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Abstract 
 

Research was conducted to develop the foundations of a new method, infrared 

nitrogen stable isotope (INSI) ratio, for calculating nitrogen stable isotope ratios using 

infrared data in plant matter. Laboratory plant growth experiments, using buckwheat and 

15nitrogen enrichment, showed diagnostic wavelength shifts in the infrared. Data was 

collected at multiple frequencies that are associated with nitrogen functional group 

compounds.  Computational modelling of common plant nitrogen compounds validate 

the spectral shifts and was used to identify ammonium as a unique compound for spectral 

data based ratio development. Field data was collected at locations using organic 

fertilizer, inorganic fertilizer and along known nitrogen impaired waterways in the 

Shenandoah Valley of the Chesapeake Bay watershed. The calculated INSI ratio values 

showed values consistent with expected levels of enrichment. The INSI ratio method 

developed in this research establishes the foundation for researchers to continue 

development of this new approach. In the future, infrared field based sensors could be 

developed that are tuned to the frequencies of 15N wavelength shifts identified in this 

research. This will provide researchers with faster and cheaper isotope ratio 

measurements covering broader areas and eventually be translated for use with airborne 

or space-based instruments. 
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Chapter 1 – Introduction and Background 

 

Introduction 
 

 This research investigates the process by which a new method using spectral 

infrared data can measure nitrogen stable isotope ratios instead of traditional mass 

spectrometry. Traditional isotope ratios using mass spectrometry is limited to the 

laboratory, is expensive to maintain and measures data from one sample at a time. 

Conversely, spectral infrared data has the potential to bring the measurement of stable 

isotopes out into the field with either ground based, handheld, airborne or even space-

based satellites that can measure data over larger areas. The foundations of this new 

method are described in this dissertation and include the identification of spectral regions 

where nitrogen compounds can be detected and specifically where the two nitrogen 

isotopes, the naturally abundant 14N and low natural abundance 15N, can be 

discriminated. This allows for the calculation of an infrared nitrogen stable isotope (INSI) 

ratio that can be compared to the traditional isotope ratio mass spectrometer (IRMS) 

measured data.  

This new method development, called an INSI ratio, is important because stable 

isotopes are highly useful for indicating origins of materials, such as the origins of 

nitrogen based fertilizers. Fertilizers are a significant polluter in waterways because they 

provide an enrichment of nitrogen nutrient above normal levels. The method developed 

herein can be used to remotely identify fields along waterways where an overabundance 

of nitrogen based fertilizers have been applied. This can lead to better decision making by 

environmental scientists for specific location-based implementation of water 
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improvement techniques, like riparian buffers, to have a maximum impact on overall 

water quality. This will enable scientists to better manage their available funding for 

emplacing improvements where it matters most. 

Background 
 

Access to clean bodies of water for human use is an important safeguard that the 

Environmental Protection Agency seeks to continue through the Clean Water Act (CWA). 

When the CWA was established in 1976, there were many significant water quality issues 

to address. Although there has been much improvement, there are still hurdles to overcome. 

One of these is to identify nonpoint source pollution (NPS) in agricultural areas (Babin et 

al., 2016). This is a complex problem but one that continues to plague our nation’s 

waterways and estuaries such as the Chesapeake Bay (Tango & Batiuk, 2013) and, to a 

greater extent, the Mississippi River Watershed (Ouyang et al., 2015). As an example of 

water resource importance, the  Bay produced $107.2 billion in goods in 2009 (2014 State 

of the Bay, 2014) and is the largest North American estuary (Malone, 1991). Even greater 

than the Bay, the Mississippi River accounts for $473 billion in revenue and over 1.7 

million jobs in the surrounding counties (Black et al., 2004; Grassi, 2016). Not only are 

these natural resources important to the U.S economy, but they include important 

intangibles such has the intrinsic value for recreation, enjoyment and being a habitat to a 

wealth of flora and fauna.  

Agricultural NPS runoff is the largest pollution source impacting the Chesapeake 

Bay (2014 State of the Bay, 2014). There are many farms within the Bay watershed as 

agriculture is the second-largest land use category in the region (2014 State of the Bay, 
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2014). This can complicate restoration efforts as they are nearly all located on private lands. 

On an even larger scale, the NPS impacting the Mississippi River overloads the waters with 

nutrients causing devastating effects in the River Delta and the Gulf. The excessive 

nutrients and resulting algal blooms that eventually die off create anoxic or hypoxic dead 

zones preventing many marine species from flourishing in these areas. The pollution in 

these watersheds luckily is something that can be controlled. Most causes are 

anthropogenic, like the over application of fertilizers, where a small percentage absorbs 

into the soil and the remaining runs off during rain events and travels into the nearby 

waterways ultimately condensing in the Bay, Delta or Gulf. Besides sediments, nutrients, 

both phosphorus and nitrogen, are the largest contributor to NPS pollution (VA DEQ) and 

of that the largest nutrient contributor is runoff from agricultural operations (National 

Water Quality Index). This is a tough problem to solve. Even though the Clean Water 

Blueprint for the Chesapeake Bay has been implemented for the past six years, there have 

only been small improvements to agricultural-based NPS pollution. The complexity and 

large scale of agricultural NPS pollution make it an important topic to research for remote 

sensing applications. This dissertation outlines a new path forward aimed at mitigating and 

identifying possible agricultural based nitrogen NPS pollution from a new perspective.   

The issue of mitigating NPS pollution and identifying priority watersheds for 

remediation efforts is often researched (Babin et al., 2016). A direct measurement 

capability over large areas to assess NPS pollution related criteria is not yet available. To 

date many assessments require loads of field work, sample over small areas, are time 
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consuming and likely will not answer this multi-state water quality problem. This is where 

the interplay between geochemistry and remote sensing has advantages.   

Stable Isotopes 

The study of stable isotopes in the environment has many applications. Assessing 

the nitrogen stable isotope composition of components within a studied watershed can 

identify source materials (Macko & Ostrom, 1994). Isotopes are atoms with a different 

amount of neutrons but the same amount of protons and electrons. Those isotopes that are 

energetically stable interact with the environment in interesting ways and their varying 

signals can be used for comparative analysis. A stable isotope with an additional neutron 

interacts with physical and chemical processes differently than an atom with a lower atomic 

mass. The heavier atoms typically react slowly and require more energy to break the 

molecular bonds (Fry, 2006). Nitrogen has two stable isotopes, 14N and 15N. The stable 

isotope 15N is rare, only occurring in the atmosphere 0.365% with the remaining nitrogen 

composition due to 14N (Sulzman, 2007). When nitrogen interacts with the environment 

the byproducts of reactions are typically depleted and the substrates are enriched in 15N 

(Shearer & Kohl, 1986). An analysis of amount of enrichment or depletion is calculated 

using an isotope ratio comparing the amount each isotope in a sample compared to a 

standard. In the case of nitrogen the standard is atmospheric nitrogen. Regarding 

agriculture based NPS, this approach can indicate whether the pollution comes from 

inorganic chemical fertilizers or organic fertilizers and manure (Townsend et al., 2004; 

Yun et al., 2006). When the source nitrogen comes from the organic fertilizers, the nitrogen 
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isotope signal is more enriched in 15N in comparison to Haber process inorganic nitrogen 

where the source is atmospheric nitrogen.  

Typically this analysis is performed with an isotope-ratio mass spectrometer 

(IRMS). The IRMS is a laboratory based instrument requiring manual inputs, long 

calibration times and only measures samples from one field sampling point at a time. This 

methodology produces highly accurate results but is limited by sample throughput when 

measuring large field areas such as those where agriculture NPS is an issue. Much research 

has been conducted to identify ways to measure 15N signals over larger spatial extents using 

satellite imagery, hyperspectral reflectance and absorption spectroscopy (Changwen et al., 

2009; Eiler et al., 2014; Elmore & Craine, 2011a; Kleinebecker et al., 2009; Lorentz, 2013; 

Sun et al., 2012; Wang et al., 2010; Wang et al. , 2007).  

 The highly variable natural abundances in most stable isotopes in contrast to their 

standard elemental concentrations make their analysis particularly useful in many 

applications including environmental, ecological agricultural and archaeological problems. 

This information can be used like a fingerprint or signature of a material under study to 

indicate origins and history of the element in the material.  Stable isotope ratios are 

calculated comparing the heavier rare isotope in a sample to the more abundant lighter 

isotope and are described as a delta or δ15N value according to the following equation:  

𝛿15N=1000 ⌊
Ratio𝑆𝑎𝑚𝑝𝑙𝑒− Ratio𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

Ratio𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
⌋                   Equation 1 

The standard for nitrogen stable isotope ratio calculations is atmospheric nitrogen that has 

an isotope ratio of 0.3613.  
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Stable isotope ratio analysis is a commonly used tool among researchers owing to 

its unique ability to characterize samples that other techniques cannot. In plant matter, the 

stable isotope ratio of nitrogen can be used to understand the nitrogen cycle. Nitrogen 

fertilizer sources can be identified in plant matter and the surrounding soils as organic 

manure based fertilizers are more enriched in 15N versus Haber process inorganic 

fertilizers (Yun et al. 2006). Also, in areas with high levels of nitrogen availability and 

increased rates of nitrogen leaching there is 15N enrichment (Shearer & Kohl, 1986). This 

ability to determine fertilizer sources is important in understanding nutrient loads and 

origins, as anthropogenic impacts are often hard to quantify in the environment. Isotope 

analysis, when linked with water samples in nearby streams and rivers, enables 

researchers to better differentiate agricultural fields that have been applied with organic 

fertilizers and possibly better identify nonpoint source pollution in waterways.  

Concentrations of the different isotope abundances, reported as ratios of the 

different forms of the element, are typically measured with an isotope ratio mass 

spectrometer (IRMS). Single sample laboratory-based analyses are generally very high in 

precision; however, sample run times and instrument calibrations are time consuming, 

costly and represent data from a single location on the Earth’s surface at a particular time. 

This research aims to be a proof-of-concept that could eventually be used to develop 

techniques that will enable field-based measurements of stable isotope ratios in plant 

matter. This research aims to identify diagnostic wavelength shifts that are caused by the 

isotope and are able to be observed by the field based or spectral sensor. This would provide 

researchers with faster and cheaper measurements that could cover broader areas and 
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eventually be translated to use with airborne or space-based instruments.  Specifically, this 

research produces the foundational information needed for the development of a field-

based method for stable nitrogen isotope analysis. This fundamental research in stable 

isotope spectroscopy could be used for the development of future remote sensors and help 

provide biogeochemical understanding at larger spatial scales.  

Most researchers still rely heavily on the IRMS for stable isotope analysis but some 

are investigating alternative methods such as using handheld spectrometers (Wang et al. 

2010). There is a general consensus among the stable isotope community that a larger 

spatial scale, including regional analysis of isotope concentrations would be beneficial. 

Spectroscopic analysis and remote sensing capabilities for stable isotopes is currently being 

suggested and the possibility researched (Elmore & Craine, 2011; Kleinebecker et al. 2009 

and Wang et al. 2007). Stable isotopes inherently have different masses that cause them to 

behave distinctly within the electromagnetic (EM) continuum. Specifically they generate 

isotope effects in their bonds with other elements where a bond with a heavier isotope will 

vibrate differently when analyzed spectrally (Hoefs, 2009). The spectral absorption regions 

(bands) identified directly relate to the specific elemental bonds present in the sample. The 

mid-wave infrared (MWIR) is considered to be the fingerprint region of spectroscopy 

where compound analysis can be performed. Each compound has a specific combination 

of bending, stretching and wagging bonds between the elements that enables researchers 

to specifically identify the compound being analyzed. This combination is as unique as a 

fingerprint. In this research the focus is less on compound analysis and more on which 

bonds with known vibrations are being shifted due to increased resistance from the 
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presence of the heavier isotope. Pure 99.99% 15N labels were measured with Fourier 

Transform Infrared (FTIR) attenuated total reflectance (ATR) (FTIR-ATR) laboratory 

instrumentation and demonstrate this phenomenon. The shortwave infrared (SWIR) 

contains overtone vibrations of these MWIR bonds therefore the SWIR analysis is more 

complicated as specific compound analysis cannot be performed. However, large family 

groups of compounds can be identified. With advanced processing techniques small 

differences in the overtones can be amplified, specifically when using derivatives in the 

spectra, peak separation and peak fitting. Others have used apparent differences in the 

visible to near infrared (VNIR) region of the data as proxies for predicting isotope 

concentrations with some success (Wang et al, 2011). Proxies in the VNIR is a less rigorous 

approach than focusing on the SWIR region. The VNIR absorbs and emits radiation that is 

less impacted by material composition and more on material color, which can be good in 

some cases such as chlorophyll content (chlorophyll emits in the green region) or 

vegetation health analysis in the NIR. This is the basis for a spectroscopic analysis 

capability for stable isotopes detection.  

Bulk nitrogen (not isotope) quantification in plants with spectral instruments is 

well-known (Belanger et al., 2007). Vegetation indices have been developed and the 

methods are in practice (Myneni et al., 1995). In addition, nitrogen concentration 

monitoring is practiced from remote sensors on cropland to evaluate fertilizer application 

rates in order to ensure a bountiful crop (Anderson, 2014). In precision agriculture, tractors 

even incorporate automated suggested nitrogen application rates for their fields with a GPS 

unit linked to satellites that calculate nitrogen demand in real-time (Lan et al. 2010). The 
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key to this research is to leverage the past successes, methodologies and indices in order to 

quantify nitrogen isotope abundances in plant matter across whole fields. The present 

enrichment experiment confirmed that the nitrogen compounds detected by the Nicolet 

spectrometer were contained in the amine groups, since family groups can be easily 

identified in the MWIR and absorb between 3,500-3,300 cm-1, which is consistent with the 

data collected during the experiment. The other observed absorptions and wavelength shifts 

also need to be further understood as to their cause which is currently thought to be 

overtone absorptions stemming from the stronger amine group N-H bonds.  

Continued corroboration between the field and lab instruments will need to be 

performed. This research shows specific absorption features that are identified and that can 

be used to for quantification of the isotope. The values, once compared to the high precision 

IRMS data is a methodology that can then be applied in practice. Field plant and water 

samples can be collected, measured and corroborated with IRMS measurements in order 

to understand the origin on the fertilizers contributing to nonpoint source pollution. This 

information can then help identify the specific fields where excess nitrogen originate and 

efforts can be made to cooperate with land owners and policy makers to potentially mitigate 

nutrient pollution through different management strategies. 

Hyperspectral Remote Sensing 
 

Remote sensing is the field of study concerned with extracting information about 

an object without coming into direct contact with a sample (Schott, 2007). Hyperspectral 

remote sensing is the combination of traditional spectrometry with imaging cameras and 

in some cases non-imaging sensors (Eismann, 2012). Hyperspectral sensors utilize many, 
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typically hundreds of, distinct bands of data to parse the energy from a material into a 

resulting data cube that can produce a spectral signature or spectrum. Multispectral data 

however, utilizes tens or less of bands of information. Ground based research sensors are 

most often hyperspectral instruments whereas most NOAA and NASA satellites are 

multispectral. Ground sensors are used initially by researchers to develop and outline the 

bands of energy for a specific purpose that future satellites can employ.  

Energy can be sensed all along the electromagnetic spectrum, 0.4 µm to 14 µm, 

and is broken into five distinct regions: visible (VIS), near-infrared (NIR), short-wave 

infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). These 

regions are based on differing fundamental properties occurring therein.  

 

Figure 1 Representation of the electromagnetic spectrum defining the five region: visible, 

near-infrared, short-wave infrared, mid-wave infrared and long-wave infrared. 

The VIS region, 0.4-0.7 µm, is that part of the spectrum humans can see. The 

energy above and below is not observable by human eyes and requires instrumentation 

and specific detectors to read this energy. The NIR region, 0.7-1.1 µm, is typically 

associated with vegetation reflectance response. The SWIR region, 1.1-3.0 µm is 

dominated by physical and chemical properties of materials. More specifically this region 
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is associated with vibrational overtones from the MWIR, 3-5µm. The MWIR is where the 

energy being observed begins to switch from reflected sunlight to thermal emission. The 

MWIR is also the typical portion of the spectrum in traditional spectroscopy where 

chemical function groups can be assigned. Thermal emission is observed in the LWIR, 5-

14 µm, making it possible to observe hot objects like fires and sense temperatures of 

objects and the Earth.  

The study of spectroscopy of materials provides the physical basis of 

hyperspectral remote sensing. The electromagnetic spectrum interacts with materials at 

the atomic and molecular level. Materials absorb, emit, or reflect energy that is measured 

by spectral sensors to produce a spectrum of the response across the wavelengths being 

observed. The peaks and valleys in the resulting spectrum indicate the properties of the 

material under observation. This spectrum is unique to the material and is termed a 

signature. Non-imaging spectral instruments capture this data or signature and it is 

plotted as a graph where the x-axis is the wavelength and the y-axis is the resulting 

energy value. Imaging sensors perform this measurement across a surface, effectively 

mapping out the spectral signature of each material along the surface being imaged. An 

image is constructed and is called a datacube that has three dimensions, where x and y are 

the positions within the image and z is the signature of the material across the 

wavelengths (x) of the sensor. Imaging sensors have the advantage of being able to make 

spectral measurements over large areas simultaneously.  

Spectral instruments characterize the material under observation. This capability 

has been used by Wang et al. (2010; 2007) to suggest specific wavelengths in the 
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reflectance data leaves that are significantly linked to the IRMS measured 15N signals of 

the same leaves. They showed strong correlations at both leaf and canopy levels. 

Seventeen significant regions were identified throughout the reflectance response of the 

utilized sensor in their research, specifically bands in the near infrared (NIR) around 600 

and 700 nanometers (nm) are well correlated. Research by Lorentz (2013) confirms the 

ability to use reflectance data to predict 15N concentration in evergreen needles. The 

results showed correlations from R2=0.49 to 0.84 for different hyperspectral indices and 

previously reported wavelengths of interest throughout the 0.35-2.5 µm region. The 

strongest relationships were reported in the visible region. The visible and red-edge 

region, where the reflectance sharply rises for healthy vegetation, are well known regions 

where chlorophyll and other nitrogen containing compounds react with incident sunlight 

or radiation (Eismann, 2012). The SWIR region includes additional responses from 

vegetation where C-H, N-H and O-H bonds vibrate (Shenk et al., 2001). This makes it a 

specifically interesting region to study. Kleinebecker et al. (2009) developed a partial 

least-squares calibration model using hyperspectral reflectance values from the entire 

1,250-2,350 nm region to predict the 15N signals in various bog plant species with R2 = 

0.993. Instead of the entire SWIR region, Elmore and Craine (2011b) used the reflectance 

at the previously reported (Kokaly, 2001) 2,100 nm feature for bulk nitrogen 

measurement, but found it to be loosely correlated to 15N content.  

Imaging spectral data has also been researched for this application. Wang et al. 

(2011) utilized multispectral satellite data reflectance data indices to link to 15N in 

various vegetation covered environments in the Everglades National Park. They 
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employed both the normalized difference vegetation index (NDVI) and the normalized 

difference water index (NDWI) computed from SPOT-4 satellite imagery data to 

determine their correlation to 15N concentrations previously measured at the same 

locations. Their results varied between the different techniques (R2 = 0.31-0.83) due to 

different ground sample locations, the index used and whether or not the image data was 

corrected for atmospheric interactions in the reflectance data.  

There are many types of spectral instruments, each developed to meet a specific 

purpose. The reflectance data discussed above were collected by ground based hand held 

spectroradiometers. It measures the reflectance, calibrated to a known reference standard, 

of samples either in direct contact or remotely with a lens and tripod. Similar reflectance 

measurements can be made with FTIR spectrometers attached to ATR sample port. These 

types of instruments are most commonly used in the laboratory, but a few have been 

developed to be handheld and field portable. Instead of reflectance, the data is reported as 

absorbance as more energy is absorbed by materials in this region than reflected on 

average. These instruments generally operate in the MWIR or LWIR regions and 

therefore can measure reflectance at specific bond energies and types. Changwen et al. 

(2009) used this technique to measure 15NO3-N and 14NO3-N concentrations in soils and 

soil pastes at natural abundances.  

Stable Isotopes and Spectroscopy 
 

The ability to measure light energy and understand the chemical properties of the 

material under study can also be used to understand the structure (Coates, 2000). When 

energy is incident upon a material, the atomic bonds flex and rotate in characteristic 



14 

 

   

ways. Vibrational spectroscopy utilizes this principle to map certain elemental bond 

energies into functional groups across the spectrum. Since bond energies are being 

observed, most analyses are performed in frequency space, not wavelength space. The 

two domains are inversely related and describe the wave energy in different ways. 

Wavelength measures the distance for a single wave as a unit of distance in microns (µm) 

or nanometers (nm). Frequency measures the number of wave occurring per unit distance 

in wavenumbers or inverse centimeters (cm-1). Most remote sensing spectroscopy 

research focuses on wavelength where chemistry spectroscopy focuses on wavenumbers. 

Wavenumbers are a linear representation of the electromagnetic spectrum whereas 

wavelength is not. The challenge of remote sensing scientists and chemists is to be able to 

understand and read each designator interchangeably. 

The bonds vibrate differently for different isotopes. The heavier mass in the 

isotope changes the vibrational mode of all of the atoms in the molecule and create a 

downshift in frequency from the observed frequency in the lower mass molecule 

(Quillard et al., 1997). These changes require instrumentation with high frequency or 

spectral resolution to measure these shifts. Changwen et al. (2009) conducted their 

research on the known 1,350 cm-1 response region (7,407 nm) for nitrate. This region 

allows for a level of specific information which can be interpreted in infrared data 

(Stuart, 2004). Changwen et al. (2009) observed the wavelength shift in the nitrate band 

for each species. There was an observed 35 cm-1 downshift in response from the lighter to 

the heavier isotope nitrate species. Using the FTIR data at the two regions identified for 
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each species they were able to estimate concentration with a determination error around 8 

or 6.5 mg N for aqueous solutions and soil pastes respectively.  

Research Objectives 

The field of research investigating spectral based nitrogen isotope ratio 

measurements varies in methodology and results. There is a fundamental scientific basis 

that has given credence to the field. This dissertation presents hyperspectral technologies 

that can be used for nitrogen isotope analysis.  In many cases, the prior research results 

are simply proxy measurements of the actual physics occurring. The change in a 

vegetation index or the change in reflectance values are in fact due to the wavelength 

shifts occurring in the nitrogen bonds in compounds that are reacting with energy in 

different ways due to the presence of the isotope. The research objectives are as follows: 

1. To determine where isotope induced shifts occur along the VIS, NIR, SWIR, 

MWIR and LWIR regions. Hypothesis: By enriching a fertilizer supplied to 

plants with labeled 15N far above natural abundance levels, spectral 

instruments will be able to identify absorption regions specific to the heavier 

isotope when compared to a control. 

2. To investigate what bonds or compounds are being observed at the identified 

wavelengths through infrared interpretation and compound modeling. 

Hypothesis: Qualification of the data in the band absorption regions identified 

will be possible through computational chemistry. 
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3. To develop a model for predicting 15N ratios in plant matter. Hypothesis: The 

development of a spectral algorithm will be able to quantify the amount of 15N 

that will compare to traditional 15N from IRMS measurements. 

4. To apply the technique to field acquired vegetation samples in different fields 

and along or within nitrogen impaired waterways. Hypothesis: Spectral 

instrumentation can be used to measure natural abundance nitrogen isotope 

ratios to identify the origins of nitrogen nutrients in runoff and contributing 

nearby waterways. 

The above objectives will be discussed in subsequent chapters. 
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Chapter 2 – Finding the Spectral Signature of 15Nitrogen 

Isotopes in Plants by Hyperspectral Techniques 

 
Published in the Journal of Remote Sensing Technology, 2016, Vol. 4 

Iss. 1, PP. 115-120 
 

Abstract 
 

Expensive laboratory based instrumentation is typically used to perform stable isotope 

analysis, making sample run times lengthy and costly. Research was conducted to 

identify novel approaches to stable isotope analysis using infrared spectroscopy 

techniques in both laboratory and field based instrumentation. Buckwheat plants were 

grown in aeroponic conditions at three nitrogen concentration levels (0.32%, 0.20%, and 

0.10%) of 95% 15N-labelled fertilizer solutions and compared to a control with natural 

abundance (0.0036%) nitrogen based fertilizer. Infrared instrumentation was used to 

measure the buckwheat leaves and show diagnostic wavelength shifts are correlated to 

their fertilizer concentration, occur at multiple infrared frequencies, and are associated 

with nitrogen functional group compounds present in the buckwheat. These 

measurements confirm that with remote sensing techniques, nitrogen isotopes are 

detectible in the infrared region. The ability to remotely sense nitrogen isotopes with 

either field or airborne sensors will enable faster analysis and wider spatial coverage than 

current techniques. 
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Introduction 
 

In contrast to its standard concentrations, the highly variable natural abundances in 

the most stable isotopes of an element make their analysis particularly useful in many 

applications, including environmental, ecological, agricultural and archaeological 

problems (Hoefs, 2009). This information can be used as a fingerprint or signature of a 

material under study to indicate the element’s origins and history in the material. In the 

laboratory, isotope-ratio mass spectrometry (IRMS) is the primary analytical tool of choice 

in order to obtain accurate nitrogen stable isotope data for a sample of organic matter. 

IRMS is very accurate, however, sample run times and instrument calibrations are time 

consuming, costly, can only be performed in a laboratory, and represent data from a single 

location on the Earth’s surface at a particular time. 

This problem can be helped by a new technique for isotope ratio measurements 

utilizing the infrared portion of the electromagnetic spectrum. In the infrared, elemental 

composition can be analyzed based on the elemental structure of the supplied sample 

(Coates, 2000). Molecules flex and rotate in characteristic ways when they are bound 

together. These movements vibrate at specific and known frequency locations in the 

infrared. Isotope effects can alter these characteristic frequency locations due to the heavier 

mass of the isotope. Heavier masses change the vibrational modes of the bonds in the 

molecules and create a downshift in frequency from the one expected in the lower mass 

isotope molecule (Quillard et al., 1997). These changes require instrumentation with high 

frequency or spectral resolution of hundreds of bands of information to measure these 

shifts, often termed hyperspectral. This study shows that by utilizing hyperspectral 
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instrumentation that operates in the infrared, the effects of these isotopes are observable. 

This can provide researchers with faster and cheaper measurements that could cover broad 

areas of the Earth’s surface. In the future, in order to provide biogeochemical understanding 

at larger spatial extents, this technology can be translated for use with airborne or space-

based instruments since it is not possible using current instrumentation and techniques. 

Ultimately, for agricultural and environmental analysis, hyperspectral remote-

sensing techniques that focus on the fundamental spectral data gathered from field and 

laboratory based Fourier Transform Infrared (FTIR) and dispersive spectrometers could 

be applied. Nitrogen fertilizer sources can be identified in plant matter and the 

surrounding soils as organic manure based fertilizers since they are more enriched in the 

heavier 15N isotope in comparison to Haber process inorganic urea fertilizers (Townsend 

et al., 2004; Yun et al., 2006). As anthropogenic impacts are often hard to quantify in the 

environment, determining fertilizer sources is important in understanding nutrient loads 

and origins (Townsend et al., 2004). Nitrogen based nutrient loads are still identified as 

an improvement area in United States’ current Environmental Protection Agency’s 

assessment on the Chesapeake Bay, Eastern United States (2014 state of the bay.2014). 

Our research shows application for remote detection of improvement areas within 

watersheds, such as the Bay, and may enable municipalities to meet their Bay Initiative 

improvement goals more effectively. By linking these remote sensing techniques with 

water samples, spatial analysis could be used to help identify non-point source polluters 

within the Chesapeake Bay watershed. 
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Background 
 

A nitrogen stable isotope (15N) labeled fertilizer plant growth enrichment 

experiment was conducted in order to identify the isotope induced frequency/wavelength 

shifts in plant matter, as well as to determine if they are detectible by current FTIR and 

dispersive spectroscopy techniques, rather than mass spectrometry. The isotope was 

supplied in liquid fertilizer solutions to buckwheat plants growing in separate aeroponic 

systems. Compared to a control containing no labeled fertilizer, different concentration 

levels were chosen to assess quantity of nitrogen uptake and to observe plants under these 

different conditions. After 21 days of growth, the infrared reflectance of the plant leaves 

was measured by lab and field grade spectrometers when the buckwheat reached maturity. 

Both fresh and dried leaves were measured in order to simulate different times of year 

when sample measurements could be conducted. 

Plants incorporate nitrogen because it is a required macronutrient for their growth 

and metabolic processes, such as photosynthesis. In plants, amino acids, proteins, and 

molecules, such as chlorophyll contain nitrogen (Jones et al, 2013). Chlorophyll has 

known characteristics across the electromagnetic spectrum, but its isotope influences 

have yet to be reported (Vernon & Seely, 1966). 

Materials 
 

Plant Growth and Fertilizers 

 

Aeroponic plant growing systems, shown in Fig. 2, were used to concentrate the 

uptake of nitrogen isotopes and grow plants under controlled conditions. Aeroponics is a 

system of misters that spray the plant’s root systems with nutrients. The systems spray the 
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plants every hour for a 30-minute duration. The systems are housed within a seed-starting 

cart that has a humidity tent and wide-spectrum fluorescent lighting, which illuminates the 

plants for 16 hours over a 24 hour period. This accurately simulates summer environment 

in which buckwheat thrives. Buckwheat is a quick growing summer annual that is well 

suited for this study. 

 

Figure 2 Buckwheat is growing in an aeroponic unit. Four units were used one each for 

the control and three experimental trials 

 

Instrumentation 

 

Three analytical spectroscopy instruments were used in this research. Each of them 

has specialties within the infrared spectrum and is measured in terms of frequency in 

chemistry applications, and wavelength in remote sensing applications. The infrared 

spectrum spans the region from 1.1 – 10+ microns (9,090 - 1,000 cm-1) and can be further 

broken down into specific regions. The 1.1 – 2.5 micron (9,090 - 4,000 cm-1) region is the 

short-wave infrared and is dominated by vibrational overtones from the mid-wave infrared. 

The mid-wave infrared spans the 2 – 5 micron (5000 - 2000 cm-1) region; this is the region 
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where functional groups can be assigned. The long-wave infrared is above five microns 

(2000 cm-1). Specific compounds can be identified in the fingerprint region of the infrared 

spectrum between 6.6 – 20 microns (1,500 - 500 cm-1). 

These spectrum regions are best analyzed by specific instrumentation and for 

different field or lab applications. The Analytical Spectral Devices Inc. (ASD) Field Spec 

Pro (FieldSpec(R) pro user's guide. 2002)is a dispersive spectrometer. It was used to 

measure plant reflectance from the visible to the overtone vibrations region up to 2.5 

microns. It has a spectral resolution of up to ten nanometers in the short-wave infrared. 

The Agilent 4100 Exoscan (Agilent 4100 exoscan FTIR operation manual. 2013) is a 

FTIR spectrometer that measures from 2.5 – 15 microns (4000 – 650 cm-1) with a 

frequency resolution of up to 4 cm-1. It can also be used for field measurements. The 

Thermo Scientific Nicolet 6700 (Nicolet (TM) FT-IR user's guide. 2004) is a laboratory 

bench top FTIR spectrometer that measures the entire infrared spectrum and was set up 

for 4 cm-1 frequency resolution. 

Methods 
 

For four weeks, buckwheat plants were grown in simulated summer conditions at 

which point leaves from each trial were harvested for instrumental analysis. Fresh and 

dried whole leaves were measured to determine the likelihood of remote or field based 

sensors to detect any isotope effects. The three analytical instruments described above 

were used to measure the front and back of the leaves, as well as the ground leaves. All 

instruments were operated under vendor specifications for collection of reflectance or 

absorption spectra. The instruments measured the data from the fresh, dried, and ground 
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leaves through direct contact with the leaf surface or powder. Over a few seconds, each 

instrument collects a series of either 30 or 60 spectra and averages them together in one 

resulting spectra. From each trial, three spectra were measured of each of the ten 

collected leaves. 

The software package ENVI 4.7 (Environment for Visualizing Information, 

Excelis, Inc.) compared and analyzed the resulting spectra. This experimental design is 

often used (Slonecker, Haack, & Price, 2009) and allows for observation of 15N uptake to 

occur in the spectrum across multiple instruments, and consequently different regions of 

the electromagnetic spectrum. For validation of collection practices, spectra from the 

instrumentation are imported and compared against library spectra. Chemical functional 

groups can be identified from infrared spectral interpretation algorithms supplied by 

vendor software. The isotope induced shifts along the spectrum and their known 

functional groups are then assessed. 

Results 
 

The only variable in this experiment was the amount of 15N available to the 

buckwheat. Spectral wavelength shifts were observed when compared to the control in all 

three trials and measured leaf conditions (fresh, dried, front, back, ground). As expected, 

fresh leaf spectra contained water features throughout the spectrum. Dried leaf conditions 

presented the best results for wavelength shift analysis. Across all samples, the results of 

the dried leaf front, back, and ground samples were consistent. Samples from the three 

15N abundance levels did show an uptake of 15N that were measurable by the 

spectrometers. 
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Due to changes in the molecular bonds and vibrational modes, the addition of the 

heavier isotope does in fact create downward frequency shifts. Both lab and field grade 

FTIR and dispersive spectrometers can measure these shifts. The primary area of isotope 

shifting was observed to be in the region of the infrared spectrum associated with the 

chlorophyll molecule. Additional shifts were observed in amine/amide/imine and other 

chemical functional group absorption regions. 

Laboratory Based Instrumentation 

 

The Nicolet data showed major shifts occurring in the 3350 -3180 cm-1 region 

where primary aliphatic amine NH bonds are stretching. In Fig. 3, a 102-wavenumber shift 

was observed by the Nicolet spectrometer where the control peak centered at 3,296 cm-1 

and the isotope-induced spectrum centered at 3,194 cm-1. 

 

Figure 3 Nicolet Measured Spectra of Dried Buckwheat Leaves (Control and Trial 3) 

Compared to Thermo Scientific FTIR Library Spectra of Chlorophyll Showing a 102 

Wavenumber Downshift 



28 

 

   

Both primary amide II NH2 bonds and imine C-N bonds vibrate in the 1,600 cm-1 

region. Primary amide II bonds vibrate between 1,650 cm-1 and 1,620 cm-1, and imines 

vibrate between 1,690 cm-1 and 1,640 cm-1. 

As shown in Fig. 4, a 15-wavenumber downshift was observed from 1,634 cm-1 to 

1,619 cm-1 in the Nicolet data. Notably, these CN bond vibrations can be directly 

attributed to the chlorophyll structure, suggesting that the 15N labeled nitrogen is being 

introduced into the chlorophyll molecule. 

 

Figure 4 Nicolet Measured Spectra of Buckwheat Leaves (Control and Trial 3), in 1,600 

cm-1 Region, Showing a 15 Wavenumber Downshift 

 

Field Based Instrumentation 

 

In addition to the laboratory instrumentation described earlier, the field 

instrumentation was able to detect the wavelength shifts that occur by adding the heavier 
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15N isotope. As shown in Fig. 4, the Exoscan showed a nine wavenumber shift in the 

2,300 cm-1 region from 2,372 cm-1 to 2,363 cm-1 that is associated with NH bonds. 

 
 

Figure 5 Exoscan Measured Spectra of Buckwheat Leaves (Control and Trial 3) Showing 

a 9 Wavenumber Downshift 

 

This result is especially interesting as it was measured by the field grade FTIR 

spectrometer, the Exoscan, which showed potential field applications of this method. 

Continuum removal was used in ENVI to normalize the spectra to a common baseline. 

This technique aids in the analysis of specific absorption features. Compared with those 

in the laboratory, field grade instrumentals typically have lower sensitivity and thereby 

somewhat limited capabilities. In this case however, these results show promise for the 

ability to detect stable isotopes in the field. 

The field based dispersive spectrometer, or ASD, also showed a shift in Fig. 6, but 

not in the functional group overtone region. To accentuate the differences between the 

experimental trials and the control, the data was analyzed in the 1st derivative. The 16 
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nanometer (nm) shift was observed in the near infrared (NIR) region where the control 

had a 1st derivative peak of 719 nm and the isotope induced shift peaked at 703 nm. The 

chemical origin of this shift is associated to the mesophyll plant cells that absorb or 

transmit light energy in the NIR (Elvidge & Chen, 1995). 

 
 

Figure 6 ASD Measured Spectra of Buckwheat Leaves (Control and Trial 3) Showing a 

16 Nanometer Downshift 

 

Discussion 
 

The frequency shifts represented here are not the only ones observed by all the 

instrumentation, only strong examples, or those that have direct functional group 

assignments. Due to its high concentration in the measured samples, chlorophyll was 

easily identified in the plant spectra. These spectra represent the bulk nitrogen contained 

in the plants with an increased amount of 15N, thereby creating spectral downshifts. 

Future work could include analysis of chemical extractions of plant molecules, which 

could illuminate specific compounds that are being observed. 
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The increased isotope abundance in the fertilizer trials did not appear to correlate 

to the concentration in the plant. This could possibly be due to the limiting factors in 

some cases preventing 15N uptake, or to the duration exposure to the isotope fertilizer. 

Adding the ammonium nitrate isotope to the fertilizer solution decreases the pH as well 

as the exposure of deionized water to atmospheric carbon dioxide. The availability of 

nitrogen for plant uptake decreased as the pH of the liquid fertilizer solution decreased. In 

some cases, the large amount of nitrogen created nitrogen burn, stunting the plants 

growth, and therefore restricting the ease of leaf measurement. Additionally, the 

homemade fertilizer mixture only supplied N-P-K to the plants during their growth and it 

is suspected that other missing micronutrients should be considered in future 

experiments. 

No difference was observed in the fresh versus dried samples of the plant leaves 

with the instruments that measured the mid-wave infrared region, as water is highly 

transparent in this region. However, the dried samples measured by the ASD did yield 

better results. The short-wave infrared region of the ASD data is highly prone to water 

absorption bands, either in the atmosphere or in this case of the leaf samples. No 

functional group overtone shifts were observed by the ASD in the shortwave infrared. 

This is most likely due to the complex chemical nature of the plant leaf and the multiple 

compounds interacting with light energy in this region. Shifts were identified in the first 

derivative of the spectra in the NIR, where healthy vegetation is reflective and is not 

associated with chlorophyll absorptions. No isotope shifts were shown by the ASD data 

in visible regions that are associated with chlorophyll absorptions (0.4-0.7 microns). 
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Additionally, the ASD data showed a decrease in wavelength, and since it is inversely 

related to wavenumber, it would represent an increase in frequency, which is not an 

expected isotope effect. The infrared region is the most indicative portion of the spectrum 

for identifying isotope effects. Based on the results of this experiment, there is reason to 

believe that amine/imine groups and chlorophyll molecules are the main cause. 

Although quantification of the isotope abundance was not possible by this three 

level calibration experiment, it should be addressed in future work. The spectral data 

from the Nicolet or Exoscan did not show an increase in absorption depth based on an 

increase in isotope concentration. In order for quantification to occur, the complex nature 

of plant structures and compounds needs to be further isolated. 

Conclusions 
 

With this study, in addition to traditional mass spectrometry, FTIR and dispersive 

spectroscopy are proven to be sensitive enough to measure isotope effects in plant matter. 

This research highlights the utility of lab and field based spectroscopy for stable isotope 

analysis of plant’s spectral reflectance and absorbance values at the currently known 15N 

response regions. The ease of use and sample preparation of spectroscopy methods is an 

added benefit over the traditional methods. Allowing the bringing of isotope ratio 

measurements into the field and outside of the lab would provide significant 

advancements in the field of geochemistry. 

When coupled with water quality measurements, agricultural non-point source 

pollution areas can be identified more rapidly and over entire watersheds. Hyperspectral 

sensors can now be developed for the capability of remotely analyzing fertilizer sources 
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from their 15N signals. This technique would greatly improve scientist’s abilities to 

rapidly identify improvement areas within watersheds where degraded water quality 

occurs. With the advancement of sensor development, future airborne or space based 

sensors tuned to the frequencies of isotope absorptions could be fielded. This will provide 

researchers with greater biogeochemical understanding at larger spatial scales than are 

currently available. 

There should be continued research on this topic. Specifically, further research of 

plant structures and nitrogen compounds would help to confirm and validate the 

experimental results achieved in this research. This would enable isolation of specific 

molecules that create the spectral shifts when they are exposed to nitrogen isotope 

fertilizers. Additionally, continued experiments and measurements will also help to 

confirm the wavenumber and wavelength locations of the isotope induced shifts and how 

quantification can occur. By saving time and money, this technique can help aid 

researchers by providing more rapid stable isotope analysis in the field, as well as by 

focusing efforts on specific areas for field sampling and subsequent analysis by 

traditional more accurate IRMS. 
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Chapter 3 – Computational Chemistry as a Tool for the 

Identification of 15Nitrogen Stable Isotope Induced Diagnostic 

Wavelength Shifts of Nitrogen Compounds in Plants  
 

To Be Submitted  
 

Abstract 
 

To obtain laboratory based accurate nitrogen stable isotope data for a given 

portion of organic matter in the laboratory, isotope-ratio mass spectrometry (IRMS) is the 

analytical tool of choice. The IRMS data is very high in precision; however, sample run 

times and instrument calibrations are time consuming and costly. The samples collected 

for IRMS analysis represent data from a single location on the Earth’s surface at a 

particular time. Additionally, IRMS is performed only in laboratory conditions. Isotope 

analysis by FTIR has many benefits over traditional IRMS. Field based FTIR 

spectroscopy can be performed in the field, rapidly, at a lower cost, and provide 

geospatially robust data. Wavelength shifts within the infrared spectrum that are caused 

by the presence of 15N can be observed with FTIR spectrometers. A nontraditional 

computational approach is employed to validate the shifts observed experimentally and 

link specific vibrations to their nitrogen containing compounds in plants. The modeled 

data show that isotope induced shifts in ammonium are detected by FTIR spectrometers 

and spectral separation of nitrogen isotopes is possible. This will provide researchers with 

faster and cheaper isotope ratio measurements that could cover broader areas and 

eventually be translated to use with airborne or space-based instruments.  
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Introduction 
 

Stable isotope information can be used like a fingerprint or signature of a material under 

study to indicate origins and history of the element in the material (Engel et al., 1991). 

Stable isotope ratios are traditionally calculated using mass spectrometry. The ratios are 

calculated by comparing the heavier rare isotope in a sample to the more abundant lighter 

isotope and are described as a delta or δ15N value according to the following equation:  

𝛿15N=1000 ⌊
Ratio𝑆𝑎𝑚𝑝𝑙𝑒− Ratio𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

Ratio𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
⌋                   Equation 1 

The standard for nitrogen stable isotope ratio calculations is atmospheric nitrogen with an 

isotope ratio of 0.3613. A new technique for isotope ratio measurements utilizing the 

infrared portion of the electromagnetic spectrum is being developed. In the infrared, 

material composition can be analyzed based on the elemental structure of the supplied 

sample (Coates, 2000). In molecules, bonds flex and rotate in characteristic ways. These 

movements vibrate at specific and known frequencies in the infrared. Isotope effects can 

alter these characteristic frequency locations due to the different masses of the molecule. 

A heavier mass modifies the vibrational modes of the bonds in the molecule and creates a 

downshift in the frequency response. (Quillard et al., 1997). Observation of these changes 

requires instrumentation with high frequency or spectral resolution to measure these 

shifts, termed hyperspectral.  
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The FTIR spectra represent isotope shifts in an additive way that makes specific 

identification of bonds complex as many responses overlap with each other. This requires 

additional analysis to separate individual molecular responses in FTIR data. 

Computational chemistry is a tool that can be used to address this problem. The 

independent compounds contribution to the FTIR data can be known through modeling of 

each compound and calculation of their IR vibrations. This is done with specialty 

software such as Gaussian (Priyangika et al, 2006). Once the specific compounds and 

their frequencies are identified in the FTIR spectrum, development of 15N isotope ratios is 

possible. The novel methodology for isotope ratios can then be translated for use with 

airborne or space-based instruments in the future in order to provide biogeochemical 

understanding at larger spatial scales not possible by current IRMS instrumentation and 

techniques. 

Nitrogen fertilizer sources can be identified in plant matter and the surrounding 

soils as organic manure based fertilizers are more enriched in the heavier 15N isotope 

versus Haber process inorganic fertilizers (Yun et al., 2006). An ability to determine 

fertilizer sources is important in understanding nutrient loads and origins, as 

anthropogenic impacts are often difficult to quantify in the environment. Nitrogen based 

nutrient loads are identified as an improvement area in the assessment of the Chesapeake 

Bay water quality (2016 State of the Bay, 2016).  This research herein shows the 

application for remote detection of improvement areas within watersheds, such as the 

Bay and may enable municipalities to better meet their improvement goals. An important 

area of improvement is the identification of non-point source polluters coming from the 
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agricultural sector. Spatial analysis linking the remote sensing techniques with water 

samples could then be used to help identify non-point source polluters within the 

impaired watersheds such as the Chesapeake Bay. 

Background 
 

A nitrogen stable isotope (15N) labeled experiment was conducted on in order to 

identify the isotope induced frequency/wavelength shifts in plant matter.  It was 

determined that they are detectible by current FTIR and dispersive spectroscopy 

techniques rather than mass spectrometry (Capelle & Macko, 2016). The FTIR 

instruments were used to identify shifts within three distinct regions of the electro-

magnetic spectrum. The largest shift was linked to primary aliphatic amine NH bonds 

centered at 3,296 cm-1 and 3,194 cm-1 for the natural abundance control and the isotope-

enriched spectrum, respectively. This region of the spectrum was shown to correspond to 

the chlorophyll molecule (Capelle & Macko, 2016). Additional shifts were observed in 

the 1,600 cm-1 region associated with amide (N-H) and imine (C-N) bonds. Other amide 

region shifts were also observed around 2,300 cm-1.  These results describe functional 

groups of compounds. Computational chemistry is a tool that can be used to model the 

infrared spectra of the nitrogen compounds in plants to aid in understanding the FTIR 

data.  

There are many nitrogen containing compounds in plants (Coruzzi, 2003; Naik et 

al., 1982). Plants uptake nitrogen as it is a required macronutrient for their growth and 

metabolic processes. Nitrogen is found in plant amino acids, proteins and molecules such 

as chlorophyll and alkaloids (Jones et al., 2013).  Six nitrogen containing plant amino 
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acids, proline, glutamine, glutamate, aspartate, aspartame, asparagine (Vernon & Seely, 

1966), and ammonium were modeled using Gaussian software. Gaussian provides for 

chemical computational modeling under both natural and isotope enriched conditions. 

The software optimizes the structure and is able to calculate the vibrational modes of the 

bonds in order to produce the infrared spectra. These spectral results from the models are 

then able to be compared to the shifts observed from direct measurement of the labeled 

plants by spectral sensors (Capelle & Macko, 2016). 

Materials 
 

Previously collected FTIR experimental data (Capelle & Macko, 2016) from 

buckwheat plants is used in this research for comparison to newly collected IRMS data 

on the same samples. An IsoPrime IRMS was used to measure the actual isotope ratio of 

the control and experimental trials from Capelle and Macko. Control plants were grown 

at natural abundance levels of 15N whereas each of three experimental trials were heavily 

enriched in the isotope. The FTIR data included ten spectra of each experimental group 

as well as the average. Each spectra represents 60 scans from each leaf measured. The 

computational chemical modeling of six amino acids and ammonia was performed using 

Gaussian 03 software on Rivanna, a high performance computing cluster at the 

University of Virginia. 
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Methods 
 

Computational Modeling 

 

The Hartree-Fock method and 6-31G basis set were used for all models in the 

Gaussian software. Two models were run for each of the eight nitrogen containing 

compounds common to plants, one as 14N and the other as 15N. Hartree-Fock Theory 

(also known as self-consistent field theory or SCF theory) provides an approximate 

solution to the Schrödinger equation; the energy calculated serves as an upper bound on 

the actual energy. Specifically, this method invokes variational theory to produce a set of 

equations which can be solved iteratively. It should be noted that computational times 

will scale according to the fourth power of the number of basis sets (N4) (Shuh, 2009), 

therefore the large chlorophyll molecule was not computed in this study. The Gaussian 

computational chemistry program produces theoretical results of compound structures, 

including their vibrational states and resulting infrared spectra of molecules. 

Computational chemistry programs are capable of providing theoretical results of 

compound structures, including the vibrational spectra of molecules and their intensities 

in the infrared spectrum. Programs like Gaussian, Spartan, and NWChem all allow for the 

calculation of the vibrational modes of molecules. These programs allow users to select 

from a variety of potential computational methods that best fits the molecule under study.  

There are two major categories of methods; classical mechanics and quantum 

mechanical.  The classical mechanics approach is more appropriate for systems like 

proteins with hundreds or thousands of atoms whereas quantum mechanical approaches 

are often applied to smaller molecules. 
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The calculations relevant to the work included herein are all quantum mechanical 

in nature; that is they approximate or solve the relevant Hamiltonian. While there are 

numerous quantum mechanical methods/theories for performing these calculations, only 

two relevant methods will be described here. Hartree-Fock Theory (also known as self-

consistent field theory or SCF theory) provides an approximate solution to the 

Schrödinger equation; the energy calculated serves as an upper bound on the actual 

energy. Specifically this method invokes variational theory to produce a set of equations 

which can be solved iteratively. It should be noted that computational times will scale 

according to the fourth power of the number of basis sets (N4) (Shuh, 2009). 

Density Functional Theory (DFT) is a theory relies on the concept that the energy 

of the system can be approximated using the electron density. This method makes use of 

an exchange-correlation operator; this is typically separated into an exchange functional 

and correlation functional. Again, iterative methods are used to find the energy minima. 

Computational times will scale according to the cube of the number of basis sets (N3). 

Density functional theory is widely regarded to be particularly efficient in calculations; 

the accuracy of calculations is similar to higher levels of theory like MP2, while keeping 

computational times shorter and closer to those of less accurate methods like Hartree-

Fock. For this reason, DFT is very popular and lends itself to a wide variety of 

computational chemistry calculations (Shuh, 2009). 

Molecular orbitals are constructed by a linear combination of atomic orbitals 

(LCAO). The selected basis set allows the user to choose the description of molecular 

orbitals. The most common types of atomic orbitals available are Slater Type Orbitals 
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(STO) and Gaussian Type Orbitals (GTO). Gaussian type orbitals compromise somewhat 

in their approximation of the orbital shape, but allow for more rapid calculations. Each 

atomic orbital is assigned at least one corresponding basis function. However, Pople split-

valence basis sets add additional basis functions, which lead to an overall more accurate 

approximation; more basis functions allow for more accurate characterization of the 

molecular orbitals (Shuh, 2009). 

FTIR-ATR Spectral Measurements 

The Thermo Scientific Nicolet 6700 (Nicolet (TM) FT-IR user's guide, 2004)  is a 

laboratory bench top FTIR spectrometer that measures the entire infrared spectrum and 

was set up for 4 cm-1 frequency resolution. The instrument was operated under vendor 

specifications for collection of absorption spectra. The instrument measures the spectral 

response from the sample through direct contact with the ATR diamond crystal. Over a 

few seconds, the instrument collects a series of 60 spectra and averages them together in 

one resulting spectra.  The spectra are then able to be analyzed in the software package 

ENVI 4.7 (Environment for Visualizing Information, Excelis, Inc.).  

Results 
 

Modeled Spectra 

 

The modeled nitrogen compounds show multiple peak shifts that occur at 

different wavenumbers. For each compound modeled, both the 14N spectra and 15N 

spectra are included. The shifts are easily identified (figures 7-24). 
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Figure 7 Modeled spectra of ammonium, 14N (in black) and 15N (in red) shown at full 

spectral resolution. 
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Figure 8 Shift occurring at 1,635 cm-1, 14N (in black) and 15N (in red) in the ammonium 

modeled spectra. 
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Figure 9 Shift occurring at 3,700 cm-1,  14N (in black) and 15N (in red) in the ammonium 

modeled spectra 
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Figure 10 Modeled spectra of asparagine, 14N (in black) and 15N (in red) shown at full 

spectral resolution 
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Figure 11 Shift occurring at 1,800 cm-1, 14N (in black) and 15N (in red) in the asparagine 

modeled spectra 



48 

 

   

 
Figure 12 Shifts occurring at 3,735 cm-1, 3,815 cm-1 and 3,935 cm-1, 14N (in black) and 

15N (in red) in the asparagine modeled spectra 
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Figure 13 Modeled spectra of 14N (in black) and 15N (in red) aspartame shown at full 

spectral resolution 



50 

 

   

 
Figure 14 Shift occurring at 1,790 cm-1, 14N (in black) and 15N (in red) in the aspartame 

modeled spectra 
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Figure 15 Shifts occurring at 3,735 cm-1 and 3,910 cm-1, 14N (in black) and 15N (in red) in 

the aspartame modeled spectra 
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Figure 16 Modeled spectra of 14N (in black) and 15N (in red) aspartate shown in full 

spectral resolution. 
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Figure 17 Shift occurring at 3,775 cm-1, 14N (in black) and 15N (in red) in the aspartate 

modeled spectra 
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Figure 18 Modeled spectra of 14N (in black) and 15N (in red) glutamate shown at full 

spectral resolution 
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Figure 19 Shift occurring at 3,755 cm-1, 14N (in black) and 15N (in red) in the glutamate 

modeled spectra. 
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Figure 20 Modeled spectra of 14N (in black) and 15N (in red) glutamine shown at full 

spectral resolution. 
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Figure 21 Shifts occurring at 1,790 cm-1and 1,810 cm-1, 14N (in black) and 15N (in red) in 

the glutamine modeled spectra 



58 

 

   

 
Figure 22 Shifts occurring at 3,830 cm-1 and 3,950 cm-1, 14N (in black) and 15N (in red) in 

the glutamine modeled spectra 
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Figure 23 Modeled spectra of 14N (in black) and 15N (in red) proline shown at full 

spectral resolution. 
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Figure 24 Shift occurring at 3,797 cm-1, 14N (in black) and 15N (in red) in the proline 

modeled spectra 

FTIR-ATR Spectra 

The ammonium nitrate, sodium nitrate and glycine isotope labels that were used 

in the original enrichment experiments from Capelle and Macko (2016) were measured to 

identify potential wavelength shifts observable in the resulting spectra. For each, the 

natural abundance and the 99% 15N labels of each compound were collected by the FTIR-

ATR spectrometer and show clear separation of peaks and their wavenumber shifts along 

the spectrum (figures 25-38).  
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Figure 25 Natural abundance ammonium nitrate (in black) and 99% 15N ammonium 

nitrate label (in red) shown in full FTIR-ATR spectral resolution. 
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Figure 26 Shift occurring at 1,415 cm-1 between the natural abundance ammonium 

nitrate (in black) and the 99.99% 15N label (in red). 
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Figure 27 Shift occurring at 3,241 cm-1 between the natural abundance ammonium 

nitrate (in black) and the 99.99% 15N label (in red). 
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Figure 28 Natural abundance sodium nitrate (in black) and 99% 15N sodium nitrate label 

(in red) shown at full FTIR-ATR spectral resolution. 
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Figure 29 Shift occurring at 812 cm-1 between the natural abundance sodium nitrate (in 

black) and the 99.99% 15N label (in red). 
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Figure 30 Shift occurring at 1,312 cm-1 between the natural abundance sodium nitrate (in 

black) and the 99.99% 15N label (in red). 
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Figure 31 Shift occurring at 1,787 cm-1 between the natural abundance sodium nitrate (in 

black) and the 99.99% 15N label (in red). 
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Figure 32 Shift occurring at 2,395 cm-1 between the natural abundance sodium nitrate (in 

black) and the 99.99% 15N label (in red). 
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Figure 33 Shift occurring at 2,692 cm-1 and 2,788 cm-1 between the natural abundance 

sodium nitrate (in black) and the 99.99% 15N label (in red). 
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Figure 34 Glycine amino acid spectra with 15N enrichment (in red) and natural 

abundance (in black) shown at full FTIR-ATR spectral resolution. 
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Figure 35 Shift occurring at 1,027 cm-1 between the natural abundance glycine (in black) 

and the 99.99% 15N label (in red). 
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Figure 36 Shift occurring at 1,150 cm-1 between the natural abundance glycine (in black) 

and the 99.99% 15N label (in red). 
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Figure 37 Shift occurring at 1,435 cm-1and 1,492 cm-1 between the natural abundance 

glycine (in black) and the 99.99% 15N label (in red). 
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Figure 38 Shift occurring at 2,595 cm-1 between the natural abundance glycine (in black) 

and the 99.99% 15N label (in red). 

All modeled natural abundance and isotope edited nitrogen compounds along with 

the experimental trial averaged FTIR spectra of buckwheat are analyzed together for 

feature analysis (figure 39 and 40). Modeled data intensities and experimental data 

intensities have are scale independent and not correlated here. The positions of intensity, 

the wavenumber region, along the graph’s x-axis are the important features to observe. 

The areas where the experimental data has a corresponding peak to the modeled data 

suggest that there is a greater abundance of the nitrogen containing plant compounds in 

the measured sample. Therefore the peak in the FTIR data is likely caused by that 

nitrogen containing compound identified in that region. 



75 

 

   

 

 Figure 39 Part A: Nicolet FTIR-ATR Spectra of enriched buckwheat 

experiment that includes the spectra of the control and three experimental 

trials containing 15N. 
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Part B: Spectra of seven nitrogen containing compounds in plants 

showing spectra of both 14N and 15N variations. Spectra were modeled 

using Gaussian software and plotted in ENVI for spectral signatures 

analysis. 
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Figure 39 Part C: A plot of both the experimental FTIR-ATR spectra (in black in part a) 

and the modeled plant nitrogen compounds (in color in part b). 

 

.  
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Figure 40 Overlay plot of the experimental FTIR-ATR spectra from enriched buckwheat 

plants (in black), glycine (in red), ammonium nitrate (in green) and sodium nitrate (in 

blue). 

Spectral analysis of all the modeled and measured data show that only one peak 

position overlaps with the experimental FTIR data. This is the area centered near 1,630 

cm-1 where there are corresponding peaks in the experimental and modeled data. The 

computational modeling can attribute this area to ammonium (figure 41) and confirm a 

frequency downshift from 1,643 cm-1 to 1,635 cm-1 when labeled with 15N isotope.  



79 

 

   

 

Figure 41 Gaussian modeled infrared spectra of ammonium with inset of matching 

wavenumber shift region occurring near 1,600 cm-1 
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Figure 42 Modeled 15N Ammonium Compound (in red) and 14N (in black) overlaid with 

the FTIR Buckwheat Spectrum from Capelle and Macko (2016). 

 The region near 1,600 cm-1 is consistent with the amine/amide/imine chemical 

functional group absorption regions reported previously (Capelle & Macko, 2016). This 

ammonium isotope effect was observed in the Nicolet data causing a 15 wavenumber 

downshift from 1,634 cm-1 to 1,619 cm-1 (figure 43). This confirms and validates the 

isotope effect this region.  
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Figure 43 FTIR Measured Buckwheat Spectrum from Capelle and Macko, 2016. 15N 

isotope labeled spectrum in red compared to natural abundance in black. 

 

A one-tailed t-test was performed between the control and experimental trials as 

the shift was expected to shift in only one direction. Comparing the peak intensity value 

at the identified wavenumbers that corresponds to the 15N and 14N peaks it can be 

determined if the shift observed is significant (table 1). Interestingly, only the control 

when compared to the averaged spectra from trial two was significant. 

 

Test t Score t Critical  Alpha 

Control Average to Trial 1 
Average -19.91 1.65 0.05 

Control Average to Trial 2 
Average 22.42 1.65 0.05 

Control Average to Trial 3 
Average 0.63 1.65 0.05 

 

Table 1 Ammonium region t- scores of the control and the three trials  



82 

 

   

The IRMS data from three samples of each experimental trial and the control is 

shown in table 2. Clearly all measured values are well above natural abundance and show 

contamination likely occurring from sample handling and preparation. Natural 

abundances for the control are 1-3 ‰, or delta 15N. It is interesting to notice the other 

trials with higher values of %N were not statistically different. An abundance of factors 

can impact these results and range from IRMS contamination, FTIR instrument settings 

and instrument sensitivity or signal to noise. 

Sample Delta 15N %N 

Control 178.1 3.29 

Control 198.8 3.62 

Control 164.9 3.94 

Trial 1 129,238 5.53 

Trial 1 119,995 6.09 

Trial 1 138,210 6.34 

Trial 2 76,421 7.04 

Trial 2 71,546 6.97 

Trial 2 71,750 6.87 

Trial 3 91,650 8.75 

Trial 3 94,810 8.28 

Trial 3 89,784 8.22 

Table 2 IRMS Results on Experimental Buckwheat Plants 

 

Discussion 
 

These frequency shifts represented here are not the only ones observed by all the 

instrumentation measured, but are strong examples or those that have direct functional 

group and amino acid assignments. Other nitrogen plant compounds like chlorophyll 

were not able to be modeled due to the complex structure and resulting computational 

time. The six modeled amino acids and ammonium contribute largely to peak broadening 

that is observed in the experimental data. Experimental data was measured directly on the 



83 

 

   

whole leaf thereby measuring all compounds within the leaf, resulting in mostly mixed 

vibrations that are inseparable at the instrument resolutions of 4 cm-1.  Ammonium 

vibrations however appear to be isolated to two regions, (figure 41), of which the region 

around 1,600 cm-1 is directly observed in the FTIR acquired data. The peak beyond 3,500 

cm-1 is muted by other compounds that also vibrate at this region that are either in a 

greater quantity, have stronger vibrations or both. Particularly, chlorophyll was 

previously shown to be a dominant molecule in this region (Capelle & Macko, 2016) and 

likely masks the ammonium features. The fact that ammonium only vibrates in two 

locations within this region of the spectrum is important for quantification. The 

calculation complexity increases when more regions need to be analyzed. Ammonium is 

a small molecule and likely only has small interactions with other plant based molecules, 

unlike the more complex glutamine amino acid. 

Performing continuum removal (figure 44), on the spectra of the FTIR 

experimental data in only the ammonium region (around 1,640 cm-1) highlights the 

spectral features at 1,637 cm-1 and 1,642 cm-1 corresponding to the ammonium amino 

acid as validated from the computational modeling performed in this research. Two peaks 

can now be observed that otherwise are broadened into one wider peak using this 

technique. These two peaks are caused by the two variants of nitrogen, 14N and 15N 

available for plant uptake as confirmed by the modeled data. Additionally, the peaks in 

the FTIR data are somewhat offset from the peaks in the modeled data. The instrument 

resolution at 4 cm-1 indicates that the peak can shift within that narrow resolution 

window. Continuum removal not only breaks the broad peak (figure 43) into two dips or 



84 

 

   

troughs but also pinpoints the specific locations at 1637.7 cm-1 and 1642.5 cm-1 (figure 

44). Note that the sensor noise is shown as the curves are not smooth.  

 

Figure 44 Continuum Removed FTIR Spectra in Ammonium Region 

The data from trial three (in blue in figure 44) has a larger response in this region, 

indicated as a deeper trough in continuum removal. The spectral resolution of the 

spectrometer and scale of the graphic makes the data appear coarse. This signifies a need 

for increased resolution in order to more accurately detect and quantify nitrogen isotope 

ratios from lab based FTIR spectroscopy. With the lack of higher resolution data, the 

spectra can be smoothed mathematically and inverted to derive a peak value that is 

correlated to abundance or quantity (figure 45). 
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Figure 45 Smoothed and Inverted Ammonium FTIR Spectra from Capelle and Macko, 

2016. 

The abundance values of each nitrogen isotope are shown in table 3 along with 

the ratio of the FTIR value of 15N to 14N. This ratio cannot be compared to above IRMS 

measurements in table 2 without further research and measurement, specifically on 

samples at natural abundance levels and under conditions where no contamination has 

occurred.  

 
15N Peak FTIR 

Value 

14N Peak FTIR 
Value 

FTIR Ratio 
(15N/14N) 

Control 0.002805429 0.001588952 0.765584486 

Trial 1 0.002340095 0.001537 1.522508133 

Trial 2 0.002439333 0.002118048 1.151689197 

Trial 3 0.003235571 0.001836524 1.761790753 

Table 3 Peak FTIR values and FTIR ratios 
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Conclusions 
 

The FTIR instrumentation is proven to measure isotope effects in plant matter at 

large concentrations. Computational chemical modeling validated the shifts observed in 

experimental data specifically due to ammonium in the 1600 cm-1 region. The ratio of the 

peak values for each nitrogen variant in the ammonium region should continue to be 

investigated and determine its correlation to IRMS measurements. It is apparent that the 

current state of the art FTIR and dispersive spectrometers need advancement for detection 

and quantification at natural abundance levels. Refinement in signal to noise within this 

narrow band region would enable ultraspectral sampling of each isotope species in the 

infrared. Continued research and development in this topic area should occur to develop a 

fine tuned field based spectrometer centered on ammonium 15N assimilation in plants.  

Enabling isotope ratio measurements to be brought out into the field and outside 

of the lab would provide significant advancements in the field of geochemistry. A 

potential application where this technology could assist is in the research and mitigation 

of nitrogen based pollution in water ways. When coupled with water quality 

measurements, non-point source pollution areas can be identified sooner and over entire 

watersheds because organic based fertilizers, like manure, are more enriched in 15N than 

traditional agricultural or Haber process fertilizers (Townsend et al., 2004). As sensor 

development advances, future ground, airborne or space based sensors could be fielded 

that are tuned to the frequencies of isotope absorptions developed in this research. 
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Chapter 4 – Development of the Infrared Nitrogen Stable 

Isotope Ratio 

 
To Be Submitted  
 

Abstract 
 

The measurement of nitrogen stable isotope data in vegetation samples is possible 

through isotope-ratio mass spectrometry (IRMS). This technique is very high in accuracy 

and precision; however, sample preparation methods, run times and instrument 

calibrations are time consuming and costly. Additionally, IRMS measurements are only 

possible in the laboratory and sample measurements only represent data from a single 

location on the Earth’s surface at a time. These limitations have created the desire for 

researchers to create an alternative method for IRMS measurements, particularly one 

capable of actively measuring samples in the field. This is possible through infrared 

spectral sensors. Isotope induced wavelength shifts are observable in lab and field based 

infrared spectrometers under artificially enriched nitrogen isotope conditions (Capelle & 

Macko, 2016). Two sets of field samples were acquired to observe the isotope induced 

shifts identified at natural abundance levels in grass for comparison to the shifts 

identified under enrichment. Data was collected on the field samples using a 

spectroradiometer and two FTIR spectrometers. Four isotope induced wavelength shift 

regions (703 nm, 1,619 cm-1, 2,363 cm-1, and 3,300 cm-1) were analyzed in the data from 

the field samples and show trends that correlate to observations identified during isotope 

enrichment (Capelle & Macko, 2016). Furthermore, the field sample data was used to 

derive a stable isotope ratio using infrared data, called the infrared nitrogen stable isotope 
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(INSI) ratio, of 15N in grass from the peak areas identified in two regions (1,600 cm-1 and 

2,300 cm-1) of the infrared data associated with each isotope. This was performed through 

peak separation and modeling of the FTIR-ATR data. The FTIR-ATR infrared data based 

nitrogen stable isotope (INSI) ratios calculated from the field samples were consistent 

with expected 15N enrichment levels. This indicates a strong foundation for the continued 

development of this methodology. Based on this research, future sensors could be 

developed to enable the measurement of nitrogen stable isotope ratios in the field with 

handheld, airbased or spacebased infrared spectrometers.  

Keywords 
 

Stable Isotopes; FTIR; Infrared Spectroscopy; Nitrogen 

 

Introduction 
 

Stable isotope information can be used like a fingerprint or signature of a material 

under study to indicate origins and history of the element in the material (Townsend et 

al., 2004). Nitrogen fertilizer sources can be identified in plant matter and the 

surrounding soils as organic manure based fertilizers are more enriched in the heavier 15N 

isotope versus Haber process inorganic fertilizers (Townsend et al., 2004; Yun et al., 

2006). An ability to determine fertilizer sources is important in understanding nutrient 

loads and origins, as anthropogenic impacts are often hard to quantify in the environment. 

A new technique for isotope ratio measurements utilizing the infrared portion of 

the electromagnetic spectrum is developed (Capelle & Macko, 2016). In the infrared, 

elemental composition can be analyzed based on the elemental structure of the supplied 

sample (Coates, 2000). Molecular bonds flex and rotate in characteristic ways. These 
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movements vibrate at specific and known frequency locations in the infrared. The 

presence of an isotope can alter these characteristic frequency locations due to the heavier 

mass of the isotope. The heavier mass changes the vibrational modes of all the atoms in 

the labeled molecule and create a downshift in frequency from the expected frequency in 

the lighter isotope molecule (Quillard et al., 1997). These changes require 

instrumentation with high frequency or spectral resolution to measure these shifts, often 

termed hyperspectral. By utilizing hyperspectral instrumentation that operates in the 

infrared these isotopes effects are observable at both enriched and natural abundance 

levels.  

Background 
 

A nitrogen stable isotope (15N) labeled fertilizer plant growth enrichment 

experiment was conducted previously (Capelle & Macko, 2016) to identify isotope 

induced frequency or wavelength shifts in the measured spectral data from three 

spectrometers; the Analytical Spectral Devices Inc. (ASD) Field Spec Pro, the Agilent 

4100 Exoscan and the Thermo Scientific Nicolet 6700 with an attenuated total reflectance 

(ATR) sample interface. High levels of 15N was supplied to the plants using 99% 15N-

labelled fertilizer solutions. In comparison to a control plant containing natural 

abundance (0.0036%) levels of 15N in traditional fertilizer, four regions of interest were 

identified in the instrument data. These regions can be associated with specific chemical 

functional groups or known plant behaviors (table 4). 
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Instrument Identified 
Feature in 

Control Plant 

Identified Feature 
in 15N Labeled 

Plant 

Functional 
Group or 
Behavior 

ASD 
Spectroradiometer 

719 nm 703 nm Vegetation  
Red-Edge 

Exoscan FTIR 
Spectrometer 

2,372 cm-1 2,363 cm-1 NH Bonds  

Nicolet FTIR-ATR 
Spectrometer 

3,296 cm-1 3,194 cm-1 Primary 
aliphatic 
amine NH 
bonds / 
Chlorophyll  

Nicolet FTIR-ATR 
Spectrometer 

1,634 cm-1 1,619 cm-1 CN Bonds / 
Amide II 

 

Table 4 Regions of interest where isotope induced wavelength / wavenumber shifts were 

observed in collected data from three different instruments during a 15N isotope 

enrichment plant growth experiment 

Materials 
 

Field Samples 

 

Two sets of field samples were collected, each with different expected 15N signals 

to allow for the observation of the regions identified under enrichment to be observed at 

natural abundance levels. The first set of samples, termed herein as grass samples, contains 

three groups of samples and were collected in a Virginia hay field and within a poultry 

farm. The first group was collected where commercial inorganic Haber process fertilizer 

had been applied to the fields at least once per year for over 15 years. The expected 15N 

signals in the grasses, termed herein as inorganic grass, are close to atmospheric levels, 

near zero permil or 0.0036 % 15N abundance. The second group of samples were collected 

in an adjacent field where cattle have been grazing for the same time period, termed herein 
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as organic grass. The 15N signals are expected to be more enriched due to the organic fecal 

matter under constant application in the field for nearly the same time period as the 

inorganic grass samples. The last group of field samples in this set were collected from 

grass growing within poultry cages at Timbercreek Farm in Charlottesville, Virginia.  

Timbercreek works with the University of Virginia’s Environmental Science Department 

to enable scientific research of the biochemical processes that occur in the sustainably 

managed farm. The grass within the cages was exposed to a higher amount of poultry litter 

leading to an expected greater level of 15N enrichment.  

The second set of grass field samples, termed herein as stream bank samples and 

identified by their monitoring site number, were collected along six Virginia streams 

shown in figure 12; Toms Brook (NS05), Stoney Creek (NS14), Stanley (FP10), Muddy 

Creek (JR01), Pleasant Run (JR10) and Cooks Creek (JR07), with known elevated nitrate 

nitrogen content and in some cases with levels above the Virginia Department of 

Environmental Quality (DEQ) total maximum daily load (TMDL) of 10 ppm. The grass 

sample nitrogen values are assumed to be related to the streams with known elevated 

nitrate nitrogen levels in the water quality samples due to the common nitrogen source 

contained in the watershed runoff. Water sample data was acquired from the Friends of 

the Shenandoah River (FOSR) water quality monitoring program and website (Friends of 

the Shenandoah River). The Friends of the Shenandoah River (FOSR) is a 72 member 

volunteer group who sample tributaries and the Shenandoah four times per month and has 

a record of 23 years. The data is sent for laboratory analysis at Shenandoah University. 

The sites chosen represent nutrient loading from different sources with expected different 
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nitrogen isotope signals.  Three of the impaired sites are downstream of known point 

source polluters. NS05 and FP10 are sites at wastewater treatment plants and NS14 is 

located at a chicken processing plant. Their June 2014 nitrate-nitrogen loads were 32.01, 

6.48 and 6.86 ppm respectively. The remaining three are nonpoint source locations and 

include sites along Muddy Creek, Pleasant Run and Cooks Creek. Their most recent data 

collection for nitrate nitrogen was 6.52, 5.95, and 5.92 respectively. Each site has had 

data collections since 1997, 2001 or 2003 and a predominance of the data show 

impairment. It is hypothesized that the three point source sample origins are organic and 

will be enriched in 15N. 

Grass samples were acquired as close to each stream as possible and also from grass 

growing within the shallow areas of each stream.  Samples collected that were growing 

within the stream are identified by the designator AQ following their monitoring site 

number. In two cases (FP01 and JR02), after sample preparation there was not enough 

usable material for measurement and the samples were then disregarded from the study.  
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Figure 46 Six FOSR Monitoring sites where grass samples were collected along the 

stream banks 
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Sample Set Sample Group Sample 

Grass Samples 

Poultry 

Poultry0 

Poultry1 

Poultry2 

Poultry3 

Poultry4 

Poultry5 

Poultry6 

Poultry7 

Poultry8 

Poultry9 

Organic 

Organic0 

Organic1 

Organic2 

Organic3 

Organic4 

Organic5 

Organic6 

Organic7 

Organic8 

Organic9 

Inorganic 

Inorganic0 

Inorganic1 

Inorganic2 

Inorganic3 

Inorganic4 

Inorganic5 

Inorganic6 

Inorganic7 

Inorganic8 

Inorganic9 
Table 5 List of grass samples and sample groups of samples collected in fields utilizing 

different fertilizers; organic cow manure, inorganic Haber process and organic poultry 

manure. 
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Sample Set Stream Sample 

Stream Bank Samples 

Stanley Creek 

FP10_01 

FP10_02 

FP10_AQ_01 

FP10_AQ_02 

Muddy Creek 
JR01_01 

JR01_02 

Cook’s Creek 
JR07_01 

JR07_02 

Pleasant Run 

JR10_01 

JR10_02 

JR10_AQ_01 

JR10_AQ_02 

Tom’s Brook 

NS05_01 

NS05_02 

NS05_AQ_01 

NS05_AQ_02 

Stoney Creek 

NS14_01 

NS14_02 

NS14_AQ_01 

NS14_AQ_01 
Table 6 List of field samples collected along stream banks in Virginia located within the 

Chesapeake Bay watershed and with historic poor water quality due to elevated levels of 

nitrate nitrogen; likely from agricultural runoff in these areas. 

 

Instrumentation 

The Analytical Spectral Devices Inc. (ASD) Field Spec Pro (FieldSpec(R) pro 

user's guide, 2002)) is a dispersive spectroradiometer. It was used to measure plant 

reflectance from the visible to the overtone vibrations region up to 2.5 microns. It has a 

spectral resolution of up to ten nanometers in the short-wave infrared. The Agilent 4100 

Exoscan (Agilent 4100 exoscan FTIR operation manual, 2013) is a FTIR spectrometer 

that measures from 2.5 – 15 microns (4000 – 650 cm-1) with a frequency resolution of up 

to 4 cm-1. It can also be used for field measurements. The Thermo Scientific Nicolet 6700 
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(Nicolet (TM) FT-IR user's guid,. 2004) is a laboratory bench top FTIR spectrometer that 

measures the entire infrared spectrum and was set up for 4 cm-1 frequency resolution. 

Software 

Two software packages were used in this study; ENVI 4.7 and PeakFit 4.12. The 

software package ENVI (Environment for Visualizing Information, Excelis, Inc.) 

compared and analyzed the resulting spectra collected by each instrument. ENVI enables 

spectral libraries to be created for each sample grouping. PeakFit is a spectroscopy tool to 

identify peaks in spectral data through modeling and allows for peak areas to be measured. 

Methods 
 

Field Sampling and Measurement  

All grass samples were dried to remove water content and measured across all 

three instruments according to vendor specifications for the collection of reflectance or 

absorption spectra. Over a few seconds, each instrument collects a series of either 30 or 

60 sample scans and averages them together in one resulting spectra. For the grass 

sample set, both the ASD and Exoscan instruments resulted in ten spectra representative 

of ten different clippings of grass and in the case of the Nicolet three spectra were 

produce representing three different clippings. For the stream bank sample set, two 

spectra of each monitoring site were produced that each represent two different clippings 

in two different locations. The multiple spectra collected within each sample set were 

used to assess sample variability and determine consistency between results.  
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Peak Analysis 

 The instrument spectra were truncated to the desired analytical region (table 4). 

Data were then normalized to a range of 0-1, baseline corrected and smoothed with a 

Savitsky-Golay filter to remove instrument noise. Peak fitting was performed using the 

residuals method to achieve a peak fit with an r2 value of at least 0.98. The model was 

then used to calculate the integrated peak area for each peak identified near the features 

listed in table 4.  

Stable Isotope Ratio Calculation 

 Peak areas derived from the PeakFit model were used to calculate the stable 

isotope ratio and the resulting δ15N value according to the following equation:  

𝛿15N=1000 ⌊
Ratio𝑆𝑎𝑚𝑝𝑙𝑒− Ratio𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑

Ratio𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
⌋                   Equation 1          

The standard for nitrogen is atmospheric nitrogen with an isotope ratio of 0.3613.  

 

Results 
 

Each of the four regions identified in the table 4 were analyzed in the field sample 

data to compare to the 15N enriched plant spectra, collected previously (Capelle & 

Macko, 2016). A spectral signature comparison was performed to look for the presence 

of the features identified during enrichment by Capelle and Macko (2016). In cases where 

the features were present in the natural abundance samples, the data was analyzed in 

PeakFit to derive a stable isotope ratio. 
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Grass Sample Spectral Analysis 

Instrument Functional 
Group or 
Behavior 

Identified 
in Poultry 

Grass 
Sample 

Identified 
in 

Inorganic 
Grass 

Sample 

Identified 
in 

Organic 
Grass 

Sample 

ASD 
Spectroradiometer 

Vegetation  
Red-Edge 

No No No 

Exoscan FTIR 
Spectrometer 

NH Bonds Yes Yes Yes 

Nicolet FTIR-ATR 
Spectrometer 

Primary 
aliphatic 

amine NH 
bonds / 

Chlorophyll 

No No No 

Nicolet FTIR-ATR 
Spectrometer 

CN Bonds 
/ Amide II 

Yes Yes Yes 

 

Table 7 Results of analysis of the grass sample data from three spectrometers describing 

if the data shows a similar wavelength / wavenumber shift or feature to the ones 

identified during a plant isotope enrichment growth experiment 

The measured data from the ASD spectroradiometer’s vegetation red-edge feature 

(figures 47-49) in all samples (shown in black) have a trend consistent with the 

previously collected enriched buckwheat sample (shown in red). No samples show a 

feature consistent with the growth experiment control (shown in green). This is not an 

expected result as the buckwheat plants in the previously experiment were heavily 

enriched with 15N. This eliminates this region from continued investigation as the field 

samples should not contain the same amount of the stable isotope as the plants in the 

experiment.  
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Figure 47 ASD spectra of ten grass samples growing under a poultry cage (in black) 

compared to the enriched buckwheat experiment data (in red) and the buckwheat control 

from the same experiment (in green). 
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Figure 48 ASD spectra of ten grass samples growing in a field with regular application 

of agricultural grade inorganic fertilizer (in black) compared to the enriched buckwheat 

experiment data (in red) and the buckwheat control from the same experiment (in green). 
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Figure 49 ASD spectra of ten grass samples growing in a cow field (in black) compared 

to the enriched buckwheat experiment data (in red) and the buckwheat control from the 

same experiment (in green). 

The data from the Exoscan near the NH bond region shows the presence of the 

expected features (figures 50-52).  The enriched buckwheat plants (in red) clearly show 

deeper features near 2,300 cm-1 that are both not observed in the control from the 

buckwheat growth experiment and are observed in the grass samples to a lesser degree. 

The Exoscan data in this region for these grass samples (poultry, inorganic and organic) 

were selected for peak analysis and infrared based isotope ratio calculations.  
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Figure 50 Exoscan spectra of ten grass samples growing under a poultry cage (in black) 

compared to the enriched buckwheat experiment data (in red) and the buckwheat control 

from the same experiment (in green). 
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Figure 51 Exoscan spectra of ten grass samples growing in a field with regular 

application of agricultural grade inorganic fertilizer (in black) compared to the enriched 

buckwheat experiment data (in red) and the buckwheat control from the same experiment 

(in green). 
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Figure 52 Exoscan spectra of nine grass samples growing in a cow field (in green) 

compared to the enriched buckwheat experiment data (in red) and the buckwheat control 

from the same experiment (in black). 

The measured data from the Nicolet FTIR-ATR spectrometer is broken down into 

two different regions; the NH and CN bond regions. The NH bond region near 3,300 cm-1 

shows one broad peak that spans over 600 wavenumbers (figure 53). The data does show 

a peak that has a frequency downshift in the poultry grass and organic grass, however 

peak separation over this broad span is complex and precludes this region from peak 

analysis with PeakFit. The broad shape means that the model has low confidence in the 

potential peaks assigned. Further research into the compounds and behaviors that occur 

within this region are required.  
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Figure 53 Nicolet FTIR-ATR spectra in the 3,300 cm-1 region of three grasses of each 

group; poultry (in black) where grass was growing in a poultry cage, inorganic (in 

green) from grass growing in a field with regular application of agricultural grade 

inorganic fertilizer, and organic (in red) where grass was growing in a cow field. 

The FTIR-ATR spectrometer data in the CN bond region near 1,600 cm-1 show 

distinct wavenumber shifts between grass sample groups (figure 54). The three spectra 

from each sample group trend similarly within the group and also different between the 

groups. This is a good indicator for peak separation in this region where one peak is 

attributed to 15N and the other to 14N.  
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Figure 54 Nicolet FTIR-ATR spectra in the 1,600 cm-1 region of three grasses of each 

group; poultry (in black) where grass was growing in a poultry cage, inorganic (in 

green) from grass growing in a field with regular application of agricultural grade 

inorganic fertilizer, and organic (in red) where grass was growing in a cow field. 

 

Stream Bank Sample Spectral Analysis 

The ASD and Exoscan measurements were not able to be collected on the field 

sample data due to availability and instrument malfunctions. Additionally, the NH bond 

region around 3,300 cm-1 in the Nicolet FTIR-ATR data was not assessed based on the 

inconclusive results from the grass samples described above. All stream bank sample data 
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was analyzed in the CN bond region in the Nicolet FTIR-ATR data around 1,600 cm-1. 

 

Figure 55 Nicolet FTIR-ATR measured data in the CN bond region near 1,600 cm-1 for 

grass collected along and within (designated AQ) six Virginia streams with known 

elevated nitrogen levels. 

Peak Analysis 

PeakFit models (figures 56 – 114) were computed for two different spectral 

regions based on observation of features in the spectral data. PeakFit models were 

computed of the Nicolet FTIR-ATR data near 1,300 cm-1 for both field grass samples and 

stream bank grass collected. Only the grass sample set enabled PeakFit models to be 

computed from the Exoscan collected data near 2,300 cm-1.  No models were created 

from the Nicolet FTIR-ATR collected data near 3,300 cm-1. PeakFit models achieved a 

good fit with an r2 of at least 0.98 and a low standard error. Peaks were chosen from the 



109 

 

   

models for stable isotope analysis that matched previous data collected during the isotope 

enriched buckwheat growing experiment or through computational chemistry modeling.  

 
Figure 56 PeakFit model of poultry grass sample 0 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 57 PeakFit model of poultry grass sample 2 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 58 PeakFit model of poultry grass sample 3 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 59 PeakFit model of poultry grass sample 4 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 60 PeakFit model of poultry grass sample 5 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 61 PeakFit model of poultry grass sample 6 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 62 PeakFit model of poultry grass sample 7 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 63 PeakFit model of poultry grass sample 8 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 64 PeakFit model of poultry grass sample 9 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 65 PeakFit model of inorganic grass sample 1 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 66 PeakFit model of inorganic grass sample 3 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 67 PeakFit model of inorganic grass sample 4 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 68 PeakFit model of inorganic grass sample 5 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 69 PeakFit model of inorganic grass sample 6 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 70 PeakFit model of inorganic grass sample 7 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 71 PeakFit model of inorganic grass sample 8 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 72 PeakFit model of inorganic grass sample 9 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 73 PeakFit model of organic grass sample 0 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 74 PeakFit model of organic grass sample 1 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 75 PeakFit model of organic grass sample 3 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 76 PeakFit model of organic grass sample 4 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 77 PeakFit model of organic grass sample 5 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 78 PeakFit model of organic grass sample 6 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 79 PeakFit model of organic grass sample 7 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 80 PeakFit model of organic grass sample 8 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 



122 

 

   

 
Figure 81 PeakFit model of organic grass sample 9 from the Exoscan data in the 2,300 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 82 PeakFit model of poultry grass sample 1 from the Nicolet data in the 1,600 cm-

1 region. Upper graph displays the input measured data in white with the 95% confidence 

interval of the model in pink that consists of the separated peaks shown in the bottom 

graph. 
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Figure 83 PeakFit model of poultry grass sample 2 from the Nicolet data in the 1,600 cm-

1 region. Upper graph displays the input measured data in white with the 95% confidence 

interval of the model in pink that consists of the separated peaks shown in the bottom 

graph. 

 
Figure 84 PeakFit model of poultry grass sample 3 from the Nicolet data in the 1,600 cm-

1 region. Upper graph displays the input measured data in white with the 95% confidence 

interval of the model in pink that consists of the separated peaks shown in the bottom 

graph. 
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Figure 85 PeakFit model of inorganic grass sample 1 from the Nicolet data in the 1,600 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 86 PeakFit model of inorganic grass sample 2 from the Nicolet data in the 1,600 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 87 PeakFit model of inorganic grass sample 3 from the Nicolet data in the 1,600 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 88 PeakFit model of organic grass sample 1 from the Nicolet data in the 1,600 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 89 PeakFit model of organic grass sample 2 from the Nicolet data in the 1,600 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 90 PeakFit model of organic grass sample 3 from the Nicolet data in the 1,600 

cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Figure 91 PeakFit model of stream bank grass sample FP10_01 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 

 
Figure 92 PeakFit model of stream bank grass sample FP10_02 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 
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Figure 93 PeakFit model of stream bank grass sample FP10_AQ_01 from the Nicolet 

data in the 1,600 cm-1 region. Upper graph displays the input measured data in white 

with the 95% confidence interval of the model in pink that consists of the separated peaks 

shown in the bottom graph. 

 
Figure 94 PeakFit model of stream bank grass sample FP10_AQ_02 from the Nicolet 

data in the 1,600 cm-1 region. Upper graph displays the input measured data in white 

with the 95% confidence interval of the model in pink that consists of the separated peaks 

shown in the bottom graph. 
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Figure 95 PeakFit model of stream bank grass sample JR01_01 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 

 
Figure 96 PeakFit model of stream bank grass sample JR01_02 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 
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Figure 97 PeakFit model of stream bank grass sample JR07_01 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 

 
Figure 98 PeakFit model of stream bank grass sample JR07_02 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 
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Figure 99 PeakFit model of stream bank grass sample JR10_01 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 

 
Figure 100 PeakFit model of stream bank grass sample JR10_02 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 
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Figure 101 PeakFit model of stream bank grass sample JR10_AQ_01 from the Nicolet 

data in the 1,600 cm-1 region. Upper graph displays the input measured data in white 

with the 95% confidence interval of the model in pink that consists of the separated peaks 

shown in the bottom graph. 

 
Figure 102 PeakFit model of stream bank grass sample JR10_AQ_02 from the Nicolet 

data in the 1,600 cm-1 region. Upper graph displays the input measured data in white 

with the 95% confidence interval of the model in pink that consists of the separated peaks 

shown in the bottom graph. 
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Figure 103 PeakFit model of stream bank grass sample NS05_01 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 

 
Figure 104 PeakFit model of stream bank grass sample NS05_02 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 
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Figure 105 PeakFit model of stream bank grass sample NS05_AQ_01 from the Nicolet 

data in the 1,600 cm-1 region. Upper graph displays the input measured data in white 

with the 95% confidence interval of the model in pink that consists of the separated peaks 

shown in the bottom graph. 

 
Figure 106 PeakFit model of stream bank grass sample NS05_AQ_02 from the Nicolet 

data in the 1,600 cm-1 region. Upper graph displays the input measured data in white 

with the 95% confidence interval of the model in pink that consists of the separated peaks 

shown in the bottom graph. 
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Figure 107 PeakFit model of stream bank grass sample NS14_01 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 

 
Figure 108 PeakFit model of stream bank grass sample NS14_02 from the Nicolet data in 

the 1,600 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 
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Figure 109 PeakFit model of stream bank grass sample NS14_AQ_01 from the Nicolet 

data in the 1,600 cm-1 region. Upper graph displays the input measured data in white 

with the 95% confidence interval of the model in pink that consists of the separated peaks 

shown in the bottom graph. 

 
Figure 110 PeakFit model of stream bank grass sample NS14_AQ_02 from the Nicolet 

data in the 1,600 cm-1 region. Upper graph displays the input measured data in white 

with the 95% confidence interval of the model in pink that consists of the separated peaks 

shown in the bottom graph. 
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Figure 111 PeakFit model of buckwheat sample from the Exoscan data in the 2,300 cm-1 

region. Upper graph displays the input measured data in white with the 95% confidence 

interval of the model in pink that consists of the separated peaks shown in the bottom 

graph. 

 
Figure 112 PeakFit model of 15N enriched buckwheat sample from the Exoscan data in 

the 2,300 cm-1 region. Upper graph displays the input measured data in white with the 

95% confidence interval of the model in pink that consists of the separated peaks shown 

in the bottom graph. 
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Figure 113 PeakFit model of buckwheat control sample from the Nicolet data in the 

1,600 cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 

 
Figure 114 PeakFit model of enriched buckwheat sample from the Nicolet data in the 

1,600 cm-1 region. Upper graph displays the input measured data in white with the 95% 

confidence interval of the model in pink that consists of the separated peaks shown in the 

bottom graph. 
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Each individual peak in the bottom portion of the PeakFit graphs make up the 

composite spectral signature in the upper portion of the graph that matches the original 

input spectrum with 95% confidence. Separating the peaks of the composite spectra 

enables attribution to isotope components. In the case of the Exoscan data, peaks were 

chosen for isotope analysis that matched the well-defined features in the spectral data 

where the 15N enriched buckwheat spectra showed a downshift from 2,372 cm-1 and 2,363 

cm-1. For the Nicolet FTIR-ATR data, computational chemistry was performed 

previously to determine which nitrogen containing plant compounds vibrate in this 

portion of the spectrum that could cause the shifts observed in the collected data. 

Computations were run on nitrogen containing amino acids under conditions where the 

nitrogen present was 14N or 15N and showed that ammonium, a common plant nitrogen 

compound, vibrates at 1,643 cm-1 and shift to 1,635 cm-1 with the 15N replacement. The 

PeakFit model peaks were attributed to 14N or 15N accordingly and used for stable isotope 

analysis. Additionally, each constituent peak automatically assigned by the Peak Fit 

model matched the wavenumber peak value within 1 or 2 wavenumbers. This is within 

the original sensor input data spectral resolution, meaning the peak position assignments 

are consistent with expected results. 

Infrared Nitrogen Stable Isotope Analysis 

PeakFit model peaks at the wavelengths associated to 14N or 15N were used to 

calculate the integrated peak area at each peak location. A simple ratio of the heavier to 

lighter isotope was calculated and the computed averages from each sample group 

(figures 115 and 116).  
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Figure 115 Average simple isotope ratio of the heavier to lighter nitrogen isotopes 

calculated from the peaks identified in the Exoscan data in the 2,300 cm-1 region. 

 

Figure 116 Average simple isotope ratio of the heavier to lighter nitrogen isotopes 

calculated from the peaks identified in the Nicolet FTIR-ATR data in the 1,600 cm-1 

region. 
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A stable isotope ratio can be calculated using Equation 1. The resulting ratios 

were on a scale that does not compare to traditional isotope ratios, i.e 1,981 δ15N for one 

of the grass samples growing in a poultry cage.  Dividing the results by 100 scales the 

data to more expected values, i.e 19 δ15N for the same sample. The resulting δ15N values 

are shown in figures 117 and 118.  

 

 

 

Figure 117 Average INSI δ15N ratio of the heavier to lighter nitrogen isotopes calculated 

from the peaks identified in the Exoscan data in the 2,300 cm-1 region. 
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Figure 118 Average INSI δ15N ratio of the heavier to lighter nitrogen isotopes calculated 

from the peaks identified in the Nicolet FTIR-ATR data in the 1,600 cm-1 region. 

 

Discussion 
 

Spectral Analysis 

Without a concrete understanding of all plant compounds that have identifiable 

features along the entire spectrum, it is a speculation as to which peak or valley can be 

attributed to the presence of 15N. For example, the identified wavelength shift that occurs 

at around 700 nm from the ASD spectrometer is within what is called the red-edge that is 

specific to vegetation. There is a clear peak shift in the derivative, but without specific 

compound analysis it is not certain to be caused by the differences in 15N variation in 

each sample. The derivative shows a shift in the spectra of the enriched buckwheat plants, 

which is the change in the slope of the red edge between the sample groups measured. 
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This slope difference could be caused by numerous other factors besides just the presence 

of 15N.  

The features identified in the infrared regions from the Exoscan and Nicolet 

spectrometers are known to be related to specific molecular bonds with nitrogen giving a 

reasonable linkage to the presence of 15N, particularly in the case of the enriched 

buckwheat spectra. Additionally, the computational modeling helps to narrow down not 

only the bonds that are attributable to the specific region, but to a specific molecule. The 

computational modeling of plant nitrogen compounds helps to understand what occurs in 

the infrared when a molecule contains 15N instead of 14N. The modeled spectra matched 

to the Nicolet data show that it is ammonium that causes spectral features identified in the 

1,600 cm-1 region. These results show that stable isotope calculations in this infrared 

region might be possible given the attributions to the spectral features that have been 

performed in the computational modeling.  

Infrared Nitrogen Stable Isotope Analysis 

 The calculated stable isotope ratios from infrared features identified in the 

Exoscan and Nicolet data are not precise measurements. However, comparisons can be 

made between the INIS ratios created from the samples collected. The results from the 

Nicolet FTIR-ATR 1,600 cm-1 region show two groupings of ratios, high and low, 

enriched or depleted. The samples with high infrared nitrogen stable isotope (INSI) ratios 

include the grass samples from the poultry cage (poultry grass), the grass from a cow 

pasture (organic grass), the grass from the FP10 and NS14 stream banks that were 

collected from both locations (FP10 and FP10_AQ), and also the enriched buckwheat 
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sample from previous growing experiment. These results suggest a level of positive 

validity of the methodology described herein. Both the poultry and organic grass samples 

should have higher levels of 15N in the FP10 and NS14 streams. FP10 and NS14 are 

downstream from a wastewater treatment site and a chicken processing plant 

respectively. Additionally, traditional IRMS was performed on the samples. NS14 was 

computed to have δ15N ratio of 7.72 and FP10 was shown to be much more depleted with 

a δ15N ratio of -0.3. This results for FP10 was reassessed and the sample was determined 

to be contaminated with soil. The IRMS samples contained a high amount of dirt and soil 

that was not cleaned off in IRMS sample preparation. These comparisons between the 

INSI and IRMS ratios are an initial exploration between the two. Continued effort in this 

area should be performed.  

The Exoscan data was only collected on the grass sample set collected and the 

results in this region and from this instrument are inconsistent with the expected results. 

The organic grass samples were calculated to have the highest INSI ratio instead of the 

expected poultry grass samples. Additionally, the enriched buckwheat sample had the 

lowest INSI ratio where it is instead expected to have the highest ratio due to its heavily 

enriched growth experiment where traditional isotope-ratio mass spectrometer ratios 

showed readings off the charts, on the order of 70,000 permil. These Exoscan results 

indicate this instrument or specific spectral region chosen are not able to produce infrared 

based isotope ratios.  
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Conclusions 
 

With this study, in addition to traditional mass spectrometry, Nicolet FTIR-ATR 

measured data in the 1,600 cm-1 region has the potential to measure nitrogen stable 

isotope ratios in plant matter. These findings indicate that continued research should be 

performed with this methodology to refine the infrared nitrogen stable isotope (INSI) 

ratio developed in this research. The data measured by the Nicolet FTIR-ATR 

spectrometer was measured in 4 cm-1 wavenumber resolution, which is standard practice 

to balance signal to noise for this instrument. Increased spectral resolution through the 

application of ultraspectral technologies should be investigated. The INSI ratio requires 

continued research into its precision and accuracy that could be achieved with 

ultraspectral sensors yet to be developed.  

The sample preparation for FTIR measurements is much faster than traditional 

IRMS instrumentation. Here, grass samples were collected and simply dried in the 

laboratory. The grass blades are simply then compressed to a known and standard 

compression onto the ATR sample port of the FTIR instrument. Scans are acquired in 

seconds without the need for tuning and calibration, significant and time consuming 

efforts required for IRMS measurements. The current limitation is the accuracy of the 

sample INSI ratios collected herein and requires continued investigation.  

Future infrared sensors tuned to the absorption feature of ammonium at ~1,640 

cm-1 in plants could be developed to operate in the field either by handheld, air or 

eventually space based sensors. This will allow researchers to better understand 

biogeochemical cycling on greater spatial scales and in a more rapid fashion. The INSI 
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ratio could be used actively in the field to aid researchers in refining field sampling 

locations where collection of samples for traditional IRMS measurements could occur, 

saving costs to research conducted in the field. It is unknown how precise and accurate 

the INSI ratio method could become with continued research. The foundational research 

conducted in this study should invigorate researchers to improve upon the methods 

developed herein.  
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Chapter 5 – Conclusions 

 

Stable isotopes have many applications in the study of the environment, in the 

investigation of chemical compounds and the investigation of natural processes to name a 

few. The sheer nature of isotope studies requires laboratory analysis and sample 

preparation. There currently is no capability to perform isotope studies and make direct 

isotope measurements in the field environment in a non-destructive way. Samples must be 

collected which have to be taken back to the laboratory for analysis. These samples 

represent discrete locations in the study area. Sampling large areas can be extremely 

exhaustive and requires long days in the laboratory to produce the results. These limitations 

have led to researchers seeking measurement alternatives (Wang et al., 2010). Specifically 

investigations have been made into understanding how the presence of stable isotopes 

interact with light energy differently and how these differences are measured in 

spectrometers. Most research thus far has focused on the change in a spectrometers 

response in reflectance values within the 0.3-2.5 µm region as measured by the field 

portable ASD spectrometer.  The results are well correlated to the traditional IRMS 

measurements, but do not represent a direct measurement. The efforts so far are all proxies. 

This ASD instrument is a workhorse spectrometer for agriculture, environmental, and civil 

applications. It is well known and easy to use. This dissertation shows that the ASD might 

not be the correct choice for true stable isotope measurements. Instead, instrumentation in 

the mid-infrared produce better results and, with additional sensor development, could be 

used in the field.  
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This research suggests that spectrometers could be developed that are specifically 

tuned to a specific isotope in a particular substrate. The complexity of molecular 

interactions within an entire spectral region differ from sample to sample limiting the 

ability to develop a “one-size-fits-all” stable isotope spectrometer. The starting point of 

this investigation focused on the nitrogen stable isotope, 15N. Nitrogen is a useful element 

to study in the geosphere particularly in the case of pollution and runoff. Nitrogen can be 

released into the environment above natural levels causing nutrient pollution in waterways, 

eutrophication and even anoxic conditions in water bodies. Understanding nitrogen stable 

isotope cycling can aid researchers with tracing the origins of samples. Until now, stable 

isotopes must be measured in the laboratory.  

Initially, a thorough investigation was performed to understand how nitrogen stable 

isotopes in plant matter effect changes in reflective or Fourier transform infrared (FTIR) 

spectrometer measured data. First, a series of experiments were conducted in the 

laboratory. These experiments focused on heavily doping plants with 99.99% 15N, which 

is far above natural stable isotope levels (~0.3%). After an initial few failed attempts, quick 

growing buckwheat was successfully grown aeroponically with a heavily enriched 

fertilizer solution. A similar aeroponic unit with standard natural abundance fertilizer was 

used as a control. Buckwheat leaves were collected and measured by three different 

spectrometers; the ASD field portable reflective spectrometer, the field portable Exoscan 

FTIR and the laboratory based Nicolet FTIR-attenuated total reflectance (ATR) 

spectrometers. The spectral data was analyzed to determine difference between the control 

and the enriched plants.  Each instrument was shown to produce results indicating a 
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possible link to the unnaturally high level of 15N in the enriched samples. Wavelength or 

wavenumber shifts in the spectral features in the enriched samples were observed in the 

ASD data near 700 nanometers (nm), the Exoscan data near 2,300 cm-1 and the Nicolet data 

near 3,300 cm-1 and 1,600 cm-1. These results are expected shifts as the presence of a 

heavier isotope impacts the way in which the elemental bonds bend and rotate causing 

downshift in their vibrations.  

Secondly, the identified shifts from the enrichment experiment were analyzed to 

assess what chemical functional groups have known vibrations that are related to nitrogen 

bonds. The ASD spectrometer does not have a library of known functional groups. The 

ASD data can be related to known spectral signatures published by organizations such as 

John’s Hopkins Applied Physics Laboratory, the United Stated Geologic Survey, the Jet 

Propulsion Laboratory, and other signatures published in the literature. The ASD shift 

observed at 700 nm was located within the red-edge response of vegetation. The red-edge 

is associated with the health of vegetation. Specifically it is the sharp rise in reflectance 

values as chlorophyll absorptions transition into reflectance by plant cells. This region was 

determined to be less likely related to 15N composition. The other regions in the infrared 

were determined to be related to nitrogen bonds such as NH (2,300 cm-1 and 3,300 cm-1) 

and CN (1,600 cm-1). Computational chemistry was performed in this research to aid in the 

understanding of the stable isotope in nitrogen containing plant compounds. Computational 

chemistry can model the infrared spectra of given molecules. The modeled infrared spectra 

of ammonium was shown to overlap with the spectral features observed experimentally in 

the 1,600 cm-1 region. This suggests an interplay between ammonium (NH4) and CN bonds 
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existing in the plant structure. The experimental enrichment experiment showed a 

downshift from 1,642-1 to 1,637-1 and the modeled data showed a similar downshift from 

1,643-1 to 1,635 cm-1 corroborating the FTIR-ATR measured data. 

Finally, the same instruments were used to measure field samples of natural 

abundance stable isotope ratios to determine if the same features can be observed in the 

instrument data. Field samples were collected in fields and along stream banks with 

expected enriched levels of 15N due to the fact that fractionation causes the heavier isotope 

to remain in the manure and organic wastes whereas inorganic fertilizer created using the 

Haber process, extracting nitrogen from the air, is depleted in the heavier isotope as 

atmospheric nitrogen is the standard for nitrogen stable isotope studies at 0 per mil 15N 

ratio. Two of the four regions with isotope shifts were observed in the natural abundance 

samples 2,300 cm-1 and 1,600 cm-1 measured by the Exoscan and Nicolet spectrometers 

respectively. The peaks at these features were modeled to separate the peaks into their 

constituent peaks where it is expected that each isotope can be assigned to a peak at the 

specific wavenumbers identified. The models did show good peak separation enabling area 

measurements. These area measurements can then be used to derive infrared nitrogen stable 

isotope (INSI) ratios for the field samples. Interestingly, the INSI ratios in the 1,600 cm-1 

showed enrichment for the samples where enrichment was expected; within fields where 

poultry and cows were raised and along streambanks downstream from a wastewater 

treatment site and a chicken processing plant. This research shows that the INSI ratio has 

the potential to calculate nitrogen stable isotope ratios with future sensor development and 

refinement of the methodology presented herein. .  
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The method developed in this research should be used to develop a new field based 

sensor tuned to the plant based nitrogen stable isotope features at 1,600 cm-1. Increased 

spectral resolution through the application of ultraspectral technologies should be 

investigated. The INSI ratio requires continued research into its precision and accuracy that 

could be achieved with ultraspectral sensors yet to be developed.  

Future infrared sensors tuned to the absorption feature of ammonium at ~1,640 

cm-1 in plants could be developed to operate in the field either by handheld, air or 

eventually space based sensors. This will allow researchers to better understand 

biogeochemical cycling on greater spatial scales and in a more rapid fashion. The INSI 

ratio could be used real time in the field to aid researchers in understanding the spatial 

extent of the stable isotopes in their sample area. Real time measurements can help to fine 

tune specific field sampling locations for traditional IRMS measurements, saving costs to 

research conducted in the field. Air based sensors with this technology could be 

employed to rapidly measure large geospatial areas and create maps of nitrogen stable 

isotope content across the region, such as collecting along the entire Chesapeake Bay 

watershed. This future capability could be used to identify focus area where nutrient 

management plans will have the most impact on the water quality of the Bay. It is 

unknown how precise and accurate the INSI ratio method could become with continued 

research. The foundational research conducted in this study should invigorate researchers 

to improve upon the methods developed herein.  

  



153 

 

   

Appendix A: Enrichment Experiments Spectra  
 

Initial Signature Variable Analysis 
 

Overview 
 

The signatures displayed in this section were collected by the Analytical Spectral 

Device’s FieldSpec Pro (FieldSpec(R) pro user's guide, 2002). It collects data from 0.35 

to 2.5 µm. It is also a portable spectrodiometer useful for field work. That data collected 

in this dissertation was collected indoors with ASD’s High Intensity Reflectance Probe 

which mimics solar radiation but without atmospheric artifacts in the resulting data.  The 

signatures are measured from the plants in the experiment described in chapter two. Each 

spectrum displayed in this research is made from three independent measurements of 

either three or ten different leaves from either one of ten different plants where each 

measurement is averaged together from three measurements each consisting of 30 scans 

of each sample. 

Fresh vs. Dry Leaf Measurements 
 

It was important to first capture any potential variability in the measurement of 

the leaves in either their freshly clipped or dried state to determine if the observation of 

wavelength shifts changes. This set the baseline practice for subsequent leaf measurement 

for this research. The signatures below show that the water content in the fresh leaves 

prevent some shifts from observation by the sensors. Therefore this technique with this 

instrument would be best performed during the dormant season or where vegetation has 

senesced.  
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In Figure 29 below, notice the large features near 1450 and 1920 nm and shallow 

features near 0.98 and 1175 nm in fresh leaf spectrum (in black) not present in dried leaf 

measurement. Those features are due to water content in the plant material (Thenkabail et 

al., 2012). The feature near 1920 nm is also due to plant cellulose and lignin explaining 

why that feature continues to exist in the dried leaf spectrum (in red). The features above 

2000 nm also become more apparent in the dried leaf spectrum rather than the fresh 

spectrum. This also shows that measuring dry leaves is preferable for this research. 

 

Figure 119 Fresh leaf measurement (Black) compared to dried leaf measurement (Red).  
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Uptake of Nitrogen Labels 
 

A nitrogen label is a chemical where the nitrogen supplied is in the stable isotope (15N) 

form and an abundance of 99.99%. The nitrogen labels use in the experimentation are 

commercially available in various compositions. An initial analysis was conducted to 

assess the performance on the plants using three different types of nitrogen labels; 

ammonium nitrate where 15N was in the nitrate group (in red in figure 120), the 

ammonium group (in black in figure 120), or sodium nitrate (in dotted green in figure 

120). Besides the measured spectra, plant health was also assessed. It is important for this 

research to have plants that grew enough leaves for measurement and also ones that grew 

long enough in order to uptake the supplied nitrogen labels.  

The ammonium nitrate label where 15N was in the nitrate group has a higher 

overall reflectance and some features are deeper showing that this label could be the 

better performer for these experiments. However, when looking at the overall health of 

the plant, the plants appeared stunted, yellow and produced smaller leaves than the other 

two options. This experiment only varied the label types. All other concentrations and 

variables were the same. These results show that the label to be used in subsequent 

experiments should be ammonium nitrate label where 15N was in the nitrate group. 
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Figure 120 Plant spectra from each nitrogen label type. 
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VNIR/SWIR Signatures 
 

Overview 
 

 The ASD signatures from the experiment discussed in chapter two are shown 

below for better visual clarity. Dried leaves were measured and ammonium nitrate label 

where 15N was in the nitrate group was used. 

 

Figure 121 Full spectrum of labeled plant leaf (in red) and the control (in black). 

 

Figure 121 shows the entire spectrum of the labeled leaf measurements (in red) 

versus to the control (in black). Clearly, the spectrum looks very similar. Spectral 

analysis of the first derivative of the same data helps to highlight the differences (figure 

122).  
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Figure 122 Reflectance spectra from Figure 14 shown in comparison to their first 

derivative spectra 

The first derivative spectra shown in Figure 15 show places along the spectrum 

where differences occur. Removing the reflectance data and truncating the spectrum 

range to 480 to 2,350 nm to remove the sensor noise that occurs at the edge of the sensor 

detectors allows the derivative spectra to be observed. Figure 123 shows observable 

differences in this region between the control and the labeled plants that are not easily 

observed in the reflectance data.  
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Figure 123 First derivative spectra of labeled (in red) and the control (in black) from 480 

nm to 2480 nm.  

Figures 124-127 display the shifts observed in the ASD derivative data across the 

full response of the instrument zoomed into to enable easier reading. The data shown is 

the raw derivative data, no smoothing is been applied. These figures show the many other 

sifts that occur between the labeled and control data and are summarized in table 8.  
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Region Control Spectra Band 
Center (in nm) 

15N Labeled Spectra 
Band Center (in nm) 

1 516 514 

2 719 703 

3 1485 1489 

4 1901 1897 

5 2040 2044 

6 2254 2257 

Table 8 List of regions where 15N induces wavelength shifts are observed that are 

different from the control.  

 

 
Figure 124 First derivative spectra of labeled (in red) and the control (in black) zoomed 

in to display the data from 480 nm to 670 nm. 
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Figure 125 First derivative spectra of labeled (in red) and the control (in black) zoomed 

in to display the data from 670 nm to 900 nm. 

 

 

 

 
Figure 126 First derivative spectra of labeled (in red) and the control (in black) zoomed 

in to display the data from 900 nm to 1820 nm. (Feature at 1nm is cause by sensor 

detector, not from plant data) 
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Figure 127 First derivative spectra of labeled (in red) and the control (in black) zoomed 

in to display the data from 1820 nm to 2350 nm. 

MWIR/LWIR Signatures 
 

Overview 
 

The MWIR/LWIR signatures were collected from two different FTIR 

instruments; the Agilent 4100 Exoscan(Agilent 4100 exoscan FTIR operation manual, 

2013)  and the Thermo Scientific Nicolet 6700(Nicolet (TM) FT-IR user's guide, 2004) . 

These instruments measure data from 2.5 to 15 microns. The Exoscan is a field portable 

device whereas the Nicolet is a laboratory benchtop instrument. The Nicolet has 

increased sensitivity and the ability to measure samples with higher spectral resolution. 

All signatures reported below are measurements from ten leaves each from a different 

plant in the growing experiment. Each measurement is the average of 60 scans of each 

leaf. The Exoscan data was natively collected in absorbance but is displayed below as 

reflectance which is common practice for field instrumentation. The Nicolet data is 
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collected and reported in absorbance. Reflectance and absorbance are inversely related 

however the Exoscan FTIR spectrometer is a DRIFTS type FTIR spectrometer whereas 

the Nicolet FTIR was collected using the attenuated total reflectance (ATR) attachment. 

These differences, which are important to each for their designed utility, make their direct 

comparison of the resulting data impossible. Therefore, the data from each instrument 

will be reported independently.  

Field Instrument Acquired 
 

Figures 128-131 shows the data collected from the Exoscan for the 15N labeled 

and control plants. Not only is the data reported in reflectance but also wavenumbers or 

inverse centimeters (cm-1). As previously discussed in chapter two, wavenumbers and 

wavelength are inversely related. Figure 128 shows the data across the full measured 

region. The MWIR and LWIR regions allows for identification of specific chemical 

compound functional groups. There are noticeable differences between the control and 

the labeled plants particularly in the region near 2,200 cm-1. In the control there is a broad 

peak near 2,200 cm-1 whereas in the control the peak begins to separate. Additionally at a 

slightly higher wavenumber there are specific absorption features that appear in the 

labeled spectra versus the control. In the control the broad peak is centered at 2,082 cm-1, 

whereas the labeled plant spectra has two peaks at 1,980 cm-1 and 2,255 cm-1. Function 

groups that vibrate in these region are C-N nitrile stretches (Coates, 2000). It is possible 

the increased 15N present for the experimental plants has caused peak separation of the 

two nitrogen species.  
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Figure 128 Spectra from Exoscan from 600 to 4000 wavenumbers 
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Figure 129 Exoscan data zoomed into peaks near 2,200 cm-1 

 

Figures 129 shows the peak separation near 2,200 cm-1 and the appearance of deeper 

features closer to 2,300 cm-1. These features near 2,300 cm-1 are better displayed in figure 

40. It is the deepest feature that displays a shift in the 15N labeled plant versus the control 

and was reported on in chapter two. The control feature is centered at 2,372 cm-1 and the 

15N labeled plant is centered at 2,363 cm-1 and is shown in figure 41 with continuum 

removal applied to normalize the data to a common baseline due to the data sloping in 

this region. This is an important finding showing potential application for this technique 

using a field portable spectrometer.  
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Figure 130 Exoscan data zoomed into features near 2,300 cm-1 
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Figure 131 Exoscan continuum removed data zoomed into 2,360 cm-1 region. 

 

Laboratory Instrument Acquired 
 

The FTIR-ATR data was collected on two occasions from two different 

experiments that correspond to the data analyzed in chapters two and three respectively. 

The notable difference is the fertilizer composition between the two experiments. In 

chapter two, experiment one, the fertilizer was restricted to minimize any natural 

abundance 14N available for uptake by the plants. In that data analyzed in chapter three, 

experiment two, the fertilizer composition varied in percentages of 14N and 15N across the 

three experimental trials. The FTIR-ATR data allows for more functional group analysis 

as it is a more sensitive instrument than the Exoscan described above as shown in Figure 
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132 to 134. For this reason there are more and different spectral features, peaks and 

valleys, in the spectra than that of the Exoscan. 

 

Figure 132 Nicolet spectra of the control plants and three experimental trials from 

Capelle and Macko (2016). 
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Figure 133 Zoomed in view of the Nicolet data near 1,200 cm-1 showing differences in the 
15N labaled plants versus the control. 
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Figure 134 Zoomed in view of the Nicolet data near 3,300 cm-1 showing differences in the 
15N labaled plants versus the control. 

 

Region Control Spectra Band 
Center (in nm) 

15N Labeled Spectra 
Band Center (in nm) 

1 1060 1050 

2 1330 1315 

3 1405 1365 

4* 1620 1610 

5* 3300 3330 

Table 9 List of regions where 15N induces wavelength shifts are observed from the 

control.  
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Top vs. Back of Leaves 
 

The data in figure 135 show that the stomata structure difference between the top 

and back of deciduous plant leaves has no impact on the signature feature positions and 

overall signature shape. The change in absorbance percentage or amplitude is explained 

by sample positioning on the ATR crystal. Once the ATR crystal is compressed down 

onto the leaf it is impossible to flip it over and measure the same spot as it has been 

damaged by the compression.  

 

Figure 135 Nicolet data of the same leaf measured on the top (in solid black) and on the 

bottom (in dashed black). 
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Dried Whole Leaves vs. Ground Leaves  
 

The raw data shown in figure 136 and with continuum removal in figure 137 

show that there is no observable difference between dried ground leaves and direct 

measurement on the leaf surface. This is likely because the leaves are so thin that the 

light energy penetrates and reflects from the entire leaf. Drying and making the leaves 

homogenous though grinding with a mortar and pestle are not necessary for this 

technique.  

 

Figure 136 Nicolet data of the same leaf measured from the dry leaf top (in solid black) 

and once ground to a powder (in dotted and dashed black). 
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Figure 137 Nicolet data of the same leaf measured from the dry leaf top (in solid black) 

and once ground to a powder (in dotted and dashed black) with continuum removal 

applied. 

Enriched Tomato Growth Experiment 
 

Overview 
 

A small scale exploratory kitchen experiment was conducted where two tomato plants 

were grown in similar soil based growing conditions except one plant was doped with a 

few sprinkles of 15N ammonium nitrate label. The resulting spectra are included below. 

Performing continuum removal on the full scale plot begins to highlight regions of 

change. Zooming into the region around 1,000 cm-1 shows a few shifts more clearly. 

Specifically around 1,247 cm-1 where the labeled tomato peak shifts to a band center of 

1,240 cm-1. Additionally there is another peak that shifts from 1,157 cm-1 to 1,152 cm-1 
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when labeled. This adhoc experiment continues to prove the detection of isotope induced 

shifts occur and are detectible by infrared spectrometers. 

Tomato Leaf Spectra 

 

Figure 138 Full scale plot of 15N labeled tomato leaf (in red) compared to natural 

abundance tomato leaf (in black). 
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Figure 139 Tomato spectra with continuum removal applied to highlight differences 
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Figure 140 Continuum removal tomato spectra zoomed to 1000 cm-1 
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Figure 141 Tomato spectra region around 1,250 cm-1 
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Appendix B: Monitoring Site Water Quality Data  
 

 



179 

 

   

 

 



180 

 

   

 

 



181 

 

   

 
 

 


