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Abstract

The primary goal of a Phase I clinical trial is to estimate the maximum tolerated

dose (MTD). The MTD is defined as the highest dose which can be administered

with a “tolerable” level of toxicity. The “tolerable” level of toxicity is based on the

probability that a patient in the trial experiences a dose-limiting toxicity (DLT).

This dissertation addresses two practical considerations: heterogeneous toxicity re-

sponse and a partial ordering for the probability of toxicity for available treatments.

First, the majority of methods for the Phase I trials are designed for a homoge-

neous toxicity response, resulting in a unique MTD for the broad patient population.

However, patients may naturally differ in the way they react to a treatment. Clinical

useful biomarkers which affect the probability of a DLT have been developed as more

toxicity biomarker studies have been done. We propose a new design which chooses

a distinct MTD for individual patient by use of toxicity biomarker information, thus

contributing to a proper and better treatment for individual patient.

Second, for multiple-agent trials we may be able to identify the order of the prob-

ability of toxicity for only a subset of the available treatments, which is a “partial

order”, in contrast to single-agent trial problems whose order of the probability of

toxicity for all the treatments is fully known, which is a “simple order”. We propose

a biomarker-based design for which the ordering is not fully known.

The operating characteristics of the proposed designs for simple order and par-

tial order are investigated through extensive simulation studies. A discuss of the

theoretical properties is provided. We also employ implementing model selection

techniques, specifically BIC model selection method to improve the performance

of the biomarker-based designs. We close with some conclusions drawn from the

proposed biomarker-based designs, as well as some topics for further research.
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Chapter 1

Introduction

1.1 Background

The primary goal of a Phase I clinical trial is to estimate the maximum tolerated

dose (MTD). The MTD is defined as the highest dose which can be administered

with a “tolerable” level of toxicity. The “tolerable” level of toxicity is based upon

the probability that a patient in the trial experiences a dose-limiting toxicity (DLT).

The DLT refers to the appearance of side effects during treatment which are severe

enough to prevent further increase in dosage or strength of treatment agent or to

prevent continuation of treatment at any dosage level.

Numerous statistical methods have been proposed for Phase I trials. With few

exceptions (e.g., Durham, Flournoy, and Rosenberger, 1997; Babb, Rogatko, and

Zacks, 1998), these methods have focused on identifying the MTD from a fixed set

of k pre-specified dose levels d1, d2, . . . , dk in which toxicity is measured as a binary

outcome indicating whether a patient experienced a DLT or not.

First, the majority of the statistical methods for the design of Phase I dose-

finding studies in oncology are based on the assumption that the toxicity response
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is homogeneous among the broad patient population, further leading to a unique

MTD. This assumption is generally a reasonable one, when there is no available

clinical biomarker that is informative for toxicity response. However, clinical useful

biomarkers which affect the probability of a DLT have been developed. From the

point of personalized medicine, which aims to customize treatment by using infor-

mation about an individual patient, distinct MTDs chosen by use of an informative

toxicity biomarker and contributing to proper and better treatment for individual

patient would be preferred.

Second, the majority of the statistical methods for the experimental design of

Phase I dose-finding studies are based on the assumption of monotonically increasing

probability of toxicity as the dose increases. For single-agent trials, the assumption is

straightforward. High dose levels are expected to have larger risk of DLT. Under the

terminology of Robertson, Wright and Dykstra (1988), a “simple order” is defined

that the ordering of the probability of toxicity between any two doses is known and

the higher dose corresponds to a larger probability of toxicity. However, not all

Phase I trials involve a single cytotoxic agent. The use of multiple-agent treatments

is becoming more commonplace in dose-finding studies. Phase I trials involving

multiple-agent are more challenging in MTD estimation than single-agent studies. It

is reasonable to assume monotonicity for each agent separately, but, when combined,

the ordering may not be fully known. We may be able to identify the order of the

probability of toxicity for only a subset of the available treatments, resulting in a

“partial order”. Thus, it may not be clear which dose should be the next escalation

dose. Therefore, the use of biomarker under the partial order restriction would be

a crucial problem in personalized medicine.
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1.2 Biomarker

Improved understanding of biology and advances in biotechnology bring in the con-

cept of personalized medicine. Personalized medicine proposes the customization

of treatment, with decisions being tailored to the individual patient by use of ge-

netic or other information. A key component of this concept is the development of

biomarkers which can guide treatment application.

Clinical biomarkers that aid in making treatment decision will play an important

role in achieving personalized medicine. Although the development of biomarkers

bring us closer to the concept of personalized treatment, there are few statistical

methods for designing these trials. Traditionally, most designs of clinical trials focus

on obtaining an average estimate in a broad patient population. The difficulty

in taking advantage of biomarkers is that the trials often require more complex

designs. Current statistical methodology about biomarkers mainly focuses on Phase

II and Phase III efficacy and effectiveness study. Until now, there are very few

methods about biomarkers that have been developed for Phase I dose-finding studies.

However, for the purpose of personalized medicine, it is not only necessary to make

use of biomarker in efficacy and effectiveness study, but it is also reasonable to

choose distinct MTDs for individual patient by use of biomarkers. Patients with high

MTD receive treatment with high dose level which contributes to better efficacy and

effectiveness; patients with low MTD receive treatment with low dose level which

helps avoid side effects.

Biomarkers that are informative for clinical outcome are broadly categorized as

predictive and prognostic biomarkers (Freidlin, McShane and Korn 2010). Predictive

biomarkers help to assess the most likely response to a particular treatment. For

example, in advanced colorectal cancer, the benefit of cetuximab appears to be
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limited to patients with tumors who have the wild-type KRAS genotype (Karapetis,

Khambata-Ford, Jonker, et al 2008). Prognostic biomarkers show the progression of

disease with or without treatment and have some implications for therapy decisions.

Prognostic biomarkers classify patients receiving standard treatment into subgroups

with distinct expected clinical outcomes. For example, if a prognostic biomarker can

identify a group of patients with very low risk of recurrence, additional treatment

might not be considered, whereas patients with higher risk of recurrence would be

treated. Note that biomarkers that predict toxicity to a certain agent are often

treated as a separate type of biomarker. However, for the purpose of biomarker

designs, toxicity biomarkers can be considered as a type of predictive biomarker

(Mandrekar, Grothey, Goetz, and Sargent, 2005).

1.2.1 An Example of Categorical Toxicity Biomarker

UGT1A1 genotype is an example of categorical toxicity biomarker. Kim et al. (2013)

conducted a UGT1A1 *28 and *6 genotype-directed Phase I trial of irinotecan with

fixed-dose capecitabine in Korean patients with histological confirmed metastatic

colorectal cancer (Table 1.1). The UGT1A1 *6 genotype has been exclusively iden-

tified in Asian population (Akaba et al., 1998; Fujita et al., 2007). Fifty patients

were genotyped for UGT1A1 *28 and *6, and grouped according to the numbers of

defective alleles (DA): 0 (wild type: *1/*1), 1 (containing only one of the *28 or *6

allele: *1/*28 or *1/*6), and 2 (*28/*28, *6/*6, or double heterozygous for *1/*28

and *1/*6). The MTD of irinotecan was 350 mg/m2 for the 0 and 1 DA groups,

and 200 mg/m2 for the 2 DA group.

Sunakawa et al. (2012) conducted a Phase I study of combination chemothera-

py with 5-fluorouracil (5-FU), leucovorin, irinotecan and oxaliplatin (FOLFOXIRI)
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Table 1.1: Irinotecan dose level in Phase I trial with fixed-dose capecitabine in
patients with metastatic colorectal cancer

Treatment
Level d1 d2 d3 d4 d5 d6

Irinotecan mg/m2 200 240 280 320 350 380

in Japanese patients with advanced colorectal cancer who harbor UGT1A1 *1/*1,

*1/*6 or *1/*28. Patients with UGT1A1 *6/*6,*28/*28 and *6/*28 genotypes were

excluded, because these UGT1A1 genotypes are linked to severe irinotecan-induced

toxicity. A total of ten patients were studied. The MTD of FOLFOXIRI in these

patients was 165 mg/m2 irinotecan, 85 mg/m2 oxaliplatin and 2,400 mg/m2 5-FU.

Table 1.2: Treatments used in Phase I trial of combination chemotherapy with 5-
fluorouracil (5-FU), leucovorin, irinotecan and oxaliplatin (FOLFOXIRI) in patients
with advanced colorectal cancer

Treatment
Treatment d1 d2 d3 d4 d5 d6

Irinotecan mg/m2 120 150 165 150 165 180
Oxaliplatin mg/m2 85 85 85 85 85 85

5-FU mg/m2 2,400 2,400 2,400 3,200 3,200 3,200

1.2.2 An Example of Quantitative Toxicity Biomarker

An example of quantitative toxicity biomarker is telomere length (TL). Garg et

al. (2012) conducted a comprehensive survey of clinically measurable variables to

determine predictors of 5-fluorouracil (5-FU) toxicity. Seventy-three patients with

colorectal cancer (CRC) received adjuvant 5-fluorouracil (5FU) / leucovorin (LV)

using either the Mayo Clinic or a weekly schedule and were evaluated for clinical

toxicity. For the Mayo Clinic schedule 42 patients were given 425 mg/m2 5-FU
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and 20 mg/m2 LV daily for 5 days every 4 weeks, while for the weekly schedule 31

patients were given 500 mg/m2 5-FU and 20 mg/m2 LV weekly for 4 weeks. For the

Mayo schedule, the primary toxicities were neutropenia (69%), mucositis (58%) and

leukopenia (46%), with 70% of patients presenting with haematological toxicity ≥

grade I (neutropenia and/or leukopenia), while the primary toxicity for the weekly

schedule was diarrhoea (16%). The study showed that short telomere length of

peripheral blood mononuclear cell (PBMNC) and an increased platelet lymphocyte

ratio (PLR) were strong predictors of mucositis and haematological toxicity in CRC

patients undergoing 5-FU treatment in the adjuvant setting.

Falandry et al. (2012) conducted a multicenter GINECO trial in elderly AOC

patients receiving carboplatin. Telomere length (TL) in base pairs was estimated

for 109/111 patients. With a cutoff of 5770 base pairs, TL discriminated two group-

s with significantly different treatment completion rates. Short telomere length

patients were at higher risk of severe adverse events and tended to have more un-

planned hospital admissions. This study identified TL as a predictive factor of

decreased treatment completion, severe adverse events risk and unplanned hospital

admissions.

1.3 Partial Order

In single-agent trials, “treatment” is synonymous with “dose level”. In multiple-

agent trials, we use “treatment” to denote combinations of agents. For single-agent

trials, the ordering of the probability of toxicity is assumed monotonic with dose.

For multiple-agent trials, monotonicity is assumed for each agent separately, but the

combined ordering may not be fully known, resulting in a “partial order”.

Example 1. Patnaik et al. (2000) showed a Phase I study of Paclitaxel and Carbo-
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platin combination for patients with solid tumors. Table 1.3 displays the treatments

used in the trial.

Table 1.3: Treatments used in Phase I trial of Paclitaxel and Carboplatin in patients
with solid tumor

Treatment
Agent d1 d2 d3 d4 d5 d6

Paclitaxel 54 67.5 81 94.5 67.5 67.5
Carboplatin 6 6 6 6 7.5 9

In this example, the ordering of the probability of toxicity for some treatment

combinations is unknown. The six dose combinations are denoted as d1, d2, . . . , d6.

The toxicity ordering between treatments d1 and d2 is known because the level of

Carboplatin remains the same while the level of Paclitaxel increases. However, the

ordering relationship between d3 and d6 is unknown because the level of Paclitaxel

increases while the level of Carboplatin decreases. Hwang and Peddada (1994)

proposed a method for estimating parameters under partial order restriction. The

method distinguishes between nodal and nonnodal parameters. The ordering of

a nodal parameter is fully known with all other parameters. In simple order, all

parameters are nodal. In the partial order example of Table 1.3, parameters 1 and

2 are nodal. R(d1) is a nodal parameter because R(d1) ≤ R(di) for i ≥ 2. R(d2)

is a nodal parameter because R(d2) ≥ R(d1) and R(d2) ≤ R(di) for i ≥ 3. If

we continue to access the known and unknown toxicity ordering relationships, the

following two order relationships could be determined: d1 → d2 → d3 → d4 and

d1 → d2 → d5 → d6. In these diagrams, treatments whose ordering are known are

connected by lines, with parameters on the right larger than parameters on the left.
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Figure 1.1: Treatments used in Phase I trial of Paclitaxel and Carboplatin in patients
with solid tumor

..d1. d2.

d3
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.

d5

.

d6

Escalation to a previously untried dose depends on a specification prior to the

trial of “possible escalation treatments” associated with each treatment. For exam-

ple, the possible escalation treatments for d2 are d3 and d4. Taking into account the

subset of dose combinations for which we know the toxicity order, we can formulate

all the possible M orderings of the probability of toxicity. In this example, the trial

requires the investigation of the following six simple orders:

M1: d1 → d2 → d3 → d4 → d5 → d6

M2: d1 → d2 → d3 → d5 → d4 → d6

M3: d1 → d2 → d3 → d5 → d6 → d4

M4: d1 → d2 → d5 → d6 → d3 → d4

M5: d1 → d2 → d5 → d3 → d6 → d4

M6: d1 → d2 → d5 → d3 → d4 → d6

Example 2. Berenson et al. (2009) described a Phase I study of Samarium lex-

idronam and Bortezomib combination for treatment of relapsed or refractory multiple

myeloma. The DLT was defined by a patient experiencing a grade 3+ neutrophenia.

Table 1.4 shows the treatments.
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Table 1.4: Treatments used in Phase I trial of Samarium lexidronam and Bortezomib

Treatment
Agent d1 d2 d3 d4 d5 d6

Sm mCi/kg 0.25 0.5 1.0 0.25 0.5 1.0
Bortezomib mg/m2 1.0 1.0 1.0 1.3 1.3 1.3

In these diagrams, combinations whose orderings are known are connected by arrows.

Figure 1.2: Treatments used in Phase I trial of Samarium lexidronam and Borte-
zomib

..d1.

d2

.

d4

.

d3

.

d5

. d6

In this example, there are five possible orderings of probability of toxicity:

M1: d1 → d2 → d3 → d4 → d5 → d6

M2: d1 → d2 → d4 → d3 → d5 → d6

M3: d1 → d2 → d4 → d5 → d3 → d6

M4: d1 → d4 → d2 → d3 → d5 → d6

M5: d1 → d4 → d2 → d5 → d3 → d6

Example 3. Lokich (2001) described a dose-finding study of combinations of Topote-

can and Irinotecean. Table 1.5 displays the treatments.
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Table 1.5: Treatments used in Phase I trial of Irinotecean and Topotecan

Treatment
Agent d1 d2 d3 d4 d5 d6 d7 d8

Irinotecean mg/m2 50 50 75 75 100 100 125 125
Topotecan mg/m2 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5

In these diagrams, combinations whose orderings are known are connected by arrows.

Figure 1.3: Treatments used in Phase I trial of Irinotecean and Topotecan

..d1.

d2

.

d3

.

d4

.

d5

.

d4

.

d5

. d6

In this example, there are eight possible orderings of probability of toxicity:

M1: d1 → d2 → d3 → d4 → d5 → d6 → d7 → d8

M2: d1 → d3 → d2 → d4 → d5 → d6 → d7 → d8

M3: d1 → d2 → d3 → d5 → d4 → d6 → d7 → d8

M4: d1 → d2 → d3 → d4 → d5 → d7 → d6 → d8

M5: d1 → d3 → d2 → d5 → d4 → d6 → d7 → d8

M6: d1 → d3 → d2 → d4 → d5 → d7 → d6 → d8

M7: d1 → d2 → d3 → d5 → d4 → d7 → d6 → d8
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M8: d1 → d3 → d2 → d5 → d4 → d7 → d6 → d8

1.4 Literature Review

1.4.1 Up-and-Down Escalation Schemes

The most traditional dose-finding design is the Up-and-Down escalation schemes.

It is a simple, algorithm-based approach. Storer (1989) reviewed the Up-and-Down

escalation schemes. Four single-stage designs were described in the paper:

Design A (traditional “3+3” method) Groups of three patients are treated.

Escalation occurs if no toxicity is observed in all three; otherwise, an additional three

patients are treated at the same dose level. If only one of six has toxicity, escalation

again continues; otherwise, the trial stops and the lower dose is considered to be the

MTD.

Design B Single patient is treated. The next patient is treated at the next lower

dose level if a toxic response is observed, otherwise at the next higher dose level.

Design C Similar to design B, except that two consecutive nontoxic responses

must be obtained before escalation occurs, whereas de-escalation occurs whenever a

toxic response is seen.

Design D Groups of three patients are treated. Escalation occurs if no toxicity

is seen and de-escalation if more than one patient has toxicity. If a single patient

has toxicity, the next group of three is treated at the same dose level.

Storer (1989) also proposed some two-stage designs in the paper: BC and BD,

where the first stage follows design B until the first toxic response occurs, then the

second stage follows. At the end of the trial, use logistic regression to estimate

the MTD. The traditional Up-and-Down escalation schemes are not the most effi-
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cient method. They treat many patients with sub-optimal doses and may provide

a poor estimate of MTD. However, they are widely accepted, especially the tradi-

tional “3+3” method is still widely used in practice because of the advantage of its

algorithm-based simplicity.

1.4.2 Random Walk Method

Durham et al. (1997) described a random walk rule for the sequential allocation

of dose levels to patients in a Phase I clinical trial or a dose-response study. Let

x1, x2, . . . , xk be an ordered set of doses with monotonic toxicity curve. If patient j

has just been assigned to dose level xi, assign patient j + 1 with the following rule:

If patient j experienced DLT, assign patient j + 1 to xi−1.

If patient j did not experience DLT, flip a biased coin with probability of heads

b ∈ [0, 0.5]. The choice of b is related to the target probability of DLT. If it lands

head up, assign patient j +1 to xi+1 . If it lands head down, assign patient j +1 to

xi.

With imposed boundary x1 and xk, simply assign the patient to x1 or xk, if a

potential de-escalation lower than x1 or a potential escalation higher than xk occurs.

The estimate of MTD is

X(n) =

k∑
i=1

xiNi(n)

n
,

where n is the number of enrolled patients and Ni(n) is the number of patients

treated at dose i.
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1.4.3 Continual Reassessment Method (CRM)

O’Quigley, Pepe and Fisher (1990) introduced the continual reassessment method

(CRM) as an alternative method for the traditional Up-and Down escalation schemes

reviewed by Storer (1989). The original form of CRM is a Bayesian method. CRM

sequentially updates the dose-toxicity information to estimate the dose to treat the

next patient. Suppose that we have a discrete set of k pre-specified dose levels

d1, d2, . . . , dk. CRM models R(x), which is the true probability of toxicity at Xj =

xj ∈ {d1, . . . , dk} via

R(xj) = Pr(Yj = 1|Xj = xj) = E(Yj|xj, zj) = ψ(xj, a) (1.1)

for a simplified functional dose-toxicity curve ψ(di, a) and a defined on the set A.

The restrictions on ψ(xj, a) are discussed in O’Quigley, Pepe and Fisher (1990).

First, for each a, ψ(·, a) is strictly increasing. Second, ψ(di, ·) is continuous and

strictly monotone in a in the same direction for all d. The most commonly used

working models are a power model or a logistic model:

1. Power model ψ(di, a) = αai , where αi are pre-specified values for each dose

level di, αi are called the skeleton of the working model and satisfy 0 < α1 <

α2 < · · · < αk < 1.

2. Logistic model ψ(di, a) =
exp(a+αi)

1+exp(a+αi)
, where αi are pre-specified values for each

dose level di and satisfy α1 < α2 < · · · < αk.

After having j patients enrolled, we have data in the form of Ωj = {x1, y1, . . . , xj, yj}.

The likelihood for a is

L(a|Ωj) =

j∏
l=1

ψyl(xl, a){1− ψ(xl, a)}(1−yl). (1.2)
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The Bayesian framework of CRM assigns a prior distribution f(a) for parameter a.

We can generate the posterior distribution for a by

f(a|Ωj) =
L(a|Ωj)f(a)∫

a∈A
L(a|Ωj)f(a)da

. (1.3)

From the posterior distribution, we can generate an estimate â =
∫

a∈A
af(a|Ωj)da by

use of the posterior mean of a and further obtain the estimates of the probability of

toxicity at each dose level by R̂(di) = ψ(di, â). Suppose θ is the target probability of

DLT. The dose given to the (j+1)th patient is the dose level di, which minimizes a

loss function ∆(R̂(di), θ), The standard way is the absolute distance between R̂(di)

and θ:

∆(R̂(di), θ) = |R̂(di)− θ| (1.4)

which selects a dose whose estimated probability of toxicity is closest to the target

toxicity θ. Babb et al. (1998) proposed an asymmetric loss function that penalized

probability of toxicity above the target probability more than that below the target

probability. Specifically, a loss function is given by:

∆(R̂(di), θ) =

 γ(θ − R̂(di)) if θ > R̂(di)

(1− γ)(R̂(di)− θ) if θ ≤ R̂(di)
(1.5)

with γ = 0.5 corresponding to a symmetric loss. The loss functions (1.4) and

(1.5) illustrate the goal of the study. The overall goal of the study is also the

goal for each patient enrolled in the study. The procedure continues until we have

observed a predetermined sample size of patients or a stopping rule takes effect.

The dose assigned to the hypothetical (n+1)th patient is the current best estimate

for the MTD. The impact of the prior information tends to disappear in sequential
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estimation. Yet, because the sample size is usually very small in Phase I trials,

reliance on prior information could be criticized. Therefore, O’Quigley and Shen

(1996) further proposed a likelihood approach of CRM, which is a two-stage design

similar to the original CRM.

The likelihood approach of CRM employs the same likelihood (1.2) as that for the

original CRM. Using the expression of the likelihood, we may obtain an estimate

for a based on the maximum likelihood estimation. Once the estimate for a has

been calculated, the procedure continues in the same way as the original CRM.

A requirement to achieve a maximum likelihood estimate in the interior of the

parameter space is that we have observed some heterogeneity in the response, i.e. a

toxicity is observed after a series of non-toxicities, or a non-toxicity is observed after

a series of toxicities (Shen and O’Quigley, 1996). Otherwise, the maximum likelihood

estimate is infinity, leading to a trivial estimate R̂(di), either zero, one or undefined,

depending on the working model. O’Quigley and Shen (1996) proposed the use of

a two-stage design with the first stage starting from the lowest dose and using an

Up-and-Down escalation scheme, such as the traditional “3+3” method, and with

the second stage of maximum likelihood estimation triggered once heterogeneity in

the response is achieved. The first stage varies with the choice of Up-and-Down

escalation scheme. The choice of the scheme makes little difference because on

average it is only used for a small portion in the experiments. If the scheme is

reasonable, the operating characteristics of the two-stage design remain somewhat

unaffected. In addition, O’Quigley and Shen (1996) compared the performance of

the original CRM and the likelihood approach of CRM under a variety of scenarios.

Generally, the two approaches yield quite similar operating characteristics in MTD

estimation.
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1.4.4 Partial Order CRM

The CRM introduced by O’Quigley, Pepe and Fisher (1990) and O’Quigley and Shen

(1996) was developed for a single-agent trial in which a higher dose corresponds to

a larger probability of toxicity. In the language of Robertson, Wright and Dykstra

(1998), the probability of toxicity follows a “simple order”: the ordering of the

probability of toxicity between any two doses is fully known and the higher dose

corresponds to a larger probability of toxicity. For multiple-agent problems, it is

reasonable to assume monotonicity for each agent separately, but, when combined,

the ordering may not be fully known. For example, in Table 1.2, the ordering

between treatment 3 and 4 is unknown. Some of the orderings between doses are

known while others are not, which is a “partial order”.

For multiple-agent problem, Robertson et al. (1988) described various possible

partial orders scenarios. Hwang and Peddada (1994) proposed a method for esti-

mating parameters subject partial orders that differentiated between “nodal” and

restriction. Conaway, Dunbar, and Peddada (2004) proposed a two-stage Phase I

design for partial orders. The first stage is designed to quickly escalate through

dose combinations which are non-toxic. The second stage implements Hwang and

Peddada’s (1994) estimates. The true probability of toxicity for each treatment i

is modeled by R(di), i = 1, . . . , k. If prior information is available to investigators,

it is described through a prior distribution of the form R(di) ∼ Beta(τi, βi). The

investigators specify the expected value of R(di) and an upper limit ui such that it

is 95% certain that the probability of toxicity will not exceed ui.

E[R(di)] =
τi

τi + βi
and Pr[R(di) ≤ ui] = 0.95. (1.6)

The equations (1.6) are solved to obtain the parameters τi and βi in the prior. In the
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second stage, update the posterior means for the probability of toxicity subject to the

partial order and compute a suggested treatment which minimizes the loss function

associated with posterior means and target probability of DLT. In reality, Conaway,

Dunbar, and Peddada’s (2004) approach is complex and difficult to implement,

especially for dose-finding studies that have a large number of possible simple orders.

Wages, Conaway and O’Quigley (2011) proposed a dose-finding design for multiple-

agent trials by laying out all possible simple orders that are consistent with the

known orderings among dose combinations. When the ordering is fully known, it

simplifies to the standard CRM introduced by O’Quigley, Pepe and Fisher (1990).

The design is a Bayesian method. It begins by assigning a prior probability p(m)

for each possible ordering, where m = 1, 2, . . . ,M , M is the number of possible

orderings and
M∑
m=1

p(m) = 1. To get the trial underway, the design selects an or-

dering according to the prior probability of each ordering and reduces the problem

to a standard CRM to estimate the dose to treat the next patient. After having j

patients enrolled, the likelihood under m is given by

Lm(am|Ωj) =

j∏
l=1

ψylm(xl, am){1− ψm(xl, am)}(1−yl)

which can be used to generate an estimate âm. The posterior probabilities of each

ordering is updated by

π(m|Ωj) =
p(m)

∫
Lm(a|Ωj)f(a)da

M∑
m=1

p(m)
∫
Lm(a|Ωj)f(a)da

,

where f(a) is the prior of a, and we generate an estimate âm under each ordering

m.

Later, Wages, Conaway and O’Quigley (2011) proposed a likelihood approach



18

dose-finding design for multiple-agent trials. Similar to the Bayesian approach in

2010, the design is also based on each possible simple ordering. After having j

patients enrolled, the log-likelihood under the ordering m is given by

lm(am|Ωj) =

j∑
l=1

yl logψm(xl, am) +

j∑
l=1

(1− yl) log{1− ψm(xl, am)}.

A plausible choice of weight for each ordering is

π(m|Ωj) =
exp {lm(âm|Ωj)}
M∑
m=1

exp {lm(âm|Ωj)}
,

where π(m) is considered as the weight of evidence in favor of modelm. Prior weights

can be specified to down the weights of the orderings which are less plausible. With

inclusion of prior weights p(m) for each ordering, the generalized weights are

π(m|Ωj) =
exp {lm(âm|Ωj)} p(m)
M∑
m=1

exp {lm(âm|Ωj)} p(m)

.

The method sequentially updates the generalized weights for each possible ordering

and generates an estimate âm under each ordering in a likelihood approach. When

a new patient is enrolled, the design selects an ordering according to the generalized

weights and the problem reduces to a standard CRM to estimate the dose to treat

the patient.

1.4.5 Two Sample CRM

There are relatively few statistical methods for designing dose-finding trials that

consider heterogeneous toxicity response (e.g., Yuan, Chapell, 2004; Ivanova, Wang,
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2006; Thall, Nguyen, Estey, 2008 and Morita 2011). O’Quigley, Shen and Gamst

(1999) discussed an extension of CRM which enabled the method to be applied to

two groups of patients to determine the MTD for each group. The method takes

the specification of a simple relationship between the dose-toxicity curves for each

of the two groups and runs the two sample continual reassessment method using

maximum likelihood.

O’Quigley and Paoletti (2003) investigated the two group continual reassessment

method in which we anticipated some ordering between the two groups. In this

situation, we may have quite strong knowledge concerning which of the two groups

will have the higher level of MTD, if indeed they do not have the same MTD.

However, the published methods are restricted to studies with at most two groups

of patients.

1.5 Outline of Dissertation

This dissertation will address two practical considerations in dose-finding studies:

heterogeneous toxicity response and a partial ordering for the probability of toxicity

for available treatments. First, the majority of methods for the Phase I trials are de-

signed for a homogeneous toxicity response, resulting in a unique MTD for the broad

patient population. However, patients may naturally differ in the way they react to

a treatment. In this dissertation, we consider heterogeneous toxicity response with

a biomarker that is informative for the toxicity response. We propose a new design

which chooses a distinct MTD for individual patient by use of toxicity biomarker

information, thus contributing to a proper and better treatment for individual pa-

tient. Second, for multiple-agent trials we may be able to identify the order of the

probability of toxicity for only a subset of the available treatments, which is a “par-
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tial order”. We propose a biomarker-based design for which the ordering is not fully

known. The standard CRM reviewed in Section 1.4.3 and the partial order CRM

reviewed in Section 1.4.4 are in fact non-biomarker based desgins. We compare our

biomarker-based designs with the traditional non-biomarker based designs.

Chapter 2 proposes a biomarker-based design for single-agent trial. The biomark-

er design for single-agent trial is in fact a biomarker design for simple order. It

presents the toxicity probability model and the inference. It provides the simulation

results comparing the new biomarker-based design with the standard CRM which

is non-biomarker based. Furthermore, it proposes a BIC model selection method to

choose a model between the biomarker model and the non-biomarker model.

Chapter 3 provides the theoretical properties of the biomarker design for sim-

ple order, including the convergence and asymptotic normality. The theoretical

properties provide us confidence in using the proposed biomarker-based method.

Chapter 4 presents a biomarker-based design for multiple-agent Phase I trials,

which is in fact a biomarker design for partial order. It shows the simulation results

comparing the biomarker design for partial order with the biomarker design for fully

known ordering and with partial order CRM. Furthermore, it discusses BIC model

selection between the biomarker model and the non-biomarker model.

Chapter 5 finally concludes the dissertation with a discussion of the implica-

tions of the new biomarker-based designs together with ideas and areas for further

research.
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Chapter 2

Biomarker-based Design for

Single-agent Trial

2.1 Statistical Method

2.1.1 Toxicity Probability Model

For single-agent trial, assume the probability of toxicity monotonically increases

with the dose level, resulting in a “simple order”. In general, we assume that there

are k pre-specified dose levels d1, d2, . . . , dk. Denote the dose for the jth entered

patient as Xj, j = 1, 2, . . . , n, which takes value xj ∈ {d1, . . . , dk}. Suppose that

a continuous biomarker Z that is informative for toxicity outcome exists. Denote

the biomarker of the jth entered patient as Zj. Zj is a random variable, but its

value zj is known when the patient enters the trial. Denote Yj be an indicator for

whether or not the jth entered patient experiences a DLT, which is a binary random

variable, where 1 denotes the observation of a DLT and 0 denotes the observation

of no DLT. We model the probability of toxicity R(xj, zj) for the jth patient with
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two parameters a and b via

R(xj, zj) = Pr(Yj = 1|Xj = xj, Zj = zj) = E(Yj|xj, zj) = ψ(xj, zj, a, b) (2.1)

for some working dose-toxicity model ψ(xj, zj, a, b) and a ∈ A ,b ∈ B.

For the assumption of homogeneous toxicity response, the standard CRM models

the probability of toxicity R(xj) via R(xj) = Pr(Yj = 1|Xj = x) = E(Yj|xj) =

ψ(xj, a) for some functional dose-toxicity curve ψ(xj, a) with one parameter a.

The power model ψ(di, a) = αai or the empiric model ψ(di, a) = α
exp(a)
i , where

αi is a pre-specified skeleton (value) for each dose level di, is most commonly used

working model (O’Quigley and Shen, 1996). ψ(di, a) = α
exp(a)
i is a reparameteriza-

tion form of the original power model ψ(di, a) = αai . In practice, the empiric model

is preferred, because the domain of a is all real numbers R in the reparameterization

form while the domain of a is positive real numbers R+ in the power model.

For the assumption of heterogeneous toxicity response, we introduce the param-

eter b to incorporate the biomarker to model the probability of toxicity. Based on

the empiric model, we assign a linear relationship for the biomarker and explicit

working dose-toxicity model:

ψ(di, z, a, b) = α
exp(a+bz)
i , (2.2)

where αi are the pre-specified skeleton for each dose level di and satisfy 0 < α1 <

α2 < · · · < αk < 1. This model is similar to the one used by O’Quigley, Shen and

Gamst (1999) for the two-group CRM.

After inclusion of the first j patients into the trial, we have data in the form of

Ωj = {x1, y1, z1, . . . , xj, yj, zj}. We generate estimates â and b̂ for the parameters a
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and b. Given the estimates â and b̂, we can generate estimates of the probability of

toxicity by R̂(di, z) = ψ(di, z, â, b̂) = α
exp(â+b̂z)
i , (i = 1, . . . , k and ∀z ∈ Z) for each

of the k treatments and any value of biomarker z.

Denote the pre-specified target toxicity probability as θ. Suppose the biomarker

of the (j+1)th entered patient takes value zj+1, the target dose to treat the patient

has a corresponding probability of toxicity as close as possible to the target toxicity

rate θ. The treatment xj+1 assigned to the (j + 1)th entered patient minimizes the

loss function:

∆(R̂(di, zj+1), θ) = |R̂(di, zj+1)− θ|, i = 1, . . . , k (2.3)

which is the absolute distance between R̂(di, zj+1) and θ.

The design is a sequential updating design. After inclusion of a predetermined

sample size of n patients, the treatment assigned to the hypothetical (n + 1)th

patient with biomarker zn+1 is the current best estimate for the MTD.

2.1.2 Inference

Similar to the Bayesian framework of O’Quigley, Pepe and Fisher (1990), we assign

prior probability distributions f0(a) and f1(b) for the parameters a and b.

In order to establish estimates of the probability of toxicity for each treatment, we

need an expression of the joint likelihood for the parameters a and b. After inclusion

of the first j patients into the study, the joint likelihood for the parameters a and b

is given by:

L(a, b|Ωj) =

j∏
l=1

ψyl(xl, zl, a, b){1− ψ(xl, zl, a, b)}(1−yl) (2.4)
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which can be used to generate estimates â and b̂ for a and b.

Given the data set Ωj and the joint likelihood, the posterior densities for a and

b are given by:

f(a|Ωj) =

∫
b∈B

L(a, b|Ωj)f1(b)db∫∫
a∈A,b∈B

L(a, b|Ωj)f0(a)f1(b)dadb

f(b|Ωj) =

∫
a∈A

L(a, b|Ωj)f0(a)da∫∫
a∈A,b∈B

L(a, b|Ωj)f0(a)f1(b)dadb
.

(2.5)

The posterior mean can be used as the estimates for a and b:

â =

∫∫
a∈A,b∈B

aL(a, b|Ωj)f0(a)f1(b)dadb∫∫
a∈A,b∈B

L(a, b|Ωj)f0(a)f1(b)dadb

b̂ =

∫∫
a∈A,b∈B

bL(a, b|Ωj)f0(a)f1(b)dadb∫∫
a∈A,b∈B

L(a, b|Ωj)f0(a)f1(b)dadb
.

(2.6)

Given the working model ψ(di, z, a, b) and estimates â and b̂, we can generate es-

timates of probability of toxicity for each treatment and any value of biomarker.

Beginning with prior probability distributions f0(a) and f1(b), after inclusion of the

first j patients into the trial, for the (j + 1)th enrolled patient with biomarker zj+1

we can compute the posterior probability of DLT for each di:

R̂(di, zj+1) = ψ(di, zj+1, â, b̂). (2.7)

The treatment xj+1 ∈ {d1, . . . , dk} assigned to the (j + 1)th enrolled patient is the

treatment di, such that the loss function (2.3) is a minimum. For a patient with

biomarker z, the MTD is the recommended treatment di such that the loss function
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(2.3) is minimized after inclusion of the predetermined sample size of n patients.

2.2 Numerical Studies

To illustrate the proposed method, consider an example involving k = 6 treatments

d1, . . . , d6. We consider two examples of the true probability of toxicity.

In the first example, suppose the true probability of toxicity follows an empiric

model:

R(di, z) = β
exp(a+bz)
i , (2.8)

where β1 = 0.04, β2 = 0.07, β3 = 0.20, β4 = 0.35, β5 = 0.55 and β6 = 0.70. In this

example, the form of the true probability of toxicity is similar to that of the working

model.

In the second example, with the aim of further validating the robustness of the

proposed design, we investigate the true probability of toxicity following a logit

model:

R(di, z) =
exp(ai − bz)

1 + exp(ai − bz)
, (2.9)

where i = 1, . . . , 6 and we study two scenarios of ai, shown in Table 2.1.

Table 2.1: Scenarios of ai

a1 a2 a3 a4 a5 a6
Scenario 1 -1.8 -1.4 -0.5 0.1 0.8 1.4
Scenario 2 -4.9 -4 -2.4 -1.4 -0.4 0.3

The values of ai are taken such that for scenario 1, β
exp(−0.5)
i = exp(ai)

1+exp(ai)
, i =

1, . . . , 6 and for scenario 2, β
exp(0.42)
i = exp(ai)

1+exp(ai)
, i = 1, . . . , 6, i.e. for biomarker with

value 0, the true probability of toxicity in the two examples are the same. In the

second example, the form of the true probability of toxicity is different from that of
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the working model. The left plot in Figure 2.1 shows the true probability of toxicity

R(di, z) = β
exp(a+bz)
i where a = −0.5 and b = 1. The right plot in Figure 2.1 shows

the true probability of toxicity R(di, z) =
exp(ai−bz)

1+exp(ai−bz) with ai in scenario 1 and b = 1.
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Figure 2.1: The true probability of toxicity with an empiric model and a logit model
where a = −0.5 or ai in scenario 1 and b = 1

Comparing the two plots, the empiric model is more steep than the logit model

when the coefficients of the biomarker are the same in the two models. The empiric

model is more sensitive to the change of the biomarker while the logit model is less

sensitive to the change of the biomarker.

We investigate a variety of toxicity scenarios. For the true probability of toxicity

with an empiric model, we study several different true values of a and b, where

a = −0.5 and 0.42 and b = 1.5, 1, 0.5, 0.3, 0.1, −0.1, −0.3, −0.5, −1 and −1.5. For

the true probability of toxicity with a logit model, we study the two scenarios of ai

in Table 2.1 and b = 1.5, 1, 0.5, 0.3, 0.1, −0.1, −0.3, −0.5, −1 and −1.5.

Suppose the target toxicity probability is θ = 0.20.
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There is a wide choice for the skeleton in the working dose-toxicity model

ψ(di, z, a, b) = α
exp(a+bz)
i , where 0 < α1 < α2 < · · · < αk < 1. O’Quigley and

Zohar (2010) indicated that “reasonable” skeletons should have adequate spacing

between values at adjacent dose levels such that the operating characteristics of

CRM will be adequate. Specifying skeletons with adequate spacing will be more

challenging when the number of dose levels is large. Lee and Cheung (2009) estab-

lished a systematic approach for specifying the skeleton. Their algorithm requires

four parameters to generate the skeleton: the prior MTD (γ), the target toxicity

probability (θ), the number of dose levels (d) and the value of the indifference inter-

val half-width (δ). It is necessary to ensure that there is enough spacing both below

and above the prior MTD. Therefore, we recommend placing the prior MTD (γ) at a

dose level close to the middle dose levels. We can generate skeleton values using the

getprior function in R package dfcrm (i.e., getprior(δ, θ, γ, d)). Using a half-width

value of δ = 0.07, a prior MTD of γ = 3 and a target toxicity probability θ = 0.20,

implementing the algorithm yielded the skeleton {0.020, 0.081, 0.200, 0.356, 0.515,

0.654}. We use this skeleton for the working model.

We assign a standard normal prior N(0, 1) for a similar to O’Quigley and Shen

(1996). Generally, before we begin the trial, we may have quite strong knowledge

concerning whether an increased biomarker value indicates a higher probability of

toxicity or a lower probability of toxicity. We assign a truncated normal prior

for b. When we believe the probability of toxicity is decreasing with an increased

biomarker value, corresponding to a true positive value of b in the simulation, we

assign a truncated normal prior for b with the domain on R+:

f1(b) =


2√
2π

exp(− b2

2
) b ≥ 0

0 b < 0
(2.10)
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When we believe the probability of toxicity is increasing with an increased biomarker

value, corresponding to a true negative value of b in the simulation, we assign a

truncated normal prior for b with the domain on R−:

f1(b) =

 0 b > 0

2√
2π

exp(− b2

2
) b ≤ 0

(2.11)

We use a predetermined sample size of patients n = 25 in the simulation. We

define a measurement to evaluate the performance of the proposed design. Af-

ter inclusion of the predetermined sample size of n patients, for the hypothetical

(n+ 1)th patient with biomarker zn+1, correct recommendation refers to the MTD

recommended by the proposed design being the same as the true MTD correspond-

ing to the value of biomarker. We further define the overall probability of correct

recommendation as:

P (correct MTD recommendation)

=

∫
P (correct MTD recommendation|Z = z)fZ(z)dz, (2.12)

where fZ(z) is the probability density function of biomarker Z.

To evaluate the operating characteristics and performance of the proposed method,

we investigate biomarkers with different distributions. We first investigate a biomark-

er with a standard normal distribution Z ∼ N(0, 1). According to genetic study,

a toxicity biomarker may have a mixture distribution of a point mass at 0 and a

distribution defined on R+. We then investigate biomarkers with such distributions.

For the point mass at 0, we investigate two weights 0.3 and 0.6. For distributions

defined on R+, we choose truncated normal distribution and log-normal distribution
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with µ = 0 and σ = 1. The four specified mixture distributions are as follows:

w=0.3 truncated normal
Pr(Z = 0) = 0.3

fZ(z) = 0.7× 2√
2π

exp
(
−1

2
z2
)
for z > 0

(2.13)

w=0.6 truncated normal
Pr(Z = 0) = 0.6

fZ(z) = 0.4× 2√
2π

exp
(
−1

2
z2
)
for z > 0

(2.14)

w=0.3 log-normal
Pr(Z = 0) = 0.3

fZ(z) = 0.7× 1
z
√
2π
e−

(ln z)2

2 for z > 0
(2.15)

w=0.6 log-normal
Pr(Z = 0) = 0.6

fZ(z) = 0.4× 1
z
√
2π
e−

(ln z)2

2 for z > 0
(2.16)

When b is positive, the probability of toxicity is decreasing with an increased

biomarker value. When b is negative, the probability of toxicity is increasing with

an increased biomarker value. Figure 2.2 shows the probability of toxicity for a

distribution on the whole real axis and the probability of toxicity for a truncated

distribution on the positive semi axis.

Under all scenarios, 1000 trials were simulated. We compare our proposed

biomarker design with the standard CRM whose working model does not contain

biomarker although the true toxicity response is assumed to be heterogeneous in the

simulation. In this dissertation, the “biomarker design for single-agent trial” pro-

posed in Section 2.1 is synonymous with “biomarker design for simple order”. The

“standard CRM for single-agent trial” is synonymous with “non-biomarker design

for simple order”.
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Figure 2.2: The true probability of toxicity on the whole real axis or on the positive
semi axis where a = −0.5 and b = 1 or b = −1

The standard CRM provides a benchmark of how necessary the biomarker infor-

mation should be included and how well the proposed biomarker design performs. In

the example of the true probability of toxicity with the empiric model (2.8), Figure

A.1 to A.4 provide the probability of correct MTD recommendation. Figure A.5 to

A.8 provide the corresponding percentage of patients treated at MTDs.
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In terms of the probability of correct MTD recommendation, when the biomarker

is strong, corresponding to a large true absolute value of b in the simulations, the

proposed biomarker design yields a higher probability than the standard CRM.

When the biomarker is weak, for example the scenarios with

(1) a = −0.5, b = 0.1 and biomarker with truncated normal w = 0.3

(2) a = −0.5, b = 0.1 and biomarker with truncated normal w = 0.6

(3) a = −0.5, b = 0.1 and biomarker with log-normal w = 0.3

(4) a = −0.5, b = 0.1 and biomarker with log-normal w = 0.6

(5) a = 0.42, b = 0.5 and biomarker with truncated normal w = 0.6

(6) a = 0.42, b = 0.3 and biomarker with truncated normal w = 0.3

(7) a = 0.42, b = 0.3 and biomarker with truncated normal w = 0.6

(8) a = 0.42, b = 0.3 and biomarker with log-normal w = 0.6

(9) a = 0.42, b = 0.1 and biomarker with standard normal distribution

(10) a = 0.42, b = 0.1 and biomarker with truncated normal w = 0.3

(11) a = 0.42, b = 0.1 and biomarker with truncated normal w = 0.6

(12) a = 0.42, b = 0.1 and biomarker with log-normal w = 0.3

(13) a = 0.42, b = 0.1 and biomarker with log-normal w = 0.6

(14) a = 0.42, b = −0.1 and biomarker with standard normal distribution

(15) a = 0.42, b = −0.1 and biomarker with truncated normal w = 0.3
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(16) a = 0.42, b = −0.1 and biomarker with truncated normal w = 0.6

(17) a = 0.42, b = −0.1 and biomarker with log-normal w = 0.3

(18) a = 0.42, b = −0.1 and biomarker with log-normal w = 0.6

standard CRM yields slightly higher probability than the proposed biomarker de-

sign. Yet, the probability of correct MTD recommendation yielded by the proposed

biomarker design is also high enough.

In terms of the percentage of patients treated at the MTDs, when the biomarker

is strong, corresponding to a large true absolute value of b in the simulations, the

proposed biomarker design treats more patients at the MTDs than the standard

CRM. When the biomarker is weak, for example the scenarios with

(1) a = −0.5, b = 0.3 and biomarker with truncated normal w = 0.3

(2) a = −0.5, b = 0.3 and biomarker with truncated normal w = 0.6

(3) a = −0.5, b = 0.1 and biomarker with truncated normal w = 0.3

(4) a = −0.5, b = 0.1 and biomarker with truncated normal w = 0.6

(5) a = −0.5, b = 0.1 and biomarker with log-normal w = 0.3

(6) a = −0.5, b = 0.1 and biomarker with log-normal w = 0.6

(7) a = 0.42, b = 0.3 and biomarker with truncated normal w = 0.3

(8) a = 0.42, b = 0.3 and biomarker with truncated normal w = 0.6

(9) a = 0.42, b = 0.3 and biomarker with log-normal w = 0.6

(10) a = 0.42, b = 0.1 and biomarker with standard normal distribution
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(11) a = 0.42, b = 0.1 and biomarker with truncated normal w = 0.3

(12) a = 0.42, b = 0.1 and biomarker with truncated normal w = 0.6

(13) a = 0.42, b = 0.1 and biomarker with log-normal w = 0.3

(14) a = 0.42, b = 0.1 and biomarker with log-normal w = 0.6

(15) a = 0.42, b = −0.1 and biomarker with standard normal distribution

(16) a = 0.42, b = −0.1 and biomarker with truncated normal w = 0.3

(17) a = 0.42, b = −0.1 and biomarker with truncated normal w = 0.6

(18) a = 0.42, b = −0.1 and biomarker with log-normal w = 0.3

(19) a = 0.42, b = −0.1 and biomarker with log-normal w = 0.6

standard CRM treats slightly more patients at the MTDs than the proposed biomark-

er design.

The simulation results indicate that the proposed biomarker design is not quite

sensitive to the distribution of biomarker. In the example of the true probability

of toxicity with the logit model (2.9), Figure A.5 to A.8 provide the probability

of correct MTD recommendation. Figure A.13 to A.16 provide the corresponding

percentage of patients treated at MTDs. Similarly, when the biomarker is strong,

the proposed biomarker design performs better than the standard CRM. When the

biomarker is weak, the standard CRMmay perform slightly better than the proposed

biomarker design. It shows the proposed biomarker design is not quite sensitive to

the underlying true probability of toxicity and demonstrates the robustness of the

method.
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Overall, the simulation results indicate that, in terms of identifying MTDs, the

proposed biomarker design demonstrates superior performance when the biomarker

is strong and the performance of the proposed biomarker design is comparable to

that of standard CRM when the biomarker is weak. The simulation results support

the feasibility and necessity of choosing a distinct MTD for each individual patient

by use of toxicity biomarker.

2.3 Model Selection between Biomarker Model

and Non-biomarker Model

2.3.1 Statistical Method

The simulation result in Section (2.2) indicates that when the biomarker is strong

the biomarker design proposed in section (2.1) performs better, when the biomarker

is weak the standard CRM, i.e. the non-biomarker model, performs better.

When the toxicity response is homogeneous, O’Quigley, Pepe and Fisher (1990)

pointed out a one-parameter working model such as ψ(di, a) = α
exp(a)
i is a under-

parameterized model. They compared the performance of a one-parameter model

versus with a two-parameter model. Generally, the one-parameter model performs

better than a two-parameter model.

When the toxicity response is heterogenous, the biomarker model is more flexi-

bility than the non-biomarker model in identifying the MTDs. The non-biomarker

model is relatively under-parameterized. It chooses a unique MTD for all values

of biomarker. The non-biomarker model leads to more handicap in trying to find

a good fit and a correct MTD for some values of biomarker. However, when the

biomarker is weak, most values of biomarker may have the same MTD. The lack of
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flexibility of the non-biomarker model may turn into an advantage in identifying a

correct MTD for most values of biomarker, especially considering the small sample

size of patients and vague prior of the parameters. The non-biomarker model may

be considered as the better model than the biomarker model when the biomarker

is weak. When the biomarker is strong, the correct MTDs spread out for different

values of biomarker, so the biomarker model is considered better while the non-

biomarker model is lack of flexibility.

This section has the appeal of implementing model selection techniques. If

the model selection technique can effectively choose the better model between the

biomarker model and the non-biomarker model, our approach will identify MTDs

more effectively. Schwarz (1978) derived the Bayesian information criterion (BIC)

given by:

BIC = −2 log(L(a|Ωj)) +K log(n), (2.17)

where a is the estimable parameters and K is the number of estimable parameters.

In the proposed biomarker design, two parameters abio and bbio are estimated, K = 2

and the BIC is given by:

BICbio = −2 log(L(âbio, b̂bio|Ωj)) + 2 log(n). (2.18)

The expression L(âbio, b̂bio|Ωj) is the value of the likelihood evaluated at the point

of posterior mean âbio and b̂bio. In the non-biomarker design, the working model is

ψ(di, a) = α
exp(a)
i , one parameter anon is estimated, K = 1 and the BIC is given by:

BICnon = −2 log(L(ânon|Ωj)) + log(n). (2.19)

The expression L(ânon|Ωj) is the value of the likelihood evaluated at the posterior
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mean ânon. The model with smaller BIC is considered better and will be selected.

Before the first patient is enrolled, we do not have the estimates âbio, b̂bio and

ânon. We simply choose the non-biomarker model as the working model. When the

estimates âbio, b̂bio and ânon are all achieved, we are able to compute and compare

the BIC for the biomarker model and the non-biomarker model. In the Bayesian

framework, we obtain the posterior mean âbio, b̂bio and ânon as soon as the response

of whether or not the first patient experiences a DLT is observed. After that, the

BIC is computed for the biomarker model and the non-biomarker model and the

model with the smaller value of BIC is selected.

After inclusion of the first j patients into the trial, we estimate both the biomark-

er model and the non-biomarker model and generate estimates âbio, b̂bio and ânon.

When the (j + 1)th patient is enrolled, select the model with smaller BIC be-

tween the biomarker model ψ(di, z, a, b) = α
exp(a+bz)
i and the non-biomarker model

ψ(di, a) = α
exp(a)
i , and then select the treatment xj+1 assigned to the (j + 1)th

entered patient which minimizes the loss function (2.3). After inclusion of a prede-

termined sample size of n patients, we choose the model with smaller BIC as the

working model and choose the MTDs for each individual patient under the working

model.

2.3.2 Numerical Studies

In aim of improving the performance of biomarker model when the biomarker is

weak, we propose the model selection method. In this section, we compare the

performance of the BIC model selection method with the biomarker model and

the non-biomarker model. In this dissertation, the “BIC model selection method”

proposed in Section (2.3) is synonymous with “BIC method for simple order”. We
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do the simulation studies under the same setting as Section (2.2).

In the example of the true probability of toxicity with the empiric model (2.8),

Figure A.1 to A.4 provide the probability of correct MTD recommendation. Figure

A.5 to A.8 provide the corresponding percentage of patients treated at MTDs. Table

A.1 provides the proportion of selecting biomarker model as the final working model

after inclusion of the predetermined sample size of patients. In the example of the

true probability of toxicity with the logit model (2.9), Figure A.5 to A.8 provide

the probability of correct MTD recommendation. Figure A.13 to A.16 provide the

corresponding percentage of patients treated at MTDs. Table A.2 provides the

proportion of selecting biomarker model as the final working model

In terms of the probability of correct MTD recommendation, the probability of

the BIC method is usually between the probability of the biomarker model and the

non-biomarker model. When the biomarker is strong, the probability of biomarker

model is larger than the non-biomarker model, the probability of the BIC method

is usually slightly smaller than but approaches to that of biomarker model. It is

reasonable that when the probability of biomarker model is larger than that of the

non-biomarker model, the probability of the BIC method is smaller than that of

biomarker model, because with the model selection mechanism the BIC method

sometimes chooses the non-biomarker model, further lowering the probability of

correct MTD recommendation.

When the biomarker is weak, the probability of biomarker model is sometimes

smaller than that of the non-biomarker model. Especially, for those scenarios whose

probability of biomarker model is smaller than that of non-biomarker model, the

probability of BIC method is obviously larger than that of biomarker model and

approaches to the probability of non-biomarker model. We conclude that the BIC

method generally improves the performance in identifying MTDs when the biomark-
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er is weak.

Similarly for the percentage of patients treated at the MTDs, when the biomark-

er is strong, the percentage of BIC method is usually slightly smaller than but ap-

proaches to that of biomarker model. When the biomarker is weak, the BIC method

usually improves the percentage.

In terms of the proportion of selecting biomarker model as the final working

model, when the biomarker is strong, the proportion is large, when the biomarker

is weak, the proportion could be very small. In addition, the proportion has some

certain pattern which is related to the distribution of the biomarker.

Overall, the BIC method is a trade off between biomarker model and non-

biomarker model. When the biomarker is strong, the BIC method may lower the

performance a little bit. When the biomarker is weak, the BIC method improves the

performance a lot. The BIC method generates a good result much more stably than

the biomarker model and non-biomarker model whenever the biomarker is strong or

weak. The simulation results indicate that it is worthwhile to replace the biomarker

model with the BIC model selection method, especially when it is uncertain whether

the biomarker is strong or not before the trial. Yet when it is quite certain that the

biomarker is strong before the trial, the biomarker model is still recommended.
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Chapter 3

Theoretical Properties

For the homogeneous toxicity response, Shen and O’Quigley (1996) established the

large sample properties including consistency and asymptotic normality under mod-

el misspecification. It is shown that, in general, the recommended dose level will

converge to the target dose level. However under model misspecification there are

situations in which the recommended dose may converge to a dose level close to the

target dose level, but not necessarily the closest one. O’Quigley (2005) summarized

the theoretical study of the continual reassessment method. Cheung and Chappell

(2002) conjectured that CRM is consistent under a much weaker set of conditions

than the conditions established by Shen and O’Quigley (1996). Azriel (2012) pro-

vided a formal proof for the conjecture of Cheung and Chappell (2002), thus giving

a solid justification for the robustness of the CRM for misspecified model.

O’Quigley, Shen and Gamst (1999) proved the consistency and asymptotic nor-

mality for two sample CRM under fairly weak conditions and established the asymp-

totic efficiency between two sample CRM and two one-sample CRM separately. For

partial order CRM, Wages (2010) developed the theoretical properties in his unpub-

lished Ph.D. thesis, within the framework of stochastic approximation and proved
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consistent model selection among each possible simple order.

All the arguments are acquired from the idea of the likelihood and based on

maximum likelihood estimation. As long as the probability of the prior distribution

for the parameters to be estimated is not placed on a single point, the arguments

hold for the Bayesian approach as well. Common arguments involving the likelihood

for completely random dose allocation fail due to the determinant dose allocation.

For the heterogeneous toxicity response, we also proceed from the likelihood and

maximum likelihood estimation. Therefore, we define the following functions:

Ln(a, b) =
n∏
j=1

{ψyl(xj, zj, a, b)}yj {1− ψ(xj, zj, a, b)}(1−yj) (3.1)

ln(a, b) =
n∑
j=1

[yj log {ψ(xj, zj, a, b)}+ (1− yj) log {1− ψ(xj, zj, a, b)}] (3.2)

In(a, b) =
1

n

n∑
j=1

[yj log {ψ(xj, zj, a, b)}+ (1− yj) log {1− ψ(xj, zj, a, b)}](3.3)

L̃n(a, b) =
n∏
j=1

{ψ(xj, zj, a, b)}R(xj ,zj) {1− ψ(xj, zj, a, b)}{1−R(xj ,zj)} (3.4)

l̃n(a, b) =
n∑
j=1

[R(xj, zj) log {ψ(xj, zj, a, b)}

+ {1−R(xj, zj)} log {1− ψ(xj, zj, a, b)}] (3.5)

Ĩn(a, b) =
1

n

n∑
j=1

[R(xj, zj) log {ψ(xj, zj, a, b)}

+ {1−R(xj, zj)} log {1− ψ(xj, zj, a, b)}], (3.6)

where R(di, z) is the true probability of toxicity for dose level di and biomarker

z, ψ(di, z, a, b) is the working model and yj is the toxicity response for the jth

patient. Ln(a, b) is the likelihood, ln(a, b) is the log-likelihood. Substituting the true

probability of toxicity R(xj, zj) for the toxicity response yj, we get the likelihood
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L̃n(a, b) and the log-likelihood l̃n(a, b).

The maximum likelihood estimation ân and b̂n exist as soon as some kind het-

erogeneity in the toxicity response is achieved. We need to assume the working

model ψ(di, z, a, b) to satisfy the following conditions in order to establish the useful

properties including the consistency and asymptotic normality.

Condition 1. The parameter a belongs to a finite interval [ma,Ma] and the param-

eter b belongs to a finite interval [mb,Mb] . The biomarker z ∈ Z and the domain

of z is bounded in a finite interval [mz,Mz]. The biomarker z is not a point mass,

i.e. for any c, P (Z = c) < 1.

This restriction enables us to avoid dealing with degenerate cases (the probability

of toxicity equaling to zero or one).

Condition 2. For fixed z, the probability of toxicity satisfy: 0 < R(d1, z) < · · · <

R(dk, z) < 1 and there exists mR and MR such that for all z, 0 < mR ≤ R(d1, z) <

· · · < R(dk, z) ≤ MR < 1. For each di, the probability of toxicity R(di, z) is mono-

tone in z.

The restriction enables us to avoid dealing with degenerate cases (true probability

of toxicity equaling to zero or one). The restriction accords with the assumption

that the higher dose corresponds to a larger probability of toxicity. The restriction

indicates that the biomarker is monotonic with the true probability of toxicity.

Condition 3. ψ(x, z, a, b) can be written as a function of x and a+bz, i.e. ψ(x, z, a, b)

= ψ̃(x, a+ bz). For each di, if ψ(di, z, a1, b1) = ψ(di, z, a2, b2), a1 + b1z = a2 + b2z.

The condition ψ(di, z, a, b) can be written as a function of a + bz comes from

the motivation of the proposed working model. For the assumption of homogeneous
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toxicity response, we usually use a one-parameter working model. For the assump-

tion of heterogeneous toxicity response, to incorporate the biomarker information,

we assign a linear relationship for the biomarker. It is in the form of a+ bz, instead

of the single parameter a for the homogeneous assumption.

The empiric model ψ(di, z, a, b) = α
exp(a+bz)
i proposed in Section (2.1) satisfies

this condition. It can be written as a function of a+ bz. If α
exp(a1+b1z)
i = α

exp(a2+b2z)
i

, we will have a1 + b1z = a2 + b2z.

In addition to the empiric model, there exists other function satisfying the condi-

tion 3. For example, a logit model ψ(di, z, a, b) =
exp(a+bz)

1+exp(a+bz)
satisfies the condition

3.

Condition 4. ψ(x, z, a, b) is continuous.

Condition 5. For fixed z, a and b, ψ(x, z, a, b) is strictly increasing in x.

Condition 6. For fixed x, a and b, ψ(x, z, a, b) is strictly monotonic in z.

Condition 7. ψ(x, z, a, b) is second order continuous derivable about a and b.

Proposition 1. (The uniform continuity of ψ(·)) ∀ε > 0, there exists δa > 0,

δb > 0, for |a1 − a2|<δa, |b1 − b2|<δb, ∀z ∈ [mz,Mz] and ∀i = 1, . . . , k,

|ψ(di, z, a1, b1)− ψ(di, z, a2, b2)| < ε

holds.

Proof. Since a ∈ [ma,Ma], b ∈ [mb,Mb] and z ∈ [mz,Mz], ψ(di, z, a, b) is uniformly

continuous, the proposition holds.

Proposition 2. (The continuity of log-likelihood) For each ε > 0 and every

(a, b) ∈ [ma,Ma]×[mb,Mb] and z ∈ Z ⊂ [mz,Mz], there exists Nε such that whenever
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n > Nε, we have

|In(a, b)− In+1(a, b)| < ε.

Proof. For some M > 0 and for each n > M , we can write

In(a, b) =
M

n
IM(a, b) +

1

n

n−M∑
j=1

ρM+j,

where ρj = log {ψ(xj, zj, a, b)} if the jth patient with biomarker zj experienced a

toxicity at dose xj and ρj = log {1− ψ(xj, zj, a, b)} otherwise. Now let D1 and D2

be bounds such that |IM(a, b)| < D1 and |ρj| < D2. Next, if Nε = max(2D1

Mε
, 2D2

ε
)

and n > Nε, then we have

|In(a, b)− In+1(a, b)|

=

∣∣∣∣∣Mn IM(a, b) +
1

n

n−M∑
j=1

ρM+j −
M

n+ 1
IM(a, b)− 1

n+ 1

n−M+1∑
j=1

ρM+j

∣∣∣∣∣
=

∣∣∣∣∣ M

n(n+ 1)
IM(a, b) +

1

n(n+ 1)

n−M∑
j=1

ρM+j −
1

n+ 1
ρn+1

∣∣∣∣∣
<

M

n(n+ 1)
D1 +

n−M + 1

n(n+ 1)
D2 ≤

M

n(n+ 1)
D1 +

1

n
D2 <

ε

2
+
ε

2
= ε.

The last inequality follows from our choice of Nε.

Corollary 1. Similar inequalities

∣∣∣Ĩn(a, b)− Ĩn+1(a, b)
∣∣∣ < ε∣∣∣∣∂In(a, b)∂a

− ∂In+1(a, b)

∂a

∣∣∣∣ < ε∣∣∣∣∂In(a, b)∂b
− ∂In+1(a, b)

∂b

∣∣∣∣ < ε

hold.
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Lemma 1. If Sn =
n∑
i=1

Xi is a zero-mean martingale and EX2
i is uniformly bounded

for all i , we have

Sn
n

→ 0 almost surely.

Proof. It is obvious that

EXj = E(E(Xj|Fj−1)) = E(E((Sj − Sj−1)|Fj−1)) = E(E(Sj|Fj−1)− Sj−1) = 0,

ESn = 0.

For i > j,

E(XiXj) = E(E(XiXj|Fi−1)) = E(XjE(Xi|Fi−1)) = E(Xj(E(Si|Fi−1)−Si−1)) = 0.

Thus, we have

varSn = ES2
n =

n∑
j=1

EX2
j + 2

∑
i>j

E(XiXj) =
n∑
j=1

EX2
j .

Consider Yj =
Xj
j

and the series S̃n =
n∑
j=1

Yj =
n∑
j=1

Xj
j
.

S̃n is also a martingale and EYj = 0, ES̃n = 0, E(YiYj) = 0, varS̃n =
n∑
j=1

EY 2
j .

First, for ∀ε > 0, we show P ( max
1≤k≤n

|S̃k| ≥ ε) ≤

n∑
j=1

EY 2
j

ε2
.

Define

A =

{
max
1≤k≤n

|S̃k| ≥ ε

}
=

n∪
j=1

{
|S̃j| ≥ ε

}
=

n∪
k=1

{
|S̃1| < ε, · · · , |S̃k−1| < ε, |S̃k| ≥ ε

}
=

n∪
k=1

Ak
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Define Ak =
{
|S̃1| < ε, · · · , |S̃k−1| < ε, |S̃k| ≥ ε

}
, so Ak are disjoint events.

We have

P (A) =
n∑
k=1

P (Ak),

and

var(S̃n) = ES̃2
n ≥ E(S̃2

nIA) =
n∑
k=1

E(S̃2
nIAk) =

n∑
k=1

E
[
(S̃k + S̃n − S̃k)

2IAk

]
=

n∑
k=1

E(S̃2
kIAk) + 2

n∑
k=1

E
[
S̃k(S̃n − S̃k)IAk

]
+

n∑
k=1

E
[
(S̃n − S̃k)

2IAk

]
.

In the cross term,

E
[
S̃k(S̃n − S̃k)IAk

]
= E

[
S̃kIAk

n∑
j=k+1

Yj

]
=

n∑
j=k+1

E(S̃kIAkYj)

=
n∑

j=k+1

E(E(S̃kIAkYj|Fj−1)) =
n∑

j=k+1

E
[
S̃kIAkE((S̃j − S̃j−1)|Fj−1)

]
= 0

So,
n∑
j=1

EY 2
j = var(S̃n) ≥

n∑
k=1

E(S̃2
kIAk) ≥ ε2

n∑
k=1

EIAk =ε
2P (A).

Therefore, we have P ( max
1≤k≤n

|S̃k| ≥ ε) ≤

n∑
j=1

EY 2
j

ε2
.

Second, we want to show
n∑
j=1

Yj <∞ almost surely.

For ∀ε > 0,

P (
∞∪
k=1

{
|S̃n+k − S̃n| > ε

}
) = P ( lim

m→∞

m∪
k=1

{
|S̃n+k − S̃n| > ε

}
)

= lim
m→∞

P (
m∪
k=1

{
|S̃n+k − S̃n| > ε

}
) = lim

m→∞
P (

{
max
1≤k≤m

|S̃n+k − S̃n| > ε

}
)

≤
lim
m→∞

n+m∑
k=n+1

EY 2
k

ε2
=

∞∑
k=n+1

EY 2
k

ε2
→ 0 almost surely,
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as n→ ∞. Since EX2
i is bounded, there exists M such that EX2

i ≤M . So,

∞∑
k=n+1

EY 2
k ≤M

∞∑
k=n+1

1

k2
<∞.

Therefore, S̃n is a Cauchy sequence. S̃n converges almost surely.

Finally, by Kronecker’s lemma (Shiryaev, 1984 Lemma IV.3.2), we have

Sn
n

=

n∑
j=1

Xj

n
=

j∑
j=1

nYj

n
→ 0 almost surely.

3.1 The Establish of Maximum Likelihood Esti-

mation

When the toxicity response is homogeneous, the maximum likelihood estimation

does not exist. The maximum likelihood estimation may exist when we have ob-

served some kind of heterogeneity in the toxicity response. The fundamental hetero-

geneity is that a toxicity is observed after a series of non-toxicity or a non-toxicity

is observed after a series of toxicities. Define

n0 = inf{n : 0 <
n∑
j=1

yj < n},

where n0 is the first time that both outcomes of the response are observed.

Theorem 1. If condition 2 holds, P (n0 <∞) = 1. With probability 1, heterogene-

ity can be achieved after finite number of patients.

Proof. Define Tn =
n∑
j=1

{yj −R(xj, zj)}. According to the definition, Tn is a mar-

tingale. The limit theorem for martingale (Shiryayev, 1984, Section 7.3, Corollary
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2) shows that Tn
n

tends to zero almost surely. Furthermore, condition 2 leads to

0 < mR ≤ 1

n

n∑
j=1

R(xj, zj) ≤MR < 1

which yields that for large enough n, 1 ≤
n∑
j=1

yj ≤ n − 1 almost surely. It then

follows that P (n0 <∞) = 1.

Corollary 2. Heterogeneity with some other definitions such as the first time that

two toxicities are observed or two non-toxicity are observed:

n1 = inf

{
n : 2 ≤

n∑
j=1

yj ≤ n− 2

}

can be achieved after finite number of patients.

The maximum likelihood estimation does exist when we have observed some kind

of heterogeneity in the toxicity response, such as for a subset of the domain of the

biomarker z, a toxicity is observed after a series of non-toxicity or a non-toxicity is

observed after a series of toxicities. Define

n2 = inf

{
n : 0 <

n∑
j=1

yjI{zj ∈ A} <
n∑
j=1

I{zj ∈ A}

}
,

where A is the subset of the domain of the biomarker z and P (z ∈ A) > 0. n2 is

the first time that for patients with biomarker in the subset, both outcomes of the

response are observed and the MLE can be calculated.

Corollary 3. If condition 2 holds, P (n2 < ∞) = 1. With probability 1, for the

defined subset of biomarker, heterogeneity can be achieved after finite number of

patients.
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Proof. It is obvious that
n∑
j=1

I{zj ∈ A} = 2 can be achieved after finite number of

patients. Define Tn =
n∑
j=1

{yj −R(xj, zj)} I{zj ∈ A}. According to the definition,

Tnis a martingale. The limit theorem for martingale (Shiryayev, 1984) shows that

Tn
n

tends to zero almost surely. Furthermore, condition 2 leads to

0 < mR

n∑
j=1

I{zj ∈ A} ≤ 1

n

n∑
j=1

R(xj, zj)I{zj ∈ A} ≤MR

n∑
j=1

I{zj ∈ A} <
n∑
j=1

I{zj ∈ A}

which yields that for large enough n, 0 <
n∑
j=1

yjI{zj ∈ A} <
n∑
j=1

I{zj ∈ A} almost

surely. It then follows that P (n2 <∞) = 1.

Theorem 2. (The existence of MLE) For the working model ψ(di, z, a, b) =

α
exp(a+bz)
i , the maximum likelihood estimates for the parameters a and b are finite

when we have observed some kind of heterogeneity in the toxicity response.

Proof. For fixed n, suppose â and b̂ are the MLE on [−∞,+∞]× [−∞,+∞], where

â and b̂ could be infinity. We want to show â and b̂ are not infinity. Consider the

first order derivatives of the log-likelihood:


∂ln(a,b)
∂a

=
n∑
j=1

[
yj

∂ψ
∂a

ψ
(xj, zj, a, b) + (1− yj)

− ∂ψ
∂a

1−ψ (xj, zj, a, b)
]

∂ln(a,b)
∂b

=
n∑
j=1

[
yj

∂ψ
∂b

ψ
(xj, zj, a, b) + (1− yj)

− ∂ψ
∂b

1−ψ (xj, zj, a, b)
]
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For the first order derivatives of the working model ψ(x, z, a, b), we have

∂ψ
∂a

ψ
(x, z, a, b) = log α̃i exp(a+ bz) →

 −∞ when a+ bz → +∞

0− when a+ bz → −∞

−∂ψ
∂a

1− ψ
(x, z, a, b) =

−α̃exp(a+bz)
i log α̃i exp(a+ bz)

1− α̃
exp(a+bz)
i

→

 0+ when a+ bz → +∞

1 + log α̃i exp(a+ bz) → 1− when a+ bz → −∞

where x is the dose and α̃i is the skeleton for the dose x.

We want to show â and b̂ are finite, we just need to show it is impossible that either

â or b̂ is infinity.

(1) If b̂ is finite, consider a→ +∞ and we have

∂ln(a, b)

∂a
→ −∞

almost surely. Thus, ln(a, b) is decreasing in a, when b is finite and fixed and

a→ +∞. So b̂ is finite and â = +∞ won’t be the MLE.

(2) If b̂ is finite, consider a→ −∞ and we have

∂ln(a, b)

∂a
> 0

almost surely. Thus, ln(a, b) is increasing in a, when b is finite and fixed and a →

−∞. So b̂ is finite and â = −∞ won’t be the MLE.
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Then consider b̂ is infinity and we have

∂ln(a, b)

∂a
=

∑
{j:a+bzj=+∞}

yj(−∞) +
∑

{j:a+bzj=+∞}

(1− yj)0
+

+
∑

{j:a+bzj=−∞}

yj × 0− +
∑

{j:a+bzj=−∞}

(1− yj)× 1−.

(3) If b̂ = +∞ and â is finite, ∂ln(a,b)
∂a

has to be zero. Thus,

for zj > 0, i.e. a+ bzj = +∞ , yj must be 0.

for zj < 0, i.e. a+ bzj = −∞ , yj must be 1.

Both of them contradict with the heterogeneity in the toxicity response for the

defined subsets of biomarker.

(4) If b̂ = +∞ and a→ +∞

for zj > −1, i.e. a + bzj = +∞ , yj must be 0. Otherwise, ln(a, b) is decreasing

in a, which indicates b̂ = +∞ and â = +∞ won’t be the MLE.

If zj < −1 for all j , i.e. a+ bzj = −∞ , consider

∂ln(a, b)

∂b
=

∑
{j:a+bzj=−∞}

yj × 0−zj +
∑

{j:a+bzj=−∞}

(1− yj)× 1−zj.

ln(a, b) is decreasing in b, which indicates b̂ = +∞ and â = +∞ won’t be the MLE.

(5)If b̂ = +∞ and a→ −∞

If zj > 1 for all j, i.e. a+ bzj = +∞ , consider

∂ln(a, b)

∂b
=

∑
{j:a+bzj=+∞}

yj(−∞)zj +
∑

{j:a+bzj=+∞}

(1− yj)0
+zj.

ln(a, b) is decreasing in b, which indicates b̂ = +∞ and â = −∞ won’t be the MLE.

for zj < 1, i.e. a+ bzj = −∞ , yj must be 1. Otherwise, ln(a, b) is increasing in
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a, which indicates b̂ = +∞ and â = −∞ won’t be the MLE.

Similar arguments apply for b̂ = −∞. Therefore, we prove the existence of MLE.

Remark 1. Under very weak conditions, the existence of MLE can be shown for

some other working models.

Theorem 3. (The uniqueness of MLE) If there exist a0 and b0 such that

ψ(di, z, a0, b0) = R(di, z) for i = 1, . . . , k and ∀z ∈ Z, and ψ(x, z, a, b) can be

written as a function of x and a+ bz, i.e. ψ(x, z, a, b) = ψ̃(x, a+ bz), there exist N

such that for n > N , the maximum likelihood estimation of the parameter a and b

is unique when the MLE exists.

Proof. Consider the first order derivatives and second order derivatives of the

function In:

∂In(a, b)

∂a
=

1

n

n∑
j=1

[
yj

∂ψ
∂a

ψ
(xj, zj, a, b) + (1− yj)

−∂ψ
∂a

1− ψ
(xj, zj, a, b)

]
∂In(a, b)

∂b
=

1

n

n∑
j=1

[
yj

∂ψ
∂b

ψ
(xj, zj, a, b) + (1− yj)

−∂ψ
∂b

1− ψ
(xj, zj, a, b)

]
∂2In(a, b)

∂a2
=

1

n

n∑
j=1

[
yj

∂2ψ
∂a2

ψ −
(
∂ψ
∂a

)2
ψ2

(xj, zj, a, b)

−(1− yj)
∂2ψ
∂a2

(1− ψ) +
(
∂ψ
∂a

)2
(1− ψ)2

(xj, zj, a, b)

]
∂2In(a, b)

∂a∂b
=

∂2In(a, b)

∂b∂a

=
1

n

n∑
j=1

[
yj

∂2ψ
∂a∂b

ψ −
(
∂ψ
∂a

) (
∂ψ
∂b

)
ψ2

(xj, zj, a, b)

−(1− yj)
∂2ψ
∂a∂b

(1− ψ) +
(
∂ψ
∂a

) (
∂ψ
∂b

)
(1− ψ)2

(xj, zj, a, b)

]
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∂2In(a, b)

∂b2
=

1

n

n∑
j=1

[
yj

∂2ψ
∂b2
ψ −

(
∂ψ
∂b

)2
ψ2

(xj, zj, a, b)

−(1− yj)
∂2ψ
∂b2

(1− ψ) +
(
∂ψ
∂b

)2
(1− ψ)2

(xj, zj, a, b)

]
.

∂2In(a,b)
∂a2

can be rewritten as

∂2In(a, b)

∂a2
=

1

n

n∑
j=1

[{
yj
ψ

− 1− yj
1− ψ

}
∂2ψ

∂a2

]
− 1

n

n∑
j=1

[{
yj
ψ2

+
1− yj
(1− ψ)2

}(
∂ψ

∂a

)2
]
.

The first term is a zero mean martingale, by lemma 1, it converges to 0 almost

surely. Therefore,

∂2In(a, b)

∂a2
+

1

n

n∑
j=1

[{
yj
ψ2

+
1− yj
(1− ψ)2

}(
∂ψ

∂a

)2
]
→ 0 almost surely.

So,

∂2In(a, b)

∂a2
< 0 almost surely.

We can prove similar results:

∂2In(a, b)

∂a∂b
< 0 almost surely,

∂2In(a, b)

∂b2
< 0 almost surely.

Since ψ(di, z, a, b) can be written as a function of a+bz, we have ψ(di, z, a, b) = ψi(a+

bz). We have ∂ψ(di,z,a,b)
∂a

= ψ′
i,

∂ψ(di,z,a,b)
∂b

= ψ′
iz,

∂2ψ(di,z,a,b)
∂a2

= ψ′′
i ,

∂2ψ(di,z,a,b)
∂a∂b

= ψ′′
i z

and ∂2ψ(di,z,a,b)
∂b2

= ψ′′
i z

2.
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Consider the Hessian matrix∣∣∣∣∣∣∣
∂2In
∂a2

∂2In
∂a∂b

∂2In
∂b∂a

∂2In
∂b2

∣∣∣∣∣∣∣ =
∂2In
∂a2

∂2In
∂b2

−
(
∂2In
∂a∂b

)2

.

By Cauchy-Schwarz inequality, the Hessian matrix is non-negative almost surely.

Further, since biomarker z is not placed on a single point, the equality does not

hold in the long run and the Hessian matrix is positive almost surely. Therefore,

the MLE is unique when it exists.

3.2 Convergence

Theorem 4. If there exist a0 and b0 such that ψ(di, z, a0, b0) = R(di, z) for i =

1, . . . , k and ∀z ∈ Z, ân and b̂n are the maximum likelihood estimation of the pa-

rameter a and b in the working model ψ(di, z, a, b), we have

ân → a0 almost surely

b̂n → b0 almost surely,

and if d(z) is the target dose for the value z, for the recommended dose xn+1(z)

given the value z, we have

xn+1(z) → d(z) almost surely.

Proof. We show the proof by three steps. First we show Ĩn(a, b) is uniquely

maximized at (a0, b0). Second we show sup
a∈[ma,Ma]
b∈[mb,Mb]

|In(a, b) − Ĩn(a, b)| → 0 almost

surely. Third, show the result ân → a0 and b̂n → b0 almost surely will follow.
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First, for fixed t, the function f1(x) = t lnx + (1 − t) ln(1 − x) reaches its u-

nique maximum at x = t. Then each term in the summation in Ĩn(a, b) reaches

its maximum at ψ(xj, zj, a, b) = R(xj, zj). Since there exist a0 and b0 such that

ψ(di, z, a0, b0) = R(di, z), l̃n(a, b) is maximized at (a0, b0). Suppose there exist a1

and b1 such that l̃n(a, b) reaches its maximum, then ψ(xj, zj, a1, b1) = R(xj, zj) =

ψ(xj, zj, a0, b0) . It follows that a1 + b1zj = a0 + b0zj for 1 ≤ j ≤ n. Since the

distribution of z is not placed on a single point, a = a0 and b = b0. Therefore,

Ĩn(a, b) is uniquely maximized at (a0, b0).

Second, consider

Sn(a, b) = In(a, b)− Ĩn(a, b) =
1

n

n∑
j=1

{yj −R(xj, zj)} log
ψ(xj, zj, a, b)

1− ψ(xj, zj, a, b)
.

Obviously, Sn(a, b) is a zero-mean martingale. Since a ∈ [ma,Ma], b ∈ [mb,Mb] and

z is bounded, there exists 0 < mψ < Mψ < 1 such that 0 < mψ < ψ(xj, zj, a, b) <

Mψ < 1. Thus, log
ψ(xj ,zj ,a,b)

1−ψ(xj ,zj ,a,b) is bounded uniformly on [ma,Ma]× [mb,Mb]. Since

−1 ≤ yj − R(xj, zj) ≤ 1, we have E
[
{yj −R(xj, zj)} log ψ(xj ,zj ,a,b)

1−ψ(xj ,zj ,a,b)

]2
is uniformly

bounded. By lemma 1, In(a, b) − Ĩn(a, b) → 0 almost surely for a ∈ [ma,Ma],

b ∈ [mb,Mb].

Since Sn(a, b) → 0 almost surely, there exists Ω1 ⊆ [ma,Ma] × [mb,Mb] and

P (Ω1) = 1, for any (a, b) ∈ Ω1 we have Sn(a, b) → 0. Suppose sup
(a,b)∈Ω1

|Sn(a, b)| ̸→ 0

almost surely, then there exists ε > 0 and sequence {nk} and {ank} and {bnk} such

that |Snk(ank , bnk)| ≥ ε. With {ank} and {bnk} bounded, there exists a subsequence

{nkl} such that ankl → a∗ and bnkl → b∗ . Without loss of generality, suppose

ank → a∗ and bnk → b∗ . Since P ((a∗, b∗) /∈ Ω1) = 0 , we only need to consider
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(a∗, b∗) ∈ Ω1. Snk(ank , bnk) can be rewritten as

Snk(ank , bnk) = Snk(ank , bnk)− Snk(a
∗, b∗) + Snk(a

∗, b∗). (3.7)

Then

Snk(ank , bnk)− Snk(a
∗, b∗) =

1

nk

nk∑
j=1

{yj −R(xj, zj)}
{
log

ψ(xj, zj, ank , bnk)

1− ψ(xj, zj, ank , bnk)

− log
ψ(xj, zj, a

∗, b∗)

1− ψ(xj, zj, a∗, b∗)

}
.

By the continuity of ψ(·) in proposition 2, we have |Snk(ank , bnk)− Snk(a
∗, b∗)| → 0

almost surely as nk → ∞. Snk(a
∗, b∗) → 0 almost surely as nk → ∞ for (a∗, b∗) ∈ Ω1.

Then the left side of equation (3.7) is large than ε > 0 while the right side of the

equation goes to 0 as nk → ∞. Therefore, sup
a∈[ma,Ma]
b∈[mb,Mb]

|Sn(a, b)| → 0 almost surely.

Third, the convergence results sup
a∈[ma,Ma]
b∈[mb,Mb]

|Sn(a, b)| → 0 almost surely implies:

sup
a∈[ma,Ma]
b∈[mb,Mb]

| {In(a, b)− In(a0, b0)} −
{
Ĩn(a, b)− Ĩn(a0, b0)

}
| → 0 almost surely.

Let ρ ≥ 0 and define the compact set Ω2 = {(a, b) : ||(a, b) − (a0, b0)|| ≥ ρ},

where || · || is the Euclidean norm in R2. By the continuity of ψ(·) in proposition 2,

Ĩn(a, b)−Ĩn(a0, b0) is uniformly continuous. So it achieve its maximum on Ω2 denoted

by δ = sup
(a,b)∈Ω2

{
l̃n(a, b)− l̃n(a0, b0)

}
. Since Ĩn(a, b) is uniquely maximized at (a0, b0),

we have δ < 0. Since sup
a∈[ma,Ma]
b∈[mb,Mb]

| {ln(a, b)− ln(a0, b0)} −
{
l̃n(a, b)− Ĩn(a0, b0)

}
| → 0

almost surely, there exists Nρ such that for n > Nρ, sup
(a,b)∈Ω2

{In(a, b)− In(a0, b0)} <
1
2
δ < 0 almost surely. On the other hand, In(a0, b0) − In(a0, b0) = 0 , so we have
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In(ân, b̂n) − In(a0, b0) ≥ 0 which shows that the MLE is not in Ω2. Since ρ is

arbitrarily chosen, the result ân → a0 and b̂n → b0 almost surely follows.

Subsequently, ψ(di, z, ân, b̂n) → ψ(di, z, a0, b0) = R(di, z) almost surely. There-

fore, the recommended dose xn+1(z) given z converges to the target dose d(z) almost

surely.

Condition 8. For a ∈ [ma,Ma], b ∈ [mb,Mb] and z ∈ [mz,Mz],

∂2ψ

∂a2
ψ −

(
∂ψ

∂a

)2

≤ 0

and

−∂
2ψ

∂a2
(1− ψ)−

(
∂ψ

∂a

)2

≤ 0

with at least one inequality being strict.

Condition 8 is an additional assumption required for the consistency of the

biomarker design using posterior mean. It is not required for the maximum likeli-

hood estimator.

Theorem 5. If condition 8 holds and there exist a0 and b0 such that ψ(di, z, a0, b0) =

R(di, z) for i = 1, . . . , k and ∀z ∈ Z, ψ(x, z, a, b) can be written as a function of x

and a+ bz, i.e. ψ(x, z, a, b) = ψ̃(x, a+ bz), ãn and b̃n are the posterior mean of the

parameter a and b in the working model ψ(di, z, a, b), we have

ãn → a0 almost surely

b̃n → b0 almost surely,

and if d(z) is the target dose for the value z, for the recommended dose xn+1(z)
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given the value z, we have

xn+1(z) → d(z) almost surely.

Proof. Denote β = (a, b). Consider the Taylor expansion at β̂n = (ân, b̂n), since

∂ln(β̂n)
∂a

= 0 and ∂ln(β̂n)
∂b

= 0, we have

ln(β) = ln(β̂n) +
1

2
D2ln(β

∗)(β − β̂n)
2

for some β∗ between β and β̂n.

D2ln(β
∗)(β − β̂n)

=
∂2ln(a

∗, b∗)

∂a2
(a− ân)

2 + 2
∂2ln(a

∗, b∗)

∂a∂b
(a− ân)(b− b̂n) +

∂2ln(a
∗, b∗)

∂b2
(b− b̂n)

2,

where

∂2ln
∂a2

=
n∑
j=1

[
yj

∂2ψ
∂a2

ψ −
(
∂ψ
∂a

)2
ψ2

− (1− yj)
∂2ψ
∂a2

(1− ψ) +
(
∂ψ
∂a

)2
(1− ψ)2

]
∂2ln
∂a∂b

=
n∑
j=1

[
yjzj

∂2ψ
∂a2

ψ −
(
∂ψ
∂a

)2
ψ2

− (1− yj)zj

∂2ψ
∂a2

(1− ψ) +
(
∂ψ
∂a

)2
(1− ψ)2

]
∂2ln
∂b2

=
n∑
j=1

[
yjz

2
j

∂2ψ
∂a2

ψ −
(
∂ψ
∂a

)2
ψ2

− (1− yj)z
2
j

∂2ψ
∂a2

(1− ψ) +
(
∂ψ
∂a

)2
(1− ψ)2

]
.

Under condition 8, we have

supD2ln(β
∗)(β − β̂n)

2 → −∞ as n→ ∞. (3.8)
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Now, we express the posterior mean β̃n = (ãn, b̃n) as

ãn =

∫∞
−∞

∫∞
−∞ aLn(a, b)f(a)f(b)dadb∫∞

−∞

∫∞
−∞ Ln(a, b)f(a)f(b)dadb

= ân +

∫∞
−∞

∫∞
−∞ (a− ân)Ln(a, b)f(a)f(b)dadb∫∞
−∞

∫∞
−∞ Ln(a, b)f(a)f(b)dadb

.

Furthermore,

∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
(a− ân)Ln(β)f(a)f(b)dadb

∣∣∣∣
=

∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
(a− ân) exp

{
ln(β̂n) +

1

2
D2ln(β

∗)(β − β̂n)
2

}
f(a)f(b)dadb

∣∣∣∣
≤ Ln(β̂n)

∫ ∞

−∞

∫ ∞

−∞
|a− ân| exp

{
1

2
D2ln(β

∗)(β − β̂n)
2

}
f(a)f(b)dadb.

The above integral can be further broken into

∫∫
||β−β̂n||≤ε

|a− ân| exp
{
1

2
D2ln(β

∗)(β − β̂n)
2

}
f(a)f(b)dadb ≤ δ

for a given δ > 0, and

∫∫
||β−β̂n||>ε

|a− ân| exp
{
1

2
D2ln(β

∗)(β − β̂n)
2

}
f(a)f(b)dadb→ 0

as n → ∞ by (3.8). Since we choose δ to be arbitrarily small independent of n,

the second term in (3.9) is arbitrarily close to 0 as sample size increases, we have

|ãn − ân| → 0 almost surely. So we prove (ãn, b̃n) → (a0, b0) almost surely.
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3.3 Asymptotic normality

Theorem 6. If there exist a0 and b0 such that ψ(di, z, a0, b0) = R(di, z) for i =

1, . . . , k and ∀z ∈ Z, and ân and b̂n are the maximum likelihood estimation of

the parameter a and b in the working model ψ(di, z, a, b), we have the asymptotic

normality:

√
n


 ân

b̂n

−

 a0

b0


 → N(0,

 ES2
1 ES1S2

ES2S1 ES2
2


−1

) in distribution,

where

s(x, y, z, a, b) = y log {ψ(x, z, a, b)}+ (1− y) log {1− ψ(x, z, a, b)}

s1(x, y, z, a, b) =
∂s(x, y, z, a, b)

∂a
= y

∂ψ
∂a

ψ
− (1− y)

∂ψ
∂a

1− ψ

s2(x, y, z, a, b) =
∂s(x, y, z, a, b)

∂b
= y

∂ψ
∂b

ψ
− (1− y)

∂ψ
∂b

1− ψ

s11(x, y, z, a, b) =
∂2s(x, y, z, a, b)

∂a2
= y

∂2ψ
∂a2

ψ −
(
∂ψ
∂a

)2
ψ2

− (1− y)
∂2ψ
∂a2

(1− ψ) +
(
∂ψ
∂a

)2
(1− ψ)2

s12(x, y, z, a, b) = s22(x, y, z, a, b) =
∂2s(x, y, z, a, b)

∂a∂b
=
∂2s(x, y, z, a, b)

∂b∂a

= y
∂2ψ
∂a∂b

ψ −
(
∂ψ
∂a

) (
∂ψ
∂b

)
ψ2

− (1− y)
∂2ψ
∂a∂b

(1− ψ) +
(
∂ψ
∂a

) (
∂ψ
∂b

)
(1− ψ)2

s22(x, y, z, a, b) =
∂2s(x, y, z, a, b)

∂b2
= y

∂2ψ
∂b2
ψ −

(
∂ψ
∂b

)2
ψ2

− (1− y)
∂2ψ
∂b2

(1− ψ) +
(
∂ψ
∂b

)2
(1− ψ)2

.

Suppose S1 = s1(d(z), y, z, a0, b0) and S2 = s2(d(z), y, z, a0, b0), where d(z) is the

target dose for the value z, ES2
1 , ES1S2 and ES2

2 exist.
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Proof. A Taylor expansion of


∂ln(a,b)
∂a

= 0

∂ln(a,b)
∂b

= 0

around (a0, b0) leads to

−


1√
n

n∑
j=1

s1(xj, yj, zj, a0, b0)

1√
n

n∑
j=1

s2(xj, yj, zj, a0, b0)

 ≈ A
√
n

 ân − a0

b̂n − b0

 , (3.9)

where

A =


1
n

n∑
j=1

s11(xj, yj, zj, a0, b0)
1
n

n∑
j=1

s12(xj, yj, zj, a0, b0)

1
n

n∑
j=1

s21(xj, yj, zj, a0, b0)
1
n

n∑
j=1

s22(xj, yj, zj, a0, b0)

 .

Accordingly to the definition, we have

n∑
j=1

s21(xj, yj, zj, a0, b0) =
n∑
j=1

[
yj

(
∂ψ
∂a

)2
ψ2

+ (1− yj)

(
∂ψ
∂a

)2
(1− ψ)2

]
n∑
j=1

s1s2(xj, yj, zj, a0, b0) =
n∑
j=1

s2s1(xj, yj, zj, a0, b0)

=
n∑
j=1

[
yj

∂ψ
∂a

∂ψ
∂b

ψ2
+ (1− yj)

∂ψ
∂a

∂ψ
∂b

(1− ψ)2

]
n∑
j=1

s22(xj, yj, zj, a0, b0) =
n∑
j=1

[
yj

(
∂ψ
∂b

)2
ψ2

+ (1− yj)

(
∂ψ
∂b

)2
(1− ψ)2

]
.

According to the arguments in theorem 2, we have

1

n

n∑
j=1

s11(xj, yj, zj, a0, b0) +
1

n

n∑
j=1

s21(xj, yj, zj, a0, b0) → 0 almost surely.
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Since R(di, z) and ψ(x, z, a, b) are monotonic in z, suppose they are decreasing in

z, we may have a partition for z: (−∞, z∗1), (z
∗
1 , z

∗
2), . . . , (z

∗
k−1,+∞), such that the

target dose for the ith interval is di respectively.

For any small enough ε > 0, there exist N for n > N , the recommended dose for

z ∈ (−∞, z∗1 − ε) ∪ (z∗1 + ε, z∗2 − ε) ∪ · · · ∪ (z∗k−1 + ε,+∞), xn+1(z) = d(z) almost

surely. Thus, we have

1

n

n∑
j=1

s21(xj, yj, zj, a0, b0) → ES2
1 almost surely.

Furthermore, we have

1

n

n∑
j=1

s11(xj, yj, zj, a0, b0) → −ES2
1 almost surely.

Therefore, matrix A→ −

 ES2
1 ES1S2

ES2S1 ES2
2

 almost surely.

The central limit theorem implies that the asymptotic distribution of (3.9) is normal

with zero mean vector and covariance matrix B :
1√
n

n∑
j=1

s1(xj, yj, zj, a0, b0)

1√
n

n∑
j=1

s2(xj, yj, zj, a0, b0)

 → N(0, B) in distribution,

where B =

 ES2
1 ES1S2

ES2S1 ES2
2

.
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Solving (3.9) yield

√
n


 ân

b̂n

−

 a0

b0


 = −A−1


1√
n

n∑
j=1

s1

1√
n

n∑
j=1

s2

 .

Therefore, the asymptotic covariance matrix is

A−1B(A−1)′ =

 ES2
1 ES1S2

ES2S1 ES2
2


−1

.

Therefore, the theorem holds.
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Chapter 4

Biomarker-based Design for

Multiple-agent Trial

In single-agent trials, “treatment” is synonymous with “dose level”. In multiple-

agent trials, we use “treatment” to denote combinations of agents. For single-agent

trials, the ordering of the probability of toxicity is assumed monotonic with dose

increment. For multiple-agent trials, assume monotonicity for each agent separately,

but the combined ordering may not be fully known, resulting in a “partial order”.

4.1 Statistical Method

4.1.1 Toxicity Probability Model

For multiple-agent trial, suppose the dose combinations follow a partial order in

which there are M possible simple orders consistent with the known orderings a-

mong dose combinations. In general, we assume that there are k pre-specified dose

combinations d1, d2, . . . , dk. Denote the dose for the jth entered patient as Xj,

j = 1, 2, . . . , n, which takes value xj ∈ {d1, . . . , dk}. Suppose that a continuous
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biomarker Z that is informative for toxicity outcome exists. Denote the biomarker

of the jth entered patient as Zj. Zj is a random variable, but its value zj is known

when the patient enters the trial. Denote Yj be an indicator for whether or not the

jth entered patient experiences a DLT, which is a binary random variable, where 1

denotes the observation of a DLT and 0 denotes the observation of no DLT.

Each particular order m, m = 1, . . . ,M is considered as one model. For a

particular ordering m, we model the probability of toxicity R(xj, zj) for the jth

patient with two parameters a and b via

R(xj, zj) = Pr(Yj = 1|Xj = xj, Zj = zj) = E(Yj|xj, zj) = ψm(xj, zj, a, b) (4.1)

for some working dose-toxicity model ψm(xj, zj, a, b) and a ∈ A, b ∈ B.

We use the empiric model as the working model

ψm(di, z, a, b) = α
exp(a+bz)
mi , (4.2)

where αmi are the pre-specified skeleton for each treatment di under model m and

the ordering of αmi is consistent with the ordering of each treatment under model m

and min{αmi} > 0 and max{αmi} < 1. For example, if the ordering under model m

is d1 → d2 → d3 → d5 → d4 → d6, 0 < αm1 < αm2 < αm3 < αm5 < αm4 < αm6 < 1.

As Wages, Conaway and O’Quigley (2011), we assign a prior probability of each

model p(m) = {p(1), . . . , p(M)}, where p(m) ≥ 0 and
M∑
m=1

p(m) = 1 to take account

of the prior information about the plausibility of each model. When there is no

prior information available on the possible orders, we can formally specify a discrete

uniform distribution for p(m), where p(m) = 1
m
, m = 1, . . . ,M .

After inclusion of the first j patients into the trial, we have data in the form of
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Ωj = {x1, y1, z1, . . . , xj, yj, zj}. Under model m, we can generate estimates âm and

b̂m for the parameters a and b. Given the estimates âm and b̂m under model m, we

can generate estimates of the probability of toxicity by R̂(di, z) = ψm(di, z, â, b̂) =

α
exp(â+b̂z)
mi , (i = 1, . . . , k and ∀z ∈ Z) for each of the k treatments and any value of

biomarker z.

Denote the pre-specified target toxicity probability as θ. Suppose the biomarker

of the (j+1)th entered patient takes value zj+1, we choose the order m with largest

posterior probability and the target dose to treat the patient has a corresponding

toxicity probability as close as possible to the target toxicity rate θ. The treatment

xj+1 assigned to the (j + 1)th entered patient minimizes the loss function:

∆(R̂(di, zj+1), θ) = |R̂(di, zj+1)− θ|, i = 1, 2, . . . , k (4.3)

which is the absolute distance between R̂(di, zj+1) and θ.

The design is a sequential updating design. After inclusion of a predetermined

sample size of n patients, the order m with largest posterior probability is chosen

among the M candidate models and the treatment assigned to the hypothetical

(n+ 1)th patient with biomarker zn+1 is the current best estimate for the MTD.

4.1.2 Inference

We assign prior probability distributions f0(a) and f1(b) for the parameters a and

b and a prior probability p(m) for each model. We begin the trial by choosing the

order m with the largest prior probability p(m) among the M models. If several or

all of the models have the same prior probability, we will choose at random from

these models.

In order to establish estimates of the probability of toxicity for each treatment, we
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need an expression of the joint likelihood for the parameters a and b. After inclusion

of the first j patients into the study, the joint likelihood for the parameters a and b

under model m is given by:

Lm(a, b|Ωj) =

j∏
l=1

ψylm(xl, zl, a, b){1− ψm(xl, zl, a, b)}(1−yl) (4.4)

which can be used to generate estimates âm and b̂m for a and b.

Given the data set Ωj and the joint likelihood, the posterior densities for a and b

under model m are given by:

fm(a|Ωj) =

∫
b∈B

Lm(a, b|Ωj)f1(b)db∫∫
a∈A,b∈B

Lm(a, b|Ωj)f0(a)f1(b)dadb

fm(b|Ωj) =

∫
a∈A

Lm(a, b|Ωj)f0(a)da∫∫
a∈A,b∈B

Lm(a, b|Ωj)f0(a)f1(b)dadb
.

(4.5)

The posterior mean can be used as the estimates for a and b under model m:

âm =

∫∫
a∈A,b∈B

aLm(a, b|Ωj)f0(a)f1(b)dadb∫∫
a∈A,b∈B

Lm(a, b|Ωj)f0(a)f1(b)dadb

b̂m =

∫∫
a∈A,b∈B

bLm(a, b|Ωj)f0(a)f1(b)dadb∫∫
a∈A,b∈B

Lm(a, b|Ωj)f0(a)f1(b)dadb
.

(4.6)

Furthermore, the joint likelihood can be used to establish the posterior probabilities



67

of the models given the data set:

π(m|Ωj) =

p(m)
∫∫

a∈A,b∈B
Lm(a, b|Ωj)f0(a)f1(b)dadb

M∑
m=1

p(m)
∫∫

a∈A,b∈B
Lm(a, b|Ωj)f0(a)f1(b)dadb

. (4.7)

The prior probabilities p(m) for each order m are sequentially updated by the

toxicity response data Ωj. It is expected that the more data support the order m,

the greater its posterior probability will be. When a new patient is to be enrolled,

we choose a single ordering h with the largest posterior probability and the corre-

sponding working model ψh(di, z, a, b) and apply a Bayesian form of the biomarker

design.

Given the ordering h and estimates âh and b̂h , we can generate estimates of

probability of toxicity for each treatment and any value of biomarker. Beginning

with prior probability f0(a), f1(b) and p(m), after inclusion of the first j patients

into the trial, for the (j + 1)th enrolled patient with biomarker zj+1, we choose the

order h with the largest posterior probability and compute the posterior probability

of DLT for each di under model h:

R̂(di, zj+1) = ψh(di, zj+1, âh, b̂h). (4.8)

The treatment xj+1 ∈ {d1, . . . , dk} assigned to the (j + 1)th enrolled patient is the

treatment di, such that the loss function (4.3) is a minimum. For a patient with

biomarker z, the MTD is the recommended treatment di such that the loss function

(4.3) is minimized after the inclusion of the predetermined sample size of n patients.
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4.1.3 Additional Randomization for Order Selection

Wages, Conaway and O’Quigley (2011) pointed out a dilemma of order selection with

the largest posterior probability and proposed a solution of additional randomization

to deal with the difficulty. Information of an order has to be obtained through

experiment. Early in the trial, there may be only a negligible difference between

the largest prior or posterior probability and another value in the prior or posterior

probability. Without further randomization, the order with the greatest probability

may be over chosen and even worse some orders may never be tried.

Additional randomization is necessary to obtain information of competing or-

derings. We do not rely entirely on the maximum of the posterior probability

as the guidance to the most appropriate order but generate a random number h,

1 ≤ h ≤ M , with weight of its prior probability p(m) or posterior probability

π(m|Ωj) and implement the working model ψh(di, z, a, b) associated with the order

h. It is expected that as the trial gets underway, the accrued information will cre-

ate a large gap between the values of posterior probabilities, further increasing the

possibility of choosing the order with the largest posterior probability.

We do not apply the randomization algorithm for the final recommendation of

the MTD. After inclusion of n patients, we always choose the order h with the

largest posterior probability among the M candidate models.

4.2 Numerical Studies

To illustrate the proposed method for partial order trial, consider example 1 given

in Section 1.3. There are k = 6 treatments d1, . . . , d6 in the trial. The partial order

in this trial has associated with 6 possible simple orders. Suppose the order m = 1

is the true dose-toxicity order. In this example, the trial requires the investigation
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of the following six simple orders:

M1: d1 → d2 → d3 → d4 → d5 → d6

M2: d1 → d2 → d3 → d5 → d4 → d6

M3: d1 → d2 → d3 → d5 → d6 → d4

M4: d1 → d2 → d5 → d6 → d3 → d4

M5: d1 → d2 → d5 → d3 → d6 → d4

M6: d1 → d2 → d5 → d3 → d4 → d6

Other settings including the true probability of toxicity, the target toxicity prob-

ability, the choice of skeleton for the working model, the prior for a and b and the

distributions for the biomarker remain the same as those specified in Section 2.2.

We consider two examples of the true probability of toxicity.

In the first example, suppose the true probability of toxicity follows an empiric

model:

R(di, z) = β
exp(a+bz)
i , (4.9)

where β1 = 0.04, β2 = 0.07, β3 = 0.20, β4 = 0.35, β5 = 0.55 and β6 = 0.70. In this

example, the form of the true probability of toxicity is similar to that of the working

model.

In the second example, with the aim of further validating the robustness of the

proposed design, we investigate the true probability of toxicity following a logit

model:

R(di, z) =
exp(ai − bz)

1 + exp(ai − bz)
, (4.10)

where i = 1, . . . , 6 and we study two scenarios of ai, shown in Table 4.1.
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Table 4.1: Scenarios of ai

a1 a2 a3 a4 a5 a6
Scenario 1 -1.8 -1.4 -0.5 0.1 0.8 1.4
Scenario 2 -4.9 -4 -2.4 -1.4 -0.4 0.3

The values of ai are taken such that for scenario 1, β
exp(−0.5)
i = exp(ai)

1+exp(ai)
, i =

1, . . . , 6 and for scenario 2, β
exp(0.42)
i = exp(ai)

1+exp(ai)
, i = 1, . . . , 6, i.e. for biomarker with

value 0, the true probability of toxicity in the two examples are the same. In the

second example, the form of the true probability of toxicity is different from that of

the working model.

The logit model is less steep than the empiric model when the coefficients of the

biomarker are the same in the two models. The logit model is less sensitive to the

change of the biomarker while the empiric model is more sensitive to the change of

the biomarker.

We investigate a variety of toxicity scenarios. For the true probability of toxicity

with an empiric model, we study several different true values of a and b, where

a = −0.5 and 0.42 and b = 1.5, 1, 0.5, 0.3, 0.1, −0.1, −0.3, −0.5, −1 and −1.5. For

the true probability of toxicity with a logit model, we study the two scenarios of ai

in Table 4.1 and b = 1.5, 1, 0.5, 0.3, 0.1, −0.1, −0.3, −0.5, −1 and −1.5.

Suppose the target toxicity probability is θ = 0.20.

We use the skeleton {0.020, 0.081, 0.200, 0.356, 0.515, 0.654} and accommodate

the skeleton for each possible ordering in the working model based on the ordering

information of each possible order. The skeleton for each possible order is shown in

Table 4.2.

We assign a standard normal prior N(0, 1) for a similar to O’Quigley and Shen

(1996). Generally, before we begin the trial, we may have quite strong knowledge

concerning whether an increased biomarker value indicates a higher probability of
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Table 4.2: Skeleton for the six possible orders

d1 d2 d3 d4 d5 d6
m = 1 0.020 0.081 0.200 0.356 0.515 0.654
m = 2 0.020 0.081 0.200 0.515 0.356 0.654
m = 3 0.020 0.081 0.200 0.654 0.356 0.515
m = 4 0.020 0.081 0.515 0.654 0.200 0.356
m = 5 0.020 0.081 0.356 0.654 0.200 0.515
m = 6 0.020 0.081 0.356 0.515 0.200 0.654

toxicity or a lower probability of toxicity. We assign a truncated normal prior

for b. When we believe the probability of toxicity is decreasing with an increased

biomarker value, corresponding to a true positive value of b in the simulation, we

assign a truncated normal prior for b with the domain on R+:

f1(b) =


2√
2π

exp(− b2

2
) b ≥ 0

0 b < 0
(4.11)

When we believe the probability of toxicity is increasing with an increased biomarker

value, corresponding to a true negative value of b in the simulation, we assign a

truncated normal prior for b with the domain on R−:

f1(b) =

 0 b > 0

2√
2π

exp(− b2

2
) b ≤ 0

(4.12)

We use a predetermined sample size of patients n = 25 in the simulation. We

define a measurement to evaluate the performance of the proposed design. Af-

ter inclusion of the predetermined sample size of n patient, for the hypothetical

(n+ 1)th patient with biomarker zn+1, correct recommendation refers to the MTD

recommended by the proposed design being the same as the true MTD correspond-

ing to the value of biomarker. We further define the overall probability of correct
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recommendation as:

P (correct MTD recommendation)

=

∫
P (correct MTD recommendation|Z = z)fZ(z)dz, (4.13)

where fZ(z) is the probability density function of biomarker Z.

To evaluate the operating characteristics and performance of the proposed method,

we investigate biomarkers with different distributions. We first investigate a biomark-

er with a standard normal distribution Z ∼ N(0, 1). According to genetic study,

a toxicity biomarker may have a mixture distribution of a point mass at 0 and a

distribution defined on R+. We then investigate biomarkers with such distributions.

For the point mass at 0, we investigate two weights 0.3 and 0.6. For distributions

defined on R+, we choose truncated normal distribution and log-normal distribution

with µ = 0 and σ = 1. The four specified mixture distributions are as follows:

w=0.3 truncated normal
Pr(Z = 0) = 0.3

fZ(z) = 0.7× 2√
2π

exp
(
−1

2
z2
)
for z > 0

(4.14)

w=0.6 truncated normal
Pr(Z = 0) = 0.6

fZ(z) = 0.4× 2√
2π

exp
(
−1

2
z2
)
for z > 0

(4.15)

w=0.3 log-normal
Pr(Z = 0) = 0.3

fZ(z) = 0.7× 1
z
√
2π
e−

(ln z)2

2 for z > 0
(4.16)

w=0.6 log-normal
Pr(Z = 0) = 0.6

fZ(z) = 0.4× 1
z
√
2π
e−

(ln z)2

2 for z > 0
(4.17)
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Under all scenarios, 1000 trials were simulated. In this thesis, the “biomarker

design for single-agent trial” proposed in Section 2.1 is synonymous with “biomarker

design for simple order”. The “standard CRM for single-agent trial” is synonymous

with “non-biomarker design for simple order”. The “biomarker design for multiple-

agent trial” proposed in Section 4.1 is synonymous with “biomarker design for partial

order”. The “partial order CRM” proposed by Wages, Conaway and O’Quigley’s

method (2011) introduced in Section 1.4.4 is synonymous with “non-biomarker de-

sign for partial order”.

On one hand, we compare the proposed biomarker design for partial order with

the partial order CRM. The partial order CRM refers to Wages, Conaway and

O’Quigley’s method (2011) whose working model does not contain biomarker al-

though the true toxicity response is assumed to be heterogeneous in the simulation.

This comparison shows how necessary the biomarker information should be included.

On the other hand, we compare the proposed biomarker design for partial order

with the biomarker design for simple order. When the correct toxicity ordering is

known, the method simplifies to the biomarker design for simple order in Section

2.1. The probability of correct MTD recommendation for the biomarker design for

simple order, corresponding to where the true dose-toxicity order is fully known,

provides a benchmark of how well the biomarker design for partial order performs.

It is unreasonable to expect a design for a partially known order to perform as well

as one for a fully known order. The comparison between the biomarker design for

partial order and the biomarker design for fully known order is useful in assessing

how much information is lost as a result of not having fully known order.

In the example of the true probability of toxicity with the empiric model (4.9),

Figure A.1 to A.4 provide the probability of correct MTD recommendation. Figure

A.5 to A.8 provide the corresponding percentage of patients treated at MTDs.
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For the comparison between the biomarker design for partial order and the par-

tial order CRM, in terms of the probability of correct MTD recommendation, when

the biomarker is strong, corresponding to a large true absolute value of b in the sim-

ulations, the proposed biomarker design for partial order yields a higher probability

than the partial order CRM. When the biomarker is weak, for example the scenarios

with

(1) a = −0.5, b = 0.3 and biomarker with truncated normal w = 0.6

(2) a = −0.5, b = 0.1 and biomarker with truncated normal w = 0.3

(3) a = −0.5, b = 0.1 and biomarker with truncated normal w = 0.6

(4) a = −0.5, b = 0.1 and biomarker with log-normal w = 0.3

(5) a = −0.5, b = 0.1 and biomarker with log-normal w = 0.6

(6) a = 0.42, b = 0.5 and biomarker with truncated normal w = 0.3

(7) a = 0.42, b = 0.5 and biomarker with truncated normal w = 0.6

(8) a = 0.42, b = 0.3 and biomarker with truncated normal w = 0.3

(9) a = 0.42, b = 0.3 and biomarker with truncated normal w = 0.6

(10) a = 0.42, b = 0.3 and biomarker with log-normal w = 0.6

(11) a = 0.42, b = 0.1 and biomarker with standard normal distribution

(12) a = 0.42, b = 0.1 and biomarker with truncated normal w = 0.3

(13) a = 0.42, b = 0.1 and biomarker with truncated normal w = 0.6

(14) a = 0.42, b = 0.1 and biomarker with log-normal w = 0.3
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(15) a = 0.42, b = 0.1 and biomarker with log-normal w = 0.6

(16) a = 0.42, b = −0.1 and biomarker with standard normal distribution

(17) a = 0.42, b = −0.1 and biomarker with truncated normal w = 0.3

(18) a = 0.42, b = −0.1 and biomarker with truncated normal w = 0.6

partial order CRM yields slightly higher probability than the biomarker design for

partial order. Yet, the probability of correct MTD recommendation yielded by the

biomarker design for partial order is also very high.

In terms of the percentage of patients treated at the MTDs, when the biomarker

is strong, the biomarker design for partial order treats more patients at the MTDs

than the partial order CRM. When the biomarker is weak, for example the scenarios

with

(1) a = −0.5, b = 0.3 and biomarker with truncated normal w = 0.3

(2) a = −0.5, b = 0.3 and biomarker with truncated normal w = 0.6

(3) a = −0.5, b = 0.3 and biomarker with log-normal w = 0.6

(4) a = −0.5, b = 0.1 and biomarker with truncated normal w = 0.3

(5) a = −0.5, b = 0.1 and biomarker with truncated normal w = 0.6

(6) a = −0.5, b = 0.1 and biomarker with log-normal w = 0.3

(7) a = −0.5, b = 0.1 and biomarker with log-normal w = 0.6

(8) a = 0.42, b = 0.5 and biomarker with truncated normal w = 0.3

(9) a = 0.42, b = 0.5 and biomarker with truncated normal w = 0.6
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(10) a = 0.42, b = 0.3 and biomarker with standard normal

(11) a = 0.42, b = 0.3 and biomarker with truncated normal w = 0.3

(12) a = 0.42, b = 0.3 and biomarker with truncated normal w = 0.6

(13) a = 0.42, b = 0.3 and biomarker with log-normal w = 0.3

(14) a = 0.42, b = 0.3 and biomarker with log-normal w = 0.6

(15) a = 0.42, b = 0.1 and biomarker with standard normal distribution

(16) a = 0.42, b = 0.1 and biomarker with truncated normal w = 0.3

(17) a = 0.42, b = 0.1 and biomarker with truncated normal w = 0.6

(18) a = 0.42, b = 0.1 and biomarker with log-normal w = 0.3

(19) a = 0.42, b = 0.1 and biomarker with log-normal w = 0.6

(20) a = 0.42, b = −0.1 and biomarker with standard normal distribution

(21) a = 0.42, b = −0.1 and biomarker with truncated normal w = 0.3

(22) a = 0.42, b = −0.1 and biomarker with truncated normal w = 0.6

(23) a = 0.42, b = −0.1 and biomarker with log-normal w = 0.3

(24) a = 0.42, b = −0.1 and biomarker with log-normal w = 0.6

partial order CRM treats slightly more patients at the MTDs than the biomarker

design for partial order.

For the comparison between the biomarker design for partial order and the

biomarker design for simple order, in the simulation results, the biomarker design
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for partial order usually yields a slightly smaller probability of correct MTD rec-

ommendation than the biomarker design for simple order. This accords with our

intuition that a design for a partially known order perform less well than a design

for a fully known order. In terms of the percentage of patients treated at the MTDs,

the biomarker design for partial order usually treats less patients at the MTDs than

the biomarker design for simple order.

The simulation result indicates that the proposed biomarker design for partial

order is not quite sensitive to the distribution of biomarker. In the example of the

true probability of toxicity with the logit model (4.10), Figure A.5 to A.8 provide

the probability of correct MTD recommendation. Figure A.13 to A.16 provide

the corresponding percentage of patients treated at MTDs. Similarly, when the

biomarker is strong, the biomarker design for partial order performs better than

the partial order CRM. When the biomarker is weak, the partial order CRM may

perform slightly better than the biomarker design for partial order. In addition, the

biomarker design for partial order usually performs a little worse than the biomarker

design for simple order. The simulation result indicates that the biomarker design

for partial order is not quite sensitive to the underlying true probability of toxicity

and demonstrates the robustness of the method.

Overall, the simulation results indicate that, in terms of identifying MTDs,

the proposed biomarker design for partial order demonstrates superior performance

when the biomarker is strong and the performance of the proposed biomarker de-

sign is comparable to that of partial order CRM when the biomarker is weak. The

simulation results support the feasibility and necessity of choosing a distinct MTD

for each individual patient by use of toxicity biomarker.
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4.3 Model Selection between Biomarker Model

and Non-biomarker Model

4.3.1 Statistical Method

The simulation result in Section (4.2) indicates that when the biomarker is strong

the biomarker design for partial order proposed in Section (4.1) performs better,

when the biomarker is weak the partial order CRM introduced in Section (1.4.4),

i.e. the non-biomarker model for partial order, performs better.

When the toxicity response is homogeneous, O’Quigley, Pepe and Fisher (1990)

pointed out a one-parameter working model such as ψ(di, a) = α
exp(a)
i is a under-

parameterized model. They compared the performance of a one-parameter model

with a two-parameter model. Generally, the one-parameter model performs better

than a two-parameter model.

When the toxicity response is heterogenous, the biomarker model for partial

order is more flexibility than the non-biomarker model for partial order in identi-

fying the MTDs. The non-biomarker model for partial order is relatively under-

parameterized. Under each possible simple order, it chooses a unique MTD for all

values of biomarker. The non-biomarker model leads to more handicap in trying to

find a good fit and a correct MTD for some values of biomarker, even if the cor-

rect simple order is chosen. However, when the biomarker is weak, most values of

biomarker may have the same MTD. Wages, Conaway and O’Quigley (2011) pointed

out the identification of the correct simple order is not the main concern for partial

order CRM. Even if the correct simple order is not selected, partial order CRM

still efficiently identify the MTD. In this situation, when the biomarker is weak,

the lack of flexibility of the non-biomarker model for partial order may turn into
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an advantage in identifying a correct MTD for most value of biomarker, especially

considering the small sample size of patients and vague prior of the parameters. For

each possible simple order, at least for the correct simple order, the non-biomarker

model for partial order may be considered as the better model than the biomarker

model for partial order when the biomarker is weak. When the biomarker is strong,

the correct MTDs spread out for different values of biomarker, so for each possi-

ble simple order the biomarker model is considered better while the non-biomarker

model is lack of flexibility.

This section has the appeal of implementing model selection techniques. If

the model selection technique can effectively choose the better model between the

biomarker design for partial order and the non-biomarker design for simple order, our

approach will identify MTDs more effectively. Schwarz (1978) derived the Bayesian

information criterion (BIC) given by:

BIC = −2 log(L(a|Ωj)) +K log(n), (4.18)

where a is the estimable parameters and K is the number of estimable parameters.

In the biomarker design for partial order, under a particular order h, two parameters

abio,h and bbio,h are estimated, K = 2 and the BIC for the order h is given by:

BICbio,h = −2 log(Lh(âbio,h, b̂bio,h|Ωj)) + 2 log(n). (4.19)

For the order h, the expression Lh(âbio,h, b̂bio,h|Ωj) is the value of the likelihood

evaluated at the point of posterior mean âbio,h and b̂bio,h. In the non-biomarker

design, the working model is ψh(di, a) = α
exp(a)
hi , under a particular order h, one
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parameter anon,h is estimated, K = 1 and the BIC for the order h is given by:

BICnon,h = −2 log(Lh(ânon,h|Ωj)) + log(n). (4.20)

For the order h, the expression Lh(ânon,h|Ωj) is the value of the likelihood evaluated

at the posterior mean ânon,h.

For the biomarker working model, we choose an order hbio according to the

corresponding posterior probability of each possible simple order. Similarly, for

the non-biomarker model, we choose an order hnon according to the corresponding

posterior probability of each possible simple order. The posterior probability of

each possible simple order for the biomarker working model and that for the non-

biomarker working model could be different. Even if they are the same, hbio and

hnon could be different. As Wages, Conaway and O’Quigley (2011) pointed out the

choice of an order is not the main concern, we compare the biomarker model under

the order hbio and the non-biomarker model under the order hnon. The model with

smaller BIC is considered better and will be selected.

Before the first patient is enrolled, we do not have the estimates âbio,h, b̂bio,h

and ânon,h. We simply choose the non-biomarker model as the working model and

choose an order hnon according to the prior probability of each possible simple order

by the randomization method for order selection proposed in Section (4.1.3). When

the estimates âbio,h, b̂bio,h and ânon,h are all achieved, we are able to compute and

compare the BIC for the biomarker model and the non-biomarker model. In the

Bayesian framework, we obtain the posterior mean âbio,h, b̂bio,h and ânon,h as soon

as the response of whether or not the first patient experiences a DLT is observed.

After that, the BIC is computed for the biomarker model and the non-biomarker

model and under selected orders the model with the smaller value of BIC could be
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selected.

After inclusion of the first j patients into the trial, for each possible simple order,

we estimate both the biomarker model and the non-biomarker model and generate

estimates âbio,h, b̂bio,h and ânon,h. When the (j + 1)th patient is enrolled, for the

biomarker working model, we choose an order hbio according to the corresponding

posterior probability of each possible simple order by the randomization method for

order selection proposed in Section (4.1.3). Similarly, for the non-biomarker model,

we choose an order hnon according to the corresponding posterior probability of

each possible simple order by the randomization method for order selection. The

model with smaller BIC between the biomarker model under the order hbio, i.e.

ψhbio(di, z, a, b) = α
exp(a+bz)
hbioi

and the non-biomarker model under the order hnon, i.e.

ψhnon(di, a) = α
exp(a)
hnoni

is considered better and will be selected. Then select the

treatment xj+1 assigned to the (j + 1)th entered patient which minimizes the loss

function (4.3).

After inclusion of a predetermined sample size of n patients, we no longer use the

randomization algorithm to select an order. We choose the model with smaller BIC

between the biomarker model with the largest corresponding posterior probability

and the non-biomarker model with the largest corresponding posterior probability

and choose the MTD for each individual patient under the working model.

4.3.2 Numerical Studies

In aim of improving the performance of biomarker design for partial order when

the biomarker is weak, we propose the model selection method. In this section, we

compare the performance of the BIC model selection method for partial order with

the biomarker model for partial order and the non-biomarker model for partial. In
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this dissertation, the “BIC model selection method” proposed in Section (4.3) is

synonymous with “BIC method for partial order”. We do the simulation studies

under the same setting as Section (4.2).

In the example of the true probability of toxicity with the empiric model (4.9),

Figure A.1 to A.4 provide the probability of correct MTD recommendation. Figure

A.5 to A.8 provide the corresponding percentage of patients treated at MTDs. Table

A.1 provides the proportion of selecting biomarker model as the final working model

after inclusion of the predetermined sample size of patients. In the example of the

true probability of toxicity with the logit model (4.10), Figure A.5 to A.8 provide

the probability of correct MTD recommendation. Figure A.13 to A.16 provide the

corresponding percentage of patients treated at MTDs. Table A.2 provides the

proportion of selecting biomarker model as the final working model

In terms of the probability of correct MTD recommendation, the probability of

the BIC method for partial order is usually between the probability of the biomarker

model for partial order and the non-biomarker model for partial order. When the

biomarker is strong, the probability of biomarker model for partial order is larger

than the non-biomarker model for partial order, the probability of the BIC method

for partial order is usually slightly smaller than but approaches to that of biomarker

model for partial order. It is reasonable that when the probability of biomarker

model for partial order is larger than that of the non-biomarker model for partial

order, the probability of the BIC method for partial order is smaller than that of

biomarker model for partial order, because with the model selection mechanism

the BIC method for partial order sometimes chooses the non-biomarker model for

partial order, further lowering the probability of correct MTD recommendation.

When the biomarker is weak, the probability of biomarker model for partial

order is sometimes smaller than that of the non-biomarker model for partial order.
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Especially, for those scenarios whose probability of biomarker model for partial

order is smaller than that of non-biomarker model for partial order, the probability

of BIC method for partial order is obviously larger than that of biomarker model for

partial order and approaches to the probability of non-biomarker model for partial

order. We conclude that the BIC method for partial order generally improves the

performance in identifying MTDs when the biomarker is weak.

Similarly for the percentage of patients treated at the MTDs, when the biomarker

is strong, the percentage of BIC method for partial order is usually slightly small-

er than but approaches to that of biomarker model for partial order. When the

biomarker is weak, the BIC method for partial order usually improves the percent-

age.

In terms of the proportion of selecting biomarker model as the final working

model, when the biomarker is strong, the proportion is large, when the biomarker

is weak, the proportion could be very small. In addition, the proportion for BIC

method for partial order is usually smaller than that for the BIC method simple

order.

Overall, the BIC method for partial order is a trade off between biomarker model

for partial order and non-biomarker model for partial order. When the biomarker

is strong, the BIC method for partial order may lower the performance a little

bit. When the biomarker is weak, the BIC method for partial order improves the

performance a lot. The BIC method for partial order generates a good result much

more stably than the biomarker model for partial order and non-biomarker modelfor

partial order whenever the biomarker is strong or weak. The simulation results

indicates that it is worthwhile to replace the biomarker model for partial order with

the BIC model selection method for partial order, especially when it is uncertain

whether the biomarker is strong or not before the trial. Yet when it is quite certain
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that the biomarker is strong before the trial, the biomarker model for partial order

is still recommended.
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Chapter 5

Conclusion and Future Research

5.1 Conclusion

The primary goal of a Phase I clinical trial is to estimate the maximum tolerated dose

(MTD). In this dissertation, we address heterogeneous toxicity with a continuous

biomarker that is informative for toxicity response, leading to distinct MTDs for

each individual patient. Generally, before we begin the trial, we may have some

knowledge about whether an increased biomarker value indicates a higher probability

of toxicity or a lower probability of toxicity. Using the biomarker information,

we choose a distinct MTD for individual patient. The goal is accurate estimation

of the MTDs for individual patient, subject to the ethical constraints of treating

as many patients as possible at and around the MTD. In addition, we address

the consideration of a partial ordering for the probability of toxicity for available

treatments in this dissertation. In single-agent trials, the order of the probability of

toxicity for all the treatments is fully known, which is a “simple order”. In multiple-

agent trials, we may be able to identify the order of the probability of toxicity for

only a subset of the available treatments, which is a “partial order”. We propose
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a new biomarker design for simple order and a biomarker design for partial order.

The two designs which lean upon the biomarker information show themselves to

be effective in estimating the MTDs in Phase I clinical trials when the toxicity

biomarker is strong enough.

We have tested our methods in extensive simulation studies. The simulation

results indicate that, for both simple order and partial order, when the biomarker

is strong the performance of the biomarker-based methods are superior than those

existing non-biomarker dose-finding methods. The showing of our methods in ex-

tensive simulation studies gives us confidence in recommending using biomarker

information when the biomarker is strong enough. When the biomarker is weak,

the performance of the biomarker-based methods sometimes is better while some-

times it is a little bit worse than those of the non-biomarker dose-finding methods

but it is still acceptable good. Under certain conditions, we prove convergence for

the biomarker design for simple order. Asymptotic normalities for the estimates of

the parameters and some other properties are studied. These theoretical properties

provide confidence in using the biomarker information. Therefore, we recommend

using the biomarker.

The theoretical properties are established for large sample size. Yet, a Phase

I trial has the characteristic of small sample size. Since the convergence could be

slow, sometimes the biomarker model does not perform as well as non-biomarker

model. In aim of improving the performance for a weak biomarker, we proposes a

BIC model selection method to select a model between the biomarker model and

non-biomarker model. Generally, the BIC method is a trade off between biomarker

model and non-biomarker model. When the biomarker is strong, the BIC method

may lower the performance a little bit. When the biomarker is weak, the BIC

method improves the performance a lot. The BIC method generates a good result
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much more stably than the biomarker model and non-biomarker model whenever the

biomarker is strong or weak. The simulation results indicates that it is worthwhile

to replace the biomarker model with the BIC model selection method, especially

when it is uncertain whether the biomarker is strong or not before the trial. Yet

when it is quite certain that the biomarker is strong before the trial, the biomarker

design is recommended.

5.2 Further Research

There are relatively few statistical methods for dose-finding designs that consider

heterogeneous toxicity response. Until now, no other designs have been established

to address more than two groups of patients. This dissertation is a starting point for

the problem of heterogeneous toxicity response. There are a lot of areas for future

research.

First, it is meaningful to establish the early stopping rule for biomarker design.

In principle, a trial should be stopped once a sufficient amount of information about

the MTD has been accumulated. In practice, investigators are likely to stop the

trial if there are already many patients on a single treatment, or if a single treat-

ment is used for many consecutive patients and this treatment is very likely to be

the recommended MTD. Conaway, Dunbar and Peddada (2004) presented practical

stopping rules, such as “(9, 18)” rule which stipulates that the trial be stopped if

nine consecutive subjects are entered on a single treatment or if the total number of

patients on one treatment is greater than 18. Other similar rules including the “(6,

9)”, “(6, 12)” and “(6, 18)” rules are also investigated. Yet, in the design involving

biomarker, patients on the same treatment may have different values of biomarker.

The accumulation of experiments on a single treatment may not be sufficient to be
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a correct stopping rule.

Second, it is of great importance to establish accurate estimation for the coef-

ficient of the biomarker, i.e. b. In the Bayesian framework, due to the prior, the

estimation of the absolute value of b is likely to inflate when the biomarker is weak.

We may think in the way that the estimate b̂ in the biomarker model is more far

away from the truth than the estimate, i.e. 0 in the non-biomarker model. This

could be an explanation why the non-biomarker model may perform better when

the biomarker is weak. If we can get rid of the prior, we may obtain a more accurate

estimation more quickly. A possible solution is to establish the maximum likelihood

estimator. Another idea is to consider several models with pre-specified discrete

value of b, assign equal weight for each model, and sequentially choose the model

with largest likelihood. If we do have strong prior knowledge about the possible

range of b, this idea will be recommended and intuitively it will be better than the

ordinary MLE.

Third, the randomization for order selection in the design for partial ordering is

always critical. We may refer to the randomization methods for partial order CRM

and investigate the operating characteristic for biomarker design for partial order.

The selection of a working model is much more complicated in the BIC method for

partial order. We have biomarker models for each possible order and non-biomarker

models for each possible order. The posterior probabilities for biomarker models

are different from those for non-biomarker models. One approach is to select two

orders for biomarker models and non-biomarker models respective and compare the

selected biomarker model and the selected non-biomarker models. Another approach

is to select a same order for biomarker models and non-biomarkers and compare the

selected models. Both of the two approach has its reasoning as well as disadvantages.

Forth, a future direction for biomarker-based design is the consideration of mul-
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tiple biomarkers. It is expected that it is very difficult to achieve an accurate

estimation with a very small sample size but relatively large number of covariates.

Similarly to the problem of weak biomarker in the single biomarker design, we need

to consider the problem of selecting strong biomarkers and excluding weak biomark-

ers.

Fifth, a very practical consideration of a biomarker-based design is to address

categorical biomarkers, especially ordered groups of patients. If we have k ordered

categories, one possible solution is to build a working model with k parameters. The

model with k parameters is flexible enough such that each category can target its

correct MTD in the long run under very weak conditions. Yet, the increment of the

number of parameters in the working model may lead to difficulty in estimation.

In the Bayesian framework, the establishment of the prior for the parameters is the

crucial question.
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Appendix A

Appendix

This section contains the results of simulation studies described in Chapter 3. We

consider two examples of the true probability of toxicity. In the first example, the

true probability of toxicity follows an empiric model: R(di, z) = β
exp(a+bz)
i . In the

second example, the true probability of toxicity follows a logit model: R(di, z) =

exp(ai−bz)
1+exp(ai−bz) .

Figure A.1 to A.4 provide the probability of Correct MTD Recommendation for

the empiric truth. Figure A.5 to A.8 provide the percentage of patients treated

at the MTDs for the empiric truth. Figure A.7 to A.12 provide the probability of

Correct MTD Recommendation for the logit truth. Figure A.13 to A.16 provide the

percentage of patients treated at the MTDs for the logit truth.

Table A.1 provides the proportion of selecting biomarker model as final working

model the empiric truth. Table A.2 provides the proportion of selecting biomarker

model as final working model the logit truth.
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Figure A.1: The probability of Correct MTD Recommendation. The true probablity
of toxicity follows an empiric model. a = −0.5. The labels BS NS BICS BP NP and
BICP for each bar refer to using biomarker model for simple order , non-biomarker
model for simple order , BIC model for simple order, biomarker model for partial
order, non-biomarker model for partial order and BIC model for partial order.
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Figure A.2: The probability of Correct MTD Recommendation. The true probablity
of toxicity follows an empiric model. a = −0.5. The labels BS NS BICS BP NP and
BICP for each bar refer to using biomarker model for simple order , non-biomarker
model for simple order , BIC model for simple order, biomarker model for partial
order, non-biomarker model for partial order and BIC model for partial order.
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Figure A.3: The probability of Correct MTD Recommendation. The true probablity
of toxicity follows an empiric model. a = 0.42. The labels BS NS BICS BP NP and
BICP for each bar refer to using biomarker model for simple order , non-biomarker
model for simple order , BIC model for simple order, biomarker model for partial
order, non-biomarker model for partial order and BIC model for partial order.
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Figure A.4: The probability of Correct MTD Recommendation. The true probablity
of toxicity follows an empiric model. a = 0.42. The labels BS NS BICS BP NP and
BICP for each bar refer to using biomarker model for simple order , non-biomarker
model for simple order , BIC model for simple order, biomarker model for partial
order, non-biomarker model for partial order and BIC model for partial order.
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Figure A.5: The percentage of patients treated at the MTDs. The true probablity
of toxicity follows an empiric model. a = −0.5. The labels BS NS BICS BP NP and
BICP for each bar refer to using biomarker model for simple order , non-biomarker
model for simple order , BIC model for simple order, biomarker model for partial
order, non-biomarker model for partial order and BIC model for partial order.
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Figure A.6: The percentage of patients treated at the MTDs. The true probablity
of toxicity follows an empiric model. a = −0.5. The labels BS NS BICS BP NP and
BICP for each bar refer to using biomarker model for simple order , non-biomarker
model for simple order , BIC model for simple order, biomarker model for partial
order, non-biomarker model for partial order and BIC model for partial order.
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Figure A.7: The percentage of patients treated at the MTDs. The true probablity
of toxicity follows an empiric model. a = 0.42. The labels BS NS BICS BP NP and
BICP for each bar refer to using biomarker model for simple order , non-biomarker
model for simple order , BIC model for simple order, biomarker model for partial
order, non-biomarker model for partial order and BIC model for partial order.
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Figure A.8: The percentage of patients treated at the MTDs. The true probablity
of toxicity follows an empiric model. a = 0.42. The labels BS NS BICS BP NP and
BICP for each bar refer to using biomarker model for simple order , non-biomarker
model for simple order , BIC model for simple order, biomarker model for partial
order, non-biomarker model for partial order and BIC model for partial order.
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Figure A.9: The probability of Correct MTD Recommendation. The true probablity
of toxicity follows a logit model. ai is in scenario 1. The labels BS NS BICS BP
NP and BICP for each bar refer to using biomarker model for simple order , non-
biomarker model for simple order , BIC model for simple order, biomarker model
for partial order, non-biomarker model for partial order and BIC model for partial
order.
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Figure A.10: The probability of Correct MTD Recommendation. The true proba-
blity of toxicity follows a logit model. ai is in scenario 1. The labels BS NS BICS
BP NP and BICP for each bar refer to using biomarker model for simple order
, non-biomarker model for simple order , BIC model for simple order, biomarker
model for partial order, non-biomarker model for partial order and BIC model for
partial order.
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Figure A.11: The probability of Correct MTD Recommendation. The true proba-
blity of toxicity follows a logit model. ai is in scenario 2. The labels BS NS BICS
BP NP and BICP for each bar refer to using biomarker model for simple order
, non-biomarker model for simple order , BIC model for simple order, biomarker
model for partial order, non-biomarker model for partial order and BIC model for
partial order.
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Figure A.12: The probability of Correct MTD Recommendation. The true proba-
blity of toxicity follows a logit model. ai is in scenario 2. The labels BS NS BICS
BP NP and BICP for each bar refer to using biomarker model for simple order
, non-biomarker model for simple order , BIC model for simple order, biomarker
model for partial order, non-biomarker model for partial order and BIC model for
partial order.
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Figure A.13: The percentage of patients treated at the MTDs. The true probablity
of toxicity follows a logit model. ai is in scenario 1. The labels BS NS BICS BP
NP and BICP for each bar refer to using biomarker model for simple order , non-
biomarker model for simple order , BIC model for simple order, biomarker model
for partial order, non-biomarker model for partial order and BIC model for partial
order.
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Figure A.14: The percentage of patients treated at the MTDs. The true probablity
of toxicity follows a logit model. ai is in scenario 1. The labels BS NS BICS BP
NP and BICP for each bar refer to using biomarker model for simple order , non-
biomarker model for simple order , BIC model for simple order, biomarker model
for partial order, non-biomarker model for partial order and BIC model for partial
order.
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Figure A.15: The percentage of patients treated at the MTDs. The true probablity
of toxicity follows a logit model. ai is in scenario 2. The labels BS NS BICS BP
NP and BICP for each bar refer to using biomarker model for simple order , non-
biomarker model for simple order , BIC model for simple order, biomarker model
for partial order, non-biomarker model for partial order and BIC model for partial
order.
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Figure A.16: The percentage of patients treated at the MTDs. The true probablity
of toxicity follows a logit model. ai is in scenario 2. The labels BS NS BICS BP
NP and BICP for each bar refer to using biomarker model for simple order , non-
biomarker model for simple order , BIC model for simple order, biomarker model
for partial order, non-biomarker model for partial order and BIC model for partial
order.
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Table A.1: The proportion of selecting biomarker model as final working model after
predetermined sample size of patients. The true probability of toxicity follows an
empiric model. The labels S and P refer to BIC method for simple order and BIC
method for partial order.

normal trun w=0.3 trun w=0.6 log w=0.3 log w=0.6
b S P S P S P S P S P

a = −0.5
1.5 99% 97% 66% 39% 39% 16% 88% 74% 59% 34%
1.0 90% 83% 43% 20% 26% 8% 74% 57% 49% 26%
0.5 48% 41% 18% 5% 12% 2% 39% 26% 24% 13%
0.3 23% 19% 8% 3% 7% 1% 22% 14% 15% 7%
0.1 8% 6% 5% 1% 4% 0% 7% 4% 6% 2%

−0.1 7% 6% 6% 6% 8% 4% 16% 13% 13% 10%
−0.3 25% 20% 17% 14% 15% 8% 46% 43% 37% 31%
−0.5 46% 42% 31% 27% 25% 16% 68% 66% 57% 50%
−1.0 89% 84% 64% 62% 56% 45% 93% 91% 87% 80%
−1.5 99% 96% 85% 80% 78% 63% 98% 98% 95% 90%

a = 0.42
1.5 98% 96% 59% 31% 27% 10% 80% 55% 45% 23%
1.0 85% 76% 40% 22% 18% 7% 65% 46% 34% 18%
0.5 44% 32% 16% 8% 9% 3% 34% 26% 18% 10%
0.3 20% 14% 10% 4% 5% 2% 18% 14% 11% 7%
0.1 7% 4% 4% 2% 2% 0% 7% 5% 6% 3%

−0.1 6% 5% 6% 1% 4% 1% 15% 7% 10% 7%
−0.3 18% 14% 13% 5% 11% 5% 43% 33% 33% 24%
−0.5 38% 31% 25% 13% 22% 10% 72% 59% 56% 44%
−1.0 86% 78% 61% 49% 53% 37% 96% 90% 87% 78%
−1.5 97% 94% 88% 81% 77% 63% 99% 98% 96% 92%
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Table A.2: The proportion of selecting biomarker model as final working model
after predetermined sample size of patients. The true probability of toxicity follows
a logit model. The labels S and P refer to BIC method for simple order and BIC
method for partial order.

normal trun w=0.3 trun w=0.6 log w=0.3 log w=0.6
b S P S P S P S P S P

a = −0.5
1.5 85% 78% 38% 17% 23% 7% 67% 52% 43% 24%
1.0 59% 49% 23% 8% 15% 3% 46% 35% 29% 17%
0.5 22% 18% 9% 3% 7% 1% 24% 14% 16% 8%
0.3 13% 10% 6% 2% 4% 1% 13% 6% 10% 3%
0.1 6% 5% 4% 1% 3% 0% 5% 3% 4% 2%

−0.1 5% 5% 5% 4% 6% 4% 10% 8% 8% 6%
−0.3 12% 10% 8% 8% 10% 5% 26% 25% 21% 18%
−0.5 22% 19% 15% 13% 14% 8% 49% 45% 38% 32%
−1.0 58% 52% 37% 35% 30% 21% 82% 80% 70% 62%
−1.5 84% 79% 62% 60% 52% 40% 96% 92% 86% 81%

a = 0.42
1.5 71% 56% 31% 16% 15% 5% 52% 37% 29% 15%
1.0 43% 33% 18% 9% 10% 3% 38% 27% 21% 11%
0.5 16% 12% 8% 4% 5% 1% 18% 14% 11% 6%
0.3 10% 6% 6% 2% 3% 1% 11% 8% 8% 4%
0.1 5% 3% 3% 2% 2% 0% 5% 4% 4% 2%

−0.1 4% 3% 5% 1% 3% 1% 8% 4% 5% 4%
−0.3 8% 6% 6% 1% 6% 2% 19% 11% 14% 11%
−0.5 14% 12% 10% 3% 9% 3% 36% 24% 27% 20%
−1.0 41% 35% 22% 12% 20% 9% 73% 58% 57% 44%
−1.5 69% 58% 40% 26% 37% 19% 90% 81% 77% 65%
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