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Abstract

Policymakers have been slow to implement price-based congestion policies due in part
to how little is known about the effects of policies that influence more than simply an
individual’s commuting method. An individual can also alter her commute by choosing
to travel from a different location. I develop a discrete choice structural model of the joint
decisions of family residence and individual commuting modes, given the characteristics of
the housing market and commuting options. I use rich individual-level data that allow me
to include numerous unobserved heterogeneity terms; this strengthens the validity of my
results relative to more aggregate analyses that are often undertaken. I am in the process
of using model estimates to simulate the full set of effects of transportation policies that
alter the financial and time costs of commuting. These policies include congestion pricing
schemes, fuel or carbon taxes, and increased parking fees.

I estimate my model using individual-level Public Use Microdata Sample (PUMS)
data from the 2005-2008 American Community Survey (ACS) for the Washington, D.C.
metropolitan area. The PUMS data requires that I randomly assign individuals home and
work locations, but the Census Bureau has granted me access to precise information on
where individuals live and work from the restricted-access version of the ACS that I am
currently using to improve the analysis. I augment the information in the ACS with data I
have painstakingly assembled on the structure of the transportation network to map each in-
dividual’s optimal commute from each home and by each commuting method in the choice
set. To do this, I use geographic information system (GIS) network analysis. The mappings
allow me to create a unique dataset of individual commute options and characteristics that
I use to estimate the trade-offs that individuals make among consumption, housing ameni-
ties, and leisure when choosing a home and commuting mode pair.

I also develop and plan to implement a methodology that (unlike previous literature)

does not require that I treat groups of individuals living together as if they have a single set
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of preferences. Instead, I use a collective model of the household to account for the fact that
spouses rarely commute to the same work location. This allows me to model the interplay
between residential and commuting mode choices when spouses consider the proximity of
their home to both work locations. I allow family members to have caring preferences, and
I treat characteristics of the home as a family public good. The collective model requires
observing individual consumption of at least one private good in the household to identify
bargaining outcomes, and I use a novel assignable private good: the method and duration
of each commute. This work is both an extension of the collective model to the residential
choice and travel literatures as well as an application of the collective model to a problem
with discrete choices and a rich error structure.

JEL Codes: D13, Q52, R21, R41, and R48

Keywords: Residential Location, Travel Mode Choice, Intra-Household Allocation,

Congestion Pricing, Discrete Choice Analysis, Geographic Information Systems
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Chapter 1

Introduction

Traffic jams are more than just a minor annoyance. American automobile commuters lost
an estimated 4.8 billion hours and 3.9 billion gallons of fuel because of congestion in 2009,
a cost estimated at $115 billion (Schrank and Lomax 2010). Worse, congestion is not im-
proving. The average annual congestion delay has more than doubled since 1982, the first
year for which data is available. The social welfare cost of congestion is likely even greater
than these estimates due to losses from uncertainty over commute times and congestion-
induced increases in global and local pollution, traffic accidents, and noise. While the
optimal amount of congestion is unlikely to be zero, Small (2008) opines that “[v]irtually
all economists agree that congestion in cities around the world is greater than [the] opti-
mum.” Urban planners traditionally attempt to reduce congestion by increasing capacity:
either by expanding roadways or public transit systems. Recent figures show that, in 2006,
federal, state, and local governments spent $16.2 billion on new road construction and
another $13.8 billion to widen existing roadways, in addition to making $12.8 billion in
capital improvements to the nation’s mass transit systems (U.S. Department of Transporta-
tion 2008). Yet, Duranton and Turner (2009) find that building an additional kilometer of
roadway leads to a one-to-one increase in mean daily vehicle kilometers traveled. They
also show that the supply of mass transit alternatives has no effect on vehicle kilometers

traveled. In other words, the most prevalent policy instruments for reducing congestion do
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not appear to have their intended effect.

As congestion continues to increase, communities across the country are looking at new
congestion pricing policies that place a monetary cost on travel when and where conges-
tion is greatest.! Parry et al. (2007) explain that these policies can reduce congestion by
internalizing externalities; yet, widespread use of these policies has been difficult for poli-
cymakers to implement due to concerns that the policies are regressive in nature and fears
that travelers will face increased financial costs without offsetting time savings. Determin-
ing whether these, and other, common misgivings about congestion reduction policies are
warranted is a daunting task because it requires urban planners to predict the outcome of
policies that affect far more than just how people commute. The limitation of simple mod-
els of commuting choices is that people make decisions about where to live based on their
transportation options. Moreover, many of these decisions are made by households with
multiple members facing different commutes.

My research develops a structural model of family residential choice and family mem-
ber commuting method to inform this discussion. 1 make three key contributions to the
literature. First, I address the endogeneity of residential choice in models of commuting
method by explicitly modeling both residential and commuting choices together. Baum-
Snow and Kahn (2000), Duranton and Turner (2009), and Bento et al. (2005) all find evi-
dence that residential choice and commuting decisions are inextricably tied, and failure to
adequately address this connection results in biased coefficient estimates of either either
decision individually.

Second, I estimate my model using PUMS data from the 2005-2009 ACS for the Wash-
ington, D.C. metropolitan area. These rich individual-level datasets allow me to include
numerous unobserved heterogeneity terms which strengthen the validity of my results rel-
ative to more aggregate analyses that are often undertaken. In the current work I present

based on the PUMS data, I randomly assign individuals to home and work locations, but

IThese policies include cordon charges that impose a fee on drivers who travel within or into a congested
area and variably priced, managed lanes that prevent congestion by charging an adjustable access toll (Lewis
2008).
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work-in-progress uses precise information on where individuals live and work from the
restricted-access version of the ACS. The geographic location information, along with data
I have assembled on the structure of the transportation network allows me to map each in-
dividual’s optimal commute from each home and by each commuting method in the choice
set. To do this, I use geographic information system (GIS) network analysis. The mappings
allow me to create a unique dataset of individual commute options and characteristics that |
use to estimate the trade-offs that individuals make among consumption, housing amenities,
and leisure when choosing a home and commuting mode pair. This allows me to improve
upon the residential choice literature which at best controls for the role of commuting costs
in housing decisions with either neighborhood aggregate commute costs (time or distance)
or imprecise measures of the head of the household’s commute.?

Finally, I plan to use model estimates to simulate the full set of effects of transportation
policies that alter the financial and time costs of commuting on the joint distribution of
residential housing and commuting methods. These policies include congestion pricing
schemes, fuel or carbon taxes, and increased parking fees.

My current work focuses on individual decision-makers and results are based on house-
holds with a single adult commuter. The paper also shows how the model can be extended
to account for households that contain multiple individuals who commute to different work
locations, and I plan to estimate a full version of the model that takes advantage of data on
both single individuals and cohabiting couples as part of my future research agenda. The
extended methodology departs from the current residential choice literature by relaxing the

ubiquitous assumption that individuals living together act as if they have a single set of

2Langer and Winston (2008), who are also interested in the effects of congestion reduction policies,
ask, “How can one estimate the economic effects of road pricing while accounting for its impact on land
use?” They posit a methodology similar to the one I develop, but note that it is an ambitious undertaking in
explaining their decision to use hedonic methods to answer the question, by saying, "a disaggregate approach
for a metropolitan area would model the determinants of a commuter’s choice of mode of transportation,
departure time, destination, route and residential location and simulate how those choices change in response
to an efficient congestion toll. Unfortunately, the data and modeling requirements of a disaggregate approach-
especially in determining a commuter’s residential location alternatives and their attributes-are formidable.”
My work attempts to make progress on the formidable task they describe.
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preferences.? This is a defensible assumption if one considers all the characteristics of a
residence to be public goods within the family, but one’s commute is a distinctly private
good within the family because different individuals within a household often commute
to jobs in different parts of their metropolitan area. Browning et al. (1994) find empirical
evidence that family members bargain over the consumption of non-durable private goods.
It stands to reason that they also bargain over more longstanding decisions such as where
they commute from and by what mode. I use the collective household model developed by
Chiappori (1988) to explicitly model not only the interplay between residential and com-
muting mode choices but also how those decisions are made within the family. This added
precision will provide a clearer understanding of the value individuals place on commuting
characteristics when making residential location decisions than what can be gained from
estimates based on unitary models or estimates based on single individual behavior alone.

The next section provides a review of the related literature. Chapter 3 describes my
theoretical model for both single individuals and cohabiting partner families. I detail the
data used in chapter 4. Chapters 5 and 6 explain my estimation strategy and results for
single individuals. The results section in this paper is incomplete, but I outline the tasks
that will be completed as part of the published version of this research project. Finally, I
offer conclusions in chapter 7. Development of the cohabiting partner family analogs to all

sections subsequent to chapter 3 is still in progress and is left for future research.

3To the best of my knowledge, a working paper by Chiappori et al. (2012) is the only exception to this
rule.



Chapter 2

Literature Review

My research draws from four distinct literatures. There is a plethora of work in the trans-
portation, residential location choice, and household behavior literatures that are related to
this paper. I discuss insights from each of these areas, as well as highlight ways in which
my work advances the given literature, in the subsequent sections. Finally, I conclude the

literature review with some background on congestion reduction methods.

2.1 Transportation

There has been a great deal of research on what can broadly be categorized as travel de-
mand analysis, and Small and Verhoef (2007) provide a comprehensive overview of the
many methods that are used. In terms of the transportation component of my work, I use
individual-level data to estimate commuting modes, so I focus on their treatment of disag-
gregate models of mode choice, much of which is based on random utility maximization
(RUM) models. McFadden (2001) provides a historical survey of the methodology of in-
dividual travel demand analysis using RUM models. There are several insights from these
works that are key to my research.

First, in order to estimate how individuals commute, one needs to find a way to mea-

sure the alternative-specific attributes of commutes that an individual did not choose. As
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Small and Verhoef (2007) explain, there are two options: either use values reported by
individuals in the survey or use engineered values produced from network analysis. Each
has shortcomings. The former may be biased because individuals do not know much about
the options that they do not choose or because they misreport so as to reinforce the option
they do choose. The latter are costly to calculate and are not always accurate. My data
reports commute times for chosen options only, so I calculate engineered values using GIS
network analysis. Although computationally expensive to calculate, results in Section 4.5
show that they do explain a some of the variation in reported commute times, conditional
on commuting by the given method.

Second, the most common methodological tool used for discrete-choice models is the
(additively) RUM model developed by McFadden (1974). The basic identically and in-
dependently distributed (iid) multinomial probit (MNP) and logit (MNL) versions of this
model suffer from the well known independence from irrelevant alternatives (IIA) problem,
so subsequent research has relaxed this assumption, commonly with nested MNL or mixed-
multinomial logit (MMNL) models. My structural model also relaxes these assumptions,
as well as the assumption that an individual, choice specific error enters utility linearly, as
there is no strong economic justification for this specification.

Finally, one must be careful when modeling mode choice, as not all explanatory vari-
ables can be thought of as independent of the decision of how to commute. Price is often
thought of as endogenous in the differentiated products literature because of unobserved
characteristics of the alternative that are not included in the model and are correlated with
its price. When modeling mode choice, transportation researchers can overcome this prob-
lem by including alternative-specific constants, as I do. This is feasible because of the
limited number of commuted options, but doing so comes at the cost of precluding vari-
ables that vary with alternatives but not individuals.

An endogenous variable of greater concern for models of mode choice is automobile
ownership, as the decision to own a car is likely made simultaneously with commuting

decision. While adding automobile ownership to the model is beyond the scope of my
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research, my model still makes several contributions. Such a model can be thought of as
the “reduced-form” version of a model that allows individuals to choose whether or not to
own a vehicle (Small and Verhoef, 2007, page 29). I discuss the bias that not modeling
automobile ownership induces in Section 5.3.4.

Small and Verhoef (2007) argue that the endogeneity of travel characteristics is not a
great concern when using disaggregate data because researchers can make the assumption
that individuals take those characteristics as given when making travel related decisions.
This is true to the extent that individuals have no control over the characteristics of their
commute. However, Baum-Snow and Kahn (2000) find evidence that some of the increase
in system travelers after the expansion of mass transit systems can be attributed to individ-
uals who move to take advantage of the infrastructure improvements, and Duranton and
Turner (2009) indicate that individuals have the same response to the expansion of road-
ways. Although individuals cannot control, for instance, how fast traffic flows on a given
road or where a given subway train stops, they can control which road or which subway line
they take by choosing where they live relative to where they work.! Additionally, Bento et
al. (2005) find evidence of a relationship in the other direction: measures of urban spatial
structure have small but significant effects on travel demand. They provide a thorough dis-
cussion of the bias that is caused by failure to adequately address this connection. In order
to address the biases introduced by the interdependence of commuting characteristics and

residential location, I jointly model both residential choice and commuting decisions.

2.2 Residential Choice

Early, theoretical work on location decisions is characterized by the assumption that all
individuals commute to the same central business district, and a land-rent gradient develops
(see, Alonso 1964, Mills 1967, and Muth 1969). Evidence of this gradient can be seen

in current empirical research. Bajari and Kahn (2005, 2008) model residential location

I'To be precise, work location also influences commuting characteristics. See Section 5.3.4 for a discussion
of the implications of not including work location decisions in my model.
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decisions using a three-step estimation process based on hedonic estimation of home prices.
The latter work explicitly controls for commuting costs with the average commute time
of individuals who live in the given home’s Census tract. They find that willingness to
pay to reduce commuting time is slightly less than the household owner’s hourly wage

at the margin.”

Langer and Winston (2008), who also use hedonic methods, calculate
a marginal willingness to pay of roughly half the average household wage when using
the average commute time in the household to measure commuting costs. While these
aggregate measures of commuting are useful in hedonic settings where the value of the
home is determined by market forces (not just an individual’s valuation), they are less
satisfactory in a model of individual outcomes. I model the actual commuting options
and characteristics that individuals face when choosing a home. I also relax the implicit
assumption that all commuters travel to the same area for work and model cities as aspatial
urban areas instead of monocentric ones.

An alternative way to model residential location decisions uses a single-crossing as-
sumption about preferences for locality ammenities and costs to model how individuals
self-select into neighborhoods. Epple and Sieg (1999), Epple et al. (2001), Banzhaf and
Walsh (2008), and Epple et al. (2010) model intra-jurisdictional sorting models in order
to test the Tiebout (1956) hypothesis. These community-level studies are the basis for the
current location choice literature, but the availability of new data has allowed subsequent
studies to extend these jurisdictional-level techniques to the individual residence level.

Bayer and coauthors have pioneered the use of restricted-access Census microdata to
explore topics ranging from segregation in housing markets (Bayer et al. 2004) to labor
market hiring networks among neighbors (Bayer et al. 2008). Bayer et al. (2005), Bayer
et al. (2007), and Bayer and McMillan (2011) estimate equilibrium models of residential
choice using household data and the differentiated products methods of Berry et al. (1995).
They model differences in household preferences for residential locations, conditional on

work location, but focus on the implications of Tiebout (1956) sorting in housing markets,

2They note that this estimate is greater than estimates of roughly half the hourly wage commonly found
in the transportation literature.
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not commuting decisions. They control for the influence of commuting in residential de-
cisions by through the as-the-crow-flies distance to the head of household’s job. Bayer
and McMillan (2011) finds, for instance, that households are willing to pay about $50 per
month to reduce daily commutes by one mile. I improve on their methodology by more
accurately modeling the commute faced by individuals in the household. Specifically, I
model the duration and mode of the commute, and I allow for heterogeneity in preferences
over commuting methods. They also find that their commuting estimates are sensitive to
controls for unobserved neighborhood quality, so I develop a flexible way to incorporate
neighborhood effects into my model that is outlined in Section 5.1.1.2.

The earliest empirical models of residential choice were developed in the late 1970s
(Lerman 1976, McFadden 1978) based on the RUM model. While Lerman (1976) also
incorporates commuting decisions (as well as automobile ownership), I know of only one
recent paper that models the joint decision of residential location and commuting mode
using individual level data. Vega and Reynolds-Feighan (2009) use GIS network analy-
sis to augment individual-level data to estimate a cross-nested logit (CNL) model the joint
location and commuting decision. Although they model commutes using GIS techniques
for both automotive and mass transit options, they aggregate all of the work locations in
their city of analysis (Dublin, Ireland) to four employment centers, resulting in a loss of
precision. They caution that a key methodological difficulty that must be overcome in their
model is finding a way to limit the size of the choice set (which is a function of the number
of homes observed in the data) so that estimation is tractable. They explain that there are
two alternatives: sampling from the full choice set or spatially aggregating home location
alternatives. The former requires additional assumptions (see McFadden 1978) and the
later is problematic because the unit of aggregation is arbitrarily defined.> They find that
commuters traveling to the center city are responsive to policies that increase travel costs in
terms of which mode they choose, but that commuters traveling to suburban work locations

are unlikely to switch their commute modes in response to those same policies. They also

3 1 discuss how I handle this issue in Section 4.3.
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find evidence that congestion policies are likely to have an effect on residential location
decisions, particularly for those who commute to suburban work locations. I am working
to improve on their methodology by both more accurately controlling for the commutes in-
dividuals face and by accounting for household bargaining over commuting characteristics
between spouses. This will allow me to add cohabiting couples to the model, instead of

just relying on single individuals for estimation.

2.3 Household Behavior*

Chiappori (1988), Chiappori (1992), and Browning and Chiappori (1998) provide the ba-
sic theory behind the collective model of household behavior. The collective model is one
of many attempts to reconcile the inherent contradiction in applying the tools of individ-
ual preference theory to a multi-person household. The model does not seek to explain
the mechanism behind the household decision process. Instead, it assumes that however
household outcomes are determined, the bargaining process is Pareto efficient. In the con-
text of my research, since a household is comprised of multiple individuals who likely have
different preferences over household characteristics and methods of commuting, as well
as different work locations, it is unlikely that a household will behave as a single decision
maker. Instead, members of a household will bargain over the bundle of housing amenities
and location characteristics that maximize their own utilities.

Browning et al. (1994) find empirical evidence in support of the collective model but en-
courage additional analysis. The context of my model provides three key differences from
their previous tests. First, housing is a far more expensive, durable good than clothing. My
research expands the test of the collective model to a new class of goods. Second, while not
heroic, the assumption that men’s clothing is exclusive to the husband and women’s cloth-

ing to the wife leaves room for doubt. I treat commuting method as the assignable good

4 As the empirical component of my intra-household model is still in progress, the reader may choose to
skip this section without fear of missing information that is critical to understanding subsequent sections of
the paper.
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in my model, which offers advantages over their focus on clothing, namely, that it is ob-
served by the econometrician. Finally, the authors note that “[c]Jomparing the sharing rules
obtained with different supposedly assignable goods would in fact provide additional tests
of the actual nature of these goods and of the general collective framework used through-
out this paper.” Since the choice of housing location and commuting method together
determine the time that each spouse must spend commuting, I compare the sharing rules
determined from both commuting method and duration.

Xu (2007) and Chiappori and Donni (2009) provide surveys of the state of the literature.
They review the application of the inter-household model to numerous empirical contexts
(labor supply, household production, etc.). To the best of my knowledge, Chiappori et
al. (2012) is the only work that applies the collective model to housing and commuting
decisions, finding that failing to model bargaining over household locations would bias
model results and effect policy prescriptions. They do so using French census data for the
city of Paris, but they do not observe any information on the characteristics of a given home,
so they model locations at a more aggregate level (the commune, of which there are 1,300
in Paris) than I do. They model commuting costs as a flexible function of time, but do not
allow these costs to vary with commuting mode or allow individuals to choose how they
commute. These modeling assumptions reduce the reliability of their estimates relative to

my specification and preclude analysis of policies that affect commuting behavior.

2.4 Congestion Pricing

Economists have long advocated for use fees that internalize congestion externalities and
improve welfare.> Lindsey (2006) provides a comprehensive survey of the theoretical liter-

ature on road pricing dating back to Adam Smith, but congestion pricing policies have only

SParry et al. (2007) discuss the externalities associated with automotive travel and the policies, ranging
from fuel taxes to congestion pricing, that can be used to address those externalities. The discussion is both
in terms of efficacy and political feasibility.
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more recently begun being implemented and are still not widespread.® Lewis (2008) pro-

vides an overview of the various forms of congestion pricing policies which I summarize

in Table 1.
Table 1: Congestion Pricing Policies
’ Type Definition Examples ‘
Area Wide Charges based on congestion level on all roads None
Variable Roadway | Tolls include rush hour fees for particular roads NIJ Turnpike
Managed Lanes Variable tolls for separated lanes within a highway | I-15 & SR-91 (CA)
Cordon Fee to drive within or into a congested area London
Zonal Cordon charging with adjacent charging zones Trials in Europe

Source: Table created by the author using information from Lewis (2008).

He argues for the effectiveness of congestion pricing policies with some impressive
measures. The cordon charge introduced in London, England in 2003 reduced traffic in the
cordon by 20 percent, increased traffic speeds by 37 percent, and raised more than $100
million in net revenues that were used to improve the city’s mass transit system. Leape
(2006) reports that the London cordon charge has been such a success that there have been
discussions of a nationwide congestion pricing policy. In the United States, managed lanes
on SR-91 in California had an average speed of 60 miles per hour during peak hours while
congestion in the untolled lanes reduced speeds to under 20 miles per hour.”

Small et al. (2005, 2006) perform a thorough analysis of the effects of the congestion
pricing mechanism used on SR-91, finding that it does improve motorist welfare due to
significant heterogeneity in traveler preferences. This occurs because low-value-of-time
commuters are displaced by high-value-of-time commuters who reap large benefits. How-
ever, the available data prevents the authors from modeling mode choice, residential loca-
tion, or time of travel, all of which can be varied by commuters in the long run. My model

addresses these concerns, while allowing for a robust set of unobserved heterogeneity pa-

6See https://ceprofs.civil.tamu.edu/mburris/pricing.htm for a list of all instances of congestion pricing in
practice today. At present, there are less than 50 (broadly defined) examples of congestion pricing on roads
around the world.

’See Anas and Lindsey (2011) for more information on the effects of several major congestion pricing
programs.
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rameters their work suggests are important.
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Chapter 3

Model

This chapter outlines a structural model of residential choice and commuting method that I
estimate using Census microdata. The structure allows me to determine the relative impor-
tance of housing and neighborhood characteristics on residential choice, including distance
to place of employment and access to commuting options. I allow for heterogeneous pref-
erences for those characteristics as well as for commuting methods. I first detail the model
as it pertains to a single individual. Then, as an extension I will estimate in future work, I
move to the case of a family comprised of two bargaining adults. Finally, I explain how I
model the impact of children on the behavior of both of these types of families.

While I advance the literature by treating the choice of residential location and commut-
ing mode as joint in a model with as much geographic detail as I have, I must nevertheless
take other decisions as fixed in order to keep the model tractable. I assume that an indi-
vidual takes her city of residence, family structure, vehicle ownership, and employment as
given when deciding among transportation options and residential choices. Additionally,
I assume that the locations and hours of employers and schools are independent of resi-
dential choices and transportation options. Finally, I assume that there are no household
production effects associated with commuting decisions and that both members of a co-
habiting couple have the same preference for the well-being of their children. All of these

assumptions have the potential to bias my results, although to varying degrees. I discuss



Chapter 3. Model 15

the implications of these assumptions in Section 5.3.4.

3.1 Single Person Household

The simplest type of family is that of an individual choosing where she alone will reside and
how she will commute. I build from the standard labor-leisure framework. An individual
has preferences over consumption and leisure and faces both a budget and time constraint.
Consumption is defined over a composite good and housing amenities, and leisure takes the

form of either time spent away from work or of some fraction of time spent commuting.

3.1.1 Preferences

I define a market (indexed by m) at the metropolitan level and assume that jobs () have
characteristics that include wages, hours, and location. Given a fixed market and job, an
individual (i) is faced with the decision of which house to live in (#) and by what method to
commute (k). Preferences are defined over composite consumption (cj;x), housing ameni-

ties (Hy,), and leisure (/) and represented by a utility function as

U (Cinks Hin, Uin) -

The aggregate consumption good, c;x, includes all non-housing consumption and sav-
ings. As in Bayer et al. (2005), the individual derives utility from many different housing
amenities, including characteristics of both the house and the neighborhood. In order to
include a rich set of housing characteristics but still keep the utility function tractable, I
define Hj, as a function of observable housing and neighborhood characteristics (H,) and

unobservable characteristics (&),

Hy, = exp (HiY" + &) -
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The exp (+) ensures that the utility function can be evaluated.! The observable character-
istics, H;;,, are allowed to vary over both i and 4 in order to allow for interactions between
individual and home-specific observables, but variation over individuals is not necessary
for the identification of 'yH . The error term, &, is necessary to explain cases where an
individual chooses to live in a home that is observationally inferior to other homes in her
feasible choice set. It can account not only for unobserved characteristics of the home, but
also for search and moving costs that might lock an individual into a given home, but that
are not explicitly modeled. It is known to the agent but not to the econometrician, thus
providing a source of unobserved heterogeneity in the model.

As in McFadden (2001), non-work time has two components,

Cinke = Linge + (1 — Aig) tink.-

The ¢, term represents pure leisure. Time spent by individual i commuting between home
h and job j by method k (t;;;) may contain a leisure component that is known to the agent

but not the econometrician.?

This component accounts for heterogeneity in preferences
for commuting methods to explain cases where an individual chooses to commute by a
method that is more costly, both in terms of time and money, than other feasible methods.>
It is measured by the random variable A;, which is bounded from below at O and varies
over individuals and methods of commuting. As such, if A = 0, time spent commuting
by method k is a perfect substitute for pure leisure. Note that if commuting by method

k is stressful and work-like, A;; = 1. A value of A;; > 1 means that the individual views

commuting to be less enjoyable than work.

'In a subsequent section, I specify the utility function with a log transformed Cobb-Douglas functional
form. The exp (-) ensures that H;, > 0so that In (I:I,-h) can always be evaluated.

ZNote that I drop the j subscript in all variables that vary over i, as jobs are taken as fixed for a given
individual.

3That heterogeneity in preferences for commuting methods affects utility through leisure is an assumption.
This specification is useful because it allows the preference to vary with the duration of the commute. An
individual may have an extreme dislike for driving, but may opt to drive if a short commute minimizes the
displeasure. This specification is less desirable if the costs or benefits of a given method of commuting are not
variable. For instance, if an individual prefers to drive because of the flexibility it allows in running errands
after work.
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There is nothing in economic theory that requires a lower bound on A, but A; < 0
does not seem plausible. A value of A; < 0 would mean that the individual would rather
commute than engage in general leisure activities. Since traveling by method « is a feasible

leisure activity, I restrict A to prevent nonsensical preferences.*

3.1.2 Prices

Individual i takes as given several prices in her market. The price of the aggregate con-
sumption good varies by metropolitan area. A local cost-of-living index, denoted as py,,
is used to measure this variation. The opportunity cost of owning or renting a home is
imputed as in Bayer et al. (2007) and is represented as pz] > 1 do not observe savings or
wealth, nor does my data allow for a dynamic model, so converting housing stock expenses
into flow opportunity costs is necessary, given that a savings motive does not drive housing
choice in my model. The average pecuniary cost per mile of commuting via method k in
market m is denoted as pik, where the d superscript denotes distance.®

In the data, there are 12 reported methods of commuting. These methods are condensed

to the most relevant options in Table 2, with associated per mile and fixed commuting costs.

Household automobile ownership is is observed only as the number of vehicles avail-
able, but not make, model, or year of those vehicles, so I use an average measure of miles

per gallon (MPG) to determine the price of commuting by automobile.” The number of

“This restriction is supported by the the time use literature. Krueger et al. (2008) provide comparisons of
how people felt while engaging in different activities. Unsurprisingly, their results indicate that individuals
prefer most leisure activities to commuting. Additionally, their results show that commuting and working
rank as almost equally unenjoyable activities, with their ordinal rankings varying by survey methodology.

SFor notational clarity, I capitalize the “H” superscript that serves as a label for the price to avoid confusion
with the “h” subscript that serves as an index.

®Fixed costs, such as parking fees and tolls, are assuredly important components of commuting decisions,
but I do not observe these costs in the data. The former is not reported by individuals and the latter depends
on the exact commuting route, which I do not observe.

"Future research will more accurately specify MPG as the sum of the mean MPG of the automotive fleet
in the given year and an individual specific error. This will allow me to integrate over the distribution of
the error in order to obtain a more accurate measure of automotive commuting costs, as well as allow for
correlation with other errors in the model.
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Table 2: Commuting Methods and Costs
’ ‘ Method (k) H Pecuniary Cost Per Mile

1) | Automobile || pf o = 1o
2) | Carpool || Py oot = oo
3) | Bus Plp s = Prbus
4) | Streetcar p%vs,reem, = Pm,streetcar
5) | Subway pisubway = Pm,subway
6) | Rail P rait = Ponpail
7) | Walk Piyother =0
pool

people in the carpooling option is denoted by N?°°*. The p,, prices are the average fare

per mile for the given system in metropolitan area m.

3.1.3 Constraints

Individual i faces both a budget constraint and a time constraint. To represent expenditures,
I first define N7 and NX as the number of homes and commuting methods in market m.
I then define an Nnﬁl x 1 vector, I;, whose hth element is 1 if the individual lives in home
h and O otherwise. Next, I define dj;; as the distance between house 4 and job j that
individual i travels by commuting method k. I pack those distances into an NX x 1 vector
of commuting distances traveled by individual i from house & by each commuting method,

din.8 The budget constraint is defined as

H
PmCitk+ P L+ ph dn =wiL,
(IxN) (NG T) (1N (NG < 1)
where wj is individual 1’s wage, and L; is the individual’s time spent at work. Sample
selection criteria guarantee that all individuals are employed, and wages and work hours
are taken as fixed.

I denote total time as 7" and the commuting time by method k as #;;;. Individual i’s time

8Note that the kth element of dy;, will be 0 for individuals who do not commute by the kth method.
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constraint is

Cing +tink +Li =T.

The commuting time by method & (¢;;) is treated as a function of a linear index of
the characteristics of the commute (Kl-hk}/K ) and a measurement error term (e;;;) due to the
econometrician’s uncertainty about the exact route the agent takes, traffic patterns, etc.” It

18 written as

tike = exp (K Y™ + eint) , (3.1

where the exp (-) ensures that time spent commuting is positive. Note that random, tem-
porary shocks (e.g., accidents, weather, construction) do not affect the agents’ long term

commuting decisions.

3.1.4 Parameterization

I define the utility function with a Cobb-Douglas functional form and make the familiar

natural log transformation, which results in

U (cink, Hiny Gn) = of In(co) + o (H¥? + €5) + 0ol In (G + (1 — Ag) i)

where of, off, and @ are taste parameters over composite consumption, housing ameni-
ties, and leisure. I normalize af to 1 and }/’IH to 0 to ensure identification. The other
parameters, OclH and (xf , are allowed to vary with observable characteristics (X;) of the in-

dividual and contain error terms to capture unobserved heterogeneity in preferences. The

This specification is necessary because my data reports commute times for chosen options only. T use
characteristics of the commute calculated using GIS network analysis to impute unobserved commute times
based estimates of 7% recovered from observed commute times.
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taste parameters are defined as'?

3.1.5 Choice Problem

Taking labor market decisions, job characteristics, and vehicle ownership as given, the
full choice set is a residence and a method of commuting. By choosing a residence, the
individual determines the characteristics of both her home and commute options. The
joint choice of a residential location and a particular method of commuting determine the
individual’s consumtion and allocation of time. The former is uniquely determined by the
budget constraint, since there is no saving in the model. Similarly, since hours of labor are
taken as given, the time constraint determines leisure. In summary, an agent in the model

faces the unconstrained choice problem

L — HI‘ _ d:
Wil4 Ppcz Pm lh) + exp (XiﬁH + ‘ui) (Hih’}’H + 81‘/1)
m

+ exp (Xiﬂg + ui) In (T — Li — Aiexp (Kihk}’K +eimk)).  (32)

maxU (ciw, Hip, i) = ln(

iR

3.2 Cohabiting Couple Household''

In future work, I will estimate a version of the model that explicitly features a cohabiting

or married couple that bargains over housing and commuting choices.

10Note that the exponential form guarantees that the utility parameters will be positive, ensuring that “goods
are good.”

T As the empirical component of my intra-household model is still in progress, the reader may choose to
skip this section without fear of missing information that is critical to understanding subsequent sections of
the paper.
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3.2.1 Intra-Household Bargaining

Browning et al. (1994), Browning and Chiappori (1998), and Browning et al. (2006) pro-
vide a thorough discussion of issues involved in modeling intra-household allocations and
the assumptions required for identification and estimation of the collective model of the
household. The collective model is a methodology that does not require the econometri-
cian to formally model the household bargaining mechanism. Instead, it assumes only that
bargaining is cooperative, so, however it operates, outcomes are efficient.

The beauty of the collective model is that it allows the researcher to model individual
behavior despite a severe limitation of most datasets: that private consumption is observed
at the household, not the individual level. The collective model does so by transforming
the Pareto weight in the standard household welfare maximization problem into what is
known as the sharing rule. Although similar, the Pareto weight and sharing rule are not
the same. The Pareto weight denotes the influence each member of the household’s utility
function has on the household welfare function. The sharing rule determines the division
of expenditures net of public goods available to each member of the household (Browning
et al., 2006). Heuristically, one can think of this method as decomposing household bar-
gaining into a two stage process. First, members of the household pool their resources and
use those common funds to pay for public goods within the household (the home, utilities,
etc.). Second, they divide the remaining funds according to the sharing rule, then optimize
subject to individual budget constraints.

Following the collective model methodology, I assume that the econometrician can per-
fectly designate goods as public or private in the household setting, at least one private good
can be assigned to each family member who consumes it, utility is separable with respect
to private consumption, and variables exist that affect the weight each individual’s utility
receives in the household decision process but do not influence preferences. Specifically,
I assume that all housing amenities (H) are public goods within the family. I also assume

that consumption and leisure are private goods.'? I treat commuting trips and durations

12The leisure time of partners is likely to be complementary, but T am not able to capture this effect, as I do
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as assignable private goods, as I observe which family member makes the trip, his or her

method of commuting, and the duration of his or her commute. '3

3.2.2 Preferences

When modeling collective decisions, researchers frequently assume that members of the
household have interdependent or caring preferences (Becker, 1981). Whereas traditional,
egoistic preferences are such that an individual derives utility only from her own consump-
tion, caring preferences imply that an individual’s utility is defined over her own consump-
tion, leisure, etc. and her partner’s total welfare.!* When used in an efficient bargaining
model, caring preferences moderate results so that outcomes are not heavily skewed to one
member of the couple or the other. Chiappori (1997) explains the intuition behind this re-
sult: with a very unequal outcome, both partners can increase their utility by agreeing on
a more even result. The unfavored partner achieves more utility directly from an increased
share and the favored partner achieves more utility indirectly from the unfavored partner’s
increase in utility.

Caring preferences are both intuitively appealing and empirically supported.!> How-
ever, Browning et al. (2006) shows that the collective model is identified regardless of
whether individuals are assumed to have egoistic or caring preferences. More so, Lise and
Seitz (2011) explain how the type of preferences assumed change only the interpretation
of the sharing rule. With caring preferences, the sharing rule is just that: a measure of how

household wealth is divided. With egoistic preferences, the sharing rule is a measure of

not observe the extent to which partners spend leisure time together. While I could identify a complementarity
effect through the covariation in husband and wife choices of leisure time, I cannot separately identify this
effect from similarity in partner preferences for leisure. I leave this for future research.

131 do not observe how individuals spend their leisure time, so I have to assume that the duration of an
individual’s commute does not affect her share of household production responsibilities. This assumption is
problematic if, for instance, the partner with the shorter commute is responsible for cooking dinner for the
family.

“For comparison, an individual with altruistic or paternalistic preferences derives utility from her own
consumption, as well as the consumption of her partner. The collective model is generally not identified with
altruistic preferences.

SFriedberg and Stern (2010) find evidence that members of married couples are willing to trade some of
their own utility for an increase in their spouse’s utility, which suggests that couples have caring preferences.
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both sharing and caring. I explicitly detail the model with caring preferences, then show
that egoistic preferences are just a special form of those preferences.

Following the notational convention of Browning et al. (1994), let s = {A,B} index
members of the household.'® Define subutility functions for each spouse that are analogous
to the utility function given in the maximization problem in Equation 3.2. Formally, these

subutility functions are represented as

v (ch Hins i) = In (i) +exp (X7 B + 1) (Hin¥" + &)
+ exp (XB +uf) In (T — L = Aexp (K +€le))

fors={A,B}.

The arguments of the subutility functions are the same as those previously detailed in
Section 3.1, save one important difference. Hereafter, the index i should be thought of as
an index of families (with the s superscript clarifying individuals within the family). Note
that household characteristics (Hj;,) are a public good to the family.!”

With caring preferences, spouse s’s utility (U*) is a function of both v* and v?, and it

can be written as

U? = F* [V} (i Hins Coe) v (Cipeo Hins )| for s ={A,B} and —s={B,A},

where F* is spouse s’s aggregator function. Egoistic preferences are just a special form of

the aggregator function where F*[-] is such that

U =} (- Hins Oyi) fors={A,B}.

16The reader can think of A denoting the husband and B the wife if s/he so desires.
7This convention does not alter the notation for the previous case of a single person family. In such cases,
the i subscript denotes both the family and the individual, as they are one and the same.
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Regardless of the form of individual preferences, the preferences of the household are

represented by a welfare function and can be written as

W, = LU+ (1—f)UP

where fi; is the Pareto weight for household i.!3

3.2.3 Constraints

The household optimization is subject to individual time constraints and a household bud-
get constraint. The individual time constraints are straightforward to deal with (the care-
ful reader will note that they have already been substituted into the third argument of

s (cfhk,ﬁih, Zf.hk) ), but the household budget constraint,
P (C?hk + Cﬁzk) +p" L+ p (dﬁ, + dgl) = wiLf +wiLP,

. . e . B .
presents a problem, as individual consumption, c’l.‘}lk and ¢y, , are not separately observed in

the data. 1°

3.2.4 Collective Model

Since the utility function is separable in the public and private goods, the Pareto weight is
not dependent on the level of public goods chosen. Browning et al. (1994) show that a col-
lective decision can be modeled as a process where each member of the household receives

a share of total expenditures (net of expenditures on public goods) and purchases his or her

18The tilde breaks from the convention in the literature in order to differentiate the Pareto weight (fI;) from
the error associated with the preference parameter for housing amenities (i;).

Note that the budget constraint takes this form because labor market decisions are exogenous. If they
were not, individuals would “buy back” their leisure and commuting time from the labor market, so expendi-
tures on those goods would appear on the left-hand side of the equation and total possible household income
(w’;‘T + wf-3 T) would appear on the right-hand side.
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own private goods. The rule for splitting the net expenditures is known as the sharing rule,
which is represented by p;. Following this procedure generates separate budget constraints

for each partner equal to

Puchit Pl = pi (WL +wPLE = pP1;)

Puchutpidly = (1= pi) (wiLE +wPLP = pT;)

and removes the Pareto weight from the household welfare function. In other words, the
sharing rule specification transforms W; from being a function of the Pareto weight to being

a function of the sharing rule. Formally,

W, = mUM(1—[)UP

= UMp)+UP(pi),

where U} is a function of p; because the budget constraint equates consumption, so cjy, is
a function of p;. The sharing rule is unobserved by the econometrician. It is assumed to be
a function of variables that affect the sharing rule, but not individual preferences, known as
sharing shifters or distributional factors (DFs) and an error term that captures unobserved
heterogeneity in household bargaining patterns. The DFs are denoted by Z;, the unobserved

heterogeneity term is denoted by y;, and the sharing rule takes the form

pi =P (ZL+ ),

where the & (-) function is the standard normal cumulative distribution function.?® It en-
sures that the sharing rule is bounded between 0 and 1. I include DFs commonly used in the

literature, such as the percentage of household income earned by each member, differences

20Note that this form is a somewhat arbitrary specification of the sharing rule, but specifying the sharing
rule as a function of DFs is not. Since the data I use provides only a repeated cross section of individuals,
DFs are required to identify the sharing rule.
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in age and education between the spouses, and conditions of relevant marriage markets.”!

3.2.5 Choice Problem

The household maximizes its welfare function with respect to a single residence and a
method of commuting for each member. The household optimization problem can formally

be stated as

max W; = Uf+UP,
hy kA kB

i

subject to

puchuct iy = i (L +PLE =),

pmcE 4+ plaB = (1-p;) (W{‘Lf‘ +wiLf — P”1i> : (3-3)

3.3 Households with Children

Children are an important factor in the housing and commuting decisions of both single
person and cohabiting couple parents. In order to capture the effect that children have on
housing and commuting decisions, I include the presence and characteristics of children
and the interaction of these terms with key housing and neighborhood characteristics. For
instance, the interaction of local school quality with children in the household will help
control for a parental desire to send their children to high quality schools. This specification
means that the model treats children like a household public good, so each parent implicitly
has the same preferences over their children’s well being.

I do not include children in the intra-household bargaining process. Although it is

possible to model a household with more than two individuals (see Browning and Chiappori

21T define marriage markets based on the individual’s age and race to ensure identification.
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(1998)), doing so would require estimating additional sharing parameters. As DFs for
children are not obvious, these additional sharing parameters are not likely to be identified.
Additionally, excluding children from the household bargaining process greatly simplifies
the empirical model, as families with children differ from their childless counterparts only

in their observable characteristics, not in the specification of their model.
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Chapter 4

Data

This chapter outlines the main data sources I use and how they are linked. From Equation
3.2 for single person families and Equation 3.3 for cohabiting couple families, it can be seen
that to estimate my model I need to observe three outcomes: family housing choice (#;),
individual commute method (k}), and individual commute time (¢}, ). I also need data on
housing characteristics (H;;), commute characteristics (K3, ), and individual characteristics
(X}"). Additionally, in order to recover composite consumption, I need data on the prices of
composite consumption (p¢,), homes (p’) and commuting methods (p%). No single dataset
contains all of this information. In order to construct a dataset that allows me to estimate
my model, I combine data from the U.S. Census Bureau’s ACS and the U.S. Department
of Transportation’s National Transportation Atlas Database (NTAD) using GIS mapping
software. I also augment that dataset with pricing information from various sources.

The main dataset my analysis is built on is the restricted-access Census microdata ver-
sions of the 2000 - 2009 ACS. However, as I have not yet gained clearance to disclose my
analysis using restricted access data, all analysis in this draft is preliminary and based on
the 2005 - 2008 ACS PUMS data." The ACS contains information similar to the Decennial

Census Long Form Questionnaire that it replaced after the 2000 Census. It is an annual

'T have been approved for Special Sworn Status (SSS) and have gained access to the restricted Census
microdata. I travel to the Triangle Census Research Data Center (TCRDC) at Duke University to conduct my
estimation. I discuss the shortcomings of the publicly available data in Section 4.4.
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sample of one in 40 households in the country.”> The Census Bureau first began producing
ACS data in 2000 to test the survey and officially began producing the survey in 2005, so
my data is a repeated cross-section.

There are two key features of ACS data that are important for my research. First, ACS
surveys include questions on place of residence, primary commuting method, and commut-
ing duration, as well as individual and household characteristics and linkages that allow the
identification of the relationship between members of a household. Second, while the ACS
does not contain a great deal of information about individual commute characteristics, it
does report the daily commute time and includes information about the place of residence
and place of work that allow me to augment the commuting data. The restricted versions
of these datasets allow me to identify both the home and work locations of each individual
down to the Census block, which provides the geographic precision necessary to calculate
unobserved commute characteristics in a meaningful way. I detail the former feature first,
then provide more detail on the latter in subsequent sections. 1 conclude the section by

discussing the additional price data I use.

4.1 Sample Selection

I begin by defining markets (m) using the the Office of Management and Budget’s (OMB)
definitions of metropolitan areas. The OMB creates these designations for use by fed-
eral agencies in statistical analysis. Metropolitan areas are defined as central urban areas
and any adjacent counties that have “a high degree of social and economic integration (as
measured by commuting to work) with the urban core””> The OMB defines Combined
Statistical Areas (CSA) to represent contiguous urban areas (ie, Washington, DC and Bal-

timore, MD) and Core Based Statistical Areas (CBSA) to represent central (ie, Pittsburgh,

ZFor reference, every decade the Long Form sampled one in 6 households. See
http://www.census.gov/acs/www/Downloads/handbooks/ACSPUMS.pdf for more information.
3See http://www.census.gov/population/metro/ for more information.
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PA) or component (ie, Washington, DC) cities.*

I restrict all data to the “Washington-Arlington-Alexandria, DC-VA-MD-WV” CBSA
(hereafter refereed to as the DC CBSA) in order to keep the estimation tractable.” I use this
definition of the market for all years of the data even though it was created in 2003 to avoid
using a varying definition of the market each year. I choose this CBSA for several reasons.
First, it has the second most automotive commuter congestion in the nation according to
Schrank and Lomax (2010), so there is a need for the policy analysis I perform. Second,
there is a robust mass transit system in the Washington, DC area that allows individuals to
respond to a given policy change in multiple ways. This both increases the need for the
simulations I perform and allows for the analysis of numerous policy options. Finally, the
District offers a great deal of geographic information that is not available nationally which
is accessible through the District of Columbia Geographic Information System (DC GIS).
Specifically, although the NTAD contains geographic location information for rail systems,
it does not have comparable information for bus routes that DC GIS makes available for
Washington Metropolitan Area Transit Authority (WMATA) bus lines and stops.

I restrict the sample based on observable characteristics at both the household and in-
dividual levels. First, I drop households based on housing unit characteristics that indicate
that the residence may not be the family’s primary home or that the full financial costs of
the home are not accurately reported. Second, I restrict the sample based on household
characteristics that indicate that the family’s income is in the tails of the income distribu-

tion or based on relationships in the household that indicate that the household bargaining

“In 2003, the OMB updated the names and definitions of core metropolitan areas, creating, amongst
others, the CBSA geography. OMB frequently refers to CBSAs as Metropolitan Statistical Ar-
eas (MSA), but since MSAs were defined differently prior to 2003, I use the CBSA moniker for
clarity. For a thorough explanation of the changes, see the Missouri Census Data Center website
(http://mcdc.missouri.edu/allabout/sumlevs/).

3T plan to expand the analysis to include additional metropolitan areas in future work. This will allow
me to include measures of commuting and congestion that vary across metropolitan areas in estimation.
Ideally, I would define the single market as the the Washington-Baltimore-Northern Virginia, DC-MD-VA-
WV CSA, as the Washington, DC and Baltimore, MD residential and labor markets are undoubtedly linked.
Doing so would drastically increase the number of Census blocks in the market and the scope of the GIS
network analysis (that requires calculating the optimal route between all pairwise combinations of blocks in
the market). It is not feasible at this time.
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process is too complex to model without additional information. Third, based on individ-
ual characteristics, I drop all households that contain an unemployed, military, or part-time
employed adult.® T also drop households that contain an adult whose job location informa-
tion is missing or indicates that the individual works outside the geographic scope of the
market. Next, I drop households with individuals who commute by methods that are either
unavailable in the market (streetcar), occur too infrequently in the data to be modeled as
outcomes (bike, commuter rail, ferry, taxi, motorcycle, other), or are beyond the scope of
the model (working at home). Finally, I drop individuals who travel for an extremely long
time or who cover an implausibly long distance as part of their commute.” As I do not
observe precise location information in the PUMS data, I do not drop individuals based on
commute distances outside the TCRDC.

The percent of the sample dropped for each specific reason is detailed in Table 3.
Regardless of whether the reason for the drop is a household or individual level character-
istic, I drop the entire household. Column (1) contains the percent of households dropped
for the given reason, and column (2) contains the analogous percent of individual dropped.
Sample selection results in 5,068 households and 10,731 individuals in the PUMS data. Of

those 10,731 individuals, 7,650 are adults. This forms the basis of my sample.

4.2 Choice Set

After dropping individuals who commute by unavailable or infrequently observed meth-
ods, I model NK =5 commuting options in DC CBSA: automobile, carpool, Metrorail,
Metrobus, and walking. A key shortcoming of the ACS commuting data is that it reports
only the primary method of travel one uses to commute, so I treat individuals in the model
as if they do not commute by multiple modes.?

Table 4 shows the distribution how individuals in the data commute before and after

The “head of household in school” reason in the summary table indicates households where the head of
household is enrolled in grade school or a lower grade.

"I define such a commute as one with a duration or distance greater than the 99th percentile.

8See Appendix A.1.1 for a description of this issue and what I do to mitigate the problem.
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Table 3: Percent of Sample Dropped by Reason

Variable

ey

Percent of Households

2)

Percent of Individuals

Housing Unit Characteristics (Hj;,)

Vacant house

Mobile home or RV
No cash rent

Meals included in rent

Household Characteristics (X;)
Net of housing exp. income tails
Subfamilies in household
Roomate present

Under 18 non-children

Adult children

Child primary wage earner

Individual Characteristics (X;)
Unemployed or not at work
Military employment

Not full time and year emp.
Head of household in school
Job location missing

Job location outside market

Commute Modes (k)

Commute by streetcar
Commute by bike
Commute by commuter rail
Commute by other method
Work at home

Commute Characteristics (Kiz)

Commute duration in tail

HR station (home) distance in tail
HR station (job) distance in tail
Walk distance in tail

Total Observations
Selected Observations

0.045
0.012
0.011
0.006

0.257
0.111
0.026
0.001
0.118
0.019

0.226
0.018
0.310
0.001
0.030
0.617

0.001
0.005
0.008
0.011
0.052

0.008
0.000
0.000
0.000

89,110
5,068

0.000
0.010
0.010
0.003

0.209
0.111
0.015
0.000
0.060
0.008

0.130
0.008
0.149
0.000
0.014
0.385

0.000
0.002
0.004
0.005
0.024

0.003
0.000
0.000
0.000

213,870
10,731
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sample selection. Columns (1) and (2) are calculated from the full sample. Column (1)

Table 4: Percent of Commuters by Mode (k)

ey 2 3) ) (&) (6)
All Observations  Selected Sample Random Sample

Variable Percent SD Percent SD Percent SD
Automobile 0.486 0.500 0.686 0.464 0.713 0.452
Carpool 0.072 0.258 0.078 0.267 0.077 0.267
Heavy rail (Metrorail) 0.053  0.223  0.035 0.183  0.024  0.153
Bus (Metrobus) 0.025 0.155 0.018 0.131 0.011 0.106
Walking 0.016 0.126 0.020 0.140 0.018 0.133
Other or not in LF 0.349 0.477 0.164 0370 0.157 0.364
Observations 133,127 7,650 3,003

contains the percent of individuals who commute by the given method, and column (2)
contains the standard deviation. Columns (3) and (4) contain the analogous figures for the
selected sample. Households in the selected sample are about 20 percentage points more
likely to commute by automobile, most likely because of the income selection criteria and
the employment and commuting requirements that shift individuals out of the “other or not
in labor force” category. That category includes the five unmodeled commute modes listed
in Table 3 and spouses who are not in the labor force.

I define the choice set in my discrete choice model as the N¥ = 5 commuting options
available in the DC CBSA and the N¥ = 5,068 homes observed in the data. This means that
there are potentially NX x N = 25,340 options in an individual’s choice set.” As Vega and
Reynolds-Feighan (2009) explain, the econometrician needs to limit the size of the choice
set when dealing with a large number of housing alternatives. I address the issue of choice
set size in my model by randomly sampling to reduce the the number of households in-
cluded in the sample (and thus individuals and housing options as well). Specifically, I

randomly select 2,000 households from the sample to form a new selected, random sam-

°I say, “potentially” because I allow individuals in the model to commute by automobile only if they own
an automobile and limit housing options to homes that individuals can afford.
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ple.'? Doing so allows me to avoid arbitrary spatial aggregation of housing alternatives that

would reduce the precision with which I am able to map commuting alternatives.
Columns (5) and (6) pertain to the selected, random sample. As one would expect,

random sampling does not change the distribution of commuting methods. After random

sampling, there are 1,990 households and 3,003 adult individuals in the sample.

4.3 Summary Statistics

Table 5 shows the distribution of housing characteristics before and after sample and ran-

dom selection. Again, columns (1) and (2) are calculated from the full sample, columns

Table 5: Moments of Housing Characteristics (H;;,)
ey 2 3) “) ®) (6)
All Observations  Selected Sample Random Sample
Variable Mean SD Mean SD Mean SD

Single family detached 0.549 0498  0.577 0.494 0.578  0.49%4
Single family attached 0.185 0388  0.178 0383  0.183  0.387

2-9 apartments 0.070  0.255 0.076 0265 0.077 0.266
10-49 apartments 0.097 0.295 0.096 0295 0.097 0.297
50+ apartments 0.089 0.285 0.072 0259 0.064 0.244
Number of rooms 6.328 2.167 6.046 2.036 6.112 1.968
Property age 33474 19.440 29.035 19.154 28.265 18.956
Observations 85,080 5,095 1,990

(3) and (4) are based on the selected sample, and columns (5) and (6) pertain to the se-
lected, random sample. The selected sample does not differ greatly from the full sample,
and again, random sampling does not appear to affect observable characteristics. The first
five estimates describe what type of building the home is. The majority of homes in the

sample are single family detached homes, as 58 percent of the households in the selected,

10A5 T have access to more observations when using the restricted-access version of the ACS, I randomly
select 10,000 households to estimate my model at the TCRDC.
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random sample are of that type. Homes in the samples have an average of about six rooms
and average about 30 years in age.
Table 6 contains the analogous moments for key individual and household characteris-

tics. The sample is slightly more female than male, and 68 percent of the selected, random

Table 6: Moments of Individual and Household Characteristics (X;)
(1) (2) (3) 4) (5) (6)
All Observations ~ Selected Sample Random Sample
Variable Mean SD Mean SD Mean SD

Individual Characteristics

Male 0463 0499 0484 0500 0491  0.500
Individual’s age 49.143  15.215 44769 11.994 44535 11.707
Spouse or partner 0.722 0448 0.668 0471 0.675 0.469
Bachelor’s degree (+) 0.511 0500 0434 0496 0432 0.495
Government employee 0.237 0425 0260 0439 0.254 0436
Self employed 0.091 0287 0.064 0244 0071 0.256

Household Characteristics

Owner occupied 0.781 0414 0780 0414 0.773 0419
Tenure in home 10.011 9464 8.636 8405 8.551 8.242
Child in home 0356 0479 0383 0486 0391 0.488
Number of children 0.649 1.022  0.709 1.053  0.711 1.034
Number of vehicles 2.003 1.082 2.009 0955 2036 00911
Observations 133,127 7,650 3,003

sample is married or cohabiting with a partner. About a quarter of the sample works for the
government, which is unsurprising given the market. Individuals in the selected, random
sample average 45 years in age, have lived in their home for just under 9 years, have 0.7

children living in the home, and own 2 cars.
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4.4 Census Geography Background

Before explaining how I augment the ACS data with characteristics of the commute using
GIS, I first provide detail on the Census Geography that forms the basis for the procedure.
Census geography is complex because it deals with geographic entities that are both deter-
mined by legal boundaries that the Bureau does not control (counties, congressional dis-
tricts, school districts, etc.) and Census defined summary areas (Census Blocks, PUMAs,
etc.) that are used to report statistics at varying levels of aggregation. These geographic
entities range in size from the Census block, which is the lowest level of Census geography,
to the nation as a whole.!! In ascending order of size, the geographic entities that are rel-
evant for my analysis are: Census blocks, block groups, tracts, and Public Use Microdata
Areas (PUMAS).

Census blocks are defined to sever as the building blocks of all other Census geogra-
phies and all land in the United States is assigned to a Census block. They are bounded
on all sides by physical features (such as roads or streams) or invisible boundaries (such as
city or county limits). They are generally geographically small, but can be large in unpop-
ulated areas. Census blocks are clustered into slightly larger block groups, which in turn
are clustered into Census tracts. Tracts are created to contain 4,000 individuals, although
they range in size from 1,500 to 8,000 people nationally. They are defined to provide a
consistent geographic unit for the Census to use to present aggregate statistics. Finally,
PUMAS are areas defined to contain at least 100,000 people and are so created to ensure
confidentiality in individual level data.

Table 7 contains the number of these geographies that fall inside the boundaries of the
DC CBSA and their mean size.!? Figure 1 presents the same information visually.

Individual data is not publicly available at the tract level or below. The smallest ge-
ographic identifier in publicly available Census microdata is the PUMA, which averages

134 square miles in the DC CBSA. The restricted-access version of the ACS contains geo-

T again refer the interested reader to the Missouri Census Data Center website for more detail on this
topic (http://mcdc.missouri.edu/allabout/sumlevs/).
12T also include states in the table for reference.



Chapter 4. Data 37

Table 7: Geographies in the DC CBSA

(1 (2)

Count Size
Variable Sum Mean
DC CBSA 1 6,030.347
States 4 1,507.587
Census PUMASs 45 134.008
Census Tracts 1,040 5.798
Census Block Groups 2,979 2.024
Census Blocks 51,972 0.116

Source: Author’s calculations.
Note: The unit of measurement for size is square
miles.

graphic information down to the block level. At an average of 0.12 square miles in size in
the DC CBSA, Census blocks allow for much greater geographic precision in mapping the
locations of individual residential and job locations. This precision is particularly impor-
tant when mapping locations relative to the commuting infrastructure (such as highways or
Metro stations) in the market. Attempting to map the commute between areas that are 134
square miles in size would be an imprecise exercise at best and an impossible exercise for
individuals who live and work in the same PUMA. Thus, the geographic precision available
in the restricted-access ACS data is essential for creating the GIS data that as accurately as

possible approximates the characteristics of both observed and unobserved commutes. '3

4.5 GIS Data Calculation

To perform the GIS network analysis that allows me to calculate the optimal route between

a home and job location pair, I begin by constructing a digital representation of the Census

3In order to replicate the conditions in the RDC based on the PUMS data for preliminary analysis, I
randomly assign households to a population weighted residential block location within their reported PUMA.
The residential population weights are based on available block level aggregate population counts. I also
randomly assign individuals a job block location within their reported PUMA, but analogous employment
density weights are not readily available.
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Figure 1c: Census Block Groups Figure 1d: Census Blocks

Figure 1: Geographies in the DC CBSA

geography. I use the 2009 definition of the CBSA from the Census TIGER/Line® shape-
files to define the market. Since blocks, block groups, and tract definitions are updated
every Decennial Census, I use ESRI ArcGIS software to keep all of the 2000 definition
of the Census TIGER/Line® block, block group, and tract shapefiles that fall within the
boundaries of the DC CBSA. I use block centroids to approximate the exact home or job
location. Next, I overlay a street network and a rail network on the Census geographies.!*
The street network data is obtained from ESRI’s Data & Maps 9.3 (StreetMap North Amer-
ica). The rail network is created from the locations of rail stations and lines available in the

National Transportation Atlas Database (NTAD) for both heavy rail (Metrorail) and com-

14T have not yet created the bus network, but plan to do so using bus station and line information from DC
GIS. Currently, I use calculations from the automotive network as a proxy for bus commute characteristics.
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muter rail (MTA and VRE). Both sources are updated infrequently, so I use one version of
the network as the basis for the analysis, as opposed to creating multiple, data year specific
networks. !>

For each job location in the CBSA, I calculate the optimal route from that job location
to every home location by every commuting method.'® T do not observe transfers in the
data, so I only need commutes by each given method, not the optimal combination of the
methods. Optimal routes are calculated using the ArcGIS OD Cost Matrix Solver, which
uses a version of Dijkstra’s Shortest Path Tree algorithm to search for the lowest time cost
route on a network between two points. The algorithm simultaneously solves forward from
the origin and backwards from the destination (in a hierarchical fashion for roads) until the
two paths meet.!” The optimization takes into account turns, stops, and speed limits for
automobile travel and stops, transfers at defined hubs, and average speeds for rail travel.!3

For the calculated optimal route by road travel methods between the home and job
locations, I am able to calculate the distance traveled on the network and the predicted
travel time if one travels the speed limit. These distances and times should be thought of as
similar to the ones an individual would recover from an online mapping website or a GPS,

s0 it is important to note that they do not account for congestion.!® For rail travel methods,

SThe street network is based on 2003 TeleAtlas data. Heavy rail (subway) information comes from the
2004 Fixed-Guideway Transit Network database created by the University of Tennessee Center for Trans-
portation Research GIS Group. The commuter rail network is created from data compiled by the Research
and Innovative Technology Administration’s Bureau of Transportation Statistics (RITA/BTS) for the 2009
NTAD. All sources used were the most current data available at the time of the construction of the network.

16Since I do not observe actual home and job locations outside the RDC, and GIS capabilities are limited
in the RDC, I have to calculate the routes between all pairwise combinations of locations outside the RDC
and import the resulting data. Doing so using Census blocks would require calculating %21’97%1) ~
1.35 billion automotive routes. This is beyond the GUI capabilities of ArcGIS, but can be accomplished by
writing a Python script that accesses the GIS processor and loops over locations. To reduce the dimension
of the computational burden and the size of the data, I take advantage of the fact that some block groups
and tracts are very large in geographic size relative to their component blocks, while other block groups and
tracts are not much larger than their component blocks. I develop algorithm that selects the largest Census
geography (block/block group/tract) that will give a reasonably precise measure of location in order to balance
computational burden and data size against precision.

17See Houde (2012) for technical details of how the algorithm works.

18Speed limit information is contained in the street network data. Average rail speeds are approximated
based on the author’s calculations from Metrorail, MTA, and VRE schedules.

19 Although possible, I do not repeatedly query an online mapping website and record the resulting data.
Small scale experiments with such a process using Google Maps were slower than using GIS network anal-
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I calculate the analogous distance and the travel time if one travels the average speed. As
discussed in Appendix A.1.1, to control for the fact that the ACS only reports the primary
method of travel, I also calculate the as-the-crow-flies distance from both home and job
locations to the nearest rail station. Finally, for individuals who commute by walking,
I also calculate the as-the-crow-flies distance between locations to provide information
about the characteristics of their commute, as there is no geographic network applicable to
pedestrians.

Table 8 shows the distribution of key ACS and GIS commuting characteristics before

and after sample and random selection. All commute times are in hours per week. The

Table 8: Moments of Commute Characteristics
(1) 2 (3) 4) (5 (6)
All Observations Selected Sample Random Sample
Variable Mean SD Mean SD Mean SD

ACS Commute Characteristics (#x)

Commute time 5.369 4.109 4.890 3.773 4.716 3.663
Auto time 5.239 3.741 4.622 3.631 4.483 3.517
Carpool time 6.279 4.053 6.111 3.642 6.040 3.634
Metrorail time 7.607 3.453 7.684 3.534 8.148 3.915
Metrobus time 8.082 4.848 8.194 5.357 8.333 4.859
Walk time 2.259 2.128 1.611 1.666 1.432 1.873

GIS Commute Characteristics (Kjx)

GIS auto commute time 5.995 4.528 6.101 4.705 6.033 4.503
GIS Metrorail commute time 2.294 3.214 2.247 3.211 2.116 3.201
Metrorail station to home (mi)  10.807 13.013  21.508 15272  22.245 15.298
Metrorail station to job (mi) 22.329  17.527 22980 17.608 23.656 17.051
ATCEF distance (mi/week) 152.570 129.872 154.147 132429 151.551 127.704

Observations 133,127 7,650 3,003

Notes: The unit of measurement for time is hours/week.

average commute time reported in the ACS selected, random sample is 4.7 hours per week.

This is similar to the average automotive commuting time of 4.5 hours per week. Com-

ysis, and a mass download of the amount of data I would need would require prior approval from Google to
avoid violating their Terms of Service.
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muting by carpool results in a longer commute of 6.0 hours per week on average, as would
be expected. Commuting by mass transit results in an average commute of a little over 8
hours per week, while walkers have the shortest commutes, on average, likely due to the
fact that only those with short distances to travel can plausibly walk to work. The aver-
age automotive commute times predicted by the GIS network analysis are about an hour
and a half longer than the reported times, but the average Metrorail commute times are
much shorter. This is likely due to multi-modal commuters who report their total commute
time, but only their primary means of travel. I control for the presence of multi-modal
commuters in the model with the distance from the home and work location to the clos-
est transit station. Home and job locations average just over 20 miles from a Metrorail
station. Commuters travel an average of about 150 miles per week, implying an average
speed across all methods of just over 32 MPH.

Table 9 presents levels-on-levels Ordinary Least Squares (OLS) regressions of reported
ACS commute times on predicted GIS commute characteristics, conditional on traveling
by the given commuting method. The independent variables are the GIS network time
for all modes, save for walking. I use the as-the-crow-flies distance between the home and
work locations to inform pedestrian commute times. These simple regressions show that
the calculated commute times are all positive, significant predictors of the commute times
reported in the ACS. The exception is for walking, likely due to geographic imprecision in
the PUMS data. Pedestrians have the shortest commutes, so they are most sensitive to this
imprecision, making this result unsurprising. The lack of geographic precision is likely also
affecting the controls for distance to the nearest Metrorail station, although it is reassuring
that the more accurate distance to the population weighted home location has the correct
sign.

Unfortunately, there is a great deal of the variation in commute time around the mean
that I am not explaining, as evidenced by the low values of the R?s. This is likely the result
of three shortcomings of the estimation. I have already mentioned the first two: lack of

geographic precision in the publicly available data and unreported multimodal commuting
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Table 9: Baseline Linear Commute Time Regressions

(1) (2 (3) 4) (5)
Auto Carpool  Metrorail Metrobus Walk
Variable Link Link Link Link Link
GIS time 0.226%***  (0,223%**  (,800***  (.630%**
(0.010) (0.030) (0.133) (0.130)
Metrorail station to home (mi) 0.016
(0.080)
Metrorail station to job (mi) -0.061
(0.049)
ATCEF distance (mi/week) -0.003**
(0.002)
Constant 3.205%%%  4,556%%*%  5,056%%*%  5594%%k* ] 85]%**

(0.079) (0.254) (0.459) (0.687) (0.176)

Observations 5,251 593 265 134 152
R? 0.089 0.085 0.140 0.151 0.028

Notes: The unit of measurement for time is hours/week. Single-starred items are statistically significant

at the 10 percent level, double-starred items are statistically significant at the 5 percent level, and triple-
starred items are statistically significant at the 1 percent level. Standard errors are in parentheses.
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methods. More importantly, I have not yet developed an appropriate measure of congestion
to include in the model. There is a great deal of congestion in Washington, DC, so this
is likely to affect the fit of the model. That the coefficient on Metrorail is much closer to
one than the other coefficients supports this hypothesis, as congestion is much less likely
to cause delays on subways that run on fixed schedules. Regardless of the deficiency, these
regressions show that the GIS network analysis does a reasonable job of modeling commute

characteristics.

4.6 Pricing Data

I also augment that dataset with pricing information from multiple data sources. Olsen et
al. (2012) provides measures of the price of composite consumption (p},) in the form of a
price index for non-housing goods in the given year. Although I do not have variation in
markets that would necessitate the use of this index, my data is a repeated cross section, so
I include this measure to smooth variation in prices over time.

I construct the opportunity cost of living in each home (p) by modifying a procedure
outlined in Bayer et al. (2005) and Bayer et al. (2007). The details of this procedure can be
found in Appendix A.1.2.

Finally, for the per mile price of each commuting method (pik), I use data from the
Energy Information Administration (EIA) for gas prices and the National Transportation
Database (NTD) for average fares. Gas prices based on the average annual regular reformu-
lated retail gas price in dollars per gallon for the lower Atlantic region. I calculate average
fares from the NTD by dividing total annual fares collected by total annual passenger miles

for the given mode.
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Chapter 5

Estimation

I develop an original estimation approach that uses many of the tools described in Train
(2009), and estimate my model with the Maximum Simulated Likelihood (MSL) methods
of Geweke (1989), Hajivassiliou (1990), Keane (1994) (GHK), and Stern (1997). The
individual likelihood contribution is the probability of observing the sample data given the
parameters (0) of the model. Simulation is required to evaluate these probabilities because
they contain multidimensional integrals over the joint distribution of the errors that cannot
be evaluated analytically.

This chapter proceeds by first explaining the empirical specification for single indi-
viduals. Although I do not fully detail the empirical specification for cohabiting couples,
the second section provides an overview of how the single person household empirical
specification will be modified to account for cohabiting couples. I conclude by discussing
how the parameters in the model are identified and the potential biases introduced by the

assumptions I make.

5.1 Single Person Household Empirical Specification

For single person households, the likelihood contribution involves three dependent vari-

ables. Define the observed housing choice of family i as /4 and the observed commuting
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method of the head of family i as k. Let P, = Pr(h,k,t; | ©) denote the probability of
observing family i living in home /4 and the head of family i commuting by method k for
a duration of t;;; conditional on the parameters in the model. I proceed as follows: first,
I define the structure of the errors in my theoretical model. Next, I show that P; can be
decomposed into the product of the joint probability of observing a family living in house
h and commuting by method k and the probability of commuting for a duration of #;;;. I
then detail the estimation routine for each factor separately. Finally, after explicitly defin-
ing each of those terms, I am able to write the likelihood function and its simulated analog.
Note that, in this section, I drop the m subscripts for notational convenience since I am

currently only using the DC CBSA in estimation.

5.1.1 Error Structure

There are two types of errors in the single person family utility functions: an idiosyncratic
error and unobserved heterogeneity terms. The former, e;,;, accounts for the difference
between the predicted and observed commute times. The latter comes in three forms: 1)
Ui and u; are the unobserved components of preferences for housing amenities and leisure
time, 2) &, is the unobserved component of the value of house 4, and 3) Aj is the unob-
served time value of commuting method k. These errors are assumed to be known to the
agents but not the econometrician. I proceed by first discussing the idiosyncratic error term,

then discussing the role the unobserved heterogeneity terms play in estimation.

5.1.1.1 Idiosyncratic Error

Since t;; 1s not a choice variable, but rather is determined by the choices of & and k, then
any deviation in the predicted #;;; from the true travel time is assumed to be idiosyncratic.
I assume this error is distributed as e;;; ~ iidN (0, Gez).l This adds a variance parameter to

the model, 662.

! Although it simplifies simulation of the choice probabilities, the assumption that the e are iid is not
necessary for estimation. A more complex correlation structure can be accounted for with a GHK simulator.
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5.1.1.2 Unobserved Heterogeneity

Define each of the three types of unobserved heterogeneity errors and their distributions
as i = (Wi, ui) ~ N (o,szﬁ), & = (€1,...,Ezn) ~ N(0,Q8), and & = (it .., Ay ) ~
LN <O, Ql). The latter distribution is chosen to ensure that A; is bounded below at 0, as
is required by the theoretical model. In order to both normalize the model and reduce the
computational burden of the estimation routine while still retaining a rich set of covariance
terms, I impose structure on Q€ and Q*. I do so by defining SZ-H and A; as being functions of
correlated and idiosyncratic components, in ways that still allow for substantial correlations
across related choices. Specifically, I assume that unobserved preferences for homes are
correlated for the same individual within and across neighborhoods, but not across homes
themselves. Similarly, unobserved preferences for time spent commuting are correlated
within commuting method classifications, but neither across classifications nor individual
commuting methods. I explain these restrictions in greater detail in the subsequent para-
graphs. I detail the specification of A; first, as it is more straightforward.

Let ii,; be an error associated with traveling by commuting method category & and
wix an idiosyncratic error associated with commute method k. Formally, assume that A;;, =
exp (Zﬂ; + w,-k), where 1 ~ iidN (O, G%) and wy, ~ iidN (0,07).> L assume there are three
commuting method categories: personal, mass transit, and other; with the “Car, Truck,
or Van” and “Carpool” commuting methods belonging to the first category, the “Bus,”
“Streetcar,” “Subway,” and “Rail” commuting methods belonging to the second, and the
“Other” category belonging to the last. The intuition behind these classifications is best
explained with an example. Individuals who have a high taste for the convenience and
flexibility of driving one’s own automobile to work (for instance, the ability to park near
one’s origin and destination) are also likely to have a high taste for the relative convenience
and flexibility of carpooling (the ability to park or be picked up and dropped off near one’s

origin and destination). This would be evidenced in the model by the fact that the errors

ZNote that this preserves the log-normal distribution of A; because the sum of two normally distributed
random variables is normally distributed, and the exponent of a normally distributed random variable is log-
normally distributed.
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associated with “Car, Truck, or Van” and “Carpool” would be correlated through their
common Zﬂ; term. This specification sacrifices some flexibility, but still retains much of the
important detail of the model and reduces the number of parameters in Q* from 28 to 2.
Similar to k, let  index neighborhoods and £, be the component of the error associated
with neighborhood h. Assume that €, = €, + V;,, where the first term is allowed to be cor-
related with other members of its group and the second term is idiosyncratic: & ~ N (O, QF )
and vy, ~ iidN (O, 612)) 3 Previous studies have defined neighborhoods based on Census ge-
ography at either the Census Block, Block Group, or Census Tract level.* There are 51,972
Census B:loc}is, 2,979 Block Groups, and 1,040 Census Tracts in the DC CBSA. Estimation
of the m elements in QF at even the Census Tract level is computationally infea-
sible. In order to allow for covariation in neighborhood unobservable characteristics in an
estimable manner, I define the correlation between any two given neighborhoods as be-
ing a decaying function of the distance between those neighborhoods. The intuition behind
this specification is that the unobservable characteristics of two neighborhoods that are one
mile apart should be more closely correlated than the unobservable characteristics of two
neighborhoods that are five miles apart, and beyond a threshold distance, there should be
no correlation. This specification assumes that there is an underlying continuum of unob-
servable neighborhood characteristics that dies out as distance from the given neighborhood
increases, as opposed to a discrete change in unobservable characteristics when one crosses
from the given neighborhood to “the other side of the tracks.” I define neighborhoods at
the Census Tract level and let 7 and j index neighborhoods. I also define d}l ;to be the
“as-the-crow-flies” distance between the given neighborhoods. I define a spline function

that weights the correlation between the Ath and jth neighborhoods as

3Since N7 is large, assuming that vy, ~ iidN (0,QV) would be intractable because it would mean that
there are N*! variance parameters to estimate.

“Bayer et al. (2008) find evidence of neighborhood effects in hiring networks at the Census block level.
Bayer et al. (2004) uses Census block groups to define neighborhoods when examining racial segregation in
housing markets. Bayer et al. (2007) uses school attendance zones, as well as including controls at both the
Census block and block group levels. Kiel and Zabel (2008) find that multiple definitions of a neighborhood,
including Census tracts, are jointly relevant in hedonic equations.
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57 (i) = 1(diy=0)&+1(0<diz<1)dj0n
+ 1(1<di;<3)did+1(3 <djp<5) djsd,

where 1 (+) is an indicator function equal to 1 if the argument is true and O otherwise. Note
that J;l 7= 0implies that h = j. Since manipulating a 1040 x 1040 matrix is computationally
costly, I do not estimate QEF . Instead, I allow neighborhood unobservables to be correlated
by calculating £ as a weighted sum of the standard normal errors associated with each
neighborhood. By defining n fj ~ iidN (0, 1), the definition of &; can be stated formally as
£j = 2;71410 5%7157. This specification reduces the number of variance/covariance parame-
ters in QF to be estimated to four (the elements of the vector §).

After specifying the errors in this way, there are five vectors of unobserved heterogene-
ity errors. To keep subsequent notation compact, I define a vector of the unobserved het-
erogeneity terms as &; = (ﬁi,éi, vi,;li,w,-). Let 6 = {Bﬂ,ﬁg, v vK 6, Q1 8, oy, G;L,Gw}
be the full set of parameters to be estimated. After imposing structure on the errors in my

model, I am able to reduce the total number of variance/covariance parameters to 11.

5.1.2 Joint Probability of Observing ¢, i, and k

Next I use the error structure to define the probability of observing the sample data. The
probability of interest is P, = Pr(h, k,t;n; | 6). Using the law of total probability, I write this

probability as

P = Pr(tihk | Q)Pr(h,k | anihk)v 5.1

since e; 1s the only random component of #;,;. The first factor is the probability of ob-

serving individual i commuting for a duration of #;;, and the second is the probability
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of observing individual i living in house 4 and commuting by method k. For notational

compactness, I define Pr (f | ) = P! and Pr(h,k | 0, ;) = PIK.

5.1.2.1 Probability of Observing

Recall from Equation 3.1 that the observed commute time is a function of both a linear
index of the characteristics of individual i’s commute and an error term. The probability
that the individual’s observed commuting time is equal to the commuting time the model
predicts is the probability that this equality holds for the observed home and commuting
method: P/ = Pr( ihk = exp (KihkyK + eihk) forhand k). Explicitly, this is

P 1 0 (ln (tink) _Kihk7K>
' Oclink O, ’

where ¢ (-) is the standard normal probability distribution function (PDF). Note that there
1s one such condition for the observed 4 and & for each individual, as I do not observe com-

mute times for home and commuting method alternatives that individuals did not choose.

5.1.2.2 Conditional Probability of Observing / and k

I outline the empirical specification of PiH K for an arbitrary N homes and NX commuting
options in individual i’s market. PI-H K'is a statement about the joint probability that N7 NX —
1 optimality conditions hold for each individual, conditional on e, = In (fynx) — Kine Y% . 1
proceed by first defining the optimality conditions as functions of the errors and the data.
Then, I condition on a subset of the errors and recast the optimality conditions in a tractable

form for estimation.

Optimality Conditions Observing an individual living in house 4 and commuting

by method k implies that Uy, > Uy ¥V (h', k') # (h,k).> After algebraic manipulation, it

3Optimality conditions can take one of three forms. Either the individual prefers the observed combination
of hand k to

1. Living in another house and commuting by another method (Uyy, > Uy VH # h& k' # k),
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can be shown that these conditions are equivalent to e, > f (&, Dyyw) ¥V (W, k') # (h,k),
where f(-) is defined to compactly represent the optimality condition as a function of the
errors and data; &; was defined in Section 5.1.1.2 as the vector of unobserved heterogeneity
terms; and Dy = {ciyww, Hi, Ky } 1s the set of data that varies over conditions and is

used for notational convenience. Explicitly,

f(gl.?Dih’k’) = IH(T—Ll

T —L;—exp (iﬂ; + Wik) Link

Coalyl ~ ~
In <7’h k ) —eXp(XiﬁH-H.li) [(Hih_Hih/)YH“'S,'}T"Uih_S,‘i/ _Dih’]

Cihk
exp : exp (KB v ur)

— K Y = Ay —wipr-

Bounds of Integration Evaluation of the joint probability that all of these optimality
conditions holds cannot be accomplished analytically or numerically. Instead, I proceed
by conditioning on e;,; and &; to make the problem tractable, then evaluating the multi-
dimensional integrals that result using simulation methods. This requires determining the
region over which each of the errors in &; are integrated. Placing bounds on the errors
being integrated is necessary to avoid situations where draws of the simulated errors are
such that no values of the remaining, unintegrated, errors (the e;;;/) are consistent with the
data. Figure 2 provides a general, graphical representation of this situation, abstracted to
two dimensions. The amorphous, shaded region depicts the values of the errors that are
consistent with individual i choosing home h and commuting method k. The errors in &;

must be drawn such that B < &; < A, otherwise no value of e;, is consistent with what is

2. Living in another house and commuting by the observed method (Ujpx > Uy V h' # h), or
3. Living in the observed house and commuting by another method (U, > Uy VK # k),
so the notation (1, k') # (h, k) is equivalent to ' # h and/or k' # k. Regardless of which of the three conditions
is relevant for the given combination of /' and k', I can express the optimality condition as a function of e;; .
®Note that I replace &, = €7+ v, and A = exp (Zi,; + wik) when defining this function. Also note that

I do not replace #;;, as it is observed directly in the data for the individual’s chosen home and commuting
method.
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observed in the data.

Specifically, the the value of e is fixed by the estimation of P/ (by the relationship
that e = In(f;) — Kihk}/K ), and all of the errors in &;, save for wy, are integrated over
their full distributions. Simulating w;j; from an untruncated distribution in this manner
would be problematic, as there are some feasible values of w;; for which no value of a
given e, could explain the observed outcomes. This would occur when the random
components in the leisure term associated with the observed choices (U;x) are such that
Oy — 0. Leisure enters the utility function as the argument of a natural log (see Equation
3.2), so as leisure goes to zero, the utility of the given choices goes to negative infinity.
This is not a problem for an unobserved combination of a home and commuting method,
as it ensures that Uy > Uy for the given (B k') # (h,k), however, such a situation is
a concern for the observed combination of choices because the model cannot explain an
individual choosing options that result in a utility of negative infinity. To ensure that the
the optimality conditions can be evaluated, it must be the case that leisure is positive for

the observed choices. This necessitates a bound on wj,. It can be shown that the condition

that Z;5; > 0 forhand k is equivalent to the condition that w;, < B}” where
BY =In(T — L;) — K VX — iﬂ} — ey forhand k.

Proof that bounding the other errors in &; is unnecessary is straightforward, as the e
errors enter the optimality condition linearly. Since the support of e;p 1s the real line,
any observed outcome can be justified by an e;;s in the appropriate range, so long as
f (&, Dijyr) can be evaluated. The restriction that wy, < BY ensures that the numerator of
the second term in the argument of the natural log of f(&;,Djy) is positive. The only

concern, then, is that the denominator of the second term in the argument of the natural log
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in f(éi)Dih’k’> is such that

T —L;—exp (1112 + Wik) Link

Cin'k! H H g & <0.
aq)(h(sz)—emxxﬁ +u»KHm—Hw)74fm+vm—%y—vw]>

T—Li—

exp(XiB+u;)

This occurs as the denominator goes to zero (exp(-) — 0). With algebraic manipulation,
it can be shown that this is a corner solution. It only occurs when Uy, > Uy for the
given (1, k") # (h,k) regardless of the value of e;ys. Intuitively, this means the utility from
composite consumption and housing amenities associated with the observed choice is great
enough that that it doesn’t matter how little time it takes to commute from the unobserved
home and/or by the unobserved commuting method, the individual will always choose the
observed combination. When this is the case, I do not need to calculate f(&;, Djyyr) to
evaluate the probability of the given optimality condition holding.

I define ¢ (&;) as the joint distribution of &; and B; as the upper bound on ;. The over-
bar on ¢ denotes that the distribution is truncated for some elements of &;, namely the wj.

Similarly, the bound on the joint distribution of &; is only binding for wy;, so

Blw ifgij = Wik

o else.

The probability that &; is less than B; is equal to the Pr(wj < BY). I define this proba-

ﬁ:@(ﬁ). (5.2)

bility as P? where
Ow

Joint Probability After integrating over the errors in &;, the optimality conditions can
be written in a form that is tractable for estimation. The probability of interest, P#X, is the

probability that individual i chooses house 4 and commuting method . It is expressed as

PZHK = Pr (f(éi?Dih/k'> < e,-h/k/‘v’ (h/,k/) 7é (hyk) ’ eihk) .
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Using the law of total probability and the assumption that the e;;/;/s are independent of both

can be written as the product of NYNK — 1

each other and the the other errors in &;, PiH K

conditional probabilities, so

Pt = [T Pr(f (& Diww) < e | e & < Bi) PP

(W' K) 7 (h,k)
After integrating over the joint distribution of the errors in &;, conditioning on e;; =
In (tix) — Kihk}/( , and replacing the remaining e;;,ss with their standard normal component
according to the relationship e;p = G.Niyir, 1 write the joint probability of observing a
family living in house /# and commuting by method & in a form that is tractable for estima-

tion as

L I e L IC TS
(W k") (k)

. Ce

5.1.3 Likelihood Function

Recall that P, = Pr(h, k.t | 0) is the probability of observing family i living in home 4,
commuting by method k, and commuting for a duration of #;;; conditional on the parameters
in the model, and P, = Pi’Pl-H K Assume that there are N total families in the data. The log

likelihood function is

In (P/P/X). (5.4)

I
™=

~
—

InL(0)

5.1.4 Simulation

Evaluation of the multidimensional integrals in L(6) is not possible analytically or nu-

merically, so I use a GHK simulator to evaluate the choice probabilities. Following Stern
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(1997), I compute N® draws of &;,€B; from ¢ (). I define P2 = Pr (W,'kr <BY (Zl,;r)> as
the simulated analog to PiB (Equation 5.2). I replace the analytical likelihood contribution

of P#K (Equation 5.3) with its unbiased simulated analog as

R
pHkr _ 1 NZ 11 [1 & (f(ﬁm&h/k/))] PB
NE 3 ) O

r=1

1 NZR HKR
— Yy pHKR
NR = r

The simulated likelihood function is

N
InL(0) = Zln(
i=1

1M
— ZPZ.IZKR] p;) 7 (5.5)
N r=1

and estimation proceeds by MSL. I maximize the simulated likelihood function using the
optimization routine outlined in Berndt, Hall, Hall, and Hausman (1974) which is com-
monly refereed to as the BHHH algorithm. I implement my estimation routine using the
Fortran programing language and the OpenMP application programming interface. The
latter allows me to use parallel processing to decrease the computational burden of the

routine. ’

5.2 Cohabiting Couple Household Empirical Specification

Work to define the empirical specification for cohabiting couples households is ongoing.
The family likelihood contribution is the probability of observing a joint home location and

individual commuting outcomes for each partner. This results in five dependent variables.

7 As Fortran is not officially supported by the Census Bureau, I use the GNU Fortran (GFortran) compiler
that is included in the Unix distribution that is run on the Census servers as part of the GNU Compiler
Collection (GCC). As such, I do not have access to any commercial libraries of numerical analysis functions,
so the bulk of my estimation routine was written from scratch.
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Formally, let P, = Pr(h,k*,t4 ,kP,tE | 6) denote the probability of observing family i
living in home 4, partner A commuting by method k* for a duration of tﬁlk, and partner B
commuting by method k? for a duration of tl.lflkconditional on the parameters in the model.

The empirical specification builds on its analog for single individuals, explained in Sec-
tion 5.1. I specify the aggregator function such that individuals have egoistic preferences
(see Section 3.2.2), modify the error structure to allow for distinct, but correlated, commut-
ing and preference errors for each partner, add the error associated with the sharing rule
to the error structure, write the probability of observing the sample data based on this new
error structure in a tractable form, and finally modify the GHK simulator accordingly. So
long as the probability of interest can be written in a tractable form, this is a straightforward

extension of the single individual household specification.

5.3 Identification

5.3.1 Why a structural model?

In thinking about identification, it is important to first explain the need for the econometric
sophistication used in my model. Quite simply, this is due to the fact that a randomized,
controlled experiment that would address my research question would be impossible to im-
plement, and no natural experiment exists that would allow me to disentangle the separate
effect each of the many factors and motivations in my model have on observed responses.?
To do so, a natural experiment would have to impact individuals in such a way that their
responses would be through one of the channels I am modeling, but no others. With such

interconnected decisions as residential location and commuting method, both of which are

influenced by a multitude of factors, such a natural experiment is hard to imagine.

8Being able to explain why individuals react the ways they do is important for predicting responses to
the policies I am investigating. For instance, Baum-Snow and Kahn (2000) examine how much expansions
to rail transit systems cause individuals to switch from other commuting methods to commuting by rail.
They find evidence of an increase in rail transit use in areas near expansions, but they cannot determine
what percentage of that increase is due to new riders and what percentage can be attributed to former rail
commuters who moved from another location to take advantage of the infrastructure improvements.
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While my structural model comes at a cost in terms of both implementation and un-
derstanding, it also yields important benefits. Estimation of preference parameters allows
me to perform simulations that address a myriad of questions about the effects of proposed
policies that have not yet been widely implemented. The model also allows for the exten-
sion of the collective model to a new arena in order to account for the fact that spouses
behave differently than single individuals when making housing and commuting decisions.

Addressing this issue directly would not be possible without a structural model.

5.3.2 Exclusion Restrictions

The main concern with a model of the joint decision of where to live and how to commute
is that both decisions are made simultaneously. The housing location decision pins down
where an individual is commuting from. Conversely, the availability and characteristics of
commuting options are characteristics of the home themselves. In order to separately iden-
tify each effect without relying on functional form assumptions, I need at least one variable
that exogenously affects each given decision alone. I use intrinsic, physical characteristics
of the home that are observed in the data (e.g. number of rooms and property age) as an
exclusion restriction to help identify the parameters pertaining to the commuting mode de-
cision.” T do not allow an individual’s commute to factor into the decision to purchase a
home beyond its effect on leisure, so I exclude commute characteristics from the housing

equation to identify the parameters relevant to the decision to purchase a home.

5.3.3 Identifying Variation

I encourage the reader to refer back to Equation 3.2, the individual’s full choice problem
for single person families, and Section 5.1.1, that details the model’s error structure, while

reading this section.!® T begin by discussing the identification of the commute time pa-

This is a valid restriction so long as the characteristics of homes vary with location. In other words, this
restriction fails if one can buy an identical home in every location.

10 A5 the empirical component of my intra-household model is still in progress, I discuss identification only
in the context of single person families. Extension of the intuition in this section to cohabiting couple families
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rameters, which are the coefficients in the commute time equations (yX) and the standard
deviation of the commute time error (0,). The amount of time an individual reports tak-
ing to travel from her home to her job depends on the distance between the two locations
and the speed the individual travels. The GIS commute characteristics I produce (GIS
predicted times) are used to capture the effects of these factors on commute time. The
commute characteristic parameters, }/K , are identified by the covariation of commute char-
acteristics (Kjp;) with the commute time the individual reports to the ACS (¢;;r). There is
no guarantee that the individual will choose to travel the exact route mapped by the GIS
algorithm, and even after conditioning on route, the characteristics are not perfect descrip-
tors because of congestion, speeding, variation in mass transit schedules, and measurement
error in the network data. This means that model-predicted commute times will deviate
from the observed times. Variation in these deviations identifies the standard deviation of
the commute time error, G,.

The error associated with commute time, e;;;, is necessary, but not sufficient, to ex-
plain why individuals do not always commute by what the model determines is the optimal
method. Individuals choose commutes based on considerations other than financial and
time costs. Some individuals in the data choose to commute by a method that is more
expensive, both in terms of money and time, than a given alternative. This can be ex-
plained by the individual having a high preference for the costlier method, be it because
an automotive commuter enjoys listening to music in his car or a mass transit commuter
enjoys reading the paper on the subway.!! The method-specific A, error accounts for these
preferences. It is separately identified from e;;; by the exclusion restriction that e;; varies
with homes, because of error in predicting commute-location-specific-times, but A; does
not. The variance-covariance parameters in Q* are identified as in other polychotomous
discrete choice models (see Bunch, 1991). The intuition for the identification of these pa-

rameters is that if an individual does not choose the commuting method that results in the

applies similar logic.

"Note that it can also be explained by the individual having a low preference for the unchosen option
because she finds driving on congested roads to be stressful or because she does not like to stuff herself into
a crowded bus.
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greatest utility according to the model (for the purposes of exposition, say automobile),
then the unobserved preference for automotive commuting, A; 4./, must be such that it was
not the best option (4; 4, is large relative to other A;). If when individuals do not se-
lect commuting by car, they frequently do not select another given method (say, carpool),
then there is a positive correlation between the unobserved preference for those commuting
methods. Alternatively, if individuals do frequently select carpool when the (hypotheti-
cal) model-predicted best option of automotive commuting is not chosen, then there is a
negative correlation between commuting by car and by carpool.

Now I consider the parameters involved in the housing choice, ¥ and Q¢. Individuals
choose a home based on its intrinsic characteristics (e.g. number of rooms), locational char-
acteristics (e.g. proximity to mass transit), and cost. The covariation of observable housing
characteristics and the observed housing choice identifies the Y parameters. There are
assuredly additional characteristics of the home that the econometrician does not observe.
An individual may prefer an open floor plan and choose a large home with few rooms. An
individual may select a home because it is close to family members (or select a home that
is on the other side of town). The housing-specific error term, €, is necessary to explain
cases where an individual selects a home that is observationally inferior to other homes in
her feasible choice set. The variance-covariance parameters in QF are identified as in other
polychotomous discrete choice models (again, see Bunch, 1991). The intuition in this case
is similar to the intuition for identifying the parameters in Q*. If an individual does not
choose the home with the highest observable quality (H;;,y) she can afford, the unobserved
preference for that home, €;,, must be such that it was not the best option (€, is negative
or relatively small if positive). If when individuals do not select that home, they frequently
also do not select another given home, then there is a positive correlation between the un-
observed quality of those homes. If, on the other hand, individuals do frequently select the
other given home, then there is negative correlation between the errors.

Finally, while the errors mentioned previously are necessary to explain deviations from

the predicted optimal housing and commuting methods separately, the joint decision of
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housing and commuting method needs to be explained as well. The random preference
parameters, o, OCiH , and ch, are necessary to explain deviations from the predicted joint
decision. As I am modeling a discrete choice, I must normalize one of the parameters, as the
level and scale of utility are irrelevant. I do so by setting o7 = 1, which addresses the issue
and is equivalent to fixing one of the variance terms.!? The remaining parameters account
for the fact that even if two individuals value all homes and commutes the same, they may
be observed living in two distinctly different homes and commuting by different methods.
This would occur if they had different relative preferences for composite consumption,
housing amenities, and leisure time. I provide intuition with three illustrative examples.
In all, I assume that two individuals agree in their valuations of housing and commuting

options, and they both commute to the same location.

1. Assume that these two individuals live in homes that are identical in every way,
save location. The first lives in a home that is closer to their shared job location,
so he has a shorter commute, but that commute is more financially costly than the
commute taken by the second individual. The former has a greater preference for

leisure relative to composite consumption than the later, so o > o5.

2. Now assume that the two individuals are neighbors as well as coworkers, so they have
identical commutes, both in terms of time and financial costs. If the first individual
lives in a better, more expensive home than the second, then he prefers consumption

of housing amenities to composite consumption, so ch{ > ch .

3. Finally, assume that these two individuals live in homes that are of equal cost and
commute by methods of identical financial cost. The first lives in a downtown apart-
ment that is close to their shared job location. The second lives in a suburban home
that is farther from work, but has more housing amenities than the downtown apart-
ment. The former has a greater preference for leisure relative to housing consumption

l
than the later. This indicates that a—}, > —.
a o)

12See Train (2009) for an excellent treatment of the subject.
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Regardless of case, the covariation of the observable individual characteristics (X;) and
consumption of housing (Hj,) with housing and commuting outcomes identifies the B
parameters. Similarly, the covariation of the observable individual characteristics (X;) and
leisure (7;,;,) with outcomes identifies the B ¢ parameters. The individual observables will
not perfectly predict the preference parameters, hence the inclusion of error terms asso-
ciated with the individual’s preference for housing amenities (u;) and leisure (u;) in the
model. Correlation between higher order moments of the deviations and higher order mo-

ments of the consumption of housing and leisure identifies the variance parameters in QH.

5.3.4 Threats to Identification

Although this work advances the literature in several important ways, assumptions are nec-
essary to keep the model tractable. As stated earlier, I assume that an individual takes her
city of residence, family structure, vehicle ownership, and employment as given; the loca-
tions and hours of firms and schools are independent of residential choices and transporta-
tion options; there are no household production effects; and both members of a cohabiting
couple have the same preferences for the well-being of their children. I discuss the potential
bias that each of these assumptions introduces in the remainder of this section.

Defining the local residential market as closed at the metropolitan level is necessary
to limit an individual’s choice set when searching for a home. It has the potential to bias
results to the degree that individuals select their city of residence based on characteristics
of the residential or commuting markets in the city. For instance, if an individual chose
to locate in a city because of a lack of congestion or the availability of a particular com-
muting option, my model would understate the preference that the individual has for those
amenities. On the other hand, if employment opportunities alone drive the choice of city,
then this source of bias might arise only if firms choose locations on the same basis, which
I will not be able to model.

Excluding family structure decisions, such as marriage and fertility, are another possible
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source of bias. For example, Dettling and Kearney (2011) find that changes in house prices
have differential effects on the birth rates of home owners and non-owners. If an individual
decides to have children because their home location is more conducive to raising children,
my model will overstate the impact of those children on the individual’s value of the given
housing amenities. A similar logic applies to the sign of the bias that children might cause
on commuting amenities (e.g. a shorter or more flexible commute). These concerns are an
interesting topic for future research.

Ignoring automobile ownership decisions is a more problematic assumption in the di-
rect context of my model. My model removes commuting by car from the choice set of
a household that does not own an automobile, but an individual who does not own a car
may do so because she has a high distaste for commuting by car. My model will understate
this individual’s distaste for commuting by car, but explicitly modeling automotive owner-
ship decisions is not supported by the available data. I observe very little about automobile
ownership: only how many vehicles are available for use by members of the household.
Fortunately, concern over this bias is mitigated by the fact that the automobile ownership
rate is quite high: 87.4% of the families in my sample have at least one car per adult in the
family.

Assuming that labor market decisions are exogenous also is not benign. In my model,
I treat individuals as searching for a place to live subsequent to finding a job. However, the
converse could also be true. This causes bias if, for example, an individual with a high dis-
taste for commuting trades proximity to her home for wages when accepting employment.
If so, my model would return a biased estimate of this individual’s aversion to commuting,
as it will explain some of the residential choice as a function of low wages preventing the
individual from being able to afford a long commute, understating the individual’s distaste
for commuting. It is important to note that all of the residential choice studies I cite in
Section 2.2 make a similar assumption. The alternative would require modeling job search
behavior, which is not possible given the available data, as I observe only minimal charac-

teristics of the individual’s current job.
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The assumption that the locations and hours of firms and schools are independent of
my choice variables is implausible. Both are likely to locate in response to the distribution
of residential housing and factor local commuting conditions into their decision of how
to set their hours of operation. Again, I provide an example of how this might lead to
bias. If firms locate close to neighborhoods where a critical mass of individuals reside, my
model will overstate the aversion those workers have to commuting long distances. I justify
this assumption similar to the justification for the assumption that the agents in a perfectly
competitive market are price takers by assuming that any individual’s choice of residence
and method of commuting can neither influence where nor when firms and schools operate.

Assuming that there are no household production effects associated with commuting
decisions is problematic if a long commute relative to that of an individual’s partner re-
sults in an offsetting set of household production responsibilities. If that is the case, it
would make long commutes relatively more desirable than they otherwise would be, and
my model will understate aversion to commuting. This concern is beyond the scope of the
available data, as there is no one source of data on individual residential, commuting, and
time use decisions.

Finally, the assumption that parents have the same preferences for the well-being of
their children is a possible source of bias, as there is evidence that parents do not have
shared preferences over children. Perhaps the most well-known example is Lundberg et
al. (1997), which shows that a policy shift that resulted in a change in the recipient of
child benefits from husbands to wives resulted in a change in the demand for children’s
clothing. If parents have different preferences for their children, my model will produce
biased estimates of the sharing rule. If the parent with a high taste for her children’s well-
being gives up some of her private consumption to attain better amenities for the children,
then her sharing rule parameter would be biased down and her partner’s (with a relatively
low taste for their children’s well-being) would be biased up. It is not clear whether the bias
will be positive or negative, as it is not clear whether bargaining would result in the parent

with the high preference gaining more for her children or being compensated with more
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personal consumption for allowing the children to less well-off. Blundell et al. (2005) show
that the collective model can be used in instances when members of the household have
different preferences over the public good, but this task is left for future research. While
feasible from the point of view of the collective model, the requirements for estimation of
my model are daunting. Partners having different preferences over the public good implies
a different unobserved heterogeneity term associated with each house for each partner. This
complicates the estimation routine and adds to the number of parameters to be estimated.
Despite these shortcomings, it is important to remember that that my model makes sev-
eral key advances by jointly modeling residential choice and commuting method at the
individual level in a way that allows for a rich heterogeneity structure and incorporates
collective household decisions. I remind the reader that Langer and Winston (2008) pro-
pose a joint model of residential choice and commuting mode similar to the one I outline
but opt for a different research design because “the data and modeling requirements of a

disaggregate approach... are formidable.”
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Chapter 6

Results

This chapter summarizes the results from my estimated model. I proceed by first presenting
the parameter estimates and standard errors. Since my model contains discrete outcomes,
the parameter estimates cannot be interpreted as the effect of the explanatory variable on the
outcome, so I also present accompanying marginal effects. The second section compares
aggregate moments generated from the model with the true moments found in the data, and
the third section more formally tests the model using several different specification tests.
Finally, I discuss and perform policy simulations.

Although I have been able to estimate my model, I have not yet completed the calcula-
tion of all of the aforementioned results. Where necessary, I outline what will be calculated

and presented as part of the published version of this research project.

6.1 Model Parameter Estimates

I present preliminary estimates from the model based on the PUMS data that lacks geo-
graphic precision in terms of home and job locations (see Section 4.4 for more details).
I am in the process of calculating marginal effects, so these coefficients are estimates of
utility parameters. They can be interpreted as affecting utility, but not the probability of

choosing a particular home or commuting option. Although imperfect, these estimates are
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interesting, both at face value because they indicate how observables affect utility, and be-
cause they provide baseline against which to compare estimates based on restricted-access
data. They are also useful as they provide evidence that the Fortran code that executes the
estimation routine functions properly, both through examples of sensible values for param-
eters that should not be directly affected by the lack of geographic precision in the data and
instances of insignificant values for coefficients that are based on noisy geographic data.

I estimate the model based on single individuals in the selected, random sample. There
are 1,990 households in the selected, random sample, of which 973 are headed by single

individuals.

6.1.1 Housing Consumption Parameter Estimates

Recall from Equation 3.2 and Section 5.1.1 that the housing parameters are ¥, §, and oy.

Estimates of these parameters and the associated standard errors are included in Table 10.

The first four parameter estimates describe the type of building the individual lives in.
The baseline, omitted category is an apartment building with less than ten units. Surpris-
ingly, single-family-attached homes are preferred to single-family-detached homes, given
the negative coefficient on the former and the positive coefficient associated with the latter.
This may be due to the lack of geography available in the data, as attached homes are more
likely to be located in areas dense with other urban amenities like as restaurants, shops, etc.
Attached homes are are preferred to apartments of all sizes, as evidenced by the positive,
significant coefficient estimates of the second parameter and the negative coefficients for
the third and fourth parameters. The estimates also indicate that smaller apartment build-
ings are preferred to buildings that contain more units. These are believable estimates, as
are the results that that living in a home with more rooms increases the utility one gets
from that home and that older homes decrease utility (although the property age topcode

parameter indicates that this effect reverses in sign past some critical age).
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Table 10: Housing Consumption Parameter Estimates
Variable Estimate  Std. Error

Housing Characteristic Parameters (y7)

Single-family home-detached -0.190%** 0.011
Single-family home-attached 0.053%%*%* 0.012
10-49 apartments -0.335%** 0.013
50+ apartments -0.210%** 0.007
Number of rooms 0.169%*%* 0.005
Property age -1.812%%* 0.030
Property age topcoded 0.628%** 0.046

Second Moment Parameters (Q°)

Same neighborhood (&) -0.093*** 0.003
Neighborhoods within 1 mile (;) -0.025%** 0.003
Std. dev. of housing amenity error (G;,)  14.921%%* 0.036

Observations 973

Notes: Single-starred items are statistically significant at the 10 percent
level, double-starred items are statistically significant at the 5 percent level,
and triple-starred items are statistically significant at the 1 percent level.

There are very small, negative effects for the 6 parameters that govern how correlated
the unobserved values of neighborhoods in close proximity to one another are. This is
unsurprising when using PUMS data that is requires randomly assign homes to neighbor-
hoods. The standard deviation of the idiosyncratic housing error is large relative to the
parameter estimates and indicates the amount of variation in housing characteristics that
is not explained by the observed characteristics. While adding geographic precision will
surely help improve the fit of the model, I am also working to include more housing and
neighborhood measures to address this issue. All parameters are precisely estimated based
on the low values of the standard errors. This is a common feature of nonlinear models,

and I am working to construct more informative measures of fit (see Sections 6.2 and 6.3).
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6.1.2 Leisure Parameter Estimates

The commute time parameters are Y% and o,, and the commute mode preference parameters

are 05 and 0,,. Estimates of these parameters appear in Table 11. The first 15 parameters

Table 11: Leisure Parameter Estimates
Variable Estimate  Std. Error

Commute Characteristic Parameters (v%)

Auto GIS time 0.267*** 0.000
Carpool constant 3.718%%* 0.003
Carpool GIS time 0.118%** 0.000
Metrorail constant 3.445%*% 0.004
Metrorail GIS time -0.026%** 0.003
Home: miles to closest Metro station -0.078%** 0.003
Home: miles to closest Metro station squared 1.919%** 0.035
Job: miles to closest Metro station -0.025%** 0.005
Job: miles to closest Metro station squared 1.956%** 0.027
Metrobus constant 3.621%** 0.009
Metrobus GIS time 0.184 %% 0.001
Walk constant 2.263%** 0.005
Walk distance 0.328**%* 0.000
Walk distance squared -1.439%#* 0.004

Second Moment Parameters (o, and Q*)

Std. dev. of commute time measurement error (G,)  1.225%** 0.001
Std. dev. of mode category preference error (03 ) 0.000%** 0.000
Std. dev. of mode preference error (o,,) 0.000%** 0.000
Observations 973

Notes: Single-starred items are statistically significant at the 10 percent level, double-
starred items are statistically significant at the 5 percent level, and triple-starred items
are statistically significant at the 1 percent level.

are from the commute time equation. For each commuting method (save walking), I include
a mode specific constant and the GIS predicted commute time. I normalize the automobile
constant to O for identification. I control for multimodal commuters who report commuting
by subway by including a quadratic function of the distance to the nearest Metro station

from both the home and work location in the Metrorail commute time equation. Finally,
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as in Table 9, I use the as-the-crow-flies distance between an individual’s home and job to
inform the walking commute time.

As would be expected, increasing the GIS predicted commute time increases reported
automobile commute times. The estimate of 0.267 is similar in magnitude to the estimate of
0.226 from the baseline linear commute time regressions (see Table 9), although the latter
specification contained a constant. The analogous coefficients on carpooling and Metrobus
are also positive, but it neither is similar in magnitude to the baseline specification. The
Metrorail coefficient is of the wrong sign, but the distance to the Metrorail station effects
indicate that time is a convex function of distance. This is consistent with individuals who
need to travel greater distances to catch the subway traveling to the station by faster meth-
ods (ie, driving instead of walking), however, these results must be interpreted with caution
given the lack of the geographic precision in the data. As-the-crow-flies distance is a pos-
itive predictor of walk times, although the convex relationship between the two indicates
that it is only a positive predictor for short distances. Finally, the standard deviation of the
idiosyncratic commute time error, e, is the amount of variation in commute times that is
not being explained by the model.

The standard deviations of A and w are close to zero, indicating that individuals view

time spent commuting as a close substitute for leisure time.

6.1.3 Taste for Housing Consumption / Leisure Parameter Estimates

The preference parameters are those included in the as: B¥, B and Qf. Recall that
the taste parameter that governs the relative weight the individual places on composite
consumption (o) is normalized to one for identification. I present the parameters that

govern relative taste for both housing and leisure in Table 12.

The leisure constant indicates that leisure dominates consumption of both housing and
all-other-goods. The coefficients on the observable characteristics are similar in magnitude.

Men prefer both more housing consumption and more leisure than women. As individuals
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Table 12: Taste Parameter Estimates

Housing (o) Leisure (o)
Variable Estimates  Std. Error Estimates Std. Error
Individual Characteristic Parameters B B’
Constant 0.000? - 4.514%%%* 0.007
Male 0.586%** 0.005 0.5971 %** 0.004
In(Age) -0.703%** 0.000 -0.742%%* 0.001

Second Moment Parameters (QF)
Variances of taste parameter errors 0.004%*%* 0.000 0.042%%* 0.001
Covariance of taste parameter errors ~ 0.013%**%* 0.001 - -

Observations 973

4 Parameter normalized to zero to ensure identification.

Notes: Single-starred items are statistically significant at the 10 percent level, double-starred items
are statistically significant at the 5 percent level, and triple-starred items are statistically significant
at the 1 percent level.

age, they place less value on housing amenities and leisure (and more on composite con-
sumption). These parameters results are not intuitive and require further examination. The
standard deviation of u; (u;) is 0.004 (0.042). It indicates the amount of the preference for

housing (leisure) that is not explained by individual observables.

6.2 Predicted Outcomes

In order to test how well the model performs, I compare three types of predicted, aggre-
gate moments, evaluated at the estimated values of the parameters, é, with their real-world
counterparts from the data. Each of the moments corresponds to one of the modeled out-
comes: commute time, commute mode, or housing choice. I begin with commute time, as
it is the simplest outcome to calculate and is an input into other predicted outcomes. Next,
I present moments relating to commute mode choice and finally housing choice.

To clarify the notation used in this section, recall that the observed housing choice of
family i is A, the observed commuting method of the head of family i is k, and the head of

family i commutes for a duration of #;;;. I define hasa possible home (from the affordable
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choice set of homes) family i could live in, k as a potential method (again, from the feasible
choice set) the head of family i could use to get to work, and 7;;; as the predicted time it

would take her to get to work from the given home by the given method.

6.2.1 Commute Time

To measure how well the model predicts commute times, I compare predicted commute
times to the distribution of actual commute times from the data. Recall from Section 5.1.2.1
that fy = exp (K'Y~ + ein), so the predicted commute time is 75; = exp (K;;; 7%). The
commute characteristic parameters, yX, are estimated in the P! equation which uses the ob-
served commute time as the response variable. The YX are identified from the covariation
of the commute characteristics (K;;) and that response variable, but they also appear else-

where in the model. They are used in the PHX

equation to proxy for unobserved commute
times, so accurate estimates of commute times are an important input into the residential
and commute mode choice parts of the model. I present predicted aggregate measures by
commute method in Table 13. After the first row displays the mean and standard devia-
tion of commute time by method from the data, the second presents the analogs to those
moments based on predicted commute times from the observed home and by the observed
method (75 for (fz,l%) = (h,k)). The table shows that the model under-predicts automo-
tive commute times and over-predicts the other commute times. The model does not do
a reasonable job of matching the first and second moments of commute times (likely, in
part, due to the lack of geographic precision in the PUMS data). Of particular concern,
predicted Metrorail times are off by many orders of magnitude. I am in the process of re-

fining the specification based on the restricted-access data in order to address this issue for

the published version of this project.
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6.2.2 Commute Mode Choice

The probability an individual chooses a given (fz,7c) pair is the predicted analog to Equation
5.3, the joint probability of observing a family living in house # and commuting by method
k. I define this predicted probability as 13121]5{ = Pr(h,k | é,fi%).l Summing this probability
over homes for a given k gives the predicted probability that the commuter from family i
commutes by method k: PY = Pr(k| 8,i;;) = 2]:1 PIE. T take the mean of these proba-
bilities over individuals by commute mode to calculate the average predicted probability of
commuting by the given method. Formally, I calculate the average predicted probabilities
— 1 1 A ~
as P = mzﬁlggjw.
I am in the process of calculating these probabilities and will present and analyze them

as part of the published version of this research project.

6.2.3 Housing Choice

As analogous aggregate measures to the ones detailed for commute mode choices (that
aggregate szZkK to show the average probability each individual lives in each home) are
not meaningful because each home can house only one family, I aggregate in a different
manner. | am interested in how policies that affect commutes influence the distribution of
housing locations, so I use geographic information on housing and job locations to calculate
the aggregate probability that individuals live within a given distance range from their work
locations. I index these ranges with / and define the bounds of these ranges as (E, Z)
Recall from Section 3.1.3 that djj is the distance between house 4 and job j that individual
i travels by commuting method k. I define an indicator function that is equal to 1 if d;{j
falls within range /: 1 (E <d ;< Z) Finally, I can write the individual probability of
interest as Pl = Pr(<d_l <dj; < Z 10,750) = Z]i:]fl Z’iz’:l ng] (<d_l <dy; < Z) V1, and it’s
aggregate analog as PZH = 1% Zﬁvzll 135 Vi.

I am in the process of calculating these probabilities, as well as developing other mea-

"Note that this notation means that I use the predicted value of 7, not the observed commute time, in
calculating the predicted probability of observing (A, k). For all other (h,k), this is the only option.
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sures of interest, for the published version of this research project.

6.3 Specification Tests

To assess the accuracy of the model, I conduct a several specification tests. In this section,
I explain how I conduct a chi-square goodness-of-fit test to asses how well the model per-
forms. I am also working to develop additional specification tests including Wald tests of
whether relevant subsets of the parameters are jointly equal to zero and Lagrange Multiplier

tests to confirm that the model is properly specified.

6.3.1 Chi-Square Goodness-of-Fit Test

I use chi-square goodness-of-fit tests to determine how well the model reflects the data. I
perform two tests that relate to the previously outlined outcome probabilities. First, I test
the null hypothesis that the observed and predicted proportion individuals commuting by

each mode are identical. Formally, this test is

Hy: PEN' = PEN'

Hy: PENT # ISIA(KNIforeachk.
The y? statistic for each commuting method is

_ _ 2
[N’ (P,fN’ —PEN )}
o :
PEN

which has a y? distribution with NX — 1 degrees of freedom.
I also perform a similar test on the observed and predicted average probability of living

within a given distance range from work. The test and y? statistic are defined similarly to
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the previous case as

Ho: B (dy) N = B (dg ) V'

Hy: PIH (dhj)NI =+ le (d}[j> N! foreachl,

and
o (1) ()]

PH ( d;{_;) NI

Letting N denote the number of distance ranges indexed by [, the x statistic follows
a distribution with N¢ — 1 degrees of freedom. As I have not yet calculated the predicted
probabilities, I am unable to present the results of these tests in this dissertation, however

they will be completed as part of the published version of the research project.

6.4 Policy Simulations

Congestion is the result of the nature of impure public goods (roads are non-excludable,
but are rival) that causes them to be provided by the government at zero marginal cost.
The rivalry leads to external costs because each additional driver on the road imposes costs
on her fellow commuters that she does not fully bear. Direct quotas and Pigouvian taxes
on vehicle miles traveled during congested times of the day are politically infeasible first
best solutions (Parry et al. (2007)). Congestion pricing has been gaining traction as a more
feasible alternative means of reducing congestion, and Shoup (1997) advocates applying
congestion pricing principles to public street parking to reduce congestion, amongst other
benefits.> All of these policies have the potential to influence both the monetary and time
costs of commuting. I seek to better inform the discussion of ways to reduce congestion
by performing simulations that illuminate the response to shifts in costs caused by a given

policy. My model allows me to account for the response to policy shifts both in terms of

’I explain the details of several congestion pricing policies in Section 2.4.
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the distribution of commuting method and residential location decisions.

I am in the process of using my model estimates to performing these comparative stat-
ics. I plan to conduct policy experiments based on numerous policies. Based on the pa-
rameters of a given policy, I first alter the pecuniary and time costs of the commutes faced
by individuals in my model. Then I allow for three types of responses. First, I allow for a
short-term response in terms of mode choice only. Second, I allow individuals to switch to
a different commuting mode and/or move to a new residence in the medium term. Finally,
in the long term, I also allow the housing stock to respond. The first two responses require
only that I include a measure of congestion that feeds-back individual responses into the
model.? The later requires estimating an additional housing stock equation. Although I do
not estimate an equilibrium model, I can perform equilibrium comparative statics using the

following algorithm:
1. Change the cost inputs based on the parameters of the given policy,

2. Calculate the distribution of k that the model predicts with the new costs (do the same

for A in the later two scenarios) ,
3. Recalculate t;,; based on the new distribution of k (and 4, where applicable),

4. Recalculate pH based on the new distributions of k and % (in the later two scenarios),

then

5. Repeating the previous steps until the process converges to a state where individuals

no longer change their commuting mode or housing location.

The results of these simulations will allow me to determine not only the effects of a given
policy on congestion, but also how much of that effect is due to mode switching and how

much is due to individuals moving to new residential locations. I can also analyze which

3] have experimented with aggregate measures of congestion to capture this effect, but they are not iden-
tified by time variation alone with only one market included in my estimation. Instead, I plan to develop a
measure of congestion based on the number of individuals commuting from an area around a given home to
an area around a given individual’s job location.
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individuals are affected by the given policy to determine whether the policy is regressive
in nature. This is an important consideration that is often cited by opponents of congestion

pricing policies (Parry et al. 2007, Lewis 2008).
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Chapter 7

Conclusions

My research develops a structural model of family residential choice and family member
commuting that makes contributions to both the transportation and residential choice litera-
tures. I do so by addressing the endogeneity of residential choice in analysis of commuting
behavior with an individual-level model that has a rich unobserved heterogeneity structure.
I have gained permission to and am currently estimating the model using restricted-access
ACS data. The restricted-access data contains geographic precision that allows me to use
GIS network analysis to painstakingly model the optimal commute between each pairwise
combination of home and job locations by each commuting method observed in the data.
I have obtained reasonable, preliminary estimates using PUMS data that indicate that the
Fortran code I have written to optimize my likelihood function works. Finally, I outline pol-
icy simulations that are directly relevant to an emerging policy, the effects of which we do
not yet fully understand, that has the potential to drastically reshape the urban environment
in this country.

I also develop and am in the process of implementing a methodology that relaxes one
of the most untenable assumptions in the residential choice literature: that family members
living under the same roof share the same preferences for the characteristics of that home.
Future work will focus on improving the fit of my model, conducting the policy simulations

I outline, and adding cohabiting couples to my estimation routine.
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Appendix A

Appendix

A.1 Data

A.1.1 Census Commuting Questions

Pisarski (2006) provides a list of shortcomings in the Census journey-to-work data that be-
gins with the fact that the data contains no information “about aspects of trips using more
than one mode of travel to get to work.” According to the Census 2000 Brief “Journey to
Work: 2000,” Census data report the “usual means of transportation to work.” When a per-
son usually commutes via multiple transportation methods, only the method that covers the
greatest distance is recorded (Reschovsky 2004). Given the prevalence of park-and-rides,
transfer passes, and bike racks on buses, it is clear that multimodal travel is a reality in
modern commuting, but there is little data available on this type of behavior. The National
Household Travel Survey (NHTS) is the only national survey that measures mode transfers.
Polzin and Chu (2005) calculate that 20 percent of all daily travel trips on transit are multi-
modal based on NHTS data, but the authors cannot reconcile this estimate of the prevalence
of transfers with aggregate counts of the number of individuals who board transit vehicles

reported by the NTD and the American Public Transportation Association (APTA). This
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discrepancy suggests that the NHTS figure may be an underestimate. '

While my research does not address this concern directly, and I am not able to identify
the exact secondary means of transportation to work, I can control for the effect of multi-
modal travel on commute time for some modes. To do this, I calculate the as-the-crow-flies
distance from the fixed locations where individuals can enter and exit transit systems to
their home and office locations. I assume that all commuters travel to the closest transit sta-
tion to their home and exit at the closest transit station to their work location when traveling
to work. To account for the fact that, for instance, those who live close to a station most
likely walk or bike there, and beyond some threshold distance, individuals likely take the
bus or drive to the station, I allow for differential effects by distance. Unfortunately, this
control only works for multimodal commuters who report a form of rail as their primary
means of commuting. I cannot apply a similar control to those who report commuting by

road as their primary means of commuting.

A.1.2 Opportunity Cost of Housing

The ACS includes two types of housing costs depending on the tenure type of the family
being surveyed (ie, home owner or renter). Home-owners self-report a measure of total
property value and renters report their monthly rent. Bayer et al. (2005) and Bayer et
al. (2007) explain that there are three concerns with interpreting this data as a continuous
measure of the opportunity cost of living in the given home. First, both the property value
and rent variables may not reflect the true market value of the home. For home owners, the
likely culprits are misreporting and overestimating the value of one’s home. The real estate
market is fluid and keeping up with it is costly, so home owners may not be savvy to the
current market value of their home if they did not purchase it in the recent past (or if they
have no intention of selling it in the near future). They may also have a more optimistic

outlook on the value of their home than is warranted. While renters are much more likely

Note that the NHTS figure reports the number of transfers on daily travel trips of all types, not just trips
made commuting to and from work. It is not clear whether controlling for this distinction biases the estimate
up or down.
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to know their monthly rent, that rent may reflect a tenure discount if they have lived in the
home for an extended period of time. A second issue is that, property values are reported
in intervals in surveys prior to 2008 and are top-coded in all years. Finally, one must also
adjust the owner and renter home value measures to be compatible across tenure types, as
home values reflect the present discounted value of the flow of value from the home and
rents reflect the stock value of the home.

This section details how I account for these issues and construct a consistent measure
of the opportunity cost of living in each home from the available data. I primarily build
on the data cleaning procedures of the Bayer et al. papers, however, since both studies
use data from the 1990 Decennial Census for the San Francisco Bay Area, I modify their
methodology to more appropriately fit my model and data. While the questions asked in
recent Decennial Censuses and the ACS are remarkably similar, my data differs in three key
ways. First, my data is a repeated cross section that spans multiple years as opposed to just
one. Second, my data pertains to a different metropolitan area. This is noteworthy because
of institutional differences in the way property taxes are assessed. Finally, property values
are reported categorically in Census products prior to 2008 and continuously thereafter.

I proceed by detailing adjustments made to property values, rent values, and tenure

type.

A.1.2.1 Property Value

Home-owners are asked to self-report the value of their home and property and this data is
reported as a categorical, top-coded variable. Bayer et al. (2007) find that owners frequently
report their home’s purchase price, not its current value. There is evidence that this effect is
present in my data as well. Homes sold within the previous year have, on average, reported
values that are 10% higher than observationally equivalent homes purchased between 20
and 30 years earlier, all else equal.> In addition to misreporting, it has been shown in

the literature that home owners frequently overestimate the value of their homes using

2 All calculations reported in this appendix are based on 2005-2008 ACS PUMS data.
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comparisons of self-reported and housing transactions data (see, for instance, Goodman
Jr. and Ittner (1992), Kiel and Zabel (1999)). While I cannot determine the prevalence of
overestimation of home prices due to the lack of transactions data, Banzhaf and Farooque
(2012) find that price indices based on self-reported home values are highly correlated with
those based on transactions data and are a practical alternative to more accurate, but less
available, transactions data. To correct for the differential effects of misreporting across
different categories of the family’s tenure in the home and account for the overestimation
of home values in my self-reported data, I estimate a house value hedonic at the community
level using interval regression and use this regression to predict a continuous variable from
the categorical, top-coded data. Doing so at the community level is equivalent to computing
a price index (see Banzhaf and Farooque (2012), footnote 10), so this measure should
perform as well as one based on unavailable, but more precise transactions data.

Formally, I interval regress log home value on tenure categories, annual property taxes
paid, their interactions, housing characteristics, and year indicators. I do so separately by

Public Use Microdata Areas (PUMAs).? 1 estimate the following equation
In(V,) = aytenure,+ opln(taxy)+ o3 (tenure, X In(taxy)) + aaHy, + Qsyeary, + a)}‘l/,

where V), is the self-reported house value, tenurey, is a categorical measure of the length of
time the family has resided in home 4, tax;, is the self reported property taxes paid, Hj, is
the set of housing characteristics, yeary, is an indicator for the year the data was collected,
and (o}‘l/ is an error. Bayer et al. (2007) are able to use the rules associated with Proposition
13 to transform property taxes paid into an estimate of the home’s current value. I depart
from their framework by including property taxes paid instead of this estimate, which I
cannot easily calculate because property tax laws vary over time and with geography in

my sample.* However, since I am running separate regressions at the PUMA level, tax

3Estimates based on regressions at the PUMA and year level did not substantially improve results.
“Washington, DC assess property taxes at the district level. Virginia assess property taxes at the county,
city, or town level, and Maryland assess property taxes at the county or city level.
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laws should be close to consistent by regression, although rates will undoubtedly vary over
time. If this is the case, o will have predictive power so long as homes that have higher
property taxes have higher values and it will return a linear approximation to the property
tax cost in the PUMA. To the extent that multiple jurisdictions may exist in a given PUMA,
o will return a weighted average of these costs. To reduce the influence that misreporting
associated with longer tenured homes has on the fitted values of the hedonic, I interact the
tenure and property tax rates. Finally, I replace V}, with V}, in subsequent steps to correct

for misreporting.

A.1.2.2 Rental Value

The existence of substantial tenure discounts in the rents of residents based on their length-
of-residence in a given home is a well known phenomenon in the literature. For example,
Marshall and Guasch (1983) are unable to reject the existence of such discounts. Goodman
and Kawai (1985) find that the rent of recent movers is between 4% and 11% greater than
that of all renters, depending on specification. More recently, Arévalo and Ruiz-Castillo
(2006) report discounts in Spanish housing markets ranging from 3.2% to 83.5%, depend-
ing on the length-of-residence (up to 25 years). Discounts in line with these estimates exist
in my data: renters who are in the second year of their lease receive a 4% discount relative
to renters in the first year of their lease, all else equal. This discount increases to 50% for
individuals who have lived in their residence for between 20 and 30 years.

Tenure discounts are believed to be the result of unobserved heterogeneity due to depre-
ciation and/or state dependence due to match quality between the landlord and the tenant.
The first explanation posits that if landlords postpone performing maintenance or recon-
ditioning a home until tenant turnover, homes with longstanding tenants will be of lower
quality than those available in the market. To the extent that the available information in
the data does not accurately measure the quality of a unit (for instance, the data provides
the number of bedrooms, but not how recently the carpet in those bedrooms was replaced),

this depreciation will be unobserved and explains the existence of a tenure discount as a
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means of accounting for quality differences. An alternative explanation is due to state de-
pendence. Arévalo and Ruiz-Castillo (2006) explain that turnover is costly not only for
the tenant, but also the landlord (the costs of filling a vacancy include advertising costs,
forgone rent, etc.). In addition, landlords may want to retain “good” tenants who treat the
unit well and coexist with their neighbors. Landlords may do so by offering a discount to
tenants who reveal themselves to be of high quality (see Goodman and Kawai (1985) for
a theoretical model). Note that it is not possible to determine which phenomena leads to
tenure discounts and both are likely to play a role in their existence.’

These discounts are of consequence when I construct a measure of market rent for every
home in my sample. Doing so requires capturing the unmodeled dynamics that generate
tenure discounts. The salient question is: what rent would a family in the model pay in each

home other than the one the family lives in? There are four ways to construct a measure of

unobserved rents, either as

1. The reported rent in the given home, which includes any tenure discounts that the

current tenant has accrued or

2. An estimate of the rent in the given home that excludes the current tenant’s tenure
discount and instead includes an estimated tenure discount based on how long the

family has lived in its observed home or
3. An estimate of the rent in the given home that excludes all tenure discounts or

4. An estimate of the rent in the given home that includes an estimated tenure discount

based on what the current tenant has accrued.

How one interprets the cause of tenure discounts can help to guide the decision of which

method is best, but they all have their drawbacks.

3Ideally, T would be able to model home choice as a dynamic programing problem where individuals
choose their optimal home in each period given their expectations about future utility flows from the home
(net of ownership or rental costs). With multiple observations on renters and homes, I would be able to
separately identify the cause of the tenure discount and adjust the rent each family would face at each home
accordingly. Unfortunately, the data preclude a dynamic model, as they are cross-sectional in nature.
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The first method of constructing a measure of unobserved rents is to naively assume
that the observed rent in the given home is the market rent. This is not sensible because it
implies strong assumptions about the nature of both sources of tenure discounts. If the dis-
count is entirely due to unobserved depreciation, using the observed rent without adjusting
for duration of tenure implicitly assumes that landlords do not perform maintenance on the
apartment before new tenants move in. However, this assumption negates the explanation
for why unobserved depreciation results in a tenure discount that is not captured by con-
trolling for the age of the housing structure. If, on the other hand, the discounts are entirely
due to state dependence, this method of construction assumes that the discount is solely the
result of the characteristics of the landlord (not the quality of the match between the tenant
and landlord). Again, this negates the explanation for why state dependence results in a
tenure discount: the landlord would just offer a low rent to new tenants to quickly fill his
apartment if he was unconcerned with match quality.

The second means of constructing the rent measure equalizes the family’s discount
across all homes. The method is paramount to assuming that the family, however many
years ago it was searching for its current home, faced the options that currently exist in the
data and made a decision about where to live. The benefit of “turning back the clock™ in this
way is that doing so not imply any assumptions about the nature of the unobserved depre-
ciation or state dependence that generates the discounts. However, this method is difficult
to implement in practice because it would require adjusting the time dependent observable
characteristics of the family members (such as age and marital status) back to what they
were when the family last moved. Additionally, it is not an accurate representation of the
decision a family thinking about moving in the given period faces, as it assumes that the
family has perfect foresight and decides where to move once and stays there. The bias
that using this method would introduce into my model depends on the reason tenure dis-
counts exist. To the extent that tenure discounts are due to unobserved depreciation (and the
discount prices this depreciation appropriately), the family would be indifferent between

moving to a higher cost, recently maintained home and staying in their depreciated home
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with a discount, so no bias would be introduced. To the extent that tenure discounts are due
to state dependence, families in my model would be more apt to move because they would
not forfeit their accrued tenure discount by moving. If this is the case, this method would
overstate the response to a policy that shifts the distribution of housing.

The third method of constructing the rent measure removes tenure discounts from all
homes. It is equivalent to assuming that the family is living in the current home and con-
sidering moving to the other homes in the choice set. Whether consciously or not, this is a
choice that families make each period. If the cause of tenure discounts is entirely due to un-
observed depreciation, this means of constructing the rent measure assumes that landlords
perform maintenance on homes before new tenants move in and adjust rents accordingly,
so it is consistent with the unobserved depreciation theory. If discounts exist because of
state dependence, this method assumes that they are the result of a good match between the
both the tenant and landlord, which cannot be known to either the landlord or the tenant
when they first sign a lease. This method is also consistent with the state dependence the-
ory. While all of these implications are reasonable, the drawback of this method is that the
family’s housing history is endogenous because the discount is not removed from the home
the family is currently living in.® This means that my model would understate a family’s
willingness to move in response to a policy shift because doing so would mean forfeiting
an accrued tenure discount. Again, to the extent that tenure discounts are due to appro-
priately priced depreciation, this concern would be mitigated because the family would be
indifferent between moving to a higher cost, recently maintained home and staying in their
depreciated home with a discount. However, if the discount is caused by state dependence,
this issue would be of greater concern.

The fourth method is similar to the first, but smooths the tenure discount by using the
aggregate market discount instead of the individual home/landlord/renter discount. As all

four methods of construction have drawbacks, I proceed by following the fourth method

This problem could be ameliorated by adjusting rents for tenants in their observed homes to reflect a
market rent that excludes tenure discounts, but doing so would mean that some individuals would not be able
to afford the home they live in.
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because it mitigates the extreme assumptions of other methods, it can be implemented
without requiring ad-hoc adjustments to the time dependent observable characteristics of
the family members, and it most closely reflects the standard in the literature set forth by
Bayer et al. (2005) and Bayer et al. (2007). To model the market rents as the rent associated
with the home reported in the data after smoothing with an aggregate measure of the tenure

discount, I regress
In(R,) = Pitenure,+ BoHy, + Bsyear, + @y,

where R}, is the self reported gross rent, tenurey,, yeary,, and H, are as described in the home
value equation, and a)}’f is an error.” Again, I run separate regressions by PUMA. I use K},

as a measure of the market rent in the given home.

A.1.2.3 Adjustment for Tenure Type

Data on owner and renter home costs in the data are not compatible because home values
represent the present discounted value of a flow of services from the home and rents are
the stock value of those services. In order to calculate the opportunity cost of living in an

owner-occupied home, I regress

In(m,) = Yiop+ YHy+ vyear, + @y,
by PUMA, where
V, ifo,=1
Ty, =
R, else,

"To be consistent with home values, I use contract rents instead of gross rents (gross includes applicable
home utility costs such as heat, electricity, etc.). In order to account for the effects of the inclusion of utilities
in rental costs in some homes, but not in others, I follow Malpezzi (2008) and include indicators for the
inclusion of a given utility in the rent in Hj,.
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1 if hisowner —occupied
op =

0 else,
Hj, and year), are as described in the previous equations, and a)fl’ is an error. | then use the
estimate of y; to convert home values to a measure of the rent the family would pay if it
were renting the home. After making these adjustments to the data, the price of housing as

defined in my model, is

piy = exp(f, (04, = 0)).
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