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Abstract

Over the last decade, exoplanet studies have experienced a revolution. This boom is in

part due to large-scale photometric surveys such as the Kepler mission, which to date has

discovered nearly 5000 credible exoplanet candidates. This vast dataset has stimulated

exoplanet science to advance beyond the stage of discovery and characterization of single

systems, to population studies of exoplanets within our Solar neighborhood. Evolving

in a similar timeframe over the last decade are large-scale spectroscopic surveys, which

provide means for efficient characterization of stars found by Kepler to host planets.

With the combination of planet-finding missions and host star spectroscopic surveys,

we are able to characterize more carefully and precisely the properties of planet-hosting

stars, which in turn gives us a more detailed understanding of the planets themselves.

In this dissertation, we combine information about planet hosting stars as gleaned

from the SDSS/APOGEE surveys and Kepler surveys to uncover the detailed and in-

tertwined links that planets exhibit with the stars that they orbit. We first report on

a relationship that planets show between their host star’s metallicity and the planets

orbital period/semi-major axis known as the period-metallicity relation. We provide a

detailed characterization of this relationship, showing that there is a lack of hot planets

in stars with low metallicities, and provide evidence that the population of planets found

at distances .0.07 au from their host stars are distinctly different from those beyond

that limit. We interpret this transition region as evidence for an inner protoplanetary
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disk boundary that is controlled, in part, by stellar metallicity.

We then extend the impact of stellar chemistry beyond that of just planet period and

stellar metallicity, by examining the relationships between the planet occurrence rate

(the average number of planets per star) and the enhancement of ten individual chemical

elements (C, Mg, Al, Si, S, K, Ca, Mn, Fe, and Ni). We measure the planet occurrence

rate density with orbital period and planet radius, and for the first time ever incorporate

a detailed chemical understanding of planet host stars to track changes in the planet

population due to chemistry. We find that the enhancement of all elements contributes

equally to the enhancement of the planet occurrence rate, with stronger correlations given

for planets with shorter orbital distances. This strong correlation presents a challenge in

some sense, as it is the source of a strong confounding variable when considering changes

in the planetary distribution function with stellar properties such as age and mass. After

demonstrating how such a degeneracy can arise, we motivate the need for systematic,

homogeneous, high-resolution spectroscopic surveys to properly characterize planet host

stars.

In addition to large-scale spectroscopic surveys, the exoplanet field has also seen a

large boom with the addition of Gaia, an astrometric survey which precisely measures

distances to all the stars within the Solar neighborhood, allowing us to determine funda-

mental stellar properties for all of the stars observed by Kepler. To this end, we derive

fundamental stellar properties for ∼163,000 stars in the Kepler field using a homoge-

neous spectroscopic and photometric metallicity scale, enabling us to break degeneracies

in mass and age. Motivated by the higher than expected fraction of evolved stars in

the Kepler field and the difficulty in estimating occurrence rates for evolved stars due

to an inadequate grid of transit templates searched, we develop a new transit detection

algorithm, TraSH-DUMP (TRAnsiting planets with Subgiant Hosts – Detection with an

Unbiased Matched filter Pipeline). TraSH-DUMP utilizes precisely known stellar param-

eters to optimize a transit search for evolved stars, a host star target class not well
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searched by the original Kepler software pipeline. We describe the methodology behind

TraSH-DUMP in detail and compare it to the current state of the art detection pipelines,

demonstrating its competitive sensitivity. The combination of TraSH-DUMP and the cata-

log of precise stellar properties derived set the foundations for a detailed study of planet

demographics and the evolution of planetary systems with age.
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Chapter 1

Introduction

1.1 Background

1.1.1 Exoplanets in a Historical Context

The first extra-Solar planet (a planet orbiting a star other than the Sun, commonly

referred to as an exoplanet) around a Sun-like star, was discovered orbiting a bright star

in the Pegasus constellation (51 Pegasi; Mayor & Queloz 1995). Though the existence

of exoplanets had been considered for decades, and even though planetary-mass objects

had already been discovered outside our Solar system (albeit orbiting a pulsar and thus

representing a planetary system substantially different from our own; Wolszczan & Frail

1992), this discovery gave the first concrete evidence of what astronomers would come

to appreciate two decades later; exoplanets are ubiquitous. Nearly every star on in the

Galaxy is thought to host planets of some kind.

In the 10-20 years immediately following the discovery of the first exoplanet orbiting

a Sun-like star, the discovery of new exoplanets began to fill the literature. The majority

of these exoplanets were discovered via radial velocity surveys, which detect planets

by measuring a doppler shift in a stellar spectrum consistent with a star orbiting the
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common center of mass of a planet-star system. At this time, typical uncertainties in

radial velocity measurements (∼15 m s−1) allowed for the detection of exoplanets with

typical masses ranging from ∼1-10× the mass of Jupiter (MJup), with detection limits

creeping to as low as ∼0.1 MJup by the year 2010. These planets had orbital separations

spanning anywhere from ∼0.01-10 au. Even early on, it was clear that the properties

of exoplanets displayed a wide range of diversity, and with the discovery of dozens of

Jupiter-sized and Jupiter-mass planets, exoplanetary systems could vary dramatically

from our own Solar system.

1.1.2 Transiting Exoplanets and the Kepler Revolution

An alternative method proposed for detecting exoplanets was via transits. A transit

occurs when a planet passes between the observer and star along the observer’s line-of-

sight (see Figure 1.1). During a transit, the integrated flux of the star appears to dip

significantly, as the shadow from the transiting body passes through the observer’s line

of sight. In this way, the diameter of a planet can be estimated, because the amount of

light blocked from the host star during a transit scales as ∼ R2
p/R

2
? (See Figure 1.1).

The first detection of a transiting exoplanet occurred via follow-up photometric ob-

servations of the radial-velocity detected exoplanet, HD 209458b (Charbonneau et al.

2000), allowing for the first time, an estimate of not only the mass of an exoplanet, but

also the radius, and by extension, the density and surface gravity. Immediately, puzzling

results were uncovered. For instance, the mean density of HD 209458b was measured to

be ρp ≈ 0.38 g cm−3, about half the mean density of Saturn, the least dense planet in

the Solar system. With this discovery, the authors remarked that future work would lead

to, “ ... an exciting time for those with an interest in the field”. The next two decades

would prove them correct.

The advantages of transit-search surveys became clear in the coming years. Searching

for transits has several advantages compared to searching for planets via radial velocities
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Fig. 1.1.— A composite image of the transit of Venus, captured by NASA’s Solar Dy-
namics Observatory. The dark spots are Venus at different times during its transit and
demonstrate the (small) decrease in light caused by the shadow of Venus passing through
our line of sight. Unlike with transiting exoplanets, during the transit of Venus we are
able to resolve the shadow itself, which appears as a dark disk that blocks a fraction of
light, δF , equal to the projected area of the planet, δF ≈ (πR 2

p)/(πR
2
?) = R2

p/R
2
?. Image

Credit: NASA/SDO.

(RVs), the second most efficient method to date. First, the survey efficiency can be dras-

tically improved, simply because one can observe many more stars at the same time. The

ability to observe multiple stars via imaging supercedes even multiplexed spectrographs

due to the relative size of the detectors needed. In principle, a star only needs one pixel of

a detector to measure a relative brightness, while for a high-resolution spectrum, a single

star would need (at least) hundreds to thousands of pixels. In the time period where

exoplanet discoveries had just begun, the adoption of CCDs and CMOS detectors by the

astronomical community especially opened up the possibility of wide-field imaging, and

at a high cadence. This new technology, in contrast with previous technology used for

precision photometry such as photomultiplier tubes, made it possible to observe many

stars at once, and uniformly. Another advantage of transit-search surveys was that the
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precision in photometry needed to detect a transit (at least for the Jupiter-sized exo-

planets first discovered) was easy to achieve, meaning that a survey could be designed

with relatively cheap instrumentation and small telescopes. Subsequently, many such ef-

forts have taken place with relative success, discovering dozens to hundreds of transiting

planets since their inception (e.g., Hartman et al. 2004; Pollacco et al. 2006).

Despite the ease in instrumenting these ground-based photometric efforts, there were

still severe limitations in the search for exoplanets via transits. The primary disadvantage

of the transit method is the low likelihood that a planet will transit. For a star with a

given radius, R?, the probability that a planet transits is ∼ R?/a, where a is the orbital

distance of the planet. Because R? � a for a typical planetary system, the probability of

any one star having a transiting planet is minimal. For instance, the probability that a

planet with an orbital distance of 1 au has only a ∼0.5% chance of transiting. Therefore,

for a survey aimed at detecting planets via transit to be efficient, a very large number of

stars must be searched.

Another disadvantage is the duty cycle of a transit. Transits occur relatively quickly,

typically on the timescale of a few hours for the types of exoplanets first discovered, which

is much smaller than the orbital period of the planets. Without a priori knowledge of the

time of transit, only a small fraction (∼ tdur/P ; where tdur is the duration of the transit,

and P is the orbital period of the planet) of the light curve would contain information

useful for detecting a planet. Thus, the probability of actually observing a transiting

planet, assuming it does in fact transit, is relatively small. This is further complicated

by the rotation of the Earth, as the average duty cycle of observations over the course of

a year could only be as high as 50%, and will certainly be lower due to inclement weather,

meaning that the actual observing time needed to detect and confirm a transit, and then a

second (and often third or fourth) transit, needed to unambiguously determine the orbital

period, was actually on the order of several times the period. One strategy undertaken by

some groups to improve the effective duty cycle of observations was to observe from the
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Earth’s South pole, where observing can commence nearly uninterrupted in the winter

months (Crouzet et al. 2010).

However, from the culmination of many ground-based transit searches, it became

clear that the photometric precision of any ground-based observations would be limited

by the Earth’s atmosphere. Effects such as image wander, scintillation, and other issues

caused by turbulence in the Earth’s atmosphere all degrade the observational quality, and

while strategies would be developed to mitigate some of these effects (Southworth et al.

2009; Stefansson et al. 2017), it was not likely that photometric precision from a large

ground-based telescope could ever truly be photon limited, neutralizing the advantage of

large aperture telescopes and high signal-to-noise observations.

With the growing scientific impetus for detecting small planets, the motivation for

a space-based telescope to search for transiting planets picked up steam. The Hubble

Space Telescope made some strides in this direction, providing a proof of concept by

continuously observing a region of the sky centered on the Galactic bulge for 7 days and

discovering 16 transiting planet candidates (Sahu et al. 2006). However, the field of view

of the Hubble Space Telescope was relatively small and as a result, for such a study to

observe enough stars to discover a large number of planets, it would be limited to densely

populated regions of the sky where follow up observations would be difficult. To make a

larger impact, a dedicated planet-hunting space telescope would be needed to monitor a

large number of stars with a high cadence, high precision, wide field of view, and a long

temporal baseline.

The Kepler Mission

The need for a high-precision, space-based photometer to discover transiting exoplanets

was realized in the form of the Kepler space telescope (Borucki et al. 2010). The Kepler

mission has been, to date, the most important contribution in the field of planet demo-

graphics, as it uncovered nearly 5,000 planet candidates over the course of its mission, of
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which ∼2400 have been confirmed, accounting for more than half of the confirmed exo-

planets currently known.1 The Kepler mission was able to achieve this feat by observing

∼200,000 stars in a ∼ 15◦ × 15◦ patch of sky in the Cygnus constellation, nearly contin-

uously for ∼4 years. Without limitations induced by the day/night cycle of the Earth

or the degradation in photometric quality caused by the Earth’s atmosphere, the Kepler

space telescope achieved a photometric precision sufficient to detect small, Earth-sized

planets for the first time. The first five confirmed exoplanets discovered by the Kepler

mission are displayed in Figure 1.2.

Fig. 1.2.— The first five transiting exoplanets discovered by the Kepler mission (Kepler-
1, -2, and -3 were already discovered by ground-based transit surveys prior to the launch
of the Kepler space telescope). The top panel shows the light curve at the time of transit,
along with a schematic representing the relative sizes of the planet, host star, and the
inclination of the transiting planet. The bottom row shows RV observations folded on
the orbital period measured from the light curve, confirming the planetary nature of
the transit signal. The comparisons between these systems highlight how the depth of
transits scale as ∼ R2

p/R
2
?. Figure credit: Borucki et al. (2010).

Many of the major results from the Kepler mission were made possible by the sheer

number of planets discovered (see Figure 1.3). Important results for the field of exoplanet

demographics included the ubiquity of planets, as mentioned previously, but also that the

1as of July 1, 2021: https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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ubiquity of small planets held up in all parts of the Galaxy probed by Kepler. No region

of the Kepler field had any more planets than any other region. One particular discovery,

unexpected given the knowledge of exoplanets at the time, was that the most common

exoplanets (with the possible exception of planets smaller than the Earth, as such a

regime has yet to be adequately probed by transit surveys) were those with diameters

between that of the Earth and Neptune, of which there is no analogue in our own Solar

system. Such planets, referred to as Super-Earths and Sub-Neptunes (or mini-Neptunes),

would become the legacy of the Kepler mission.

Fig. 1.3.— The number of detected exoplanets by year, where the color denotes the
method by which the exoplanets were detected. Left: The number of detected exoplanets
each year. In particular, note the large spikes in years 2014 and 2016 that correspond
to the release of the first Kepler planet candidate catalog (2014) and the statistical
validation of &1000 planet candidates by Morton et al. (2016). Right: The cumulative
number of detections by discovery year, reaching todays total of nearly 4500 known,
confirmed exoplanets.

Biases Inherent in the Detection of Transiting Planets

However, transit search surveys, although responsible for more confirmed exoplanets than

any other planet-search survey, suffer from extreme biases. For one, unlike with radial

velocities, transit signals have a low probability of being observable. An observer has

no control over whether a planet transits, and no amount of technological improvement

could overcome the geometry of a planetary system. Because the transit probability
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decreases inversely with orbital distance, the distribution of discovered transiting planets

are very heavily biased toward short orbital periods and semi-major axes, even more so

than RV surveys which are also biased toward short orbital periods (see Figure 1.4).

In addition to being biased toward short orbital periods due to a geometric bias, the

detection metric for a transiting planet is the transit depth. The depth of a transit is

proportional to R2
p/R

2
?, and is thus skewed toward large planet radii, for a given stellar

radius. Thus, the distribution of detected planets from transit surveys should differ from

the distribution of real planets in two important ways. First, they will be extremely

heavily skewed toward short orbital periods, and therefore orbital distance, and second,

they will be skewed toward larger radii. There is no inherent bias to transiting planets

with respect to mass, except in the sense that mass correlates strongly with planet radius.

1.2 Exoplanet Demographics and Occurrence

Rates

For the purposes of this thesis, we are interested in measuring the demographics of planets

as a way to better constrain theories of planet formation and evolution. Because such

processes can take significantly longer (&105−11 years) than a human lifetime (.102 years)

to occur, understanding the aggregate properties of exoplanets offers a more efficient

method of testing such theories, rather than observing and waiting for a planetary system

to evolve, although such a strategy may be possible in some very extreme cases (e.g.,

Patra et al. 2020; Turner et al. 2021). However, even then such a strategy is unlikely to

produce interesting results on the timescale needed to finish a dissertation.

In studying the demographics of planets, our goal is to recognize patterns and ele-

ments common across all (or a large fraction of) planetary systems. In discovering such

properties, we are able to distinguish between events that are natural outcomes of uni-

versal truths, and those that are the results of unlikely coincidences. These universal
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Fig. 1.4.— A simulated, idealized transit (top) and RV (bottom) survey. Each grey dot
represents one planet in the simulated survey, and each green circle denotes that the
planet was detected. The red lines display the detection limits of the survey. For the
transit survey, the detection rate is low due to the geometric bias of a planet transiting
its host star from our point of view. The lower envelope in this case is set by the ratio
of the transit depth (∼ R2

p/R
2
?) to the noise in the light curve, and the square root of

the number of transits in the survey. The detection rate for an idealized RV survey is
significantly higher than in an idealized transit survey because the geometric bias against
inclination is significantly less severe. Figure Credit: Winn (2018).
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truths provide constraints or clues to the formation or evolution of planetary systems,

but, due to the intrinsic diversity in exoplanetary systems, a large number of planets are

needed to fully recognize such a pattern.

One fundamental measurement that is particularly important for theory to reproduce

is the planet occurrence rate. For the purposes of this work, we define the planet occur-

rence rate as the average number of planets per star (NPPS). Another definition for a

planet occurrence rate that is often adopted may be the fraction of stars with planets

(FSWP) which, although related, is not the same measurement. The NPPS takes into

account stars that may host multiple planets, while the FSWP does not.

While the planet occurrence rate is a conceptually simple measurement, the ratio of

the number of planets to the number of stars, in practice it can be quite complicated to

infer. The difficulty comes not from knowing the number of stars in your sample, or even

from the number of planets that are detected, but in estimating the number of planets

that were not detected by your survey. This quantity is typically recast by estimating

the number of detected planets divided by the effective number of stars in a survey.

For example, if a survey is expected to detect one of every ten planets, then each star

searched would be the equivalent of 0.1 effective stars searched. This estimate requires

a comprehensive understanding of the biases inherent to a planet-search survey, ranging

from biases inherent to the detection method itself to the sensitivity of the software used

to find planets in the data, and a precise understanding of the quality of data.

To further complicate matters, the detection of planets depends severely on the prop-

erties of the planet as well as the properties of the stars being searched. For example,

an important consequence of the relationship between transit depth and stellar radius

is that planet radii measurements are often limited by the precision with which one can

measure the radius of the host star. Because the observations needed to precisely infer

stellar radii are resource intensive, the lack of a homogeneous, precisely characterized

planet-search sample has historically been a barrier in understanding the properties of
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exoplanets. Fortunately, over the past few years, the Gaia mission (Gaia Collaboration

et al. 2018b) has nearly solved this problem by measuring geometric parallaxes to nearly

every star within a few kpc. Using these precise geometric parallaxes with apparent mag-

nitudes and effective temperatures (which are both observationally “cheap” to obtain),

one can apply the Stefan-Boltzmann law to infer the angular diameter of a star, and by

extension the radius of a star (e.g., Berger et al. 2018).

In the sections below, we give a brief overview of known trends with planet occurrence

rates, but first motivate this understanding by providing a brief overview of planet forma-

tion. Then, for each of the planet occurrence trends, we discuss common interpretations

of the trends in the context of the physical processes governing planet formation.

1.2.1 The Classical Picture of Planet Formation

The subject of planet formation is a highly complex topic in its own right, and to de-

scribe it in such a short section of an introduction to a larger work would be an insult

to those who spend entire careers and lifetimes trying to understand these processes.

Unfortunately, we will attempt to do just that.

For the purpose of this work, we will distinguish between two kinds of planets

when discussing formation: giant planets (Rp & 4R⊕, Mp & 30M⊕) and small plan-

ets (Rp . 4R⊕, Mp . 30M⊕). Small planets can be further described by those with

a H/He atmosphere (Rp & 2R⊕) and those without a H/He atmosphere (Rp . 2R⊕).

Because these planets share relatively similar formation pathways at the beginning of

their lifetimes, we will first discuss the general environment in which planets form, before

discussing the differences between the processes that shape these two kinds of planets.

Note, that while binary stars are a natural process of star formation, we refrain from

considering binary stars in this brief discussion, instead focusing on the formation of

planets around single stars. For the purpose of providing a brief review of planet forma-

tion that will motivate the physical interpretations of exoplanet demographics, we will
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loosely follow the discussion from Armitage (2018), and the references therein.

Protoplanetary Disks and the Planet-Forming Environment

As a natural consequence of a molecular cloud collapsing via gravitational instability

to form a star, a disk is generated around the star with which to conserve angular

momentum. It is from this disk of material that planets form and coalesce. In this way,

planet formation is thought to be natural consequence of star formation, which explains

the ubiquity of planets in our Galaxy, as stars themselves are ubiquitous. The disk of

material orbiting the protostar is referred to as the protoplanetary disk, and it is within

this disk that the planet formation processes discussed below occur.

The protoplanetary disk typically extends out to radii of ∼102−4 au and is substan-

tially less massive than the star itself (Mdisk/M? . 10−2). The disk is made up of a

combination of gas and dust from the molecular cloud from which it collapsed. Because

of this, the protoplanetary disk is typically assumed to have, to first approximation, the

same concentration of metals (i.e., elements heavier than H/He) as the star and molec-

ular cloud. However, due to changes in the temperature, density, and a myriad of other

physical processes, whether metals are in the form of ice, dust, or gas depends on the

location in the disk. Generally, the temperature of the disk due to irradiation decreases

with orbital radius, r, by T ∼ r−1/2. The disk typically survives for ∼1-10 Myr, before

high energy radiation from the protostar evaporates and disperses the gas disk.

For the purposes of this work, we are primarily interested in the inner . 1 au of the

disk, as that is the region of parameter space effectively probed by Kepler. At close-in

distances (∼0.01-0.1 au), the boundary of the disk is set by the corotation radius, within

which material is accreted onto the central protostar. Another important location to

consider is the dust-sublimation radius, within which the surrounding temperature is too

high to support dust, which instead sublimates into a gas. At the other end of our orbital

separation regime of interest is the water ice line. The ice line is the orbital separation
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in the disk where water may exist in solid form. Because the location of the ice line is

dominated not by stellar irradiation, but by accretion heating, the location of the ice line

changes with the evolution of the disk, and can be as close as ∼1 au, depending on the

accretion rate. Planets beyond the ice line are generally thought to form more efficiently

because there is more solid material available (ice and dust, instead of just dust), and

because ice tends to coagulate with other ice particles more efficiently than dust.

Planet Building Blocks: From Dust to Planetesimals

To form planets, there must be an efficient mechanism for dust to coagulate together into

bodies of planetary mass. The growth of such bodies is still a bit of a challenge in planet

formation, but can typically be explained on two different scales: dust and pebbles. We

typically take dust to be particles between µm-mm sizes. Pebbles are not always well-

defined in the literature, and are typically taken to mean particles larger than dust, but

smaller than planetesimals. For the sake of this discussion, we take pebbles to be ∼cm to

km sized particles, and planetesimals to be particles with sizes &km, similar to asteroids

in the solar system.

In the protoplanetary disk, dust particles with µm sizes grow to ∼mm sizes by

aerodynamically-controlled collisional growth. Because the gas of the protoplanetary

disk orbits at sub-Keplerian velocities, the dust particles experience drag forces pro-

portional to the difference in velocity between the gas and dust. Locally, the relative

distribution of particle velocities is determined by dust coupling to turbulence in the gas,

allowing particles to collide. At small sizes (. 1 cm), these collisions are dominated by

van der Waals forces which cause the particles to stick together. However, at larger sizes

(∼0.1-1 cm), collisions from dust particles are equally likely to cause fragmentation, so

collisional growth stalls.

In addition to a fragmentation-coagulation equilibrium, ∼mm to cm sized particles

experience radial drift due to pressure gradients in the disk, the direction of which is typ-
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ically assumed to be inward (as the global pressure profile of the disk decreases with ra-

dius), which implies that ∼cm sized particles are likely to drift into the star on timescales

of ∼103 years. Thus, the growth from ∼cm sized pebbles to ∼km sized planetesimals

must happen very fast and cannot occur via collisional growth.

One potential solution to this problem is the streaming instability (Youdin & Good-

man 2005). In this scenario, pebble-sized objects tend to cluster together, which ef-

fectively negates the drag force felt by the cluster (as pebbles are shielded from the

headwind) and halts radial drift. Larger numbers of pebbles join these clusters, which

then begins a runaway process. Eventually enough pebbles are clustered together to

self-gravitate and collapse to form planetesimals. Simulations seem to suggest that this

process can form ∼km sized planetesimals on dynamical timescales. The result of this

process is a planetesimal mass distribution that is extremely top-heavy, i.e., most of the

mass ends up in heavier planetesimals. The radial drift timescale for these larger mass

planetesimals is sufficiently large that gas drag is no longer a significant barrier to planet

formation.

Core Accretion

Once a population of planetesimals is available, the outcome of collisions depends on

the energy of the collisions, relative momenta between the two objects, and the material

properties of the two objects. For planetesimals with higher velocity dispersion, collisions

will fragment planetesimals leading to a cascading reaction where interactions increase

the velocity dispersion, and grind bodies down to smaller particles.

However, if the planetesimal disk is kinematically cold, then a putative body, which

we’ll refer to as the planetary core, can accrete nearby planetesimals without exciting the

velocity dispersion of other planetesimals in the disk. In this regime, and if the escape

velocity of the planetary core is greater than the velocity dispersion of the disk, vesc � σ,
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then there is a runaway accretion which can be described analytically by the form,

Ṁcore ∝ Σ

(
1− v2

esc

σ2

)
, (1.1)

where Σ is the surface density of solids in the disk and Ṁcore is the accretion rate of the

planetary core. This phase leads to runaway accretion as vesc increases when Ṁcore > 1,

and σ remains roughly constant. Eventually, as the accreting body’s mass grows, it

begins to excite planetesimals in its vicinity, dynamically heating the disk locally, and

soon approaches the regime where vesc/σ ∼ 1. In this phase, the accretion rate of the

planetary core slows down and allows other planetary cores in the system to grow. In this

way, this mechanism is thought to form a system of small planets on nearly circular orbits,

and the formation of larger planets is halted by the local excitation of planetesimals in

the disk.

This model typically explains the growth of small, terrestrial planets without H/He

atmospheres. In addition to the processes described above, if the core is able to grow

to Mcore & M⊕, then the core is able to form a bounded hydrostatic H/He envelope,

resembling a planet similar to Neptune or Uranus. Planetary cores with this bound

envelope are thought to be the progenitors for planets with Rp ∼ 2-4 R⊕. This envelope

is thought to help trap accreting pebbles, which further accelerates the planetary core to

grow via pebble accretion.

This model can be further extended to giant planets. The primary difference is that

giant planets are thought to form at greater distances (∼3-10 au) where there is more solid

material available in the form of ice. Once the core reaches a critical mass of ∼10-20 M⊕,

the mass of the core is then sufficient to accrete gas directly from the protoplanetary

disk, leading to rapid accretion as the planetary core is massive enough to tap into an

additional supply of material.

However, it is worth noting that the picture described above makes several assump-
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tions that have been challenged in the literature. First, this picture of planetesimal-driven

formation assumes that most of the solid material is locked up in planets, and that there

is not significant radial motion. The assumption that dust is mostly locked up in planets

is in conflict with observations of planetary systems that have uncovered large amounts

of dust, and the radial drift of ∼cm sized pebbles appears more significant in simulations

than given in the above picture. In fact, in many regimes, planetary cores may grow more

efficiently via pebble accretion than via the planetesimal-driven growth model described

here. Second, the assumption that a planetary core of a few M⊕ contracts a static, bound

envelope is likely not valid. 3D simulations seem to indicate that the gaseous envelope

formed at this stage is actually recycled with its surroundings, rather than being bound

as predicted by 1D models (e.g., Lambrechts & Lega 2017). These effects change the

thermodynamic properties of the H/He envelope and the exact consequences of these

results are still being explored and debated in the literature.

In-Situ Formation versus Migration

Another important aspect of planet formation neglected in the discussion above is that

of migration. For instance, the above discussion implies that giant plants have to form

at long periods. Therefore, the presence of giant planets at short periods must invoke

migration for the classical planet formation paradigm to be consistent with observation.

Type I migration is typically important to consider for small planets that grow to &0.1-1

M⊕ while the gas is still present in the disk, which is thought to be the case for many of the

Kepler planets. This mechanism generally results from torques in the disk caused by the

Linblad resonances and corotation resonances. Migration caused by Linblad resonances

generally results in inward migration, while migration caused by corotation resonances is

a complicated function that may result in either inward or outward migration, depending

on the pecularities of the disk.

Migration is still not a fully understood problem, and the possibility of migration
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tends to complicate the interpretation of planetary demographics. One method for un-

derstanding the role of migration is via the internal structure of planets. Planets that

have formed outside the water ice line are thought to have different interior structures,

and therefore different densities, than those formed close-in. This is because the solid

material accreted onto the planet itself is a different composition. However, mass mea-

surement needed to make such inferences are difficult due to the limited brightness of

typical Kepler planet hosting stars and the lower mass of the Kepler planets.

1.2.2 Trends in Exoplanet Demographics

In this work we tend to classify planets based on their orbital period and their radius,

as these are the observable properties from transit surveys. The orbital period, P , is

simply a proxy for orbital distance, as P 2 ∝ a3, where a is the semi-major axis of the

planet’s orbit. In addition, the orbital period of a transiting planet is measured, at least

in the context of this work, with negligible uncertainty (i.e., σP � P ), providing a useful

metric with which to characterize these planets. In the following sections, we tend to

describe and classify exoplanets using these properties. In addition, due to the biases

inherent in the Kepler survey, the majority of the trends discussed in this section are

for planets with Rp & 1R⊕, and P . 350 days, as planets with smaller radii and/or

longer orbital periods are more difficult to detect, leading to substantial biases in their

statistical properties and small number statistics with large uncertainties.

Small Planets are more Common than Large Planets

Exoplanets have been found to come in a wide diversity of sizes, ranging from inflated

Jupiter-analogs, which can be as large as ∼20-25R⊕, to rocky planets even smaller than

Mercury. It’s been shown from numerous surveys (e.g., Cumming et al. 2008; Mayor

et al. 2011; Fressin et al. 2013) that planets of different sizes have drastically different

occurrence rates. Giant planets (Rp & 4R⊕) are significantly less common than small
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planets (Rp . 4R⊕). For instance, within periods of P < 100 days ( a . 0.5 au), giant

planets are typically found with an average occurrence of ∼1 planet for every 50-100

stars while small planets are typically found with an occurrence of ∼1 planet for every

4 stars (Petigura et al. 2013; Winn & Fabrycky 2015). Similar statistics are found with

RV surveys, where lower mass planets (Mp . 30M⊕) are found with significantly higher

occurrence than higher mass planets (See Figure 1.5).

Fig. 1.5.— Figure 2 from Winn & Fabrycky (2015). These figures each show a sim-
ulated, representative sample of planets based on the occurrence rates of planets from
transit surveys (left) and RV surveys (right). The bolded boxes in each figure denote the
parameter space over which the occurrence rate measurements were made. The number
of planets is significantly larger for planets with small radii and lower masses, which is
in contrast to the distribution of detected planets due to biases inherent in detection
methods.

This pattern is relatively easy to understand in the planet formation paradigm de-

scribed above. Because smaller planets don’t need as much material, and because the

disk lifetime is limited, planetary cores with slower accretion rates may be able to form

small cores and planets while not having enough time to form larger planets. This is

particularly true at short orbital distances probed by the Kepler mission where there is

less solid material, and there may not be enough solid material to form larger planets.
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Planets are More Common at Larger Orbital Distances

The occurrence of small planets is relatively constant from P ∼ 10-300 days (a ∼ 0.1-1

au), but then drops substantially below P ∼ 10 days. This drop in occurrence for small

planets is thought to coincide with the inner edge of the protoplanetary disk. However,

it’s less clear exactly what sets that inner radius. This discussion is further complicated

by whether one considers in situ formation versus migration. In the former, a promising

candidate for the inner radius is the dust sublimation radius, or the maximum distance

at which the temperature of the disk is sufficiently hot that dust is sublimated into

a gas. Thus, the dust sublimation radius is the innermost region in which dust can

exist. The corotation radius is the radius interior to which gas in the protoplanetary

disk is accreted onto the central protostar. The corotation radius is commonly invoked

to explain a “stopping” distance, interior to which planets can’t migrate. This is because

many mechanisms for planet migration invoke torques from the gas in the protoplanetary

disk.

The occurrence of large planets on the other hand is a relatively constant increase

from P ∼ 1-300 days. Under the classical paradigm of planet formation, this is likely

explained by the need for high mass planets to form at larger distances and migrate

inward, so the distribution of giant planets at short periods is controlled solely by how

far the planet can migrate inward. In addition to the slowly increasing occurrence at

increasing periods, there is a sharp increase of large planets at P & 100 days (Cumming

et al. 2008; Petigura et al. 2018). This increase in large planet occurrence is thought to

be the result of the water ice line providing more solid material for such planets to form.

Low Mass Stars Have More Small Planets, Fewer Giant Planets

The implication of low mass stars hosting more and smaller planets compared to higher

mass stars has two interesting implications. In general, the mass of the protoplanetary

disk scales with the mass of the host star. Therefore, high mass stars have high mass
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disks, and low mass stars have low mask disks. Thus, for high mass stars, there is more

planet forming material, which is thought to facilitate the growth of higher mass planets.

Within this paradigm, the idea that lower mass stars have fewer giant planets would

make sense via the same logic.

However, low mass stars having a higher multiplicity of small planets doesn’t quite

fit this interpretation. This result has two interesting implications. First, small mass

disks can efficiently form small planets. This fits into the picture of small planets being

ubiquitous, but why would there not be more small planets around more massive stars?

One proposed explanation is that because low mass stars do not have enough dust mass

in their disks to form large planets, smaller planets are less likely to be dynamically

interrupted. Thus, low mass stars are more likely to host dynamically cold planetary

systems, that tend to be co-planar, and have less mass overall.

The Occurrence of Giant Planets Increases with Stellar Metallicity

The stellar metallicity is typically measured, for historical reasons, as the ratio in the

number of iron nuclei on the surface of the star to the number of hydrogen nuclei, normal-

ized to the value of the Sun, and reported as a logarithm, i.e., [Fe/H] ≡ log(NFe/NH)? −

log(NFe/NH)�. Giant planets discovered from early radial velocity surveys were generally

found to have metal-rich host stars on average compared to stars without detected giant

planets (Heiter & Luck 2003a; Santos et al. 2004).

By comparing the fraction of stars that did not have a detected giant planet in RV

surveys against the fraction of stars that did have a detected planet within a range of

metallicities, Fischer & Valenti (2005) found that the occurrence of giant plants could

be characterized by a strong power law in metallicity. This result has held up against

numerous studies, from both RV and transit surveys (e.g., Santos et al. 2004; Ghezzi

et al. 2010; Buchhave et al. 2014; Petigura et al. 2018).

The most common interpretation for this connection is that stellar metallicities reflect
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the compositional imprint of the molecular cloud from which the star formed, and there-

fore stars with higher metallicities have a higher dust to gas ratio in the protoplanetary

disk. Therefore, because there is more dust in the protoplanetary disk, the growth of

planetary cores is accelerated, and it is increasingly more likely that a planetary core can

grow to a mass in excess of ∼10M⊕, allowing it to accrete gas from the protoplanetary

disk before dissipation. In this way, stellar metallicity, Z, is typically interpreted as a

proxy for the surface density of solids in the protoplanetary disk, Z ∝ Σ. Therefore,

based on Equation 1.1, Ṁ ∝ Σ, thus the accretion rate is more rapid in disks with higher

solid surface density.

Other Connections Between Stellar Metallicity and the Planet

Population

With the above interpretation in mind, other relationships between stellar metallicity

and exoplanet properties have begun to come to light. For instance, planets with higher

metallicity host stars tend to have higher eccentricities on average (Dawson & Murray-

Clay 2013). This is typically interpreted as evidence for increased planet-planet scatter

due to the presence of on-average more massive planets (Winn & Fabrycky 2015).

The connection between planet orbital period and stellar metallicity is quite a bit

more complicated. Before this work, such a relationship seemed tentative, and it was

unclear that results could be separated from their observational biases. Some results

seemed to suggest that low metallicity stars have longer period planets (Adibekyan et al.

2013), while other results seemed to suggest that a correlation only existed in the case

of giant planets (Dong et al. 2017), some studies claimed it was only in the case of small

planets (Mulders et al. 2016), and finally others questioned any correlation whatsoever

with metallicity and orbital period (Winn et al. 2017). These results proved to be quite

intricate, and the relationship between stellar metallicity and planet period nuanced. In

this work, particularly Chapter 2, we show that indeed metallicity is correlated with
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planet period, but mostly at very short orbital periods.

1.3 Overview

In this work, we aim to build a better understanding of the intricate relationship between

stars and the planets that orbit them. In particular, we utilize large-scale surveys to pro-

vide the tools needed to characterize stars with and without detected transiting planets.

Some common themes throughout each of these chapters are that both uniformity and

precision are necessary to detect subtle trends in the exoplanet population, and that a

complete understanding of the planet host star population is necessary for a complete

picture of planet demographics.

1.3.1 The Planet Period-Stellar Metallicity Correlation

More specifically, in Chapter 2 we characterize the relationship between stellar metallic-

ity, clearing up the debate as to how metallicity influences the distance at which planets

orbit their host stars. To accomplish this characterization, we first validate spectro-

scopic parameters from the Apache Point Observatory Galactic Evolution Experiment

(APOGEE; Majewski et al. 2017), and apply the metallicities measured from APOGEE

to definitively show that the planet orbital period is in fact correlated with stellar metal-

licity, clearing up the debate in the literature. We take this correlation one step further

to show that the population of exoplanets can be divided into two populations, defined

by their metallicity, with orbital periods above and below P = 8.3 days. We interpret

this critical period as a transition region where exoplanets are significantly less likely to

exist if orbiting a host star with a depleted metallicity.
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1.3.2 The Role of Detailed Chemistry on Planet

Occurrence Rates

In Chapter 3, we measure the correlation strength between planet occurrence and the

stellar abundances of ten different elements, the first ever such measurement. We sub-

divide our sample into varying planet sizes and orbital distances to measure how the

correlation strength changes for differing planet types, and for differing elements. We

find that the occurrence of small planets is strongly correlated with the enhancement of

any element at short periods, but not strongly correlated with the enhancement of any

element at longer periods. In trying to better understand the relationship between planet

demographics and stellar chemistry, we consider the possibility that correlations like this

could be a proxy for age, or vice versa. In discussing this possibility, we demonstrate

how the strength with which metallicities are correlated with planet occurrence can be a

strong confounding variable, and advocate for homogeneous, high-precision spectroscopic

surveys to better characterize planet host stars and caution interpretations of changes in

planet demographics with age due to such confounding variables.

1.3.3 Foundations for an Age-Demographics Study in the

Kepler Field

Finally, in Chapter 4 we set the foundation for a systematic study of the demographics of

planets with stellar age. Such studies have not been widely adopted in the literature be-

cause the difficulty in inferring ages for field stars. However, precise geometric parallaxes

as measured by Gaia (Gaia Collaboration et al. 2018b, 2021), have made the inference

of stellar ages via isochrone-modeling tangible. We utilize this information to derive the

most precise fundamental stellar parameters (e.g., age, R?, M?) in the literature to date.

We discuss these improved parameters in the context of a larger program aimed at

an independent transiting planet search in the Kepler field to better understand long-
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term planetary evolution. We introduce a novel planet-detection algorithm inspired by

the difficulty in estimating occurrence rates for evolved stars using the Kepler detection

pipeline combined with the large fraction of subgiants (∼20%) revealed by Gaia DR2 to

be in the Kepler field. We present this new algorithm, and demonstrate its effectiveness

by comparing it to current open-source state of the art transit detection algorithms.

Through the combination of improved stellar ages, a novel detection pipeline that

is sensitive and computationally feasible with the long temporal baselines of the Kepler

mission, we set the foundation for a targeted demographics study of planets in the Kepler

field, and the changes in the population with age.

1.3.4 Contributions

The work was made possible thanks in no small part to large collaborative surveys.

The teams behind these surveys, particularly the Kepler and APOGEE teams, deserve

gratitude and a wealth of credit, not only for making these surveys possible, but also

for providing extensive documentation with which to educate the author. In addition to

monumental efforts taken by the Kepler and APOGEE teams to produce the impressive

results upon which this work is built, this work was also made possible by individuals

who deserve individual recognition for their contributions to this work. In the interest of

giving proper credit, we clarify those contributions below.

For each of these chapters, Steven R. Majewski has given invaluable scientific advice,

feedback, and support as an advisor, and as such played a vital role in shaping the

message and goals of this work.

Special gratitude is warranted for the team who designed and implemented the

APOGEE-KOI survey, upon which the results of Chapters 2 and 3 are based.

The work in Chapter 2 was made possible in part by the efforts of Johanna Teske.

Teske led the interpretation of the statistical analysis in the context of current planet

formation models, provided the analysis to estimate the uncertainties on the [Fe/H]
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measurements in APOGEE, and contributed text in the introduction and discussion

sections.

Chapter 2 of this work is published in the Astronomical Journal under Wilson et al.

(2018), and as such is publicly available. Chapter 3 is under peer review at the time of

writing this work, with the expectation that it will soon be published and available to the

public as well. These works were made possible by a group of collaborators and co-authors

who contributed as architects of the APOGEE survey and/or provided feedback on the

manuscripts of these two chapters. For these efforts, we recognize individual contributions

from Carlos Allende Prieto, Andrés Almeida, Rachael Beaton, Chad F. Bender, Jonathan

Brinkmann, Caleb I. Cañas, Katia Cunha, Scott W. Fleming, D. A. Garćıa-Hernández,

Luan Ghezzi, Sten Hasselquist, Christian R. Hayes, Henrik Jönsson, Suvrath Mahadevan,

Steven R. Majewski, Christian Nitschelm, Verne V. Smith, Keivan Stassun, Jamie Tayar,

Johanna Teske, Nicholas Troup, Michael F. Skrutskie, Diogo Souto, and Olga Zamora.
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Chapter 2

Kepler Objects of Interest in

APOGEE: Two Distinct Orbital

Period Regimes Inferred from

Host Star Iron Abundances

Summary

The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has, at the

time of this work, observed ∼600 transiting exoplanets and exoplanet candidates from

Kepler (Kepler Objects of Interest, KOIs), most with ≥18 epochs. The combined multi-

epoch spectra are of high signal-to-noise (typically ≥100) and yield precise stellar param-

eters and chemical abundances. We first confirm the ability of the APOGEE abundance

pipeline, ASPCAP, to derive reliable [Fe/H] and effective temperatures for FGK dwarf

stars — the primary Kepler host stellar type — by comparing the ASPCAP-derived

stellar parameters to those from independent high-resolution spectroscopic characteri-

zations for 221 dwarf stars in the literature. With a sample of 282 close-in (P < 100
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days) KOIs observed in the APOGEE KOI goal program, we find a correlation between

orbital period and host star [Fe/H] characterized by a critical period, Pcrit= 8.3+0.1
−4.1 days,

below which small exoplanets orbit statistically more metal-enriched host stars. This

effect may trace a metallicity dependence of the protoplanetary disk inner-radius at the

time of planet formation or may be a result of rocky planet ingestion driven by inward

planetary migration. We also consider that this may trace a metallicity dependence of

the dust sublimation radius, but find no statistically significant correlation with host Teff

and orbital period to support such a claim.

2.1 Introduction

With the advent of the Kepler mission (Koch et al. 2010; Borucki et al. 2010; Borucki

2016), statistical studies of exoplanets, particularly small planets (Rp . 4R⊕), have

become possible. While a key finding of such studies is that small planets are common in

the Galaxy in general (e.g., Howard et al. 2012; Dressing & Charbonneau 2013; Petigura

et al. 2013; Batalha 2014; Burke et al. 2015; Silburt et al. 2015), distinguishing the

characteristics of these planets and how they may relate to the properties of their host

stars is of interest from formation and detection perspectives. From population studies of

larger planets detected by the radial velocity method, it was clear early on that host star

metallicity1 was related to the frequency at which these planets form (Gonzalez 1998;

Heiter & Luck 2003a; Santos et al. 2004; Valenti & Fischer 2005), a trend that appears to

decrease in strength with decreasing planet mass and/or radius (e.g., Sousa et al. 2008;

Ghezzi et al. 2010; Schlaufman & Laughlin 2011; Buchhave et al. 2012; Wang & Fischer

2015; Buchhave & Latham 2015). Now, the most prevalent explanation of this trend is

that it is evidence of the core accretion method of planet formation (e.g., Rice & Armitage

2003; Ida & Lin 2004; Alibert et al. 2011; Mordasini et al. 2012b), and that host star

1Usually parameterized by the number density of iron nuclei in a star’s photosphere relative to the
amount of hydrogen, normalized to these values in the Sun: [Fe/H], where [X/H]=log(NX/NH) - log
(NX/NH)solar
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metallicity is a proxy for the surface density of the solid material in a protoplanetary

disk; higher solid surface densities facilitate the faster growth of the solid cores of larger

planets, giving them more time to accrete gaseous envelopes.

In addition to the trend between host star [Fe/H] and the frequency of different

types of planets, other relationships between stellar metallicity and planet properties

have also come to light. For instance, Dawson & Murray-Clay (2013) used the evidence

that giant planets orbiting [Fe/H]<0 stars generally have lower eccentricity orbits to

suggest that planet-planet scattering is the dominant mechanism for inward migration

of giant planets, since higher [Fe/H] systems are more likely to form multiple, closely

spaced giant planets. Buchhave et al. (2014) analyzed ground-based optical spectra of

Kepler Objects of Interest (KOIs) to measure spectroscopic metallicities and found three

regimes of exoplanet sizes, split at Rp ∼ 1.7 R⊕ and Rp ∼ 3.9 R⊕, distinguished by

different (increasing with Rp) host star metallicities. Using the same data but with a

more rigorous statistical analysis, Schlaufman (2015) instead favored a single, continuous

relationship between planet radius and stellar metallicity. Interestingly, recent results

show that (i) 2-6 R⊕ planets with orbital periods from 1-10 days (”hot Neptunes”) show

an increase in host star [Fe/H] compared to typical planet-hosting stars, similar to that of

hot Jupiter (Rp ≥ 10R⊕) planets (Dong et al. 2017), and (ii) at < 1 day orbital periods,

≤ 2R⊕ planet host stars have significantly different metallicities than hot Jupiter host

stars but similar metallicities as stars hosting 2−4R⊕ planets with 1-10 day periods (Winn

et al. 2017). These studies exemplify the (evidently) intricate relationship between the

metallicities of host stars and the sizes and orbital configurations of the planets that form

around them.

We intend to further characterize this intricate relationship by investigating how

planet orbital period is tied to host star metallicity. This is a topic that has recently

been explored by several other studies.

Beaugé & Nesvorný (2013) examined both confirmed exoplanet systems and Kepler
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candidate multi-planet systems to show (i) a lack of small (Rp . 4 R⊕), short period

(P < 5 days) planets around low metallicity (bulk [m/H] < −0.2 dex, from Buchhave

et al. 2012) stars, and (ii) a dearth of 4-8 R⊕ planets at P ≤ 100 days around low

metallicity stars. At the time, trends also held in the planetary mass versus period

plane; e.g., Mp sin i < 0.05MJup planets in short orbits were not found around [Fe/H]

< −0.2 dex stars and planets between the masses of Neptune and Saturn with P ≤ 100

days were mostly absent around [Fe/H] < −0.2 dex stars. The authors explained these

observed trends with delayed formation and less planetary migration in metal-depleted

protoplanetary disks. We note that the trends in Beaugé & Nesvorný (2013) are slightly

reduced in significance when more up-to-date planet samples are considered (see Dawson

et al. 2015, discussed below).

Similarly, Adibekyan et al. (2013) found from the HARPS GTO radial velocity survey

(Mayor et al. 2003; Lo Curto et al. 2010; Santos et al. 2011) that ∼0.03 MJup to 4 MJup

planets orbiting stars with [Fe/H] < −0.1 dex have longer periods than the same mass

planets orbiting stars with [Fe/H] > −0.1 dex. Specifically, Adibekyan et al. find all

Mp sin i < 0.03MJup planets orbiting [Fe/H] > −0.1 dex stars have periods < 18 days,

and also suggest that smaller planets orbiting more metal-rich stars are more likely to

migrate towards or form close to their host stars compared to planet orbiting more metal-

poor stars.

Dawson et al. (2015) explored a theoretical framework motivated by these observa-

tional trends, combining analytical estimates for the formation of planetary embryos (that

merge to form super-Earths and the cores of mini-Neptunes) with numerical simulations

of atmospheric accretion in disks having varying solid surface densities. Interpreting their

model predictions in the context of easily observed quantities (planet radius and host star

metallicity), Dawson et al. find that disks with high solid surface density (metallicity)

generate 2 M⊕ cores before the gas disk dissipates (∼1 Myr), which enables the cores to

more readily accrete significant atmospheres and thus increase their gas to rock fraction
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(Rp). Furthermore, these authors find a match with current observations – i.e., that

metal-rich stars lack rock-dominated (Rp < 1.5 R⊕) planets beyond ∼ 15 day periods

– and suggest that this may indicate that embryo, and thus final core, masses grow

faster at larger orbital distances in metal-rich versus metal-poor disks, thus producing

gas-enveloped, larger Rp planets.

Most recently, Mulders et al. (2016) used over 20,000 stars observed by both Kepler

and LAMOST (Cui et al. 2012) to confirm that short period planets (. 10 days) are

preferentially found around more metal-rich stars ([Fe/H] ' 0.15 ± 0.05 dex), whereas

longer period planets orbit roughly solar metallicity ([Fe/H]∼ 0) host stars. In the

P < 10 day sample, it is the smallest radius planets (< 1.7 R⊕) that have the largest

host [Fe/H] contrast compared to their similarly-sized but longer period counterparts,

with an occurrence-weighted ∆[Fe/H] ' 0.25 ± 0.07. Mulders et al. suggest that their

results may be evidence that the inner edges of protoplanetary disks around more metal-

rich stars are closer in than around more metal-depleted stars. The trend observed by

Mulders et al. is in contrast to the assessment by Winn et al. (2017), who comment

that their metallicities (from Petigura et al. 2017a, using HIRES/Keck data from the

California Kepler Survey) of small planet host stars show no such period dependence.

Differences in sample selection may influence the differences in the Mulders et al. vs.

Winn et al. results.

Many of the works above use moderate to high resolution optical spectroscopy to

derive host star parameters. Indeed, the original Kepler Input Catalog (KIC) was not

intended for detailed studies of host star metallicity (Brown et al. 2011), which motivated

numerous follow-up spectroscopic campaigns to better characterize KOIs (e.g., Bruntt

et al. 2012; Buchhave et al. 2012, 2014; Everett et al. 2013; Dong et al. 2014; Brewer

et al. 2016; Petigura et al. 2017a). In this work we present a study of host star [Fe/H]

versus planetary orbital period using high resolution near infrared spectroscopy of KOIs

taken by the Sloan Digital Sky Survey’s Apache Point Observatory Galactic Evolution
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Experiment (APOGEE, Majewski et al. 2017). In §2.2 we discuss the APOGEE stellar

parameter derivation, and validate the [Fe/H] and Teff values produced by APOGEE’s

automated stellar parameter pipeline (ASPCAP) by comparing its output to the results

from several literature studies. §2.3 explains the data collection for our KOI sample. In

§2.4 we present our analysis of the KOI planet and host star parameters, focusing on

orbital period and [Fe/H], and conclude in §2.5 and §2.6 with the interpretation of our

results and final conclusions, respectively.

2.2 Validating APOGEE Spectroscopic

Parameters

All the data in this work were collected as part of APOGEE in the fourteenth Data

Release (DR14, Abolfathi et al. 2018) of the third and fourth Sloan Digital Sky Survey

(Eisenstein et al. 2011; Blanton et al. 2017). APOGEE utilizes a multi-object spectro-

graph (Wilson et al. 2010, 2012) mounted on the Sloan 2.5 m telescope (Gunn et al.

2006) to sample up to 300 sources simultaneously with high resolution (R ∼ 22, 500),

high signal-to-noise ratio (SNR>100), H-Band (1.5–1.7µm) spectroscopy. Details on the

motivation and scope of the APOGEE survey are described in Majewski et al. (2017)

and the targeting is described in Zasowski et al. (2013). All of the data from APOGEE

is processed through automated reduction and stellar parameter pipelines (Nidever et al.

2015; Holtzman et al. 2015), and the spectroscopic parameters used for the stars in our

sample are derived from the Automated Stellar Parameters and Chemical Abundances

Pipeline (ASPCAP). We give a brief overview of ASPCAP here for convenience, but for

details on the pipeline we refer the reader to Garćıa Pérez et al. (2016).

ASPCAP consists of two principle components: a fortran90 optimization code

(ferre, Allende Prieto et al. 20062) that compares the observed APOGEE spectra to

2Available from github.com/callendeprieto/ferre
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synthetic libraries, and a multifunctional IDL wrapper used for bookkeeping and reading

and preparing the input APOGEE spectra. ferre performs a χ2 minimization to find

the best-fit set of atmospheric parameters (effective temperature, Teff ; surface gravity,

log g; microturbulent velocity, ξt; and general solar-scaled metallicity, [M/H]) as well as

C, N, and α-element abundances from an interpolated library of synthetic ATLAS9 or

MARCS model atmospheres. The atomic and molecular line list, gathered from the lit-

erature, has been updated regularly and for DR14 is described most recently in Shetrone

et al. (2015) and Holtzman et al. (2018).

Once fundamental atmospheric parameters are found, ASPCAP extracts individual

chemical abundances by fitting spectral windows optimized for each element. Iron has

dozens of Fe i lines in the H-band, and Fe abundances are computed using ∼55 spectral

windows. ASPCAP provides both raw and calibrated values for all of its spectroscopic

parameters. Calibrated Teff values are established using observations of globular and open

clusters, and by requiring that there are no trends of abundances with Teff in clusters

(Holtzman et al. 2018). In this study, we adopt the DR14 calibrated Teff and metallicity

([Fe/H]) values.

Because ASPCAP is optimized for red giants and not well tested for dwarfs, it is

worthwhile to test the pipeline’s performance against published spectroscopic studies of

dwarfs. We select comparison studies focused on planet search targets, because the stellar

samples are similar to those in our study (i.e., consisting mostly of FGK dwarfs). We

compare first to four large surveys that derive stellar parameters using spectral synthesis

(Bruntt et al. 2012; Buchhave et al. 2012; Huber et al. 2013; Brewer et al. 2016), each

with enough stars to give a substantive comparison of ASPCAP’s performance. These

data and comparisons are shown in Table 2.1 and Figure 2.1, top panels. We also

compare ASPCAP’s performance to equivalent width analysis studies of detailed chemical

abundances (Ghezzi et al. 2010; Adibekyan et al. 2012b; Nissen et al. 2014; Schuler

et al. 2015) to better gauge the pipeline’s performance. These data and comparisons are
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shown in Table 2.2 and Figure 2.1, bottom panels. The equivalent width studies employ

different methodologies, which allows us to compare ASPCAP against multiple strategies

for deriving spectroscopic parameters. Summaries of these comparisons with ASPCAP’s

performance are given in §2.2.2 and §2.2.3.

2.2.1 ASPCAP Internal Errors on [Fe/H]

Each of the comparisons described below represents an estimate of the relative accuracy of

the ASPCAP stellar parameter results, but not their precision. To first assess the internal

error on the ASPCAP [Fe/H] values, we turn to the sample of stars in the solar-age open

cluster M67 that was observed by APOGEE, with parameters derived in the same way as

our sample of KOIs. From the astrometric survey of Yadav et al. (2008), we selected the

stars that were observed by APOGEE having the highest M67 membership probability

(≥ 90%), and also had ASPCAP uncalibrated log g values3 ≥ 4.0 and measured [Fe/H]

values. From this sample of 76 stars, the [Fe/H] median is -0.021 dex, the mean is -0.018

dex, and the standard deviation is 0.073 dex. However, as described below (§2.4.1), in our

analysis we include only high SNR (>100) spectra and exclude stars with Teff < 4000 K;

performing the same cut to the M67 sample results in 46 stars with a [Fe/H] median of

-0.016 dex, a mean of -0.011 dex, and a standard deviation of 0.053 dex.

M67 is known to be chemically inhomogeneous – Liu et al. (2016) found a metallicity

difference of ∼ 0.05 dex between a solar twin and a solar analog in M67, as well an

enhancement of ∼ 0.05 dex in neutron-capture elements in the solar analog versus the

solar twin. Additionally, using SDSS-III DR12 APOGEE data, Bertran de Lis et al.

(2016) found the spread in [O/Fe] in cool, low-gravity stars (4000<Teff <4600 K, log

g < 3.8) in M67 to be higher (σ[O/Fe]err ∼ 0.03 dex) as compared to other solar or

super-solar metallicity clusters NGC 6791 and NGC 6819, which show σ[O/Fe]err . 0.01

3The spectroscopic surface gravities for dwarfs in APOGEE DR14 are significantly lower than what
is expected from stellar isochrones, and an acceptable calibration relation has not yet been developed
by the ASPCAP team.
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dex. However, only a handful of dwarf stars in NGC 6791 and NGC 6819 were targeted

by APOGEE, and even fewer make our SNR cut. Thus we adopt the σ[Fe/H] value from

M67, 0.053 dex, as a conservative error (since a significant part of the spread in [Fe/H] is

likely intrinsic to the cluster) on the ASPCAP metallicities for the KOIs in our analysis

henceforth.

2.2.2 Comparison to Literature { Spectral Synthesis

Studies

Bruntt et al. (2012) utilized the analysis package vwa (Bruntt et al. 2010) to derive

stellar parameters and elemental abundances for a sample of 93 G dwarfs in the Kepler

field. Their data consist of high resolution (R ≈ 80, 000), and high SNR (∼ 200 − 300)

optical spectra. The accuracy of their parameters resulted from adopting asteroseismic

log g’s, which they held fixed to derive the rest of their parameters. Bruntt et al. (2012)

reported typical uncertainties in their Teff and [Fe/H] determinations of 80 K and 0.07 dex,

respectively. The overlapping sample with APOGEE contains 71 stars. The difference

(ASPCAP−Other) in the effective temperature (∆Teff) and iron abundance (∆[Fe/H])

determinations between ASPCAP and Bruntt et al. (2012) have mean offsets and RMS

scatter of 48± 147 K and 0.00± 0.07 dex.

Buchhave et al. (2012) systematically derived spectroscopic and stellar parameters

for a sample of 152 planet-hosting stars (PHS’s) with 1500 observations from multiple

telescopes and spectrographs, having SNR ≥ 30. The final stellar parameters were deter-

mined from the average of all the measurements of each particular star. For this study,

the authors developed their own analysis package, spc, designed to analyze spectra with

low to modest SNR. The authors claimed typical uncertainties in the Teff and [Fe/H] of

50 K and 0.08 dex respectively, which were derived as the scatter among their sample of

measurements for each star. The overlap between Buchhave et al. (2012) and APOGEE

is 75 stars. From these, the mean offset and RMS scatter for ∆Teff and ∆[Fe/H] are
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43± 147 K and −0.04± 0.09 dex, respectively.

Huber et al. (2013) produced a catalog of fundamental stellar parameters for 66 PHSs

in the Kepler field. Huber et al. (2013) used a combination of sme (Valenti & Piskunov

1996) and spc to obtain initial guesses of the Teff , [Fe/H] and log g. Stellar log g’s

were then fixed to asteroseismic solutions (derived using the initial Teff and [Fe/H] from

spc and sme), and Huber et al. (2013) re-derived Teff and [Fe/H] with the asteroseismic

constraints in place. Like Buchhave et al. (2012), the Huber et al. (2013) data come

from multiple telescopes, have modest SNR, and were analyzed in the same way for their

initial Teff and [Fe/H] measurements. The authors reported an average uncertainty of 82

K and 0.1 dex for Teff and [Fe/H], respectively. All 66 stars in Huber et al. (2013) were

observed with APOGEE. The mean offset and scatter for ∆Teff and ∆[Fe/H] are 52±105

K and 0.02± 0.10 dex, respectively.

Brewer et al. (2016) used sme (Valenti & Piskunov 1996) to provide a catalog of

spectral and stellar properties for 1615 FGK dwarfs. All observations were taken with

the HIRES spectrograph (Vogt et al. 1994) at the Keck I telescope with resolution R ≈

70, 000, but vary in SNR (about 25% of their stars have SNR < 100, and the rest have

SNR≥ 100). Brewer et al. (2016) note a strong dependence of their derived parameters

with SNR. Of the Brewer et al. (2016) subsample that was also observed with APOGEE,

only five stars have SNR < 100. These authors reported a typical uncertainty in Teff of

∼ 25 K and a typical [Fe/H] uncertainty between ∼ 0.01 − 0.04 dex. Of the 1615 stars

in their sample, 60 have also been observed by APOGEE. In this overlapping sample, we

find a mean offset and scatter for ∆Teff and ∆[Fe/H] of 82± 126 K and 0.06± 0.10 dex,

respectively.

2.2.3 Comparison to Literature { Equivalent Width

Studies

In addition to the large surveys described above, we compare ASPCAP’s results
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to a few select studies that have computed stellar parameters and derived elemental

abundances through equivalent width (EW) measurements. Specifically, we compare

ASPCAP’s results with Ghezzi et al. (2010), Adibekyan et al. (2012b), Nissen et al.

(2014), and Schuler et al. (2015). In all of the following studies, stellar parameters

were determined by adjusting the parameters until there was no correlation between the

[Fe/H] values derived from Fe i lines and the lower excitation potential (χ) of the lines,

nor between [Fe i/H] and reduced EW [log (EW/λ)], and until there was agreement

between abundances derived from Fe i and Fe ii lines.

Ghezzi et al. (2010) obtained spectra of a sample of 117 PHS’s from the Fiber-fed

Extended Range Optical Spectrograph (FEROS; Kaufer et al. 1999). The setup chosen

by Ghezzi et al. (2010) resulted in spectral coverage from 3560 to 9200 Å, and a nominal

resolution of R ≈ 48, 000. The reported typical SNR per resolution element ranges

from ∼ 200 − 500. EWs were measured using the code ares (Sousa et al. 2007) and

stellar parameters were derived using the 2002 version of moog (Sneden 1973) assuming

local thermodynamic equilibrium (LTE). The uncertainties for this sample were derived

with the method outlined in Gonzalez (1998). Ghezzi et al. (2010) report typical Teff

uncertainties ranging from ∼ 30 − 70 K and typical [Fe/H] uncertainties ranging from

∼ 0.02−0.05 dex. For the four stars observed by APOGEE and Ghezzi et al. (2010), the

mean offset and RMS scatter in ∆Teff between ASPCAP and Ghezzi et al. is 51±195 K,

and the mean offset and scatter in ∆[Fe/H] is 0.07±0.14 dex, indicating a fair agreement.

Adibekyan et al. (2012b) obtained a sample of 1111 FGK dwarfs from the HARPS

(High Accuracy Radial velocity Planet Searcher) GTO (Guaranteed Time Observations)

planet search program (Mayor et al. 2003; Lo Curto et al. 2010; Santos et al. 2011). The

spectra taken from the HARPS spectrograph (Mayor et al. 2003) have spectral resolution

R ≈ 110, 000 and a SNR ranging from ∼ 20 − 2000, where 84% of the sample has SNR

≥ 100. Their sample consists of dwarfs similar in Teff to the Sun, the majority of which

lie within 4500K to 6500K and with metallicities ranging from -1.39 to 0.55 dex. The
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analysis was completed in a similar manner as Ghezzi et al. (2010), by assuming LTE,

generating a grid of Kurucz model atmospheres (Kurucz 1993), and making use of ares

and moog. However, because Ghezzi et al. limited their line list to lines with log gf

values measured in the lab, Adibekyan et al. (2012b)’s analysis benefits from a more

extensive line list. The uncertainties from Adibekyan et al. (2012b) were determined by

adding quadratically the uncertainties in the parameters of the atmospheric model and

the scatter measured amongst the abundances of each individual line. Since HARPS

is in the Southern Hemisphere, there are only eight stars that were also observed with

APOGEE. The reported uncertainties were typically about 30K for Teff and 0.03 dex in

[Fe/H]. The mean offset and rms scatter of ∆Teff and ∆[Fe/H] with respect to ASPCAP

are −6± 92 K and −0.08± 0.09 dex, respectively.

Nissen et al. (2014) measured the C/O ratio in a sample of 66 sun-like stars, with Teff

ranging from 5400 K to 6400 K. The Nissen et al. (2014) data are from both HARPS

and FEROS, with the same configurations as Adibekyan et al. (2012b) and Ghezzi

et al. (2010). The sample of stars observed with HARPS has SNR & 300, while the

FEROS-observed stars have a typical SNR ∼ 200. Nissen et al. (2014) derive Teff in their

HARPS-FEROS sample using photometric calibrations, and initially derive [Fe/H] values

by interpolating within the plane-parallel model atmosphere MARCS grid (Gustafsson

et al. 2008). They then derive more accurate [Fe/H] values by measuring the EWs of Fe

ii lines using the Uppsala program eqwidth. Nissen et al. report a typical uncertainty

in [Fe/H] of 0.03 dex, and internal, one-sigma Teff errors of 30 K. Though Nissen et al.

do not explicitly describe how they derive their errors, they state their errors are drawn

from uncertainties in their model atmosphere fits and equivalent width measurements.

Comparing the eight stars in Nissen et al. that were also observed by APOGEE, the

mean offset and rms scatter of ∆Teff and ∆[Fe/H] are 8± 230 K and −0.04± 0.14 dex,

respectively.

Schuler et al. (2015) derived stellar parameters and elemental abundances for seven
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PHS’s identified by Kepler. The data were collected from HIRES on the Keck I telescope

as part of the Kepler Follow-up Observing Program (KFOP, Gautier et al. 2007). The

KFOP spectra have a spectral coverage of 3650-7950 Å, and a spectral resolution of

R ≈ 50, 000. Schuler et al. only considered data with SNR ≥ 150. Stellar parameters

and abundances for this study were extracted using an LTE, curve-of-growth analysis.

EWs were measured using the analysis package spectre, and abundances were derived

from the 2014 version of moog, along with synthetic fits to the data interpolated from

the ATLAS9 Kurucz model atmosphere grid. Uncertainties in Teff are reported as the

difference between the adopted Teff value and the value that results in a 1σ correlation

between the [Fe/H] vs. χ and reduced EW relations. Schuler et al. report uncertainties

in Teff between 25 K and 45K, and uncertainties in [Fe/H] between 0.04 and 0.08 dex. In

the Schuler et al. sample, all seven stars in the Schuler et al. sample were also observed

with APOGEE, resulting in a mean offset and scatter between the two studies for ∆Teff

and ∆[Fe/H] of 110± 119 K and −0.02± 0.06 dex, respectively.

Overall, after these various comparisons with multiple studies, we find that ASPCAP

is accurate for Teff and [Fe/H] within the scatter, and agree with these multiple optical

studies that utilize different methodologies. We note that the mean offset in Teff (57 K)

versus the synthesis studies indicates that ASPCAP may be underreporting the Teff

compared to these other studies. However, we find almost no offsets in Teff as compared

to the studies of Nissen et al. (2014) and Adibekyan et al. (2012b). Furthermore, because

-57 K is well within the RMS scatter for each of these studies, we do not consider it to be

problematic for our purposes. Taking all these comparison studies into account, we find

that the mean offset and RMS scatter in ∆[Fe/H] (0.004 dex and 0.10 dex, respectively)

are within the uncertainties required for this work.

Having validated the performance of ASPCAP, we now move on to the study of

a particular subset of APOGEE data consisting of of repeated observations of Kepler

objects of interest (KOIs) resulting in high SNR spectra.
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Fig. 2.1.— Comparisons of APOGEE [Fe/H] and Teff measurements to values determined
in the literature. Each plot shows the Teff and [Fe/H] values from ASPCAP and the
literature plotted against each other, as well as the difference (Other-ASPCAP). For the
top panels, the dotted black line shows the one-to-one relationship, and on the bottom
panels, the dotted black line shows the line of no difference. Typical errors from the
literature studies are shown in the top right of each bottom panel. (A) ASPCAP’s
[Fe/H] determinations compared to measurements from synthesis studies. As a whole,
the difference (Other−ASPCAP) shows good agreement with an RMS scatter of 0.09
dex, and a mean offset of 0.00 dex. (B) APOGEE Teff measurements compared to those
from synthesis studies. Though there is a slight bump around Teff ∼ 5500 K, APOGEE
shows excellent overall agreement with these surveys, with an RMS scatter of 129 K and
mean offset of 57 K. (C) APOGEE’s [Fe/H] determination compared to equivalent width
studies in the literature. The difference in measured iron abundances by APOGEE and
these studies show a mean difference of −0.05 dex and an RMS scatter of 0.11 dex. (D)
APOGEE’s Teff determination compared to equivalent width studies in the literature.
The difference in measured temperatures by APOGEE and these dedicated studies show
a mean offset of 36 K and an RMS scatter of 166 K.
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2.3 APOGEE KOI RV Sample

The primary goal of APOGEE, now in its second phase APOGEE-2 (Majewski et al.

2017), is to study the Milky Way through the radial velocities (RVs) and chemical abun-

dances of as many as half a million stars, chosen to be primarily red giants across multiple

stellar populations and Galactic regions. Additional science programs are also included in

the survey, with one such program monitoring KOIs to search for false positives through

RV variations (Fleming et al. 2015). APOGEE data reach an RV precision of ∼100 m s−1

(Troup et al. 2016), allowing the search for eclipsing binaries and other grazing incidence

geometries that may resemble transiting planets in the initial Kepler reduction pipeline.

The APOGEE survey has observed ∼1500 KOIs with ≥18 epochs across eight APOGEE-

2 fields (roughly the size of Kepler tiles), each KOI with a sufficient signal-to-noise ratio

to get quality RVs at each epoch. As a result, the final “RV-normalized”, summed spec-

tra over all epochs are of very high SNR (typically a few hundred), which allows for

the derivation of high-precision stellar parameters and elemental abundances for planet-

hosting stars. The APOGEE targets were chosen with the goal of observing all possible

“Confirmed” or “Candidate” KOIs with H < 14 in those five Kepler tiles. Some KOIs

were excluded from the sample on the basis of unphysical impact parameters and planet

radii consistent with stellar values. At the time of this work, APOGEE has observed

∼600 KOIs from the Kepler DR24 Q1-Q16 catalog (Mullally et al. 2015), orbiting ∼450

PHS, each with between 10 and 28 epochs at the time of this study.

Data concerning the orbital and planetary parameters for each KOI were gathered

using the public NASA Exoplanet Archive, which provides the information in the form of

interactive tables of confirmed and candidate planetary and stellar properties and includes

a suite of integrated analysis tools (Akeson et al. 2017). Use of this archive allows us

to exclude known false positives and ensures that we are using the most up-to-date KOI

dispositions in the literature. The specific targets included in our analysis, vetted from
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the ∼600 KOIs observed thus far by APOGEE-2, are described below (§2.4.1).

2.4 KOI Stellar Metallicity and Planet Period

Relation

2.4.1 Selected Sample

All of the stars in our KOI sample were observed as part of the APOGEE KOI Goal

Program (Fleming et al. 2015), as described above. Initially, that consists of 624 KOIs

and 450 PHS’s. To ensure the quality of the data, we restrict our analysis sample using

a series of APOGEE flags and other constraints.4 We first remove data with any of

the starflags bad pixels, very bright neighbor, and low snr set. It is worth

mentioning that a fraction of our sample falls on the high-persistence region of APOGEE’s

”blue chip”. However, we decide to keep these data since persistence effects were shown to

be minimized in DR14 (Holtzman et al. 2018). To exclude unreliable ASPCAP fits defined

as values close to the edge of the model atmosphere grid, we also remove data with any of

the following aspcapflags: teff bad, logg bad, and metals bad set. Because the

focus of this study is [Fe/H], we remove KOIs with the paramflags gridedge bad,

calrange bad, other bad, and param fixed flags set, with respect to the [Fe/H]

parameter. In addition, we require that all of the summed APOGEE spectra in our

sample have SNR > 50. Because the ASPCAP line list does not include FeH lines in

DR14, which are important for modeling the metallicities of M dwarfs, we exclude all

stars with Teff < 4000 K (for a detailed discussion on this point see Souto et al. (2017)).

In addition to the cuts described above, our sample is further vetted based on the

orbital periods and inferred planet radii of the KOIs. To avoid regions of parameter

space associated with low survey completeness, we include only KOIs with orbital periods

4Descriptions of the DR14 APOGEE flags can be found at http://www.sdss.org/dr14/

algorithms/bitmasks/#APOGEE_TARGET1

43

http://www.sdss.org/dr14/algorithms/bitmasks/#APOGEE_TARGET1
http://www.sdss.org/dr14/algorithms/bitmasks/#APOGEE_TARGET1


P < 100 days.5 For multiple planet systems, only the planet with the shortest orbital

period makes it into our analysis. In an effort to remove eclipsing binaries (EBs), we make

several additional cuts. We restrict our sample to KOIs with inferred radii for the planet

candidates Rp < 20 R⊕. Planet candidates having radii larger than this limit are likely

to be (EBs). To correct for false positives from our sample by removing eight known EBs

identified in the literature and identify eight more likely binaries from visual inspection

of spectra for which ASPCAP reported high v sin i values. In these cases, the reported

v sin i values were a result of the combined spectra from the primary and companion

stars. To remove more potential EBs, we identify stars with high RV variability, defined

as the ratio of the scatter of the RV measurements to the error of the RV measurements,

given by

vscatter

verr med
> 17, (2.1)

where verr med is the median RV measurement error from all visits and vscatter is

the RMS scatter of all the RV measurements. Because the RV measurement errors are

often underreported in APOGEE (Troup et al. 2016), the adopted cutoff is the median

value for the 16 known binaries in our sample (∼17). After these cuts, and selecting only

the inner-most planet for each system, our final sample consists of 282 KOIs, listed in

Table 3.

The planet hosts in our sample are all FGK dwarfs with effective temperatures ranging

from 4000 K – 6500 K. The [Fe/H] of our sample range from -0.6 – 0.4 dex. This parameter

space is well covered by our tests of ASPCAP using literature comparisons (§2.2.2, §2.2.3).

The spectral SNR in our KOI sample from APOGEE have a wide range; the inner 68%

ranges in SNR from 70–280, while the asymmetric distribution peaks at SNR ∼ 140 with

a tail to SNR & 500.

5 For an estimate of survey completeness as a function of planet radius and orbital period, see Burke
et al. (2015)

44



T
ab

le
2.

3.
P

ar
am

et
er

s
of

S
el

ec
te

d
S
am

p
le

K
O

I
K

IC
P

er
io

d
P

er
io

d
E

rr
o
r

P
la

n
et

R
a
d

iu
s

P
la

n
et

R
a
d

iu
s

E
rr

o
r

K
p

A
P

O
G

E
E

ID
T

e
ff

[F
e/

H
]

U
p

p
er

B
o
u

n
d

L
o
w

er
B

o
u

n
d

U
p

p
er

B
o
u

n
d

L
o
w

er
B

o
u

n
d

(d
a
y
s)

(d
a
y
s)

(d
a
y
s)

(R
⊕

)
(R

⊕
)

(R
⊕

)
(m

a
g
)

(K
)

(d
ex

)

K
0
0
0
4
1
.0

2
6
5
2
1
0
4
5

6
.8

9
2
.2

8
E

-0
5

-2
.2

8
E

-0
5

1
.3

0
0
.0

8
-0

.0
7

1
1
.2

0
2
M

1
9
2
5
3
2
6
3
+

4
1
5
9
2
4
9

5
8
2
7

0
.0

7
K

0
0
0
4
9
.0

1
9
5
2
7
3
3
4

8
.3

1
4
.2

1
E

-0
5

-4
.2

1
E

-0
5

2
.7

4
0
.4

3
-0

.1
3

1
3
.7

0
2
M

1
9
2
8
5
9
7
7
+

4
6
0
9
5
3
5

5
8
3
1

-0
.0

7
K

0
0
0
8
4
.0

1
2
5
7
1
2
3
8

9
.2

9
3
.8

3
E

-0
6

-3
.8

3
E

-0
6

2
.1

0
0
.2

6
-0

.1
0

1
1
.9

0
2
M

1
9
2
1
4
0
9
9
+

3
7
5
1
0
6
4

5
4
3
7

-0
.0

2
K

0
0
1
0
0
.0

1
4
0
5
5
7
6
5

9
.9

7
1
.2

2
E

-0
5

-1
.2

2
E

-0
5

1
6
.8

9
2
.1

5
-4

.2
9

1
2
.6

0
2
M

1
9
2
4
4
2
7
0
+

3
9
1
1
5
8
1

6
3
3
6

-0
.3

2
K

0
0
1
0
3
.0

1
2
4
4
4
4
1
2

1
4
.9

1
1
.2

8
E

-0
5

-1
.2

8
E

-0
5

2
.6

2
0
.3

3
-0

.1
7

1
2
.5

9
2
M

1
9
2
6
4
4
0
0
+

3
7
4
5
0
5
7

5
4
8
5

0
.0

6
K

0
0
1
1
9
.0

1
9
4
7
1
9
7
4

4
9
.1

8
2
.4

8
E

-0
5

-2
.4

8
E

-0
5

8
.2

0
0
.5

0
-0

.5
5

1
2
.6

5
2
M

1
9
3
8
1
4
2
0
+

4
6
0
3
4
4
3

5
5
8
4

0
.3

3
K

0
0
1
5
6
.0

2
1
0
9
2
5
1
0
4

5
.1

9
8
.9

2
E

-0
6

-8
.9

2
E

-0
6

1
.0

0
.0

8
-0

.0
7

1
3
.7

4
2
M

1
9
3
6
2
9
1
4
+

4
8
2
0
5
8
2

4
6
6
2

0
.2

3

N
o
te

.
—

T
h
is

ta
b

le
is

a
v
a
il

a
b

le
in

it
s

en
ti

re
ty

in
a

m
a
ch

in
e-

re
a
d

a
b

le
fo

rm
o
n

li
n

e.
A

p
o
rt

io
n

is
sh

o
w

n
h

er
e

fo
r

g
u

id
a
n

ce
re

g
a
rd

in
g

it
s

fo
rm

a
n

d
co

n
te

n
t.

45



2.4.2 Analysis & Results

As discussed in §2.1, a correlation between an exoplanet’s orbital period and the metal-

licity of its host star could indicate that protoplanetary disks with higher solid surface

density cause planets to migrate or form closer to their host stars (Beaugé & Nesvorný

2013; Adibekyan et al. 2013; Mulders et al. 2016). Alternatively or in addition, such a

correlation could mean metal-rich disks spawn planet cores faster at larger orbital dis-

tances, facilitating the cores growing into gas-enveloped planets with larger Rp and thus

causing an absence of strictly rocky planets at longer periods around metal-rich stars

(Dawson et al. 2015). Given the multiple interpretations and somewhat contradictory

results regarding these host/planet properties (e.g., Winn et al. 2017), we want to assess

the presence and strength of the [Fe/H]-P correlation within the APOGEE KOI sample.

To assess first the correlation between host [Fe/H] and orbital period, we perform

two different non-parametric tests, calculating Kendall’s rank correlation coefficient, τ

(Kendall 1938), and Spearman’s rank correlation coefficient, ρ (Spearman 1904). Kendall’s

τ coefficient is τ = −0.21, with a p-value, pτ = 1.40×10−7 (the equivalent of a 5.1σ devi-

ation from a normal distribution). Spearman’s rank correlation coefficient is ρ = −0.31

with a p-value, pρ = 1.67 × 10−6 (5.1σ). These results indicate that as the host star

[Fe/H] increases, the orbital periods of the planets around those stars decrease. To verify

the robustness of these correlations, we perform a Monte Carlo simulation with 105 sets

of data. For every simulated dataset, we add a perturbation which is randomly drawn

from a normal distribution with our adopted 1σ uncertainty of 0.053 dex (see §2.2.1),

to the ASCAP-derived host [Fe/H] for each KOI. We then recalculate ρ and τ for each

simulated dataset. For Kendall’s rank correlation, we recover the significance of this

trend at a 4.83+0.31
−0.30σ level, and for Spearman’s rank correlation we recover a significance

of 4.83+0.31
−0.31σ, where the errors represent the inner 68% of the posterior distribution.

To analyze further the correlation between orbital period on host [Fe/H], we adopt a
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method similar to that employed by Buchhave et al. (2014). We generate 104 test orbital

periods equally separated in log space, spanning from the minimum to the maximum

planetary orbital period in our sample. For each of these periods, Pi, we divide our

KOI sample into two bins, one where the KOIs have orbital period P > Pi and one with

P ≤ Pi. We then use a two-sample Kolmogorov-Smirnov (KS) test, as well as a k-Sample

Anderson Darling (AD) test for redundancy, to determine the likelihood that the host

star iron abundances from the “short” versus “long” period bins are drawn randomly

from the same parent distribution. We find a critical period, Pcrit, where this likelihood

is minimized (see Figure 2). In the case where the minimum p value is equal among more

than one period, it is because we are oversampling our period distribution. In this case,

we take the mean. Within our dataset we find Pcrit = 8.3 days by the KS test and the

AD test, with p values of pks = 5.0× 10−7 (4.9σ) and pad = 8.6× 10−6 (4.3σ). To test the

robustness of this critical period, we perform a Monte Carlo analysis and simulate 104

sets of data, resampling as we did above, using the typical [Fe/H] uncertainty of 0.053

dex and the P uncertainties as reported by the NASA Exoplanet Archive, which have a

median of 4× 10−5 days. We recover the significance with both the KS test and AD test

at the 4.5+0.4
−0.4σ level. We find Pcrit= 8.3+0.1

−4.1 days for both the KS test and AD test, which

is consistent with our original findings. This method thus discovers two unique [Fe/H]

populations within our dataset, one that is super-solar on average and contains planets

orbiting closer to the host star, and one that is solar metallicity on average and contains

planets that orbit farther from their host. That is, planets with orbital periods P ≤ 8.3

days have statistically more metal-enriched hosts than planets with P > 8.3 days. This

is the main finding of this Chapter. We note that performing the same tests on host star

[Fe/H] and planetary semi-major axis (a), instead of period, produces similar results,

with acrit = 0.07 AU.

In Figure 2, we also note two other, less significant dips at P ∼ 22 days and at P ∼ 70

days. The AD test found the shorter period dip at P ∼ 21 days and the KS test found it
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Fig. 2.2.— (Left) The p values of the Kolmogorov-Smirnov and Anderson Darling tests for
the probability that the [Fe/H] distributions of exoplanet candidates above and below the
given orbital period are drawn from the same parent distribution. There is a statistically
significant dip at P = 8.2 days in our sample, found by both an Anderson-Darling test,
and a Kolmogorov-Smirnov test. (Right) Histogram of the host star metallicities of the
long (red) and short (blue) period populations, split by Pcrit= 8.3 days. The combined
distribution is shown in gray. The long period population peaks near solar metallicity
while the short period population peaks above solar metallicity. The median Host [Fe/H]
is shown by the tick marks for the long (red) and short (blue) period populations.

at P ∼ 23 days. For the longer period dip, the minimum p-value found with the KS test is

at P = 63 days, while the minimum found with the AD test is at P = 71 days. Running a

Monte Carlo analysis with 104 data sets, similar to the above but restricting our analysis

within the range 15 days < P < 45 days, we find the period that minimizes the p-value to

be P = 22.7+0.4
−1.5 days for both the AD and KS tests. However, the significance with which

we recover this period is only 3.5+0.5
−0.5σ for both the AD and KS tests. Because of the

lowered significance, we are not comfortable claiming significance at this period within

our study. However, there is theoretical motivation to support a critical period around

23 days (see §2.5.2), and it warrants further work. To test the third dip, we perform the

same analysis restricting our test periods to P > 45 days, but the results are inherently

less trustworthy considering the uneven sample sizes of KOIs with P < 65 days and

P > 65 days. The period that minimizes the p-value for the AD and KS tests in this

longest period range is 69+4
−9 days, with a significance of 2.8+0.4

−0.4σ for each test. For the
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same reasons as the P ∼ 23 day dip, we do not consider this a significant minimum, and

presently favor a two-population model split only at Pcrit= 8.3+0.1
−4.1 days.

The iron abundance for the short period population (P ≤Pcrit) is super solar, with

a median [Fe/H] of 0.11 dex and a standard deviation of 0.17 dex. The long period

population (P >Pcrit) is consistent with solar metallicity and has a standard deviation of

0.18 dex. To test whether the means of these two samples differ significantly, we perform

a Mann-Whitney U-test (Mann & Whitney 1947) between these two populations. The

Mann-Whitney U-test gives the probability that two separate populations have the same

underlying mean. The test returns a p value of pmw = 2.28× 10−7 (5.0σ) that the short

and long period populations have the same mean metallicity. Thus, we can safely reject

the null hypothesis that these distributions have the same mean, which is consistent with

the results of the Kolmogorov-Smirnov and Anderson-Darling tests that the two [Fe/H]

populations, separated by Pcrit, are sampled from different parent populations.

To further analyze the significance of the correlation in our sample, we follow the

analysis of Mulders et al. (2016) and use the Nadaraya-Watson estimator (Nadaraya

1964; Watson 1964) to calculate how the mean iron abundance varies with orbital period

(see Figure 3). The kernel regression of the mean metallicity, [Fe/H]KOI, as a function of

orbital period is given by

[Fe/H]KOI(P ) =

∑n
i=0[Fe/H]iK(log(P/Pi), σ)∑n

i=0K(log(P/Pi), σ)
, (2.2)

where the n is the number of exoplanet candidates in the sample, [Fe/H]i and Pi are the

host star metallicity and orbital period of each exoplanet candidate, respectively, and we

use a log-normal kernel with constant bandwidth, σ, given by

K(log x, σ) =
1√
2πσ

e−0.5(log x/σ)2

, (2.3)

where x is an arbitrary, dimensionless variable. In line with Mulders et al. (2016), we
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Fig. 2.3.— Host star metallicity as a function of exoplanet orbital period. The gray
points are the KOIs in our sample. The vertical dashed line is at P = 8.3 days, which
separates our short period and long period populations. The horizontal dashed lines
show the median of the short period (blue), long period (red), and combined (gray)
populations. The combined population has a median of 0.03 dex. The median metallicity
of the short period population is super solar at 0.11 dex, while the median of the long
period population is 0.00 dex. The solid gray line is the kernel regression of the mean
metallicity. The kernel regression shows a steady decrease from a maximum of ∼ 0.10
dex at the shortest periods, to a minimum of ∼ −0.04 dex at the longest periods.

adopt a bandwidth of σ = 0.29.

The kernel regression of the mean metallicity is plotted over all the KOIs in our

sample in Figure 3, along with the median [Fe/H] of the combined, short period, and

long period samples. Using the kernel regression as a proxy for the mean [Fe/H], we find

that the maximum mean metallicity ([Fe/H] ∼ 0.10 dex) occurs at the shortest period

in our sample, and the minimum mean metallicity in this trend (∼ −0.04 dex) occurs at

the longest period in our sample. This difference of 0.14 dex is larger than the difference

in the median metallicity between the long and short period sample by ∼ 0.03 dex.

However, the kernel regression clearly shows a decrease in mean [Fe/H] in our sample at
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even the longest orbital periods.

2.5 Discussion

2.5.1 Metallicity-Period Correlation

Our results are consistent with those of Mulders et al. (2016), who find in their sample an

increase of 0.15±0.05 dex in host star metallicity for exoplanets orbiting at or interior to

10 days, as compared to longer-period planets. We find a statistically significant break

in the KOI host star [Fe/H]-period distribution in our sample at 8.3 days, with shorter

period planets orbiting stars with a median [Fe/H] of 0.11±0.17 dex and longer period

planets orbiting stars with a median [Fe/H] of 0.00±0.18 dex. The Mann-Whitney and

Kolmogorov-Smirnov probabilities in our data are 5.0σ and 4.9σ, respectively, compared

to Mulders et al. (2016) whose Mann-Whitney and Kolmogorov-Smirnov probabilities

were comparable at 4.6σ and 4.3σ, respectively. While our sample is significantly less

than half the size ( 282 candidate or confirmed planets versus Mulders’ 665), our data

are measured from higher resolution, high SNR spectra, producing internal errors on

[Fe/H] of only ∼ 0.053 dex and typical offsets from literature values of ∼ 0.00±0.09 dex.

The Mulders et al. (2016) study used LAMOST [Fe/H] values, measured from R ∼ 2000

optical spectra, typically with SNR ≤ 100, and typical [Fe/H] internal errors (evaluated

by way of repeat observations of some stars) of ∼0.055 dex and typical literatures offsets

(using their calibrated [Fe/H] values) of∼ −0.06±0.18 dex. Thus, our study showcases an

advantage APOGEE has over other surveys of similar scale. Even with our significantly

smaller sample size compared to the Mulders et al. (2016) sample, we are able to recover

the same correlation with greater confidence.
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Required Precision to Find the Trend

Given our smaller sample size, what is the minimum [Fe/H] precision required to be able

to find the trend with orbital period that we do? To determine this precision, we replace

the assumed [Fe/H] error (0.053 dex) with larger and larger errors until the resulting

uncertainties on the significance of the Kolmogorov-Smirnov and Anderson Darling tests

drop below ∼ 3σ. With our well-vetted (e.g., removal of stars showing signs of binarity

in their radial velocity variations) sample of high resolution, high SNR data, the greatest

value that the mean [Fe/H] error can take on is ∼0.1 dex to still recover the observed

trend with at least 3σ significance.

Possible Mechanisms

What is the physical mechanism responsible for the observed trend between planetary or-

bital period and host star [Fe/H]? One possible explanation is that the dust sublimation

radius (between 0.05 and 0.1 AU, or ∼ 4− 12 days around a solar mass star – Muzerolle

et al. 2003, Eisner et al. 2005, Pinte et al. 2008, Min et al. 2011) in protoplanetary disks

correlates with host star metallicity, and that it represents a semi-major axis cutoff inward

of which no solids contribute to forming planets. If this were the case, we would expect a

correlation between host star Teff (as the dust sublimation radius is known to depend on

the stellar luminosity and/or stellar mass), and orbital period. To test this correlation,

we performed Kendall’s τ and Spearman’s ρ correlation tests among our KOI sample.

Because we are testing a potential semi-major axis cutoff, we include only the closest

planets in the case of multiple-planet systems, as we do with the rest of this study. We

find τ = 0.10 with pτ = 0.05 (1.7σ) and ρ = 0.14 with pρ = 0.06 (1.6σ), which indicates

that there is no significant correlation between Teff and orbital period. To test further

whether there is a difference in the host Teff among the short-period and long-period

subsamples, we performed a KS and AD test, similar to the above analysis. For the KS

test, we calculate pks = 0.2 (0.8σ) and for the AD test we calculate pad = 0.07 (1.3σ).
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Thus, both of these tests indicate that there is no significant difference in the tempera-

ture distributions of the host stars in the short-period and long-period samples. Figure 4,

left, shows that while there is a slight decrease in [Fe/H] from cooler to hotter Teff , both

the shorter period/metal-rich and longer period/solar-metallicity subsamples decrease

together with a roughly constant metallicity offset of ∼0.10 dex. Because the correlation

between Teff and [Fe/H] is the same for both subsamples, and the shorter period and

longer period subsamples do not have significantly different temperature distributions

(Figure 4, right), we do not believe this decrease in [Fe/H] at higher Teff affects our

conclusions. Thus, our data rule out dust sublimation effects as a possible explanation

for the metallicity-orbital period correlation. Mulders et al. (2015b) also ruled out the

hypothesis of the dust sublimation radius controlling the semi-major axis cutoff in plan-

etary occurrence rates, although these authors were testing a dependence of semi-major

axis on stellar mass, not metallicity.

A second possible explanation for the observed trend between planetary orbital period

and host star [Fe/H] is that planets around higher metallicity stars migrate inward and

are “trapped” closer to their host stars (e.g., Kuchner & Lecar 2002; Rein 2012; Plavchan

& Bilinski 2013). This closer location could be related to the dust sublimation radius

– for which we do not see evidence for as a factor in creating the P-[Fe/H] trend as

described above – or the co-rotation radius, where gas is accreted onto the stellar surface.

Usually the co-rotation radius is within the dust sublimation radius (Najita et al. 2007

and references therein), and the former also depends on the angular velocity of the star,

which does not have a strong stellar mass dependence during the pre-main sequence

stage (Bouvier 2013 and references therein). Thus it is difficult to assess the likelihood

of this “planet trapping” explanation within the context of this work. However, as

discussed below, small, short period planets around more metal-rich stars are generally

rock-dominated, indicating accretion and migration mainly within the snow line. Thus

their migration distance could not have been very far. The snow line is at a few AU around

53



a solar-mass star after ∼1 Myr, but this distance for any given disk will depend on the

stellar mass, and also parameters like the heating mechanism(s), dust grain opacities,

and the timing of planet formation (e.g., Kennedy & Kenyon 2008; Martin & Livio 2012;

Mulders et al. 2015a; Xiao et al. 2017).

Fig. 2.4.— (Left) Kernel regression of the mean [Fe/H] as a function of PHS Teff for
the short-period (blue) and long-period (red) populations, with the difference of the two
plotted as a gray dashed line. The upturn at cool temperatures is most likely a result of
low-number statistics. Hotter than ∼4500 K, the two distributions show a constant offset
of ∼ 0.10 dex, indicating no difference in host star Teff between the two samples. (Right)
Stellar Teff versus planetary orbital period. The gray line shows the kernel regression of
the mean Teff . If the orbital period-[Fe/H] correlation is related to the dust sublimation
radius, we would expect to see a statistically significant positive correlation in this plot,
which we do not. Hence there is no evidence for a dust-sublimation effect.

Finally, we consider the possibility that the correlation between planet orbital period

and stellar metallicity could be a byproduct of rocky planet ingestion by the star driven

by inward migration (e.g., Meléndez et al. 2009; Ramı́rez et al. 2010, 2014; Schuler et al.

2015; Mack et al. 2014; Liu et al. 2014; Teske et al. 2015, 2016a,b; Bedell et al. 2017). For

example, Mack et al. (2014) compared the elemental abundances of the twin stars in the

planet-hosting wide binary system HD 20782/81. Both stars in that system host close-in

planets within ∼0.2 AU, and Mack et al. (2014) found that both stars are significantly

enriched in refractory elements. Those authors further used a model of planet ingestion

to show that the enhanced refractory abundances were consistent with a scenario in which
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the observed close-in planet pushed 10–20 M⊕ of rocky material (perhaps in the form

of small rocky planetessimals) into the surface convection zone of the star. Presumably,

this is a consequence of the inward migration of the observed close-in planet. Thus one

possible explanation for the correlation we report here is that the planets in our sample

that managed to migrate very close to their host stars (P < 8.3 d) were also more likely

to shepherd other small rocky planets into the star, thus elevating its surface metallicity.

In theory, a testable prediction of this rocky material ingestion scenario would be a

pattern of increasing stellar elemental abundances with elemental condensation temper-

ature (Tc), as found by Mack et al. (2014) (and, originally in solar twins, Meléndez et al.

2009). However, we are currently unable to perform this test due to the uncertainties

associated with dwarf stars abundances derived by ASPCAP in DR14; as noted in §2.2,

ASPCAP is optimized for red giants and not well tested for dwarfs.6 Moreover, while

giant planet inward migration has been suggested as a mechanism for “pushing” refrac-

tory material onto the host star, we know of no studies suggesting the inward migration

of small planets would be capable of creating a similar abundance signature in their host

stars.

Interestingly, the scenario envisioned above could also potentially provide a natural

explanation for the specific orbital period (8.3 d) dividing the metal-rich versus metal-

poor samples. Previous work on the rotational evolution of pre–main-sequence stars

has suggested a bimodal distribution of stellar rotation periods, the break between slow

and rapid rotators occurring at ∼8 d (see, e.g., Choi & Herbst 1996, and references

therein). The two groups of rotators have been interpreted by some authors as the result

of different angular momentum histories, possibly due to rotational braking by those

stars whose protoplanetary disks survive longer, draining angular momentum from the

star via magnetic connection between star and disk at the co-rotation radius as noted

6We did attempt to make a preliminary assessment of the differences between the slopes of Tc-
abundance trends for the short versus long period samples within our 300 stars with planets, but observed
no difference between the slope distributions. If the short period planet host stars had ingested more
refractory material, we would expect them to show more positive slopes.
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above. If inward migration of planets, coupled with ingestion of rocky material by the

star, is also related to the rapid dispersal of the protoplanetary disk, the result could be a

natural division at ∼8 d of those stars that were more likely to ingest refractory elements

(i.e., show elevated surface metallicity), and more likely to host a close-in planet with an

orbital period shorter than ∼8 d.

If shorter period planets usually orbit more rapidly rotating stars, based on our ob-

served planet P -[Fe/H]star trend we would predict that higher metallicity stars should

show faster rotation and shorter disk lifetimes, on average. However, testing this predic-

tion is complicated by the tendency for all stars to slow their rotation on Gyr timescales,

regardless of their early rotational histories; we cannot know a priori the original rotation

periods of the stars in our sample. To check whether their present-day stellar rotation

periods show any trend with stellar metallicity or planetary orbital period, we cross-

matched our sample with the McQuillan et al. (2013) and Walkowicz & Basri (2013)

catalogs of Kepler stellar rotation periods, resulting in 82 stars in common. In this sub-

sample we see no trends between stellar rotation period and stellar metallicity or planet

orbital period. Moreover, near-infrared observations of young stars in clusters of various

metallicites find that lower metallicity stars have shorter protoplanetary disk lifetimes

(Yasui et al. 2009, 2010), and these observations are supported by models (Ercolano &

Clarke 2010) and simulations (Nakatani et al. 2017) of protoplanetary disk evolution.

This contradicts the prediction that shorter period planets orbiting more metal rich stars

can be explained by shorter disk lifetimes (and by extension faster stellar rotation peri-

ods). Additionally, the idea of bimodal rotation rates among young stars has itself been

disputed (see, e.g., Stassun et al. 1999).

Thus we conclude that, while it is still plausible that the main trend we have discov-

ered here could be the result of ingestion by stars of rocky material due to the inward

migration of planets, it does not appear to be a consequence of star-disk interaction in

the context of stellar rotational evolution.
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2.5.2 Planet Radius as a Third Dimension of the

Correlation

Specifically, Mulders et al. (2016) find an occurrence-corrected ∆[Fe/H] between planets

interior and exterior to 10 days that varies with planetary radius, from ∆[Fe/H]= 0.25±

0.07 dex for Rp < 1.7 R⊕ planets to 0.08± 0.05 dex for 1.7 R⊕ ≤ Rp < 3.9 R⊕ planets to

0.10± 0.12 dex for Rp ≥ 3.9 R⊕ planets. We also find that the short period (metal-rich

host star) planets in our sample are statistically smaller (pmw = 7.1σ, pks = 6.7σ) than the

planets at longer periods (around less metal-rich stars). The median, mean, and standard

deviation of our metal-rich/short period planet population are 1.37, 2.01, and 1.91 R⊕,

respectively, versus 2.29, 2.74, and 1.91 R⊕, respectively, in our solar-metallicity/long

period planet population; typical errors on Rp are 0.02 R⊕. Interestingly, the break in

[Fe/H]-period space in our sample also appears to coincide with the reported “radius gap”

around 1.8 R⊕ defined by Fulton et al. (2017) (see Figure 5). While metal-poor dwarf

stars will generally have larger radii than metal-rich dwarf stars, potentially influencing

any trends with Rp and host star [Fe/H] (Gaidos & Mann 2013), the metallicity bias (the

difference between [Fe/H] values of underlying population of stars versus those around

which transiting planets are detected) for the stars in our sample is . 0.02 dex, below

our measured precision.

Recently, Owen & Wu (2017) constructed a relatively simple analytical model, build-

ing on their previous numerical models (Owen & Wu 2013), of a low-mass planet – core

with a gas-envelope – and how it changes with time under the influence of its host star

flux. As their previous results (and those of Lopez & Fortney 2013 also showed), the

radius distribution observed by Fulton et al. (2017) is matched by an “evaporation val-

ley”, such that smaller radius planets represent the bare cores of planets that have had

their H/He envelopes photo-evaporated within the first 100 Myrs. Owen & Wu (2017)

show specifically that the two peaks in Rp observed by Fulton et al. (2017) arise because
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Fig. 2.5.— Histogram of KOI radii of the long (red) and short (blue) period population,
split by Pcrit= 8.3 days. The combined distribution is shown in gray. These are the same
colors corresponding to the metal-enriched (blue) and solar-metallicity (red) distributions
in Figure 2, right panel. The tick marks at the top denote the median planet radius of
the short-period (blue) and long period (red) populations.

the timescale for mass-loss is longest when the planet’s radius has doubled in size due

to an accreted volatile envelope of approximately a few percent the total planet mass.

Their model is only able to reproduce the observed results when the planet envelopes are

composed of primoridal H/He, not water, and when the cores are roughly Earth-like in

composition (ρ ∼ 5.5 g cm−3). In summary, Owen & Wu (2017) show that the small,

short period Kepler planets likely form from one parent population, with one average

composition, and have a bimodal period-radius distribution due to envelope evaporation.

Almost simultaneous with Owen & Wu (2017), Jin & Mordasini (2017) produced work

independent of Owen & Wu (2017) that compared theoretical models of planet forma-

tion, thermodynamical evolution, and atmospheric escape of rocky-cored versus icy-cored

planets to the results of Fulton et al. (2017). Similarly, Jin & Mordasini (2017)’s goal

was to understand better, in a statistical sense, how evaporation depends on planetary

bulk composition. Jin & Mordasini (2017) suggest – assuming the radius gap is due to
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atmospheric evaporation – that small, short period planets have mostly rocky cores made

of silicates and iron, not mostly icy cores made of frozen H2O, CO2, CH4 and/or NH3.

Since planets with mostly icy cores can only form beyond the snow line, this indicates

that close-in low mass planets accreted mainly within the snow line, even considering

migration (that is, migration must have been within the snow line). Classifying observed

planets based on their ice mass fractions (derived from the mass and radius and an inter-

nal structure model, Mordasini et al. 2012a), as well as the planet’s Rp and semi-major

axis a, the authors find eight categories of planets (see their Figures 6 and 7) that ex-

hibit a clear compositional gradient with increasing planet radius. Interestingly, six of

the eight planet categories requiring a rock-dominated composition (Rp . 1.6 R⊕) are

found within ∼0.09 AU (∼10 days around a solar mass star), and all eight of the rock-

dominated planets are found within ∼0.17 AU (∼26 days around a solar mass star). We

see a second, less significant dip at P ∼ 23 days in Figure 2, perhaps corresponding to

this second rocky planet orbital period limit.

Putting this all together, the following picture emerges: Most short period, small

planets have rocky cores, but their size, volatile content, and thus density is (in a general

sense) tied to their orbital period, and thus by this study, their host star metallicity.

The trend we see predicts that planets with little to no volatiles, and thus the smallest

Rp values, should be in the closest orbits and thus around more metal-rich host stars.

Jin & Mordasini (2017) caution that they do not see convincing evidence of a positive

volatile content gradient with increasing semi-major axis, but that this is expected for

evaporation. We note that Kolmogorov-Smirnov and Anderson Darling tests do not

reveal a significant difference between the orbital periods of Jin & Mordasini 2017’s 25

Type 1 and 3 planets versus their seven Type 6 planets (from their Table 1), but that

with a larger number of small planets with well-constrained masses and radii, we can

better test our prediction. Our results, as interpreted in the context of Jin & Mordasini’s

theoretical framework, suggest that in the hunt for small, rock-dominated planets with
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little to no gaseous envelopes, one should be looking around more metal-rich stars.

2.6 Conclusions

In this work, we aim to characterize the intricate relationship between host star metal-

licity and planet orbital period, as it relates to the context of planet formation. We first

demonstrate the veracity of ASPCAP’s metallicities by comparing a sample of 221 FGK

dwarfs in the APOGEE survey that also have quality parameters via optical spectroscopy

in the literature. Then, using a sample of 282 short period (P < 100 days) Kepler ex-

oplanets and exoplanet candidates observed by the APOGEE KOI goal program and

the associated parameters derived from ASPCAP, we have characterized the correlation

between planet orbital period and host star metallicity. In particular, we’ve found the

following:

• There is a statistically significant correlation between host star [Fe/H] and planetary

orbital period that is characterized by a critical period, Pcrit= 8.3+0.1
−4.1 days, below

which planets preferentially orbit more metal-rich stars. This corresponds to a

semi-major axis of ∼0.07 AU for a solar mass star and is consistent with the drop

in occurrence rate at ∼0.1 AU found by Mulders et al. (2015b).

• The minimum precision in [Fe/H] needed to see this trend within our carefully

vetted sample is ∼0.1 dex. While this correlation has been seen in other studies

(e.g. Mulders et al. 2016), the precision in APOGEE’s abundance determinations

allows us to find this correlation with higher confidence levels in a significantly

smaller sample than what has been used for other planet host surveys of similar

scale.

• Planets in the short-period/high-metallicity population have significantly smaller

radii than the long period population (pmw = 7.1σ). Based on previous work on
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the “evaporation valley”, this suggests that the population of planets around more

metal-rich stars is mostly rocky and lacking substantial atmospheres, while the pop-

ulation of planets around more metal-poor stars have thicker atmospheres. Thus, to

optimize the number of close-in, rocky exoplanets discovered around FGK dwarfs,

transit surveys should prioritize super-solar metallicity stars.

• Based on the results of Jin & Mordasini (2017), we suspect that the critical period

of 8.3 days may be tied to the bulk composition of the exoplanet population in a

statistical sense. In addition to this period, we find some evidence for a second,

less convincing critical period at P ∼ 23 days, which may also correlate with the

exoplanet population’s composition. Although we do not currently believe this

period is significant, its agreement with the results of Jin & Mordasini (2017) is

intriguing enough to warrant further investigation.

• We hypothesize that there is some protoplanetary disk inner-radius with a metallicity-

dependence at the time of planet formation that allows small, rocky planets to either

form or migrate closer in to their host star in metal-rich conditions. Such an in-

ner radius may be the dust-sublimation radius, but we would expect this radius

and thus orbital period to correlate strongly with the host Teff , and see no such

correlation. The inner radius may instead be the gas co-rotation radius, but with

our given observations it is hard to assess the likelihood of this explanation. Al-

ternatively, the period-metallicity correlation that we observe may be the result of

rocky planet ingestion, driven by inward planet migration. In this scenario, planets

migrate inward and in the process shepherd rocky material (perhaps in the form

of planetesimals) onto their host star, resulting in an increased surface metallicity.

At this time the precision of APOGEE dwarf star abundances across a range of

condensation temperatures preclude a robust test of this hypothesis.

APOGEE provides a valuable resource for characterizing exoplanet host stars from
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the Kepler mission. In particular, studies of planetary architecture coupled with accu-

rate metallicities, as presented here, can provide new constraints on planet formation

that could not otherwise be obtained from smaller, more focused studies. In addition,

APOGEE measures [Fe/H] to a level of precision that stands out from other spectro-

scopic surveys of similar scale, positioning APOGEE in a valuable area for future work

in characterizing exoplanets and their host stars.
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Chapter 3

The Influence of 10 Unique

Chemical Species on the

Distribution of Kepler Planets

Summary

The chemical abundances of planet-hosting stars offer a glimpse into the composition of

planet-forming environments. To further understand this connection, we make the first

ever measurement of the correlation strength between planet occurrence and detailed

chemical abundances for ten different elements (C, Mg, Al, Si, S, K, Ca, Mn, Fe, and

Ni). We leverage data from the Apache Point Observatory Galactic Evolution Experiment

(APOGEE) and Gaia to derive precise stellar parameters (σR? ≈ 2.2%, σM? ≈ 4.8%) for a

sample of 1,018 Kepler Objects of Interest, which enables us to construct a sample of well-

vetted Kepler planets with precisely measured radii (σRp ≈ 3.2%). After controlling for

biases in the Kepler planet detection pipeline and the selection function of the APOGEE

survey sample, we characterize the relationship between planet occurrence and chemical

abundance as the number density of nuclei of each element in a star’s photosphere raised
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to a power, β. The derived correlation strength, β, varies by planet type, but is consistent

within our uncertainties across each of the ten elements. For hot planets (P = 1-10 days),

we find that an enhancement in any element of 0.1 dex corresponds to an increase in the

occurrence rate of ≈20% for Super-Earths (Rp = 1-1.9R⊕) and ≈60% for Sub-Neptunes

(Rp = 1.9-4R⊕). These trends are weaker overall for warm (P = 10-100 days) planets

of all sizes and for all elements, with the potential exception of Sub-Saturns (Rp = 4-

8R⊕), whose occurrence is strongly correlated with enhanced metals (β ≈ 2.8). Finally,

we conclude this work with a caution to interpreting trends between planet occurrence

and stellar age due to degeneracies caused by Galactic chemical evolution and make

predictions for planet occurrence rates in nearby open clusters to facilitate demographics

studies of young planetary systems.

3.1 Introduction

A clear host-star chemical influence on associated planets was recognized in early spec-

troscopic surveys primarily aimed at discovering planets through radial velocity (RV)

variations, which found that stars hosting giant planets tend to have enhanced metallici-

ties1 (Gonzalez 1997; Heiter & Luck 2003b; Santos et al. 2004). More detailed population

studies of RV-detected planets confirmed this trend between host star [Fe/H] and the fre-

quency at which giant planets are found (Santos et al. 2004; Fischer & Valenti 2005),

a trend that appears to decrease in significance with lower planet mass and/or radius

(Sousa et al. 2008; Ghezzi et al. 2010; Schlaufman & Laughlin 2011; Buchhave et al. 2012;

Wang & Fischer 2015; Ghezzi et al. 2018). This correlation is typically interpreted as

evidence for the core accretion model of planet formation (e.g., Rice & Armitage 2003;

Ida & Lin 2004; Alibert et al. 2011; Mordasini et al. 2012b; Maldonado et al. 2019), where

1In this study, we use metallicities and iron abundance interchangeably, where iron abundances are
paramaterized by the number density of iron nuclei in a star’s photosphere relative to the amount
of hydrogen normalized to some zero-point, typically the Solar abundance: [Fe/H], where [X/Y ] ≡
log(NX/NY )− log(NX/NY )0.
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host star metallicity is a proxy for the solid surface density of the protoplanetary disk;

higher metallicities translate to more planet-forming material, which facilitates quick

planetary core growth up to a critical mass of ∼10 M⊕, in turn allowing more time to

accrete gaseous envelopes before gas dissipation in the protoplanetary disk.

The Planet-Metallicity Correlation (PMC) partly motivated large spectroscopic sur-

veys of candidate and confirmed Kepler planet-hosting stars (e.g., Bruntt et al. 2012;

Buchhave et al. 2012, 2014; Everett et al. 2013; Dong et al. 2014; Fleming et al. 2015;

Brewer et al. 2016; Johnson et al. 2017). Within this population of close-in, transiting

planets, more intricate relationships between stellar metallicity, planet radius, and orbital

period have come to light. It is generally found that planets with larger radii have hosts

with super-solar metallicity (Buchhave et al. 2014; Schlaufman 2015; Wang & Fischer

2015). This correlation appears strongest for large planets (RP & 4 R⊕), and nearly

disappears for the smallest planets (Rp . 1.7 R⊕). While the PMC is weaker for small

planets in general, that is not the case for small planets in short period (P . 10 days)

orbits. The presence of such planets is positively correlated with metallicity, suggesting

that an abundance of solids facilitates the growth and/or migration of small, close-in

planets (Mulders et al. 2016; Wilson et al. 2018; Petigura et al. 2018; Narang et al.

2018). Thus, the amount of available solids in the protoplanetary disk seems to be a key

variable in setting the planet mass, radius, and period distributions. While these works

in particular demonstrated the intricate relationships between host-star chemistry and

the formation/evolution of planetary systems, they also demonstrated the precision and

resources needed to unveil such relationships.

While correlations of planetary architecture to bulk metallicity are well-established,

some results indicate that these trends may be integrating over more detailed chemical

relationships. For example, Adibekyan et al. (2012a) found that an increase in the

abundance of certain α-elements, such as Mg and Ti, increases the likelihood of planet

occurrence. This work supported that of Brugamyer et al. (2011), who found that, beyond
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the PMC, planet detection rates are positively correlated with enhanced Si abundances,

but not with enhanced O abundances. Brugamyer et al. (2011) inferred from this that

core accretion is driven by grain nucleation rather than icy mantle growth, and that α-

elements may drive the formation of planetesimals more efficiently than other elements.

These investigations show the potential for detailed, multi-element stellar abundance

studies to advance models of planet formation.

However, the data collection needed to study the relationships between planetary

properties and the detailed chemical makeup of their host stars properly is particularly

resource-intensive, as it requires high resolution, high signal-to-noise spectra of not only

hundreds of planet-hosting stars, but also a significant fraction of the stars searched for

planets (typically on the order of 104−5 stars for Kepler). Because of this, an occurrence

rate study with detailed chemical abundances has not been performed for the Kepler

field, where much of our knowledge of the small planet population has originated.

The Apache Point Galactic Evolution Experiment (APOGEE; Majewski et al. 2017)

provides a unique opportunity to perform such a study. APOGEE began in the third

phase of the Sloan Digital Sky Survey (SDSS-III; Eisenstein et al. 2011), and is now in

its second phase, APOGEE-2 as a part of SDSS-IV (Blanton et al. 2017). The APOGEE

survey collects spectra with a multiplexed, high-resolution (R ∼ 22, 500), near-infrared

(λ ∼ 1.5−1.7µm) fiber-fed spectrograph (Wilson et al. 2012, 2019) mounted on the Sloan

2.5-meter telescope (Gunn et al. 2006) at Apache Point Observatory. The primary goal

of APOGEE is to study the Milky Way through the RVs and chemical abundances of

nearly 750,000 stars across multiple stellar populations and Galactic regions. Additional

science programs are also included in the survey, with one such program monitoring stars

with candidate planets from Kepler (Kepler Objects of Interest; KOIs) to search for false

positives through RV variations (Fleming et al. 2015; Zasowski et al. 2017). This effort,

the APOGEE-KOI Goal Program, has observed 1177 Kepler stars, with a median of 17

(mean: 17.7) epochs, as of the sixteenth Sloan data release (DR16; Ahumada et al. 2020;
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Jönsson et al. 2020). Because of the large number of epochs, the combined, RV-aligned

spectra are of high S/N (median: 155, mean: 217), enabling precise derivations of stellar

atmospheric parameters and chemical abundances.

In this Chapter, we utilize the data from the APOGEE-KOI program to explore

the role of ten different chemical species (C, Mg, Al, Si, S, K, Ca, Mn, Fe, and Ni)

in sculpting the population of Kepler planets. §3.2 describes our data, the derivation

of stellar parameters for the KOIs in this study, and the resulting precision in planet

radii for our sample. §3.3 describes the sample selection for measuring occurrence rates.

§3.4 presents our results, enumerating chemical abundance trends present in the selected

sample and our occurrence rate analyses. Finally, we end the chapter with a discussion

on the implications of our results and reiterate our conclusions.

3.2 Data and Methods

3.2.1 The APOGEE-KOI Goal Program

The APOGEE-KOI Goal Program targets were chosen with the intention of observing

all possible “Confirmed” or “Candidate” KOIs with H < 14 on six different Kepler

tiles, one of which was observed as a pathfinder program in SDSS-III. One Kepler tile is

roughly the size of the APOGEE footprint, thus allowing for a near one to one match

between an APOGEE field and Kepler tile. Some KOIs were excluded from the sample

on the basis of nonphysical impact parameters and putative planet radii consistent with

stellar values. In total the DR16 APOGEE catalog contains observations for 1299 stars

(totaling 1461 unique planet candidates without a “False Positive” disposition) in the

Kepler Q1-Q17 DR24 KOI catalog (Mullally et al. 2015). Of the 1299 stars, 1177 are part

of the APOGEE-KOI radial velocity survey and 122 stars were observed throughout the

Kepler field as parts of other APOGEE programs (see e.g., Zasowski et al. 2013, 2017).

In APOGEE DR16, six fields have been observed in total, labeled as K04, K06, K07,
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K10, K16, and K21 (see Figure 3.1). Each field was selected on the basis of maximizing

the number of available KOIs at the time of target selection. For three of the fields

(K04, K06, and K07), KOIs were selected from the Q1-Q17 DR24 KOI catalog, while the

other three fields (K10, K16, and K21) were queried from the NexSci Exoplanet Archive2

immediately prior to the design of each field: 2014 March for K10, K21 and 2013 August

for K16. These publicly available catalogs were dynamic, and therefore do not have a

static or well-studied selection function. As a result, there are a number of KOIs that

were discovered after sources were chosen for inclusion in the APOGEE-KOI program

(these planet candidates are displayed as red dots in Figure 3.1). In §3.C.3, we account

for biases that may arise from the exclusion of these planets in our analysis.

3.2.2 Stellar and Planetary Parameters

For each KOI observed in APOGEE, we re-derive fundamental stellar properties (e.g.,

M?, R?) and planet radii. The primary motivation for re-deriving stellar properties in

our sample is to improve the precision of the planet radii by incorporating precise spec-

troscopic parameters derived from the high S/N, high resolution APOGEE spectra. This

approach has the additional benefit of maintaining a uniform analysis in deriving prop-

erties for the planets in our sample so as not to add additional bias. While we only make

use of the stellar radii in our analysis, we provide additional stellar properties for the

sake of comparison and any future investigations.

Spectroscopic Parameters and Abundances: Teff , log g, [Fe/H], [X/Fe]

The spectroscopic parameters in this work are adopted from APOGEE DR16 (Ahu-

mada et al. 2020; Jönsson et al. 2020). All of the spectra from APOGEE are processed

through automated data reduction pipelines (Nidever et al. 2015; Holtzman et al. 2018).

The spectroscopic parameters used for stars in the APOGEE-KOI program are derived

2https://exoplanetarchive.ipac.caltech.edu/
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from the Automated Stellar Parameters and Chemical Abundances Pipeline (ASPCAP;

Garćıa Pérez et al. 2016). In DR16, ASPCAP consists of two components: a fortran90

optimization code (FERRE 3;Allende Prieto et al. 2006) and an IDL wrapper used for book-

keeping and preparing the input APOGEE spectra. FERRE performs a χ2 minimization

across an interpolated library of synthetic stellar atmosphere models (e.g., Zamora et al.

2015), to find a best fit set of input parameters (effective temperature, Teff ; bulk solar-

scaled metallicity, [M/H]; surface gravity, log g; microturbulent velocity, ξt; and C, N,

and α abundances).

Once these best-fitting fundamental atmospheric parameters are found, ASPCAP

fits individual spectral windows from a carefully curated linelist (Shetrone et al. 2015;

Smith et al. 2021) optimized for each chemical element. In APOGEE DR16 both “raw”

and calibrated spectroscopic parameters and abundance measurements are provided. Teff

is calibrated to reproduce the photometric values of González Hernández & Bonifacio

(2009), log g in the case of dwarfs is calibrated using a combination of asteroseismic values

and fits to isochrones. Calibrated abundances are zero-point shifted so that stars with

solar [M/H] in the solar neighborhood have a mean [X/M]=0 (Jönsson et al. 2020). Unless

otherwise stated, we use the calibrated parameters in this study. ASPCAP values of

[X/Fe] are reported, which we change to [X/H] via the following equation, [X/H] ≡ [X/Fe]

+ [Fe/H].

Abundance ratios for the ten chemical species in this study are defined in the same

way as for [Fe/H], i.e., [X/Fe] ≡ log(NX/NFe)−log(NX/NFe)0. However, the chosen zero-

point varies by chemical species and is not necessarily the corresponding Solar abundance

(Jönsson et al. 2020). The APOGEE data products report two different values for carbon

abundance ratios, one measured from atomic lines (CI FE in the APOGEE DR16 data

model) and one measured from molecular CO lines (C FE in the APOGEE DR16 data

model). For this work, we use the carbon abundance ratio as measured from atomic

3Available at https://github.com/callendeprieto/ferre
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carbon lines, unless otherwise stated.

When deriving fundamental stellar properties (§3.2.2), we use the errors reported by

ASPCAP for Teff , as comparisons in the literature have shown scatter consistent with

these uncertainties (e.g., Wilson et al. 2018). However, the errors reported by ASPCAP

are sometimes underestimated for log g and [Fe/H]. Therefore, when using these parame-

ters to fit to evolutionary tracks in §3.2.2, we inflate the uncertainties on log g and [Fe/H].

We do this by multiplying all reported errors by a given value to define the median un-

certainty. For [Fe/H], we inflate the errors so that the median uncertainty is 0.03 dex,

a factor of 1.5× the median uncertainty determined from repeat observations of high

S/N spectra (Jönsson et al. 2020). We choose to inflate these errors because the typical

uncertainty measured in Jönsson et al. (2020) was determined using a combined sample

of giant and dwarf spectra, and ASPCAP generally measures more precise abundances

for giant stars than for dwarf stars. The ASPCAP calibrated log g are systematically

underestimated in FG dwarfs, forcing the fits to the evolutionary tracks to adopt models

with systematically lower temperatures than the initial input measurements. To adjust

for this, we inflated the ASPCAP log g uncertainties until the input and output temper-

atures showed no trend. In all, we inflated the log g uncertainties to have a median error

of 0.15 dex, ∼1.8× larger than the ASPCAP reported uncertainties.

To ensure there are no systematic trends present in the ASPCAP abundances, we

check for correlations with [X/Fe] and Teff. To test this, we select a sample of dwarf

stars observed by APOGEE with high S/N spectra. We start with the DR16 catalog,

and remove all stars with log g < 3.5, a distance, d > 1 kpc, as measured from the

geometric parallax in Gaia DR2 (Gaia Collaboration et al. 2018b; Bailer-Jones et al.

2018). In addition to these selection cuts designed to remove stars that are not broadly

representative of our sample, we also apply a number of cuts designed to remove poor

quality data. We remove stars with a spectrum S/N < 100, and stars with any of
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the following ASPCAP or Star Flags set4: TEFF BAD, LOGG BAD, METALS BAD,

ALPHAFE BAD, STAR BAD, and VERY CLOSE NEIGHBOR.

With this sample of dwarf stars in APOGEE, we assume that there should be no

trend in abundance-ratio with effective temperature. If a trend exists, it is more likely

to indicate a problem in ASPCAP than an astrophysical source. Our goal is to identify

a range of effective temperatures where the APOGEE abundance-ratio measurements

are reliable and will not bias our inferences of the planet population. In general, we

find two prominent features in the ASPCAP-derived abundance ratios at high and low

Teff range for ASPCAP that we consider to be systematic in nature and wish to avoid in

our analysis (see Figure 3.2). At Teff . 4700 K there is a “hook” feature on the order of

up to 0.1 dex, where the ASPCAP-derived abundances decrease dramatically then rise

again, present for Mg, Si, and Al abundance ratios. We find this same feature in dwarfs

in M67, which should all have the same abundance-ratios, leading us to conclude it is

systematic in nature. On the hotter end, we find an increase in the abundance ratio

at Teff & 6200 K, which we believe is also a systematic trend. Thus, for this study we

only use stars in the temperature range 4700 K < Teff < 6200 K for our occurrence rate

analyses.

Non-Spectroscopic Parameters: π, Ks, E(B − V )

For this study, we adopt the parallax, π, from Gaia DR2 (Gaia Collaboration et al.

2018b). We apply the global parallax systematic offset as derived by Zinn et al. (2019a),

adding δπ = 52.8 ± 2.4µas to the reported π from Gaia DR2, and adding the uncer-

tainty on the zero-point offset in quadrature with the reported σπ. In conjunction with

π, the stellar apparent magnitude sets a strict semi-empirical constraint on the stellar

luminosity. To minimize the impact of dust extinction in our analysis we adopt the

Ks-band magnitude from 2MASS (Skrutskie et al. 2006), as it is the longest wavelength

4for a description of these flags, see https://www.sdss. org/dr16/algorithms/bitmasks/
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Fig. 3.1.— The right ascension and declination of stars in the APOGEE-KOI sample.
The greyscale points show the density of stars in the Kepler stellar properties table at
a particular sky coordinate, while the points show the DR24 KOIs observed (blue), and
not observed (red) by the APOGEE-KOI program in a temperature range with reliable
abundance-ratio measurements (see Figure 3.2). The name of each field is listed to the
top left of the field.
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Fig. 3.2.— An example of a typical trend between abundance ratio and Teff in the
APOGEE dwarf sample. The gray-scale points show the density of stars with a given
Teff and [Mg/Fe] abundance, with darker shades representing more points. The blue
points show the median abundance ratio in Teff bins of 100K, and the dashed vertical
lines show our adopted Teff range for this study.
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(λ ∼ 2.2µm) photometric band uniformly available for our sample.

To account for extinction from dust, we employ the 3D dust map from Green et al.

(2019) which we access using the python package dustmaps (Green 2018). We add the

uncertainty from the Green et al. (2019) three-dimensional dust map in quadrature with

σE(B−V ) = 0.001 mag to account for the typical uncertainties in the color excess ratios

measured in Wang & Chen (2019) from which we adopt our reddening law.

Fit to Stellar Evolutionary Tracks

To infer fundamental stellar parameters (e.g., R?, M?) for the stars in our sample we

apply the python package isofit5. For the sake of brevity, we detail the methodology

employed by the isofit package in the appendix (§3.A). In short, isofit compares

observations to a grid of MESA Isochrones and Stellar Tracks (MIST) models (Dotter

2016; Choi et al. 2016) with masses ranging from 0.1 to 8.0 M�, metallicities ranging

from −2 to 0.5 dex, and evolutionary states ranging from the Zero-Age Main Sequence

to the beginning of the White Dwarf Cooling track. After finding an initial best model, a

Markov Chain Monte Carlo (MCMC) analysis is applied to estimate the credible ranges

for each parameter.

For each host star in our initial planet candidate sample, we run isofit with the

following observable quantities and associated uncertainties: π, Ks, E(B−V ), Teff , log g,

and [Fe/H]. We instantiate the MCMC sampling using 30 walkers, with 350 steps and 200

burn-in steps. While modest, we find that this returns posterior distributions in stellar

mass and radius that are consistent with the distributions returned after convergence6,

and these settings significantly reduce our computational load. We report the stellar

parameters as the median for each parameter in the posterior distribution and the upper

5Available at https://github.com/robertfwilson/isofit
6This is true for stars on the main sequence, and for parameters that are well constrained, such as

stellar radius and luminosity. These settings do not typically return an adequate posterior distribution
for other parameters, such as age, or in parameter spaces where degeneracies are likely, such as near the
base of the Red Giant Branch.
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and lower limits as the 84th and 16th percentile of the posterior, respectively. In all,

we derive fundamental stellar parameters for 1,018 stars (281 stars did not have reliable

ASPCAP solutions). The stellar parameters derived from isofit are given in Table 3.1.

Accuracy and Precision of Stellar Properties

We assume the larger of the absolute value between the median and upper or lower

limits to be a reliable metric for the precision of the stellar parameters inferred in our

sample. These uncertainties are displayed in Figure 3.3. For stellar radius, we find a

mean uncertainty of σR? = 2.5% and median uncertainty of σR? = 2.2%. This error is

largely limited by the uncertainty in Teff and Ks. It is more difficult to say what sets the

minimum uncertainty in M?, given that there are several inputs that are correlated. In

all, we find both the median and mean uncertainty to be 4.8%. However, we caution that

for some stars our reported uncertainty in M? is likely underestimated. There are likely

grid effects that prevent the walkers from exploring the full range of parameter space in

M?, especially for stars with σM? . 3%. We also note once again for emphasis that the

reported uncertainties in stellar mass do not take model uncertainties into account, and

are entirely model-dependent. While log g does offer a semi-empirical mass constraint

when combined with the inferred radius, which only depends on the bolometric correction

as a model-dependent constraint, it is not as limiting in our case where we inflate the

log g uncertainties to have a median of 0.15 dex. To this end, comparing the masses

derived with different sets of model grids are likely to reveal larger uncertainties in the

inferred mass, but such an exercise is outside the scope of this work.

To judge the accuracy of the stellar parameters in our sample, we compare the results

from isofit to the parameters derived in Berger et al. (2020b), which has a measured

mass and radius for each star in our sample. Berger et al. (2020b) derived masses and radii

for ∼186,000 stars in the Kepler field by comparing photometric effective temperatures,

Gaia parallaxes, and 2MASS Ks-band magnitudes to a custom set of MIST model grids,
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Table 3.1: Derived Properties for 1,018 KOIs in APOGEE.

Column Column Label Column Description
1 KIC Kepler Input Catalog Identification Number
2 APOGEE ID The APOGEE Star Identification
3 Teff effective temperature of the star in K
4 Teff e 16th percentile of derived posterior in Teff
5 Teff E 84th percentile of derived posterior in Teff
6 logg logarithm of the surface gravity of the star in cm/s2

7 logg e 16th percentile of derived posterior in logg
8 logg E 84th percentile of derived posterior in logg
9 feh metallicity of the star, [Fe/H]
10 feh e 16th percentile of derived posterior in feh
11 feh E 84th percentile of derived posterior in feh
12 mass mass of the star in M�
13 mass e 16th percentile of derived posterior in mass
14 mass E 84th percentile of derived posterior in mass
15 radius radius of the star in R�
16 radius e 16th percentile of derived posterior in radius
17 radius E 84th percentile of derived posterior in radius
18 logL logarithm of the bolometric luminosity of the star in L�
19 logL e 16th percentile of derived posterior in logL
20 logL E 84th percentile of derived posterior in logL
21 density density of the star in ρ�
22 density e 16th percentile of derived posterior in density
23 density E 84th percentile of derived posterior in density
27 distance distance of the star in pc
28 distance e 16th percentile of derived posterior in distance
29 distance E 84th percentile of derived posterior in distance
30 ebv the reddening of the star in units of E(B − V )
31 ebv e 16th percentile of derived posterior in ebv
32 ebv E 84th percentile of derived posterior in ebv
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Fig. 3.3.— The relative errors of the stellar radius (top) and mass (bottom) in the
APOGEE-KOI sample derived by isofit. The mean and median stellar radius uncer-
tainties are 2.5% and 2.2%, respectively. The mean and median uncertainties on the
stellar mass are 4.8%.

and spectroscopic [Fe/H] where applicable. For stars with no spectroscopic [Fe/H], the

authors assumed a thin disk metallicity prior. These comparisons are highlighted in

Figure 3.4.

We find overall agreement consistent with our reported uncertainties. The mean

difference in radii, calculated as (R?−RB20)/R?, gives a mean and scatter of −0.7±3.4%,

where RB20 is the radii inferred by Berger et al. (2020b). This is well within the combined

uncertainties defined in our sample and in Berger et al. (2020b). However, there are some

systematic differences. While there is generally excellent agreement in R?, the radii in

the APOGEE sample are systematically lower by as much as ∼5% for lower-mass stars

(. 0.75M�). This may be caused by the use of slightly different model grids. Berger

et al. (2020b) adjust their model grids for stars with M? . 0.75M� by adopting empirical

relations from Mann et al. (2015, 2019). However, while we still report stellar parameters

for all the KOIs observed by APOGEE, only a subset of those stars (largely FGK dwarfs,

see §3.3.3) are actually used for the occurrence rate analyses in the later sections of this
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Fig. 3.4.— Comparison of the fundamental stellar properties derived in this work versus
the stellar properties derived by Berger et al. (2020b) for the same stars (B20). The
dashed blue lines in each case represent the one-to-one agreement between the two sam-
ples. Left: Comparisons of the stellar radii derived in this work. Overall there is excellent
agreement, with scatter in the ratio of radii of 3.4%, and an average offset of < 1%. Right:
Comparisons of the stellar masses derived in this work and in Berger et al. (2020b). They
agree overall within the scatter, but have an offset of ≈ 6%, in that the APOGEE sample
has a lower mass on average.

work. For this reason, there is no strong motivation to make adjustments to our model

grid for low mass stars.

Performing the same comparison for M?, we find the mean and scatter of (M? −

MB20)/M? = −6.1 ± 8.1%, where MB20 is the mass derived in Berger et al. (2020b).

While there is a somewhat significant offset, it is still within the reported scatter for the

comparison. However, this offset is larger than our reported uncertainties (σM? ≈ 5%)

in M?, but as mentioned above, σM? is likely underestimated for a fraction of stars in

our sample. This offset is most likely due to a difference in the Teff of the two samples.

We find that the effective temperatures between our sample and those of Berger et al.

(2020b) have Teff − Teff,B20 = −78 ± 193 K. This lower temperature may explain the

differences in the inferred stellar masses between the two samples. However, this differ-

ence is mostly for stars with effective temperatures from 5000-6000 K. The difference in

effective temperature is minimal for stars with Teff . 5000 K, so although this may be
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the cause of the mass difference in the APOGEE-KOI sample and the B20 sample, this

is likely not the reason for the systematic differences in radii for low mass stars.

In addition to the comparisons with Berger et al. (2020b), we check our stellar radii

against those inferred from high-resolution spectroscopy (Martinez et al. 2019, see Figure

3.5). Martinez et al. (2019) derived atmospheric parameters from the archival spectra

in the CKS sample by measuring equivalent widths for a carefully curated sample of Fe

i and Fe ii lines, following the methodology outlined in Ghezzi et al. (2010, 2018). The

Martinez et al. (2019) sample is a more fair comparison for the purposes of checking

the accuracy of the stellar radii in our sample due to the combination of spectroscopic

Teff , log g, and [Fe/H] used as opposed to Berger et al. (2020b) who used photometric

temperatures and inflated errors on [Fe/H]. We find relatively good agreement, with

(R? − RM19)/R? = −1.1 ± 1.4%, where RM19 is the radii from Martinez et al. (2019).

Thus, although there is an offset, the radii derived in Martinez et al. (2019) largely agree

with those derived here, and the difference is within systematic uncertainties of ≈2% for

radii derived from Gaia DR2 parallaxes (Zinn et al. 2019b). The difference between our

radii and those derived in Martinez et al. (2019) can likely be traced to differences in

the effective temperature between the two samples. On average, we find Teff − Teff,M19 =

−108± 171 K. This difference explains our smaller inferred radii (see Figure 3.5).

The comparisons in this section to Berger et al. (2020b) and Martinez et al. (2019) im-

ply that ASPCAP is underestimating the effective temperature for stars in the APOGEE-

KOI sample. This difference in temperature scale drives differences of ∼1% and ∼6% in

the inferred radii and masses, respectively. A similar conclusion was found in Serenelli

et al. (2017), who found that for dwarf and subgiant stars the ASPCAP temperature

scale was underestimated compared to photometric temperature scales by ∼200 K. The

difference in effective temperature between the Berger et al. (2020b) sample and the

APOGEE sample is unsurprising because Berger et al. (2020b) calibrated their temper-

atures using stars with interferometric measurements from Boyajian et al. (2013) and
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Fig. 3.5.— Comparison of the fundamental stellar properties derived in this work versus
the stellar properties derived by Martinez et al. (2019) for the same stars (M19). In each
panel, the dashed black line denotes agreement. Left: Comparison of the stellar radii.
We find relative agreement, with an average offset and scatter of 1.1±1.3% in the ratio of
the radii. Right: Comparison of the effective temperatures derived by ASPCAP and the
effective temperatures from M19. There is a mean offset and scatter of Teff − Teff,M19 =
−108± 171 K between the two samples. The systematically lower Teff in ASPCAP is the
likely reason for the systematic offset in stellar radii.

Huang et al. (2015), which are in agreement with the Serenelli et al. (2017) photometric

temperature scale that was systematically higher than the ASPCAP temperature scale.

The question remains as to the origin of the difference between the ASPCAP and

photometric temperature scales. One possible insight is that the APOGEE temperature

scale is calibrated to color-Teff relations derived via the Infrared Flux Method (IRFM)

by González Hernández & Bonifacio (2009), while the Berger et al. (2020b) calibrate

their Teff-color relation using effective temperatures derived from stars with directly-

measured diameters via interferometry (Boyajian et al. 2013; Huang et al. 2015). The

IRFM method of inferring Teff , depending on one’s choice of zero-point calibration, can

have systematic uncertainties of ∼100 K. Such a difference may be at the root of the

discrepancy in the ASPCAP effective temperature scale.
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Planet Radii

We derive each of the planet radii using the reported transit depth in the DR24 KOI

catalog (Mullally et al. 2015). We apply the simple relationship,

Rp = R?

√
δtr

to calculate the planet radii in our sample, where δtr is the measured transit depth. The

uncertainty in planet radius for our catalog is found by propagating the errors on R? with

the uncertainties from the Kepler DR24 transit depth measurement. The resulting planet

radii in our sample have a median uncertainty of σRp/Rp = 3.2% (mean: 3.4%).

3.3 Sample Selection and Planet Classes

For this study we define three individual samples that we introduce here before describing

them in detail below. The first sample is the stellar planet-search sample, S. S is the

parent sample of stars that may have been observed by the APOGEE-KOI program. This

translates to the Kepler field stars within the APOGEE footprint that are then down-

selected based on our scientific goals. The second sample is C, or the control sample,

which is a subset of S. Because we don’t have detailed chemical abundances for each star

in S, C acts as a proxy from which we can infer the bulk properties (i.e., abundance-ratio

distributions) of S. The final sample is the vetted planet sample, P . P is the sample

of planets whose host stars were observed by the APOGEE-KOI Goal Program that is

then further vetted to remove False Positives and ensure a well-characterized sample of

planet candidates. Each of these samples are displayed in Figure 3.6, along with their

metallicity distributions.
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3.3.1 S: Stellar Planet Search Sample

To select the appropriate planet search sample, S, we start from the catalog of stars in

Berger et al. (2020b). We downsample this table to replicate the selection function of

the APOGEE-KOI survey. These cuts are listed below.

1. Brightness Cut, H < 14: This is the brightness limit in the APOGEE-KOI planet

sample, chosen because it is the limit for which a one-hour integration with APOGEE

yields a S/N & 10, i.e., sufficient to derive reliable radial velocities. We apply this

cut to each star in the field sample.

2. APOGEE Field Cut : 100 ′′ < d < 1.5 ◦, where d is the angular distance from

the center of the nearest APOGEE-KOI field. The upper limit of 1.5 ◦ represents

the limit placed by the Sloan 2.5-meter telescope’s field of view, and 100 ′′ is an

instrumental limit derived from a central post that obscures targets in the center

of the plate design (Owen et al. 1994; Zasowski et al. 2017).

At this point, it is important to note that the individual fields for the APOGEE-KOI

program were chosen to maximize the number of observable KOIs per field. If each Kepler

tile is expected to have the same number of KOIs, the choice to maximize the number of

targets in the APOGEE-KOI program may introduce a bias leading us to overestimate

the planet occurrence rate. However, it is more likely that the planet yield per field is

driven by a combination of the number of stars per field where transiting planets are

detectable, which would favor the fields closer to the Galactic mid plane, and the quality

of the light curves in the particular field, which would be diminished by crowding and

favor fields farther from the Galactic mid plane. Both of these effects are accounted for

in our occurrence rate methodology either directly (e.g., the number of planet-search

stars) or indirectly (e.g., the expected S/N for a transiting planet with a given period

and radius). Therefore, we believe that the choice of observed fields does not impart a

significant bias that is not already accounted for in our methodology.
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We applied a further series of criteria to ensure that our sample is well suited to the

ASPCAP analysis and completeness model we employ in §3.C.3, and to remove stars

that are evolved or likely to be a member of a binary system. To select this sample, we

make use of the stellar properties derived by Berger et al. (2018, 2020b) to apply the

following cuts:

1. Effective Temperature Cut, 4700 K < Teff < 6200 K: We remove stars outside the

temperature range well-suited to the ASPCAP analysis. Late K dwarfs show non-

physical trends in abundance ratio, and F-type stars have increased abundances

compared to the Solar neighborhood reported by ASPCAP (see Figure 3.2).

2. Maximum Transit Duration Cut, tdur,max < 15 hr: Because the Kepler Transiting

Planet Search module (TPS; Twicken et al. 2016) doesn’t include transit dura-

tions, tdur > 15 hr, we remove stars that can reasonably include such long duration

transits from our planet-search sample. This criterion is logically analogous to

removing evolved stars from the planet search sample. This is typical in Kepler

occurrence rate studies, usually as a recommendation to removing stars with large

radius, such as R? & 1.25R�, when applying empirical measurements of the Ke-

pler pipeline detection efficiency (Christiansen et al. 2015, 2016; Christiansen 2017;

Burke & Catanzarite 2017a). To determine such stars, we employ the following

approximation for the transit duration of a planet assuming a circular orbit and

impact parameter of b = 0, with a given period, P ,

tdur ≈ 1.426 hr

(
ρ?
ρ�

)−1/3(
P

days

)1/3

, (3.1)

where ρ? is the mean density of the star. Finally, tdur,max is obtained by setting

P = 300 days. The motivation behind setting a limit of 300 days is to avoid regions

of parameter space where planets would have fewer transits and as a result may

introduce a higher rate of false alarms in our sample, which for this work we assume
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is negligible.

3. Astrometric Noise Cut, RUWE < 1.2: We utilize the Renormalized Unit Weight

Error (RUWE) from Gaia DR2 provided in Berger et al. (2020b) to remove stars

that are likely to show signs of multiplicity. The RUWE parameter is a combi-

nation of goodness of fit metrics that quantifies deviations of a given star’s sky

motion from a 5-parameter astrometric solution. Single stars are expected to show

a Gaussian distribution centered at RUWE = 1, which suggests that sources with

RUWE significantly greater than that expected from a Gaussian distribution are

likely to have companions that induce detectable centroid offsets in the Gaia DR2

astrometric pipeline. We choose RUWE < 1.2 as our cutoff, as motivated by

Bryson et al. (2020), to be the limit above which we would reliably expect stars to

be binaries.

4. Likely Binary Cut, BinFlag 6= 1 or 3: We remove stars that are likely to be

binaries, as determined by Berger et al. (2018). Berger et al. (2018) use BinFlag=1

or BinFlag=3 to denote a star likely to be a binary due to its inferred radius.

We do not remove stars with BinFlag=2, which are stars likely to be binaries as

determined from high-resolution AO or speckle imaging, because those data are

only available for a small subset of the planet search sample, and removing such

stars is likely to create a bias.

After applying these cuts we are left with 20,625 stars in S. This defines our planet-

search sample, with stars that have typical masses ranging from 0.7-1.3 M�, and distances

ranging from 100-2000 pc.

3.3.2 C: APOGEE-Kepler \Control" Sample

In addition to the KOIs that were observed in the APOGEE-KOI program, a number

of stars were chosen to fill the APOGEE plates as a control sample for the purpose of
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comparing the chemistry of stars with and without detected transiting planets. The

control sample was chosen to reflect the bulk properties of the KOI sample by matching

the joint distributions of effective temperatures, H-band magnitudes, and log g from the

Kepler Input Catalog (KIC; Brown et al. 2011). It is from this sample of stars that we

construct C.

At this point, we want to emphasize the purpose of C. C is used solely to infer the

abundance distributions of S. Therefore, there are two requirements needed to ensure

that C is representative of the abundances of S. First, it must broadly reflect the Galactic

coordinates, distances, masses, and ages of the stars in S, properties that are known to

correlate with chemical abundance distributions (see e.g., Hayden et al. 2015). The second

criterion is that there must not be systematic differences that would bias the ASPCAP

analysis. For example, differences in S/N , Teff , and log g may all lead to systematic

offsets in the derived abundances that could lead one to conclude there are differences in

the underlying distributions when that is not truly the case.

Because C already reflects S in terms of Galactic coordinates, distances, and H mag

(and therefore S/N) by its very construction, we only need to apply the cuts that ensure

the stars in C are amenable to the ASPCAP analysis, and that they reflect the ages and

masses of the stars of interest. Therefore, we apply the Maximum Transit Duration Cut

and the Effective Temperature Cut, because differences in the distribution of stellar den-

sities (and therefore log g) can be indicators of age differences, and differences in effective

temperature are most likely to lead to systematic offsets in the derived abundances. After

these two cuts, we are left with 72 stars in C.

3.3.3 P: Vetted Planet Sample

To ensure that we have a high purity planet sample, we apply an additional series of cuts

to the planet candidates designed to remove False Positive detections, remove planets

where the transit depth, and therefore planet radius measurement, may not be accurate,
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Fig. 3.6.— The three samples considered in this study. The effective temperature and
radii of the stars in each sample are shown along the top row, and the metallicity distri-
bution function for each sample is shown along the bottom row. The metallicity distri-
butions are scaled to arbitrary units. Left : Kepler field stars with parameters derived in
Berger et al. (2020b). The stars cut from S are shown in grey, and those included in S
are shown in green. The metallicities for the stars in S are heterogeneous, or assumed
to be solar, and thus are not as reliable for this study. Center : The stars in the Control
sample (grey), and the subset of these stars included in C (tan). Right : All the stars in
the APOGEE-KOI program (gray) and the stars included in P (purple).

and to restrict our sample to the parameter space well-defined by our completeness

correction model (§3.C.3). We define and motivate each of these cuts below.

1. ASPCAP Solution Cut: First, we remove planet candidates whose host stars do

not have a reliable ASPCAP solution. This cut was already implicitly made when

adopting the stellar and planetary radii, but we repeat it here for emphasis. Because

we are interested in measuring planet occurrence rates and their change with chem-

ical abundances, we restrict our sample to stars for which the ASPCAP pipeline
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has derived a reliable solution to the spectroscopic fit. Spectra that do not have

such a fit will not have derived abundances and are therefore not appropriate to

include in our analysis. We correct for this bias in §3.C.3.

2. Reliability Cut : To remove as many contaminants from P , we remove all planet

candidates with a False Positive disposition in the DR24 KOI catalog.

3. Impact Parameter Cut, b < 0.9: We remove all planet candidates with impact

parameter, b > 0.9, as measured in the DR24 KOI catalog. Modeling transits

with large impact parameters leads to greater uncertainties in the transit depth

and therefore planet radius of the sample. Thus, we remove planet candidates

with large impact parameters to ensure that we have a sample of planets with

well-measured radii.

4. Planet Radius Cut, Rp < 23R⊕: We place an upper limit on the radius of a planet

candidate in our sample of 23R⊕ (2.1 RJup), which is consistent with the radius of

the largest confirmed transiting exoplanet currently known, HAT-P-67b (Zhou et al.

2017). While inflated Hot Jupiters are known to have radii as large as ∼ 2RJup,

most objects with radii larger than 2RJup are likely very low-mass stars.

5. Excess RV Variability Cut, εRV < 4.4: To remove EBs and eclipsing brown dwarfs

from P , we define a metric for excess RV variability, εRV , as

εRV ≡MAD(RV )/σRV , (3.2)

where MAD(RV ) is 1.4826× the median absolute deviation of the individual RV

measurements, and σRV is the median RV uncertainty for all epochs. To esti-

mate σRV , we add the reported RV uncertainty for each visit in quadrature with

σRV,min = 72 m s−1, which has been noted as a reliable lower limit on the relative

RV error for high S/N observations in DR16, where the reported error may be
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underestimated (Price-Whelan et al. 2020). Given the varying brightness of our

targets, the RV uncertainties are highly correlated with the single epoch spectrum

S/N . As a result, a flat cut in the scatter of the RV measurements could remove

bonafide planet candidates with dim host stars, while missing astrophysical False

Positives around bright host stars. εRV , therefore, gives a more accurate assess-

ment of whether a given star is RV-variable than a flat cut in the scatter of the

RV measurements. We decide on εRV = 4.4 because that is equal to the median

plus twice the median absolute deviation in our sample. APOGEE RV observa-

tions in the KOI sample are capable of placing upper limits into the planetary

mass regime, typically between 1-10 Mjup, depending on the orbital period of the

transiting planet, spectrum S/N at each epoch, and mass of the host star. There-

fore, by removing all stars with significant RV variability in our sample, we in turn

remove any contaminating eclipsing binaries. APOGEE’s RV precision is not quite

effective enough to detect planetary mass companions without detailed modeling,

so our metric for RV variability is not likely to remove any real planets, such as hot

Jupiters. We justify this briefly in §3.4.2.

After these cuts we are left with 504 total planet candidates in P . The breakdown

of these planets by field is shown in Table 3.2. The radius and period characteristics

of these candidates are shown in Figure 3.7. There are a number of trends evident in

this figure. For instance, the radius gap (Fulton et al. 2017) is clear in both the top

and bottom panels of our figure, as well as a slope in orbital period in the gap measured

by previous authors (Fulton & Petigura 2018; Martinez et al. 2019); these two features

qualitatively validate the precision and accuracy of the radii in P .

3.3.4 Adopted Planet Classes

We divide the planets in P into multiple classes based on their orbital period and ra-

dius, as many previous studies have shown metallicity correlations that depend on these
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Field α(h:m:s) δ(d:m:s) npl n? F?
K04 19:42:47 +49:54:07 70 3303 0.16
K06 19:13:39 +46:52:30 86 2947 0.143
K07 19:00:17 +45:12:47 69 2686 0.13
K10 19:36:30 +46:00:18 101 3966 0.192
K16 19:31:05 +42:05:24 82 4211 0.204
K21 19:26:13 +38:09:36 96 3512 0.17
All N/A N/A 504 20,625 1.00

Table 3.2: The coordinates, number of stars in S, number of planets in P , and fraction
of stars in S for each APOGEE-KOI field.

properties. The adopted planet size classes are motivated partially by empirical and

theoretical boundaries where applicable, and partially by conventions in the literature,

as explained below. For the planet size classes, we define the following:

1. Sub-Earths, Rp < 1R⊕: The number of planets in this class suffers particularly

severely from low survey completeness, and for that reason these planets are dras-

tically skewed toward lower orbital periods. Because of this, we don’t consider

these planets when measuring occurrence rates, and are hesitant to draw major

conclusions when comparing the abundances of their host stars to those of stars in

C. There are 57 Sub-Earths in P .

2. Super-Earths, 1.0 R⊕ ≤ Rp < 1.9R⊕: Super-Earths are defined as planets larger

than earth, with an upper limit set by the minimum of the radius gap in the planet

radius distribution between 1-4 R⊕ in our sample (Figure 3.7). The 1.9R⊕ bound-

ary we find between Super-Earths and Sub-Neptunes is slightly different than that

found by Fulton et al. (2017), and closer to the boundary found by Martinez et al.

(2019). There are 198 Super-Earths in P .

3. Sub-Neptunes, 1.9 R⊕ ≤ Rp < 4R⊕: The lower boundary is driven by the radius gap

as discussed above. The upper boundary is placed as the limit where the occurrence

of Sub-Neptunes tends to zero. While a more precise physically-motivated bound-

ary is not clear, we choose 4R⊕ as an upper limit to be consistent with conventions
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Fig. 3.7.— The planets in P , plotted with all the DR24 planet candidates that have a
host in S. Top: The planet radius and orbital period of all planets in P . The grey points
show all the planets from the DR24 KOI catalog with a host star in S. Bottom: The
radius distribution of the planets in P . The grey histogram shows the radii of all the
planets in DR24 with a host in S, while the blue shows those in P . The primary reasons
for exclusion in P are RV variability, a poor solution from ASPCAP, or pre-DR24 target
selection.

in the literature. There are 236 Sub-Neptunes in P .

4. Sub-Saturns, 4 R⊕ ≤ Rp < 8⊕: The lower radius boundary for Sub-Saturns is given

by the decrease in Sub-Neptune occurrence rates described above, and the upper

limit is driven by the approximate radius at which planets are typically & 100M⊕

(Petigura et al. 2017b). There are 11 Sub-Saturns in P .

5. Jupiters, 8 R⊕ ≤ Rp < 23R⊕: The radius range for Jupiter-sized planets is given by

the upper boundary for Sub-Saturns, and by the upper limit placed by the largest
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known confirmed planet, as mentioned in §3.3.3. There are 17 Jupiters in P .

In addition to these size classes, we also define three different period boundaries for

planets of differing orbital separations (i.e., orbital period).

1. Hot, P ≤ 10 days7: There is a well-documented break in the occurrence rate of

planets with respect to orbital period, showing two different regimes above and

below P ∼ 10 days (Youdin 2011; Howard et al. 2012; Mulders et al. 2015c). There

are 235 hot planets in P .

2. Warm, 10 < P ≤ 100 days: The boundary for warm planets is given by the lower

bound on hot planets, and on the upper end where completeness becomes an issue

for Super-Earths. This range of orbital periods is also consistently used in the

literature, so we adopt it as well for ease of comparison. There are 239 warm

planets in P .

3. Cool, 100 < P ≤ 300 days: We define this period range as our cool sample.

The number of planets in this range suffers severely from decreased Kepler survey

efficiency, and only contains 30 planets in P . In addition, studying the population

of Kepler planets with P & 300 days requires a careful approach to modeling the

Kepler False Alarm rate, which we assume to be negligible (Bryson et al. 2020).

We refer to these classes often throughout the rest of this work.

3.3.5 Assessment of Differences Between Host Star

Abundances and the Field

In this section we examine whether there are any clear correlations with planet type

and host chemical abundance. We also make more detailed comparisons between the

7Note: For the occurrence rate analyses, our definition of hot planets doesn’t include planets with
P < 1 day, due to the lack of injections used to test the Kepler pipeline completeness at these short
periods (see §3.C.3 and Figure 3.20).
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abundances of C and P . The chemical abundances of both P and C are shown in Figure

3.8. For this section, we rely on the abundance ratios to Fe, [X/Fe], because there is a

clear offset in [Fe/H] between C and P visible in Figure 3.8, where stars in C are more

metal-poor on average. This is a well-known property of the stars with known transiting

planets when compared to the general population of stars (i.e., regardless of whether

they are known to host planets or not) in the Kepler field. Because of this difference,

using [X/H] as a metric is almost certainly guaranteed to reproduce the [Fe/H] differences

already known, and our goal is to search for new differences.

After defining the planet size and orbital period classes above, the first natural ques-
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Fig. 3.8.— Chemical abundances for the planet host (purple) and control (tan) samples.
The chemical abundance displayed is shown in the upper left corner of each panel. The
median error (±1σ) for each abundance is shown by the black error bar in the top right
corner of each panel, and the dashed lines indicate the median abundances for the planet
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tion is whether hosts of differing planet classes tend toward specific abundance patterns.

Therefore, to detect any differences in the distribution of the host star abundances and

the abundances of general stars in the field, we apply four unique statistical tests, con-

sidering a result significant if the p-value for the statistic is <0.005. The results of these

tests are shown in Table 3.7, and for the sake of brevity they are discussed further in

the Appendix (3.B). In short, we find no new credible differences, according to these

tests, between the chemistry of stars in C and those in P that are not easily explained

by already known trends between planet properties and the metallicities of their host

stars (Santos et al. 2004; Valenti & Fischer 2005; Ghezzi et al. 2010, 2018; Buchhave

et al. 2014; Schlaufman 2015; Mulders et al. 2016; Wilson et al. 2018; Petigura et al.

2018; Narang et al. 2018). The median and median absolute deviations of abundance

distributions for these samples are listed in Table 3.3.

[Xi/Fe] C P
Fea -0.068±0.183 -0.001 ± 0.161
C -0.001±0.071 -0.017 ± 0.060

Mg 0.031±0.082 0.006 ± 0.059
Al 0.094±0.201 0.067 ± 0.125
Si -0.004±0.090 0.001 ± 0.058
S 0.034±0.125 0.010 ± 0.100
K 0.062±0.096 0.014 ± 0.075
Ca 0.008±0.059 0.010 ± 0.046
Mn -0.004±0.077 -0.000 ± 0.073
Ni 0.028±0.044 0.021 ± 0.042

Table 3.3: The median and median absolute deviation of each abundance distribution in
C and P . aFor iron, the abundance is reported with respect to Hydrogen, [Fe/H]
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3.4 Results

3.4.1 Abundance Trends with Planet Period and Radius

In this section, we test whether there are any correlations between the host star abun-

dances and planet properties. While these correlations can reveal important trends, it is

important to note that the trends discussed in this section do not take completeness or

detection biases into account. When appropriate, we mention when we believe an effect

may be a result of a lack of completeness. A more thorough investigation would include

correcting for biases in the Kepler and APOGEE-KOI surveys, which is performed in

§3.4.2.

In Figures 3.9 and 3.10 we plot the mean and variance of the abundance distributions

for different planet radius and planet period bins. As in the literature, we recover an

anti-correlation [Fe/H] of the host star and the planet orbital period. We also recover

a positive correlation between the planet radius and the host star [Fe/H]. Within these

broader correlations, there are a few interesting results. For instance, while there is a

general anti-correlation between planet orbital period and host star [Fe/H], there is an

increase in the average metallicity distribution at P ∼ 30 days. This slight increase

is apparent in Figure 3 of Petigura et al. (2018) as well, though to a lesser extent.

This feature is also pointed out in Wilson et al. (2018) as a possible transition period at

P ∼ 23 days. While the exact cause of this bump is not well-constrained by this work, we

hypothesize that it is due to an increase in the relative number of Sub-Saturns at these

orbital periods. Because the presence of Sub-Saturn planets are positively correlated

with enhanced metallicity, and they also have increasing occurrence rate at warm orbital

periods.

We also see a number of interesting trends between planet radius and host star [Fe/H].

For one, we confirm the claim made by several authors (Buchhave et al. 2014; Schlaufman
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2015; Wang & Fischer 2015; Ghezzi et al. 2018; Petigura et al. 2018) that larger radius

planets are positively correlated with host star [Fe/H]. Digging deeper we also find a few

other interesting results. For instance, there is an apparent increase in the metallicity

of Sub-Earths. However, as cautioned, these planets suffer from low completeness, and

are heavily skewed toward shorter periods. Thus, this bump can be explained by the

stellar metallicity planet orbital period trend discussed above. Another interesting trend

we find is that Sub-Neptunes with larger radii (Rp ∼ 3 − 4R⊕) have host stars with

enhanced [Fe/H] compared to smaller Sub-Neptunes (Rp ∼ 1.9−3R⊕). This is predicted

by the theory of atmospheric loss via core-heating (Gupta & Schlichting 2019, 2020).

The radius of Sub-Neptunes are expected to increase with metallicity, Z, via the relation

d logRp/d logZ ∼ 0.1.

To test for significant trends in our sample, we calculate the Spearman ρ rank cor-

relation coefficient between the iron normalized abundances for the planet hosts in our

sample and the logarithm of the radii and periods of the planets in our sample. The

results of these statistical tests are shown in Table 3.4. As with the tests in the previous

section, we consider a result significant if the p-value is <0.005. In this vein we uncover a

few statistically significant correlations. The most clear correlations we recover are cor-

relations with planet radius and [Mn/Fe], [Mg/Fe], and [S/Fe]. Perhaps unsurprisingly,

the correlations with [Mn/Fe] is positive, and the correlation with [Mg/Fe] is negative,

meaning that they are most likely influenced by statistically strong correlations with

[Fe/H]. We can see from Figure 3.8, in fact, [Mn/Fe] displays strong correlations with

[Fe/H], and [Mg/Fe] shows a strong anti-correlation.

However, the origin of the positive trend with [S/Fe] is less clear. [S/Fe] does not

display the same correlation as [Mn/Fe]. Interestingly, [S/Fe] is the only abundance

(aside from [Mn/Fe] for the same reasons as above) that is significantly correlated with

planet period as well (p = 2.2× 10−5). Even more interesting, these correlations cannot

be explained by already known trends with [Fe/H]. If that were the case, [S/Fe] would be
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Fig. 3.9.— Left: The average metallicity for host stars of planets in given orbital period
bins. The circular points show the average metallicity, while the horizontal lines show
the 68% confidence interval on the metallicity distribution. We recover the same planet
period–stellar metallicity anti-correlation reported in previous literature (e.g., Mulders
et al. 2016; Wilson et al. 2018) Right: The average host star metallicity for planets of
differing radius bins. The bins are chosen to reflect the size classes, Sub-Earths, Super-
Earths, Sub-Neptunes, Sub-Saturns, and Jupiters. The Sub-Earth, Super-Earth and
Sub-Neptune classes are split into two radius bins each. We find similar relations as in
the literature, that there is a constant increase in the average host metallicity for planets
with radii ranging from ∼1-8R⊕. The increased metallicity for the Sub-Earth planets is
likely a result of the bias against detecting sub-Earths at P & 10 days.

expected to show a correlation with either planet period or radius and then must show

an anti-correlation in the other, as with [Fe/H]. However, [S/Fe] shows a strong positive

correlation with both planet radius and planet period. It’s not clear that the source of

the trend with S abundance-ratios is astrophysical, but it warrants further investigation.

3.4.2 Planet Occurrence as a Function of Chemical

Abundance

In this section we calculate the occurrence rates of planets as a function of P , Rp, and

[X/H]. We fit a parametric model to describe the general trends of the planetary distribu-
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tion function (PLDF) and their dependence on these properties. This analysis represents

an improvement from the analysis in §3.3.5, as we are now accounting for the selection

functions of Kepler and APOGEE; thus the conclusions we draw about the PLDF from

this analysis should be independent of observational biases.

We employ a common strategy to measure the PLDF that has been used in previous

studies: the number of planets per star (NPPS) is calculated over a grid of P and Rp,

utilizing the inverse detection efficiency method and a maximum likelihood approach

(e.g., Youdin 2011; Fressin et al. 2013; Burke et al. 2015; Mulders et al. 2015c, 2018;

Petigura et al. 2018). We give a brief description of our completeness model below, but

refer the reader to the Appendix (§3.C) for details on our methodology.

Completeness Model

In this subsection we give a brief description of our completeness model, η(x, z), where x

are planet properties and z are stellar properties, but refer the reader to the appendix for

details (§3.C.3). Our approach varies slightly from most Kepler occurrence rate studies,

because we also need to correct for biases inherent in the follow-up program. In other

words, inclusion in P is dependent on more than membership in S and a detected planet

candidate in Kepler. There are additional biases imposed by the APOGEE selection

[X/Fe] npl ρP pP ρRp pRp
Ni 504 -0.003 0.95 0.117 0.0087
Si 504 -0.001 0.99 -0.028 0.53

Mg 504 0.084 0.058 -0.155 0.00049
C 504 0.044 0.33 -0.002 0.96
Al 500 0.049 0.28 0.045 0.31
Ca 504 0.068 0.13 -0.032 0.48
Mn 504 -0.133 0.0028 0.163 0.00023
S 503 0.164 0.00022 0.139 0.0018
K 500 0.101 0.023 -0.060 0.18

Table 3.4: The results of the Spearman ρ rank coefficient to test for correlations between
abundance ratios to iron and logP and logRp.
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Fig. 3.10.— Top: Trends with planet radius and abundance ratios to iron. Just like
with Figure 3.9, the points represent the means of each bin, with error bars representing
the error on the mean [X/Fe] from bootstrapping. The horizontal lines show the 16th
and 84th percentiles of the distribution in each bin to display the variance. We detect
significant positive correlations between [Mn/Fe], and [S/Fe] vs. Rp. Bottom: The
distribution of host star abundance ratios to iron as a function of planet period. We detect
a statistically significant positive correlations between [S/Fe] and P . Such a correlation
cannot be explained with well known trends in [Fe/H].

function, instrumental setup, and spectroscopic analysis pipeline that must be considered.

In total we account for four unique biases for a planet candidate to be included in P :

1. The geometric probability that a planet with a randomly oriented orbital plane

transits its host star (ptra)
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2. The probability that a transiting planet is detected by Kepler (pdet),

3. The probability that a detected planet candidate was observed in the APOGEE-

KOI program (papo)

4. The probability that ASPCAP doesn’t fail to produce reliable atmospheric param-

eters for the host star (1− pfail).

Assuming that each of the four terms above are independent, we calculate the total

average survey efficiency for each field as the product of each term, given by

〈η〉 =
1

n?

n?∑
i

ptra,i × pdet,i × papo,i × (1− pfail,i) , (3.3)

where 〈η〉 is the average survey efficiency across S. The mean survey efficiency for

each field is shown in Figure 3.11. By marginalizing over all the stars in S in this

way, we’ve removed stellar properties from our expression for survey efficiency, so that

η = η(x) = η(P,Rp). This relies on an implicit assumption that chemical abundances

are not correlated with survey efficiency.

Occurrence Rates in the P -Rp Plane

We first calculate the occurrence rate of planets in the P -Rp plane, making use of the

completeness model in §3.C.3. Because we are not applying any stellar properties (i.e.,

abundances) for these calculations, we calculate the occurrence rates as described in

§3.C.1 and §3.C.2 for equally spaced bins in logP and logRp.

We first divide the P -Rp plane into logarithmic bins of ∆ logP ×∆ logRp = 0.25 dex

× 0.15 dex, and we plot these occurrence rates in Figure 3.12. Each bin is shaded in

accordance with its occurrence rate, and annotated with our measured occurrence rate

and error, or with an upper limit on the occurrence rate in the case that a planet was not

detected in that bin. For compactness, the error on the occurrence rate is taken to be
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planet orbiting a star in S is in P . The lightest shade shows where η > 0.1, while
the darkest shade represents survey efficiencies of η < 10−4. The gray dashed lines are
the corresponding contours for the Kepler DR24 pipeline efficiency and are shown for
comparison to highlight the effects of the APOGEE-KOI program selection function. The
panels representing the APOGEE fields are organized from least to most divergent from
the DR24 pipeline efficiency with the combined survey efficiency on the far right.

half of the 68% confidence interval around the measured value, which is why some of the

errors imply a range of uncertainty with a negative occurrence rate, which is unphysical.

Bins that do not have any annotations represent regions with low completeness where

our derived upper limit is not restricting.

We use the same bins as in Petigura et al. (2018) for the sake of comparison, and

we find that our results are qualitatively similar. For instance, we both find that the

most abundant planet types are warm Sub-Neptunes, warm Super-Earths, and then

cool Jupiters, in that order. For Jupiters, we find a sharp rise in occurrence rate for

P > 100 days. This trend is present in the CKS sample as well, and has been noted in

RV surveys (Cumming et al. 2008). This rise in occurrence rate is thought to be correlated

with the water ice line at ∼1 au, leading to the facilitation of more massive planetary

cores. There is also an island of relatively high occurrence for hot Jupiters centered
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Fig. 3.12.— The planet occurrence rate in the P -Rp plane. We divide the planet into bins
of size ∆ logP ×∆ logRp = 0.25 × 0.15 dex. The color shows the measured occurrence
rate in the bin of interest on a logarithmic scale. The gray bins do not have any detected
planets. The numbers in each cell shows the occurrence rate in units of number of planets
per 100 stars. The uncertainty shown is taken to half of the 68% confidence interval range
on the occurrence rate. Bins without detected planets have the upper limit displayed.
Bins with no detected planets and no upper limit listed are areas of low completeness
where an upper limit is not constraining.

on P ≈ 3 days. From our data alone, it’s not clear if this is a statistically significant

increase centered at P ≈ 3 days, or if it is simply a result of declining occurrence rates

below P ≈ 100 days. However, this increase in occurrence rates is also found in the

California Planet Search program (Cumming et al. 2008), the CKS survey (Petigura

et al. 2018), and other Kepler occurrence rates studies (e.g., Hsu et al. 2019), lending

credibility to its existence. Overall, we find a similar occurrence rate for hot Jupiters

of f = 0.48+0.16
−0.24 planets per 100 stars, compared to the CKS team’s measurement of

f ≈ 0.57 planets per 100 stars. This agreement in the occurrence rate of hot Jupiters

bolsters our claim from §3.3.3 that removing RV variable sources does not remove a

significant fraction of hot Jupiters.
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However, we find a few key differences with previous studies as well. For instance,

the occurrence of Sub-Neptunes and Super-Earths is nearly twice as high in some of

the bins as compared to that found by CKS survey. One explanation for this apparent

difference in the occurrence rates of small planets is simply a systematic difference in the

planet radii. For instance, this work typically has more precisely-measured planet radii

due to the inclusion of Gaia parallaxes in our analysis, which could cause certain bins

in the P -Rp plane to appear to have higher occurrence simply due to sharper features

in the occurrence rate distribution. The bins themselves were also chosen arbitrarily,

so increased occurrence for a given bin can appear inflated due to the choice of bin

edges. To more accurately judge this potential difference, we calculate occurrence rates

in arbitrarily small bins in the P -Rp plane, then convolve these occurrence rates with a

two-dimensional Gaussian kernel of size ∆ logP × ∆ logRp = 0.25 dex × 0.1 dex. The

occurrence rates as a result of this smoothing are shown in Figure 3.13. This figure

gives a more intuitive understanding of the occurrence rate of planets in the P -Rp plane,

and avoids the effects of binning that may misrepresent the PLDF. We find that our

occurrence rates indeed are slightly larger than in Petigura et al. (2018) at the peak of

the warm Sub-Neptune and Super-Earth distributions. This difference may be due to

the APOGEE-KOI selection function, which selects a higher fraction of lower mass stars

due to its magnitude cut in the near-infrared where such stars are brighter, rather than

on the optical Kp magnitude. Lower mass stars are known to have increased occurrence

rates for small (Rp . 4R⊕) planets (Mulders et al. 2015c).

One feature present in our occurrence rate distribution is the radius gap (Fulton

et al. 2017), with a notable dependence on the location of the gap with orbital period.

This trend was uncovered by an independent analysis of the CKS spectra performed by

Martinez et al. (2019). We find excellent agreement between the slope they found and

the planet occurrence rate distribution in our sample. This slope in the radius gap is

shown as a dashed black line in Figure 3.13.
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Fig. 3.13.— The planet occurrence rate in the P -Rp plane. For each row of figures, the
left panel shows the planets in P as white points, and the filled contours show the derived
occurrence rate, with darker shades representing higher occurrence rates. The top row
displays the occurrence rates on a linear scale, and the bottom row displays occurrence
rates on a log scale, where darker shades of red indicate higher occurrence and lighter
shades of yellow indicate lower occurrence. A box in the upper left corner of each panel
shows the FWHM of the Gaussian kernel used to calculate the contours for this figure.
The gray region denotes areas of low survey completeness. The dashed black line shows
the location and slope of the radius gap measured by Martinez et al. (2019).
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We also find that the occurrence rate of Sub-Neptunes and Super-Earths as a function

of orbital period can be well described by a distribution of the form,

fP = CPα(1− e−(P/P0)γ ) , (3.4)

which effectively acts as a power law distribution, with a break at P = P0. At P � P0,

the distribution acts as a power law with fP ∝ Pα+γ, and at P � P0, the distribution

acts as a power law of the form, fP ∝ Pα. We fit the differential occurrence rate of small

planets with respect to period using this functional form for both Sub-Neptunes and

Super-Earths. We use bin sizes of ∆ logP = 0.005 dex, and initialize the MCMC routine

with 50 walkers, 5000 total steps, and 1000 burn-in steps. Sub-Saturns and Jupiters are

not well described by this functional form. The fits are displayed in Figure 3.14.

For Super-Earths, we find a transition period of P0 = 6.3+1.7
−1.3 days, and for Sub-

Neptunes we find a transition period of P0 = 11.2+3.9
−2.5 days. This is consistent with

the theory of photoevaporation (Owen & Wu 2013, 2017), as planets at shorter orbital

periods are subject to higher incident FUV and XUV flux, and are thus more subject to

atmospheric stripping. As a result, one would expect the occurrence rate of Sub-Neptunes

to drop before the occurrence rate of Super-Earths. Super-Earths and Sub-Neptunes have

a consistently steep rise in occurrence at short orbital period, with γ = 2.1+0.3
−0.2 for Sub-

Neptunes and γ = 1.9+0.2
−0.2 for Super-Earths. At longer orbital periods, Sub-Neptunes level

off in occurrence rate with α = 0.08+0.14
−0.17 consistent with no change, and Super-Earths may

have a slight decrease in occurrence rate at longer orbital periods with α = −0.11+0.13
−0.14,

though these are also consistent with no change. These parameters are all consistent

with those measured by Petigura et al. (2018).

In addition, the transition period we measure for Super-Earths, is in agreement with

the transition period found in Wilson et al. (2018), P0 = 8.3+0.1
−4.3 days, who analyzed

planets of all size classes. In Wilson et al. (2018) the transition period was measured by
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finding the period in which the metallicity distributions of host stars with their innermost

detected planet above and below the transition period are the most statistically different.

Occurrence Rates with P , Rp, and [X/H]

To test the significance with which each element correlates with planet occurrence, we

fit a parametric function of the form

fX,P = CPα10βX , (3.5)

where X = [X/H], using the bootstrapping monte-carlo method described in §3.C.4.

This is an extension of the model used by Petigura et al. (2018), who modeled the

correlation between planet occurrence rates and metallicity. The abundance term in the

above equation is equivalent to a power law relationship with the number density of

atoms in the star’s photosphere,

fX,P ∝
(
nX
nH

)β
, (3.6)

where nX is the number density of atoms of element X, and nH is the number density of

hydrogen atoms in a star’s photosphere. With this relationship in mind, a value of β > 0

would indicate a correlation between the number of planets and the presence of that

particular element, while a value of β < 0 would indicate an anti-correlation between the

planet occurrence rate and the number density of atoms of that particular element.

If we naively assume that that the abundance ratios in the stellar photosphere are the

same as the abundance ratios of the protoplanetary disk in the first ∼ 1−10 Myrs during

planet formation before the disk disperses, then a non-zero differential occurrence rate

density between two independent elements may indicate that the presence of one element

more efficiently facilitates or suppresses planet formation compared to the presence of

the other element. Such a result may indicate the composition of dust grains that grow
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Fig. 3.14.— The number of planets per star (multiplied by 100) for a given orbital
period bin and planet size class. The colors denote the planet size class. The circular
points denote the occurrence rates while the triangular points denote upper limits. We
fit the Sub-Neptune and Super-Earth occurrence rates with a function of the form, fP ∝
Pα(1− e−(P/P0)γ ). The lines show the adopted best fit solution, and the shaded regions
denote the 1σ confidence interval of credible models. The occurrence rates shown in this
figure are displayed over substantially larger bin sizes than those used to fit the model
but are displayed here to guide the eye.
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to planetesimals more efficiently, or gaseous molecules that are preferentially accreted.

As discussed in the appendix (§3.C.4), the conclusions stemming from this analysis

are limited by uncertainties in the stellar abundance distribution function, F?(X), rather

than the Poisson error. In other words, the low number of stars in C are the dominant

source of uncertainty in deriving β. For each planet size and period class we observe, we

find consistent values for the period dependence, α, across each elements in a given planet

size and period class. We also find no correlation between α and β, for any element X

and any planet period period or size class in the posterior distributions. The results of

these parametric fits are listed in Table 3.8, and plotted in Figures 3.15 and 3.16.

For the hot period class of planets, we find a positive correlation with all abundances

and planet size classes, except Sub-Saturns that we are not able to constrain due to the

low number of detections. The fits and range of credible models for all the hot planets are

plotted in Figures 3.15 and 3.16. Because the model is two-dimensional, we integrate over

the period dependence and only display the dependence on the elemental abundances.

The hot Jupiters in our sample are poorly constrained, but still consistent with β > 0,

with β ranging from β = +11.3+6.4
−4.8 for Si, to β = +4.2+2.7

−2.1 for Ni. All of these values

are consistent at the 1σ level, but not well constrained. For hot Super-Earths, the

element number density correlation ranges from β = +0.50+0.48
−0.46 at the lowest for K, and

β = +1.16+0.47
−0.43 for C at the highest. These values are consistent at the 1σ level, and

there are no clear differences between each different element.

For hot Sub-Neptunes, the correlation coefficients, β, are all > 0 and mostly consistent

across all elements. However, we do find hints at variation among different chemical

species. The correlation strengths range from β = 2.98+0.85
−0.78 for Ca to β = 1.26+0.51

−0.47 for Al

(a ∼ 2σ discrepancy). However, we are hesitant to trust these differences due to potential

non-LTE effects that may bias the Al abundance ratios, which are calculated in ASPCAP

assuming LTE. The dependence on other elements range between these extremes. Future

studies are needed to determine if credible variations exist. Such a difference may give
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Fig. 3.15.— The occurrence rate of hot planets (P = 1−10 days) as a function of chemical
abundances for ten different chemical elements. The colors represent planets of different
size classes (Jupiters: Orange, Sub-Saturns: Pink, Sub-Neptunes: Teal, Super-Earths:
Black). The points show the number of planets per 100 stars per bins equally spaced
across the inner 90% of the abundance distribution for each element. The triangles show
upper limits (90th percentile) on the planet occurrence rate, and the lines and shaded
regions show our best fit and 1σ uncertainty to a power law distribution of the form,
fX,P ∝ Pα 10βX , where we’ve integrated over the period dependence. Models are not
shown for Sub-Saturns and Jupiters when the fit is poorly constrained. We emphasize
once again that the occurrence rates and upper limits displayed in this figure are for
larger bin sizes than those used to fit the power law distribution, and are included to
guide the eye.

rise to important mechanisms in the formation or evolution of hot Sub-Neptune systems.

For warm planets, the correlation strength is reduced compared to the corresponding

strength for hot planets for all planet size classes except possibly Sub-Saturns considering

we were unable to constrain the correlation strength for hot Sub-Saturns. For warm

Super-Earths, we find a tentative anti-correlation of β ∼ −0.6 for most elements, though
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Fig. 3.16.— The same as Figure 3.15, but for warm planets (P = 10−100 days). We see
overall weaker trends for each element and planet size class, with the possible exception
of Sub-Saturns given the low number of detections at short periods.

they are also consistent with no correlation. Therefore, we do not make any claims

about the dependence of the warm Super-Earth occurrence rate and the abundance of

any chemical species. The abundance of Sub-Neptunes gives the opposite result, and

we find that the there is a slight correlation, with β ∼ +0.4 across all elements, but

with similarly-sized errors such that we are unable to make a claim that the occurrence

of warm Sub-Neptunes is positively correlated with the abundance of any particular

chemical species. Warm Jupiters also have this same result, with β ranging from −0.9

to +2.1 and errors ranging from 1 to 1.8 dex. Although our uncertainties are larger for

each of these different chemical trends, these values are all consistent with the [Fe/H]

dependence found by Petigura et al. (2018).
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The Sub-Saturns are the only planet size class that have a measurable correlation

between planet occurrence and chemical abundances with P = 10− 100 days. For Sub-

Saturns we measure a range of correlations from β = 1.7+1.1
−0.9 for K, to β = 3.5+1.6

−1.4 for

Mg. These values are all still consistent across the ten elements within our uncertainties.

Our measured correlation for Fe (β = 3.3+1.5
−1.3) is larger than, but still is consistent with

Petigura et al. (2018) who reported β = 2.1+0.7
−0.7 for warm Sub-Saturns.

One trend we’ve noticed is that the magnitude of the strength of the correlation

for Mn (|β|), is lower than for Fe in most period and planet size classes, though not

significantly enough to claim a distinction. The lower value for Mn may be particularly

surprising considering that [Mn/H] has the strongest correlation with [Fe/H] of all the

abundances, one might expect that this effect be enhanced. However, considering it is

always within our uncertainties, we infer that it is just an interesting coincidence at this

time, and no further reflection is required.

3.5 Discussion

3.5.1 Variations in Correlation Strength Between

Different Chemical Species

In this work we’ve made the first measurement of the dependence of the planet occurrence

as a function of detailed chemical abundances in the Kepler field. The measured β

values are shown in Figures 3.17 and 3.18 for each element and planet size class. We

are unable to confidently detect any differences in β for different chemical species within

a given planet size and period class. This lack of difference may be due to one of, or

a combination of three effects. First, the lack of difference may be intrinsic (i.e., the

enhancement/depletion of all elements are equally correlated with planet occurrence);

second, our null result may be due to our uncertainties, which are limited by uncertainties
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in F? for Super-Earths and Sub-Neptunes, and by the lack of detections in P for Sub-

Saturns and Jupiters, or third, we are unable to detect differences in this dataset due to

degeneracies caused by the lack of unique stellar populations probed in the Kepler field.

I.e., the stars in the Kepler field have abundance ratios that are highly correlated for

each element.

Interpreting such a variation, were it to exist, would put credible constraints on

theories of planet formation. For instance, the increase in [Fe/H] for large planet hosts is

often cited as evidence for core accretion. Such an enhancement has been determined for

the [Fe/H] of such planet hosts, but has not been readily identified for other abundances,

though there are previous results from RV surveys (Brugamyer et al. 2011; Adibekyan

et al. 2012a). Following a similar line of logic, the relative increase in β of differing

chemical species for large planets, may indicate what elements most efficiently form

planetary cores. They may also give insights into the location that certain planets form.

For example, if the occurrence rate of hot Jupiters are more positively correlated with

a volatile element such as C, an element likely to be in gaseous form at close orbital

separations (Lodders 2003), one may infer that the core of such planets formed at greater

orbital distance where those elements were contained in solid form (i.e., exterior to the

respective molecule’s ice line) before migrating interior to the respective molecules ice

line (Öberg et al. 2011; Marboeuf et al. 2014), though these inferences can be complicated

by effects such as cosmic ray ionisation (Eistrup et al. 2018).

Though the difference is not statistically significant, β has a large range for Sub-

Neptunes, ranging from ≈1.3-1.6 for Al and S to ≈3.0 for Ca and Mg, a ≈ 1.5σ difference

for S, and ≈ 1.9σ difference for Al, if taken at face value. A variation in the strength of

the correlation with hot Sub-Neptunes, were it to exist, may arise from differences in the

planet’s atmospheric opacity. In the core-powered mass loss framework, Sub-Neptunes

with higher metallicity host stars are assumed to have higher metallicity atmospheres,

which leads to longer atmospheric-loss timescales (Gupta & Schlichting 2020). By this
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Fig. 3.17.— The derived β and uncertainties for each chemical species, and each planet
size class with periods ranging between 1-10 days. The colors show the planet size class
for which β was derived (Black: Super-Earths, Teal: Sub-Neptunes, Orange: Jupiters).
The dashed line shows the mean across all elements, and the shaded region shows the
inner 68% of the posteriors to the fits performed across all elements in §3.4.2. In order of
increasing planet size class, the averages are βavg = 0.8, 2.2, and 6.5, though the Jupiters
in our sample have a range of β ∼ 3-12.

logic, if we naively assume that the atmospheres of Sub-Neptunes have the same (or

similar) abundance ratios for heavy elements as their host stars, one may infer that

the occurrence of Sub-Neptunes should be higher around stars with an enhancement in

elements that increase atmospheric loss timescales. While such a correlation between the

metal content of a planet’s atmosphere and the abundance of such elements in the hosts

star’s photosphere is not confirmed for multiple elements or detailed abundance ratios,

the bulk metallicity of the planet’s host star does correlate with the bulk metallicity of

a planet’s atmosphere for giant planets (i.e., Sub-Saturns and Jupiters), particularly at

lower masses (Thorngren et al. 2016).

Therefore, it is not unreasonable to think that the enhancement of heavy elements
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in a star may correlate with a similar enhancement in the atmospheres of planets such

as sub-Neptunes that orbit such stars. If this is indeed the case, then a difference in

β between, e.g., S and Ca may arise from differences in the contributed opacity from

S and Ca atoms in the planet’s atmosphere. In this scenario, the lower β value for S

abundances doesn’t increase the atmospheric loss timescale as much as Ca, resulting in a

weaker correlation between the occurrence rate of Sub-Neptunes and the number density

of S atoms. Thus, these longer timescales would result in higher occurrence rates for

Sub-Neptunes, everything else being equal. In this way, measuring the dependence of

planet occurrence rates on host star chemical abundances may provide an interesting

route in probing the physics of exoplanet atmospheres.

Another potential cause for such a difference in β between different elements can be

due to the density of the planetary core. If it is assumed that the mineralogical makeup

of planetesimals dictates the planet’s interior structure, and planetesimals’ mineralogical

makeup may be inferred from stellar abundances (Dorn et al. 2017a,b; Hinkel & Unter-

born 2018), then one expectation would be that the abundance of elements that result in

a more dense core would be more likely to prevent atmospheric stripping. Such a trend

may be observable as a stronger β in Sub-Neptunes for elemental ratios that result in

more dense cores.

3.5.2 Disentangling the Effects of Stellar Age, Mass, and

Galactic Chemical Evolution

For each of ten chemical species in this study, we calculated the occurrence rate density,

fX,P and compared it to the same quantity for nine other elements. However, while an

important first step, a simple one-to-one comparison may not necessarily be appropriate

to positively identify the influence of one particular element over another, as chemical

abundances for all of these elements are correlated, due to Galactic chemical evolution.

To test the dependence of each different chemical species on the planet occurrence rate
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Fig. 3.18.— The derived β and uncertainties for each chemical species, and each planet
size class with 10 < P < 100 days. The legend is the same as in Figure 3.17, with
the planet size classes represented by differing colors (Black: Super-Earths, Teal: Sub-
Neptunes, Pink: Sub-Saturns, Orange: Jupiters). In order of increasing planet size class,
the averages are βavg = -0.6, 0.4, 2.8, and 0.6.

separately from the known effects of enhanced bulk metallicity, it is insufficient to simply

measure the quantity, fX . It is equally insufficient to measure fX/Z = df/d[X/Fe], as the

chemical abundance trends with [X/Fe] and [Fe/H] are often not linear, and vary element

by element based on a complicated function of star formation history, radial migration,

and nucleosynthetic yields (e.g., Wyse 1995; McWilliam 1997; Sellwood & Binney 2002;

Hayden et al. 2014; Nidever et al. 2015).

Determining the importance of unique elements in facilitating planet occurrence rates

would provide an important constraint, but in practice can be very difficult to disentangle
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from a number of other confounding variables. For instance, while we tend to find

positive trends with elemental abundances and planet occurrence, it’s not possible to say

definitely whether those trends are due to one specific element, a combination of several,

or simply due to the culmination of all elements heavier than H and He. In one sense it is

unsurprising that we find very little variation between β for different elements, because

the abundance ratios for each of these elements are strongly correlated with one another.

Thus, disentangling such effects will rely on either more precise observations, a much

larger sample where subtle differences can be detected, or targeted planet-search surveys

across multiple different stellar populations with unique chemical abundance patterns,

such as in the thick disk or the halo.

Another important issue is the relative trends with chemical abundances and stellar

age and mass. Because lower metallicity stars in the thin disk were formed before the

enrichment of the interstellar medium, such stars may skew toward older ages and lower

masses. Disentangling these effects is particularly challenging, given that credible trends

with planet occurrence and stellar mass have been unequivocally uncovered in the lit-

erature (e.g., Mulders et al. 2015c; Dressing & Charbonneau 2015; Fulton & Petigura

2018; Ghezzi et al. 2018), and estimates of stellar age are becoming more precise due

to surveys such as Gaia. For these reasons, when interpreting trends between age and

planet properties, it is imperative that host star chemistry is taken into account. In

short, stellar mass, age, and composition are all strong confounding variables with one

another.

Demonstration of an Age-Metallicity Degeneracy in Planet

Demographics

There have been a number of claims relating to the demographics of planets and stellar

age. For instance, Berger et al. (2020a) found that the relative fraction of Super-Earths to

Sub-Neptunes is lower for young (<1 Gyr) stars than for the old (>1 Gyr) stars. Berger
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et al. (2020a) inferred from this that there is ∼Gyr evolution in the atmospheric-loss

timescale for stars near the radius gap, as predicted by core-powered mass loss (Gupta

& Schlichting 2019, 2020).

While Berger et al. (2020a) cite age and long-term planetary evolution as a cause for

a decrease in the frequency of Sub-Neptune planets, in this study we find that a dramatic

decrease in the frequency of Sub-Neptunes can be attributed to even a small depletion of

heavy elements. To test whether this relative decrease in the number of Sub-Neptunes

can be explained by a difference in metallicity and subsequent change in occurrence

rate between the “Old” and “Young” samples, we cross-matched our sample of all the

KOIs observed in APOGEE with the “Young” (<1 Gyr) and “Old” (>1 Gyr) sample of

planets from Berger et al. (2020a). In total, there are 25 and 23 planets with hosts in the

“Old” and “Young” samples, respectively, with [Fe/H] measured by APOGEE. We then

calculate the metallicity distribution function for each sample using a Gaussian kernel

density estimate with a bandwidth chosen by Scott’s rule (Scott 2010). The distribution

functions are shown in Figure 3.19. The “Young” subsample is slightly skewed toward

higher metallicities compared to the “Old” subsample.

Using the measured metallicity distribution functions to compute the expected oc-

currence rates, we find that the expected occurrence in the young sample is ≈ 1.4×

higher for Sub-Neptunes and ≈ 1.1× higher for Super-Earths with P = 1-10 days. For

comparison, Berger et al. (2020a) found that NSupEarth/NSubNep was 0.61 ± 0.09 and

1.00± 0.10 for the “Young” and “Old” samples, respectively. Thus, Berger et al. (2020a)

found that NSupEarth/NSubNep was decreased by a factor of 0.61±0.12 from the “Young” to

“Old” samples. Under the naive assumptions that fSupEarth/fSubNep ∝ NSupEarth/NSubNep

for short periods, and that the Berger et al. (2020a) KOI samples are skewed toward

P < 10 days, we would expect NSupEarth/NSubNep to decrease by a factor of 0.80+0.11
−0.12.

These values have only a ≈ 1.7σ discrepancy, though this is before correcting for de-

tection biases which would lower the number of Super-earths. Thus, provided that the
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Fig. 3.19.— The metallicity distribution functions of the planet hosts in the“Young”
and “Old” samples from Berger et al. (2020a) that were observed by APOGEE. The
metallicities for each planet host are displayed as vertical ticks near the top of the figure.

inferred metallicity distribution functions of the “Old” and “Young” planets observed by

APOGEE is representative of the metallicity distribution functions in the sample used

by Berger et al. (2020a), then the full change in the relative number of Super-Earths to

Sub-Neptunes may partially be explained by slight metallicity differences between the

“Old” and “Young” samples.

It is worth noting that Berger et al. (2020a) were extremely careful to use known

spectroscopic metallicities to control for differences when constructing their “Young”

and “Old” samples. However, these metallicities came from a heterogeneous catalog, and

different spectroscopic pipelines often have systematic differences as large as ∼0.1 dex.

Thus, with precisely and homogeneously measured metallicities from APOGEE, we are

able to detect a slight difference that may bias results such as these.

We intend the above exercise to be a demonstration rather than a repudiation of the

conclusions inferred in Berger et al. (2020a). In reality, the logic behind inferring a metal-

licity distribution of a field sample by measuring the host star metallicity distribution of

a planet sample is in conflict with the premise of this study, and should not be trusted.
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Instead, this exercise is intended to demonstrate how even small metallicity differences

may bias an inferred planetary distribution function, and therefore motivate the need

for high-resolution, high-S/N spectroscopic surveys to provide uniform metallicities and

chemical abundances for a significant fraction of stars, so that biases from such effects

can be adequately controlled.

Age-Metallicity Degeneracies in the Population of Hot Jupiters

There are also claims of demographic trends for the population of hot Jupiters with age.

For instance, by comparing the Galactic dynamics of field stars against the dynamics

of hot Jupiter host stars, Hamer & Schlaufman (2019) claimed that hot Jupiters are

destroyed by tides while their hosts are on the main sequence. This study found that

hot Jupiter host stars are kinematically cold compared to the field, implying they are

younger on average. However, Hamer & Schlaufman (2019) didn’t have the necessary

data to take into account the strong correlation with metallicity and the occurrence of

hot Jupiters, and the correlation between metallicity and Galactic kinematics. It has

been shown by a number of investigations that populations of metal-enhanced stars have

lower Galactic velocity dispersion (e.g., Anguiano et al. 2018). On the other hand, one

can make a similar claim about the age of hot Jupiter host stars and their correlation

with metallicity. Perhaps the Planet Metallicity Correlation can be partially explained

by a correlation with stellar age.

One potentially keystone open cluster for understanding the interplay between age

and chemistry on the demographics of large planets is NGC 6791. NGC 6791 is a uniquely

old cluster at 7.0± 2.5 Gyr (Netopil et al. 2016), with an enhanced metallicity, [Fe/H] =

+0.35 (Cunha et al. 2015; Donor et al. 2020), and a high relative alpha abundance

of [α/Fe] = +0.1 (Linden et al. 2017). An occurrence rate study within this cluster

could show the relative importance of tides and enhanced heavy metals. If tides (i.e.,

correlations with age) are the dominant force in shaping the hot Jupiter population, then
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one should find an occurrence rate more similar to the field. If the dominant correlation

is with enhanced abundances, the hot Jupiter population should be dramatically larger

than in the field. While NGC 6791 was observed in the Kepler field, the main sequence

turn off is very dim with a Gaia magnitude of G ∼ 17. Thus, measuring a reliable planet

occurrence rate may prove difficult in practice.

Predictions for Planet Occurrence Rates in Nearby Open Clusters

An ideally perfect experiment to disentangle correlations between age and abundance

ratios would be to measure the planet occurrence rate in several different open clusters

with the same age but significantly varying abundance patterns, or vice versa. Such an

experiment is likely not possible due to the lack of existence of such clusters with a wide

enough abundance spread, and with enough stars. However, nearby open clusters still

provide opportunities for measuring changes in planet demographics with age.

To date, there have been a few such studies targeting young transiting planets with

K2 (Howell et al. 2014) which observed open clusters such as the Hyades (Mann et al.

2016, 2018; Vanderburg et al. 2018), the Pleiades (Gaidos et al. 2017), and Praesepe

(Rizzuto et al. 2018), among others. However, while there have been uniform searches for

transiting planets in such clusters (Rizzuto et al. 2017), occurrence rates and completeness

corrections have proven difficult due to effects such as crowding and the presence of

strong correlated noise in the light curves of young stars. In an attempt to facilitate

planet demographics studies for such clusters, we make predictions for planet occurrence

rates for a number of nearby open clusters given their metallicity. Deviations in the

actual planet occurrence rate from our predictions may then be attributed to age effects.

Though some of the clusters mentioned below are scarcely populated, measurements

of the planet occurrence rate may be approachable if measured in the aggregate (i.e.,

the expected planet occurrence rate from stars across multiple clusters). An alternate

approach may be to measure occurrence rates with RV surveys, which do not have as
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harsh of a geometric bias as transit surveys but come with other complications such as

enhanced stellar activity in young stars.

We make predictions for the occurrence rate of hot planets (fhot) for the Pleiades,

Praesepe, the Hyades, Ruprecht 147, M67, NGC 188, and NGC 6791. We make predic-

tions for hot planets because they are more likely to be discovered with TESS (Ricker

et al. 2015) and K2, and because hot planets have the strongest correlations with en-

hanced heavy elements. These predictions are listed in Table 3.5. For each of these

clusters, we adopt the ages and distances of the clusters derived from Gaia DR2 photom-

etry (Gaia Collaboration et al. 2018a), and the metallicities from APOGEE DR16 (Donor

et al. 2020) where available, and from a homogenized catalog (Netopil et al. 2016) when

not observed by APOGEE. We assume that the stars in the cluster all have equivalent

metallicity and derive the expected occurrence rate using the posterior distributions of

the fits to Equation 3.5 with [Fe/H] performed in §3.4.2.

There are two important caveats to these predictions. First, these predictions only

hold if comparing a collection of planet-search stars with the same mass distribution as S.

Second, these predictions only hold true if a power law is an accurate parameterization of

the true shape function over the metallicities of interest. In fact, there is some evidence

that small planet occurrence may plateau at host star metallicities greater than ∼0.2

dex (Zhu 2019). In addition to these limitations, predictions for clusters with [Fe/H]

below ∼-0.5 dex and greater than ∼0.2 dex rely on extrapolation and may be suspect as

a result.

These predicted occurrence rates are meant to serve as a benchmark with which to

compare age trends in the planet population. While it is tempting to explain differences

between the population of planets in a cluster against the field population by invoking

the age of the cluster or even the cluster environment, we show here that the metallicity

of a cluster is a strong confounding variable, and alone could be responsible for a 100%

increase in the planet occurrence rate for as small a difference as ∼0.1-0.2 dex. In this
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way, accounting for metallicity effects in planet occurrence rates is a crucial step in

understanding the difference between the populations of young planets in clusters, and

older planets in the field (or in older clusters).

Diffusion as Yet Another Confounding Variable in Age-Metallicity

Correlations

One more important consideration when interpreting the correlations between planet oc-

currence and stellar abundances is the role of atomic diffusion. Atomic diffusion acts to

deplete the surface abundances of certain elements by as much as ∼0.15 dex, depend-

ing on stellar mass and age (Souto et al. 2018, 2019). These processes complicate the

interpretation of results such as those from this work, and general metallicity-planet oc-

currence rate trends because surface metal abundances are lower than the abundances of

the nebula from which the star and planetary system formed. The relative depletion of

surface abundance is a complicated function of stellar age, mass, and chemical species,

complicating matters further. Ideally, one would correct for diffusion to estimate the

initial abundances of the nebula in interpreting the role of specific elements in shaping

the planetary distribution function, or estimating, e.g., initial abundances of planetary

atmospheres assuming they are similar to the nebular composition. However, such a

correction relies on accurate estimates of stellar masses and ages, and an accurate and

precise model of the effects of diffusion.

3.6 Conclusion

In this Chapter we investigate the trends in the distribution of Kepler planets with the

chemical abundances of their host stars as measured for stars in the APOGEE-KOI pro-

gram (Fleming et al. 2015). Leveraging precise atmospheric parameters as measured

by high S/N, high resolution near-infrared spectra, we derive precise planetary radii
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(σRp ≈ 3.2%) for 504 planets. Using this sample of planet hosts, along with a control

sample representative of the planet-search sample, we measure the abundance distribu-

tion functions for the Kepler field stars and derive planet occurrence rates as a function

of abundance ratios for C, Mg, Al, Si, S, K, Ca, Mn, Fe, and Ni. In general, we find that

the enhancement of any of these ten elements correlates with increased occurrence rates,

and the strength of the correlation between planet occurrence rate abundance ratio is

consistent across these ten elements.

At P < 10 days, we find that an enhancement of 0.1 dex in any of the ten elements

in this study results in a ≈20% increase in the occurrence of Super-Earths and a ≈60%

increase in the occurrence of Sub-Neptunes. The strength of these correlations are weaker

for planets with P = 10−100 days, and we can only confidently confirm a positive corre-

lation with the occurrence rate of Sub-Saturns and the enhancement of elements heavier

than H and He in this period regime. Finally, we conclude this work with a discussion on

the implications of such differences in the dependence of planet occurrence rates on the

abundances of particular chemical elements, as well as a caution to the interpretation of

trends in planet demographics in the context of Galactic chemical evolution and the ages

and masses of planet hosting stars.

3.A Appendix A: Description of Isofit

isofit makes use of the DFInterpolator from the isochrones package (Morton 2015)

to interpolate between a grid of MESA Isochrones and Stellar Tracks (MIST) models

(Dotter 2016; Choi et al. 2016). The parent grid is defined from the MIST grid of

models with solar-scaled alpha abundances and rotation and interpolated in initial [Fe/H]

([Fe/H]init), initial mass (Minit), and Equivalent Evolutionary Phase (EEP )8. The points

in the parent grid for each of these parameters are 0.1 ≤ Minit/M� ≤ 8 in steps of 0.02,

−2 < [Fe/H]init < 0.5 in steps of 0.05 dex, and 202 ≤ EEP ≤ 1710, in steps of 1.

8For a detailed description of the EEP parameter, see Dotter (2016).
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The range in EEP roughly represents each step in a stellar evolutionary track from the

Zero-Age Main Sequence to the beginning of the White Dwarf cooling track. In total,

the parent grid contains ∼15 million valid models.

To infer model parameters for a given set of observations, in this case θi = {Teff , log g,

[Fe/H], π, Ks, E(B − V )}, isofit computes the likelihood for the model input param-

eters, xi = {Minit, [Fe/H]init, EEP , d, E(B − V )} and derives an integrated posterior

distribution over all likelihoods and priors (e.g., Serenelli et al. 2013; Huber et al. 2017).

More specifically, the posterior probability is given by

p(x|θ) ∝ p(x)p(θ|x) (3.7a)

∝ p(x)
∏
i

exp

[
−(θi − θi(x))2

2σ2
θ,i

]
(3.7b)

where σθ,i are the Gaussian errors on the measurement θi, and θi(x) are the inferred

model parameters for input vector x. The likelihood for the inferred model parallaxes is

given by

p(π|d) ∝ exp

[
− 1

2σ2
π

(
π − 1

d

)2
]

(3.8)

where d is the model distance used to derive apparent magnitudes. For apparent magni-

tudes, in this case Ks, isofit calculates the inferred model apparent magnitude using

the MIST grid of bolometric corrections, BCm, the inferred model distance modulus,

µ = 5 log d− 5, and the inferred model bolometric magnitude, Mbol,

m = Mbol −BCm + µ+ Am (3.9)

where Am is the extinction in band m, calculated from E(B−V ) and the extinction law

from Wang & Chen (2019).

For model output parameters that do not have associated observations, we assume a
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flat prior. The exception for this is distance, which has a decreasing density prior with a

length scale, l = 1350 pc (as in, e.g., Bailer-Jones 2015; Huber et al. 2017), given by

p(d) ∝ d2

2l3
ed/l . (3.10)

Finally, we take the natural log of each term, and sum them together to get the log-

likelihood estimate for a given set of input parameters, xi.

To find the initial best fit model, isofit calculates the log-likelihood for all the

models of an initial course grid, interpolated from the parent grid with steps of 0.05 M�,

5 EEP , and 0.1 dex in [Fe/H], that agree with the spectroscopic parameters, Teff , log g,

and [Fe/H] within ±5σ. Then, isofit calculates a fine grid around the course grid point

that returns the maximum log-likelihood, and repeats the process but with finer step sizes

of 0.01 M�, 0.5 EEP , and 0.01 dex in [Fe/H]. We then instantiate an MCMC routine

(emcee;Foreman-Mackey et al. 2013) with a Gaussian ball centered around the model

parameters that return the largest log-likelihood with the observed π−1 and E(B − V ).

3.B Appendix B: Results of Statistical Tests

Comparing C and P Abundances

We first test for normality in each distribution using the Shapiro-Wilkes test for normality.

In this case, we find that the abundance distributions in C are only consistent with a

normal distribution in the case of [Fe/H], [Si/Fe], and [C/Fe], i.e., for all other abundances

the p-value was sufficiently low that we reject the null hypothesis that the data were pulled

from a normal distribution. This lack of normality motivates us to adopt non-parametric

tests: the Kolmogorov-Smirnov (KS) test, the Mann-Whitney U-test (MW), and the

Brown-Forsythe test (BF). The KS test is used to measure any difference between two

cumulative distribution functions. Because of this the KS test is applicable in a variety
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of situations, but in general is not very sensitive. Therefore, we also apply the MW test,

which tests for differences in the means of two samples, and the BF test which tests for

differences in the variances of the two samples. For each subsample of planet type, we

apply these three tests against the abundance distributions in C. We do not conduct tests

on sub-samples where npl < 10 to avoid erroneous conclusions caused by small number

statistics.

We find a few statistically significant differences from this methodology. First, we

find that the Fe abundances for each planet size class is enhanced compared to the field,

except in the case of Super-Earths, which do not meet our significance criterion. The only

other statistically significant difference between P and C distributions are with [K/Fe].

However, [K/Fe] is highly correlated with [Fe/H], so it’s most likely that this result is

only tracing differences in the Fe abundances already described.

Perhaps not surprisingly, we find that the planet subgroup with the lowest MW

p-value, pmw, are Jupiters. The presence of large planets have been shown numerous

times to correlate with enhanced metallicity (Santos et al. 2004; Valenti & Fischer 2005;

Ghezzi et al. 2010, 2018; Buchhave et al. 2014; Schlaufman 2015; Wang & Fischer 2015).

While all Super-Earths in general are not significantly Fe-enhanced compared to the field

(pmw = 0.071), hot Super-Earth hosts are Fe-enhanced. In fact, we find that all hot

planet hosts are iron-enhanced compared to C, a result that agrees with the literature,

and has been pointed out by a number of authors (Mulders et al. 2016; Wilson et al.

2018; Petigura et al. 2018; Narang et al. 2018). Hot planets also seem to be correlated

with [K/Fe] and [S/Fe], in that they have a significantly different variance. This is likely

due to hot planet hosts having [Fe/H] distributions skewed above solar, and as a result

there are no hosts with high K and S abundances relative to iron. In other words, the

decreased variance in [K/Fe] and [S/Fe] planet hosts is driven by lower variance in Fe

abundances. Thus, these are also likely due to trends with Fe.

Finally, the last subgroup we find that is significantly different compared to the field
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is the population of Warm Sub-Neptune hosts. These stars have a significantly different

variance compared to C. A difference in variance is also present in the populations of all

Sub-Neptunes, hot planets, and hot Sub-Neptunes. This agrees with the interpretation

from Petigura et al. (2018) that stars with greater metallicities are capable of a wider

diversity of planets. In other words, the abundance distribution of the field sample should

have larger variance compared to hosts of a specific planet classes due to the fact that

some planet classes are only present around higher metallicity host stars.

3.C Appendix C: Occurrence Rate Methodology

3.C.1 Formalism and Definitions

Our methodology treats the detection of a transiting planet as an independent random

process, i.e., as a Poisson process. We use NPPS as our definition of planet occurrence,

f . As a note, this is not equivalent to the quantity of the Fraction of Stars With Planets

(FSWP) that is often used as a definition of planet occurrence. For a transit survey, a

measurement of FSWP requires detailed modeling of multiplicity, mutual inclinations,

and other effects that are outside the scope of this work. We instead default to NPPS,

which is blind to these properties. In the interest of comparing to other works (e.g.,

Petigura et al. 2018), we often report our occurrence rates in units of number of planets

per 100 stars.

For a given star with properties z, the probability of hosting a planet with properties

x can be expressed as

df =
∂f(x, z)

∂x
dx , (3.11)

where integrating over the planet properties, x, gives f(z), the average number of planets

for a star with properties z. In this work, x is some combination of logRp and logP ,
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and z is the abundance of some chemical species. We typically adopt Z as our symbol

for metallicity, and use X to refer to an arbitrary chemical element. For compactness

we adopt the following notation for a partial derivative of f with respect to an arbitrary

variable x1 and x2,

fx1 ≡
∂f

∂ log x1

; fx1,x2 ≡
∂2f

∂ log x1 ∂ log x2

. (3.12)

This is similarly defined for chemical abundances as,

fX ≡
∂f

∂[X/H]
; fZ ≡

∂f

∂[Fe/H]
, (3.13)

where chemical abundance ratios are always defined with respect to hydrogen. Note, this

is a change from §3.3.5 where we were searching for new trends independent of [Fe/H].

For the remainder of this study, we wish to compare the strength of the correlation with

the enhancement of each chemical element with planet occurrence. Thus, we adopt [X/H]

to express each element on a similar scale. We express the differential distribution for

NPPS as

fx(x, z)dx ≡ Cg(x, z; θ) (3.14)

where g(x, z; θ) is a shape function (i.e., some parametric prescription used to describe

the PLDF) that depends on planet and/or stellar properties with shape parameters θ.

A functional form for g(x, z) must be assumed, with as many shape parameters, θi, as

necessary.
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The total number of planets orbiting n? stars (indexed by i) is then

npl = C
n?∑
i

∫
g(x, zi; θ)dx (3.15a)

= n?C

∫
F?(z)g(x, z; θ)dxdz (3.15b)

where the integration takes place over some range of planet properties. In equation 3.15b,

the sum over all stars is replaced by an integral over the probability distribution of stellar

properties, F?(z). F? is normalized so that
∫
F?(z)dz = 1. In practice, the summation

over the known properties of each planet search star is preferable, but in principle an

accurate measurement of F?(z) gives an equivalent result.

In this work, we calculate our occurrence rates for bins with some combination of

[X/H], [Fe/H], logP , and/or logRp. The width of a bin is given by ∆x, where ∆x =∏
i ∆xi, where i indexes over the dimensions of the bin. The occurrence within a bin,

fbin, depends on the number of independent trials, ntrial, that yield a detected planet,

and the survey efficiency, η, which may depend on both stellar and planetary properties.

We compute ntrial as,

ntrial, j =
n?∑
i

η(xj, zi) (3.16)

= n? 〈η(xj)〉 (3.17)

where 〈.〉 denotes the arithmetic mean. For a given survey efficiency, η(x, z), η, also

includes the number of false positives in a given sample. However, because we have

removed RV variable sources from P , the false positive rate from astrophysical sources

is negligible. We also ignore false alarms from instrumental effects. While incorporating

such false alarms is important for deriving robust occurrence rates in principle, the actual

false alarm rate in Kepler is negligible for planets with P . 300 days (Mullally et al.

2016).
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Following the examples of Bowler et al. (2015) and Petigura et al. (2018), we assume

that the planet occurrence is log-uniform within a given bin of size ∆xi,j, which should

be reasonable at small enough bin sizes. In this case, ntrial for a bin can be expressed as,

ntrial =
n?

∆xi,j

∫
〈η(xi,j)〉 dx . (3.18)

Thus, for a given cell with ntrial trials and npl detected planets, the likelihood of fbin can

be described by a binomial distribution of the form,

P (fbin|npl, ntrial) = P (npl|fbin, ntrial) (3.19)

= Cf
npl

bin (1− fbin)nnd (3.20)

where nnd = ntrial−npl is the number of non-detections, and C is a normalization constant

that takes the form

C =
(ntrial + 1) Γ(ntrial + 1)

Γ(npl + 1) Γ(nnd + 1)
(3.21)

When analyzing occurrence rates as a function of stellar properties, we bin the planet

and stellar properties in bins bounded by [logP1, logP2], [logRp,1, logRp,2], and [X1, X2].

In this way, we calculate ntrial via equation 3.18, multiplied by the fraction of stars, F?,

with abundances between [X1, X2],

F? =

∫ X2

X1

F?(X)dX . (3.22)

In the case where there are no detected planets in a given bin, we estimate an upper

limit on the occurrence rate for that bin by numerically solving for the integral,

∫ fbin

0

P (f |npl, 0)df = 90% . (3.23)
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We note that in practice, we only use these upper limits for display purposes, and don’t

directly incorporate them into our analysis.

3.C.2 Parametric Fits to the Differential Occurrence

Rate Distributions

We wish to express the strength of the correlation between a star’s chemical composition

and the occurrence of various types of planets. We do this via a parametric relation,

often with a power law in this work, to gauge the strength of the correlation. We note

here that a power-law prescription for describing the differential occurrence rate does

not necessarily reflect the true shape function of the occurrence rate. However, such a

prescription can give a precise estimate of the average strength with which the differential

occurrence rate relies on the underlying abundance. So, while a power-law fit of this form

gives a precise estimate of correlation strength, this prescription may not be appropriate

to robustly predict f for a given stellar sample.

To this end, we can estimate the differential occurrence rate for a bin of size ∆x via

the following relation,

Cg(x, z; θ) =
fbin

∆x
. (3.24)

To find the best fit shape parameters, θ, we maximize the log-likelihood of the function,

described for a given bin, i, by

lnLi = npl,i lnCg∆x+ nnd,i ln(1− Cg∆x) (3.25)

where each cell is an independent constraint on Cg∆x. Therefore, by maximizing the
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combined log-likelihood over all bins, indexed by i,

lnL =
∑
i

lnLi , (3.26)

we find the best fit shape parameters, θ. To zero in on the best fit shape parameters,

we apply arbitrarily small bin sizes. As a result a number of these bins have few or

no detected planets. Because the log-likelihood function we apply incorporates non-

detections, this methodology is stable even to few detected planets. This approach has

two advantages. The first is that our assumption that a bin is log-uniform has more

merit in smaller bins, and the second is that for a small enough bin the errors on the

occurrence rate will be dominated by Poisson statistics rather than uncertainties in F?.

We expand upon this assumption in §3.C.4. After finding the best-fit parameters, θ, that

maximize the likelihood function, we then apply an MCMC routine9 initialized at those

parameters to explore the range of credible models.

3.C.3 Completeness Corrections

In this subsection we describe our completeness model, η(x, z). Our approach varies

slightly from most previous Kepler occurrence rate studies, because we also correct for

biases inherent in the follow-up program as well. Most Kepler occurrence rate studies

(this one included) select some subsample of planet-search stars from the Kepler Input

Catalog (Brown et al. 2011), and then compute a detection efficiency model from the

Kepler pipeline that is marginalized over their planet-search sample. However, this

strategy alone is not adequate because we have additional biases that are not quantified

by the Kepler detection pipeline. In other words, inclusion in P is dependent on more

than membership in S and a detected planet candidate in Kepler. There are additional

biases imposed by limitations in the APOGEE selection function, instrumental setup,

9as implemented in the python package emcee (Foreman-Mackey et al. 2013)
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and spectroscopic analysis pipeline that must be considered.

We consider four unique biases for a planet candidate to be included in P : first, the

planet has to transit its host star; second, the transiting planet must be included in the

DR24 KOI catalog; third, the planet’s host star must have been observed by APOGEE;

and fourth, ASPCAP must have returned reliable abundance and spectroscopic parame-

ters for the host star. We take each of these criteria as their own independent process, so

that we can model the total completeness as the product of the probabilities that a planet

candidate passes each step. Thus, our completeness model, η, can be described by four

terms: the geometric probability that a planet with a randomly oriented orbital plane

transits its host star (ptra), the probability that a transiting planet is detected by Ke-

pler(pdet), the probability that a candidate was observed in the APOGEE-KOI program

(papo), and the probability that ASPCAP doesn’t fail to produce reliable atmospheric

parameters for the host star (1 − pfail). We go into more detail for each of these terms

below before presenting the combined, average survey efficiency.

Transit Probability (ptra)

The probability that a given planet transits depends only on the geometry of the orbit.

We make the assumption that the inclination of all orbits follows an isotropic distribution.

Under these assumptions, the probability for a planet to transit in our sample is simply,

ptra =
0.9R?

a(1− e2)
(3.27)

where we set e = 0 for simplicity, include a factor of 0.9 to account for our cut on impact

parameter, and a is calculated from M? and P using Kepler’s third law.
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Kepler Pipeline Detection Efficiency (pdet)

In this section we give our model for the Kepler DR24 pipeline completeness. For a

planet to be detected, it must have a high enough S/N to be detected, and it must

pass multiple levels of vetting. In place of transit S/N , the Kepler pipeline utilizes the

Multiple Event Statistic (MES). The MES is a measure of the null hypothesis that a

Kepler light curve does not have a transit signal at a given epoch (t0), duration (tdur),

and period (P ). Under the assumption of white noise, the MES distribution is Gaussian

with a mean of zero and variance of one. Under the alternative hypothesis however, i.e.,

that there is a transit signal, the mean of the MES distribution is shifted by a constant

proportional to the S/N of the transit. Kepler defines a threshold of MES > 7.1 for a

detected signal.

It is common to parameterize the Kepler pipeline completeness with a one-dimensional

model in expected MES from a putative transiting planet (MESexp). However, this is

not an appropriate model for the DR24 pipeline completeness, because an introduced

χ2 metric used to veto false alarms severely reduced the completeness for planets with

P > 40 days (Christiansen et al. 2016). Therefore, we parameterize Kepler ’s pipeline effi-

ciency in two dimensions, with MESexp and P . Rather than utilizing an analytical model,

we take a purely empirical approach to assess prec(P,MESexp) (as in, e.g., Petigura et al.

2013; Dressing & Charbonneau 2015).

We apply the results of the Monte Carlo injection and recovery tests executed by

Christiansen et al. (2016). To ensure that the light curves are representative of the light

curves from S, we remove the injection results from stars that are inconsistent with

stars in S. We applied the following cuts to the sample of stars with injected signals,

R? < 2R�, 4700 K < Teff < 6200 K, and RUWE < 1.2. We also attempted to limit the

collection of transit recoveries to stars in APOGEE fields, but we found no differences in

prec between stars in and out of APOGEE fields so elected to use stars from the entire

Kepler field to improve our statistics. In total, this resulted in 94,141 individual injection
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and recovery tests.

To measure prec(P,MESexp), we defined a grid in P and MESexp and measured the

fraction of recovered injections within each bin. The injections were performed using a

uniform prior in P . However, we are interested in assessing the completeness in logarith-

mic bins. To account for this, we define linear bins from P = 0.25 − 10 days, in steps

of 0.25 days, and then 75 logarithmically spaced bins from 10-500 days. We binned the

MESexp of each putative signal in steps of 0.5 from 0-20, where the recovery fraction for

MESexp > 20 is assumed to be constant. The resulting grid is shown in the top panel of

Figure 3.20. Due to few injections at P . 10 days, and at large MES, we replace any

binned points that have < 3 injections, MESexp > 13, and P < 40 days with prec = 0.997,

the expected pipeline efficiency at arbitrarily large MES. We then convolve the prec grid

with a Gaussian kernel having a width of the bin size in each dimension to smooth over

any artificial features and interpolate over points with no injections, such as those at

arbitrarily low MESexp or very short P . The resulting grid that we apply is shown in the

bottom panel of Figure 3.20.

For each star in S, we calculate prec over the P -Rp grid. We calculate MESexp for

every combination of P,Rp for each star in S and interpolate on the grid defined above

to measure prec(P,Rp). We calculate MESexp as

MESexp =

(
Rp

R?

)2
1

σcdpp(tdur)

√
Tobs
P

(3.28)

where Tobs is the observation baseline and σcdpp(tdur) is the combined differential photo-

metric precision (Christiansen et al. 2012) on the timescale of the transit duration, tdur.

We calculate tdur using equation 3.1. The Kepler data products contain measurements of

σcdpp on timescales of 1.5, 2.0, 2.5, 3.0, 3.5, 4.5, 5.0, 6.0, 7.5, 9.0, 10.5, 12.0, 12.5, and 15.0

hours, which are the transit durations searched by Kepler ’s TPS module. We interpolate

between the values provided at these timesales to estimate σCDPP for any arbitrary tdur.
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Fig. 3.20.— The DR24 Kepler pipeline detection efficiency. The shading shows the
probability of the Kepler TPS module to recover a transit signal (prec) with an expected
Multiple Event Statistic (MESexp) and Period (P ). Darker shades of red represent a
lower recovery fraction, and lighter shades represent a higher recovery fraction. Top:
The recovery probability (prec) of the Kepler pipeline from the injection and recovery
experiments in Christiansen et al. (2016). White spaces denote bins with no data. Bot-
tom: The interpolated, and smoothed grid of prec that we apply for our completeness
corrections.

The values for Tobs and σcdpp were taken from the DR24 stellar properties table hosted

on the NExScI Exoplanet Archive10.

One last requirement in the Kepler pipeline is that the planet candidate must have

at least three transits in the data. We quantify this probability by the window function,

pwin, as estimated in Burke et al. (2015),

pwin = 1− (1− fd)M −Mfd(1− fd)M−1

− M(M − 1)

2
f 2
d (1− fd)M−2 ,

(3.29)

10https://exoplanetarchive.ipac.caltech.edu (Akeson et al. 2017)
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Fig. 3.21.— The average DR24 Kepler TPS pipeline detection efficiency for the stars in
S. Darker shades of blue represent a lower detection fraction, and lighter shades represent
a higher detection fraction.

where fd is the duty cycle of the observations and M = Tobs/P . For planets with

P < 300 days, this probability is typically > 0.98, so this is not a strong source of bias

in our sample, but we include it for posterity.

The joint probability of Kepler detecting a transiting planet, then is given by the

product pdet = prec × pwin. This full Kepler pipeline sensitivity is shown in Figure 3.21.

Pre-DR24 Selection Bias and Probability of Fiber Collisions (papo)

The probability that a KOI was included in the APOGEE program depends on the

APOGEE field. For fields K04, K06, and K07, this bias is dominated by the rejection

of APOGEE targets based on fiber collisions. A “collision” occurs when two fibers, if

placed on the plate, would be separated by less than the size of the protective ferrule

around each fiber. For the APOGEE-N spectrograph the collision radius corresponds to

71.5′′ (Zasowski et al. 2013, 2017). In the case of fiber collisions, one target is assigned

priority, and the other is removed from the target list. We don’t explicitly cut stars out

of S for this purpose because this quantity is dynamic, and priority is assigned on a

target by target basis, making it difficult to apply to a field sample. Instead we make
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a simplifying assumption to correct for this bias in assuming that all KOIs are equally

likely not to be observed due to conflicts with other APOGEE-KOI targets. This is

not strictly true, as planet candidates with low-mass host stars were given priority over

competing planet candidates. However, because there are so few instances where this

happens (<3%) and because we remove M dwarfs from S, this is unlikely to lead to a

noticeable bias in stellar host properties compared to the field. This bias is measured by

selecting all the planet candidates without a “False Positive” disposition in DR24 with

a host in S for a given field, and comparing that to the targets in the APOGE-KOI

program in that field. Note, this is not the same quantity as the number of planets in P

in that field, because we reject some candidates based on observations from APOGEE.

For fields K04, K06, and K07 only five KOIs from DR24 were not observed, resulting in

a flat probability of papo = 0.988. This is the dominating bias for these fields.

For fields K10, K21, and K16, the most prolific bias is the selection of KOIs before

a static catalog was available from Kepler. We consider this bias in conjunction with

the fiber collision bias described above, as it largely dominates, and because there is not

a catalog of “expected” planets with which to compare. This is not only due to the

nature of the KOI catalogs at the time of target selection, but also improvements in the

Kepler pipeline used to reject both false positives, such as the detection of photocenter

offsets and significant secondary eclipses, as well as false alarms caused by instrumental

systematics such as sudden pixel sensitivity dropouts, rolling bands, and abrupt changes

in the photometric noise profile between quarters (Coughlin 2015; Mullally et al. 2016).

The targets for K16 were chosen as part of SDSS-III (Eisenstein et al. 2011), and

used as a pathfinder for the APOGEE-KOI program. This field observed 163 planet can-

didates with H < 14 known at the time, in 2013 August. Of those 163 candidates, 153

had a “Candidate” status, 4 were confirmed, and 6 were not yet dispositioned (Fleming

et al. 2015). The DR24 catalog, however, has 166 planet candidates in S with either

a “Candidate” or “Confirmed” disposition. The APOGEE-KOI program observed 126
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(75.9%) of these planet candidates. This discrepancy is due largely to two effects: im-

proved vetting that removed a significant fraction of the 163 original planet candidates

and improvements to the Kepler pipeline supplemented with additional data that allowed

for the discovery of planet candidates with lower S/N transits. To take this bias into

account, we measure papo by taking the ratio of DR24 candidates observed by APOGEE

to the total number of DR24 candidates as a function of transit S/N, and model the

increasing fraction with a modified gamma cumulative distribution function of the form,

p(S/N) =
a

dbΓ(b)

∫ S/N

0

(ξ − c)b−1e−(ξ−c)/ddξ . (3.30)

Measuring the fraction of observed planet candidates in S/N bins of 1.0, we find the

best fit parameters to be a = 0.86, b = 6.0, c = 3.9, and d = 1.0 (See Figure 3.22).

This fit implies that at high S/N , only 86% of the Kepler planet candidates from August

2013 would survive the more detailed vetting procedures introduced in the DR24 pipeline

(Coughlin 2015; Mullally et al. 2016). This bias is applied across the P -Rp grid with the

expected MES in place of the transit S/N in calculating 〈η〉. This fit is displayed in

Figure 3.22. Perhaps surprisingly, we didn’t see any significant trend in either P or Rp

alone.

We apply the same analysis jointly to fields K10 and K21 (as targets between these

two fields were selected from the same KOI catalog) which were observed as part of the

SDSS-IV bright time extension program (Beaton et al., in prep). The DR24 catalog

contains 318 planet candidates in fields K10 and K21 with either a “Candidate” or

“Confirmed” disposition. APOGEE observed 130 out of 148 (87.8%) of these candidates

in field K21 and 155 out of 170 (91.2%) of these candidates in field K10. Combining

these two fields, and fitting a modified gamma cumulative distribution function as for

Field K21, we find the best fit parameters of a = 0.98, b = 0.22, c = 7.5 , d = 1.7. This

fit implies that at high S/N , 98% of the Kepler planet candidates detected at the time
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of the APOGEE-KOI survey target selection would survive the more detailed vetting

procedures introduced in the DR24 pipeline. Therefore, the dominant factor in the

discrepancy between the number of planet candidates in these fields and those observed

in APOGEE is dominated by improvements to the Kepler pipeline that resulted in the

detection of lower S/N transits. We multiply this correction over all stars in fields K10

and K21 when calculating 〈η〉. See Figure 3.22.
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Fig. 3.22.— The probability that a particular planet candidate is observed in the three
fields with early target selection in the APOGEE-KOI survey. There is a bias incurred
from selecting planet candidates from a pre-DR24, non-static catalog, as well as avoid-
ing APOGEE fiber collisions. The points show the fraction of DR24 planet candidates
observed in APOGEE at a given transit S/N for field K16 (top) and fields K10 and K21
(bottom). The error bars are derived assuming a binomial distribution. The blue lines
show our adopted models to correct for this bias.
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Probability of ASPCAP Failure (pfail)

Although the typical star in our sample has a spectrum with S/N > 100, our sample

still includes a non-negligible fraction of dim stars near the S/N limit of ASPCAP’s

capabilities. Because of these low S/N sources, there is a non-negligible fraction of planet

candidates (∼10%) that would otherwise be in P that are not included in our analysis.

To account for this bias, we assume the dominant reason for an ASPCAP failure is due

to this low S/N effect, although some spectra may fail due to other reasons (e.g., stray

light from a bright companion). To account for this bias we model the failure probability

as a function of H because the number of cadences are designed to derive reliable orbital

solutions, and therefore are not set by any stellar parameters or observable quantities

that should bias the results of the occurrence rates.

To measure the failure probability, pfail, we take a similar approach to measuring

papo. We calculate the fraction of stars for a given H bin of 0.2 magnitudes that have

an ASPCAP-derived best fit solution for the input parameters (i.e., Teff , log g, [M/H],

ξt, [C/M], [N/M], and [α/M]). We then fit the fraction of stars without an ASPCAP

solution using a simple modified power law of the form,

pfail(H) = c+ ea(H−b) (3.31)

where H is the magnitude of the bin. We find the best fit parameters to be a = 1.70,

b = 14.45, and c = 0.02. The best fit model and fractions are displayed in Figure 3.23.

These fits imply that the failure rate due to low S/N should be ∼1 at H = 14.45, and

that the failure rate for reasons other than low S/N is 2%, which is fairly insignificant

compared to the other uncertainties considered in this study.
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η: The Combined Survey Efficiency

We calculate the total average survey efficiency for each field as the product of each term

described above, given the form

〈η〉 =
1

n?

n?∑
i

ptra,i × pdet,i × papo,i × (1− pfail,i) , (3.32)

where 〈η〉 is the average survey detection efficiency. The mean survey efficiency for each

field is shown in Figure 3.11. In this way, i.e., by marginalizing over all the stars in

S, we’ve removed stellar properties from our expression for survey efficiency, so that

η = η(P,Rp). This relies on an implicit assumption that chemical abundances are not

correlated with survey efficiency. Finally, for each logP -logRp bin, we calculate the

combined survey efficiency for all the stars in the APOGEE-KOI program as a weighted

sum of the efficiency for each APOGEE-KOI field indexed by i,

〈η〉 =
∑
i

F?,i × 〈η〉i , (3.33)

where F?,i is the fraction of stars in S that are in field i (see Table 3.2).

3.C.4 Errors Due to Uncertainties in F?(X)

We do not have measured chemical abundances for all the stars in S, so we do not know

precisely how many stars from S are in a given metallicity bin. However, with knowledge

of the distribution function over each abundance, F?(X), we can estimate this number

by integrating the distribution over the bin and multiplying by the total number of stars

in S (see Equation 3.15b).

To define F?, we fit the abundance distributions in S using the measured abundances

in C with a Gaussian kernel density estimator (KDE). The choice of bandwidth for the

KDE is non-trivial, as it may impart significant bias if overestimated and introduce
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Fig. 3.23.— The ASPCAP failure rate as a function of H magnitude. The data points
are the fraction of stars observed in the APOGEE-KOI program where ASPCAP did
not derive a solution in a given magnitude bin, with error bars assumed from a binomial
distribution. The blue line shows our fitted model for the failure rate.

variance if underestimated. To select the optimal bandwidth, we fit a Gaussian KDE

for a large sample of stars in the entire APOGEE database. The intent is to define a

realistic distribution function from this sample, draw a number of stars equal to those in

C, and compare how well a given bandwidth recreates the defined distribution. We select

this sample of stars such that it should broadly reflect our assumptions about the true

abundance distributions in S.

We remove stars from the APOGEE DR16 catalog with log g < 3.5, Teff < 4000 K,

Teff > 6500 K, π/σπ < 10 in Gaia DR2, and a distance > 1 kpc as reported by Bailer-

Jones et al. (2018). In addition to these sample selection cuts, we also apply a number

of cuts designed to remove stars with poor quality measurements. We remove stars with

S/N < 50 and any of the following ASPCAP or Star Flags set11: TEFF BAD, LOGG BAD,

METALS BAD, ALPHAFE BAD, STAR BAD, SN BAD, and VERY CLOSE NEIGHBOR. This leaves

∼111,000 stars to define the parent sample.

From this APOGEE dwarf star sample we fit a KDE to the [Fe/H] measurements,

and use this as our ground truth metallicity distribution. We then randomly sample 72

11for a description of these flags, see https://www.sdss.org/dr16/algorithms/bitmasks/
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measurements from the KDE (chosen to match the number of stars in C), and test each

bandwidth from 0.01 – 0.30 dex, in intervals of 0.005 dex using a Kfolds cross-validation

procedure with ten folds. We repeat this experiment 1000 times, and take the mean of

the 1000 iterations to be the optimal model. This same experiment is run for each of the

ten elements, resulting in our choices of bandwidth for each element given in Table 3.6.

We display the resultant KDEs for each abundance in Figure 3.24. It’s worth noting at

this point that we are not assuming that S has the same abundance distribution as the

APOGEE dwarf sample. Rather, we are assuming that optimizing our model selection

for fitting the APOGEE dwarf sample will also optimize the model selection for fitting

the abundance distributions of C.

To calculate the planet occurrence rate, we rely on knowing the quantity ntrial. In most

occurrence rate studies, the uncertainty on this quantity is ignored, as uncertainties in

the derived occurrence rates are typically dominated by Poisson error (e.g., Youdin 2011;

Fressin et al. 2013; Petigura et al. 2013; Burke et al. 2015; Mulders et al. 2015c; Petigura

et al. 2018; Narang et al. 2018). However, because the number of stars in C is small

compared to S, our strategy of extrapolating abundance distributions from C leads to a

significant uncertainty in F?, and therefore ntrial for a given abundance bin as compared

with other studies. To estimate these errors and whether they are significant in relation to

the Poisson error in our data, we again use the APOGEE dwarf sample described above.

We perform a similar experiment to the one used to determine the optimal bandwidth,

i.e., randomly drawing 72 measurements from the defined KDE for each APOGEE dwarf

star abundance. We then fit a Gaussian KDE to the randomly drawn measurements using

the optimal bandwidth determined above, and measure the difference in F? as inferred

from equation 3.22 between the defined KDE and the experiment KDE. We repeat this

procedure 1,000 times to derive the typical uncertainty, σF? , and the bias (i.e., mean offset

from the true value), δF? , in F? for each abundance bin. Performing this experiment, we

draw two interesting conclusions. First, δF? is negligible for bins within the inner 90th
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percentile of the abundance distributions. Therefore, when fitting the occurrence rate

distributions, we omit abundances outside of this range. Secondly, the typical error on

σF? is ∼20-30%, and increases to ∼50-60% as you move away from the median of the

distribution. This error is relatively small compared to the Poisson errors of planet size

classes with few (. 10) detected planets. Thus, this uncertainty is important to take

into account for the occurrence rates of Sub-Neptunes and Super-Earths, but is less

constraining when deriving occurrence rates for Sub-Saturns and Jupiters in our sample.
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Fig. 3.24.— Our measurements for F?(Xi), applying a Gaussian KDE. The tan line shows
our derived KDE, with the shaded region showing the 1σ region of credible models ob-
tained from Monte Carlo sampling and bootstrapping. The abundance ratio distributions
in P are shown in purple for comparison. The bandwidth used to model the abundance
ratio distributions for C are represented by the tan error bar in the upper corner, and
the vertical dashed lines mark off the inner 90th percentiles used in the occurrence rate
analyses. The black error bar shows the median abundance uncertainty. The element is
noted in the top left of each panel.

To account for this uncertainty, we modify our fitting procedure when deriving oc-

currence rates that depend on abundances. The procedure outlined in §3.C.2 is repeated

100 times. In each iteration we resample the abundances in C with replacement, adding

an offset randomly drawn from a Gaussian distribution with the width set by the error

reported in ASPCAP. The collection of posterior distribution from each of the 100 inde-

pendent MCMC routines are then used to determine the range of credible models. This
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bootstrapping routine is only performed when determining occurrence rates as a function

of abundances where we rely on C to measure F?. The range of credible models for F?,

as determined from the Monte Carlo bootstrapping routine, are shown in Figure 3.24.

These estimates can also be interpreted as the abundance-ratio distribution functions for

each chemical species in S, providing the first such inferences for field dwarfs observed

by Kepler.

Table 3.7:: Significance testing for the abundances be-

tween each planet subsample and C. aNote: For Fe, we

use [Fe/H].

[X/Fe]a P -class Rp-class npl 〈[X/Fe]〉 Norm? pks pmw pbf Sig?

Fe All All 504 -0.001±0.161 No 0.038 0.0042 0.15 Yes

Fe All SE 198 -0.032±0.172 No 0.54 0.14 0.53 No

Fe All SN 236 0.006±0.154 No 0.0076 0.00098 0.055 Yes

Fe All SS 11 0.062±0.088 Yes 0.022 0.004 0.015 Yes

Fe All JP 17 0.128±0.186 Yes 0.011 0.0016 0.6 Yes

Fe Hot All 235 0.044±0.142 No 0.00065 6.1e-06 0.018 Yes

Fe Hot SE 129 -0.009±0.148 No 0.022 0.005 0.13 Yes

Fe Hot SN 64 0.102±0.132 Yes 7.9e-06 2.3e-08 0.00064 Yes

Fe Hot SS 2 – – – –

Fe Hot JP 6 – – – –

Fe Warm All 239 -0.034±0.161 No 0.57 0.18 0.17 No

Fe Warm SE 65 -0.134±0.177 Yes 0.16 0.075 0.66 No

Fe Warm SN 153 -0.010±0.131 No 0.066 0.037 0.044 No

Fe Warm SS 7 – – – –

Fe Warm JP 6 – – – –

Fe Cool All 30 -0.039±0.264 Yes 0.31 0.44 0.34 No
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Fe Cool SE 4 – – – –

Fe Cool SN 19 -0.205±0.190 Yes 0.21 0.42 0.78 No

Fe Cool SS 2 – – – –

Fe Cool JP 5 – – – –

Ni All All 504 0.021±0.042 No 0.65 0.4 0.21 No

Ni All SE 198 0.019±0.039 No 0.45 0.23 0.13 No

Ni All SN 236 0.021±0.045 No 0.93 0.44 0.58 No

Ni All SS 11 0.049±0.031 Yes 0.34 0.1 0.17 No

Ni All JP 17 0.047±0.027 Yes 0.12 0.059 1.0 No

Ni Hot All 235 0.022±0.038 No 0.59 0.42 0.097 No

Ni Hot SE 129 0.022±0.037 No 0.55 0.3 0.088 No

Ni Hot SN 64 0.030±0.043 No 0.3 0.14 0.65 No

Ni Hot SS 2 – – – –

Ni Hot JP 6 – – – –

Ni Warm All 239 0.021±0.044 Yes 0.84 0.41 0.41 No

Ni Warm SE 65 0.019±0.043 Yes 0.73 0.27 0.49 No

Ni Warm SN 153 0.017±0.049 Yes 0.82 0.39 0.61 No

Ni Warm SS 7 – – – –

Ni Warm JP 6 – – – –

Ni Cool All 30 0.012±0.056 Yes 0.98 0.43 0.99 No

Ni Cool SE 4 – – – –

Ni Cool SN 19 0.009±0.054 Yes 0.94 0.44 0.46 No

Ni Cool SS 2 – – – –

Ni Cool JP 5 – – – –

Si All All 504 0.001±0.058 No 0.15 0.42 0.00055 Yes

Si All SE 198 0.011±0.055 No 0.21 0.37 0.0026 Yes

Si All SN 236 -0.002±0.057 No 0.19 0.29 0.0034 Yes
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Si All SS 11 0.004±0.061 Yes 0.33 0.24 0.14 No

Si All JP 17 0.020±0.059 Yes 0.84 0.39 0.19 No

Si Hot All 235 0.002±0.056 Yes 0.14 0.4 0.0012 Yes

Si Hot SE 129 0.012±0.050 No 0.18 0.36 0.0028 Yes

Si Hot SN 64 -0.003±0.063 Yes 0.29 0.15 0.033 No

Si Hot SS 2 – – – –

Si Hot JP 6 – – – –

Si Warm All 239 0.001±0.059 No 0.22 0.4 0.0023 Yes

Si Warm SE 65 -0.001±0.066 Yes 0.76 0.44 0.11 No

Si Warm SN 153 -0.001±0.055 No 0.15 0.31 0.0052 No

Si Warm SS 7 – – – –

Si Warm JP 6 – – – –

Si Cool All 30 0.004±0.056 Yes 0.38 0.31 0.17 No

Si Cool SE 4 – – – –

Si Cool SN 19 0.004±0.059 Yes 0.31 0.16 0.4 No

Si Cool SS 2 – – – –

Si Cool JP 5 – – – –

Mg All All 504 0.006±0.059 No 0.024 0.051 0.11 No

Mg All SE 198 0.019±0.065 No 0.16 0.22 0.16 No

Mg All SN 236 -0.002±0.059 No 0.019 0.024 0.15 No

Mg All SS 11 -0.009±0.047 Yes 0.067 0.074 0.55 No

Mg All JP 17 -0.034±0.039 Yes 0.022 0.018 0.22 No

Mg Hot All 235 0.002±0.052 No 0.0054 0.012 0.03 No

Mg Hot SE 129 0.015±0.062 No 0.047 0.12 0.14 No

Mg Hot SN 64 -0.016±0.049 No 0.0017 0.00072 0.012 Yes

Mg Hot SS 2 – – – –

Mg Hot JP 6 – – – –
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Mg Warm All 239 0.013±0.067 No 0.17 0.22 0.19 No

Mg Warm SE 65 0.023±0.073 No 0.77 0.48 0.36 No

Mg Warm SN 153 0.006±0.063 No 0.11 0.13 0.21 No

Mg Warm SS 7 – – – –

Mg Warm JP 6 – – – –

Mg Cool All 30 -0.003±0.078 Yes 0.47 0.13 0.58 No

Mg Cool SE 4 – – – –

Mg Cool SN 19 -0.001±0.079 Yes 0.75 0.28 0.51 No

Mg Cool SS 2 – – – –

Mg Cool JP 5 – – – –

C All All 504 -0.017±0.060 No 0.1 0.047 0.13 No

C All SE 198 -0.011±0.054 Yes 0.27 0.18 0.044 No

C All SN 236 -0.027±0.067 Yes 0.053 0.012 0.44 No

C All SS 11 0.062±0.126 Yes 0.15 0.13 0.29 No

C All JP 17 0.013±0.052 Yes 0.82 0.44 0.16 No

C Hot All 235 -0.021±0.060 Yes 0.091 0.036 0.1 No

C Hot SE 129 -0.014±0.057 Yes 0.31 0.14 0.064 No

C Hot SN 64 -0.030±0.073 Yes 0.045 0.011 0.59 No

C Hot SS 2 – – – –

C Hot JP 6 – – – –

C Warm All 239 -0.015±0.066 Yes 0.22 0.07 0.29 No

C Warm SE 65 -0.010±0.051 Yes 0.6 0.32 0.19 No

C Warm SN 153 -0.027±0.067 Yes 0.092 0.023 0.47 No

C Warm SS 7 – – – –

C Warm JP 6 – – – –

C Cool All 30 0.001±0.044 Yes 0.67 0.38 0.19 No

C Cool SE 4 – – – –

147



C Cool SN 19 -0.018±0.053 Yes 0.75 0.29 0.6 No

C Cool SS 2 – – – –

C Cool JP 5 – – – –

Al All All 500 0.068±0.124 No 0.072 0.31 0.058 No

Al All SE 198 0.075±0.126 Yes 0.21 0.48 0.014 No

Al All SN 234 0.071±0.129 No 0.13 0.31 0.38 No

Al All SS 11 -0.004±0.100 Yes 0.6 0.28 0.14 No

Al All JP 15 0.083±0.132 Yes 0.28 0.38 0.12 No

Al Hot All 234 0.065±0.134 No 0.11 0.28 0.23 No

Al Hot SE 129 0.075±0.133 Yes 0.34 0.48 0.07 No

Al Hot SN 63 0.062±0.155 No 0.52 0.19 0.66 No

Al Hot SS 2 – – – –

Al Hot JP 6 – – – –

Al Warm All 236 0.074±0.116 No 0.12 0.39 0.019 No

Al Warm SE 65 0.067±0.102 No 0.19 0.47 0.013 No

Al Warm SN 152 0.081±0.139 No 0.26 0.43 0.11 No

Al Warm SS 7 – – – –

Al Warm JP 4 – – – –

Al Cool All 30 0.056±0.086 Yes 0.12 0.32 0.031 No

Al Cool SE 4 – – – –

Al Cool SN 19 0.044±0.053 Yes 0.063 0.3 0.048 No

Al Cool SS 2 – – – –

Al Cool JP 5 – – – –

Ca All All 504 0.010±0.046 No 0.7 0.49 0.12 No

Ca All SE 198 0.013±0.039 No 0.36 0.36 0.013 No

Ca All SN 236 0.010±0.050 No 0.85 0.46 0.47 No

Ca All SS 11 0.003±0.024 Yes 0.18 0.15 0.41 No
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Ca All JP 17 0.003±0.046 No 0.94 0.38 0.49 No

Ca Hot All 235 0.006±0.039 No 0.37 0.38 0.025 No

Ca Hot SE 129 0.011±0.037 No 0.53 0.43 0.0048 Yes

Ca Hot SN 64 0.003±0.043 No 0.45 0.3 0.54 No

Ca Hot SS 2 – – – –

Ca Hot JP 6 – – – –

Ca Warm All 239 0.011±0.049 No 0.83 0.41 0.3 No

Ca Warm SE 65 0.016±0.043 No 0.45 0.17 0.27 No

Ca Warm SN 153 0.011±0.049 No 0.93 0.46 0.39 No

Ca Warm SS 7 – – – –

Ca Warm JP 6 – – – –

Ca Cool All 30 0.012±0.084 No 0.9 0.44 0.56 No

Ca Cool SE 4 – – – –

Ca Cool SN 19 0.026±0.079 Yes 0.77 0.47 0.81 No

Ca Cool SS 2 – – – –

Ca Cool JP 5 – – – –

Mn All All 504 -0.000±0.073 No 0.42 0.17 0.027 No

Mn All SE 198 -0.008±0.071 No 0.63 0.34 0.13 No

Mn All SN 236 0.003±0.073 No 0.37 0.084 0.11 No

Mn All SS 11 0.034±0.043 Yes 0.021 0.0055 0.2 No

Mn All JP 17 0.018±0.069 Yes 0.061 0.016 0.54 No

Mn Hot All 235 0.009±0.061 No 0.042 0.022 0.023 No

Mn Hot SE 129 0.000±0.066 No 0.34 0.28 0.12 No

Mn Hot SN 64 0.031±0.069 Yes 0.03 0.0014 0.13 Yes

Mn Hot SS 2 – – – –

Mn Hot JP 6 – – – –

Mn Warm All 239 -0.007±0.071 No 0.84 0.47 0.097 No
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Mn Warm SE 65 -0.022±0.060 No 0.091 0.044 0.44 No

Mn Warm SN 153 -0.004±0.077 No 0.76 0.26 0.14 No

Mn Warm SS 7 – – – –

Mn Warm JP 6 – – – –

Mn Cool All 30 -0.019±0.071 No 0.6 0.22 0.87 No

Mn Cool SE 4 – – – –

Mn Cool SN 19 -0.055±0.113 Yes 0.41 0.26 0.97 No

Mn Cool SS 2 – – – –

Mn Cool JP 5 – – – –

S All All 503 0.010±0.100 No 0.25 0.053 0.16 No

S All SE 197 0.003±0.091 No 0.06 0.02 0.33 No

S All SN 236 0.026±0.112 No 0.63 0.19 0.26 No

S All SS 11 0.009±0.071 Yes 0.87 0.32 0.18 No

S All JP 17 0.068±0.132 Yes 0.74 0.24 0.38 No

S Hot All 234 0.002±0.097 No 0.035 0.0075 0.25 No

S Hot SE 128 0.003±0.089 No 0.11 0.025 0.38 No

S Hot SN 64 -0.001±0.135 No 0.23 0.031 0.85 No

S Hot SS 2 – – – –

S Hot JP 6 – – – –

S Warm All 239 0.019±0.099 No 0.6 0.22 0.18 No

S Warm SE 65 -0.001±0.104 No 0.13 0.053 0.55 No

S Warm SN 153 0.030±0.108 No 0.65 0.35 0.15 No

S Warm SS 7 – – – –

S Warm JP 6 – – – –

S Cool All 30 0.028±0.103 Yes 0.65 0.42 0.086 No

S Cool SE 4 – – – –

S Cool SN 19 0.056±0.145 Yes 0.83 0.47 0.34 No
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S Cool SS 2 – – – –

S Cool JP 5 – – – –

K All All 500 0.014±0.074 No 0.00024 0.00025 0.22 Yes

K All SE 196 0.020±0.074 No 0.0024 0.003 0.018 Yes

K All SN 236 0.013±0.076 No 0.00049 0.00037 0.81 Yes

K All SS 11 0.022±0.042 Yes 0.067 0.076 0.35 No

K All JP 17 0.005±0.077 No 0.067 0.021 0.92 No

K Hot All 233 0.011±0.067 No 5.2e-05 7.1e-05 0.25 Yes

K Hot SE 129 0.021±0.068 No 0.00082 0.001 0.033 Yes

K Hot SN 64 0.001±0.078 No 0.00032 0.00046 0.44 Yes

K Hot SS 2 – – – –

K Hot JP 6 – – – –

K Warm All 237 0.015±0.080 No 0.0032 0.002 0.043 Yes

K Warm SE 63 0.014±0.081 No 0.039 0.049 0.088 No

K Warm SN 153 0.016±0.080 No 0.0048 0.0017 0.1 Yes

K Warm SS 7 – – – –

K Warm JP 6 – – – –

K Cool All 30 0.038±0.108 No 0.27 0.11 0.25 No

K Cool SE 4 – – – –

K Cool SN 19 0.022±0.093 No 0.21 0.087 0.2 No

K Cool SS 2 – – – –

K Cool JP 5 – – – –

Table 3.8:: Best fit parameters for the planet occurrence

rate functions in equation 3.5

.
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Rp-Class P -class [X/H] logC α β

SE hot C −1.67+0.11
−0.11 +1.46+0.15

−0.15 +1.16+0.47
−0.43

SE hot Mg −1.75+0.11
−0.11 +1.48+0.16

−0.16 +0.80+0.53
−0.50

SE hot Al −1.78+0.11
−0.11 +1.49+0.16

−0.15 +0.45+0.36
−0.38

SE hot Si −1.69+0.11
−0.11 +1.43+0.16

−0.15 +1.01+0.45
−0.44

SE hot S −1.67+0.11
−0.11 +1.38+0.15

−0.15 +0.78+0.47
−0.43

SE hot K −1.74+0.10
−0.11 +1.45+0.15

−0.15 +0.50+0.48
−0.46

SE hot Ca −1.72+0.11
−0.12 +1.40+0.17

−0.16 +0.99+0.51
−0.52

SE hot Mn −1.69+0.10
−0.11 +1.41+0.15

−0.15 +0.59+0.33
−0.35

SE hot Fe −1.71+0.11
−0.12 +1.44+0.16

−0.16 +0.81+0.43
−0.44

SE hot Ni −1.73+0.11
−0.11 +1.43+0.16

−0.15 +0.60+0.42
−0.40

SE warm C +0.07+0.32
−0.31 −0.50+0.23

−0.24 −0.25+0.52
−0.54

SE warm Mg −0.14+0.32
−0.32 −0.40+0.24

−0.24 −0.98+0.66
−0.65

SE warm Al −0.05+0.30
−0.29 −0.38+0.22

−0.23 −0.28+0.38
−0.39

SE warm Si +0.03+0.32
−0.31 −0.50+0.23

−0.24 −0.63+0.47
−0.53

SE warm S +0.03+0.31
−0.31 −0.48+0.23

−0.24 −0.68+0.47
−0.49

SE warm K −0.14+0.31
−0.31 −0.35+0.23

−0.24 −0.85+0.48
−0.48

SE warm Ca −0.07+0.32
−0.32 −0.42+0.23

−0.24 −0.38+0.51
−0.51

SE warm Mn −0.05+0.32
−0.31 −0.46+0.23

−0.24 −0.65+0.36
−0.38

SE warm Fe −0.02+0.32
−0.31 −0.47+0.23

−0.24 −0.61+0.50
−0.53

SE warm Ni +0.04+0.31
−0.31 −0.51+0.23

−0.24 −0.71+0.38
−0.41

SN hot C −2.60+0.21
−0.23 +2.35+0.28

−0.27 +2.33+0.67
−0.61

SN hot Mg −2.86+0.23
−0.26 +2.51+0.31

−0.29 +2.98+0.87
−0.77

SN hot Al −2.80+0.22
−0.24 +2.40+0.29

−0.28 +1.26+0.51
−0.47

SN hot Si −2.61+0.21
−0.23 +2.30+0.28

−0.27 +2.06+0.71
−0.61

SN hot S −2.58+0.20
−0.22 +2.22+0.28

−0.26 +1.61+0.59
−0.55
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SN hot K −2.62+0.20
−0.21 +2.17+0.27

−0.26 +1.77+0.59
−0.55

SN hot Ca −2.95+0.26
−0.28 +2.59+0.34

−0.32 +2.98+0.85
−0.78

SN hot Mn −2.81+0.23
−0.25 +2.49+0.31

−0.29 +1.86+0.53
−0.50

SN hot Fe −2.79+0.24
−0.26 +2.45+0.32

−0.30 +2.52+0.72
−0.68

SN hot Ni −2.84+0.23
−0.26 +2.48+0.31

−0.29 +2.24+0.76
−0.65

SN warm C −0.75+0.19
−0.20 +0.44+0.13

−0.13 +0.63+0.43
−0.46

SN warm Mg −0.77+0.19
−0.19 +0.43+0.13

−0.13 +0.64+0.49
−0.53

SN warm Al −0.83+0.19
−0.19 +0.45+0.13

−0.13 +0.31+0.35
−0.33

SN warm Si −0.75+0.19
−0.19 +0.41+0.13

−0.13 +0.48+0.46
−0.44

SN warm S −0.71+0.19
−0.20 +0.37+0.13

−0.13 +0.27+0.50
−0.42

SN warm K −0.80+0.19
−0.19 +0.44+0.13

−0.13 −0.04+0.39
−0.42

SN warm Ca −0.73+0.19
−0.19 +0.41+0.13

−0.13 +0.73+0.49
−0.49

SN warm Mn −0.81+0.19
−0.20 +0.45+0.13

−0.13 +0.30+0.33
−0.37

SN warm Fe −0.77+0.19
−0.20 +0.43+0.13

−0.13 +0.49+0.43
−0.42

SN warm Ni −0.81+0.19
−0.19 +0.45+0.13

−0.13 +0.49+0.35
−0.35

SS hot C – – –

SS hot Mg – – –

SS hot Al – – –

SS hot Si – – –

SS hot S – – –

SS hot K – – –

SS hot Ca – – –

SS hot Mn – – –

SS hot Fe – – –

SS hot Ni – – –

SS warm C −4.84+0.96
−1.11 +2.29+0.62

−0.55 +3.43+1.33
−1.17

SS warm Mg −4.98+0.96
−1.10 +2.30+0.62

−0.55 +3.51+1.59
−1.42
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SS warm Al −5.05+0.97
−1.11 +2.30+0.62

−0.56 +1.79+0.92
−0.84

SS warm Si −4.90+0.96
−1.10 +2.30+0.61

−0.55 +3.39+1.38
−1.19

SS warm S −4.46+0.87
−0.99 +1.99+0.56

−0.51 +3.16+1.31
−1.16

SS warm K −4.53+0.87
−0.98 +2.08+0.56

−0.51 +1.73+1.08
−0.98

SS warm Ca −4.77+0.98
−1.13 +2.21+0.64

−0.57 +2.86+1.54
−1.34

SS warm Mn −4.92+1.00
−1.16 +2.27+0.65

−0.58 +2.25+1.08
−0.95

SS warm Fe −4.91+1.00
−1.16 +2.28+0.65

−0.58 +3.25+1.52
−1.32

SS warm Ni −5.01+1.01
−1.16 +2.28+0.65

−0.59 +3.05+1.46
−1.25

JP hot C −3.68+0.64
−0.80 +1.47+0.88

−0.81 +7.69+3.62
−2.84

JP hot Mg −3.67+0.66
−0.86 +1.34+1.01

−0.93 +6.34+4.16
−3.27

JP hot Al −3.45+0.59
−0.75 +0.52+0.79

−0.82 +4.62+2.31
−1.88

JP hot Si −4.66+0.98
−1.27 +1.76+1.09

−0.95 +11.28+6.40
−4.75

JP hot S −3.50+0.63
−0.81 +0.83+0.93

−0.92 +5.61+3.35
−2.61

JP hot K −3.65+0.61
−0.76 +1.46+0.88

−0.80 +4.24+2.69
−2.16

JP hot Ca −3.77+0.90
−1.29 +0.17+1.74

−1.94 +5.41+6.85
−4.62

JP hot Mn −3.83+0.74
−0.95 +0.99+0.94

−0.91 +6.91+3.97
−3.04

JP hot Fe −3.67+0.86
−1.23 +0.15+1.72

−1.92 +4.36+5.71
−3.97

JP hot Ni −3.91+0.86
−1.16 +0.53+1.15

−1.19 +7.96+5.67
−4.19

JP warm C −2.71+1.16
−1.25 +0.65+0.79

−0.81 +0.65+1.59
−1.51

JP warm Mg −2.82+1.15
−1.25 +0.65+0.79

−0.80 −0.72+1.81
−1.80

JP warm Al −1.47+1.46
−1.40 −0.41+1.00

−1.16 +0.32+1.44
−1.40

JP warm Si −2.21+0.93
−0.97 +0.45+0.63

−0.65 +2.17+1.56
−1.38

JP warm S −2.72+1.14
−1.24 +0.65+0.78

−0.79 +0.69+1.52
−1.43

JP warm K −1.93+1.03
−1.05 +0.13+0.71

−0.76 −0.85+1.30
−1.31

JP warm Ca −1.85+1.03
−1.05 +0.13+0.71

−0.76 +0.68+1.55
−1.42

JP warm Mn −1.84+1.03
−1.06 +0.12+0.71

−0.77 +0.80+1.17
−1.05

JP warm Fe −1.84+1.03
−1.05 +0.12+0.71

−0.76 +0.83+1.51
−1.36
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JP warm Ni −1.88+1.04
−1.05 +0.12+0.71

−0.77 +0.61+1.31
−1.18
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Cluster Age [Fe/H] Distance fhot fhot

Gyr dex pc 1− 1.9 R⊕ 1.9− 4 R⊕
Pleiades 0.1 −0.01 136 15.4+2.2

−1.9 7.7+1.5
−1.3

Praesepe 0.7 +0.16 47 21.2+6.2
−4.8 20.7+7.7

−5.7

Hyades 0.8 +0.13 186 20.1+5.2
−4.1 17.4+5.6

−4.2

Ruprecht 147 2.0 +0.12 310 19.7+4.9
−3.9 16.4+5.0

−3.9

M67 3.5 +0.03 880 16.6+2.8
−2.3 9.7+2.0

−1.7

NGC 188 5.5 +0.11 1990 19.3+4.6
−3.7 15.5+4.5

−3.5

NGC 6791 7.0 +0.35 2300 30+16
−11 63+51

−28

Kepler Field Stars – – – 8.1+0.7
−0.8 4.7+0.6

−0.6

Table 3.5: Predicted occurrence rates, fhot, of hot planets (P = 1 − 10 days) for a few
nearby open clusters in the absence of long-term planetary evolution. fhot is given in
units of Number of Planets per 100 Stars for each size class. Our model is extrapolated
for NGC 6791, so the uncertainties for this cluster are quite large. The occurrence rates
for the Kepler field are from this study.

X σX/H
Fe 0.09
Ni 0.12
Si 0.11

Mg 0.10
C 0.12
Al 0.13
Ca 0.09
Mn 0.14
S 0.11
K 0.11

Table 3.6: The bandwidth adopted for the Gaussian kernel used to estimate the distri-
bution for each elemental abundance in C.
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Chapter 4

TraSH in the Kepler Field.

Improved Properties for ∼163,000

Stars and a Transit Detection

Pipeline Designed to Minimize Bias

with Spectral Type

Summary

Despite being arguably the most successful planet-hunting mission to date, the Kepler

mission suffers from a bias against detecting Transiting planets with Subgiant Hosts

(TraSH). This bias derives primarily from the choice of transit templates searched in

the light curves, which is optimized for finding planets around Sun-like stars. However,

TraSH plays a crucial role in our understanding of planet age demographics, due to the

precision in age-dating subgiant stars afforded via isochrone modeling. To first identify

subgiant stars in the Kepler field, we apply parallaxes from Gaia DR2 to broadband
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photometry to derive fundamental stellar properties (e.g., age, M?, R?, ρ?) for ∼163,000

stars in the Kepler field. We derive these properties with careful attention to homogeneity

so as to avoid bias and release them in the CAtolog of Transit SearcH Input Parameters

(CaTShIP). Finally, to reddress the bias against TraSH in the original Kepler mission,

we present TraSH-DUMP (TRAnsiting planets with Subgiant Hosts – Detection with an

Unbiased Matched filter Pipeline), a custom transiting planet detection pipeline which

utilizes an optimized set of transit templates based on the properties of the star being

searched. Leveraging the stellar characterization from the CaTShIP, we demonstrate the

performance of TraSH-DUMP and consider the biases that would arise from a transit search

aimed at detecting planets with evolved hosts.

4.1 Introduction

The Kepler mission (Borucki et al. 2010; Borucki 2016) has discovered thousands of

exoplanets enabling population studies of large samples of planets spanning a wide range

of stellar host types (Howard et al. 2012; Fressin et al. 2013; Mulders et al. 2015b;

Dressing & Charbonneau 2013, 2015). However, while this remarkable database has

been exploited to explore planet hosts on the main sequence (MS), there is still a distinct

lack of knowledge regarding planets with post-MS host stars. Such planetary systems are

expected to vary substantially from their MS counterparts (Veras 2016, and references

therein).

One important consideration in understanding the population of planets with evolved

host stars is tides. Tidal evolution is expected to destroy close-in giant planets as the

host star evolves (Villaver & Livio 2009; Kunitomo et al. 2011; Schlaufman & Winn

2013; Villaver et al. 2014; Sun et al. 2018). However, the timescale at which inspiral

occurs is debated, and theoretical predictions are extremely sensitive to the interior

structure of the host star (Weinberg et al. 2017). While some studies suggest stars are
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destroyed as early as the MS (Hamer & Schlaufman 2019), other studies have found

that the occurrence of hot Jupiters is consistent from the MS to the base of the RGB,

implying that tidal disruption is negligible until the star evolves onto the RGB (Grunblatt

et al. 2018). One proposed explanation for this apparent discrepancy is a population

of transient planets with moderate eccentricities and larger initial orbital separations

that, with rapidly decaying orbits of their own, “replace” the population of hot Jupiters

destroyed on the MS (Villaver et al. 2014; Grunblatt et al. 2019). No matter the actual

situation, it is clear that post-MS stellar evolution brings on rapid changes in planetary

architectures. It is therefore imperative for constraining these various models that not

only the occurrence rate of planets at short periods be measured, but the rates for planets

at all accessible orbital distances, and across all stellar ages, masses, and evolutionary

states.

In addition to understanding the role of tides and stellar evolution in reshaping plan-

etary architectures, stellar age-dating is a necessary tool for understanding planetary

system evolution that is driven by the long-term processes in the planetary systems

themselves rather than their host star’s evolution. Recently, Berger et al. (2020a) argued

for such evolution by comparing the ratio of the number of mini-Neptunes to the number

of super-Earths in a population of old (>1 Gyr) and young (<1 Gyr) host stars. The

authors found that the fraction NSupEarth/NSubNep was lower for the younger sample of

host stars, and inferred from this that sub-Neptunes lose their atmospheres over ∼Gyr

timescales. David et al. (2021) came to a similar conclusion using both isochrone-derived

ages from the California-Kepler -Survey (CKS; Johnson et al. 2017; Petigura et al. 2017a)

as well as ages inferred from gyrochronology. David et al. (2021) argued that the small

(Rp ∼ 1 - 4R⊕) planet size distribution changes over the course of several ∼Gyr, finding

evidence that the occurrence of planets within the radius gap (Fulton et al. 2017) is lower

for younger stars. From this, they interpreted that large Super-Earths are the result of

atmospheric loss that takes place over several Gyr. These studies provide motivation for
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precise stellar age dating to understand the dependence of exoplanet demographics on

age.

Understanding the population of TRAnsiting planets with Subgiant Hosts (TraSH)

is critical in this endeavor because subgiants are uniquely suited to precision age dating

due to their rapid evolution. However, as a result of the scientific imperative to detecting

small planets around Sun-like stars, the detection algorithm applied by the Kepler team

only searched for transits with durations up to 15 hours (Thompson et al. 2018), leading

to unreliable completeness estimates for stars that can reasonably host planets with

transit durations >15 hours, including subgiants and RGB stars (Burke & Catanzarite

2017b).

Transiting planets around such stars are likely to have durations in excess of 15 hours

for periods as low as P ∼ 100-300 days, well within the detectable parameter space for

the Kepler mission. However, only a handful of planets with transit durations longer

than 15 hours have been confirmed in the literature. Whether these planets have not

been discovered due to the biases discussed, or because of an intrinsic rarity, is not

known. However, in the limit in which the transit signal to noise is sufficiently large,

there should be more detected planets with long durations due to an increased transit

probability, R?/a. There may be other systematic biases other than the duration of

transits searched, such as corruption of long duration events by Kepler ’s systematics

removal pipeline. To fully understand whether the low number of detected planets is due

to an inherent decrease in occurrence rates, a bias caused by the decreases planet-star

radius contrast, or simply a bias in the Kepler light curve processing and transit search

algorithms, a dedicated study with uniquely-suited light curve processing and transit

detection algorithms is needed.

We present the first systematic exploration of the TraSH in Kepler program. The

present study is part of an effort aimed at mapping the demographics of planets as a

function of stellar mass and age by constructing an independent planet catalog with
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completeness estimates for stars across the entirety of the HR diagram. We present the

foundations for those goals here. Using an entirely homogeneous analysis, we construct a

catalog of the most precise stellar ages, masses, radii, and other fundamental parameters

for ∼163,000 stars observed by the Kepler mission (§4.2). In addition to the most precise

stellar masses and radii to date, we are able to resolve multiple stages of MS evolution for

high mass (M? & 1.2M�) stars in our catalog, enabling inferences of the stellar interior

structure needed to fully test predictions of tidal decay theory. We also introduce a

new detection algorithm, TraSH-DUMP, designed to search for planets orbiting stars in

any region of the HR diagram with minimal bias, unlike most transiting planet searches

which suffer from 2nd order detection biases arising from template mismatch (§4.3).

Finally we conclude this work by discussing the implications of these findings and other

considerations needed to measure planet occurrence rates across a diverse range of stellar

masses, ages, and evolutionary states (§4.4 & §4.5).

4.2 CaTShIP: The CAtalog of Transit SearcH

Input Parameters

The goal of the CAtolog of Transit SearcH Input Parameters (CaTShIP) is to (1) measure

precise fundamental stellar properties to aid the search of transiting planets, (2) reduce

uncertainties in the properties of transiting planets found in the Kepler data, (3) deter-

mine the relative ages/evolutionary states of the stars in the Kepler field, and (4) derive

stellar ages, masses, radii, etc. with meticulous attention to homogeneity so as to avoid

biases that may result from the design of surveys outside our control.

For example, one potential bias for our science goals that we avoid is removing stars

with known close (. 1′′) companions detected with high-resolution imaging surveys such

as Robo-AO (Ziegler et al. 2018). The vast majority of the targets in these surveys are

planet candidates, creating a bias where field stars will have a higher binary fraction
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than planet candidates, effecting our planet occurrence statistics. To avoid biases such

as these, all input data we use is from surveys with homogeneous data across each star

in our sample, with a possible exception of metallicity information when available.

In addition to the above goals, we wish to optimize the precision of the fundamental

parameters derived in the CaTShIP, rather than the accuracy. In other words, our sci-

ence goals are more readily accomplished with a better understanding of the degree to

which we can differentiate stellar properties (M?, R?, etc.) from one star to the next as

opposed to pinning down an absolute value for these properties. To this goal, the uncer-

tainties reported in the CaTShIP are largely model-dependent and are not appropriate for

calibrating such models. To adequately accomplish this precision, we use as few input

parameters to fit to our stellar model grid as possible, for fear that any one poor estimate

could deviate away from the precision granted from carefully selected photometric bands.

4.2.1 Stellar Sample

To select a field sample of stars with good photometry and reliable parallaxes, we first

cross match the point sources detected by Everett et al. (2012) with the 2MASS point

source catalog. For this cross-match, and those listed below, we take the best point

source within 1′′. We require each star to have reliable photometric measurements in

each band for all the stars in this cross-match. Therefore, we remove all sources that

are not detected in U , B, and V from Everett et al. (2012), and we remove all sources

from the 2MASS point source catalog with a quality flag other than “AAA”. At this

point, we then cross match this catalog with the Kepler stellar properties table (Mathur

et al. 2017) and remove any stars that have a poorly-constrained parallax in Gaia EDR3,

which we define as π/σπ < 20. The final resulting field catalog contains 164,211 stars.
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4.2.2 Input Measurements

We use five parameters to fit each star to a stellar evolutionary track: Teff , π, E(B−V ),

Ks, and [Fe/H]. In the following sections, we explain the origin of each measurement

and any systematic corrections we apply to either improve accuracy or homogenize our

measurements across each star in our catalog.

Parallax from Gaia EDR3

We use the derived π from Gaia EDR3 (Gaia Collaboration et al. 2021). The parallax

constrains the distance to the star which, combined with extinction corrections, Teff , and

Ks magnitude, constrains the stellar radius and luminosity, arguably the most important

quantities to measure, along with Teff , to reliably infer a star’s evolutionary state.

Photometry from 2MASS Corrected for Blended Sources

In conjunction with π, a star’s apparent magnitude constrains the luminosity semi-

empirically (with only bolometric corrections acting as model-dependent values). How-

ever, the apparent magnitude can be biased by dust extinction. To minimize this effect

in our analysis, we use the Ks-band magnitude from the 2MASS survey (Skrutskie et al.

2006), because it is the longest wavelength (λ ∼ 2.2µm) uniformly available for each star

in our sample.

However, 2MASS has an effective resolution of ∼3.5′′, which is ∼2× larger than the

effective resolution of ∼1.5′′ in the catalog from Everett et al. (2012). This is likely

to lead to blended sources, and therefore cause stars to appear redder than they are

because the Ks-band flux will be artificially inflated, but not the B-band flux. Therefore,

instead of using the Ks-band magnitudes directly from 2MASS, we instead use the Ks-

band magnitudes from Berger et al. (2020b), who applied a correction for stars with a

Gaia-detected source within 4′′. The correction assumed that the flux contamination
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from the secondary source seen by Gaia was entirely within the 2MASS aperture at

separations below 1.25′′, and entirely outside the aperture at separations >4′′, with a

linear relationship for the flux contamination between these two extremes. Given Gaia’s

typical resolution of ∼0.5-1′′, the effective resolution of the corrected Ks magnitudes

adopted in this work should be consistent with the effective resolution of the catalog in

Everett et al. (2012).

Dust Correction and Choice of Extinction Law

We employ the 3D dust map from Green et al. (2019) to derive the extinction for each

star in our sample, which we access using the the python package dustmaps (Green

2018). To derive the extinction in each band we assume the reddening law from Wang

& Chen (2019) and convert the arbitrary reddening units, E, from Green et al. (2019)

to E(GBP − GRP ) by converting to E(B − V ) via their relation, E(B − V ) = 0.996E

and then applying the relations listed in Table 3 of Wang & Chen (2019) to calculate

extinction values. For these extinctions we assume an error at least as large as 0.002

mag, given the typical uncertainties for the conversions derived in Wang & Chen (2019).

Because Wang & Chen (2019) don’t report color excess ratios for the U -band, we apply

their expression for the excess color ratio, Aλ/AV using λeff = 0.3656µm to derive the

extinction for this band.

Effective Temperature from B – Ks Color

To measure stellar effective temperatures, we develop a relation using synthetic photom-

etry from stellar evolutionary tracks described in §2.3. We define each model as one point

in B−Ks and Teff space. In color bins of 0.05 mag, we calculate the weighted mean of the

temperature for all models in that bin. The weights are calculated from the metallicity

of each model as a Gaussian with mean of 0.0 dex and standard deviation of 0.2 dex.

We choose to bias our temperature calibration in this way because it is representative of
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the metallicity distribution in the Kepler field (Dong et al. 2014), and our model grids

are asymmetric with respect to metallicity, so without the metallicity weights we may be

biased toward lower-metallicity models. Because we don’t expect many low-metallicity

stars, we choose to dilute their influence in our relation. We fit these points to a 10th

order polynomial to define the conversion from (B − Ks) to effective temperature. To

calculate the relative errors in this scheme, we take the standard deviation of the resid-

uals of the models and the polynomial function in 0.05 magnitude bins. We then fit the

scatter to a polynomial as a function of B − Ks to derive a function for the intrinsic

color-dependent uncertainties in our temperature relation. These relations are displayed

in Figure 4.1.

The adopted error on the Teff relation is taken to be the larger of either the scatter

in the MIST models, as described, or a minimum of ∼2%. This minimum is given by

the systematic uncertainty when measuring interferometric angular diameters (e.g., von

Braun & Boyajian 2017).

Data-Driven Photometric Metallicities Trained on LAMOST DR5

Uncertainties in metallicity are well known to lead to degeneracies when attempting

to infer stellar ages and masses from stellar isochrones. Therefore, we make a concerted

effort to include a measured metallicity for each star in our sample, without any particular

assumptions about the stellar population to which the star belongs (e.g., the thin disk

versus the thick disk). There are some instances where this is not possible, and we are

thus forced to assume a thin disk prior, as the Kepler field is dominated by such stars.

In addition to our need for as many stars as possible to have a measured metallicity,

we also require our stars to be uniform in metallicity, so we avoid using metallicities

from multiple spectroscopic pipelines, which often have systematic differences of &0.1

dex (Furlan et al. 2018). Thus, by including multiple sources for metallicities in a sample

such as ours, we would in turn have to account for such systematic differences from
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Fig. 4.1.— Calibration used to fit synthetic photometry to a model atmosphere effective
temperature. Top: A 10th order polynomial fit to the [Fe/H]-weighted mean effective
temperature for B−Ks bins of size 0.05 mag, shown as black points. Bottom: The error
expected from applying this relationship. The shaded blue region shows the expected
uncertainty, and grey dashed lines show 1.9% uncertainty. The black points show the
residuals from the fit. Only one in ten points are shown for clarity.

pipeline to pipeline by inflating the errors for each metallicity, which in turn negates the

improvement in precision gained by adopting spectroscopic metallicities in the first place.

In an attempt to solve the problem of adopting metallicities for a significant sample of

stars while also maintaining a uniform analysis and preserving the precision afforded by

spectroscopic metallicities, we develop a methodology for inferring photometric metallic-

ities. We choose one survey from which we adopt spectroscopic metallicities, LAMOST

DR5 (Cui et al. 2012). LAMOST was chosen because of the LAMOST-Kepler program,

which observed a large fraction of stars with no bias toward color or spectral type (De

Cat et al. 2015; Zong et al. 2020). We then wish to train a model from which we can infer

the metallicities of stars that were not observed by LAMOST. For this purpose we define

a model for transforming a set of observed photometric values to inferred metallicities.

We use (U −B)0, (B−Ks), and MKs as inputs to our model, and map these inputs to a

given metallicity. We choose the (U−B)0 color because line blanketing in the U -band has
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historically been an efficient method to infer photometric metallicities, albeit with worse

precision as compared to spectroscopy. The effects of line blaketing on stellar SEDs is

well known to vary by luminosity class and spectral type, so we also include (B −Ks)0,

and MKs to act as proxies for temperature and luminosity, respectively, to allow our

model to accurately disentangle the mapping from (U −B)0 to [Fe/H].

Using these three inputs, we define a model using a Support Vector Regressor (SVR).

An SVR works similarly to a Support Vector Machine (SVM), which is a simple classi-

fication algorithm. SVM identifies a hyperplane or line in multidimensional space that

separates two or more classes of objects from one another, and then adopts that bound-

ary to classify future objects. SVR works similarly, but instead of using a hyperplane

to classify objects, it calculates a residual between the hyperplane and an input point in

multi-dimensional space to define a continuous mapping from one domain to another, in

our case, from θi = {(U −B)0,i, (B −Ks)0,i,MKs,i} to [Fe/H].

To train our SVR, we cross-match our catalog with that of LAMOST DR5, totaling

56,583 sources in common. To construct an adequate training sample, we downsample

this cross-matched catalog to remove sources with poor photometry or stars with spectral

types for which LAMOST metallicities are poorly constrained. Thus we remove stars with

colors outside of the ranges −0.5 < (B − Ks)0 < 7 and −0.5 < (U − B)0 < 2.2. We

also remove stars with [Fe/H] outside of the range used by the model grid in isofit,

−2 < [Fe/H] < 0.5. Finally, we remove stars with π/σπ < 10 and stars with a spectrum

S/N < 50 in the i-band. After these cuts we are left with 49,285 stars.

Finally, we randomly assign the LAMOST stars with good photometry and spec-

troscopic metallicities to a training sample and a test sample of equal sizes and fit the

training sample of stars. To test the accuracy and precision of the SVR, we then use the

trained model to predict the metallicities of the test sample. Our trained SVR is able to

predict the metallicities of the test sample with minimal bias in the input parameters,

and with relatively good precision considering the metallicities are derived from photom-
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etry, see Figure 4.2. In the residuals for the test sample we find a median of 0.001 dex,

in the sense that the predictions are slightly overestimated on average, with a median

absolute deviation of 0.115 dex. The standard deviation of the measurements is higher,

at 0.141 dex, implying there are some outliers. There are no trends with the residual in

the test sample for any of the input parameters, implying that any biases in the sample

are at least consistent with those of the LAMOST dataset.

One potential bias in the photometric metallicities is that they tend to be closer

to solar than their actual measured value. This bias is easy to understand. Because

the Kepler field naturally has more stars closer to solar metallicity, the gradient in the

number of stars as a function of metallicity (dn/dZ) is always increasing toward solar.

Thus, the average number of stars contaminating a given metallicity bin will always be

higher in the direction of solar. Thus, while globally there appears not to be a bias,

there is a tendency for the SVR to infer higher metallicities for stars with subsolar

metallicities in LAMOST, and lower metallicities for stars with supersolar metallicities

in LAMOST. In other words, assuming a Gaussian error for each measured metallicity,

there are always more contaminating stars from metallicity bins closer to solar than

away from solar, artificially bringing the mean metallicity of stars within a particular bin

of observables closer to solar. However, this is not a worrisome bias. In fact, in some

sense this is analogous to adopting a thin disk prior on top of the photometrically-derived

metallicities, which still represents a drastic improvement from no measured metallicities.

We re-train the SVR on the set of 49,285 LAMOST stars originally split into test

and training samples, and assume that the resulting bias and uncertainties are the same

as when using only the training sample. We then use the SVR to derive photometric

metallicities for 106,322 stars. For stars with a metallicity measured by LAMOST, we

adopt whichever of the photometric metallicity or the spectroscopic metallicity has a

smaller uncertainty, resulting in 55,148 stars with a spectroscopic metallicity. Many

of these stars did not make the spectrum S/N cut to be considered in the training
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Fig. 4.2.— The results of the Support Vector Regression analysis used to infer photo-
metric metallicities for stars in the CaTShIP. Top Row: The Color-Color diagram of the
training (left) and test (right) samples. The color of the training data represents the
metallicities as measured by LAMOST, while the color of the test data represents the
metallicities predicted by the Support Vector Regression. Bottom Row: The residuals
between the predicted (Pred) metallicities and the metallicities observed by LAMOST
(Obs) in the test sample, as a function of the three inputs to the Support Vector Regres-
sor. There are no trends with any of the input parameters. The far right panel shows
the distribution of residuals from the test data, where the dashed orange lines denote the
16th and 84th percentile.

sample, but still had a more precise metallicity than what we would have derived from

photometry. The remaining 2,741 stars are outside the color/temperature range needed

to derive reliable photometric metallicities, so we adopt a thin disk prior of solar with a

spread of 0.2 dex. This sample of stars is dominated by M dwarfs and stars at the tip

of the RGB. We include the photometric metallicity for every star in our input catalog,
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but note which metallicity was adopted for deriving stellar properties in the FeH source

column.

4.2.3 Fit to Stellar Evolutionary Tracks

To infer fundamental stellar parameters for the stars in our sample (e.g., R?, M?, age)

we apply the python package isofit1 (Wilson et al., Submitted). isofit compares

observations to a grid of MESA Isochrones and Stellar Tracks (MIST) models (Dotter

2016; Choi et al. 2016) with masses ranging from 0.1 to 8.0 M�, metallicities ranging

from −2 to 0.5 dex, and evolutionary states ranging from the Zero-Age Main Sequence

(ZAMS) to the beginning of the White Dwarf Cooling track. After finding an initial

best model, a Markov Chain Monte Carlo (MCMC) analysis is applied to estimate the

credible ranges for each parameter.

For each star in our sample, we run isofit with the following observable quantities

and associated uncertainties: π, Ks, E(B − V ), Teff , and [Fe/H]. We instantiate the

MCMC sampling using 50 walkers, with 1000 steps and 500 burn-in steps. We report

the stellar parameters as the median for each parameter in the posterior distribution and

the upper and lower limits as the 84th and 16th percentile of the posterior, respectively.

In all, we derive stellar parameters for 163,164 stars.

4.2.4 The CaTShIP HR Diagram

In this section we discuss the results of our evolutionary track modeling and the features

that are naturally present as a result of stellar evolution. In many places we also compare

our results to those of Berger et al. (2020b), “B20” hereafter. Most of the differences

between our methodology and that of B20 can be traced back to one of two sources, our

choice to include uniformly-derived photometric (and spectroscopic) metallicities, or the

set of basis vectors used to define the model grids in our respective fitting routines. In

1Available at https://github.com/robertfwilson/isofit
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some cases, we also benefit from the use of more precise parallaxes from Gaia EDR3,

though in most cases the error budget is dominated by uncertainties in Teff and Ks-band

magnitude.

The model grid from B20 is defined in three dimensions – age, mass, and metallicity –

while our grid is defined by Equivalent Evolutionary Phase (EEP), mass, and metallicity.

The EEP parameter is a uniform basis that is designed to adequately represent each

phase in stellar evolution by the same number of points and to have a representative

point across models of different masses that represent similar phases in stellar evolution.

For example, EEP=202 corresponds to the ZAMS for stars of all masses. Thus, a set of

EEP, mass, and metallicity corresponds to one unique model, as does the set of age, mass,

and metallicity. The motivation behind interpolating a grid in EEP, rather than age, is

to ensure that all phases of stellar evolution are adequately represented and shortly-lived

phases are not improperly ignored. That being said, the model grid used by B20 was

spaced finely enough to avoid such problems. In this case, the primary difference arises

mainly from the difference in timescale between each grid point. The methodology of

B20 of interpolating the grid in age acts similarly to adopting a linearly-sampled prior

on age, while for us adopting the EEP as our basis results in posterior distributions more

analogous to sampling logarithmically in age.

The resulting HR diagram from our modeling is shown in Figure 4.3, along with the

HR diagram for the same stars analyzed by B20 for comparison. For these figures we’ve

removed all stars with an inferred age >14 Gyr, as that is not possible given the age of

the universe. In turn, this also removes most of the poorly-fit stars in our sample. The

resulting catalog has 143,392 stars. Comparing this catalog to the corresponding stars

from B20 shows few differences.
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Fig. 4.3.— The temperature-luminosity distribution of ∼150,000 stars in our sample
(right) and the corresponding stars from B20 (left). Stars with inferred ages >14 Gyr in
our analysis are not included.

Main Sequence

One difference that is noticeable between the two HR diagrams in Figure 4.3 is a broader

main sequence in the CaTShIP. The reason for the increased scatter in our sample is the

use of metallicities. Lower metallicity stars on the main sequence have a lower luminosity

than higher metallicity main sequence stars of the same Teff . These metallicity differences

lead to luminosity differences as large as 50-100% for a star with Solar effective temper-

atures and a metallicity difference near 0.1 dex. Thus, the scatter in the luminosity for

stars on the main sequence reflects the metallicity distribution function of the CaTShIP.

We expand upon this difference in the next section.

Red Giant Branch

Another feature that is prominent between the two samples is the Red Clump (RC),

which is the overdensity of stars at logL/L� ≈ 1.8 and Teff ≈ 4500 K caused by stable

172



core He burning (See Figure 4.4). The RC in our sample has slightly less scatter in

luminosity than that in B20, though there is very little difference overall in the Teff or

luminosity distributions. Just below the RC is a slight over density at Teff ≈4600 K and

logL/L� ≈ 1.4. This is the RGB bump. This slight overdensity results because a star’s

ascent up the RGB is briefly stalled as the H-shell burning passes through the convective

H inhomogeneity envelope (Thomas 1967; Iben 1968). There is another overdensity above

the RC at Teff ≈ 4400 K and logL/L� ≈ 2.2. This slight overdensity is the Asymptotic

Giant Branch (AGB) bump. This results from an analogous pause in evolution to the

RGB bump.

4.2.5 The CaTShIP Mass-Luminosity Diagram

In addition to the HR diagrams between the B20 sample and the CaTShIP, we also display

a Mass-Luminosity diagram from the two samples in Figure 4.5. In some sense, this may

be easier to interpret than the HR diagram, as stars evolve vertically in this diagram.

There are features of the stellar evolution models present in the CaTShIP sample,

though there are a few systematics present in this figure as well. For instance, toward

the tip of the RGB, there appears to be another point at logL/L� ≈ 2.6 above which the

mass distribution function increases sharply. This is a systematic effect in the CaTShIP.

The most luminous giants in our sample do not have well measured metallicities because

they are too red to be adequately inferred by our photometric metallicity relation, and

so we assume a thin disk-like metallicity prior, which though it’s a default for nearby

stars may not be a reasonable representation of high luminosity stars.

Main Sequence

This difference in the main sequence is much more apparent between the two samples

in Figure 4.5. In the B20 sample there are three distinct lines of stellar overdensities

that represent distinct phases in stellar evolution. The line lowest in logL/L� is the
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Fig. 4.5.— The mass-luminosity diagram for the stars in B20 (left) and the same stars
in the CaTShIP (right). These samples are identical to those shown in Figure 4.3. The
color represents the logarithmic density of stars at a given mass and luminosity.

main sequence, the line ranging from a M ∼ 1.2M�, and logL/L� ∼ 0.4 to M ∼ 2M�,

and logL/L� ∼ 1.5, is the terminal age main sequence (TAMS), and the line just above

that is the subgiant branch. These three stages in evolution appear strikingly in the

B20 sample. However, they are not clear in our sample. This may be due to either

differences in luminosity caused by our inclusion of a homogeneous metallicity scale, or

may be due to larger mass uncertainties. Inspecting the mass-luminosity diagram in

detail for differing metallicities, it becomes clear that our sample does in fact display the

same overdensities shown by the B20 sample, but only when controlling for metallicity

differences (see Figure 4.6).

In fact, when separating the sample within metallicity bins with widths of 0.1 dex,

we are able to identify not just the three overdensities apparent in the B20 sample, but a

fourth overdensity where the TAMS splits into two distinct overdensities at M & 1.2M�.

The overdensity at lower luminosity is the Intermediate age main sequence (IAMS), while
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the overdensity at higher luminosity is the TAMS. These two overdensities are present due

to the “convective hook”, which occurs in higher mass stars that have a convective core

near the end of their main sequence lifetime. The B20 sample was not able to distinguish

between these two phases of stellar evolution. However, it’s worth noting that the fact

that these overdensities appear in our sample is not evidence for their existence, as the

model which includes these physical processes was used to infer the luminosity of the stars

in our sample. In other words, while we can precisely determine the evolutionary phase

of high-mass (& 1.2M�) stars on the main sequence, this precision is model-dependent,

and therefore cannot be used to validate our choice of models.

Red Clump and Secondary Clump

Other than the Main Sequence, another major differences we see between the sample in

B20 and the CaTShIP are the masses of the stars located in the RC and the secondary

clump. Compared to B20, we find a larger fraction of stars at the secondary clump. Such

a difference may be due to the accuracy afforded to us by metallicities. On the giant

branch, the stellar temperature is a strong function of both stellar mass and metallicity,

where more massive stars and lower metallicity stars tend to be hotter. This is a problem

when determining ages, because with photometry alone it is often not possible to break

the degeneracy between mass and age in this area of parameter space. This is true on

most parts of the RGB as well. However, with the photometric metallicities used to

construct the CaTShIP, we can partially break this degeneracy and determine accurate

masses, and as a result, ages. However, some degeneracy still remains.

4.2.6 Precision and Accuracy of Stellar Parameters

We take the larger of the absolute value between the median and upper/lower limits

(i.e., the range of the inner 68th percentile) to be a reliable metric for the precision of the

stellar properties inferred in our sample. The uncertainties for a few of the parameters
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Fig. 4.6.— The Mass-Luminosity diagram for the CaTShIP sample split into metallicity
bins with widths of 0.1 dex. The center metallicity is shown in the bottom left of
each panel. The colors show the density of points, with yellow/green representing more
stars and purple representing fewer stars. The over-densities in each panel suggest that
our methodology is able to distinguish multiple phases of stellar evolution on the main
sequence.

are displayed in Figure 4.7. Also shown in Figure 4.7 are the distributions for mass,

radius, and age of the CaTShIP sample.

Overall we find generally the same distributions as those in B20, but we tend to have

better precision. The radius distribution for our sample is nearly identical with a broad

distribution at ≈1-1.5 R�, with a decrease toward larger radii with the exception of a

peak at ≈11R�. This peak is due to the RC, which we’ve noted above. The location of

this peak is slightly lower than that from B20, likely due to the .1M� mass stars near

the RC which congregate at lower luminosity and radius.

We find that our distribution in mass has less variance than the B20 mass distribution,
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Fig. 4.7.— The distribution of stellar parameters for the stars in our sample and their
associated distribution of uncertainties. The blue histogram shows the stellar parameters
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sample of stars, and is shown for comparison. The blacked dashed line denotes the median
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but peaks in the same place as in B20, at≈1M�, with a nearly identical median of 1.33M�

versus 1.34M� for B20. The apparently lower width of our distribution compared to B20

can likely be attributed to the higher precision masses inferred from our data. This is most

apparent in the mass uncertainty distributions. Our sample has a median uncertainty

of 6%, while that from B20 has a median uncertainty of 7%. These differences do not

seem particularly large, though there are some notable features in the B20 uncertainty

distributions that are not present in our sample, such as the large peak at an uncertainty

of ≈7.5%. In the B20 sample that peak corresponds to main sequence stars without a

measured metallicity. Thus, we’ve mitigated this peak in our own sample with our use of

photometric metallicities. The CaTShIP also has slightly better mass estimates for stars

on the RGB due to our better metallicities, but these still remain the most uncertain

parameters in our sample because of degeneracies with mass. This is particularly true

for cool RGB stars.

The density distributions are nearly identical to that of B20, and while our sample

has a slightly better precision on average, the fractional uncertainty only decreases from

≈13% to ≈12% from B20 to the CaTShIP. The stellar mean density is one of the more

important parameters for our science goals, as it is used to determine the grid of transit

durations used in the TraSH-DUMP search. Because transits can have a shorter duration

if transiting at higher impact parameters or due to eccentric orbits, the motivation for

the star’s mean density to be precise is not as strong as the motivation for the density

to be accurate.

Finally, the ages in the CaTShIP are slightly more precise than for B20. We have a

median uncertainty of 1.9 Gyr, while the B20 sample has a median uncertainty of 2.1 Gyr.

These uncertainties are for all the stars with informative ages, so we are not including low

mass stars in this statement. One particularly interesting feature in our histogram is the

peak at ≈100-200 Myr. This feature is in fact real, and is not a systematic uncertainty.

This peak corresponds to high-mass (& 2M�) stars that have not yet evolved onto the
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giant branch. Because such stars do not have long lifetimes, they can be age-dated

very precisely via isochrone- and evolutionary track-modelling, such as this. However,

the lifetime of such stars depends steeply on the mass, and their positions on the HR

diagram are degenerate with metallicity. We are able to break this degeneracy with our

photometric metallicities and in a few cases infer an age with a precision of ∼10-100

Myr. However, one caveat to this is that the ages and masses are only accurate if the

metallicities from the training sample (i.e., LAMOST spectra sample) are accurate, which

may be questionable for hotter (& 7000K) stars due to fewer overall metal lines in the

spectra of such stars, but should be accurate for high-mass stars in the cooler subgiant

phase or near the Hertzsprung gap.

Comparison to Asteroseismology

To determine the accuracy, rather than just the precision, of our stellar parameters,

we cross-match the CaTShIP sample with the APOKASC dwarf and subgiant catalog

(Serenelli et al. 2017). The APOKASC catalog is an effort that combines spectroscopic

temperatures and metallicities from the Apache Point Observatory Galactic Evolution

Experiment (APOGEE; Majewski et al. 2015; Majewski et al. 2017) with global seismic

parameters, ∆ν and νmax, measured from Kepler light curves (Pinsonneault et al. 2018).

The global seismic parameters set extremely strict constraints on the stellar density and

surface gravity through the asteroseismic scaling relations, (Ulrich 1986; Brown 1991;

Kjeldsen & Bedding 1995), which Serenelli et al. (2017) incorporate directly into a grid

of stellar evolutionary tracks via the same Grid-Based modelling approach upon which

isofit is based. The APOKASC catalog has typical statistical uncertainties in mass and

radius of ∼4.7% and ∼2.7%, respectively. The CaTShIP contains 212 stars in common

with the APOKASC dwarf star catalog. The other 213 stars from the APOKASC dwarf

star catalog were too bright to be included in this analysis, due to saturation in the

Everett et al. (2012) photometry. The comparisons for our catalog with that of the
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APOKASC catalog for radius, mass, density, and age are shown in Figure 4.8.

There are a few notable differences between the input parameters in our sample versus

those used in the APOKASC catalog. For instance, we find a systematic offset of 0.06

dex in [Fe/H], in that the CaTShIP’s input parameters are slightly more metal rich, with

a scatter of 0.09 dex, typical of our uncertainties. This difference is likely to generate

differences in the inferred ages and densities of the APOKASC catalog and the CaTShIP.

Comparing our catalog to the APOKASC catalog, we find good agreement in the

inferred stellar parameters within the combined uncertainties of our sample and the

APOKASC sample. For radii, perhaps our most precisely inferred quantity, we find an

agreement within ∼3%, with a systematic offset of ∼2%. In general, the CaTShIP tends

toward better precision for stars at larger distances. This is likely due to the S/N of

the oscillation modes in the Kepler light curves decreasing for dimmer stars. In addition

to the combined uncertainties for the radii of stars in the CaTShIP and the APOKASC

catalogs, there is a known systematic offset between radii inferred from asteroseismology

and from Gaia parallaxes of ∼2% (Zinn et al. 2019a). This explains the median offset

between our radii and those of the APOKASC in Figure 4.8.

For mass, we again find good agreement between that of our sample and the APOKASC

sample. In general, we tend to infer slightly smaller masses by ∼3%, but the overall

scatter between our sample and the APOKASC catalog is mostly within our combined

uncertainties of ∼4-6%. The scatter is slightly larger overall, which could be attributed

to differences in our adopted temperature scale or metallicity scale. Because we trained

our metallicities on LAMOST data, and APOKASC adopted their metallicities from

APOGEE (Majewski et al. 2015), there are likely to be some systematic differences.

The largest differences between our sample and that of APOKASC are in the densities.

We tend to infer densities that are ∼10% smaller than those of APOKASC. This offset

is close to the typical scatter of the combined uncertainties between the CaTShIP dwarfs

and subgiants (≈7%) and the APOKASC catalog (∼ 4%), of ≈8%. However, the offset
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Fig. 4.8.— Comparison of the derived properties in the CaTShIP to 212 dwarfs and
subgiants with parameters derived from asteroseismology. For each panel, the dashed
line indicates unity, and the median and median absolute deviation are displayed. In
most cases, the differences between our values and those in Serenelli et al. (2017) agree
within the combined uncertainties.

is still somewhat significant, and likely derives mostly from the strong dependence on the

stellar radius, which is known to have systematic uncertainties. The densities tend to

agree better for older stars (e.g., subgiants and stars near the TAMS), and disagree more

for younger stars. This is expected, as isochrones have weaker age and mass constraints

for stars on the main sequence as compared to slightly evolved stars.

Finally, comparing the ages between these two samples reveals a large scatter, which

is expected due to the difficulty in inferring ages. As mentioned, the type of modelling
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done here has trouble distinguishing ages for stars on the main sequence, as there are

only slight changes in luminosity and temperature for a given mass with differing ages.

Therefore, on average, our modelling may give estimates for age that are overestimated

for stars on the main sequence. We find that effect here, as we tend to estimate ages that

are ∼20% greater than those inferred using global asteroseismic parameters, where one is

able to adopt stricter density constraints. The difference in metallicity between the two

samples is also likely to play a role in overestimating ages in the CaTShIP relative to the

APOKASC. However, the ages between our sample are mostly in agreement within the

combined uncertainties of the CaTShIP and the APOKASC catalog of ∼20%. The offset

is likely due to the larger radii and lower density estimates for our sample, on average.

In all, we find a few systematic differences between our sample and the APOKASC

catalog. Most of the differences can be traced back to systematic differences either in the

radii/luminosity inferred from geometric parallaxes versus asteroseismic parameters, or

differences in the metallicities in the CaTShIP and the APOKASC. However, overall the

inferred parameters from these two catalogs agree relatively well with only a few outliers.

Properties for Stars in NGC 6811

As another test of the accuracy in our sample, we compare ages derived from stars likely

to be members of the open cluster NGC 6811. NGC 6811 has a canonical age of 1.0±0.1

Gyr and metallicity estimates ranging from -0.05 to 0.05 dex (Frinchaboy et al. 2013;

Molenda-Żakowicz et al. 2013; Sandquist et al. 2016; Bossini et al. 2019). The metallicity

range of this cluster makes it a prime candidate to test our age estimates, given that they

are near to solar metallicity, as are the majority of the stars in the CaTShIP. To select

probable members of NGC 6811, we first query the CaTShIP for stars within half of a

degree from the center of the cluster given in Cantat-Gaudin et al. (2018). From this

sample, we then remove stars that disagree from the mean proper motion of the cluster

in either right ascension or declination by more than 2σ. After these cuts we are left
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Fig. 4.9.— Comparisons with our derived ages and the canonical age, 1 Gyr, for stars
in the open cluster NGC 6811. In each figure, members of the open cluster NGC 6811
are colored by our inferred age, and plotted against a 1 Gyr isochrone with [Fe/H]=0.05.
Left : The derived mass and radius of each star in the cluster. The gray line shows the
expected mass and radius from a 1 Gyr isochrone. Right : A Hertzsprung-Russel diagram
of the NGC 6811 cluster members in our sample. Note the relatively good age agreement
at higher masses and disagreement for stars with higher and lower derived luminosity
than the displayed isochrone. In general, the stars represented by green points have ages
in relative agreement with the canonical age of the cluster.

with 116 stars that are likely to be members of NGC 6811 (see Figure 4.9).

From these stars, we find that our metallicity estimates tend to agree with the prop-

erties of the cluster in the literature. For these stars, we inferred a median metallicity of

-0.05 dex and a median absolute deviation of 0.09 dex, well within the expectations for

this cluster. The derived parameters tend to agree with what is expected from isochrones

as well. We show this agreement in Figure 4.9. The right panel shows the H-R diagram

of the probable cluster members, and the left panel shows the mass and radii of the prob-

able cluster members. The points are colored by the logarithm of their derived ages in

the CaTShIP, where green represents an age of 1 Gyr, and therefore good agreement with

the literature ages. In each of these figures, the gray line denotes the expected values for
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canonical age of NGC 6811 of ≈1 Gyr.

an isochrone of 1 Gyr and solar metallicity.

The stars with the biggest deviations in age also have the largest deviations from the

expected luminosity and radius given the sample. The reason for these disagreements

is likely due to contamination from unresolved binary stars. Although we use Ks-band

photometry that was corrected for contamination from secondary stars, many are still

likely not to have been noticed, and as a result artificially increase the apparent brightness

of the stars. In our case, the increase in apparent brightness leads to a larger inferred

radius and luminosity, which results in a larger inferred age. This represents the primary

impact that unresolved binary stars have on the derived parameters for stars in our

sample. They generally lead to significantly overestimated ages.

In addition to the stars with larger discrepancies in age in the CaTShIP, there are

a few stars with increased differences in mass and radius, particularly at ∼1.5-2 solar
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masses. These stars are likely different due to our metallicities being less reliable at

hotter temperatures and bluer colors. This is mostly due to the fewer number of stars

in the LAMOST training sample, but it may also be impacted by the LAMOST spectra

yielding less precise or accurate metallicities at these temperatures. Though we note that

while there are a few differences in mass, radius, and luminosity, the ages for these stars

are still in good agreement, though that may be in part due to the short MS lifetimes of

such stars.

Despite some of the differences between our inferred values and the expected values

from the literature for stars in NGC 6811, we find that the majority of stars in this

sample in fact do have reliable ages. The distribution of ages mostly agree with the

canonical age of the cluster, and has a median and spread of 1.2+1.6
−0.6 Gyr (see Figure

4.10). Therefore, despite the outliers at inferred ages of ∼10 Gyr caused by unresolved

binaries, we are still able to trust the ages of our stars approximately within a factor of

2, which is roughly consistent with our estimated uncertainties of ∼50% for stars in the

NGC6811 sample. We also notice a similar trend in age compared to our comparison

with ages in the APOKASC catalog, that we infer ages that are relatively older by ≈20%.

Also, as seen in Figure 4.9, and as expected, the ages tend to be most accurate for more

massive stars, especially those with M & 1.5M�.

4.3 TraSH-DUMP: An Unbiased Transit Detection

Pipeline

Now that we have generated a catalog of reliable stellar parameters, we turn to the

question of transit detection. The inspiration for this pipeline came from the large

fraction of subgiants in the Kepler field (≈21%) that were revealed by Gaia DR2 (Berger

et al. 2018) and the difficulty in estimating occurrence rates for evolved stars using the

Kepler pipeline due to the limited grid of transit durations searched, particularly at
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long periods. To address that difficulty, we’ve written and implemented a detection

algorithm that is informed by the stellar properties of the star being searched. In this

way, we intend to avoid second-order detection biases that arise from differences in limb-

darkening coefficients, and biases that arise from searching over an inadequate grid of

transit templates.

While some of these biases can be mitigated with a careful approach to constructing

a transit template, there are still difficulties that arise from detecting transiting planets

orbiting evolved stars that are unavoidable, such as a significant increase in the radius

ratio contrast between the putative planet and evolved star, and stellar variability on

timescales similar to the durations being searched.

4.3.1 The Philosophy Behind TraSH-DUMP

The goal of our new code, TRAnsiting planets with Subgiant Hosts – Detection with an

Unbiased Matched filter Pipeline (TraSH-DUMP), is to increase the detection sensitivity

of a transit search by utilizing known stellar properties of the host star. At the heart of

TraSH-DUMP is a wavelet-based adaptive matched filter, based on the algorithm in Jenkins

(2002), but implemented with a customized set of transit templates for each light curve in

the planet-search sample. For each star, limb-darkening coefficients are determined from

the star’s surface gravity and effective temperature, and the transit durations searched

are determined from the star’s density, allowing us to include longer duration transit

templates in our search for planets orbiting low density stars (e.g., subgiants) and include

short duration templates in our search for planets orbiting high density stars (e.g., M

dwarfs).

In the process of customizing the transit templates used for each star, TraSH-DUMP

both maximizes the sensitivity to low S/N transits and inherently reduces the bias present

in most traditional transiting planet searches caused by template mismatch (Burke &

Catanzarite 2017b). Template mismatch is a second order effect that decreases the

187



detection efficiency for transit shapes that are different from the template used for the

search. In the Kepler detection pipeline, which is optimized for Sun-like stars, this effect

results in a nearly 20% drop in detection efficiency for planets orbiting cool dwarfs, and is

magnified in the presence of strong red noise (Burke & Catanzarite 2017b; Christiansen

2017; Christiansen et al. 2020). By correcting for this bias in the detection algorithm,

the detection efficiency is boosted and the completeness corrections needed to calculate

occurrence rates across multiple stellar populations from the TraSH-DUMP planet catalog

is simplified.

4.3.2 The TraSH-DUMP Algorithm

In this section we walk through the TraSH-DUMP algorithm, and explain our implemen-

tation of the wavelet-based adaptive matched filter in detail. We begin this section with

the signal detection theory upon which TraSH-DUMP is built, and then go into the details

of our implementation, including the light curve pre-processing steps and identification

of statistically significant signals. This process is highlighted in Figure 4.11

Theory Behind the Matched-Filter

The theory behind our approach is discussed in detail by Jenkins (2002), but we provide

an abridged discussion here for the convenience of the reader.

In a given time series with equally spaced cadences, x(n) (where n denotes the index

of the time sample), we wish to detect a transit signal, s(n), in the presence of Gaussian

white noise, w(n). In this case, if one presumes that x(n) = w(n)+s(n), a matched filter

can be constructed of the form,

l =
xTR−1s√
sTR−1s

=
(R−1/2x)T (R−1/2s)√

(R−1/2s)T (R−1/2s)
, (4.1)

where l is a detection metric, R is the auto-correlation matrix of w(n), and T is the
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transpose operator. In this case, l has the property that when no signal is present it is a

number randomly drawn from a Gaussian distribution with a mean of zero and variance

of one. In the case of a signal, however, l is randomly drawn from a Gaussian with

a variance of one and a mean equal to
√
sTR−1s, which is the strength of the signal.

However, R is not generally known beforehand, so there must exist some way to estimate

the noise autocorrelation matrix, R.

In the presence of stationary white noise, the detection metric can be calculated in

the frequency domain, where the noise autocorrelation matrix is estimated via a power

spectrum, P (ω), typically from a periodogram. In these cases, Equation 4.1 can be recast

as,

l =
x̃ · s̃
|s̃|

(4.2)

=

∫ π

−π

X(ω)S∗(ω)

P (ω)
dω

/√∫ π

−π

S(ω)S∗(ω)

P (ω)
dω (4.3)

where x̃ and s̃ are the whitened time-series and signal, respectively, X(ω) and S(ω) are the

Fourier transforms of the time-series and signal, respectively, and the asterisk denotes the

complex conjugate. In practice, this is not a computationally efficient approach because

this relationship implies the need for calculating a power spectrum at every single possible

transit location in the time series.

Thus, the need for a wavelet transform is born from the requirement that the time-

series must be whitened adaptively, i.e., that the detection algorithm takes into account

changes in the amplitude of the noise with respect to time. A wavelet is a natural choice

for this application as it is a representation of a waveform in both time and frequency,

and is analogous to a Fourier transform that can be localized in time. Within this

framework, an overcomplete discrete wavelet transform acts as a series of high-pass and

low-pass filters, which measure the frequency response of a time series in log2(N) = M

individual channels, where N is the number of data points, and each channel, indexed by
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i = 0, 1, 2, ...,M , represents the response of the time-series, x(n), to a specific filter. The

filter for band i is symmetric in log f and has a central frequency, fi = 2−(i+1/2) times

the Nyquist frequency, fnyquist, with a range of 2−(i+1) to 2−i times fnyquist, at each time,

n. Thus, the wavelet transform results in M individual time-series, which we denote as

x̂i(n), i = 0, 1, ..,M , with each band preserving the frequency structure of filter i.

Finally, applying the properties of the overcomplete wavelet transform and the matched

filter from Equation 4.2, we measure the detection statistic at each time, l(n), also known

as the Single Event Statistic (SES), by doubly-whitening the time-series from each band-

pass, and correlating the results with the overcomplete discrete wavelet transform of the

transit signal, ŝi(n),

SES(n) =
N(n)√
D(n)

(4.4)

=

∑M
i=1 2−min(i,M−1)[x̂i(n)σ−2

i (n)] ∗ ŝi(n)√∑M
i=1 2−min(i,M−1)σ−2

i (n) ∗ ŝ2
i (n)

, (4.5)

where σi(n) are the whitening coefficients in band i for each point in time, n, and ∗ is

a correlation operator. The whitening coefficients are estimated via a decimated median

absolute deviation (MAD) filter with a window of 8× the transit duration being searched.

Finally, we can take advantage of the periodic nature of the transit signal to combine

the SES at multiple different locations into a multiple event statistic (MES), which we use

as the detection metric for TraSH-DUMP. For a light curve with non-varying exposure time

texp, we test for transits at a given period, P , and time of mid-transit, t0 = n0 + j × texp,

where j = 0, 1, 2, ..., P/texp and n0 is the first point in the time-series, by binning the

SES into the Multiple Event Statistic (MES) via

MES(t0, P ) =
∑
nbA

N(n)

/√∑
nbA

D(n) , (4.6)

where A is the set of all cadences observed at times, t, that satisfy the condition |t−(t0 +
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m × P )| < texp/2 for some integer, m. In this way we define the MES as our detection

statistic.

Pre-Search Light Curve Processing

Before running TraSH-DUMP for a particular target, we remove bad data points flagged by

the Kepler mission, and then the light curve from each sector is detrended with a time-

windowed biweight kernel, implemented through the python package wotan (Hippke et al.

2019). The window for the biweight kernel is chosen to be at least 3× the maximum

transit duration searched, typically ∼3-4 days. This approach was shown to be the most

effective at preserving transit signals in the data while removing stellar variability. Each

sector is detrended individually, with the edges of the data gaps removed. The length

of the data removed near the edges are the data within half of the window used plus an

additional 0.5 days if the remaining edge data deviate by >2.5σ from the median of the

detrended time-series.

After detrending, we apply an algorithm to remove outliers. The algorithm works by

computing a running measure of the MAD and removes points outisde some threshold,

typically defined as 4-5× the MAD at that location. Positive flux outliers have two

deleterious results on planet detection. The first effect is that positive outliers may

contribute to overestimating the local noise profile and as a result artificially reduce

sensitivity to transiting events. This is not a huge concern in TraSH-DUMP due to our use

of the MAD to estimate the whitening coefficients of the time series. The second effect

is more consequential. The wavelet transform across a discontinuous outlier is likely

to lead to “ringing” behavior, similar to the ring-down caused by discontinuities in a

Fourier transform, which contaminates the power spectrum of the wavelet decomposition

at lower frequencies and can lead to false alarms or non-Gaussian MES distributions.

For removing negative flux outliers, a concern is removing data within a transit. To

avoid this, we only remove points identified as a negative outlier if there are no adjacent
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Fig. 4.11.— The processing stages before applying TraSH-DUMP to a Kepler light curve.
Here we show a light curve of the confirmed planet-hosting star Kepler-874 (Morton
et al. 2016) as a demonstration of the detection process. (a) The PDCSAP light curve of
Kepler-874, centered at zero, and with flux in units of parts per thousand (ppt). (b) The
detrended, gap-filled light curve of Kepler-874. Note the removal of positive flux outliers,
and the artificial data that are added via our gap-filling algorithm (gray points). (c)
The variance estimate at each time, taken as 1.4826× the running MAD. In this case the
window used to calculate the running MAD is 9× the estimated transit duration of 0.25
days. (d) The single event statistic (SES) calculated at each cadence. Note the peaks
at t ≈ 1234, 1314, 1354, and 1394 BKJD, corresponding to transits from Kepler-874b, a
confirmed Sub-Neptune (Rp = 3.6R⊕) with an orbital period of P ≈ 40 days.

outliers, and there are no other points within ±3σ of the putative negative outlier.

After removing outliers, a gap-filling algorithm is applied to the detrended time-series.

Long data gaps (>1 day) are filled using a linear combination of an autoregressive model

both before and after the gap in data. This approach preserves the photometric noise

profile on each side of the gap which helps to prevent False Alarms due to abrupt changes

in photometric noise (caused by, e.g., transitioning from one CCD to another). Shorter
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data gaps are filled by reflecting the flux before and after the gap (see Figure 4.11b).

The last adjustment made to the time-series before applying the matched filter is

to pad the time-series with an equal number of points at the beginning and end of the

light curve. The light curve is padded for two reasons. First, by padding the light curve

so that the resulting number of data points is a multiple of two, we can improve our

computational efficiency by applying the convolution in Equation 4.4 via a fast Fourier

transform. Second, the padding is required to have an adequate estimate for the whiten-

ing coefficients. The whitening coefficients are estimated via a running MAD filter, and

the padded ends of the time-series are used to prevent losses in efficiency (i.e., accuracy)

in estimating the central mean of the window used. Without the padding, the MAD

estimate suffers from few data points near the edges of the time-series and as a result can

be poorly constrained. The padding is implemented via an autoregressive model similar

to the model used for long data gaps. After the time series is detrended, the padded,

gap-filled light curve is ready for the application of the matched filter.

Calculation of Transit Templates and Application of the Matched

Filter

After processing the Kepler light curve, a series of transit templates are calculated with

which to perform the correlation. In this processing stage, we choose the grid of transit

durations applied from the properties of the star being searched and the temporal baseline

of the time-series. For our purposes, we require three transits (though the algorithm can

be applied to search for systems with two-transits as well), and so the maximum period

considered is half the temporal baseline, as three transits could theoretically occur at

exactly the beginning, middle, and end of the time series. We then choose the maximum

transit duration, tdur, max, searched via the expected duration for a circular transit with
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an impact parameter, b = 0:

tdur, max = 0.54 days

(
Pmax

365 days

)1/3(
ρ

ρ�

)−1/3

. (4.7)

The minimum transit duration searched is the larger of either 2.5× the exposure time, or

a duration of 1/8 the period corresponding to a circular orbit with a semi-major axis the

size of the stellar radius. The grid constructed between these two extremes is such that

tdur,n = (1.1)ntdur,min for n = 1, 2, ..., N for all tdur,n < tdur,max. We employ a non-linear

limb-darkening law to calculate the signal template. The limb-darkening coefficients for

the transit template are chosen from the closest match from Claret (2018) based on the

Teff and log g of the star being searched, and a transit template for each duration is

calculated via the python package batman (Kreidberg 2015). The template is calculated

for a transit with a depth of 100 ppm, the typical scatter in a Kepler light curve, so as

to optimize our search for low signal to noise transits

Finally, we calculate the overcomplete discrete wavelet transform for the padded,

gap-filled flux array and for each of the transit templates. The overcomplete wavelet

transform is implemented via the Pywavelets software package (Lee et al. 2019). From

each band in the overcomplete wavelet transform, we calculate whitening coefficients via

a running MAD filter (see Figure 4.11c), and the transit template is correlated with the

data array to calculate the SES via Equation 4.4 (see Figure 4.11d).

Period Search and Identification of Threshold-Crossing Events

After calculating the SES at each cadence, we replace the artificial points that fill gaps

in the time series and pad the array with N = 0. N(n) and D(n) are binned at widths of

tdur/3, and the period search is conducted using an implementation of the Fast Folding

Algorithm often used to search for pulsars (Staelin 1969). The Fast Folding Algorithm

ensures run times that scale as O(n log n) which results in a computationally tractable
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search without sacrificing period resolution. The range of periods searched for each

transit duration are determined by inverting Equation 4.7 to estimate the minimum

and maximum period for an implied durations of tdur/3 to 2 tdur. The maximum MES

is determined at each combination of period and transit duration, and, if above some

user-defined threshold, the period and time of mid transit are catalogued.

Each combination of period, transit duration, and time of mid transit above a user

defined threshold in MES represents a potential Threshold Crossing Event (TCE). After

completing the search over all transit durations and periods, each potential TCE is refined

by calculating the MES with the unbinned SES arrays. At this stage we also filter out

TCEs that are within 1% of a harmonic or subharmonic of a stronger period, as well

as TCEs with an average of <3 cadences at points within one transit duration of the

expected transit, and TCEs that are dominated by the SES from a single event in the

light curve.

Beginning from the potential TCE with the largest MES, we then mask out each

TCE and check whether the remaining events remain significant. In this way we test

for aliasing before promoting each potential TCE. If the MES of a potential TCE is not

significantly reduced after another TCE is masked and the time of the TCE remains

the same, we catalog the additional TCE in the light curve, and repeat this process. In

this way, we allow for multiple detections on each pass before running the search again.

TraSH-DUMP goes through up to three iterations total, masking all current TCEs and

recalculating SES(n), N(n), and D(n) between each iteration.

4.3.3 Comparison to TLS with Real Data

To test the sensitivity of TraSH-DUMP, we can compare it to other pipelines commonly

used by the scientific community. To this end, we compare TraSH-DUMP to the Transit

Least Squares algorithm (TLS; Hippke et al. 2019). TLS is a reformulation of Box

Least Squares (BLS; Kovács et al. 2002), which has been shown to increase detection
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sensitivity significantly compared to BLS by application of a realistic transit template

instead of a box-shaped transit. This is the same principle upon which TraSH-DUMP is

built; however, one difference between the two algorithms is that TraSH-DUMP takes the

effects of smearing caused by finite exposure times into account, while TLS does not.

Both the TLS and BLS algorithms use the Signal Detection Efficiency (SDE) as their

detection statistic. This parameter is analogous to the MES, if the MES were normalized

further at each period using the mean and variance of the MES distributions at differing

transit epochs and durations. Because our formulation makes it so that this is already

the case (at least for white noise), the SDE and MES should be somewhat comparable

statistics. However, one difference between our formulation of the MES and the TLS

formulation of the SDE is that TLS adds an additional step to constrain their detection

statistic better. What is classically referred to as the SDE, these authors call the “Raw

SDE”, and define their SDE as,

SDE(P ) =
SDEraw(P )− SDEtrend(P )

SDEscatter(P )
, (4.8)

where the trend (SDEtrend) is estimated via a median filtered periodogram and the scatter

(SDEscatter) is estimated via the point to point differences in the periodogram (as in Ofir

2014), respectively. This step typically boosts the signal to noise of a putative transiting

signal by reducing the noise ramp in the background TLS spectrum. While TraSH-DUMP

is not equipped to measure the significance of signals in the same way, such an exercise

may prove fruitful in estimating a modified version of the MES. However, in TraSH-DUMP’s

current iteration, the SDEraw is a more analogous statistic with which to compare against

TLS.

In comparing with TLS and BLS, we provide both the corrected and the raw SDE, as

the raw SDE is a more analogous comparison to the MES applied in TraSH-DUMP. While

these detection statistics are analogous, they do note confer a direct one to one mapping.
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Our intent in comparing these different pipelines to TraSH-DUMP is to show that we are

able to recover planets with similarly high efficiency, though a more thorough comparison

between each pipeline would be needed to determine in which areas of parameter space

one may prove more efficient than another.

To assess the performance of TraSH-DUMP on real data, we utilize K2 light curves,

which should have similar detection biases as the Kepler mission since they are in the

same bandpass and therefore transits have equivalent limb-darkening parameters. How-

ever searching planets on K2 light curves is more computationally efficient given the

shorter temporal baseline. For each of the systems analyzed in this section, light curves

were downloaded from the lightkurve python package (Lightkurve Collaboration et al.

2018), and systematics were removed via the Self Flat-Fielding method (SFF; Vanderburg

& Johnson 2014).

K2-3 (EPIC 201367065)

K2-3 is an early M dwarf (Teff = 3835 K, log g = 4.7, ρ? = 3.5ρ�) with three confirmed

small transiting planets (Crossfield et al. 2016), K2-3b (Rp = 2R⊕, P = 10 days), K2-3c

(Rp = 1.7R⊕, P = 24.6 days), and K2-3d (Rp = 1.6R⊕, P = 45.5 days). This star was

chosen for a comparison because it has well-defined and known transits, and because

the shape of the transits deviate significantly from that of a transiting planet around a

solar-type star.

The results of both TraSH-DUMP and TLS analyses of the processed K2-3 light curve

are shown in Figure 4.12. We uncover planets K2-3b and -c, though TraSH-DUMP confuses

the combination of one transit from K2-3d and systematic noise as a third candidate.

Such confusion stems from masking errors. Because TraSH-DUMP was run in its binning

mode, the transit epoch may have only centered to within tdur/3 on its initial pass.

To recover K2-3d more effectively will require a more precise centroiding algorithm to

accurately measure the transit epochs of K2-3b and -c to more effectively mask their
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transits, as well as improved systematics removal and identification in the processing

steps between masking transits and recalculating N(n) and D(n).

Running TLS twice, the second time with the largest periodic signal from the first

run (K2-3b) masked, TLS recovers both K2-3b and -c. For K2-3b, TraSH-DUMP recovers

the signal with MES = 36.8, and TLS recovers the signal with SDE = 31.4 (SDEraw

= 28.0). After masking the transit signal from K2-3b, TraSH-DUMP recovers the signal

from K2-3c with MES = 15.7, and TLS recovers the transiting signal with SDE = 24.1

(SDEraw = 16.2). Thus, comparing TLS against the TraSH-DUMP’s sensitivity, the two

detection algorithms tend to recover signals with similar significance.
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Fig. 4.12.— The results of the TraSH-DUMP search on K2-3, a star with three known,
small transiting planets. Top Panel: The detrended light curve of K2-3 with systematics
removed. The flux is in units of parts per thousand. Middle Row: From left to right,
the light curve phase-folded at the period of K2-3b, with the transit template that was
used for the search overplotted, the MES distribution at the planet period, and the SDE
distribution in period from the TLS search. The dashed blue and red lines in the middle
and right panels denote the detection metric from TraSH-DUMP and TLS, respectively.
The transit template in the left-most figure is not a fit to the data, it is merely the search
template adopted by TraSH-DUMP for K2-3, and scaled to a similar transit depth. Bottom
Row: The same as the middle row, but for K2-3c.
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K2-132 (EPIC 201367065)

K2-132 is a bright (Kp = 11.7) evolved star at the base of the red giant branch (Teff =

4840 K, log g = 3.3), with a transiting hot Jupiter (P = 9.18 days, Rp = 14.6R⊕) and

precise stellar constraints via asteroseismology (Grunblatt et al. 2017). As a result, K2-

132 is a particularly interesting target for testing our algorithms because it lies in a region

of parameter space where hot Jupiters may be severely affected by tides, and its light

curve shows high, correlated variability at shorter timescales that would not be removed

by our detrending process. The results of the TraSH-DUMP and TLS transit search are

shown in Figure 4.13.

The hot Jupiter, K2-132b, is recovered by both pipelines, and again with similar

sensitivity. Because there is only one known transiting planet, we do not iterate over

more periods for either TLS or TraSH-DUMP, though TraSH-DUMP did recover a False

Alarm due to the feature at ∼2784.5 BKJD which was missed by the SFF systematics

removal routine. TraSH-DUMP recovered the transiting planet at a significance of MES =

12.0, and TLS recovered the transiting planet at a significance of SDE = 15.1 (SDEraw

= 9.9). Therefore, we find once again that TraSH-DUMP is able to recover the transiting

planet with similar significance to TLS, at least when comparing the raw periodogram,

though TraSH-DUMP still recovers the signal at a lower significance than the smoothed,

systematics-corrected periodogram calculated by the TLS algorithm. Applying similar

post-processing analyses to a TraSH-DUMP-derived periodogram is likely to provide similar

improvements.

The post-processing step of smoothing the periodogram that is applied by TLS has

one disadvantage over TraSH-DUMP, which is that the SDE derived is global in nature. In

other words, an accurate assessment of the significance of a signal can only be made if

a wide range of periods are searched. While this is not an issue if searching for a single

planet, it can become a computational barrier when searching for multiple planets, as

the SDE would have to be recomputed for every period before testing the significance of
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Fig. 4.13.— The results of the TraSH-DUMP search on K2-132, a star at the base of the
RGB with a transiting hot Jupiter. Top Panel: The detrended light curve of K2-132
with systematics removed. The flux is in units of parts per thousand. There are regions
of the light curve where the systematics removal is slightly overfit, which has caused a
deformation in the transit shape. Bottom Row: From left to right, the light curve phase-
folded at the period of K2-b, with the transit template used by the TraSH-DUMP algorithm
overlaid in blue, the MES distribution at the planet period, and the TLS periodogram.
The dashed blue and red lines in the middle and right panels denote the detection metric
from TraSH-DUMP and TLS, respectively. The transit template in the left-most figure is
not a fit to the data, it is merely the search template adopted by TraSH-DUMP for K2-132,
and scaled to a similar transit depth.

a second putative signal after removing the most significant signal.

4.4 Discussion

4.4.1 Expected Gain in Detection Efficiency from CaTShIP

While deriving fundamental stellar parameters for stars in the Kepler field is useful for

a plethora of science cases, the question remains, what is the expected increase in detec-

tion efficiency gained from incorporating CaTShIP parameters into a TraSH-DUMP planet

search? This is a somewhat complicated question, because while template mismatch

does decrease the sensitivity of the Kepler pipeline for stars dissimilar to the Sun, it

doesn’t seem to impact light curves with little correlated noise, as evidenced by running
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Kepler ’s TPS on light curves with simulated transits injected (Christiansen et al. 2020).

For light curves dominated by red noise, the sensitivity of the Kepler transiting planet

search module drops by &10%. Subdividing the red noise-dominated stars into their

respective temperatures shows an additional drop of ∼5-10% in the sensitivity for stars

that differ from the sun by &1000 K (Christiansen et al. 2020). This additional drop may

be explained by differing transit shapes. In the case of white noise, the adaptive power

spectrum calculated by Kepler ’s Transiting Planet Search module is only contaminated

by noise at frequencies near the Nyquist sampling rate. However, for stars with strong

correlated noise, the power spectrum is contaminated at lower frequencies, so having a

more precise estimate of the transit shape (and therefore the power spectrum) seems

to increase the transit detection efficiency, all other variables being equal (Christiansen

et al. 2020).

At face value, these results seem to suggest that adopting the limb-darkening pa-

rameters from the CaTShIP may allow one to avoid similar drops in detection efficiency,

but this is likely only the case in particular areas of parameter space. For instance,

due to the finite exposure time of the Kepler photometer (∼30 minutes), the expected

transit shape will be “smeared”, erasing high frequency structure in the transit shape

which effectively eliminates any unique structure at transit ingress and egress dictated by

limb-darkening parameters. However, the lower-frequency structure of the transit shape

dictated by limb-darkening, such as the “U-shape” formed between ingress and egress,

may still be preserved at finite exposure times. Therefore, what we expect to find is

that adopting limb-darkening parameters from the CaTShIP should significantly increase

the sensitivity of TraSH-DUMP (and TLS, for the same reasons) compared to adopting

a box-shaped template, but it is only likely to significantly increase sensitivity for long

duration (tdur � texp) transits compared to adopting a global transit template (i.e., using

the same limb-darkening parameters for each star, as with the Kepler mission).

Assuming similar properties to the Kepler ’s TPS, incorporating stellar parameters
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from the CaTShIP into the transit templates used to search for stars should provide as

much as a ∼10% increase in sensitivity overall, with the largest boost in the face of strong

correlated noise and for long transit durations. While an enhanced sensitivity of ∼10%

may not represent a paradigm-shifting difference, for the Kepler field it may translate to

∼100+ new planet candidates.

4.4.2 Additional Challenges for Transit-Search Surveys

of Evolved Hosts

While we’ve discussed the effects of limb-darkening parameters and red noise on the de-

tectability of transiting planets, these topics have all been discussed in the context of light

curves with systematic trends removed. The removal of such instrumental artifacts can

be non-trivial, and is usually performed by identifying common patterns within groups of

nearby stars and removing those systematics (Smith et al. 2012). Instrumental system-

atics such as these typically act on timescales of a few days, which is a similar timescale

to that of transit durations one might expect from a planet orbiting an evolved host. Be-

cause of this, transiting signals with long durations are susceptible to being corrupted by

common modes for removing systematic trends. One must ensure that timescales over

which corrections are applied are longer than any expected transit duration. It’s not

clear to what extent Kepler ’s systematics corrections have affected long duration transit

signals in the data, but such a consideration is important.

Another complication that will naturally arise in the search for long-duration transit

signals is a likely increase in the False Alarm rate. Because stellar activity often acts

on timescales of a few days, stellar activity is likely to contaminate any planet catalog

searching for long duration transits. Mitigating such contaminants may prove a difficult

task. One possible strategy that may be useful for an occurrence rate measurement is to

jointly model the distribution of transiting planets with the false alarm rate. While any

one transiting candidate may not be a reliable detection, information can still be gleaned
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from a large enough sample of unreliable candidates.

Employing this strategy requires a precise understanding of the false alarm rate.

Such measurements have been made by the Kepler team by running Kepler ’s TPS on

inverted and scrambled light curves (Thompson et al. 2018). Inverted light curves are

used to invert any potential transit signals in the data, so that no such signals should

be detected, and scrambled light curves are used to dephase any periodic signals so that

any false alarm detections must be due to spurious events, rather than astrophysical or

instrumental signals.

In conclusion, the search for transiting planets around evolved stars offers several new

challenges, but deriving independent constraints on the occurrence of TraSH is key to

understanding the end stages of a planet’s lifetime.

4.5 Conclusions

Stellar evolution is expected to play a dramatic role in disrupting and re-sculpting plan-

etary architectures, through effects such as increased tides and increased stellar irradia-

tion. However, the precise understanding needed to measure the onset of these effects is

lacking, with current literature suggesting that changes in planetary architecture driven

by stellar evolution occur as early as the MS (Hamer & Schlaufman 2019), while other

studies suggest that such effects may not play a role until well after the host star begins

its ascent up the RGB (Grunblatt et al. 2018). To understand the onset of planetary

disruption, detailed planet demographics are needed across a wide range of stellar host

masses, evolutionary states, and planet orbital separations. Particularly key to this un-

derstanding is measuring the demographics of planets with subgiant host stars because

of the precise age information available via isochrone modeling.

Because the primary goal of the Kepler mission was to understand the demographics

of Earth-like planets around Sun-like stars, detailed understanding of the completeness
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and reliability of planet candidates orbiting subgiant and RGB stars requires a targeted

transiting planet search across all phases of stellar evolution. In this work we lay the

foundation for performing such a study for the stars in the Kepler field. In particular we

make two important advances in regard to this goal; we (1) homogeneously infer ages,

masses, radii, and other fundamental parameters for ∼163,000 stars in the Kepler field,

improving upon the literature by incorporating uniform photometric and spectroscopic

metallicities for each star in the sample, and (2) introduce a new detection algorithm,

TraSH-DUMP (TRAnsiting planets with Subgiant Hosts – Detection with an Unbiased

Matched-filter Pipeline), designed to improve sensitivity and avoid second-order detection

biases driven by transit template mismatch in correlated noise.

Our catalog of stellar parameters, the CaTShIP, includes precisely measured radii,

(σR? ≈ 2.7%), masses (σM? ≈ 6%), and ages across the main sequence accurate to within

a factor of ∼2, and in agreement with asteroseismic ages to within ∼30%. In particular,

we demonstrate that we are able to distinguish the evolutionary state of high-mass stars

(& 1.2M�) on the Zero-Age, Intermediate-Age, and Terminal-Age main sequence as a

function of mass. This precision results in age uncertainties as low as ∼10-100 Myr and

provides the precision in evolutionary state needed to infer the interior structure of such

stars – a vital component for predictions of orbital decay via evolving equilibrium and

dynamical tidal interactions.

In detailing the methodology for TraSH-DUMP, we compare its sensitivity against

TLS, a state-of-the-art open-source detection algorithm, demonstrating similar sensi-

tivity while providing a computational load that scales well for stars with long temporal

baselines typical of the Kepler field, and with minimal loss in period resolution. In par-

ticular, we expect our pipeline to provide an improvement in the face of correlated red

noise, such as that caused by stellar variability, and for long period, long duration sig-

nals, where Kepler ’s TPS module displayed decreased sensitivity in a parameter space

occupied by putative planets of interest for the goals of this work.
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The union of the CaTShIP and TraSH-DUMP provide the necessary tools to time the

onset of stellar evolution driven planetary engulfment, migration, and disruption.
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Chapter 5

Summary, Future Directions, and

Unanswered Questions

The Kepler mission has provided the means necessary for the ensemble study of hundreds

to thousands of exoplanets, allowing the first real census estimate of planets ranging from

small, terrestrial planets about the size of the Earth to large planets up to twice the size of

Jupiter. Despite the incredible diversity of planets found, from the surprising abundance

of Super-Earths, a planet type not found in our own Solar system, to the very existence

of hot Jupiters, which disrupted astronomers’ understanding of planet formation, one

constant has been the role of stars in shaping their own planetary systems. The properties

of such systems cannot be decoupled from the very stars they orbit, and as such a proper

understanding of planetary systems requires a similarly rigid understanding of the star

around which they form and are found.

In this thesis we’ve explored the connection inherent between planetary systems and

their host stars via the joint ensemble study of hundreds of exoplanets discovered by

the Kepler mission with thoroughly characterized host stars via the APOGEE survey.

Throughout this work we’ve stressed the importance of well understood stellar knowledge,

and shown how measuring stellar properties leads to a better, more robust understanding
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of exoplanet populations.

5.1 The Role of Stellar Chemistry in Planet

Demographics

More specifically, in our quest to understand the planet populations, we’ve highlighted

stellar chemistry and composition as a probe of planet-forming environments, finding

clear evidence that stellar chemistry facilitates not only the growth of large planets, but

the formation, evolution, and migration of planets at all sizes and orbital separations

probed by the Kepler survey. More specifically:

• In Chapter 2, we find a connection between the number density of iron atoms in the

atmospheres of stars and the distance (i.e. orbital period) with which planets orbit

them. This connection is seemingly present for planets of all sizes. We characterized

this correlation, inferring a transition region at a period of P ∼ 8 days, which

corresponds to orbital separations of 0.07 au, ∼5-6 times closer than the average

distance of Mercury to the Sun, beyond which the properties of planet host stars

are significantly different.

• We hypothesized that the transition region at P ∼ 8 days (∼0.07 au) represents

a threshold with either planet formation or migration, where planets are not able

to form closer in, or are stopped from migrating closer than this distance. How-

ever, metal-rich systems seem to control this stopping radius, possibly through

the depletion/enhancement of planet-forming material or through the presence of

planetesimals or asteroids that may drive planetary migration.

• This critical orbital separation also seems to play a role in the size of planets,

as planets interior to this critical distance are significantly smaller despite having

metal-rich hosts, and planets at further orbital distances are larger in radius, despite
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having metal-poor hosts. This is an indication that something other than core

accretion is shaping the distribution of small planets, because in the core-accretion

paradigm close-in planets should be larger due to the enhanced host star metallicity

and as a result, implied accretion rate. We interpret this apparent distinction as

a signature of photoevaporation, where close-in planets with metal-rich hosts have

been stripped of their atmospheres and planets with larger orbital separations are

more likely to retain their atmospheres. Thus, because stellar metallicity seems

to play an important role in shaping the orbital distance of planets of all sizes, it

also shapes the distribution of planet radii via not only enhanced accretion, but by

enhanced photoevaporation.

• In addition to our interpretation that photoevaporation has shaped the distribution

of close-in planets, we also take one step further in comparing our results to theory,

and interpret that all the planets that are close-in have rocky cores. Were that

not the case, and the cores of such planets were drawn from multiple different

compositions, we would find a gradient of planet radii, which doesn’t seem to be

the case.

• In Chapter 3, we apply a more rigorous statistical analysis to understand not only

the metallicity of planet hosting stars in the APOGEE survey, but the overall

enhancement of ten additional chemical elements. By carefully controlling for biases

inherent in the Kepler detection pipeline and the APOGEE follow-up survey we

are able to make the first ever inference about the population of small planets and

their dependence on detailed stellar chemistry, free of detection bias.

• We find that the occurrence of small planets is highly correlated with the enhance-

ment of any element at short orbital distances. For instance, a change in the stellar

composition of any one element as small as 0.1 dex correlates with an increase in

the number of planets by anywhere from ∼40-100%.
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Based on the conglomeration of all of these results, we’ve compiled convincing evi-

dence that stellar chemistry is a strong factor in shaping the distribution of close-in (.1

au) exoplanets. And, these correlations are an important indicator to consider when

making any kind of inference about the distribution of planet types, sizes, and orbital

properties.

5.2 Stellar Age-Dating and Long-term

Planetary Evolution

One particularly exciting opportunity is to couple studies of planet demographics with

inferences of stellar age. Such inferences have only recently become available thanks

to the large scale astrometric survey, Gaia. In this thesis, we build the foundation

to understand the connection between stellar evolution and the long-term evolution of

planetary systems. In particular:

• In Chapter 3, we make a concerted effort to understand the biases that are likely to

be present in any statistical study of the planet population combined with stellar

ages. In particular, we show that small differences in metallicity, even as small as

0.05 dex, can lead to significant biases even for small planets, due to the strong cor-

relation between planet occurrence and the enhancement of metals. This motivates

the need for large-scale spectroscopic surveys to understand planet demographics

more fully.

• Based on the biases present in stellar ages, we call into question the causation of

correlations between planet properties with metallicity, and provide an alternative

hypothesize that some such correlations may actually be driven by age, rather

than the enhancement of metals and planet forming material which is the classical

interpretation of such trends.
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• We also make an argument for measuring planet occurrence rates for stars in open

clusters as a way to make inferences about changes in the planet population with

age, and provide estimates of the planet occurrence rates in open clusters as a

means of facilitating such studies.

• Based on the discussion and results in Chapter 3, in Chapter 4 we motivate the

need for an independent planet search in the Kepler field to better understand long-

term planetary evolution, particularly with regard to tidal forces. We provide the

means for performing such a search, by measuring fundamental stellar properties,

including age, for ∼163,000 stars in the Kepler field and developing an independent

transit-search algorithm, the TRAnsiting planets with Subgiant Hosts – Detection

with an Unbiased Matched filter Pipeline (TraSH-DUMP), to detect planets in the

light curves of well-characterized stars.

• In setting the foundation for a large-scale search for TRAnsiting planets with Sub-

giant Hosts (TraSH), we create a catalog of ∼163,000 well characterized stars in the

Kepler field. We demonstrate that the precision and accuracy of the stellar prop-

erties in this catalog, the CAtolog of Transit Search Input Paramters (CaTShIP),

are consistent with other methodologies, and our improvements in precision derive

particularly from our use of a single scale for measuring spectroscopic and photo-

metric metallicities, once again emphasizing the need for demographic studies to

consider such properties.

• Importantly, we demonstrate the precision in stellar parameters needed to resolve

multiple stages of evolution on and beyond the main sequence for higher mass stars

(&1.2M�), a critical component for inferring the interior structure of such stars

and understanding predictions from tidal decay theory.

• Finally, we demonstrate the sensitivity of TraSH-DUMP by comparing it to the cur-

rent state of the art transit detection algorithms and show that it is competitive
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with such algorithms and able to detect transiting planets with similar or greater

significance, while still providing a computationally feasible search for light curves

with long temporal baselines. These properties of TraSH-DUMP are considered in

addition to searching a more robust area of parameter space than traditional planet

search algorithms such as that used by the Kepler team.

From these foundations, we set the stage for a new initiative aimed at obtaining

a complete understanding of the evolution of planetary systems, in a statistical sense.

While it is difficult to measure any changes in the demographics of planets due to the

timescales of such evolution, the era of precision astrophysics via Gaia is setting the

stage for inferring stellar ages from which we can compare the evolving demographics of

exoplanets with age.

5.3 Future Work

5.3.1 Targeted Searches for New Planet Populations in

Different Parts of the Galaxy

One of the primary takeaways from Chapter 3 was the difficulty in understanding the

role of specific chemical elements in shaping the planetary distribution function due to

degeneracies in the Kepler field. These degeneracies arise from the fact that the stars in

Kepler are dominated by members of the thin disk. As a result, they all share a similar

star formation history, and so the enhancement of any one element is well correlated with

the enhancement of all other elements. As a result it is difficult to isolate the effects of

specific elements. The solution for breaking these degeneracies is searching for planets

in different parts of the Galaxy. It has been shown that the location of stars in the

Milky Way vary compositionally due to effects such as radial migration and differences

in star formation history (see Figure 5.1). Therefore, in order to probe the populations of
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planets that have host stars with differing abundance patterns, a targeted search among

such stars is needed.

The primary challenges in constructing a sample of such planet-search stars is the

degree of difficulty in detecting planets orbiting such stars. Due to the photometric

precision needed for transit surveys, or the high-resolution spectra needed for RV surveys,

planet searches are typically limited to bright stars. Kepler for instance, was limited to

stars brighter than Kp ∼ 16 (Batalha et al. 2010), which for a Sun-like star corresponds

to a distance of ∼1 kpc.

However, to observe a large sample of stars with fundamentally different chemical

signatures than those in the Solar neighborhood, one would need to perform a targeted

planet search for a sample of stars &1-2 kpc from the Solar neighborhood (see Figure 5.1),

which would result in a dim sample. As a result, current transit surveys such as TESS

(Ricker et al. 2014), K2, and Kepler are unlikely to uncover a significant sample of such

planets. While such a planet search would be difficult for a transit survey, a dedicated RV

survey should be possible with the next generation of precision Doppler spectrographs on

the next generation of large telescopes (e.g., G-CLEF – the GMT Chicago Large Earth

Finder; Szentgyorgyi et al. 2012).

5.3.2 The Search for TraSH in Kepler and TESS

In Chapter 4 we laid the foundation for a targeted search and planet demographics study

of TRAnsiting planets with Subgiant Hosts (TraSH) in the Kepler field. While the

Kepler field offers an opportunity to understand TraSH at all orbital separations, a more

statistically significant sample may be gleaned from TESS. To understand the role of

tides and the destruction of close-in planets with stellar evolution, a large, statistically

significant population of stars with precisely measured ages and masses, across several

evolutionary phases, and with a large number of detected planets, is needed. TESS may

be the best opportunity to make such a measurement, as it is observing &80 million stars
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Fig. 5.1.— The joint metallicity and alpha abundance distribution functions as a function
of location in the Galaxy as derived with APOGEE data from Hayden et al. (2015). The
chemical signatures of stars in the Solar neighborhood (7 < R < 9 kpc and 0 < |z| <
1 kpc) are predominantly from the thin disk, meaning that all elements more or less
correlate with one another. To gain a population of stars with differing chemistry, one
must observe stars in the thick disk, which becomes the dominant population at |z| & 1-2
kpc.

bright enough (TESS mag . 15) to detect large planets, an increase of over two orders

of magnitude compared to the number of stars observed in Kepler or K2.

An additional advantage with TESS target stars is the higher cadence (∼2-10 minutes,

compared to ∼30 minutes with Kepler) with which observations are taken. The high

cadence allows for the asteroseismic characterization of a much larger sample of stars than

in Kepler. Combining seismic parameters with Gaia parallaxes and precision photometry,

we should be able to infer ages for subgiant stars with precisions of ∼10% (see Figure 5.2),

even without metallicity information. While Kepler offers the opportunity to measure

precise ages (as evidenced in Chapter 4), the asteroseismic sample from Kepler may be

more biased and as a result may not offer quite the same uniformity in characterization as

the TESS sample. However, while TESS offers the opportunity to study a vast number

of stars, the detailed understanding from the Kepler mission is still needed to probe a

larger range of orbital separations, as TESS is unlikely to discover as many planets at

longer periods.
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Fig. 5.2.— Stellar parameters derived from isofit for confirmed planet-hosting stars
TOI-257 and TOI-197, assuming a Milky Way thin disk metallicity prior. With astero-
seismic constraints, ages were inferred with precisions of ∼10% and ∼15% for TOI-257
and TOI-197, respectively. This is a substantial increase in precision from ∼50% as
inferred without asteroseismic constraints. Left: The effective temperatures and radii
of TOI-257 and TOI-197. The solid lines show stellar evolutionary tracks (Choi et al.
2016) ranging from 0.8-1.7 M�. The dashed lines show the Zero-Age, Intermediate-Age,
and Terminal-Age Main Sequence. Center: The mass and age of TOI-257, a star near
the terminal age main sequence (Addison et al. 2020). The contours show the posterior
distribution in age and mass with asteroseismic constraints (grayscale), and without as-
teroseismic constraints (red). Right: Same as (center), but for TOI-197, a star near the
base of the Red Giant Branch (Huber et al. 2019).

5.4 Key Questions Still Unanswered

While our understanding of planet formation and the characteristics of exoplanets in

our Galaxy has continued to grow substantially over the last decade, there are still key

questions driving this field forward. Among the most relevant questions pertaining to this

work, can hot Jupiters survive the main sequence? Due to the uncertainty in inferring

stellar ages, this is by no means a settled debate. The difficulty in understanding the

complexity of tidal forces and their effects on planets derives not only from observations,

but also in the complex nature of the physics itself.

Does the chemical composition of planetesimals dictate planet formation efficiency?

And can the chemical composition of planetesimals truly be estimated via host star
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abundances? While our work in Chapter 3 would (naively) suggest that the enhancement

of any element contributes to the occurrence of planets equally, it is likely that our sample

was too biased to truly probe such a question in the first place.

What is the minimum metal content needed to form a planet? We’ve probed planet

formation for stars as low as [Fe/H] ≈ −0.5, which still form terrestrial planets very

efficiently. However, there are stars with metallicities as low as [Fe/H] ≈ −7 (Nordlander

et al. 2017), though we don’t even know of planet host stars with metallicities below

[Fe/H] ≈ −0.5. Can more extreme low-metallicity stars host or form planets at all? At

what point are there no longer enough metals to form planets? These questions are still

driving the field forward, and motivate the search for exoplanets in wildly varying regions

of the Galaxy.
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L., Silva, A. F., Smart, R. L., Smith, K. W., Solano, E., Solitro, F., Sordo, R., Soria

Nieto, S., Souchay, J., Spagna, A., Spoto, F., Stampa, U., Steele, I. A., Steidelmüller,

H., Stephenson, C. A., Stoev, H., Suess, F. F., Surdej, J., Szabados, L., Szegedi-

Elek, E., Tapiador, D., Taris, F., Tauran, G., Taylor, M. B., Teixeira, R., Terrett,

D., Teyssandier, P., Thuillot, W., Titarenko, A., Torra Clotet, F., Turon, C., Ulla,

A., Utrilla, E., Uzzi, S., Vaillant, M., Valentini, G., Valette, V., van Elteren, A., Van

Hemelryck, E., Vaschetto, M., Vecchiato, A., Veljanoski, J., Viala, Y., Vicente, D.,

Vogt, S., von Essen, C., Voss, H., Votruba, V., Voutsinas, S., Walmsley, G., Weiler,

M., Wertz, O., Wevers, T., Wyrzykowski,  L., Yoldas, A., Žerjal, M., Ziaeepour, H.,
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J., Gao, P., Gazeas, K., Giddens, F., Hall, O. J., Hekker, S., Ireland , M. J., Latouf,

N., LeBrun, D., Levine, A. M., Matzko, W., Natinsky, E., Page, E., Plavchan, P.,

Mansouri-Samani, M., McCauliff, S., Mullally, S. E., Orenstein, B., Garcia Soto, A.,

Paegert, M., van Saders, J. L., Schnaible, C., Soderblom, D. R., Szabó, R., Tanner,

A., Tinney, C. G., Teske, J., Thomas, A., Trampedach, R., Wright, D., Yuan, T. T.,

& Zohrabi, F. 2019, AJ, 157, 245

246



Huber, D., Chaplin, W. J., Christensen-Dalsgaard, J., Gilliland, R. L., Kjeldsen, H.,

Buchhave, L. A., Fischer, D. A., Lissauer, J. J., Rowe, J. F., Sanchis-Ojeda, R., Basu,

S., Handberg, R., Hekker, S., Howard, A. W., Isaacson, H., Karoff, C., Latham, D. W.,

Lund, M. N., Lundkvist, M., Marcy, G. W., Miglio, A., Silva Aguirre, V., Stello, D.,

Arentoft, T., Barclay, T., Bedding, T. R., Burke, C. J., Christiansen, J. L., Elsworth,

Y. P., Haas, M. R., Kawaler, S. D., Metcalfe, T. S., Mullally, F., & Thompson, S. E.

2013, ApJ, 767, 127

Huber, D., Zinn, J., Bojsen-Hansen, M., Pinsonneault, M., Sahlholdt, C., Serenelli, A.,

Silva Aguirre, V., Stassun, K., Stello, D., Tayar, J., Bastien, F., Bedding, T. R.,

Buchhave, L. A., Chaplin, W. J., Davies, G. R., Garćıa, R. A., Latham, D. W.,
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Sobeck, J., Garćıa Pérez, A. E., Gómez Maqueo Chew, Y., & Stassun, K. 2017, ApJ,

835, 239

Souto, D., Cunha, K., Smith, V. V., Allende Prieto, C., Garćıa-Hernández, D. A., Pin-

sonneault, M., Holzer, P., Frinchaboy, P., Holtzman, J., Johnson, J. A., Jönsson, H.,

Majewski, S. R., Shetrone, M., Sobeck, J., Stringfellow, G., Teske, J., Zamora, O., Za-

sowski, G., Carrera, R., Stassun, K., Fernandez-Trincado, J. G., Villanova, S., Minniti,

D., & Santana, F. 2018, ApJ, 857, 14

259



Spearman, C. 1904, The American Journal of Psychology, 15, 72

Staelin, D. H. 1969, IEEE Proceedings, 57, 724

Stassun, K. G., Mathieu, R. D., Mazeh, T., & Vrba, F. J. 1999, AJ, 117, 2941

Stefansson, G., Mahadevan, S., Hebb, L., Wisniewski, J., Huehnerhoff, J., Morris, B.,

Halverson, S., Zhao, M., Wright, J., O’rourke, J., Knutson, H., Hawley, S., Kanodia,

S., Li, Y., Hagen, L. M. Z., Liu, L. J., Beatty, T., Bender, C., Robertson, P., Dembicky,

J., Gray, C., Ketzeback, W., McMillan, R., & Rudyk, T. 2017, ApJ, 848, 9

Sun, M., Arras, P., Weinberg, N. N., Troup, N. W., & Majewski, S. R. 2018, MNRAS,

481, 4077

Szentgyorgyi, A., Frebel, A., Furesz, G., Hertz, E., Norton, T., Bean, J., Bergner, H.,

Crane, J., Evans, J., Evans, I., Gauron, T., Jordán, A., Park, S., Uomoto, A., Barnes,

S., Davis, W., Eisenhower, M., Epps, H., Guzman, D., McCracken, K., Ordway, M.,

Plummer, D., Podgorski, W., & Weaver, D. 2012, in Ground-based and Airborne

Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami,

Vol. 8446, International Society for Optics and Photonics (SPIE), 496 – 510

Teske, J. K., Ghezzi, L., Cunha, K., Smith, V. V., Schuler, S. C., & Bergemann, M. 2015,

ApJ, 801, L10

Teske, J. K., Khanal, S., & Ramı́rez, I. 2016a, ApJ, 819, 19

Teske, J. K., Shectman, S. A., Vogt, S. S., Dı́az, M., Butler, R. P., Crane, J. D., Thomp-

son, I. B., & Arriagada, P. 2016b, AJ, 152, 167

Thomas, H. C. 1967, ZAp, 67, 420

Thompson, S. E., Coughlin, J. L., Hoffman, K., Mullally, F., Christiansen, J. L., Burke,

C. J., Bryson, S., Batalha, N., Haas, M. R., Catanzarite, J., Rowe, J. F., Barentsen,

260



G., Caldwell, D. A., Clarke, B. D., Jenkins, J. M., Li, J., Latham, D. W., Lissauer,

J. J., Mathur, S., Morris, R. L., Seader, S. E., Smith, J. C., Klaus, T. C., Twicken,

J. D., Van Cleve, J. E., Wohler, B., Akeson, R., Ciardi, D. R., Cochran, W. D., Henze,
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