile(VA)
com.generate(VA)

Figure 2. Vector Add Program Example

The benefit of having the front-end defined
like this is for user simplicity. Rather than
having the burden on the users to maintain the
program, it is all abstracted away via the
middle-end and back-end code which will
work on defining the operations necessary to
reduce the Python programs down into GPU
binaries and much more.

3.2 MIDDLE-END DESIGN
The middle-end tackles the issue of how to
take the Python DSL program defined by the
user and lower it into a more verbose
language to eventually create a binary for the
specific hardware accelerator targeted. While
a middle-end isn't always necessary for a
compiler, it allows the compiler programmer
to lower down to more fine-grained
optimizations that need more information that
isn't provided in just the DSL code. Figure 4
shows how the conversion from the front-end
to middle-end of a compiler can allow the
compiler programmer to have more freedom
in how to express the code and optimize it to
their desires.

The unified compiler proposal will tackle
starting the foundation for how to lower the
Python DSL front-end into different hardware
accelerator binaries. For this proposal, it will
only focus on GPUs but highlight how it can
expand to other accelerators such as FPGAs.
Figure 6 shows the pipeline diagram for how
a user in the front-end can specify which
target accelerator they want to compile down
to, and Figure 3 shows the entire flow
diagram to reach the back-end. This can all be
done by creating different compiler passes,
which are programs that will take in input the
python DSL program and generate the
middle-end code depending on the target
accelerator.

Figure 3. Middle-end Pipeline Diagram

The specific design of how to do it for a GPU
requires extensive GPU knowledge and will
not be explained in this paper, but the GPU
compiler pass for the unified compiler
proposal will be able to encapsulate the
optimizations necessary to squeeze
performance out of the DSL program, such as
tiling the data in the GPU as best as possible.

3.3 BACK-END DESIGN
The back-end's goal is to take the middle-end
language from MLIR and reduce it down to
the respective binaries for the targeted
hardware accelerators. Now that the user has
the middle-end code defined and reduced
down to the respective hardware accelerator,
it can be compiled down to the binary
necessary to run it on the device.

The unified compiler proposal will take a
similar approach to how the middle-end



reduced the Python DSL code down to MLIR,
only this time it will instead compile down to
the respective assembly code that the device
needs to run the program. For example,
NVIDIA GPUs will need to be reduced to
their PTX binary in order to run it on their
devices, so a back-end compiler pass will be
developed to compile the MLIR GPU code in
the unified compiler down to the PTX binary.
This step can be reiterated for different GPU
vendors, different hardware accelerators, and
so on.

The user is now left with the binary for the
hardware accelerator they selected in the
front-end. Since they are only left with the
assembly file, they will need to take the extra
steps to run it on the device.

4. ANTICIPATED RESULTS
The unified compiler proposal does not have
explicit results since it is only a proposal, but
will cover the methodologies of verifying the
compiler and its performance.

The first part of the proposed results will
involve verifying the integrity of the unified
compiler. To ensure that the results are
accurate, a benchmark suite composed of
different kernels will be run on via general
Python code and the respective Python DSL.
The results will compare whether or not the
results of the code are equivalent. Some
kernels that can be used include, GEMM,
K-Means, Gaussian Elimination, and more.

The second part of the proposed results will
involve analyzing the performance of the
unified compiler. Since the unified compiler
will focus mainly on CPUs and GPUs, the
unified compiler will be tested on an Intel
CPU, AMD CPU, and NVIDIA GPU. The
unified compiler will be compared to the
original compilers of the hardware. For
example, NVIDIA GPUs will be compiled
via CUDA as a baseline. The main

components that will be tested are run-time of
the program and the memory-usage on the
device.

5. CONCLUSION
The unified compiler proposal aims to reduce
the barriers of users looking to take advantage
of hardware accelerators by introducing a
domain-specific language that has minimal
learning curve. Through designing the
different components of the compiler, it will
be able target different hardware accelerator
back-ends while maintaining one language,
allowing users to focus on creating code and
not learning specific intrinsics to the
hardware.

6. FUTUREWORK
Next steps involve gathering information on
the specifics of the hardware, such as learning
more about the optimizations done for
NVIDIA GPUs, CPUs, and more. A more
in-depth design on how the compiler will
function will also be necessary to avoid
deprecation and duplication of features.
Creating a community and gathering funding
is also necessary to bring the domain-specific
language to life.

REFERENCES
About CUDA. (n.d.). NVIDIA Developer.
Retrieved February 20, 2024, from
https://developer.nvidia.com/about-cuda

Lai, Y.-H., Chi, Y., Hu, Y., Wang, J., Yu, C.
H., Zhou, Y., Cong, J., & Zhang, Z. (2019).
HeteroCL: A Multi-Paradigm Programming
Infrastructure for Software-Defined
Reconfigurable Computing. Proceedings of
the 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate
Arrays, 242–251.
https://doi.org/10.1145/3289602.3293910
MLIR. (n.d.). Retrieved February 20, 2024,
from https://mlir.llvm.org/

https://developer.nvidia.com/about-cuda
https://doi.org/10.1145/3289602.3293910



