
1

Developing An Extendible Framework For Continuous Integration In Embedded Systems

Uncovering Attitudes And Experience Regarding Continous Integration From Embedded
Engineers

A Thesis Prospectus

In STS 4500
Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By
Peter Tessier

November 8, 2024

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISORS

Rider Foley, Department of Engineering and Society

Charles Reiss, Department of Computer Science

2

INTRODUCTION

Testing is one of the most critical components of software development. Improper testing

has caused loss of a space probe, loss of aircraft, collapse of bridges, and false nuclear alerts

(Unwin, C., & Ould, M. A., 1986). Consumer trust in the product is also at stake (Selinger,

2021). Historically, software testing was done manually and was more of an after-thought. Such

manual testing came with many problems: time consuming, requires a big human investment,

prone to human error, and non-programmable, to name a few (Sharma, 2014). These problems

can be alleviated with automated tests, performed via a script and with rapid and frequent results.

Recognizing its benefits, the industry has made a huge push for test automation in recent years,

with the global test automation market expected to reach $49.9 Billion by 2025, a 214% increase

from 2019 (Testlio, 2024).

With these automated tests in place, it becomes possible to practice Continuous

Integration (CI), where changes are made incrementally and immediately integrated into the

main product. Such a practice considerably speeds up the release management and delivery

process, which historically involved the Operations team to perform the burdensome work of

integrating and deploying the long-disparate software after the developers finished their features

(Syed, 2018). The benefits of CI have been long recognized by the industry, with CI adoption

increasing from 16% to over 50% in 2020 (Testlio, 2024).

3

Figure 1. Continuous Integration Environment (Source: Syed, 2018)

While CI can be more effective than manual testing and deployment, it comes with its

own set of challenges, especially in the realm of embedded software, which runs on often-

specialized hardware instead of the cloud or general computers. Wind River Principal

Technologist Woolley (2021) lists several such challenges:

 It is tightly coupled to specific hardware.

 It is written in lower-level languages such as C/C++.

 It interacts directly with hardware (e.g., peripherals).

 It requires specialized development and management tools.

 It tends to have a long lifecycle and stateful execution.

 It faces an increasing diversity of end hardware and software deployed in the field.

Authors Bajer, Szlagor, & Wrzesniak, (2015) add how it is more expensive to duplicate

the hardware, causing a limitation on how many tests can be executed in parallel. They also

explain the greater number of steps involved in deployment, often requiring physical connection

4

via USB or other cables. Despite these difficulties, both parties still emphasize the need for CI in

embedded devices.

Beyond technical challenges, the success of automated testing also hinges on the

development team's mindset. For CI to be effective, developers need to buy into the idea of

integrating and testing their code frequently. In opposition to this, a 2024 survey indicated that

one third of developers reported new test automation as “unfavorable” instead of “promising”,

indicating a significant level of pushback (Dilmegani, 2024). For embedded engineers, the

difficulty to adopt CI is only exacerbated by the inherently greater complexity in deploying to

embedded devices.

This paper then addresses the question: What can be done to help embedded software

engineers adopt Continuous Integration? This question is viewed from two angles. From the

technical angle, the author attempts to alleviate the higher barrier to entry by designing a test

automation system that can be extended to a variety of common embedded devices. The hope is

that such a system will provide a welcome framework for automating deployment and testing,

making it easier than starting from scratch. From the STS angle, the plan is to carry out

interviews and a survey to get feedback straight from developers as to their attitude toward and

experience with CI. The responses from embedded engineers with then be compared to responses

from other types of software developers to see what solutions can be tailored to this group.

Ultimately, the goal is to bring embedded software teams closer to a streamlined process of

testing their products so that software integrity can be maintained.

DEVELOPING A TOOL FOR EMBEDDED CI

5

One of the largest barriers to adopting CI is finding the right tools to perform the

necessary automation; in fact, 26% of companies in a 2024 survey indicated it as the biggest

challenge they face (Dilmegani, 2024). This technical project seeks to alleviate this challenge for

embedded engineers by producing a reusable, automated testing library of code that handles the

majority of repetitive work for them, leaving the developer to focus on implementing the parts

specific to their device.

In parallel to developing this library, a test automation system that depends on the library

was developed for a specific embedded device with the codename “gouda”. The benefit of this

strategy was that it exposed exactly what features would be useful in such a library because they

were being used for that particular system. Essentially, any functionality that could be reused

across multiple devices was factored into its own section, separate from device-specific

functionality. As a bonus, the gouda-specific implementation could also be used as a working

example for anyone learning to use the library. Below, the steps of the automation process are

outlined.

First, the user navigates to the online server Jenkins (the most widely-used CI tool with

46.73% market share; Jenkins, 2024; Smart, 2011). Every new feature, after being “built” by

Jenkins, is associated with a build number, which the user selects for each component.

Components include the Root File System and Kernel, which are standard in embedded Linux

(Ronsse, 2017).

After selecting the build number for each component, Jenkins connects to a raspberry pi

(or pi for short). This deceptively powerful mini-computer was a natural choice as the “central

intelligence” of the automation since it has the specs to execute all the logic necessary, as well as

hardware peripherals to be able to deploy onto the physically connected gouda (Molloy, 2016).

6

The pi finds and downloads the specified components from Artifactory, an industry-standard

server for storing binaries (Syed, 2018). During this stage, it implements a caching mechanism to

speed the process by as much as 30 times, since it avoids re-downloading recently downloaded

files, a common scenario.

Once it has the binaries (the “builds”) downloaded, it begins to transfer this data via USB

to the gouda’s flash memory in a process known as “flashing” (Pravisani). Once the builds are

loaded into the gouda, the pi must change the “bootmode” by simulating movement of a jumper.

It accomplishes this by opening and closing the necessary circuits via General Purpose

Input/Output (GPIO) control, another feature the researcher fleshed out.

Finally, a last GPIO powers on the gouda, which then boots up with the new components.

Once it has booted up, the full suite of PyTest-powered automated tests are run against it, which

tests for things like file integrity and driver performance.

 The hope of this technical project is that it alleviates embedded engineers’ burden of

developing a implementing CI pipeline from scratch. It does this by providing a library that

abstracts common automation tasks (like downloading artifacts, GPIO control, and flashing

sequences), reducing the time and effort needed to set up a CI pipeline. It supports this library

with documentation and the example gouda implementation, serving as both a guide and a

foundation for further customization.

 While this technical project seeks to remedy the burden of creating an embedded CI

pipeline from scratch, the STS approach looks deeper into the social reasons for difficulty in

adopting CI. Either by providing a technology or gathering developer insights, both solutions

strive to help CI be integrated into embedded software workflows.

7

Figure 2. A relational diagram among components of the test automation system

SOCIOTECHNICAL ANALYSIS OF CI

 What social factors influence developers’ adoption of CI? Why do some developers resist

company-mandated changes to enforce CI principles? Such resistance occurred when author and

tech CEO Jeff Langr assumed a particular leadership role. He recounts how the codebase was a

“mired mess”, so he enforced Test Driven Development, a practice where all developers must

write their own automated tests before committing any code changes, which supports CI. Some

developers were upset and one left, saying it would never be his job to test. As a consequence of

this poor testing environment, a high-security chat application was shipped with an

“embarrassing defect” (Tarlinder, 2016).

8

 Left with questions from stories similar to Langr’s, Laukkanen, Paasivaara, and Arvonen

(2015) attempted to get answers from stakeholders such as developers and managers by

conducting 27 interviews in the networking and telecommunications firm Ericsson. They

explored perceptions toward CI in the midst of a company-wide push to adopt such practices.

They discovered that the number one challenge in accepting CI was lack of time, with

stakeholders voicing concerns like “I don't think we have the capacity for both in the

development organization: to do this at the same time as we do everything else we have

committed.” When the release date encroached, developers would even cut corners and skip

testing in order to get the features out. Frustrations with learning the new technology, dropping

everything to investigate build errors, and putting up with test automation failures illustrated

more barriers to embracing the CI mindset. Interestingly enough, most stakeholders were in

favor of CI as a general practice, but were unhappy with how it was implemented in Ericsson,

specifically with the lack of communication and clear direction.

 These struggles in accepting the new CI technology in the software development industry

mirror the challenges that the healthcare industry faced in accepting new Healthcare Information

Technologies (HIT), explained by Harrison, Koppel, and Bar-Lev (2007) in Unintended

Consequences of Information Technologies in Health Care—An Interactive Sociotechnical

Analysis. These authors assert that when HIT was introduced, many doctors and nurses placed

the blame of undesirable consequences on the technology itself, when in fact sociotechnical

reasons were at play. They frame their analysis in a theory they call Interactive Sociotechnical

Analysis (ISTA), which focuses on how technology influences the stakeholders and vice versa in

a recursive loop. This theory is natural for examining the relationship between developers and

the CI technology, since the same disruption of habits and abuse of technology is observed when

9

CI is first introduced, with stakeholder and technology influencing each other. For instance, one

parallel between the HIT and CI adoptions is how at Ericsson, key members from the 2 teams

that spearheaded the push for CI were moved to other teams to help inform and integrate CI

practices, just like how managers created tiered alarms in response to physician complaints about

incessant alarms in the software system, described in point 5 of ISTA. Both were managerial

responses to the technological influence, which in turn affected the technology.

 Harrison, Koppel, and Bar-Lev conclude that it is not enough to simply make a good

enough technology. No matter how well-designed a technology is, it is important to intentionally

integrate that technology into specific cultures, monitoring what adjustments must be made, how

the technology is actually used, etc. in order to avoid undesired consequences. This harmonizes

with Star’s (1999) claim that “infrastructure both shapes and is shaped by the conventions of a

community of practice.” In the context of CI in embedded development, this means it is not

enough to simply craft a technical tool which makes it easier for embedded engineers to create a

CI pipeline – work must be done to uncover how they use CI and their perception of it, or such a

tool may be misunderstood and used improperly, if at all.

RESEARCH QUESTION AND METHOD

To then understand how CI technologies can be best suited specifically for embedded

engineers, this research intends to answer: What experiences and perceptions do embedded

engineers have with CI compared to other types of software developers? The method used to

answer this is with a survey targeted at all types of software developers, with an emphasis on

embedded developers. It is inspired by the research done by Hilton et. al. (2016) which involved

a thorough analysis of 34,544 open-source GitHub repositories (involving 1,529,291 builds) and

10

442 survey responses from developers. Their goal was to uncover a number of questions

surrounding CI, including how and why it is used. They discovered an overwhelming number of

participants (94%) indicated interest in using CI in their next project, and the number one reason

of not using CI is that “The developers on my project are not familiar enough with CI” (with

47% indicating so).

The research of this paper will re-use these questions to compare how embedded

engineers’ responses compare with the responses of Hilton’s survey. The survey will also be

open to responses from other types of developers to serve as a control group. See Table 1 for the

full list of questions.

Question Response Options Motivation
What type of software
developer are you?

Select all that apply
 Front-End
 Back-End
 Full Stack
 Middle Tier
 Mobile
 Desktop
 Embedded
 Database
 Cloud
 Security
 SDET
 DevOps
 Data Science
 Big Data
 Game
 Graphic
 Customization
 AI

Compare embedded
developers to the others. It is
not necessary to get a
representative sample from
each type of developer, but
the list of options should be
exhaustive.

How old are you? Multiple choice
 20 or younger
 21-30
 31-40
 41-50
 51-60

Since CI is a relatively new
practice, it could be the case
that younger developers are
more in favor of it.

11

 61 or older
Do you use
Continuous
Integration (CI)?

Yes/no Compare the responses of
embedded with the
distribution from Hilton’s
survey. The list of software
development roles was
obtained from Merzlova
(2023).

If you don’t use CI,
why?

Select all that apply:
 The developers on my

project are not familiar
enough with CI

 Our project doesn’t have
automated tests

 Our project doesn’t
commit often enough for
CI to be worth it

 Our project doesn’t
currently use CI, but we
would like to in the future

 CI systems have too high
maintenance costs (e.g.,
time, effort, etc.)

 CI takes too long to set
up

 CI doesn’t bring value
because our project
already does enough
testing

If you do use CI, why? Select all that apply:
 CI makes us less worried

about breaking our builds
 CI helps us catch bugs

earlier
 CI allows running our

tests in the cloud, freeing
up our personal machines

 CI helps us deploy more
often

 CI makes integration
easier

 CI runs our tests in a real-
world staging
environment

 CI lets us spend less time
debugging

If you do use CI, how
challenging was it for

Likert scale of Very Challenging to
Very Easy

12

you to adopt this
practice?
Will you use CI for
your next
project?

Likert scale of Definitely to
Definitely Not

Has CI helped you
with debugging?

Likert scale of Definitely to
Definitely Not

What is your
perception of CI?

Likert scale of Very Positive to Very
Negative

(Optional) What were
challenges you faced
or currently face in
adopting CI, if
applicable?

Free Response Get qualitative insight which
may be representative of the
sample.

(Optional) Please
provide any additional
insight into your
experience with and
perception toward CI.

Free Response

Table 1. Survey Questions

 The list is intentionally short so as to get as many responses as possible. A $20 USD gift

card will also be raffled off as another incentive. Both these techniques were also used by Hilton

to increase response rate. As for obtaining participants, the researcher will post to online forums

such as Reddit and LinkedIn as well as email publicly available email addresses of embedded

engineers found on company websites.

CONCLUSION

In conclusion, the problem of embedded developers having additional hurdles to embrace

CI is approached in two ways. From the technical perspective, a test automation system was

developed for a particular embedded device. This system provides features like GPIO utilities,

various command-line tools, a functioning pipeline structure, and rich documentation which

future embedded developers can use as a starting point to design test automation systems for

13

their own devices. From the social perspective, the survey is expected to uncover valuable

insights from embedded developers as to their history and point of view regarding CI. By

understanding how they understand and interact with the technology, pitfalls like those described

by Langr, Harrison, and Laukkanen can be avoided.

With both of these deliverables, the hope is to empower a future of CI for embedded

engineers. As Sharma, et. al. (2023) indicate in their recounting of the rise of CI, it was never

enough to stop at technological innovation. Even with the perfect CI tool, developers who

commit infrequently and write poor tests will reap no benefits from it. It also takes social work

for all the stakeholders involved to help make the technology work as intended. With such effort,

embedded products can be developed with much more reliability and ease.

14

References

30+ Test Automation Statistics In 2024. (2024, June 21). Testlio. https://testlio.com/blog/test-

automation-statistics/

Bajer, M., Szlagor, M., & Wrzesniak, M. (2015). Embedded software testing in research

environment. A practical guide for non-experts. 2015 4th Mediterranean Conference on

Embedded Computing (MECO), 100–105. https://doi.org/10.1109/MECO.2015.7181877

Dilmegani, C. (2024, October 3). Top 20 Test Automation Statistics QA Teams Must Know.

AIMultiple: High Tech Use Cases; Tools to Grow Your Business.

https://research.aimultiple.com/test-automation-statistics/

Harrison, M. I., Koppel, R., & Bar-Lev, S. (2007). Unintended consequences of information

technologies in health care--an interactive sociotechnical analysis. Journal of the

American Medical Informatics Association : JAMIA, 14(5), 542–549.

https://doi.org/10.1197/jamia.M2384

Hilton, M., Tunnell, T., Huang, K., Marinov, D., & Dig, D. (2016). Usage, costs, and benefits of

continuous integration in open-source projects. Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, 426–437.

https://doi.org/10.1145/2970276.2970358

Jenkins—Market Share, Competitor Insights in Continuous Integration And Delivery. (2024).

6sense. https://www.6sense.com/tech/continuos-integration/jenkins-market-share

Laukkanen, E., Paasivaara, M., & Arvonen, T. (2015). Stakeholder Perceptions of the Adoption

of Continuous Integration – A Case Study. 2015 Agile Conference, 11–20.

https://doi.org/10.1109/Agile.2015.15

15

Merzlova, K. (2023, March 14). 18 Types of Software Developers Positions Explained.

SumatoSoft. https://sumatosoft.com/blog/different-types-of-software-developers-jobs-

explained

Molloy, D. (2016). Exploring raspberry pi: Interfacing to the real world with embedded linux.

John Wiley & Sons, Incorporated.

Pravisani, Y. (n.d.). What is a flash programmer and how does it work? SMH Technologies.

Retrieved October 21, 2024, from https://smh-tech.com/corporate-blog/what-is-a-flash-

programmer-and-how-does-it-work/

Ronsse, S. (2017, May 17). Embedded Linux Systems & the Yocto Project | Witekio. Your

Embedded and IoT Software Partner. https://witekio.com/blog/embedded-linux-

demystified-3/

Selinger, E., & Durant, D. (2021). Amazon’s Ring: Surveillance as a Slippery Slope

Service. Science as Culture, 31(1), 92–106.

https://doi.org/10.1080/09505431.2021.1983797

Sharma, H. K., Kumar, A., Pant, S., & Ram, M. (2023). DevOps: A journey from microservice

to cloud-based containerization (1st ed.). River Publishers.

https://doi.org/10.1201/9781032624310

Sharma, R. M. (2014). Quantitative Analysis of Automation and Manual Testing. 4(1).

https://www.ijeit.com/Vol%204/Issue%201/IJEIT1412201407_46.pdf

Smart, J. (2011). Jenkins: The Definitive Guide. Taiwan: O'Reilly Media.

Star, S. L. (1999). The Ethnography of Infrastructure. American Behavioral Scientist, 43(3),

377–391. https://doi.org/10.1177/00027649921955326

16

Syed, S., & Soomro, T. (2018). Achieving Software Release Management and Continuous

Integration using Maven, Jenkins and Artifactory. International Journal of Experiential

Learning & Case Studies, 3. https://doi.org/10.22555/ijelcs.v3i2.2451

Tarlinder, A. (2016). Developer Testing: Building Quality into Software. Pearson Education.

https://books.google.com/books?id=Csz3DAAAQBAJ

Unwin, C., & Ould, M. A. (1986). Testing in Software Development. Cambridge University

Press.

Woolley, R. (2021). Deploying Embedded Applications Faster with Containers. Wind River.

https://www.windriver.com/resource/deploying-embedded-applications-faster-with-

containers

