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Abstract

We present a study of novel topological order in three dimensional (3+1D) topological

superconductors and fractional topological insulators. Such topological order occurs

when the surface is gapped due to the presence of many-body interactions that respect

the time-reversal symmetry.

3+1D time reversal symmetric topological superconductors are characterized by

gapless (massless) Majorana fermions on its surface. They are robust against any time

reversal symmetric single-body perturbation weaker than the bulk energy gap. We

mimic this gapless surface by coupled wire models in two spatial dimensions. We show

modified models with additional time-reversal symmetric many-body interaction, that

gives energy gaps to all low energy degrees of freedom. We used the embedding

trick using Wess-Zumino-Witten conformal field theory to find such interacting model

Hamiltonian. We show the gapped models generically carry non-trivial topological

order and support anyons. Using these anyons and their condensation process, we

show the topological order has a 32-fold periodicity.

Fractional topological insulators (FTI) are electronic topological phases in 3+1D

enriched by the time reversal and charge U(1) conservation symmetries. We focus on

the simplest series of fermionic FTI, whose bulk quasiparticles consist of deconfined

partons. Theses partons carry fractional electric charges in integral units of e∗ =

e/(2n+1) and couple to a discrete Z2n+1 gauge theory. We propose massive symmetry

preserving or breaking FTI surface states. Combining the long-ranged entangled bulk

with these topological surface states, we deduce the novel topological order of quasi-

(2 + 1) dimensional FTI slabs as well as their corresponding edge conformal field

theories.
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Chapter 1

Introduction

Condensed matter physics explores microscopic and macroscopic properties of matter.

In the past few decades researchers have discovered interesting properties at low-

temperature. An important discovery dates back to 1980 when Klitzing discovered

that with application of a strong magnetic field the values of the Hall resistance

in two-dimensional silicon samples were quantized [1], which was also later seen in

semi-conductor quantum wells. A theoretical understanding requires us to consider

electrons filling the quantized Landau levels, hence becoming localized in the two-

dimensional plane except at the edge of the sample. Soon it was realized that magnetic

field is not necessary to have a “protected” edge response. “Topological insulators”

with time-reversal symmetry were proposed to have quantized conductance at the

boundary and were later discovered in insulators like Bismuth Telluride, Bismuth

Antimony [2, 3]. The properties of these systems seem to be robust against local

perturbations and has possibilities for numerous novel applications. In addition to

quantum mechanics, we borrow concepts from topology - a branch of mathematics - to

understand these states. In this chapter, I will give a brief introduction to topological

phases and the methods used to analyze them in the rest of this thesis.
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1.1 Background

1.1.1 Classification of topological insulators and supercon-

ductors

The symmetry protected topological (SPT) phases are quantum phases of matter

whose properties are robust as long as certain symmetries of the system are preserved.

Here we will discuss SPT phases with fermionic degrees of freedom. Examples of such

phases include topological insulator(TI) s and superconductor (TSC)s. They can be

described using a band-Hamiltonian written in terms of free fermionic degrees of free-

dom. Although the bulk is gapped, the band structure for a finite system has states

corresponding to the boundary that are gapless. These boundary states are robust

against local perturbations, meaning even if we make small changes to the system,

the boundary state remains gapless. However, if we break the defining symmetry then

the boundary state is gapped and the SPT phase becomes “topologically trivial”.

My aim in this section is to explain briefly what it means to consider a partic-

ular class of TSC/ TI. Before doing that let’s understand them using a few simple

examples. Throughout this thesis I will alternatively use n+ 1 D or n D to mean n-

spatial dimensions and one temporal dimension. In 1D, well-known examples include

Su-Schrieffer-Heeger (SSH) model [4] and p-wave superconductor [5], both modeled

using free (non-interacting) fermions. The SSH model is an example of the TI. It

describes a 1D chain of atoms, originally proposed to model poly-acetelyn. Let’s say

the electron hopping integral between the consecutive atoms alternates between v

and w. Considering an enlarged unit-cell that has A and B atoms, the Hamiltonian

can be written as

HSSH =
N∑
i=1

vc†A,icB,i + wc†B,icA,i+1 + h.c. (1.1)
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Figure 1.1: A poly-acetelyn molecule with alternating bond-strength

Assuming a periodic boundary condition, momentum k is defined to be 2πn
N

for n ∈ ZN

(integer modulo N) called as the Brillouin zone (BZ). In the Fourier basis, cA(B),k =

1√
N

∑
j=1 cA(B),ke

−ijk (1.1) becomes

HSSH =
∑
k∈BZ

∑
{α,β}=A,B

tc†α(k)hα,β(k)cβ(k) (1.2)

where

hα,β(k) = σx [(v + w cos(k)] + σy [w sin(k)] (1.3)

Here σx,y are 2×2 Pauli matrices that act on A,B. Diagonalizing the Bloch hamilto-

nian hα,β(k) gives E±(k) shown in figure 1.2, where eigenstates are given by |u±〉(k).

The energy spectrum is gapless when strength of the hopping integral is equal in both

bonds, i.e.v = w, but otherwise it has a finite gap even in the thermodynamic limit.

That is why this is a model for an insulator when v 6= w. For a finite length chain

(as in the figure 1.1), when v < w the chain is completely dimerized, i.e. the elec-

trons are localized in A and B atoms of the same unit-cell. When v > w, this chain is

dimerized except the dangling bonds at the end. The atoms connected to these bonds

have zero energy. These zero energy states are protected in the sense that as long as

v > w these states can not be removed. In other words, for v < w the SSH chain

is a “topologically trivial” insulator and for v > w it is a “topologically non-trivial”
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insulator. The Berry’s phase, defined for a closed path C as −i
∮
C
〈un(k)|∂un(k)

∂k
〉, also

distinguishes between these states. From the Hamiltonian (1.3), which is of the form

H = d · σσσ, where only dx and dy are non-zero, Berry’s phase is calculated using the

solid angle subtended by d. When k goes from 0 to 2π, i.e. for a closed path in

the 1D BZ, d traces a circle in the dx-dy plane as shown in figure (1.2). When the

origin is inside the circle, the solid angle subtended by d (Berry’s phase) is π. This

distinguishes the TI from a trivial insulator and is called a “topological invariant”.

The topological property also has a correspondence with the symmetry of the sys-

tem. The system has a sub-lattice or chiral symmetry, i.e. even if we switch A and B

atoms, the model remains invariant. In momentum space {hα,β(k), σz} = 0, so this

symmetry maps the positive energy eigen states to the negative energy eigenstates..

Any 1D system with such a chiral symmetry has same topological properties.

Figure 1.2: In top electron band dispersion for the SSH model with different values
of hopping strength v and w. In bottom plots in dx-dy plane indicating whether the
Berry’s phase is 0 or π. For v < w the chain is gapped and the Berry’s phase is π as
the circle encloses the origin making it a “topologically non-trivial” insulator.

In the Hamiltonian for a superconductor, in addition to the electron hopping term,

we also have electron density-density interaction term. The interaction term is of

two-body type, but we consider the mean-field approximation proposed by Bardeen,

Cooper and Schrieffer (BCS), to make the Hamiltonian single-body type or in other

words non-interacting. The mean field Hamiltonian for a p-wave superconductor in
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1D is

1

2

∑
k

(
c†k c−k

)k2/2m− µ ∆k

∆∗k k2/2m+ µ


 ck

c†−k

 (1.4)

It is easy to check the system is gapped for µ < 0 and µ > 0, but these two cases belong

to different phases. The p-wave superconductor is in topological phase for µ > 0. The

Hamiltonian has particle-hole symmetry that transforms an electron with positive

momentum ck to a hole with negative momentum, c†(−k). If we write the Hamiltonian

(1.4) in d.σσσ form the trace of d vector will distinguish a topological phase. This

agrees with the Z2 classification of a topological superconductor with only particle-

hole symmetry. Refer [6] for a rigorous way to understand topological classification

for 1D fermionic SPT phases with additional time-reversal (TR) symmetry.

The important point here is that the classification of a TSC or TI is determined

by the symmetry of it’s Hamiltonian. These symmetries can be discrete anti-unitary

symmetries like particle-hole, time-reversal (TR), and chiral with operators T ,C and

Π or unitary charge conservation U(1) symmetry. Numerous research works have been

devoted to finding complete classification of SPT phases with various symmetries, in

different dimensions [7, 8, 9, 10].

A brief discussion of the 3D TSC serves both as an example of a SPT phase in

higher dimension as well as prepares the reader for the next chapter. Superconductors

in BCS mean field limit have Bloch Hamiltonian HBdG, which is a function of crystal

momentum k. A general form of the Hamiltonian is

HBdG =

 ε(k) ∆(k)

∆∗(k) −ε(k)

 (1.5)

where the matrix is 4×4 when written in the Nambu spinor basis (ck↑ck↓c
†
−k↓−c†−k↑).

HBdG can be written in terms of Pauli matrices τi and σj for particle-hole and spin
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basis respectively. ε(k) is the energy dispersion and ∆(k) is the pairing function for

the superconductor.

HBdG already has the particle-hole symmetry (C) that transforms ckσ → c†−k−σ.

Certain superconductors can have additional time-reversal (T ) and chiral (Π) sym-

metries. In the presence of the TR symmetry the pairing potential has odd parity

(spin triplet type). An example of such a pairing potential is ∆ = k.σσσ(iσy) [11]. One

can check that the following is true for this pairing

(τ0 ⊗ iσy)HBdG(k)(−τ0 ⊗ iσy) = HBdG(−k) (1.6)

(τx ⊗ σo)HBdG(k)(τ ⊗ σ0) = −HBdG(−k) (1.7)

Here T = iσy ⊗ τoK is the TR symmetry and C = σ0 ⊗ τxK is the particle-

hole symmetry where K is the complex conjugation operator. We can also define

an additional chiral symmetry Π = iCT that anti-commutes with the Hamiltonian.

The symmetries satisfy −T 2 = C2 = +1. Superconductors with such symmetries

are classified as DIII TSC. A classification table for TI and TSC can be found in

[11, 12]. In 3D class DIII has further Z classification, which means we can define a

bulk topological invariant that takes integer values. The winding number w, defined

in the 3D BZ is shown to be the topological invariant in this case [11].

w =
1

24π2

∫
3DBZ

d3kεµνρTr[q−1∂µqq
−1∂νqq

−1∂ρq] (1.8)

Here q(k) is Hamiltonian HBdG under basis transformation which maps the 3D BZ to

the space of matrices restricted by the symmetries.

Any class DIII TSC is topologically trivial if its band structure has w = 0. The

winding number in the bulk corresponds to the number of gapless Majorana cones on

the surface. This makes sense because on one side of the surface we have a gapped

bulk with w = N and the other side is vaccum that has w = 0. If we move from one
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side to the other adiabatically, then the gap will close N times along our path, in

other words we will encounter N mid gap states at the boundary between two sides.

So, the topological class of a TSC can be obtained by counting the surface Majorana

cone.

1.1.2 Fractional topological insulators

Topological insulators (TI) [13, 14, 15] are time-reversal (TR) and charge (U(1))

symmetric electronic insulator. In the last section, it was explained how TI in 1D can

be modeled using a band Hamiltonian for electrons. It can be different topological

phases depending on the value of its topological invariant. In 3+1 D, TI is classified

using a Z2 invariant. A TR symmetric topological field theory[16] for this Z2 TI is

S(3+1)D =
θe2

8π2

∫
d3xdtεµνστ∂µAν∂σAτ (1.9)

where θ is the axion angle variable that takes π (mod 2π) value. Eqn 1.9 is just the

axion electro-magnetic field theory with εµνστ∂µAν∂σAτ = 2E·B. Because E·B is odd

under TR symmetry, in general eqn 1.9 breaks TR symmetry. With a closed manifold

the action integral evaluates to mθ where m ∈ Z. The Z2 topological invariant is given

by eiS(3+1)D which is (−1)m for θ = π. This topological field theory also predicts a

half-integer quantized Hall conductance on a boundary surface when TR is broken.

The value of the Hall conductance on the surface is determined by the axion angle.

Fractional topological insulators (FTI) are also TR symmetric electronic phases

but can not be explained using a single-body Hamiltonian picture because of interac-

tion between electrons. However, a topological field theory for a simple case of FTI

has been formulated [17]. The idea here was to decompose an electron into odd 2n+1

fractionally charged fermionic partons that are de-confined and have their own dy-

namics. The partons are coupled with SU(2n+ 1) gauge fields such that the electron
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is physical i.e. gauge invariant. When these partons form a topological insulator, a

new electronic phase for the electrons emerges which we call FTI. When the axion

angle, θ for the topological insulator formed by partons is π, for electrons effectively

θFTI = π
2n+1

. This does not break the TR symmetry because the partons couple to

the external electro-magnetic field with charge e/2n+ 1.

The surface of FTI is gapped when the TR symmetry is broken on the surface.

For example, a perpendicular magnetic field on the surface would show 1
2(2n+1)

e2

h

Hall conductance compared to 1
2
e2

h
in case of TI. With magnetic field, the Dirac

partons on the surface form landau levels just like electrons on TI surface. The

1D interface between opposite TR breaking surfaces on FTI has 1
(2n+1)

e2

h
differential

electrical conductance. In the past few years, much work has been done to find

gapped surfaces for TI that do not break the TR symmetry. Such surfaces show TR

symmetric topological order. One of the main results in this thesis is to show how

using these partons we can also have TR symmetric topological order on FTI.

1.1.3 Topological order

Topological states are classified using topological order(TO) and topological invariants.

Non-interacting topological superconductor and insulator phases have trivial TO , but

we can define topological invariants that explains their robust properties as discussed

in sec (1.1.1). Examples of the phases that have TO are the fractional quantum

Hall insulators. The Laughlin state at filling ν = 1/3 and the Pfaffian state at

ν = 5/2 were experimentally studied and have shown quasi-particles with fractional

charge and spin. Existence of such quasi-particles correspond to TO in the system.

Following are some key properties that defines the TO in 2 + 1 D systems.

• Ground state degeneracy: It counts the number of independent ground

states |ψ〉, obtained by solving the eigen-value problem H|ψ〉 = εgd|ψ〉. It de-

pends on the topology of the manifold. For example, a topologically ordered state
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like ν = 1/3 Fractional quantum Hall state on a manifold has 3g ground state

degeneracy, where g is the genus of the manifold [18]. Non-interacting topolog-

ical superconductor and insulator phases on any manifold have no ground state

degeneracy. In this sense they have trivial TO . Such distinction also occurs in

the quantum entanglement properties and fractional statistics.

• Quantum entanglement: It describes how a quantum state is entangled be-

tween different parts of the system. For example, bi-partition a system into

part A and part B and can compute the entanglement entropy defined as

SA = −Tr[ρAlog (ρA)] where ρA = TrB|ψ〉〈ψ|. Entanglement entropy usually

scales with the area of A with a few exceptions. For a phase with TO there is

a constant term in addition to the area law scaling term, often referred to as

topological entanglement entropy [19].

• Fractional charge and spin: A phase with TO has quasi-particle and quasi-

vortex excitations with fractionalized charge and/or spin (statistics). Quasi-

particles are collective excitations that occurs in the emergent low energy de-

scription of a system. In 2+1 D such quasi-particle excitations are called

“anyons” which are de-confined in the sense that there is no energy cost to

change their position. However, when they changes their position the phase of

the wave function changes and this is the only relevant thing to keep track of.

Their wave function gain a non-trivial phase under exchange of two such anyons

even while they are separated by large distances[20, 21]. When two such anyons

are brought together they can fuse to give another anyon. A particular TO

is specified by a set of anyons along with their braiding (exchange) and fusion

rules. Such a set (or “category” ) of anyons is often associated with a symmetry

group and the anyons can be thought of as irreducible representations of the

the symmetry group. Properties of these anyons are discussed below and will
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Twist phase = 
𝑒"#$	&'

Ti
m

e

𝑎
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= 𝑒"#$	(&+,&',&-)=

𝑎 𝑏

𝑐 = 𝑎	×	𝑏
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𝑎 𝑏

𝑐

𝑎 𝑏

𝑐

b+ a1 ⊗ a2

b1 ⊗ b2

(2)

Figure 1.3: (1) Ribbon diagram showing topological spin of an anyon from the 2π
twist. (2) Monodromy phase or the double exchange phase from ribbon twist phase.

be referred to frequently in later part of the thesis.

The topological spin, ha: This defines the phase e2πiha incurred by the anyon,

a, when it is rotated by 2π. So the world line of an anyon is like a ribbon as

shown in figure 1.3. This is also the exchange phase of a and a, where a is the

unique “anti-particle ” of a such that they fuse to vaccuum i.e. 11.

Fusion rules :

ai × aj =
∑
k

N ij
k ak (1.10)

These rules tell us what possible anyons can form when ai and aj are brought

together or fused. This is similar to the Clebsh-Gordon rules that tell how the

tensor product of two representations can be written as direct sum of irreducible

representations. In this thesis, N ij
k is always taken to be 1 or 0. If the anyons

are abelian, they fuse to give only one possible anyon. However, if anyons are

non-abelian they have multiple fusion possibilities. Because of this, a pair

of non-abelian anyons forms a Hilbert space with dimension greater than one.

The quantum dimension of each anyon, da, indicates whether it is abelian or

non-abelian.
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Monodromy, Mab
c : This is the phase gained when a circles around b. This is same

as the phase gained when these two anyons exchange twice, and it also depends

on the fusion channel of the two anyons. Figure 1.3 summarizes the ribbon

identity, Mab
c = e2πi(ha×b−ha−hb), using which we can calculate monodromy from

the topological spins. A related quantity is the braiding matrix defined as

Sa,b =
1

D
∑
c

dcN
c
abM

ab
c (1.11)

Finding new topological order that can realize anyons with interesting properties

is useful. One can find a new TO by gluing and fractionalizing known TOs. Gluing

involves anyon condensation [22] in a pair of TO s, which is similar to the bose con-

densation process. The anyons in the condensed phase are of the form a1a2 where,

a1 and a2 belong to the two TO s respectively. We condense a set of bosons that are

mutually local with respect to each other i.e. they have trivial mutual monodromy

phases. This defines the new vacuum and a new TO . All the anyons that have non-

trivial mutual monodromy phases w.r.t. any boson in the condensate are confined

or not allowed in the new TO . The reverse of anyon condensation is fractionaliza-

tion where the condensed phase fractionalizes to two topologically ordered phases.

For example, condensing two Ising TO s each of which has Ising anyons with same

topological spin gives us a trivial TO with just neutral fermions (since Ising TO is

neutral). This also means, a fermion theory can be fractionalized to a pair of Ising

TOs.

Although we discussed only 2 + 1D TO , fractional charge and spin excitations

also occurs in 3 + 1D. It is true that the world lines of two pure point-like excitations

can not braid due to presence of an extra dimension compared to 2+1D, but in 3+1D

the world line of a point particle around a vortex line (that can be dynamic too) can

not shrink to a point. Such vortex can occur as the flux of an internal gauge-field.
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The quasi-particles and quasi-vortices set the TO in 3 + 1D.

1.1.3.1 Topological field theory

One of the issues with topological states is that many states with TO don’t al-

ways have a microscopic lattice model descriptions. Instead we can understand these

topological states using a low-energy gauge theory description. The effective Chern-

Simon’s action [23] for abelian quasi-particles in 2+1D is given by

SCS[A] =

∫
d3x

[
1

4π
εµνραIµKIJ∂να

J
ρ −

1

2π
tIε

µνρAµ∂να
I
ν

]
(1.12)

, where αIµ corresponds to N emergent U(1) gauge fields for I = 1 · · ·N and Aµ is

the external electro-magnetic gauge field. KIJ corresponds to various Chern-Simon’s

coupling, which we call the K- matrix. Under the gauge transformation αIµ → αIµ −

dµξ
I the theory should be invariant. This is the case when the system is defined on

a manifold with no-boundary. For example, when K = m is an integer, which is the

case for abelian quantum Hall systems, αµ = θµ/Lµ is the solution to the equation

of motion. Here θµ is an angular variable that changes in multiples of 2π under the

gauge transformation. The action in (1.12) becomes

S =
im

2π

∫
dτθy

dθx
dτ

(1.13)

where τ is time. This is just a pq̇ type kinetic term for θ fields and can be quantized

by the relation,
[
θ̂x, θ̂y

]
= 2πi

m
. Note that if we define gauge invariant Wilson loop

operators Wi = eiθx along the two cycles of a torus, we can find the ground state

degeneracy on the torus just using these commutation relations.

In the presence of a boundary, SCS is not invariant under the gauge transformation

because we get additional boundary terms. So, we need extra degrees of freedom at

the boundary to cancel this term. Using the same example as before with integer
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K = m, if we choose αi = ∂iφ the action 1.12 gives an extra term at the boundary

δSbdry = −m
4π

∫
dxdτ∂τφ∂xφ. (1.14)

For m = 1 this is exactly the action for free chiral massless bosons. A general

boundary action allowed by the gauge symmetries is

Sbdry = − 1

4π

∫
dxdτ [KIJ∂τφ

I∂xφ
J − VIJ∂xφI∂xφJ ]. (1.15)

This is the theory of left moving chiral Bosons and, particularly in the example of

K = m, this is the U(1) Kac-Moody theory at level m. This boundary gapless theory

is a 1+1 D conformal field theory that will be described in detail later. In some

cases, the boundary excitations from the gauge theory turn out to be non-chiral and

become gapped within the allowed gauge symmetries. This is why not all systems

with non-trivial TO have gapless boundary modes. These boundary modes are very

useful in detecting the TO .

So far, I have not discussed how to visualize the quasi-particles within the Chern-

Simons gauge theory. Interesting thing about the Chern-Simon’s action is that its

stress energy tensor vanishes, which means the Hamiltonian also vanishes. So this

action is purely topological. To the action 1.12 with K = m, if we add a term∫
d3xαµj

µ that couples the gauge fields to its currents, the equation of motion changes

to

e2

2π~
ενλµ∂ναλ = jµ (1.16)

Considering a static charge particle e, i.e. j0 = eδ2(x− x0), we find upon integration

the flux attached to this charge is ~
me

. This is the origin of the fractional statistics

because of the Aharnov-Bohm like phase gained by the charged particles when they
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circle around the flux [20] .

Just from the K-matrix KIJ and the charge vector tI , we can get information

about the TO . For example, the ground state degeneracy is |detK|. The differential

electrical conductance along the boundary (Hall conductance in 2+1D) is computed

by integrating out the gauge fields aµ’s to get σ = ν e2

h
= t ·K−1 · t e2

h
. We designate

different anyons which are sources for different currents by a vector so that they

form a lattice. The topological spin of an anyon with lattice vector a is given by

1
2
aT ·K−1 · a. Similarly the monodromy, Mab

c is given by e2πi(a·(K)−1·b).

Non-abelian anyons are understood using a non-abelian gauge theory other wise

known as Wess-Zumino action[24]. Witten in [25] obtained the boundary conformal

field for this gauge theory called as the Wess-Zumino-Witten CFT . Many examples

of these will be discussed later. The purpose of this section was to show how the

boundary of a topologically ordered state has gapless low energy modes. Such gapless

field theories are the conformal field theories that will be discussed in details now.

1.1.4 Conformal field theory and bosonization

In 1 + 1 D, a number of condensed matter systems can be described by relativistic

field theories. This is because at low energy many systems show linear dispersions and

hence have Lorentz invariance with the velocity of light replaced by the Fermi velocity,

vF . In imaginary time, Lorentz invariance becomes spatial-rotation invariance. A

field theory with rotation, scale, and translation invariance is called Conformal field

theory (CFT). Such a theory explains physics at the fixed point of a renormalization

group transformation, otherwise known as a second order phase transition point.

CFT also appears at the boundary of many topologically ordered systems, precisely

at the interface between a 2 + 1D topologically ordered phase and a trivial phase.

There is a one-to-one correspondence between the primary operators of the boundary

CFT and the quasi-particles (or anyons) in the topologically ordered phase. We use
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Figure 1.4: Band dispersion for free electron in 1D illustrating left and right Fermi
points and the linear dispersion near these points.

this correspondence profusely in this thesis for finding TOs in 2 + 1 D, since dealing

with 1+1 D makes our problem easier and solvable. Conformal transformation maps

space-time to itself, and in 1+1 D such transformations only have form z → az+b
cz+d

,

such that ad − bc = 1. Here z = i(vF t − x) and z = i(vF t + x) are coordinates

in the complex plane. Any transformation in the two-dimensional complex plane is

locally conformal. A local operator O(z, z) is called primary operator if it scales

under a conformal transformation like O′(αz, αz) = α−hα−hO(z, z). The constants h

and h are fundamental properties of the primary operator or the primary field called

the conformal dimension. The operator product expansion (OPE) of an operator

approximates the product of the operator at two nearby points by a sum of operators

at either of those points. This is an important tool in CFT that makes bosonization

work. CFT is also characterized by a number c, called the central charge, which is a

measure of the number of degrees of freedom in the model considered. For example,

c = 1 corresponds to a free boson and also to a complex or Dirac fermion. A complex

free fermion theory can be equivalently written in terms of a free boson. Majorana

fermions correspond to c = 1/2, so that when we add c for two Majorana fermions

we get c = 1 for a complex fermion. The central charge for a set of N independent

Majorana fermions can simply be added to give the net central charge to be N/2.

Let’s consider a free electron ignoring its spin (a Dirac fermion) in 1+1 D. The



17

Hamiltonian near the Fermi energy as shown in fig(1.4) takes the following form

HF =

∫
dk
vF
2π

[
α†(k)α(k) + β†(k)β(k)

]
, (1.17)

where α and β are electron annihilation operators at +kF and −kF respectively. The

integration over k bounded by the momentum cut-off, Λ. We can define continuum

fermion fields c(x) and c valid only with this range of momenta i.e near the right

Fermi point and the left Fermi point respectively. The time dependent fermion fields

expanded in terms of α and β are

c(z) =
∫
k>0

dk
2π

[
e−kzα(k) + ekzβ†(k)

]
(1.18)

c(z) =
∫
k<0

dk
2π

[
ekzα(k) + e−kzβ†(k)

]
(1.19)

The field ψ(z) is a super position of right moving electrons at +k and left moving

holes at −k. The low energy Hamiltonian written in terms of fermion fields is

HF = −ivF
∫
dx
[
c†∂xc− c†∂xc

]
(1.20)

This is just the Dirac Hamiltonian as we expect. The negative sign in front of the

second term is because c is a left moving chiral field. If the Hamiltonian has only c

or c term, then the fermion moves only in one direction i.e the theory is chiral.

〈c(z)c(z′)〉 =

∫
k>0

dk

2π

∫
k′>0

dk′

2π
〈0|α(k)βk

′ |0〉e−kz+k′z′

=

∫
k>0

dk

2π
e−k(z−z′)

=
1

2π

1

(z − z′)
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Free boson in 1+1 D has the following Hamiltonian

v

2

∫
dx
[
Π2 + (∂xφ)2

]
(1.21)

where the conjugate momentum field Π = 1
v
∂tφ such that [φ(x),Π(x)] = iδ(x − x′).

The time dependent field can be written in terms of left and right moving fields,

ϕ(x, t) = φ(x− vt) + φ(x+ vt). The mode expansion for an infinite 1 + 1 D bosonic

system is

φ(z) =

∫
k>0

dk

2π

1√
2k

[bke
−kz + b†(k)ekz] (1.22)

φ(z) =

∫
k>0

dk

2π

1√
2k

[bke
−kz + b

†
(k)e−kz] (1.23)

where bk and bk (= b(−k)) are bosonic creation operators that satisfy [bk, b
†
k′ ] =

2πδ(k − k′). There is a dual bosonic field, ϑ(x, t) defined by the relation ∂xϑ(x, t) =

−Π = − 1
v
∂tϕ(x, t), such that we can show the equal-time commutation relation is

[ϕ(x), ϑ(x′)] = −isgn(x−x′) where . This means iϑ(x′) ≡ e
∫ x′
−∞ dyΠ(y) shifts ϕ(x) by 1

if x > x′. In next few paragraphs I will explain how any fermion operators including

the Hamiltonian can be written in terms of bosonic fields. The electron density n(x), a

bilinear in electron field operators, has bose statistics. Let’s say ϕ(x) = λ
∫∞
x
dy n(y),

which means adding a charged particle at x′ > x changes n(x′) and hence increases

φ by λ. This seems like the shift operator we saw before, so the fermion creation

operator can be written using this shift operator multiplied with any function of ϕ.

The bosonization prescriptions for right and left moving fermions respectively are

ψ†(z) ∼: eiαφ :, ψ
†
(z) ∼: e−iαφ : (1.24)

where α is a constant which we will fix soon. : : means the operators are normal or-

dered since the exponent should have density dependence. The bosonization definition
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becomes more involved by including Klein factors when multiple species of fermions

are considered, because the fermion anti-commutation relations are only true for same

species. Let’s first consider only one species of fermions. A normal ordered operator

of the form : eiαφ(z) : is called a vertex operator. Using the Baker-Campbell-Hausdorff

formula we have

: eiαφ(z) :: eiβφ(z′) :=: eiαφ(z)+iβφ(z′) : e−αβ〈0|φ(z)φ(z′)|0〉 (1.25)

〈φ(z)φ(z′)〉 is known as the Green’s function and also called the OPE for free bosonic

fields in CFT . It can be calculated using the mode expansion eqn 1.22 for bosonic

fields. Note the expansion eqn 1.22 is not completely accurate, because it doesn’t have

the proper zero mode contribution. For details refer [26, 27, 23]. In the large length

limit, 〈φ(z)φ(z′)〉 → − 1
4π

ln(z − z′). Hence, Green’s function or OPE for fermion

operators is

〈ψ(z)ψ†(z′)〉 = 〈: eiαφ(z) :: eiαφ(z′) :〉 = 〈: eiα(φ(z)+φ(z′)) :〉(z − z′)−α2/4π (1.26)

〈: eiα(φ(z)+φ(z′)) :〉 = 1 because of normal ordering. Comparing with the fermion OPE

(1.21) we choose the normalization such that ψ†(z) = 1√
2π

: ei
√

4πφ :.

Normal ordering a fermionic operator is same as using a point splitting prescription

[28], for example : ψ(z)†ψ(z) := limε→0(ψ(z + ε)†ψ(z) − 〈ψ(z + ε)†ψ(z)〉). Let’s now

bosonize the fermionic Hamiltonian in eqn(1.20). The first term is

ψ(x)†∂xψ(x) = −i limε→0ψ(z + ε)†∂zψ(z)− 〈ψ(z + ε)†∂zψ(z)〉 (1.27)
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First we expand ψ(z′)†∂zψ(z) = ∂zψ(z′)†ψ(z) in powers of ε = z′ − z

∂z
1

2π

[
ei
√

4πφ(z+ε)e−i
√

4πφ(z)
]

(1.28)

=∂z
1

2π

[
ei
√

4π(φ(z+ε)−φ(z)) 1

ε

]
(1.29)

=∂z

[
1

2π(z − z′) +
i√
π
∂zφ+ i

(z′ − z)

2
√
π

∂2
zφ− (z′ − z)(∂zφ)2

]
(1.30)

After taking the derivative and plugging in eqn 1.27, the holomorphic part of the

Hamiltonian becomes −v
∫
dx [ i

2
√
π

: ∂2
zφ : + : (∂zφ)2 :] = −v

∫
dx : (∂xφ)2 : as

the integral of the term linear in φ becomes 0. After similar treatment of the anti-

holomorphic part

−v
∫
dx : (∂xφ)2 : + : (∂xφ)2 := −v/2

∫
dx

(∂xϕ)2 + (∂xϑ)2 (1.31)

This is exactly the Hamiltonian for a free boson.

The power of bosonization lies in expressing the interaction between fermions in

terms of either free boson Hamiltonian or as sine-Gordon type potential terms. For

a density-density coupling or interaction between the left and tight moving fermions

we have following term

γ

∫
dx ψ†L(x) ψL(x)ψ†R(x)ψL(x) =

γ

(2π)2

∫
dx [(∂xϕ)2 − (∂xϑ)2]. (1.32)

Note that only the coefficients in the free boson Hamiltonian gets renormalized due

to this interaction.

For multiple species of fermions that transform under a non-abelian symmetry

group the conserved currents can be defined using the generators of the Lie group.

This is called as the non-abelian bosonization process which gives us a bosonic theory

with the same global symmetries as the fermionic theory. For example, there is SU(2)

spin rotation symmetry in addition to the U(1) charge conservation symmetry if we
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consider spin-ful fermions. Using the chiral fields ψR,σ and ψL,σ, the conserved SU(2)

currents are defined as JaR/L(x) = 1
2
ψ†R/L,σ(x)τaσ,σ′ψR/L,σ′ which satisfy the SU(2)

Kac-Moody algebra with level k = 1. The bosonized action for the free spinful Dirac

fermion becomes S =
∫
d2x1

2
(∂µφ)2 + Sk=1

WZW [g]. Here Sk=1
WZW is the Wess-Zumino-

Witten action for the WZW CFT .

Sk=1
WZW =

1

4λ2

∫
d2xTr(∂µg∂

µg−1) (1.33)

+
k

24π

∫
d3yεµνρTr

(
g−1∂µgg

−1∂νgg
−1∂ρg

)
(1.34)

where λ and k are constants related by λ2 = 4π
k

. k is called the level of the WZW

model also corresponds to level in the Lie algebra. In later chapter we will encounter

WZW CFT for SO(N) Lie group. The details for this is discussed in the appendix A.

1.2 Outline of the thesis

The 3+1D TR symmetric TSC was believed to have a gapless Majorana surface state

as long as the TR symmetry is not broken. This was recently refuted by the proposal

of a TR symmetric gapped surface with TO for this TSC [29]. Even the Z classification

of TSC – or class DIII band theories according to the Altland-Zirnbauer classification

[7] – relies heavily on the single-body BCS description of the electronic structure.

The symmetric TO occurs when we go beyond the mean field BdG Hamiltonian in

eqn(1.5) and include fermion interaction. The fact that the surface Majorana modes

of any TSC can be gapped without breaking symmetries does not mean the TSC is

topologically trivial. There would generically be a residual TO , that allows non-

trivial anyonic excitations to live on the surface unless N is a multiple of 16. This

reduces the Z classification of TSC to Z16[29, 30, 31, 32, 33, 34, 35]. An explicit

microscopic gapping interaction that leads to such TO is constructed in this thesis.
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Additionally, TO on this superconductor surface is analyzed with a different approach

and shown to be consistent with the previous studies.

Similar story holds true for topological insulators [13, 14, 15, 16] in 3+1D. Many-

body interactions allow the surface Dirac mode of a TI to acquire an energy gap with-

out breaking time reversal or charge conservation symmetries. However, a non-trivial

surface TO called the “T -Pfaffian surface” would be left behind [36, 37, 38, 39].This

indicates that the bulk insulator still carries a non-trivial Z2 symmetry protected

topology (SPT) even in the many-body framework. Sec. 1.1.2 explained how FTI

are formed for electrons when the constituent Dirac partons form a topological Insula-

tor [16]. Similarly one expects that the FTI can have TR symmetric TO if partons on

the surface are in the T -Pfaffian topologically ordered state. This TO on the surface

of the FTI, referred to here as the generalized T -Pfaffian∗ surface, is proposed and

explored in this thesis.

In chapter 2, we construct the “coupled wire model” for the non-interacting surface

of class DIII TSC. We will introduce the single-body coupled Majorana wire model

at the beginning of Sec. 2.1. A review of the so(N)1 WZW CFT will be given in

Sec. 2.1.1 and 2.1.2 as well as in appendices A, B and C.

Chapter 3 explores how inter-wire interaction gaps the surface and also discusses

the TO of the resulting gapped surface. In Sec. 3.1, we will construct time reversal

symmetric 4-fermion interactions that will open up an excitation energy gap. The

discussion will be separated into the even and odd N cases in Sec. 3.1.1 and 3.1.2

respectively. In the even case, the gapping Hamiltonian will match the O(r) Gross-

Neveu model [40, 41, 42, 43] and we will show an energy gap in section 3.1.1.1 by

(partially) bosonizing the problem. The gapping potential for the odd case will rely on

a conformal embedding and relate to the Zamolodchikov and Fateev Z6 parafermion

CFT [44, 45]. This will be discussed and reviewed in Sec. 3.1.2.1, 3.1.2.2 as well

as in appendix D. The symmetric gapping interactions will correspond to non-trivial
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surface topological orders. This will be discussed in Sec. 3.2 where we will present the

class of 32-fold periodic topological GN states. In Sec. 3.3, we will describe alternative

gapping interactions that would lead to even more possibilities.

Chapter 4 will be devoted to FTI where a parton construction in a slab geometry

is used to explore three types of gapped surface states – ferromagnetic surfaces that

break TR, superconducting surfaces that break charge U(1) symmetry, and symmetric

surfaces which generalize the T -Pfaffian surface state of a conventional TI to T -

Pfaffian∗. The TO for the FTI slab with these surfaces is discussed in Sec. 4.1, 4.2

and 4.3 respectively. In Sec. 4.4, we discuss, using an anyon condensation picture,

the gluing of a pair of T -Pfaffian∗ surfaces. In the last chapter I will conclude the

thesis. Our main findings for both the TSC and FTI case are summarized along with

some discussion on future possible explorations.
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Chapter 2

Three dimensional (3D) topological

superconductor (TSC)

The technique of modeling a quasi- 2D system from the arrays of 1D system was used

in many publications from 1999-2002[46, 47, 48, 49, 50, 51] For example, in [48] and

in [50] 1D wires with interacting fermion (Luttinger liquids) are coupled by the the

forward scattering terms to form a sliding Luttinger liquid phase in two-dimension.

Numerous gapped phases including the topological phases in two-dimensions can be

built by considering back-scattering between one-dimensional wires[51]. The inter-

action effects are more controlled and better understood in such models. This the-

oretical technique has been frequently used in the study of fractional quantum Hall

states[51, 52, 53, 54, 55], anyon models[56, 57], spin liquids[58, 59], (fractional) topo-

logical insulators[60, 61, 62, 63, 64, 65, 66] and superconductors[67, 68]. In addition

to pure 2D phases, the coupled wire model can also be constructed for the surface of a

three dimensional bulk [69]. We will build such a model for the 2D surface (boundary)

of the 3D topological superconductor.

The coupled wire model for the integer quantum Hall state [52] is briefly discussed

here. Consider a set of wires that carry electrons on the 2D stripe as shown in the
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Figure 2.1: (Left ) A coupled wire model description of the 2D quantum Hall insulator
where the magnetic fields point into the plane. (Right) the energy dispersions for the
wires before and after the coupling are shown respectively on top and bottom.

fig 2.1. Consider spinless electrons on the wires that are filled to the density, ne = kF
πa

,

a being the inter-wire distance. This is apparent from Luttinger’s theorem that says

the volume inside the Fermi surface is fixed by the total density of electrons inside the

Fermi sphere. The presence of a magnetic field perpendicular to the plane of the stripe

explains why electrons are effectively spinless. In the Landau gauge(A = −Byx̂) the

electron dispersions along the momentum,kx are shifted by b = eaB/~. The filling

fraction of the stripe is ν = #charge
#flux

= 2kF/b. So, the left and right modes of adjacent

wires exactly overlap at Fermi energy, EF . If backscattering is turned on such that

the left and right moving electron modes mix through the term
∫
dxcL†y (x)cRy+1(x),

then we open a gap at EF . Only the chiral (left or right) electron (Dirac) wires at

the edge of the stipe remains gapless. This corresponds to the chiral Dirac mode at

the edge of a quantum Hall insulator stripe with ν = 1. The chiral electron wires on

the stripe can be thought of as a chiral CFT for free Dirac fermions and the coupling

a pair of wires is same as coupling a pair of CFT with opposite chirality. Later in

this chapter we will consider a model built out of SO(N) CFT .
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2.1 Coupled wire construction of TSC surface

We consider a TR symmetric three dimensional topological superconductors that be-

longs to class DIII. As described in chapter(1) they host massless Majorana fermions

on their surface that have gapless cone like spectra. The number of cones is a protected

integer quantum number. In the simplest scenario, we have a single Majorana cone,

which is the spectrum of a massless two-component real fermion H± = ivψT/∂±ψ,

where /∂± = ∂yτx ± ∂xτz and the Pauli matrices τx, τy, τz act on the surface real

fermion, ψ = (ψR, ψL). Majorana fermions are hermitian ψ†j = ψj and obey the

anti-commutation relation {ψj(r), ψj′(r
′)} = 2δjj′δ(r − r′). Time reversal switches

the components T (α1ψL + α2ψR)T −1 = α∗2ψL − α∗1ψR so that T 2 = −1. The sign in

the Hamiltonian H± determines its chirality. So, in general the surface can have say

NR right chiral cones and NL left chiral cones. Such a general Hamiltonian will take

the following form

Hc =

NR∑
a=1

ivaψ
T
a /∂+ψa +

NL∑
b=1

ivbψ
T
b /∂−ψb.. (2.1)

Fermions ψa and ψb with opposite chiralities can annihilate each other by the time

reversal symmetric mass term imψT
a τzψb Quadratic terms among fermions of the

same chirality would however either break TR or only move the gapless Majorana

cones away from zero momentum without destroying them. The net surface chirality

N = NR − NL is thus a robust topological signature that distinguishes and charac-

terizes 3D bulk TSC. It cannot be altered by any time reversal symmetric two-body

perturbations that are not strong enough to close the bulk excitation energy gap.

Let’s describe these surface Majorana cones using an array of coupled fermion

wires (see figure (2.2)). As we will see in the next chapter such description easily

demonstrates how to get topologically ordered surface with gapped spectra from this

original surface with gapless spectra. In other words, this coupled wire description
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so(N)R1

so(N)L1

so(N)R1

so(N)L1

J−
y · J+

y+1

GR,+
N
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GL,−
N

GR,+
N

GR,−
N

GL,+
N

GL,−
N

c− = N/2 c− = N/4

iψyψy+1

y + 1

y − 1

y + 2

y

Figure 2.2: (Left) Coupled wire model (2.4) of N gapless surface Majorana cones.
(Right) Fractionalization (3.4) and couple wires construction (3.8) of gapped anoma-
lous and topological surface state.

helps us to construct explicit gapping terms. In figure (2.2) the horizontal wires

are labeled according to their vertical position y = . . . ,−2,−1, 0, 1, 2, . . . and each

carries N chiral (real) Majorana fermions ψy = (ψ1
y, . . . , ψ

N
y ) which propagate only

to the right (or left) if y is even (resp. odd). The number of flavors N here is going

to be identified with the net chirality of the surface Majorana cone. Time reversal

symmetry is non-local in this model as it relates fermions on adjacent wires that

propagate in opposite directions,

T
(

N∑
a=1

αaψ
a
y

)
T −1 = (−1)y

N∑
a=1

α∗aψ
a
y+1. (2.2)

Similar to the symmetry of an anti-ferrormagnet, here time reversal on the single-

fermion Hilbert space squares to a primitive translation up to a sign, T 2 = −t̂y, for

t̂y the vertical lattice translation y → y+ 2 that relates nearest co-propagating wires.

In the many-body Hilbert space,

T 2 = (−1)F t̂y (2.3)

where (−1)F is the fermion parity operator whose sign depends on whether the

fermion number is odd or even.
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We mimic N copies of surface Majorana cones by the coupled wire Hamiltonian

H0 =
∞∑

y=−∞
ivx(−1)yψT

y ∂xψy + ivyψ
T
yψy+1 (2.4)

where the N -component Majorana fermion ψ disperses linearly (for small ky) with

velocities vx, vy along the horizontal and vertical axes (see figure 2.3). By applying

eqn((2.2)), we see T H0T −1 = H0 and the coupled wire model is therefore time reversal

symmetric. Moreover, H0 has continuous translation symmetry along x and discrete

translation along y → y + 2. The alternating sign in the first term of eqn((2.4))

specifies the propagating directions of the Majorans. Projecting to the kx = 0 zero

modes along the wires, the second term in (2.4) effectively becomes a 1D Kitaev

Majorana chain[5] which has a linear spectrum for small ky. More explicitly, by using

the single-particle Nambu basis ξak = (cak, c
a
−k
†)T for cak =

∑
xy e

i(kxx+kyy)cay(x) the

Fourier transform of the Dirac fermion cay(x) = (ψa2y−1(x) + iψa2y(x))/2, the coupled

wire Hamiltonian in eqn((2.4)) can be expressed asH0 =
N∑
a=1

∑
k ξ

a†
k H

0
BdG(k)ξak, where

the BdG Hamiltonian is given by

H0
BdG(k) = 2vxkxτx + vy [− sin kyτy + (1− cos ky)τz] (2.5)

for −∞ < kx < ∞ and −π ≤ ky ≤ π. Upon diagonalizing H0
BdG, It shows a linear

spectrum near zero energy and momentum as shown in figure 2.3 and in general we

have N Majorana cones.

kx

E

ky

Figure 2.3: The energy spectrum of the coupled Majorana wire model (2.4)
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Please note that if the time reversal operation in eqn((2.2)) was defined with-

out the alternating sign (−1)y, it would square to a different sign T 2 = +t̂y in

the single-fermion Hilbert space and the vertical term in (2.4) would need to be

modified into
∑

y ivy(−1)yψT
yψy+1 in order to preserve the symmetry. This would

correspond to an alternating Majorana chain in the y-direction, where the gapless

Majorana cone would be positioned at ky = π instead of 0 and would still be pro-

tected by Kramers theorem as T 2
ky=π = eiky = −1. This scenario is actually equivalent

and related to the original by a gauge transformation (ψ4y, ψ4y+1, ψ4y+2, ψ4y+1+3) →

(ψ4y, ψ4y+1,−ψ4y+2,−ψ4y+1+3), and therefore the sign of T 2 is not important in this

problem. Nevertheless, in the following discussions, we will stick with the previous

convention defined in eqn((2.2)).

A chiral 1D system violates the fermion doubling[70] principle and can only be

realized as an anomalous edge of a gapped 2D bulk[71, 72, 73]. The coupled Majorana

wire model, (2.4) or figure 2.2, must therefore also be holographic and living on the

surface of a 3D bulk superconductor. This can be modeled by a stack of alternating

layers of spinless px± ipy superconductors (see figure 2.4(a)). The interwire backscat-

tering in (2.4) can be generated by bulk interlayer electron tunneling and pairing that

are not competing with the intra-layer p + ip pairing. Time reversal (2.2) extends

to the three dimensional bulk by relating fermions on adjacent layers. The coupled

Majorana wire model can also live on the surface of a 3D class DIII topological su-

perconductor where each chiral Majorana mode is bound between adjacent domains

with opposite time reveral breaking phases φ = ±π/2 (see figure 2.4(b)).[74, 34] The

discrete translation order along the y-axis perpendicular to the wire direction can be

melted by proliferating dislocations (see figure 2.4(c)). With continuous translation

symmetry restored, time reversal symmetry becomes local with T 2 = −1 and the

coupled Majorana wire model in eqn(2.4) recovers the surface Majorana cone (2.1) in

the continuum limit for small ky.
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(a) (b)

px + ipy

px − ipy

px + ipy

px − ipy

TSC (DIII)

φ = π/2
s − SC

−π/2
−π/2π/2

(c)

Figure 2.4: Coupled Majorana wire model on the surface of (a) a stack of alternating
px± ipy superconductors, and (b) a class DIII topological superconductor (TSC) with
alternating TR breaking surface domains. (c) A dislocation.

The non-local time reversal symmetry (2.2) actually provides a weaker topological

protection to gapless surface Majorana’s than a conventional local one. For instance

in section 3.1, we will show that the N = 2 coupled Majorana wire model can be

gapped by single-body backscattering terms without breaking time reversal, leaving

behind a surface with trivial topological order. This reduced robustness stems from

the half-translation component in the antiferrormagnetic time reversal. In the BdG

description (2.5), the time reversal operator takes the momentum dependent form

Tk =

(
1 + eiky

2
τy + i

1− eiky
2

τz

)
K (2.6)

for K the complex conjugation operator. It commutes with the BdG Hamiltonian

TkH
0
BdG(k) = H0

BdG(−k)Tk as well as the particle-hole (PH) CTk = T−kC, for

C = τxK the PH operator. In the continuum limit or for small ky, T ' τyK

agrees with the conventional local time reversal operator and protects a zero en-

ergy Majorana Kramers’ doublet. The BdG Hamiltonian has a chiral symmetry

ΠkH
0
BdG(k) = −H0

BdG(k)Πk, for Πk = iCTk the chiral operator. It can be used to
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assign the chirality of a Majorana cone by an integral winding number

n =
1

2πi

∮
Cε(k0)

Tr
[
h(k)−1∇kh(k)

]
· dl (2.7)

locally around a loop Cε(k0) ε away from the zero mode at k0. Here h(k) is the elliptic

operator

h(k) = P+
k H

0
BdG(k)P−k (2.8)

for P±k = (P±k )2 the two local projectors diagonalizing the chiral operator Πk =

e−iky/2(P+
k − P−k ). However, as time reversal squares to TkT−k = −eiky , which is

the eigenvalue of the primitive translation −t̂y at momentum k, so does the non-

symmorphic chiral operator Π2
k = e−iky . The two chiral branches Πk = ±e−iky/2

switch across the Brillouin zone when ky → ky + 2π. As a result, a global winding

number can only be defined modulo 2. In the next section we will write the model

Hamiltonian using CFT currents.

2.1.1 The so(N)1 current algebra

We notice the couple Majorana wire model (2.4) has a SO(N) symmetry that rotates

the N -component Majorana fermion ψay → Oa
bψ

b
y. Consequently, there is a chiral

so(N) WZW theory[24, 25] or affine Kac-Moody algebra at level 1 along each wire.

Here we review some relevant features of the so(N)1 algebra, which are well-known

and can be found in standard texts on conformal field theory (CFT)(1) such as

Ref.[26].

The so(N)1 currents have the free field representation

Jβ(z) =
i

2
ψ(z)T tβψ(z) =

i

2

∑
ab

ψa(z)tβabψ
b(z) (2.9)
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where the tβ’s are antisymmetric N×N matrices that generate the so(N) Lie algebra

(see appendix A), z = eτ+ix is the complex space-time parameter, and (2.9) is normal

ordered. The coupled Majorana wire model carries currents that propagate in alter-

nating directions (see figure 2.2) so that Jβy (z) are holomorphic for even y and Jβy (z)

are anti-holomorphic for odd y. Focusing on an even wire, the OPE of the fields are

ψa(z)ψb(w) =
δab

z − w + . . . . (2.10)

The so(N)1 currents obey the product expansion

Jβ(z)Jγ(w) =
δβγ

(z − w)2
+
∑
δ

ifβγδ
z − wJ

δ(w) + . . . (2.11)

where fβγδ are the structure constants of the so(N) Lie algebra with
[
tβ, tγ

]
=∑

δ fβγδt
δ (see appendix A). The Sugawara energy momentum tensor (along a single

wire) is equivalent to the free fermion one[75]

T (z) =
1

2(N − 1)
J(z) · J(z) = −1

2
ψ(z)T∂zψ(z) (2.12)

for J = (Jβ) the current vector and ψ = (ψ1, . . . , ψN) the N -component real fermion.

The energy momentum tensor defines a chiral Virasoro algebra and characterizes a

chiral CFT. It satisfies the OPE

T (z)T (w) =
c−/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w + . . . (2.13)

where the chiral central charge c− = N/2, loosely speaking, counts the conformal

degrees of freedom on the Majorana wires and is proportional to the energy current[76,

77, 73, 78] and entanglement entropy[79, 80, 81] carried by the wire.

Excitations of the N -component Majorana wire transform according to the SO(N)
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symmetry. They decompose into primary fields and their corresponding descendants.

A primary field Vλ = (V 1, . . . , V d) is a simple excitation sector that irreducibly

represents the so(N)1 Kac-Moody algebra.

Jβ(z)V r(w) = −
d∑
s=1

(tβλ)rs
z − wV

s(w) + . . . (2.14)

where λ labels some d-dimensional irreducible representation of so(N) and tβλ is the

d×d matrix representing the generator tβ of so(N). For example it is straightforward

to check by using the definition (2.9) and the OPE (2.10) that the Majorana fermion

ψ = (ψ1, . . . , ψN) is primary with respect to the fundamental representation, i.e.

Jβ(z)ψa(w) = −
N∑
b=1

tβab
z − wψ

b(w) + . . . . (2.15)

From (2.12), space-time translation of a primary field Vλ is governed by

T (z)Vλ(w) =
hλ

(z − w)2
Vλ(w) +

∂wVλ(w)

z − w + . . . (2.16)

where the conformal (scaling) dimension is given by

hλ =
Qλ

2(N − 1)
(2.17)

for −∑β t
β
λt
β
λ = Qλ11d×d the quadratic Casimir operator. For instance Qψ, the

quadratic Casimir eigenvalue for the fundamental representation, is N − 1 (see ap-

pendix A) and therefore the fermion ψ has conformal dimension hψ = 1/2. This

agrees with the OPE (2.10) by dimension analysis.

There are extra primary fields other than the the trivial vacuum 1 and the fermion

ψ. The spinor representations (see appendix A) σ, for N odd, or s+ and s−, for N

even, also correspond to primary fields of so(N)1. Their conformal dimensions can
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be read off from their quadratic Casimir values (A.7), and are

hσ =
N

16
, hs± =

N

16
. (2.18)

Unlike the infinite number of irreducible representations of a Lie algebra, the extended

affine so(N)1 algebra only has a truncated set of primary fields {1, σ, ψ}, for N odd,

or {1, s+, s−, ψ}, for N even.

These so(N)1 primary fields take more explicit operator forms after bosonization

and can be found in appendix B and C.

2.1.2 Bosonizing even Majorana cones

In the case when N = 2r is even, the N Majorana fermions on each wire can be

paired into r Dirac fermions and bosonized[27, 23]

cjy =
ψ2j−1
y + iψ2j

y√
2

∼ 1√
l0

exp
(
iφ̃jy

)
(2.19)

where φ̃1
y, . . . , φ̃

r
y are real bosons on the yth wire, and the vertex operator in (2.19)

is normal ordered (see chapter 1). The bosons obey the equal-time commutation

relation

[
φ̃jy(x), φ̃j

′

y′(x
′)
]

=iπ(−1)max{y,y′}
[
δyy′δ

jj′sgn(x′ − x)

+ δyy′sgn(j − j′) + sgn(y − y′)
]

(2.20)

where sgn(s) = s/|s| = ±1 for s 6= 0 and sgn(0) = 0. The first line of (2.20) is

equivalent to the commutation relation between conjugate fields

[
φ̃jy(x), ∂x′φ̃

j′

y′(x
′)
]

= 2πi(−1)yδyy′δ
jj′δ(x− x′) (2.21)
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and is set by the “pq̇” term of the Lagrangian density

L0 =
1

2π

∞∑
y=−∞

r∑
j=1

(−1)y∂xφ̃
j
y∂tφ̃

j
y. (2.22)

The second line of (2.20) guarantees the correct anticommutation relations between

Dirac fermions along distinct channels. The alternating signs (−1)y in (2.21) and

(2.22) specify the propagating directions along each wire, R (or L) for y even (resp. odd).

Eq.(2.20) is symmetric under time reversal (2.2), which sends

T cjyT −1 = (−1)ycjy
†
, T φ̃iyT −1 = φ̃iy+1 + πy. (2.23)

We notice time reversal, in this convention, flips the fermion parity as it interchanges

between the creation and annihilation operators.

The entire coupled Majorana wire Hamiltonian (2.4), when N = 2r is even, can

be turned into a model of coupled boson wires. The total Lagrangian density is a

combination

L = L0 −H = L0 −
(
H‖ +H⊥

)
(2.24)

where the Hamiltonian density H = H‖ + H⊥ consists of the sliding Luttinger

liquid[46, 47, 48, 49, 50] (SLL) component along each wire

H‖ = Vx

∞∑
y=−∞

r∑
j=1

∂xφ̃
j
y∂xφ̃

j
y (2.25)

and the backscattering component between wires

H⊥ = −Vy
∞∑

y=−∞

r∑
j=1

(−1)y cos
(

2ϑjy+1/2

)
(2.26)

2ϑjy+1/2 = φ̃jy − φ̃jy+1. (2.27)



36

The SLL Hamiltonian (2.25) contains the (normal ordered) kinetic term iψT
y ∂xψy =

i(c†y∂xcy+cy∂xc
†
y) in (2.4) as well as possible forward scattering terms like the density-

density coupling (c†ycy)(c
†
ycy). The interwire backscattering Hamiltonian (2.26) is

identical to the second term iψT
yψy+1 = i(c†ycy+1 + cyc

†
y+1) in (2.4). This can be

derived directly by applying the bosonization prescription (2.19). The alternating

sign (−1)y in (2.26) is crucial to preserve time reversal symmetry (2.23), which relates

T 2ϑjy+1/2T −1 = 2ϑjy+3/2 − π.

The r sine-Gordon terms in (2.26) between the same pair of adjacent wires mu-

tually commute

[
2ϑjy+1/2(x), 2ϑj

′

y+1/2(x′)
]

= 0 (2.28)

and share simultaneous eigenvalues. If there was a single pair of counter-propagating

wires, these potentials would have pinned 〈2ϑjy+1/2(x)〉 = (2n+ y)π between the two

wires. However, they compete with the sine-Gordon terms between the next pair of

wires due to the non-commuting relation

[
2ϑjy+1/2(x), 2ϑj

′

y+3/2(x′)
]

=2πi(−1)y
[
θ(j − j′) + δjj

′
θ(x′ − x)

]
(2.29)

where the unit step function θ(s) = 0 when s ≤ 0, or 1 when s > 0. In other words,

the vertex operators ei2ϑ
j
y+1/2 produces fluctuations to adjacent pairs,

e−i2ϑ
j
y+1/2

(x)2ϑjy+3/2(x′)ei2ϑ
j
y+1/2

(x)

=2ϑjy+3/2(x′) + 2π(−1)yθ(x′ − x). (2.30)

The uniform backscattering strength Vy, as protected by time reversal (2.2), exactly

balances the competing potentials so that the Hamiltonian H = H‖ + H⊥ remains
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gapless.
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Chapter 3

Interaction and Surface

Topological Order

The previous chapter describes the gapless surface Majorana fermions of a 3D topo-

logical superconductor using a coupled wire model (2.4). It consists of an array of

chiral wires, each of which carries N flavors of Majorana fermions co-propagating

in alternating directions (see figure 2.2). Together with uniform backscattering in-

teractions between adjacent wires, the model captures N surface Majorana cones

with linear energy dispersion about zero energy and momentum (see figure 2.3). In

this section we construct explicit fermion interactions that introduce an excitation

energy gap to the surface Majorana cones while preserving time reversal symmetry.

Generically, this leaves behind a fermionic surface topological order, which will not

be discussed until the next section.

3.1 Many-body interaction in coupled wire model

We begin with the simplest case when there are N = 2 chiral Majorana channels along

each wire and correspond to two surface Majorana cones. As eluded in section 2.1,

due to the non-local nature of time reversal, the coupled wire model can be gapped
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by single-body backscattering terms without violating the symmetry. Although this

cannot be applied to a conventional topological superconductor with local time rever-

sal, this model demonstrates the idea of fractionalization, which can be generalized

to the many-body interacting case and subsequently lead to surface topological order.

The Hamiltonian H = H0 +Hbc consists of the original model (2.4) with two fermion

flavors ψy = (ψ1
y , ψ

2
y) and the inter-flavor backscattering

Hbc = iu
∞∑

y=−∞
ψ1
yψ

2
y+1 (3.1)

which is symmetric under the time reversal (2.2), T : ψay → (−1)yψay+1. The BdG

Hamiltonian HBdG(k) = H0
BdG(k) +Hbc

BdG(k) is the combination of (2.5) and

Hbc
BdG(k) =

u

2
[(1− cos ky)σxτz + (1 + cos ky)σyτy

− sin ky(σyτz + σxτy)] (3.2)

which is symmetric under Tk in (2.6). The energy spectrum depends on the relative

strength between the two interwire couplings ivy(ψ
1
yψ

1
y+1 +ψ1

yψ
1
y+1) and iuψ1

yψ
2
y+1 (see

figure 3.1). When u = 0, the two Majorana cone coincide at zero momentum. A finite

u separates the two until they have traveled across the Brillouin zone and annihilate

each other at ky = π when u > 2vy. Once an energy gap has opened up, the BdG

Hamitonian has a unit Chern invariant

Ch =
i

2π

∫ ∞
−∞

dkx

∫ π

−π
dkyTr (Fk) = 1 (3.3)

where Tr (Fk) = Tr
(
〈∂kyuak|∂kxubk〉 − 〈∂kxuak|∂kyubk〉

)
is the Berry curvature constructed

from the two occupied eigenstates u1
k, u

2
k below zero energy of HBdG(k). The coupled

Majorana wire model thus behaves like a chiral p+ ip topological superconductor[82,

72]. However the single-body Hamiltonian does not possesses a topological order in
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the sense that it does not support anyonic excitations. For instance the ψ → −ψ

Z2 symmetry is global and π-vortices are not quantum excitations of the model but

rather introduced as classical extrinsic defects.

u < 2vy u = 2vy u > 2vy
E

ky = π
ky = −π

Figure 3.1: Energy spectrum of the N = 2 coupled Majorana wire model with inter-
flavor mixing.

This example relies on a simple decomposition of the degrees of freedom along

each wire, N = 2 = 1 + 1. The two Majorana fermions ψ1
y, ψ

2
y are backscattered

independently to adjacent wires in opposite directions. Unlike the intra-flavor cou-

plings ivy(ψ
1
yψ

1
y+1 + ψ1

yψ
1
y+1), inter-flavor terms iuψ1

yψ
2
y+1 freeze independent degrees

of freedom and they are not competing with each other. It is useful to notice that

the decomposition breaks the SO(2)1 symmetry described in section 2.1.1, and as a

result the so(2r)1 CFT along each wire splits into a pair of chiral Ising CFT’s.

We can now generalize this idea to all N , but with many-body interwire interac-

tions. From now on, unless specified otherwise, we turn off all single-body scattering

terms. For instance, the vertical velocity now vanishes, vy = 0, in the kinetic part H0

of the coupled wire model (2.4). First we seek a decomposition of the so(N)1 degrees

of freedom along each wire (see section 2.1.1) into a pair of identical but independent

sectors (also see figure 2.2)

so(N)1 ⊇ G+
N × G−N (3.4)



41

where G±N are the Kac-Moody subalgebras

G±N =

 so(N/2)1 for N even

so(3)3 × so
(
N−9

2

)
1

for N odd
(3.5)

to be discussed below. This fractionalization has to be complete in the sense that the

Sugawara energy-momentum tensor exactly splits into

Tso(N)1 = TG+
N

+ TG−N . (3.6)

In particular the central charge divides

c− (so(N)1) = 2c− (GN) = c−
(
G+
N

)
+ c−

(
G−N
)

(3.7)

and there are no degrees of freedom left behind. Using the subalgebra current oper-

ators JG±N , which are quadratic in ψ’s, we construct the four-fermion backscattering

interaction

Hint = u
∞∑

y=−∞
JyG−N
· Jy+1

G+
N

(3.8)

= u
∞∑

y′=−∞
J2y′−1

GL,−N
· J2y′

GR,+N

+ J2y′

GR,−N

· J2y′+1

GL,+N

for u positive, and R,L labels the propagating directions of the currents. This is

pictorially presented in figure 2.2 and 3.2.

G+
N

G−
N

y − 1 y + 1y

Figure 3.2: Interwire gapping terms (3.8) (green rectangular boxes) between chiral
fractional GR,±N ,GL,±N sectors (resp. ⊗,�) in opposite direction.

In this section, we design the fractionalization (3.4) of so(N)1 for all N and
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show that the backscattering interactions (3.8) open an excitation energy gap with-

out breaking time reversal. In CFT context, (3.4) is also known as a conformal

embedding[26, 83, 84, 85]. When N = 2r is even, there is an obvious decomposition

so(2r)1 ⊇ so(r)+
1 × so(r)−1 (3.9)

where the “+” sector contains ψ1, . . . , ψr while the “−” one contains the rest ψr+1, . . . , ψ2r.

In section 3.1.1, we review how the Jso(r)R1 · Jso(r)L1 interactions contribute an energy

gap. This is a direct application of the well-studied O(N) Gross-Neveu problem[40,

41, 42, 43] in 1D. In the discrete limit, this is related to the Haldane O(3) antifer-

rormagnetic spin chain[86, 87], the Affleck - Kennedy - Lieb - Tasaki (AKLT) spin

chains[88, 89] and the SO(n) Heisenberg chain[90, 91, 92]. When N is odd, the

splitting (3.4) is less trivial. We will make use of the level-rank duality[26, 93, 94]

so(n2)1 ⊇ so(n)n × so(n)n (3.10)

which comes from the fact that the tensor product SO(n)⊗SO(n) is a Lie subgroup

in SO(n2). In particular, we will demonstrate the simplest case in section 3.1.2 when

n = 3. The division of so(9)1 can subsequently be generalized to so(N)1 for all odd

N effectively by writing N = 9 + 2r. This sets G±N = so(3)3 × so(r)1 in (3.4) and the

corresponding interwire backscattering interactions (3.8).

3.1.1 Gapping even Majorana cones

We begin with the coupled Majorana wire model (2.4) (or figure 2.2) with N = 2r

chiral fermion channels per wire and corresponds to the same number of gapless

Majorana cones. Similar to the previously shown N = 2 case, the gapless modes can

be removed using simple single-body backscattering terms. We however are interested

in finding gapping interactions that would support surface topological order as well.
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In section 2.1.1 and appendices B, C, we described the so(N)1 WZW theory, which

along the yth wire is generated by chiral current operators (2.9)

J (a,b)
y = (−1)yiψayψ

b
y. (3.11)

We take the alternating sign convention (−1)y so that under time reversal, T J (a,b)
y T −1 =

J
(a,b)
y+1 . We consider two subsets of generators, so(r)+

1 containing J (a,b) for 1 ≤ a <

b ≤ r, and so(r)−1 containing J (a,b) for r + 1 ≤ a < b ≤ 2r. As they act on in-

dependent fermion sectors, the two sets of operators commute or equivalently their

operator product expansions (OPE) are trivial up to non-singular terms. Moreover

the Sugawara energy-momentum tensor (2.12) for so(N)1 completely splits into a sum

between

Tso(r)+
1

= −1

2

r∑
a=1

ψa∂ψa, Tso(r)−1 = −1

2

2r∑
a=r+1

ψa∂ψa. (3.12)

This ensures all degrees of freedom in so(2r)1 are generated by tensor products be-

tween those in the so(r)±1 sectors. Precisely this means any so(2r)1 primary field is a

fusion channel of the OPE of certain primary field pair in so(r)+
1 and so(r)−1 . Thus as

long as the gapping terms independently freeze both sectors, they remove all gapless

degrees of freedom.

The backscattering interactions (3.8) couples the so(r)−1 sector on the yth wire

with the so(r)+
1 sector on the (y + 1)th one. They can explicitly written as

Hint = u

∞∑
y=−∞

∑
1≤a<b≤r

ψr+ay ψr+by ψay+1ψ
b
y+1. (3.13)

Firstly, the interactions are time reversal symmetric as (3.13) is unchanged by ψay →

(−1)yψay+1. Secondly, it breaks the O(2r) symmetry to O(r)+×O(r)−. The symmetry

breaking can be faciliated by forward scattering within wires that renormalizes the
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velocities differently between the so(r)±1 sectors. Eq.(3.13) is also a combination

allowed by the chiral O(r) symmetry

ψay →
(
O(−1)y

)a
b
ψby, ψr+ay →

(
O(−1)y+1

)a
b
ψr+by . (3.14)

The chiral symmetry only allows cross couplings Jy
so(r)±1

· Jy+1

so(r)∓1
between adjacent

wires. Instead of (3.13), another possibility would be its mirror image with summands

ψayψ
b
yψ

r+a
y+1ψ

r+b
y+1. This competes with the original, but as long as mirror symmetry is

broken and their strength is asymmetric, an energy gap will open. In the following

we will ignore the mirror image by assuming it is weaker.

Next we notice that the four-fermion interaction (3.13) is marginally relevant when

velocity vx is uniform. The dimensionless coupling strength u follows the renormal-

ization group (RG) flow equation

du

dλ
= +4π(r − 2)u2 (3.15)

when length scale renormalizes by l → eλl. This can be verified by applying the RG

formula among marginal operators[95]

dgl
dλ

= −2π
∑
mn

Cmn
l gmgn (3.16)

where Cmn
l is the fusion coefficient of the OPE OmOn = Cmn

l Ol + . . . between op-

erators in the perturbative action δS =
∫
dτdx

∑
m gmOm. In the current case, the

fusion coefficient OO = −2(r − 2)O + . . . can be evaluated simply by applying the

Wick’s theorem of fermions, for O = −∑y,a,b ψ
r+a
y ψr+by ψay+1ψ

b
y+1. The plus sign in

(3.15) shows the interacting strength grows at weak coupling. To show that the

backscattering (3.13) indeed opens up a gap, we first focus on a single coupled pair

of counter-propagating so(r)1 channels (see figure 3.2).
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3.1.1.1 The O(r) Gross-Neveu model

Here we concentrate on a particular set of backscattering terms in (3.13) at say an

even y. We relabel ψr+ay = ψaR and ψay+1 = ψaL, for a = 1, . . . , r. The interaction

between the yth and (y + 1)th wire is identical to that of the O(r) Gross-Neveu (GN)

model[40, 41, 42, 43]

HGN = −u
2

(ψR ·ψL)2 (3.17)

where the minus sign is from the fermion exchange statistics ψaRψ
b
Rψ

a
Lψ

b
L = −ψaRψaLψbRψbL.

This GN model is known to have an excitation energy gap for r > 2.

For even r = 2n > 2, the Majorana fermions can be paired into Dirac ones and

subsequently bosonized (see section 2.1.2), cjR/L = (ψ2j−1
R/L + iψ2j

R/L)/
√

2 ∼ eiφ̃
j
R/L , for

j = 1, . . . , n. Using

ψR ·ψL =
n∑
j=1

cjR(cjL)† + (cjR)†cjL ∼
n∑
j=1

cos
(
2Θj

)
(3.18)

for 2Θj = φ̃jR − φ̃jL (also see (2.27)) are mutually commuting variables, the GN

interation (3.17) takes the bosonized form

HGN ∼ u

n∑
j=1

∂xφ̃
j
R∂xφ̃

j
L − u

∑
j1 6=j2

∑
±

cos
(
2Θj1 ± 2Θj2

)
= u

n∑
j=1

∂xφ̃
j
R∂xφ̃

j
L − u

∑
α∈∆

cos (α · 2Θ) (3.19)

where 2Θ = (2Θ1, . . . , 2Θn) and α are roots of so(2n) (see (A.8)). The first term

renormalizes the velocity Vx in (2.25) as well as the Luttinger parameter. We assume

Vx >> u so that the first term can be dropped. The remaining sine-Gordon terms

are responsible for gapping out all low energy degrees of freedom. Firstly the angle

parameters mutually commute and share simultaneous eigenvalues. The ground state
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minimizes the energy by uniformly pinning the ground state expectation value (GEV)

〈
2Θj(x)

〉
= πmj

ψ, mj
ψ ∈ Z. (3.20)

We notice in passing that the following subset of sine-Gordon terms

−u
n∑
I=1

cos (αI · 2Θ) = −u
n∑
I=1

cos

[
n∑
J=1

KIJ(φJR − φJL)

]

= −u
n∑
I=1

cos
(
nTI KΦ

)
(3.21)

using the simple roots αI in (A.9), is already enough to remove all low energy degrees

of freedom. Here KIJ is the Cartan matrix (A.12) of so(2n) that appears in the

Lagrangian density

L0 =
1

2π
∂xΦ

TK∂tΦ (3.22)

for K = K⊕(−K) and Φ = (φR,φL), and φ is related to φ̃ by the basis transformation

(B.13). For instance, the n vector coefficients nJ = (eJ , eJ) in (3.21) form a null basis

nTI KnJ = 0 (3.23)

and guarantee an energy gap according to Ref.[96]. The remaining GN terms in (3.19)

are compatible with (3.21) as they share the same minima.

There are constraints on the GEV mj
ψ in (3.20). In order to minimize − cos(α·2Θ)

in (3.19), 〈α · 2Θ〉 must be an integer multiple of 2π. This restricts uniform parity

among mj
ψ so that the sign in the fermion backscattering amplitude

〈ψaR(x)ψaL(x)〉 =
〈
cjR(x)cjL(x)†

〉
∼
〈
ei2Θj(x)

〉
= (−1)mψ . (3.24)
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does not depend on fermion flavor j. This is not the only non-zero GEV as ψ is not

the only primary field in so(2n)1. The backscattering of spinor fields Vs± = eiε·φ̃/2

(B.24) corresponds to the two GEV’s

〈
V R
s±(x)V L

s±(x)†
〉

=
〈
eiε·Θ(x)

〉
= eiπms±/2 (3.25)

where ε = (ε1, . . . , εn) for εj = ±1, and the overall sign
∏

j εj is positive for the even

spinor field s+, or negative for s−. Here the GEV (3.25) does not depend on the

choice of ε. This is because given ε and ε′ with the same overall parity
∏
εj =

∏
ε′j,

ε ·Θ and ε′ ·Θ differ by some combination of α · 2Θ, which takes expectation value

in 2πZ.

There are extra constraints between mψ and ms± from the fusion rules of the

primary fields of so(2n)1 (see (B.25) and (B.26)). Firstly, s± × ψ = s∓ requires

ms+ ≡ ms− + 2mψ mod 4Z. (3.26)

Take the highest weights ε0
+ = (1, . . . , 1) and ε0

− = (1, . . . ,−1) for instance. ε0
+ ·Θ =

ε0
− ·Θ + 2Θn imples ms+(ε0

+) = ms−(ε0
+) + 2mn

ψ. Lastly the fusion rules

s± × s±

 1, for n even

ψ, for n odd
(3.27)

requires the GEV’s to obey

 (−1)ms± = 1 for n even

(−1)ms± = (−1)mψ for n odd
(3.28)

for similar reasons.

The GN model therefore has four ground states when r = 2n > 2. They are
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specified by the quantum numbers (i) ms+ = 0, 1, 2, 3 modulo 4 when n is odd, or

(ii) ms+ = 0, 2 and ms− = 0, 2 modulo 4 when n is even. The rest are fixed by

(3.26) and (3.28). Quasiparticle excitations are trapped between domain walls or

kinks separating distinct ground states[42, 43, 97]. For example, the vertex operator

V R
s+

(x0) = eiε
0
+·φ̃R(x0)/2 of an even spinor field creates a jump in the GEV (3.24)

〈
V R
s+

(x0)†ei2Θj(x)V R
s+

(x0)
〉

= (−1)m
′
ψ+θ(x0−x) (3.29)

because of the Baker-Hausdorff-Campbell formula and the commutation relation from

(2.20)

[
2Θj(x), ε0

+ · φ̃R(x0)/2
]

= iπ (θ(x0 − x)− n+ j − 1) (3.30)

for θ the unit step function θ(s) = 0 when s ≤ 0, or 1 when s > 0, and m′ψ =

mψ +n− j+ 1. In general, the primary fields V R
s± = eiε·φ̃R and cjR = eiφ̃

j
R corresponds

to the domain walls of ms± :

〈
V R
s±(x0)†eiε

0
±·Θ(x)V R

s±(x0)
〉

= e
iπ
2 (m′s±+nθ(x0−x))〈

V R
s∓(x0)†eiε

0
±·Θ(x)V R

s∓(x0)
〉

= e
iπ
2 (m′s±+(n−2)θ(x0−x))〈

cjR(x0)†eiε
0
±·Θ(x)cjR(x0)

〉
= e

iπ
2 (m′s±+2θ(x0−x)). (3.31)

Now we move on to the odd r = 2n + 1 > 1 case. First we pair the first 2n

Majorana fermions into n Dirac ones and bosonize them similar to the previous even

r case. This leaves a single unpaired Majorana fermion ψrR/L. Dropping terms that
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only renormalizes velocities, the GN model (3.17) takes the partially bosonized form

HGN ∼ −u
∑

α∈∆so(2n)

cos (α · 2Θ)

− u
[

n∑
j=1

cos
(
2Θj

)]
iψrRψ

r
L (3.32)

where the first line is identical to the even r case (3.32) and is responsible for gapping

out first 2n Majorana channels. Projecting onto the lowest energy states and taking

the GEV 〈cos(2Θj)〉 = (−1)mψ , the interacting Hamiltonian becomes

HGN ∼ −2n(n− 1)u− nu(−1)mψ iψrRψ
r
L (3.33)

which is identical to the continuum limit of the quantum Ising model with transverse

field after a Jordan-Wigner transformation. The remaining Majorana channel ψrR/L is

gapped by the single-body backscattering term. The sign of the mass gap nu(−1)mψ

determines the phase of the Ising model. We take the convention so that a negative (or

positive) mass with mψ ≡ 1 (resp. mψ ≡ 0) corresponds to the order (resp. disorder)

phase.

Like the previous case, the fermion backscattering amplitude (3.24) is not the

only ground state expectation value. From (C.5) appendix C, the Ising twist field of

so(2n + 1)1 can be written as the product Vσ = eiε·φ̃/2σr, where ε = (ε1, . . . , εn) for

εj = ±1, and σrR/L = σ2n+1
R/L is the twist field along the last Majorana channel. There

are three possible GEV for the backscattering

〈
V R
σ (x)V L

σ (x)†
〉

=
〈
eiε·Θ(x)σrR(x)σrL(x)

〉
(3.34)

∼

 0 for the disorder phase

±1 for the order phase
.
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Here we choose the convention so that σRσL takes the role of the spin operator σ

in the Ising model and its non-trivial GEV’s in the order phase specify two ground

states | ↑〉 and | ↓〉.

Again, quasiparticle excitations are trapped between domain walls separating dis-

tinct ground states[42, 43, 97]. For example a twist field V R
σ (or V L

σ ) sits between the

order to disorder phase boundary where the quantum number mψ flips from 1 to 0,

or equivalently the fermion mass gap in (3.33) changes sign. This is because the twist

field V R
σ (x0) introduces a flip in boundary condition ψR(x0+) = −ψR(x0−) and corre-

sponds to a change of sign in front of the fermion backscattering iψRψL. Alternatively,

this can also be understood by identifying Vσ as a Jackiw-Rebbi soliton[98] or a zero

energy Majorana bound state between a trivial and topological superconductor[5] in

1D.

Next a ↑ − ↓ domain wall of opposite signs of the GEV (3.34) in the order phase

traps an excitation in the fermion sector ψ. This can be seen by equating the order

Ising phase to a 1D topological superconductor[5], where the two Ising ground states

corresponds to the even and odd fermion parity states among the pair of boundary

Majorana zero modes. Adding (or subtracting) a fermion therefore flips the parity as

well as the GEV in (3.34). We notice this domain wall interpretation of excitations

is consistent with the non-Abelian fusion rule

σ × σ = 1 + ψ. (3.35)

The trivial fusion channel corresponds to the annihilation of a domain wall pair such

as

| . . . ↑↑︸ ︷︷ ︸
order

←←︸︷︷︸
disorder

↑↑ . . .︸ ︷︷ ︸
order

〉 fusion−−−→ | . . . ↑↑ . . .〉 (3.36)

while the fermion fusion channel corresponds to joining the pair of “order - disorder”
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domain walls into a kink

| . . . ↑↑︸ ︷︷ ︸
order

←←︸︷︷︸
disorder

↓↓ . . .︸ ︷︷ ︸
order

〉 fusion−−−→ | . . . ↑↑↓↓ . . .〉. (3.37)

3.1.1.2 The special case: so(4)1 = su(2)1 × su(2)1

The case when r = 2 requires special attention. The O(2) GN model (3.17) is a

gapless Luttinger liquid because its bosonized form (3.19) contains no sine-Gordon

terms and the rest only renormalizes velocities and the Luttinger parameter. As a

result the fractionalization (or conformal embedding) so(4)1 ⊇ so(2)1×so(2)1 of wires

with N = 4 Majorana channels does not lead to a gapped theory. Instead we turn to

an alternative fractionalization so(4)1 = su(2)+
1 ×su(2)−1 that only applies for N = 4.

The four Majorana ψay along each wire can be paired into Dirac channels c1
y =

(ψ1
y + iψ2

y)/
√

2 = eiφ̃
1
y and c2

y = (ψ3
y + iψ4

y)/
√

2 = eiφ̃
2
y . It would be more convenient if

we express the bosons in the new basis using the simple roots of so(4): φ̃1 = φ1 − φ2

and φ̃2 = φ1 + φ2. Unlike when r > 2, these bosons decouple in the Lagrangian

density (2.22)

L0 =
1

2π

∞∑
y=−∞

(−1)y
2∑

J=1

2∂xφ
J
y∂tφ

J
y . (3.38)

This is equivalent to the fact that the Cartan matrix Kso(4) = diag(2, 2) is diagonal

so that the Lie algebra splits into the product su(2)+ × su(2)− of isoclinic rotations,

each with Cartan matrix Ksu(2) = 2.

The su(2)1 current generators are given by SIz (z) = i
√

2∂φI(z) and SI±(z) =

(SIx ± iSIy )/
√

2 = ei2φ
I(z), and they satisfy the OPE

SIi (z)SIj (w) =
δij

(z − w)2
+
i
√

2εijk
z − w SIk(w) + . . . (3.39)
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for I = 1, 2 = +,−. The su(2)+
1 sector is completely decoupled from the su(2)−1 one

as the OPE S1
i (z)S2

j (w) is non-singular. They completely decomposes all low energy

degrees of freedom as the energy momentum tensor splits into

Tso(4)1 = −1

2

2∑
j=1

∂φ̃j(z)∂φ̃j(z) (3.40)

= −
2∑

J=1

∂φJ(z)∂φJ(z) = Tsu(2)+
1

+ Tsu(2)−1
.

The gapping Hamiltonian is

Hint = u
∞∑

y=−∞
S2
y · S1

y+1 (3.41)

= 2u
∞∑

y=−∞
∂xφ

2
y∂xφ

1
y+1 − 2 cos

(
4Θy+1/2

)
,

4Θy+1/2 = 2φ1
y+1 − 2φ2

y (3.42)

= φ̃1
y+1 + φ̃2

y+1 + φ̃1
y − φ̃2

y.

The first kinetic term of the interacting Hamiltonian only renormalizes velocities

and the Luttinger parameter. The second sine-Gordon term involves four-fermion

interactions and is responsible for the energy gap as it back-scatters the su(2)−1 sector

on the yth wire to the su(2)+
1 sector on the (y + 1)th one. It pins the ground state

expectation value (GEV)

〈
ei2Θy+1/2(x)

〉
= (−1)ms (3.43)

which characterizes the two distinct ground states. Like the previous cases, quasipar-

ticle excitations are kinks in the GEV. The fundamental excitation can be created

by the vertex operator Vs = eiφ
1
y+1 , which is the semionic primary field in the su(2)+

1

sector along the (y + 1)th wire.
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3.1.2 Gapping odd Majorana cones

We now move on to the case when there are N = 2r + 1 ≥ 3 chiral Majorana

channels on each wire in the coupled Majorana wire model (2.4) (of figure 2.2). It

corresponds to an odd number of Majorana cones on the surface of a 3D topological

superconductor. The chiral degrees of freedom along each wire are described by

a so(N)1 WZW theory, which is going to be fractionalized into the pair G+
N × G−N

according to (3.5). The G−N sector along the yth wire will then be back-scattered onto

the G+
N sector along the (y + 1)th one by the current-current interaction (3.8), which

will introduce an energy gap.

Unlike the even N case where so(N)1 can simply be split into a pair of so(N/2)1’s,

here the decomposition is less trivial but leads to more exotic surface topological order.

We begin with the particular case where 9 Majorana channels can be bipartite into

so(9)1 ⊇ so(3)3 × so(3)3 (3.44)

essentially by noticing that the tensor product SO(3)⊗SO(3) sits inside SO(9). The

two so(3)3 WZW sectors carry decoupled current generators. They can then be back-

scattered using the current-current interaction (3.8) onto adjacent wires in opposite

directions (also see figure 2.2 and 3.2).

For a general odd N ≥ 9, one can decompose the Majorana channels into N =

9+(N−9). The first 9 channels can be fractionalized by (3.44), which we will discuss

in detail below, and the remaining even number of channels can be split using the

previous method, namely so(N − 9)1 = so
(
N−9

2

)
1
× so

(
N−9

2

)
1
. In the case when

N is smaller than 9, one can add 9 − N number of non-chiral Majorana channels

to each wire. These additional degrees of freedom can be interpreted as surface

reconstruction as they do not violate fermion doubling[70] and are not required to

live on the boundary of a topological bulk. Now each wire consists of 9 right (or left)
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propagating Majorana channels and 9 − N left (resp. right) propagating ones. We

still refer the remaining even channels by so(N − 9)1 except now the negative N − 9

signals the reverse propagating direction of these Majorana’s.

The so(9)1 and so(N − 9)1 sectors can then be bipartitioned independently. The

fractionalization of a general odd number of Majorana channels is summarized by the

sequence

so(N)1 ⊇ so(9)1 × so(N − 9)1 ⊇ G+
N × G−N (3.45)

for G±N = so(3)3 × so
(
N−9

2

)
1
. The “+” and “−” sectors can now be back-scattered

independently using (3.8) onto adjacent wires in opposite directions. This removes

all low energy degrees of freedom and opens up an energy gap.

3.1.2.1 The conformal embedding so(9)1 ⊇ so(3)+
3 × so(3)−3

As a matrix Lie algebra, so(3) is generated by the three anti-symmetric matrices

Σ = (Σx,Σy,Σz)

Σx =
(

0 0 0
0 0 1
0 −1 0

)
, Σy =

(
0 0 1
0 0 0
−1 0 0

)
, Σz =

(
0 1 0
−1 0 0
0 0 0

)
.

They can be embedded into so(9) by tensoring with 113, the 3× 3 identity matrix, on

the left or right

Σ+ = Σ⊗ 113, Σ− = 113 ⊗Σ. (3.46)

We denote so(3)± = span{Σ±x ,Σ±y ,Σ±z } to be the two mutually commuting subalge-

bras in so(9).

Recall the free field representation (2.9) of the so(9)1 WZW current generators

Jβ = iψatβabψ
b/2 for tβ an antisymmetric 9× 9 matrix, the so(3)±3 current generators
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are given by the substitution of tβ:

Jso(3)±3
(z) =

i

2
ψa(z)Σ±abψ

b(z) (3.47)

for z = eτ+ix and J = (Jx, Jy, Jz). Written explicitly,

J+
x = i(ψ23 + ψ56 + ψ89), J−x = i(ψ47 + ψ58 + ψ69)

J+
y = i(ψ13 + ψ46 + ψ79), J−y = i(ψ17 + ψ28 + ψ39)

J+
z = i(ψ12 + ψ45 + ψ78), J−z = i(ψ14 + ψ25 + ψ36)

for ψab = ψaψb. Using Wick’s theorem and the OPE ψa(z)ψb(w) = δab/(z−w) + . . .,

it is straightforward to deduce the so(3)3 WZW current relations

J±i (z)J±j (w) =
3δij

(z − w)2
+

iεijk
z − wJ

±
k (w) + . . . (3.48)

and J±i (z)J∓j (w) is non-singular, for i, j = x, y, z and εijk the antisymmetric tensor.

The so(3)3 current relations (3.48) differs from the so(3)1 ones (2.11) by the co-

efficient 3 of the most singular term. This sets the level of the affine Lie algebra.

The so(3)3 WZW theory is identical to su(2)6 by noticing that the structure factor

of su(2) is fijk =
√

2εijk (see (3.39) and Ref.[26]). The su(2) current generators thus

need to be normalized by Ssu(2)±6
=
√

2Jso(3)±3
so that

S±i (z)S±j (w) =
6δij

(z − w)2
+
i
√

2εijk
z − w S±k (w) + . . . (3.49)

where the coefficient 6 of the most singular term sets the level of the su(2)6 affine Lie

algebra.
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The Sugawara energy momentum tensors are the normal ordered product

Tso(3)±3
(z) =

1

8
Jso(3)±3

(z) · Jso(3)±3
(z). (3.50)

Written explicitly in the fermion representation (3.47) and using the normal ordered

product

ψa(z)ψb(z)ψa(z)ψb(z) = ψa(z)∂ψa(z) + ψb(z)∂ψb(z) (3.51)

the energy momentum tensor takes the form

Tso(3)±3
(z) = −1

4

9∑
a=1

ψa(z)∂ψa(z)∓ 1

4
Oψ(z) (3.52)

Oψ(z) = ψ1245 + ψ1278 + ψ4578 + ψ1346 + ψ1379

+ ψ4679 + ψ2356 + ψ2389 + ψ5689 (3.53)

for ψabcd = ψa(z)ψb(z)ψc(z)ψd(z). The four-fermion terms in Oψ cancel when com-

bining the “±” sectors, and therefore the energy momentum tensor (2.12) completely

decomposes

Tso(9)1 = −1

2

9∑
a=1

ψa∂ψa = Tso(3)+
3

+ Tso(3)−3
. (3.54)

Moreover, as the OPE between Jso(3)+
3

and Jso(3)−3
is non-singular, so is the OPE

between Tso(3)+
3

and Tso(3)−3
. Each sector carries half the total central charge of 9

Majorana channels

cso(3)±3
= 9/4. (3.55)

The primary fields of so(3)3 = su(2)6 are characterized by half-integral “angu-
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lar momenta” s = 0, 1/2, . . . , 3.[26] Each primary field Vs = (V −ss , V −s+1
s , . . . , V s

s )

irreducibly represents the WZW algebra

Si(z)V m
s (w) =

1

z − w
s∑

m′=−s
(Ssi )mm′ V

m′

s (w) + . . . (3.56)

for i = x, y, z and Ssi the su(2) generators in the spin-s matrix representation. We

label the seven primary fields by greek letters Vs = 1, α±, γ±, β, f , each has conformal

dimension hs = s(s + 1)/8 (see table 3.1). In particular 1 = V0 is the vacuum and

f = V3 is Abelian and fermionic with spin 3/2.

Vs 1 α+ γ+ β γ− α− f
s 0 1/2 1 3/2 2 5/2 3
hs 0 3/32 1/4 15/32 3/4 35/32 3/2

ds 1
√

2 +
√

2 1 +
√

2
√

4 + 2
√

2 1 +
√

2
√

2 +
√

2 1

Table 3.1: The “angular momenta” s, conformal dimensions hs and quantum dimen-
sions ds of primary fields Vs of so(3)3 = su(2)6.

The rest of the primary fields are non-Abelian. They obey multi-channel fusion

rules

Vs1 ×Vs2 =
∑
s

N s
s1s2

Vs (3.57)

where the fusion matrix element N s
s1s2

= 0, 1 is determined by the Verlinde formula[99]

N s
s1s2

=
∑
s′

Ss1s′Ss2s′Sss′
S0s′

(3.58)

and the modular S-matrix[26]

Ss1s2 =
1

2
sin

[
π(2s1 + 1)(2s2 + 1)

8

]
(3.59)
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which is symmetric and orthogonal. Explicitly, the fusion rules are given by

f × f = 1, f × γ± = γ∓, f × α± = α∓, f × β = β

γ± × γ± = 1 + γ+ + γ−, α± × α± = 1 + γ+

β × β = 1 + γ+ + γ− + f (3.60)

α± × γ± = α+ + β, β × γ± = α+ + α− + β

α± × β = γ+ + γ−

The quantum dimension ds of the primary field Vs is defined to be the largest eigen-

value of the fusion matrix Ns =
(
N s2
ss1

)
. It coincides with the modular S matrix

element S0s/S00 and respects fusion rules so that

ds1ds2 =
∑
s

N s
s1s2

ds. (3.61)

They are listed in table 3.1.

3.1.2.2 Z6 parafermions

We first study the simplest odd case when there are 9 Majorana cones mimicked by

the coupled Majorana wire model (2.4) with 9 chiral Majorana channels per wire.

Now that we have bipartite the degrees of freedom according to the two so(3)±3 WZW

current algebras in (3.47), they can be backscattered independently to adjacent wires

in opposite directions (see eq.(3.8) and figure 2.2). As the so(3)+
3 sector completely

decomposes from the so(3)−3 one, the current backscattering Jy−1

so(3)−3
· Jy

so(3)+
3

between

the (y − 1)th and yth wire does not compete with the next pair Jy
so(3)−3

· Jy+1

so(3)+
3

.

The current-current interaction consists of four-fermion terms and is marginally

relevant. This can be seen from the RG equation (3.16) using the operator product

expansion (Jy · Jy+1)2 ∼ +Jy · Jy+1. (Recall the time reversal symmetric convention
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(3.11) and that JyJy ∼ i(−1)yJy.) To see that the interaction indeed opens up an

excitation energy gap, it suffices to focus on a single pair of wires with the Hamiltonian

Hint = uJR
so(3)−3

· JL
so(3)+

3
(3.62)

where R/L labels the counter-propagating directions along wire y and y + 1.

First we further decompose the so(3)3 WZW theory by the coset construction[26]

so(3)3 = u(1)6 × “Z6”, “Z6” =
so(3)3

so(2)3

=
su(2)6

u(1)6

(3.63)

where “Z6” refers to the Z6 parafermion CFT model by Zamolodchikov and Fateev[44,

45]. This is done by noticing that SO(3) (or equivalently SU(2)) contains the Abelian

subgroup SO(2) (resp. U(1)) of rotations about the z-axis, and on the CFT level,

the so(2)3 WZW sub-theory of so(3)3 (resp. u(1)6 ⊆ su(2)6) can be bosonized and

single-out. To do this we first group three pairs of Majorana fermions into three Dirac

fermions on each chiral sector

c1
R =

ψ1
R + iψ4

R√
2

, c2
R =

ψ2
R + iψ5

R√
2

, c3
R =

ψ3
R + iψ6

R√
2

c1
L =

ψ1
L + iψ2

L√
2

, c2
L =

ψ4
R + iψ5

L√
2

, c3
L =

ψ7
L + iψ8

L√
2

and bosonize

cjR/L ∼
1√
l0

exp
(
iφ̃jR/L

)
(3.64)

for j = 1, 2, 3. The so(2)3 subalgebra in the R and L sectors are generated by the J−z

and J+
z currents operators in (3.47)

JRz = −3i∂φρR, JLz = 3i∂φρL (3.65)
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where the boson field of the “charge” sector is the average

φρR/L =
φ̃1
R/L + φ̃2

R/L + φ̃3
R/L

3
. (3.66)

The “neutral” sector is carried by the three boson fields

φσ,jR/L = φ̃jR/L − φ
ρ
R/L (3.67)

which are not independent as φσ,1 + φσ,2 + φσ,3 = 0.

It is straightforward to check that the “charge” and the “neutral” sectors com-

pletely decouple from each other. For instance, the Lagrangian density decomposes

LR/L =
(−1)R/L

2π

3∑
j=1

∂xφ̃
j
R/L∂tφ̃

j
R/L (3.68)

=
(−1)R/L

2π

[
3∂xφ

ρ
R/L∂tφ

ρ
R/L +

3∑
j=1

∂xφ
σ,j
R/L∂tφ

σ,j
R/L

]

where the remaining fermions ψ7,8,9
R , ψ3,6,9

L are suppressed, and (−1)R = 1, (−1)L =

−1.

The Lagrangian density (3.68) involves more degrees of freedom in so(9)
R/L
1 than

just so(3)R,−3 or so(3)L,+3 . Therefore, a priori, it is not obvious that this ρ − σ de-

composition is a splitting of so(3)3, and in fact it is not. Only the charge sector

φρR/L is entirely belonging to so(3)R,−3 or so(3)L,+3 . To show this, we go back to the

energy-momentum tensor Tso(3)±3
in (3.52), say for R movers.

Tso(3)R,±3
(z) =

1

2
Tso(9)R1

(z)∓ 1

4
Oψ(z) (3.69)
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where the total energy-momentum tensor in partially bosonized basis is

Tso(9)R1
= −1

2

[
3∂φρR∂φ

ρ
R +

3∑
j=1

∂φσ,jR ∂φσ,jR

+ ψ7
R∂ψ

7
R + ψ8

R∂ψ
8
R + ψ9

R∂ψ
9
R

]
(3.70)

and the operator Oψ defined in (3.53) is now

Oψ = −3∂φρR∂φ
ρ
R +

1

2

3∑
j=1

∂φσ,jR ∂φσ,jR (3.71)

− 2i
[
cos
(
φσ,1R − φσ,2R

)
ψ78
R + cos

(
φσ,1R − φσ,3R

)
ψ97
R

+ cos
(
φσ,2R − φσ,3R

)
ψ89
R

]
.

Eq.(3.71) is deduced by substituting the fermions by the boson fields (3.64), whose

OPE can be found in (D.1,D.2,D.3) in appendix D. For instance, the factor of i in

(3.71) is a result of mutually non-commuting φσ,j. More importantly, φρ, φσ and ψ7,8,9

are completely decoupled. As the “charge” sector φρR only appears in Tso(3)R,−3
, it be-

longs entirely in so(3)R,−3 . Similarly φρL belongs entirely in so(3)L,+3 . The “Z6” energy-

momentum is defined by subtracting the decoupled “charge” sector from so(3)3.

Tso(2)R3
=

1

6
JzJz = −1

2
3∂φρ∂φρ (3.72)

TRZ6
= Tso(3)R,−3

− Tso(2)R3
(3.73)

= −1

4

9∑
a=7

ψaR∂ψ
a
R −

1

8

3∑
j=1

∂φσ,jR ∂φσ,jR

− i

2

[
cos
(
φσ,1R − φσ,2R

)
ψ78
R + cos

(
φσ,1R − φσ,3R

)
ψ97
R

+ cos
(
φσ,2R − φσ,3R

)
ψ89
R

]
and similarly for the L movers.
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The remaining current operators J± = (Jx ± iJy)/
√

2 of so(3)−3 in the R sector

and so(3)+
3 in the L sector (see eq.(3.47)) now split into “charge” and “netrual”

parafermion components

J
R/L
± = ∓

√
3e∓iφ

ρ
R/LΨ∓R/L (3.74)

where the Z6 parafermions are given by the combinations

ΨR =
1√
3

(
eiφ

σ,1
R ψ7

R + eiφ
σ,2
R ψ8

R + eiφ
σ,3
R ψ9

R

)
(3.75)

ΨL =
1√
3

(
eiφ

σ,1
L ψ3

L + eiφ
σ,2
L ψ6

L + eiφ
σ,3
L ψ9

L

)

for Ψ+
R/L = ΨR/L and Ψ−R/L = Ψ†R/L. Unlike the φσ’s, here the “neutral” Z6 parafermions

ΨR/L belongs entirely in so(3)R,−3 or so(3)L,+3 . This is because JR/L and φρR/L both

completely sit inside the so(3)3’s as seen above. Otherwise one can verified this by

computing the OPE with the energy-momentum tensor (3.70) explicitly

Tso(3)R,−3
(z)ΨR(w) =

5/6

(z − w)2
ΨR(w) +

∂ΨR(w)

z − w + . . .

Tso(3)R,−3
(z)e±iφ

ρ
R(w) =

1/6

(z − w)2
e±iφ

ρ
R(w) +

∂e±iφ
ρ
R(w)

z − w + . . . (3.76)

and T
so(3)

R,+
3

(z)ΨR(w) and Tso(3)R,+3
(z)e±iφ

ρ
R(w) are both non-singular. Similar OPE

hold for the L sector. The primary fields (3.75) generate the rest of the Z6 parafermions

(see (D.5) in appendix D) and they obey the known Z6 structure by Zamolodchikov

and Fateev[45].

3.1.2.3 Gapping potential

Now that we have further decomposed the so(3)±3 currents in each wire into so(2)3 =

U(1)6 and Z6 parafermion components (see eq.(3.74)), the current-current backscat-
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tering interaction (3.62) between a pair of wires takes the form of

Hint = 9u∂xφ
ρ
R∂xφ

ρ
L + 3u

[
ei(φ

ρ
L−φ

ρ
R)Ψ†RΨL + h.c.

]
. (3.77)

The first term only renormalizes the velocity of the boson in the so(2)3 sector. The

second term is responsible for openning an excitation energy gap. It extracts a Z6

parafermion Ψ and a quasiparticle eiφ
ρ

from the so(3)+
3 sector on the yth wire and

backscatter them onto the so(3)−3 sector along the (y+ 1)th wire. This freezes all low

energy degrees of freedom and the ground state is characterized by the Z6 expectation

value (GEV)

〈
Ψ†R(x)ΨL(x)

〉
∼ −ei〈φρR(x)−φρL(x)〉 = e2πim/6 (3.78)

for m an integer.

Like the O(N) Gross-Neveu model we discussed in section 3.1.1.1, quasiparticle

excitations here also manifest as kinks or domain walls between segments with differ-

ent GEV’s. The primary fields α±, γ±, β of the chiral so(3)3 WZW theory in table 3.1

decompose into components in the “Z6” and so(2)3 sectors.

α+ = [σ1]× [eiφ
ρ/2], α− = [σ5]× [e−iφ

ρ/2]

γ+ = [σ2]× [eiφ
ρ

], γ− = [σ4]× [e−iφ
ρ

]

β = [σ3]× [ei3φ
ρ/2] (3.79)

where σl are primary fields in the chiral Z6 parafermion theory so that σRl σ
L
l take

the roles of the order parameters of the Z6 model[44, 45]. They satisfy the exchange

relations

Ψ(x)σl(x
′) = σl(x

′)Ψ(x)e−2πi l
6
θ(x−x′) (3.80)



64

for R sector, and similar relations hold for the L sector with the Z6 phases conjugated.

Therefore adding the operators α±(x), γ±(x), β(x) to the ground state create kinks of

different hights in the GEV (3.78)

〈
α†±(x0)Ψ†R(x)ΨL(x)α±(x0)

〉
∼ e

πi
3

(m±θ(x−x0))〈
γ†±(x0)Ψ†R(x)ΨL(x)γ±(x0)

〉
∼ e

πi
3

(m±2θ(x−x0))〈
β†(x0)Ψ†R(x)ΨL(x)β(x0)

〉
∼ e

πi
3

(m+3θ(x−x0)) (3.81)

where θ(s) = (s/|s|+ 1)/2 is the unit step function.

The fermionic supersector f in so(3)3 (see table 3.1) consists of operators that

admit free field representations. Again we focus on the the so(3)R,−3 sector. The

operators

V 0
f = Ψ3, V ±1

f = e∓iφ
ρ

Ψ∓2

V ±2
f = e∓2iφρΨ∓, V ±3

f = e∓3iφρ

span a s = 3 representation of the affine so(3)3 Lie algebra, where Ψ−m = Ψ6−m are

the Z6 parafermions satisfying the OPE Ψm(z)Ψm′(w) ∼ (z − w)−mm
′/3Ψm+m′ (see

appendix D for explicit definitions). From (3.80), they create a kink to the order

parameter 〈b〉 = 〈βR(x)βL(x)〉

〈
VR
f (x0)†βR(x)βL(x)VR

f (x0)
〉

= 〈b〉(−1)θ(x−x0) (3.82)

in the order phase.

The gapping potential can now be generalized to an arbitrary odd number of Majo-

rana channels per wire. Using the decomposition (3.45), the N Majorana channels are

first split into 9+(N−9). The first 9 channels are fractionalized into so(3)+
3 ×so(3)−3

while the remaining N − 9 can be split into so(N−9
2

)+
1 × so(N−9

2
)−1 because N − 9 is
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even. The interwire current backscattering (3.8) takes the form

Hint = u

∞∑
y=−∞

Jy
so(3)−3

· Jy+1

so(3)+
3

+ Jy
so(N−9

2 )
−
1

· Jy+1

so(N−9
2 )

+

1

(3.83)

where different terms act on completely decoupled degrees of freedom. They also gap

out all low energy degrees freedom as the energy-momentum tensor of the CFT along

each wire decomposes

Tso(N)1 = Tso(9)1 + Tso(N−9)1 (3.84)

= Tso(3)+
3

+ Tso(3)−3
+ T

so(N−9
2 )

+

1

+ T
so(N−9

2 )
−
1

using (3.54) and the fact that

Tso(m+n)1 = −1

2

m+n∑
a=1

ψa∂ψa = Tso(m)1 + Tso(n)1 . (3.85)

3.1.3 Gapping by fractional quantum Hall stripes

(a)

so(N)R1

so(N)L1

so(N)R1

so(N)L1

c− = N/2

iψyψy+1

GL
N

GR
N

GL
N

c− = N/4

JGN
· JGN

GN

(b)

GL
N

GR
N

GL
N

GR
N

iψyψy+1

so(N)L1

so(N)R1
so(N)R1

so(N)L1

GN

Jso(N)1 · Jso(N)1

Figure 3.3: Gapping N surface Majorana cones by inserting (2 + 1)D GN stripe state
and removing edge modes by current-current backscattering interaction.

Previously, we designed interwire interactions that gap all Majorana modes with-

out breaking time reversal symmetry. Here we provide an alternative where each

chiral Majorana wire is gapped by backscattering onto the edges of two topological

stripes sandwiching the wire (see figure 3.3). The topological stripes could be frac-

tional quantum Hall states for instance. Similar construction has been proposed to
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describe surface states of topological insulators[69].

First we consider inserting between each pairs of Majorana wire a (2+1)D topolog-

ical state. It supports chiral boundary modes which move in a reverse direction to its

neighboring Majorana wire. As adjacent wires have opposite propagation directions,

the chiralities of the topological states also alternates. This alternating topological

stripe state can be regarded as a surface reconstruction of the 3D topological super-

conductor. It preserves the antiferrormagnetic time reversal symmetry (2.2), which

relates adjacent topological stripes by reversing their chirality. Unlike the coupled

Majorana wire mode, the topological stripe state itself is a pure (2 + 1)D time re-

versal symmetric system and is not supported by a (3 + 1)D bulk. It has a gapless

energy spectrum that is identical to N surface Majorana cones and is carried by the

interface modes between stripes (see figure 3.3(b)). However the topological stripe

state also carry non-trivial anyonic excitations between wires. This distinguishes it

from the coupled Majorana wire model and allows it to exist non-holographically in

a pure (2 + 1)D setting.

The Majorana modes along the chiral wires then can be backscattered onto the

boundaries or interfaces of the topological stripes by current-current couplings. In

order for the boundary or interface modes to exactly cancel the Majorana modes

along each wire, the topological stripes must carry specific topological orders. We

take a GN topological state (see eq.(3.91)) so that its boundary carries a GN Kac-

Moody current, for GN the affine Lie algebra of GN defined in (3.5). GR
N and GL

N

denote stripes with opposite chiralities. The (2 + 1)D GN topological state itself can

be constructed using a coupled wire construction similar to that in Ref.[52, 100] and

will not be discussed here.

There are two ways the Majorana modes can be backscattered onto the topological

stripes. The first is shown in figure 3.3(a). The N Majorana modes along each chiral

wire is bipartite into a pair of WZW theories G+
N×G−N according to (3.4). Each WZW
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theory is identical to the CFT along the boundary of an neighboring topological stripe

but propagates in an opposite direction. It can be then be gapped out by the current-

current backscattering

Hint = uJwire
GN · J

stripe
GN . (3.86)

Alternatively, one could first glue the topological stripes together (see figure 3.3(b))

so that the line interface sandwiched between adjacent GR
N and GL

N states hosts a chi-

ral so(N)1 CFT. The stripes can then be put on top of the Majorana wire array so that

each interface is sitting on top of a wire with opposite chirality. The current-current

backscattering

Hint = uJwire
so(N)1

· Jinterface
so(N)1

(3.87)

between each Majorana wire and stripe interface gaps out all low energy degrees of

freedom.

3.2 Surface topological order

In the previous section, we described how a coupled Majorana wire model, which mim-

ics the surface Majorana modes of a 3D bulk topological superconductor (TSC), can

be gapped by interwire current-current backscattering interaction without breaking

time reversal (TR) symmetry. In this section, we pay more attention to the topological

order and the anyon types[101, 23, 102] of gapped excitations. The ground states are

time reversal symmetric and there are no non-vanishing order parameters that breaks

time reversal spontaneously. There is a finite ground state degeneracy that does not

depend on system size. This signifies a non-trivial topological order[103, 104, 105].

The surface topological order can be inferred from bulk-boundary correspondence[106,
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so(N)R1

so(N)L1
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}
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Figure 3.4: Chiral interface (highlighted line) between a time reversal breaking gapped
region and a TR symmetric topologically ordered gapped region.

TR breaking gapped surface

TR symmetric gapped surface

GN  WZW CFT }
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to
p

o
lo

g
ical state

Figure 3.5: The GN topological order of a quasi-2D slab with time reversal symmetric
gapped top surface and time reversal breaking gapped bottom surface

107, 108, 73]. There is a one-to-one correspondence between the primary fields of the

CFT along the (1+1)D gapless boundary and the anyon types in the (2+1)D gapped

topological bulk. The conformal scaling dimension or spin h = hR − hL of a primary

field corresponds to the exchange statistical phase θ = e2πih of the corresponding

anyon. The fusion rules of primary fields are identical to that of the anyons. And the

modular S-matrix of the CFT at the boundary equals the braiding S-matrix[73]

Sab =
1

D
∑

c

dcN
c
ab

θc

θaθb

(3.88)

in the bulk, where the non-negative integers Nc
ab are the degeneracies of the fusion

rules

a× b =
∑

c

Nc
abc (3.89)
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between anyons, and the total quantum dimension D =
√∑

a d
2
a quantifies topo-

logical entanglement[19] and can be evaluated by knowing the quantum dimensions

da ≥ 1 of each anyon a by solving the fusion identities

dadb =
∑

c

Nc
abdc. (3.90)

On the surface of a topological superconductor, where there are no boundaries,

the (2 + 1)D topological order corresponds to a (1 + 1)D interface that separate the

time reversal symmetric topologically ordered domain and a time reversal breaking

domain. This interface hosts a chiral gapless modes (see figure 3.4). This geometry

can be wrapped onto the surface of a slab where the TR symmetric and breaking

domains occupy the top and bottom surface of a 3D bulk (see figure 3.5). The

quasi-2D system has an energy gap except along its boundary which is previously the

interface that carries the GN WZW CFT. The bulk-boundary correspondence then

determines a bulk GN topological order on the quasi-2D slab.

GN =

 SO(r)1, for N = 2r

SO(3)3 �b SO(r)1, for N = 9 + 2r
(3.91)

where both N and r can be extended to negative integers.

Wires in the trivial TR-breaking domain are gapped by non-uniform current

backscattering

HTR−breaking =
∑
y

∆J2y−1
so(N)1

· J2y
so(N)1

+ δJ2y
so(N)1

· J2y+1
so(N)1

(3.92)
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or single-body fermion backscattering perturbation

HTR−breaking =
∑
y

i∆ψT
2y−1ψ2y + iδψT

2yψ2y+1 (3.93)

to the coupled Majorana wire model (2.4), for ∆ > δ and ψy = (ψ1
y , . . . , ψ

N
y ). This

violates the antiferrormagnetic time reversal symmetry (2.2) and leads to a gapped

surface with trivial topological order. This TR breaking half-plane is put side by side

against a TR symmetric gapped half-plane, where the N Majorana channels per wire

is fractionalized into so(N)1 ⊇ G+
N × G−N , for GN previously defined in (3.5). Each

GN sector is then paired with the adjacent one on the next wire and are gapped by

current-current backscattering JG−N · JG+
N

. The interface between the TR-symmetric

and TR-breaking regions leaves behind one single unpaired fractional GN channel.

This can be regarded as a 2D analogue of the fractional boundary modes in the the

Haldane integral spin chain[86, 87] and the AKLT spin chain[109].

As eluded in the introduction, when the coupled wire model involves only current-

current backscattering interaction, it is a boson model where the bosonic current

operators, rather than Majorana fermions, are treated as fundamental local objects.

It is therefore more natural for us to use the current backscattering Hamiltonian

(3.92) instead of the fermionic single-body one (3.93) to introduce a time reversal

breaking gap. In this case, π-fluxes are deconfined anyonic excitations realized as

π-kinks along a stripe where there is no energy cost in separating a flux-antiflux pair.

If the fermionic TR-breaking Hamiltonian (3.93) were used instead, π-fluxes would

be confined on the bottom layer and Majorana fermions would become local. We

however will mostly be focusing on the former bosonic case, although the fermionic

scenario may be more realistic in a superconducting medium.

The bulk-interface correspondence depends on the orientation of the time reversal

breaking order. In eq.(3.92), if the backscattering tunneling strengths are reversed
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so that δ > ∆, figure 3.4 will need to be shifted by y → y + 1 and all propagating

directions will need to be inverted. As a result, the interface CFT will also be reversed

to its time reversal partner GN → GN . This will flip the spins of all primary fields

ha → ha = −ha and conjugates all exchange phases θa → θa = θ∗a.

An interface with a particular orientation therefore corresponds to a time reversal

breaking topological order. This is also apparent in the slab geometry in figure 3.5

where the TR breaking order on the bottom surface can have opposite orientations.

Unlike the conventional case on the surface of a topological superconductor where

time reversal is local, here time reversal involves a half translation y → y + 1 and

relates a stripe gapped by J−y ·J+
y+1 to its neighbor J−y+1 ·J+

y+2. As anyonic excitations

are realized as kinks or domain walls that separate distinct ground states along a

stripe, time reversal non-locally translates anyons on an even stripe (green) to an

odd one (red) or vice versa (see figure 3.4). However an interface with a particular

orientation can only correspond to anyons on stripes with a particular parity. For

example the bulk-interface correspondence in figure 3.4 singles out anyons on even

stripes gapped by J−2y ·J+
2y+1. There is therefore no reason to expect the anyon theory

would be closed under time reversal.

3.2.1 Summary of anyon contents

r even r odd
x 1 ψ s+ s− 1 ψ σ

dx 1 1 1 1 1 1
√

2
θx 1 −1 eπir/8 eπir/8 1 −1 eπir/8

Table 3.2: The exchange phase θx = e2πihx and quantum dimensions of anyons x in a
(2 + 1)D SO(r)1 topological phase.

The interface carries chiral gapless degrees of freedom, which are captured by the

GN WZW theory whose primary fields corresponds to the anyon content of the TR
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symmetry gapped surface. For even N = 2r, the surface carries a

GN = SO(r)1 (3.94)

topological order summarized in table 3.2. Its anyonic excitations obey the abelian

fusion rules

ψ × ψ = 1, s± × ψ = s∓ (3.95)

s± × s± =

 1, for r ≡ 0 mod 4

ψ, for r ≡ 2 mod 4

for r even, or the Ising fusion rules

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ (3.96)

for r odd. Eq.(3.95) and (3.96) follows directly from the fusion properties of the

primary fields in the so(r)1 Kac-Moody algebra (see section 2.1.1 and appendix B

and C). The exchange phase (also known as topological spin) θx = e2πihx can be

read off from the conformal dimension hx of the primary field Vx in so(r)1 that

corresponds to the anyon type x. Again we extend r to negative integers by defining

SO(−r)1 = SO(r)1 to be the time reversal conjugate of the SO(r)1 topological state.

x 1 α+ γ+ β γ− α− f

dx 1
√

2 +
√

2 1 +
√

2
√

4 + 2
√

2 1 +
√

2
√

2 +
√

2 1

θx 1 eπi
3+2r

16 eiπ/2 eπi
15+2r

16 e−iπ/2 eπi
3+2r

16 −1
r even

x 1 α+ γ+ β γ− α− f

dx 1
√

2 +
√

2 1 +
√

2
√

4 + 2
√

2 1 +
√

2
√

2 +
√

2 1

θx 1 eπi
15+2r

16 eiπ/2 eπi
3+2r

16 e−iπ/2 eπi
15+2r

16 −1
r odd

Table 3.3: The exchange phase θx = e2πihx and quantum dimensions of anyons x in a
(2 + 1)D SO(3)3 �b SO(r)1 topological phase.
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For odd N = 9 + 2r, the GN WZW CFT at the interface corresponds the TR

symmetric gapped surface that carries a topological order given by the relative tensor

product

GN = SO(3)3 �b SO(r)1 (3.97)

where the fermion pair b = ψSO(3)3 × ψSO(r)1 is condensed. The concept of anyon

condensation[110] will be demonstrated more explicitly later in section 3.2.2. The

topological state carries seven anyon types and are summarized in table 3.3. For

instance, the anyon structure matches the primary field content of the so(3)3 WZW

theory (see table 3.1) when r = 0. The quasiparticle fusion rules of GN are similar to

the so(3)3 ones in (3.60)

f × f = 1, f × γ± = γ∓, f × α± = α∓, f × β = β

γ± × γ± = 1 + γ+ + γ−, α± × β = γ+ + γ− (3.98)

β × β = 1 + γ+ + γ− + f, β × γ± = α+ + α− + β

except the following modifications that dependent on r = (N − 9)/2.

α± × α± =



1 + γ+, for r ≡ 0 mod 4

f + γ+, for r ≡ 1 mod 4

f + γ−, for r ≡ 2 mod 4

1 + γ−, for r ≡ 3 mod 4

(3.99)

α± × γ± =

 α+ + β, for r even

α− + β, for r odd

This quasiparticle spin and fusion structure will be shown later in section 3.2.2. The

braiding S-matrices of the GN states are summarized in appendix E.
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The GN sequence extends the sixteenfold periodic anyon structure[73, 111, 112]

SO(r + 16)1
∼= SO(r)1 to a periodic class of thirty two topological states

GN+32
∼= GN . (3.100)

This seemingly contradicts the sixteenfold prediction of topologically ordered surface

states from Ref.[29, 30, 31, 32, 33, 34, 35]. This is due to the non-local nature of the

“antiferromagnetic” time reversal symmetry in the coupled Majorana wire model.

On the other hand, in general there are multiple possible gapping potentials that

leads to distinct topological order. For instance, we will show in a subsequent section

that for N = 16, there is an extended E8 symmetry or an alternative conformal

embedding that would allow a different set of gapping terms but would forbid all

electronic quasiparticle excitations.

The thirty two topological states here follow a Z32 tensor product algebraic struc-

ture

GN1 �b GN2
∼= GN1+N2 (3.101)

where certain maximal set of mutually local bosons from GN1 and GN2 are pair

condensed in the relative tensor product. We will discuss this in more detail below.

3.2.2 The 32-fold tensor product structure

We first explain the relative tensor product that defines the GN topological state in

eq.(3.97). We begin with the tensor product state SO(3)3⊗SO(r)1 which consists of

decoupled SO(3)3 = SU(2)6 and SO(r)1 topological states. The primary fields of the

su(2)6 WZW CFT are labeled by seven half-integral “spins” s = 0,1/2,1,3/2,2,5/2,3

and are summarized in table 3.1 and eq.(3.60). These correspond to the anyon struc-

ture of the (2 + 1)D SO(3)3 topological state. The topological order of SO(r)1 is
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well-known[73] and was summarized earlier in this section. For instance, “spin” 3

corresponds to the BdG fermion quasiparticle f , and the half-integral “spins” 1/2,

3/2 and 5/2 are π-fluxes that give a −1 monodromy phase of an orbiting fermion.

In the coupled Majorana wire model where there areN = 9+2r Majorana channels

per wire, the gapping term explicitly seperates the first 9 and final 2r channels and the

current backscattering potential does not mix these two sectors. This model would

therefore give a decouple SO(3)3⊗SO(r)1 topological state. However, there could be

additional local time reversal symmetric terms, such as intrawire forward scattering

iψRa ψ
R
b and iψLaψ

L
b , that mixes the two sectors and condenses the fermion pair b =

fSO(3)3 ⊗ ψSO(r)1 . In fact, fermion pair condensation is natural in a superconducting

medium where the ground state consists of Cooper pairs. The condensation of the

bosonic anyon b results in the confinement of certain quasiparticles that have non-

trivially monodromy around it.[110] These includes all the π fluxes 1/2, 3/2 and

5/2 in the SO(3)3 sector, s± (or σ) in SO(r)1 for r even (resp. odd), as well as

the tensor product 1/2 ⊗ ψ, 3/2 ⊗ ψ, 5/2 ⊗ ψ, 1 ⊗ s±, 2 ⊗ s± and 3 ⊗ s± (or

1 ⊗ σ, 2 ⊗ σ and 3 ⊗ σ). The remaining anyons are local with respect to the boson

b and survive the condensation, but certain pairs are identified if they differ only by

the boson condensate, a × b ≡ a. This includes 3 ≡ ψ, 1 ⊗ ψ ≡ 2, 2 ⊗ ψ ≡ 1,

1/2⊗ s± ≡ 5/2⊗ s∓ and 3/2⊗ s+ ≡ 3/2⊗ s− for even r, or 1/2⊗ σ ≡ 5/2⊗ σ for

r odd. Special care has to be taken for the tensor product 3/2 ⊗ σ when r is odd.

After condensation, the fusion rule of a pair of 3/2⊗ σ becomes

(3/2⊗ σ)× (3/2⊗ σ) = (0 + 1 + 2 + 3)⊗ (1 + ψ)

≡ 0 + 0 + 1 + 1 + 2 + 2 + 3 + 3 (3.102)

which has two vacuum fusion channels and indicates that 3/2⊗σ cannot be a simple
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object. This leads to the decomposition

3/2⊗ σ ≡ α+ + α− (3.103)

where α± are simple anyons with identical exchange statistics but opposite fermion

parity α± × f = α∓ and obey the fusion rules (3.99).

1 α+ γ+ β γ− α− f
r even 0 1/2⊗ s+ 1 3/2⊗ s± 2 5/2⊗ s+ 3
r odd 0 (3/2⊗ σ)+ 1 1/2⊗ σ 2 (3/2⊗ σ)− 3

Table 3.4: Identification of the seven anyon types in table 3.3 as tensor products.

We summarize the identification of the seven anyon types in GN = SO(3)3 �b

SO(r)1 as tensor products in table 3.4. This explains the exchange statistics and

quantum dimensions of the quasiparticles in table 3.3

θa⊗b = θaθb, da⊗b = dadb (3.104)

with the exception of the non-simple object 3/2⊗σ in (3.103) where each component

α± carries half of its dimension. The fusion rules in (3.98) and (3.99) are explained

by the tensor product

(a1 ⊗ b1)× (a2 ⊗ b2) = (a1 × a2)⊗ (b1 × b2) (3.105)

except in the odd r cases where again the non-simple object 3/2 ⊗ σ = α+ + α−

requires special attention.

The fusion rules (3.99) of α± in the odd r cases are fixed by modular invariance.

The braiding S-matrix (3.88) is determined by fusion rules and quasiparticle exchange

statistics. On the other hand fusion rules can also be determined by the S-matrix

using the Verlinde formula (3.58).[99] Moreover one can define the T -matrix according
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to the quasiparticle exchange statistics

Tab = δabθa (3.106)

which corresponds to the modular T -transformation in the CFT along the boundary.

As a consequence they satisfies the SL(2; Z) algebraic relation[73]

(
ST †

)3
= e−2πic−/8S2 (3.107)

where c− = cR − cL is the chiral central charge of the corresponding CFT along the

boundary

c−(GN) = c−(so(3)3) + c−(so(r)1) =
9

4
+
r

2
=
N

4
. (3.108)

These put a very restrictive constraint on the allowed topological field theory and fix

the fusion rules (3.99) for α± when r is odd. The braiding S matrices can be found

in appendix E.

The relative tensor product structure of the sixteenfold SO(r)1 sequence itself can

also be understood using anyon condensation

SO(r1)1 �b SO(r2)1
∼= SO(r1 + r2)1 (3.109)

where the fermion pair ψ1 ⊗ ψ2 is condensed. This can be verified by a similar

condensation procedure as the one presented above. For instance, if r1 and r2 are

both odd, the tensor product σ1 ⊗ σ2 will become non-simple after condensation

and decompose into a pair of abelian π-fluxes, s+ + s−, with identical exchange

statistics but opposite fermion parities s± × ψ = s∓ and are related by an anyonic

symmetry[111, 112].
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Next we move on to explaining the general relative tensor product structure (3.101)

of the 32-fold GN states. Eq.(3.109) describes the cases when both N1 and N2 are

even, i.e. G2r1 �b G2r2
∼= G2r1+2r2 . A similar anyon condensation procedure that

defined the relative tensor product SO(3)3 �b SO(r)1 above would prove that

GN �b SO(r)1
∼= GN+2r (3.110)

for N odd, where the fermion pair b = fGN ⊗ ψSO(r)1 is condensed.

When both N1 = 9 + 2r1 and N2 = 9 + 2r2 are odd, each of the two GNi =

SO(3)3 �b SO(ri)1 theories contains seven anyon types 1, αi±, γ
i
±, β

i, f i. The tensor

product state GN1 ⊗GN2 contains three non-trivial bosons

b = {b0, b+, b−} =
{
f 1 ⊗ f 2, γ1

+ ⊗ γ2
−, γ

1
− ⊗ γ2

+

}
(3.111)

as γ± have conjugate exchange phases θγ± = ±i. Moreover, these bosons are mutually

local. Firstly, b0 have trivial monodromy around b± as γ± are local with respect to the

fermion f . Secondly, as there are bosonic fusion channels b±× b± = 1 + b+ + b−+ . . .

and b± × b∓ = b0 + b+ + b− + . . ., b± are local among themselves because their

mutual monodromy phases are trivial. We first condensed the Abelian fermion pair

b0 = f 1⊗ f 2. The resulting theory contains the following set of (non-confined) anyon

types

GN1 �b0 GN2 =

〈
1, f, γ1

±, γ
2
±, γ

1
+γ

2
+, γ

1
+γ

2
−,

α1
+α

2
+, α

1
+α

2
−, α

1
+β

2, β1α2
+, β

1β2

〉
(3.112)

where some anyon types are identified by the b0 condensate, such as f ≡ f 1 ≡ f 2

and γ1
−γ

2
− = γ1

+γ
2
+ × b0, and are therefore not listed. Next we condense the non-

Abelian boson b+ = γ1
+γ

2
−, which is already equated with b− = b+ × b0. The general

condensation procedure of a non-Abelian boson was proposed by Bais and Slingerland
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in Ref.[110]. In the present case, it begins with the fusion theory F of GN1 �b0 GN2

that only encodes the associative fusion content but neglects the braiding structure

of the anyons. As the boson b+ is condensed, it decomposes as b+ = γ1
+γ

2
− = 1 + . . .,

which now contains the vacuum channel 1. This reduces the fusion theory F into a

new fusion theory F ′, where the certain anyons in (3.112) become non-simple objects

and decompose into simpler components while others are identified by the boson

condensate. This new fusion category F ′ contains the non-confined anyons in the

resulting state as well as confined non-point-like objects.

We start with the first line of anyons in (3.112), which are all local with respect

to the fermion f . The semion γ1
+ is self-conjugate as γ1

+×γ1
+ = 1 +γ1

+ +γ1
−. However

γ2
− is now also an antiparticle of γ1

+ since γ1
+ × γ2

− = b+ = 1 + . . . also contains the

vacuum channel. The uniqueness of antipartner guarantees the identifications

γ+ ≡ γ1
+ ≡ γ2

−, γ− ≡ γ1
− ≡ γ2

+ (3.113)

which obey the usual fusion rules γ± × γ± = 1 + γ+ + γ− and f × γ± = γ∓. This in

turn determines the decomposition of the non-Abelian boson

b+ = γ1
+γ

2
− ≡ γ+ × γ+ = 1 + γ+ + γ− (3.114)

which is consistent with the boson quantum dimension db+ = d2
γ = 1 + 2dγ. Moreover

the non-Abelian fermion also decomposes

γ1
+γ

2
+ ≡ γ+ × γ− = f + γ+ + γ−. (3.115)

Next we move on to the second line of anyons in (3.112), which are π fluxes

with respect to the fermion f . From the original fusion rules (3.98), (3.99) and the
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identification (3.113), (3.114) and (3.115), the π fluxes satisfy the fusion rules

(α1
+α

2
+)× (α1

+α
2
+)

=


1 + f + 2γ+ + 2γ−, for r1 + r2 even

1 + 1 + γ+ + γ− + 2γ±, for r1 + r2 ≡ 3 mod 4

f + f + γ+ + 3γ−, for r1 + r2 ≡ 1 mod 4

(3.116)

(α1β2)× (α1β2) = 1 + 1 + f + f + 4γ+ + 4γ− (3.117)

(β1β2)× (β1β2) = 4(1 + f + 2γ+ + 2γ−) (3.118)

(α1
+α

2
+)× (α1

+β
2) = 1 + f + 3γ+ + 3γ− (3.119)

(α1
+α

2
+)× (β1β2) = 1 + 1 + f + f + 4γ+ + 4γ− (3.120)

for N1 = 9 + 2r1 and N2 = 9 + 2r2.

These show α1β2 and β1β2 must be non-simple because their corresponding fusion

rules contain multiple vacuum channels. The decomposition of β1β2 is simplest and

applies to all r1, r2

β1β2 = α1
+α

2
+ + α1

+α
2
− (3.121)

where α1
+α

2
− = α1

+α
2
+ × f . For instance, it is straightforward to check that this

decomposition is consistent with the fusion rules. α1
+β

2 and α1
−β

2 are clearly identified

as they differ only by the Abelian boson b0 = f 1f 2. We therefore will simply denote

them as α1β2. Moreover, one can show that α1β2 and β1α2 are also identified after

the condensation of the non-Abelian boson γ1
+γ

2
− = 1 + γ+ + γ− in (3.114). This can

be verify by equating the fusion equations (α1β2)× (γ1
+γ

2
−) = (α1β2)× (1 + γ+ + γ−).

The decomposition of α1β2 ≡ β1α2 depends on the parity of r1 + r2.

When r1 + r2 is even, the pair fusion rule for α1
+α

2
+ allows it to be simple since
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there is a unique vacuum channel. Moreover as the pair fusion rule is unaltered by

the addition of a fermion f , it is identical to (α1
+α

2
+) × (α1

+α
2
−). This shows α1

±α
2
−

conjugates and therefore identifies with α1
±α

2
+, which is self-conjugate.

α1α2 ≡ α1
±α

2
± ≡ α1

±α
2
∓. (3.122)

In this case, α1β2 is decomposed into

α1β2 = σ + α1α2 (3.123)

where we introduce the Ising anyon σ that obey

σ × σ = 1 + f, σ × f = σ (3.124)

σ × α1α2 = γ+ + γ−, σ × γ± = α1α2.

The decomposition (3.123) is consistent with the fusion rules (3.119) and (3.117). The

reduced fusion category after condensing the boson (3.114) is therefore generated by

the following simple objects

F ′even =
〈
1, f, σ, γ±, α

1α2
〉

(3.125)

when r1 + r2 is even. It has the fusion rules (3.124) together with γ± × α1α2 =

σ + 2α1α2.

When r1 +r2 is odd, we need to further separate into two cases. When r1 +r2 ≡ 3

mod 4, the fusion rule of a pair of α1
+α

2
+ in (3.116) forbids it to be simple. It

decomposes into

α1
+α

2
+ = s+ + γ+ or s+ + γ− (3.126)
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where s± are Abelian anyons that satisfy the fusion rules

s± × s± = 1, s± × f = s∓, s+ × γ± = γ± (3.127)

and the fermion parity γ± in (3.126) depends on (r1, r2) ≡ (0, 3) or (1, 2) mod 4 but

is unimportant for the current discussion. The decomposition (3.126) is consistent

with the fusion rule (3.116). In this case, the fusion rules (α1
+α

2
+)× (α1β2) in (3.119)

requires a different decomposition of α1β2 than (3.123).

α1β2 = γ+ + γ−. (3.128)

The reduced fusion category after condensing the boson (3.114) is therefore generated

by the following simple objects

F ′3 = 〈1, f, s±, γ±〉 (3.129)

when r1 + r2 ≡ 3 mod 4.

When r1 + r2 ≡ 1 mod 4, the fusion rule (3.116) again forbids α1
+α

2
+ to be simple.

Moreover as the vacuum channel is absent, it is no longer self-conjugate but instead

is conjugate with α1
+α

2
− since it has opposite fermion parity and (α1

+α
2
+)× (α1

+α
2
−) =

1 + 1 + 3γ+ + γ−. We decompose

α1
+α

2
+ = s+ + g+ (3.130)

where s± are Abelian anyons and g± are non-Abelian objects that satisfy

s± × s± = f, s± × f = s∓, g± = γ+ × s±. (3.131)
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The decomposition of α1β2 also needs to be modified

α1β2 = g+ + g−. (3.132)

One can check that these decompositions are consistent with the original fusion rules.

The reduced fusion category after condensing the boson (3.114) is therefore generated

by the following simple objects

F ′1 = 〈1, f, s±, γ±, g±〉 (3.133)

when r1 + r2 ≡ 1 mod 4.

Not all objects in the reduced fusion theories F ′even, F ′1 and F ′3 in (3.125), (3.133)

and (3.129) are non-confined anyons in the new topological states. Some may be

non-local with respect to the boson b+ (3.114) and are therefore not point-like objects

when b+ is condensed. They are equipped with a physical string or branch cut that

extends. The anyon theory, which encodes both fusion and braiding information, after

condensation excludes these confined extended objects. To determine which objects

in the reduced fusion categories F ′ are non-confined anyons, we look at the possible

monodromy around the condensed boson b+. Suppose a1⊗a2 and b1⊗b2 are anyons

in the tensor product state GN1 �b0 GN2 (3.112) that are related by the fusion rule

b+× (a1⊗a2) = b1⊗b2 + . . ., the monodromy under this fixed fusion channel is[110]

b+ a1 ⊗ a2

b1 ⊗ b2

=

b+ a1 ⊗ a2

b1 ⊗ b2

=
θb1⊗b2

θb+θa1⊗a2

=
θb1⊗b2

θa1⊗a2

(3.134)

as b+ is a boson with θb+ = 1. In other words trivial monodromy simply reqires the

invariance of exchange statistics upon an addition of the boson.
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Given any simple object x in the reduced fusion category F ′ in (3.125), (3.133) or

(3.129), it may be lifted to multiple anyons in the tensor product state GN1 �b0GN2 in

(3.112) in the sense that it belongs in distinct decompositions a1 ⊗ a2 = x + . . . and

b1⊗b2 = x + . . .. For instance, γ± are components of the boson γ1
+γ

2
− = 1 + γ+ + γ−

as well as the fermion γ1
+γ

2
+ = f + γ+ + γ− (see (3.114) and (3.115)). If x is an

object not confined by the boson condensation, then its exchange statistics should be

independent from the choices of lift

θx = θa1⊗a2 = θb1⊗b2 (3.135)

since the monodromy (3.134) should be trivial. Otherwise, the object x has to be

non-point-like and extended as it does not have well defined statistics. For example

since γ± belongs to the decomposition of a non-Abelian boson and fermion, they have

to be confined objects after condensation.

The relative tensor product GN1 �bGN2 with the condensation of the set of bosons

b (3.111) contains non-confined anyons in the reduced fusion categories F ′even, F ′1 and

F ′3 in (3.125), (3.133) and (3.129). For example when r1 +r2 is even, the simple object

α1α2 in (3.125) is confined and is not an anyon because it can be lifted into α1β2 and

β1β2, which have distinct statistics, in (3.123) and (3.121). When r1 + r2 ≡ 1 mod 4,

the simple objects g± are also confined because they belong in α1β2 and α1
+α

2
±, which

have different spins, in (3.132) and (3.130). This shows GN1 �b GN2 is generated by

the non-confined anyons

GN1 �b GN2 =

 〈1, f, σ〉 , for r1 + r2 even

〈1, f, s±〉 , for r1 + r2 odd
(3.136)
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The exchange statistics of σ and s± are determined by that of their lifts. For instance,

θσ = θα1β2 = θαθβ = eπi
9+r1+r2

8 = eπi(N1+N2)/16 (3.137)

using table 3.3 when r1 + r2 is even. This shows

GN1 �b GN2 = SO

(
N1 +N2

2

)
1

(3.138)

when both N1 and N2 are odd and concludes the 32-fold tensor product algebraic

structure of the GN -series.

3.3 Other possibilities

In the previous sections, we proposed time reversal symmetric interactions that gap

the coupled Majorana wire model and lead to a GN topological order (see eq.(3.94)

and (3.97)). The interwire current-current backscattering interactions depend on a

particular fractionalization, so(N)1 ⊇ GN × GN , of the N Majorana channels per

wire. However, in special cases, we have already seen that alternative decompositions

exist and correspond to different gapping interactions and topological orders. For

example, at the beginning of section 3.1, we showed when there are even Majorana

channels per wire, the model could simply be gapped by a single-body backscattering

potential (see (3.1)) and have trivial topological order. This is consistent with the Z2

classification of gapless Majorana modes protected by the “antiferromagnetic” time

reversal symmetry (2.2). Another example was given in section 3.1.1.2 for the special

case when there are N = 4 Majorana channels per wire where the decomposition

needs to be changed into so(4)1 ⊇ su(2)1×su(2)1. The resulting gapped state carries

the SU(2)1 semion topological order instead of G4 = SO(2)1.

Moreover the sixteenfold classification of topological superconductors (TSC) with
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the presence of interaction[29, 30, 31, 32, 33, 34, 35] suggests the 32-fold GN -series

could have redundancies. On the other hand, the Z16 classification of TSC is based on

the canonical local time reversal symmetry, which is fundamentally different from the

non-local “antiferrormagnetic” time reversal considered in this manuscript. The Z32

structure of surface topological order could be an artifact of such unconventional time

reversal symmetry. Nonetheless, here in section 3.3.1 and 3.3.2, we discuss altenative

gapping interactions when N = 16 that removes all electronic quasiparticles.

3.3.1 Consequence of the emergent E8 when N = 16

We design alternative interwire backscattering terms in the coupled wire model (2.4)

with N = 16 Majorana channels per wire. They open a time reversal symmetric

energy gap among 16 surface Majorana cones with the same chirality. In general, these

terms can also apply when the number of chiral Majorana channel per wire is larger

than 16 by acting on a subset of channels. We begin with the bosonized description

presented previously in section 2.1.2, where each wire consists of an 8-component

chiral U(1) boson φ̃ = (φ̃1, . . . , φ̃8) that bosonizes the complex fermions cj = (ψ2j−1 +

iψ2j)/
√

2 = exp(iφ̃j). This theory is special because it carries non-trivial bosonic

primary fields, which can condense. For example the two spinor representations s±

correspond to bosonic primary fields of so(16)1 with conformal dimension hs± = 1

(see eq.(2.18)). In particular we will focus on the even sector s+. It consists of vertex

operators

V εs+ = eiε·φ̃/2, ε = (ε1, . . . , ε8) (3.139)

(see eq.(B.24)) for εj = ±1 with ε1 . . . ε8 = +1. The 128 = 27 number of combinations

naturally matches with the dimension of the even spinor representation of so(16) (see

appendix A). These V εs+ are related to each other through the OPE with the raising
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and lowering operators Eα = eiα·φ̃ = ei(±φ̃
i±φ̃j) of so(16)1 (see (B.8) in appendix B).

The 128 lattice vectors ε/2 extend the 112 roots α of so(16) to the root lattice of

the exceptional simple Lie algebra E8 with size 240.[26] The unit dimensional vertex

operators V εs+ themselves can be regarded as raising and lowering operators that

enlarge the so(16)1 current algebra to E8 at level 1. This extends the current algebra

of each wire

so(16)1 ⊆ (E8)1 (3.140)

and is intimately related to the fact that the surface state can be gapped out without

leaving electronic quasiparticles which are non-local with respect to the boson s+.

The gapping strategy is to condense primary fields in the bosonic sector s+ be-

tween adjacent wires. This is facilitated by interwire backscattering interactions that

bipartite the emergent E8 symmetry.

E8 ⊇ s̃o(8)+
1 × s̃o(8)−1 (3.141)

However, these s̃o(8)1 subalgebras are distinct from the ones in the decomposition

so(16)1 ⊇ so(8)1×so(8)1. In particular, we will see that they do not support electronic

primary fields cj = eiφ̃
j
. Out of 128 ε lattice vectors in (3.139), there is a (non-unique)

maximal set of 8 orthonormal vectors ε(1), . . . , ε(8)

1

2
ε(m) ·

1

2
ε(n) = 2δmn. (3.142)
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We choose the set containing the highest weight vector ε(1) = (1, 1, 1, 1, 1, 1, 1, 1):


| |

ε(1) . . . ε(8)

| |

 =


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1

 . (3.143)

From (2.20), they give 8 mutually commuting bosons ε(n) · φy/2 per wire

[
1

2
ε(m) · φy(x, t),

1

2
ε(n) · φy′(x′, t)

]
= 2πiδmn(−1)yδyy′sgn(x′ − x) (3.144)

up to a constant integral multiple of 2πi.

We separate the 8 vectors into two groups S+ = {ε(1), ε(2), ε(3), ε(4)} and S− =

{ε(5), ε(6), ε(7), ε(8)}. They defines the two s̃o(8)±1 subalgebras in E8, whose roots lie

in the root lattice of E8 orthogonal to S∓ respectively. One could pick the simple

roots

α̃+
1 = ε(1)/2, α̃

+
2 = e1 + e2, α̃

+
2 = e3 + e4, α̃

+
4 = e5 + e6

α̃−1 = ε(5)/2, α̃
−
2 = e2 − e1, α̃

−
2 = e4 − e3, α̃

−
4 = e6 − e5

so that their inner product recover the Cartan matrix of so(8)

α̃±I · α̃±J = KIJ , K =

(
2 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2

)
(3.145)

while opposite sectors decouple α̃±I · α̃∓J = 0.

The new gapping potential is constructed by backscattering the two decoupled
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s̃o(8)±1 currents to adjacent wires in opposite directions.

Hint = u
∞∑

y=−∞
Jy
s̃o(8)−1

· Jy+1

s̃o(8)+
1

(3.146)

However not every terms can be written down as 4-fermion interactions. In particular

Hint contains interwire s+ quasiparticle backscattering

V εy V
−ε′
y+1 + h.c. ∼ cos

(
8∑
j=1

εj
2
φ̃jy −

ε′j
2
φ̃jy+1

)
(3.147)

for εj, ε
′
j = ±1, that condenses pairs of s+’s along adjacent wires and confines all elec-

tronic excitations. The s̃o(8)±1 WZW CFT carries three emergent fermionic primary

fields

c̃±p = exp

[
i

2

(
φ̃2p−1 ± φ̃2p − φ̃7 ∓ φ̃8

)]
(3.148)

for p = 1, 2, 3. All of which have neutral electric charge and even fermion parity

with respect to the original electronic operators cj = eiφ̃
j
. This is because the c̃±p ’s

are invariant under the U(1) gauge transformation φ̃j → φ̃j + ϕ. As a result, the

interaction (3.146) corresponds to a gapped S̃O(8)1 topological order but contains no

electron-like anyon excitations. Lastly we notice that this matches with the surface

topological order of a type-II topological paramagnet.[113, 32]

3.3.2 Alternative conformal embeddings

The fractionalization so(9)1 ⊇ so(3)3 ⊗ so(3)3 in 3.1.2.1 is the corner stone for the

construction of symmetric gapping interactions when there is an odd number of Ma-

jorana species. However, this is not the unique decomposition. In general when the

number of Majorana channels is a whole square, the wire can be bipartitioned into

so(n2)1 ⊇ so(n)n ⊗ so(n)n.[26, 83, 84, 85]
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For instance, this provides yet another alternative when N = 16 where each wire

is fractionalized into a pair of so(4)4 = su(2)4× su(2)4. The so(4)±4 current operators

can be constructed in a similar fashion as those in the so(3)±3 case, J = i
2
Σ±abψ

aψb

for Σ+ = Σ ⊗ 114 and Σ− = 114 ⊗ Σ where Σ are antisymmetric 4 × 4 matrices

generating so(4). After introducing the current-current backscattering interactions

Jy
so(4)−4

· Jy+1

so(4)+
4

, the surface would carry a SO(4)4 = SU(2)4 × SU(2)4 topological

order. Each SU(2)4 theory contains five anyon types j = 0,1/2,1,3/2,2 with spins

hj = j(j + 1)/6. The SO(4)4 topological state does not carry fermionic excitations,

and therefore, like the previous example in 3.3.1, this gapping potential also removes

all electronic quasiparticle excitations.

The gapped symmetric states for N odd are not unique either. For example, the

decomposition so(25)1 ⊇ so(5)5 ⊗ so(5)5 leads to a surface SO(5)5 topological order

which is inequivalent to G25 = SO(3)3 �b SO(8)1.
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Chapter 4

3D fractional topological insulators

(FTI)

Topological insulators (TI ) [13, 14, 15, 16] are time-reversal (TR) and charge (U(1))

symmetric electronic band insulators. In (3+1)D, they host massless Dirac fermions

on the surface that is protected by these symmetries. On the other hand Fractional

topological insulators (FTI ) [17, 114, 115, 116, 117, 118, 119] in (3+1)D are long

range entangled topologically ordered electronic phases. One can not describe FTI

using a single-body Hamiltonian. They also exhibit TR and U(1) symmetries, which

enriches it’s topological order in the sense that a symmetric surface must be anomalous

and cannot be realized non-holographically by a true (2 + 1)D system. For this thesis,

I considered a series of fermionic FTI, labeled by integers n, whose magneto-electric

response is characterized by the θ-angle θ = π/(2n + 1) (modulo 2π/(2n + 1)) that

associates an electric charge of e∗/2 = e/2(2n+ 1) to each magnetic monopole [120],

for e the electric charge of the electron. It is shown before that such FTI support de-

confined fermionic parton excitations ψ in the bulk, each carrying a fractional electric

charge of e∗ = e/(2n + 1). The electron decomposes as ψel ∼ ψ1 . . . ψ2n+1. There is

an emergent gauge symmetry these partons exhibit, for example ψi → ψei2πg/2n+1 for
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an integer g makes electron a gauge invariant object. In [115] many consistent gauge

theories are considered for the FTI with ν = 1/(2n + 1), but here we will consider

only the discrete Z2n+1 gauge theory. The (3 + 1)-D TO we discuss is based on this

discrete Z2n+1 gauge theory [115]. This theory supports electrically neutral string-like

gauge flux Φ, so that a monodromy phase e2πig/(2n+1) is obtained each time ψ orbits

around Φ. In other words, ψ carries g gauge charges. g and 2n + 1, both integers,

should be relatively prime so that all local quasi-particle must be combinations of

the electronic quasi-particles ψel and must carry integral electric charges and trivial

gauge charges.

For TI, the Dirac fermions on the surface can acquire mass in a Ferromagnetic

heterostructure where TR symmetry is broken.They also acquire mass in a super-

conducting heterostructure that breaks the U(1) symmetry. Within the mean-field

description such mass terms in the Hamiltonian are of single-body type. It was also

shown that in presence of many-body interaction term the surface of TI is gapped

but symmetric and has topological order called the “T -Pfaffian”(T -Pf) surface state.

Such topological order Such Generalizing the surface state of a conventional TI , the

surface of a FTI hosts massless Dirac partons coupling with a Z2n+1 gauge theory.

Unlike its non-interacting counterpart whose gapless Dirac surface state is symmetry

protected in the single-body picture, a FTI is strongly interacting to begin with and

there is no topological reason for its surface state to remain gapless. Similar to the TI

case, FTI can support different gapped surfaces that corresponds to different symme-

tries that are broken. Three types of gapped surface states in FTI will be discussed–

ferromagnetic surfaces that break TR , superconducting surfaces that break charge

U(1), and symmetric gapped surfaces which we denote as generalized T -Pf∗ surfaces

that generalize the T -Pf surface states of a conventional TI .
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4.1 Ferromagetic heterostructure

Let’s begin with a slab that has opposite TR breaking order which is possible with

the opposite orientation of the magnetic field from the ferromagnet. In this slab, in

addition to the single-body Dirac mass m for the surface parton, the Z2n+1 gauge sec-

tor also shows TR breaking signature. The Z2n+1 gauge theory is only present inside

the FTI , and when a flux line Φ terminates at the surface, the TR breaking boundary

condition confines an electrically neutral surface gauge quasi-particles, denoted by ζa,

with gauge charge a at the flux-surface junction (see Fig. 4.1). This gauge flux-charge

composite, referred to as a dyon δ = Φ × ζa, carries fractional spin hδ = a/(2n + 1)

because a 2π-rotation about the normal axis braids a gauge charges around Φ and

results in the monodromy quantum phase of e2πia/(2n+1). TR conjugates all quantum

phases so, a 6≡ 0 modulo 2n+ 1 breaks TR .

The one-dimensional interface between the two TR conjugate ferromagnetic sur-

face domains hosts a fractional chiral channel. For example, the interface between

two ferromagnetic surface domains with opposite ferromagnetic orientations on the

surface of a conventional TI bounds a chiral Dirac channel [74, 121, 122], where elec-

trons propagate only in the forward direction. Alternatively, a TI slab with opposite

TR breaking ferromagnetic surfaces is topologically identical to a quasi-(2 + 1)-D

Chern insulator [123, 124] and supports a chiral Dirac edge mode. Similarly, in the

FTI case, the low-energy content of the fractional chiral channel between a pair of

TR conjugate ferromagnetic surfaces domains can be inferred by the edge mode of a

FTI slab with TR breaking ferromagnetic surfaces that is topologically identical to a

quasi-(2 + 1)-D fractional Chern insulator [125, 126, 127, 128] or fractional quantum

Hall (FQH) state [129]. The chiral (1+1)-D channel is characterized by two response

quantities [130, 131, 132, 133, 71, 76, 77, 73, 78] – the differential electric conductance

σ = dI/dV = νe2/h that relates the changes of electric current and potential, and

the differential thermal conductance κ = dIT/dT = c(π2k2
B/3h)T that relates the
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changes of energy current and temperature. In the slab geometry, they are equivalent

to the Hall conductance σ = σxy, κ = κxy. ν = Ne/Nφ is also referred to as the filling

fraction of the FTI slab and associates the gain of electric charge (in units of e) to

the addition of a magnetic flux quantum hc/e. c = cR−cL is the chiral central charge

of the CFT [26] that effectively describes the low-energy degrees of freedom of the

fractional chiral channel.

Since the top and bottom surfaces of the FTI slab are TR conjugate, their parton

Dirac masses m and gauge flux-charge ratio a have opposite signs. The anyon content

is generated by the partons and gauge dyons. When a gauge flux passes through the

entire slab geometry from the bottom to the top surface, it associates with total 2a

gauge charges at the two surface junctions. We denote this dyon by γ = Φ × ζ2a,

which corresponds to an electrically neutral anyon in the slab with spin hγ = 2a/(2n+

1). If a is relatively prime with 2n + 1, the primitive dyon generates the chiral

Abelian topological field theory Z(2a)
2n+1 [134, 135], which consists of the dyons γm,

for m = 0, . . . , 2n, with spins hγm = 2am2/(2n + 1) modulo 1 and fusion rules

γm × γm′ = γm+m′ , γ2n+1 = γ0 = 1. In particular, when a = −1, γn now has spin

−2n2/(2n+ 1) ≡ n/(2n+ 1) modulo 1, which is identical to that of the fundamental

quasi-particle of the SU(2n + 1) Chern-Simons theory at level 1 [134, 135]. This

identifies the Abelian theories Z(−2)
2n+1

∼= Z(n)
2n+1 = SU(2n+ 1)1, which has chiral central

charge cneutral = 2n. For details refer appendix D.

The FTI slab also supports fractionally charged partons ψ, each carrying a gauge

charge g. The electrically charged sector can be decoupled from the neutral Z(2a)
2n+1

sector by combining each parton with a specific number of dyons λ = ψ × γ−n
2ug,

where ua + v(2n + 1) = 1 for some integer u, v, so that the combination is local

(i.e. braids trivially) with any dyons γm. λ has fractional electric charge qλ = e∗ and

spin hλ = 1/2+n3ug2/(2n+1) modulo 1. The 〈charge〉 sector consists of the fractional

Abelian quasi-particles products λm, where λ2n+1 ∼ ψ2n+1 ∼ ψel corresponds to the
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local electronic quasi-particles. In particular, when a = −1 and g = −2, hλ =

1/2(2n + 1) and therefore λ behaves exactly like the Laughlin quasi-particle of the

FQH state U(1)(2n+1)/2 with filling fraction ν = 1/(2n + 1) and chiral central charge

ccharge = 1. Combining the neutral and charge sectors, the FTI slab with TR breaking

ferro-magnetic surface has the decoupled tensor product TO

F = 〈charge〉 ⊗ Z(2a)
2n+1, (4.1)

and in the special case when a = −1 and g = −2, it is identical to the Abelian state

U(1)(2n+1)/2 ⊗ SU(2n + 1)1, which has a total central charge c = 2n + 1. In general,

the filling fraction and chiral central charge are not definite and are subject to surface

reconstruction. For instance, the addition of 2N electronic Dirac fermions per surface

modifies the two response quantities by an equal amount ν → ν + 2N , c→ c+ 2N .

TR breaking 
ferromagnetic surface ↑

TR breaking 
ferromagnetic surface ↓

TR symmetric 
T -Pf* surfaces

surface gauge
charge ζa

gauge flux Φ

surface gauge
charge ζa

parton ψ with 
gauge charge g
electric charge e*

FTI slab with
generalized Pfaffian
topological order Pf* {

{
FTI slab with
fractional Chern
topological order F{σ = ν

e2

h
κ = c

π2k2BT

3h

σ =
ν

2

e2

h
κ =

c

2

π2k2BT

3h

FTI slab with
generalized Pfaffian
topological order Pf*

hc/e magnetic flux 
tube / Dirac string

magnetic monopole
electric charge e*/2 

Figure 4.1: Summary of the quasi-particles and gauge flux content in FTI slabs. A
pair of Pf∗ FTI slabs are merged into a fractional Chern FTI slab F by gluing the
two TR symmetric T -Pf∗ surfaces. Directed bold lines on the front surface are chiral
edge modes of the Pf∗ and F FTI slabs.

4.2 Superconducting heterostructure

Next we move on to superconducting heterostructures. We begin with the fractional

Chern FTI slab F in (4.1) and introduce weak superconducting pairing, perhaps
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induced by proximity with a bulk superconductor, without closing the bulk energy

gap. In the simplest scenario, this condenses all parton pairs ψ2m, which form a

Lagrangian subgroup [136] – a maximal set of mutually local bosons – containing the

Cooper pair ψ2
el = ψ2(2n+1). Since the parton pair ψ2 carries gauge charge 2g, which is

relatively prime with 2n+ 1, the condensate confines all non-trivial dyons γm, which

are non-local and have non-trivial monodromy with ψ2. As the neutral sector Z(2a)
2n+1

is killed by pairing, the superconducting FTI slab with TR conjugate ferromagnetic

surfaces has a trivial fermionic TO . It however still carries chiral fermionic edge modes

with the same chiral central charge cF . On the other hand, these fermionic channels

also live along the line interface between TR conjugate ferromagnetic domains on

the surface of a weakly superconducting FTI . When the line interface hits a TR

symmetric superconductor surface island (c.f. Fig. 4.1 by replacing the T -Pf∗ surfaces

by superconductor surface), these chiral channels split and divide along the pair of

superconducting-ferromagnetic surface line interfaces. Both of these channels are

electrically neutral as charge U(1) symmetry is broken by the superconductor, and

each of them carries half of the energy current of F and has chiral central charge cF/2.

For example, the superconductor surface-ferromagnetic surface heterostructure on a

conventional TI surface holds a chiral Majorana channel with c = 1/2 along the line

tri-junction [121, 74]. In the specific fractional case when a = −1 and g = −2, each

superconducting-ferromagnetic surface line interface holds 2n + 1 chiral Majorana

fermions and is described by the Wess-Zumino-Witten SO(2n + 1)1 CFT with the

central charge c = (2n + 1)/2. Analogous to the conventional superconducting TI

surface [137], the superconductor surfaces of the FTI supports a zero energy Majorana

bound state (MBS) at a vortex core. Now that the condensate consists of parton pairs,

vortices are quantized with the magnetic flux hc/2e∗ = (2n + 1)hc/2e. Each pair of

MBS forms a two-level system distinguished by parton fermion parity.
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4.3 Generalized T -Pfaffian∗ surface

Here we describe the T -Pf∗ surface state that preserves both TR and charge U(1)

symmetries of the FTI. Let’s first discuss the T -Pf surface state in TI . “Pfaffian”

states generally describe non-abelian topological order in fractional quantum Hall

states with even denominator filling fraction. The following many-electron wave-

function was originally proposed by Moore and Read in [107] for ν = 1/q fractional

quantum Hall state with q being an even integer.

ΨPf ({zi}) = Pfaff

(
1

zi − zj

)
Πi<j (zi − zj)q e−1/4

∑
i |zi|2 (4.2)

Here zj is the complex co-ordinate of electrons. The Pfaff() function gives an anti-

symmetric matrix. The boundary of such 2+1 D topologically ordered state is charac-

terized by fractional Hall conductance as well as thermal conductance. This boundary

is described by a CFT as mentioned in chapter 1 and a particular CFT candidate is

U(1) ⊗ Ising with central charge c = 3/2 describing ν = 1/2 state. The non-trivial

quasiparticles at this boundary consists of semions (quasi-particle with fractional

charge and spin) co-propagating with neutral Majorana fermions. For the abelian

U(1) part of the CFT K-matrix is taken to be 8, hence the charge and spin (mod

1) of all the quasi-particles Ej are (j/4, j2/16). The Ising part of the CFT is charge

neutral and only contributes to the spin of the quasi-particles as shown in table 4.1.

The “Pfaffian” TO have quasi-particles 11j ≡ 11Ej, Ψj ≡ ΨEj and Σj ≡ ΣEj with

spin j2

16
, j2

16
+ 1

2
and j2+1

16
respectively. We can observe that this TO doesn’t have TR

and U(1) symmetry as under these symmetries an anyon would transform to another

anyon with opposite spin but same charge. From the table 4.1 we clearly see such

partners don’t exist within the same charge sectors i.e. for same j.

A related topologically ordered state was proposed in ([69, 36]) for the TR sym-

metric topologically ordered surface of TI, called the T -Pf state. This TO is char-
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Table 4.1: Charge and spin for 24 possible quasi-particles (anyons) in Moore-Read
Pfaffian state.

E0 E1 E2 E3 E4 E5 E6 E7

Charge 0 e/4 e/2 e/4 e 5e/4 6e/4 7e/4

11 0 1/16 1/4 9/16 1 9/16 1/4 1/16
Ψ 1/2 9/16 3/4 1/16 1/2 1/16 1/4 7/16
Σ 1/16 1/8 5/16 10/16 1/16 10/16 5/16 1/8

acterized by U(1)× Ising CFT at the boundary. Here the charge neutral Majorana

mode is counter-propagating with respect to the charged semion mode. The elec-

trical conductance σ = 1
2
e2

h
is same as in the boundary CFT of the Pfaffian state,

but the thermal conductance κ alters as does the central charge, c = 1
2

(see figure

4.2). Such topological ordered state can occur on the surface of TI in the presence

of many-body interaction as shown in [69]. This CFT also gives 24 quasi-particles

{11Ej ≡ 11j,ΨEj ≡ Ψj,ΣEj ≡ Σj} like in 4.1 although with different spins. Only

12 quasi-particles among these, 11j even, Ψj even and Σ
j odd, braid trivially with

the electron quasi-particle Ψ4 i.e they have trivial monodromy phase with electron

(multiple of 2π). Assuming all the π-fluxes are confined then only these 12 quasi-

particles are possible for this state.The fusion and braiding operations are product of

the operations for U(1) and Ising. This state has both TR as well as U(1) symmetry.

The symmetry transformation maps bosons and fermions to themselves and switches

semions within the same charge sector.

112 ↔ Ψ2, 116 ↔ Ψ6 (4.3)

The square of TR is a local unitary symmetry which assigns phase to each anyon

in the T -Pf state, T 2|a〉 → eiφ(x)|a〉[38, 39]. A Kramers doublet is assigned a phase

T 2 = −1 and a Kramers singlet is assigned a phase T 2 = −1. According to Kramer’s

theorem, fermions form doublets and bosons form singlets. But for T -Pf state 114

with integer topological spin turns out to be a Kramers doublet. Similarly, Ψ0 with
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half-integer topological spin is a Kramers singlet. In addition to such anomaly in the

time-reversal property[138, 139], the state also exhibits chiral anomaly. Hence, T -Pf

TO can not be realized in a pure 2D system and must be supported by a 3D bulk.

Figure 4.2: Gapped surfaces on TI. Splitting of central charge showing TO with
c = 1/2 boundary CFT on the TR symmetric gapped surface.

Generalizing the T -Pf surface state of a conventional TI , the FTI version –

referred here as T -Pf∗ – consists of the Abelian surface anyons 11j and Ψj, for j even,

and the non-Abelian Ising-like anyons Σj, for j odd. The index j corresponds to the

fractional electric charge qj = je/4(2n + 1). n = 1 corresponds to T -Pf state.The

surface anyons satisfy the fusion rules

11j × 11j′ = Ψj ×Ψj′ = 11j+j′ , 11j ×Ψj′ = Ψj+j′ ,

Ψj × Σj′ = Σj+j′ , Σj × Σj′ = 11j+j′ + Ψj+j′ , (4.4)

and the spin statistics

h11j = hΨj −
1

2
=
j2

16
, hΣj =

j2 − 1

16
modulo 1 (4.5)

so that 11j,Ψj are bosonic, fermionic or semionic, and Σj are bosonic or fermionic. The

fermion Ψ4 is identical to the super-selection sector of the bulk parton ψ, which is local

with respect to all surface anyons and can escape from the surface and move into the

bulk of FTI . TR symmetry acts on the surface anyons the same way it acts on those

in the T -Pf state for conventional TI [38, 140]. For example, the parton combinations
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ψ2j+1 = Ψ8j+4 (and ψ2j = 118j) are Kramers doublet fermions (respectively Kramers

singlet bosons), while Ψ8j (118j+4) are Kramers singlet fermions (respectively Kramers

doublet bosons). Moreover, for identical reasons as in the conventional TI case, the

T -Pf∗ state is anomalous and can only be supported holographically on the surface

of a topological bulk. For instance, the bosonic TO of the T -Pf∗ state with all the

quasi-particles including those with monodromy phase π w.r.t. electron (π-fluxes)

i.e. after gauging fermion parity would necessarily violate TR symmetry. Please note

that there are alternative surface TO that generalize those in Refs.[36, 37]. However

I will only focus on the T -Pf∗ state in this thesis.

The generalized Pfaffian state described by the following CFT contains the T -Pf∗

state as a subset.

Pf∗ = U(1)⊗ Ising ⊗ Z2n+1 (4.6)

Here Z2n+1 is a chiral gauge theory that is charge neutral. The Ising part is also charge

neutral and identical to either SO(15−2n) or SO(7−2n). The charge part, U(1) can

be described using an abelian Chern simons theory with k-matrix 8(2n+ 1) denoted

by U(1)4(2n+1). One can check that this is a modular CFT and indeed contains T -Pf∗

quasi-particles as a subset. In fact, note that for n > 0, the TO corresponding to

U(1)⊗ Ising CFT has no subset of anyons that can form a TR symmetric TO . The

chiral Z2n+1 part adds quasi-particles such that a subset of the quasi-particles are

closed under time-reversal transformation along with charge conservation. FTI bulk

supports the emergent discrete Z2n+1 gauge theory which may give rise to the chiral

Z2n+1 gauge theory on the surface. The T -Pf∗ surface state and generalized Pfaffian

state in a FTI slab geometry will be discussed next.

The FTI slab with a TR symmetric T -Pf∗ top surface and a TR breaking bottom

ferromagnet surface carries a novel quasi-(2+1)-D TO . Its topological content consists
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of the fractional partons coupled with the Z2n+1 gauge theory in the bulk and the T -

Pf∗ surface state (see Fig. 4.1). All surface anyons are confined to the TR symmetric

surface except the parton combinations ψ2j+1 = Ψ8j+4 and ψ2j = 118j. Moreover, the

TR breaking boundary condition confines a gauge quasi-particle ζa per gauge flux

Φ ending on the ferromagnet surface. On the other hand, there is no gauge charge

associated with a gauge flux ending on the T -Pf∗ surface because of TR symmetry.

Thus a gauge flux passing through the entire slab corresponds to the dyon δ = Φ× ζa

with spin hδ = a/(2n + 1) modulo 1. The T -Pf∗ state couples non-trivially to the

Z2n+1 gauge theory as the parton ψ = Ψ4 carries a gauge charge g. The general

surface anyons Xj, for X = 11,Ψ,Σ, must carry the gauge charge z(j) ≡ n2gj modulo

2n + 1 and associate to the monodromy quantum phase e2πiz(j)/(2n+1) when orbiting

around the dyon δ. For instance, as 2n ≡ −1 modulo 2n + 1, z(4j) ≡ gj counts the

gauge charge of the parton combination ψj.

The TO of this FTI slab is therefore generated by combinations of the T -Pf∗

anyons and the dyon δ. We denote the composite anyon by

X̃j,z = Xj ⊗ δz+n
3ugj, (4.7)

where X = 11,Ψ for j even or Σ for j odd, z = 0, . . . , 2n modulo 2n + 1, and

ua+ v(2n+ 1) = 1. They satisfy the fusion rules

1̃1j,z × 1̃1j′,z′ = Ψ̃j,z × Ψ̃j′,z′ = 1̃1j+j′,z+z′ ,

1̃1j,z × Ψ̃j′,z′ = Ψ̃j+j′,z+z′ , Ψ̃j,z × Σ̃j′,z′ = Σ̃j+j′,z+z′ ,

Σ̃j,z × Σ̃j′,z′ = 1̃1j+j′,z+z′ + Ψ̃j+j′,z+z′ . (4.8)
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They follow the spin statistics

h(1̃1j,z) = h(Ψ̃j,z)−
1

2
= h(Σ̃j,z) +

1

16

=
j2

16
+
az2 − n6ug2j2

2n+ 1
modulo 1. (4.9)

The j, z indices in (4.7) are defined in a way so that X̃j,0 are local with respect to the

dyons δz = 1̃10,z and decoupled from the dyon sector Z(a)
2n+1. The T -Pf∗ surface anyons

belong to the subset Xj = X̃j,−n3ugj, which is a maximal sub-category that admits

a TR symmetry. The electronic quasi-particle belongs to the super-selection sector

ψel = Ψ̃4(2n+1),0, which is local with respect to all anyons. If one gauges fermion parity

and includes anyons that associate −1 monodromy phase with ψel, i.e. if one includes

1̃1j,z, Ψ̃j,z for j odd and Σ̃j,z for j even, the 〈Ising〉 sector generated by 1 = 1̃10,0,

f = Ψ̃0,0, σ = Σ̃0,0 is local with and decoupled from the 〈charge〉Pf∗ sector generated

by 1̃1j,0. The TO of the FTI slab thus takes the decoupled tensor product form after

gauging fermion parity

Pf∗ = 〈charge〉Pf∗ ⊗ 〈Ising〉 ⊗ Z(a)
2n+1. (4.10)

Gauging fermion parity is not the focus of this thesis. Nevertheless, we notice in

passing that there are inequivalent ways of fermion parity gauging, and in order for

the Pf∗ theory to have the appropriate central charge, (4.10) needs to be modified by a

neutral Abelian SO(2n)1 sector [140]. However, the tensor product (4.10) is sufficient

and correct to describe the fermionic TO of the FTI slab (with global ungauged

fermion parity) by restricting to super-selection sectors X̃j,z that are local with respect

to the electronic quasi-particle ψel. We refer to this fermionic TO as a generalized

Pfaffian state. The next section discusses how this generalized Pfaffian state proposed

is indeed consistent with our understanding of the ferromagnetic surfaces in FTI

explained in sec (4.1).
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4.4 Gluing T -Pfaffian∗ surfaces

The chiral channel F in (4.1) between a pair of TR conjugate FS domains divides into

a pair of fermionic Pf∗ in (4.10) at a junction where the two ferromagnetic surface

domains sandwich a TR symmetric T -Pf∗ surface domain (see Fig. 4.1). Conservation

of charge and energy requires the filling fractions and chiral central charges to equally

split, i.e. 2νPf∗ = νF and 2cPf∗ = cF . For instance, in the prototype case when a = −1

and g = −2, νPf∗ = 1/2(2n+ 1) and cPf∗ = (2n+ 1)/2. Similar to the aforementioned

F case, these quantities are subjected to surface reconstruction ν → ν+N , c→ c+N .

In addition to the response quantities, the TO of F for the FTI slab with TR

conjugate ferromagnetic surface is related to that of the fermionic Pf∗ by a relative

tensor product

F = Pf∗ �b Pf∗. (4.11)

This can be understood by juxtaposing the TR symmetric surfaces of a pair of Pf∗

FTI slabs and condensing surface bosonic anyon pairs on the two T -Pf∗ surfaces.

This anyon condensation [110, 141, 142] procedure effectively glues the two FTI slabs

together along the TR symmetric surfaces (see Fig. 4.1). The relative tensor product

�b involves first taking a decoupled tensor product (Pf∗)A ⊗ (Pf∗)B when the two

Pf∗ FTI slabs denoted by A and B are put side by side. The quasi-particles in this

decoupled tensor product are of the form X̃A
ja,zaX̃

B
jb,zb

which consists of a pair of T -

Pf∗ anyons and a pair of dyons. Out of these we choose a set of Bosons that braid

trivially with each other and condense them to the vaccum. All the quasi-particles

identified as vaccum should be charge neutral and should braid trivially with all the

other anyons in the condensed phase. A natural choice for vaccum is the parton pair

ΨA
4 ΨB
−4, which is combination of parton creation and anhilation operator. This is

because partons are deconfined in FTI bulk. Anything that braids with it is confined.
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We can derive braiding statistics with the ribbon formula, θA,B = hA×B − hA − hB.

The braiding phase from the anyon combination X̃A
ja,zaX̃

B
jb,zb

around ΨA
4 ΨB
−4 is the

same as (δA)za+n3ugja(δB)zb+n
3ugjb around ΨA

4 ΨB
−4. This is because the parton Ψ4

braids trivially with anyons in the T -Pf∗ surface state but non-trivially with partons

because it carries “g” gauge charges, so this phase is g(za + n3ugja − zb − n3ugjb).

This is zero if the dyon number z + n3ugj is equal on the A and B particle. This

ensures gauge fluxes must continue through both A and B slabs, i.e., gauge magnetic

monopoles are confined. If we define the dyon pair which consist of continuos gauge

flux , γz ≡ 1̃1
A

0,z 1̃1
B

0,z then quasi-particles that are not confined are of the form XA
jaX

B
jb
γz.

Quasi-particles that differ by ΨA
4 ΨB
−4 are now identified as follows

11Aja11
B
jb
γz ≡ ΨA

ja+4ΨB
jb−4γ

z ≡ 11Aja+811
B
jb−8γ

z,

11AjaΨ
B
jb
γz ≡ ΨA

ja+411
B
jb−4γ

z ≡ 11Aja+8ΨB
jb−8γ

z,

ΣA
jaΣ

B
jb
γz ≡ ΣA

ja+4ΣB
jb−4γ

z,

11AjaΣ
B
jb
γz ≡ ΨA

ja+4ΣB
jb−4γ

z ≡ 11Aja+8ΣB
jb−8γ

z ≡ ΨA
ja+12ΣB

jb−12γ
z.

Next we choose the fermion pair ΨA
0 ΨB

0 . Notice Σ braids with Ψ, so anything with

just one Σ is confined. This brings the identification to

11Aja11
B
jb
γz ≡ 11Aja+4j11

B
jb−4jγ

z ≡ ΨA
ja+4jΨ

B
jb−4jγ

z,

11AjaΨ
B
jb
γz ≡ 11Aja+4jΨ

B
jb−4jγ

z ≡ ΨA
ja+4j11

B
jb−4jγ

z,

ΣA
jaΣ

B
jb
γz ≡ ΣA

ja+4jΣ
B
jb−4jγ

z.

Next we can condense ΨA
2 11

B
−2, which when braided around 11Aja11

B
jb

or ΨA
ja11

B
jb

gives

4(ja − jb)/16. So, they are not confined if ja − jb = 0 mod 4. When ΨA
2 11

B
−2 braids

around ΣA
jaΣ

B
jb

it gives 4(ja − jb)/16 + 1/2 which is not confined if ja − jb = 2 mod 4.
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The identification is now

11Aja11
B
jb
γz ≡ 11Aja+4j11

B
jb−4jγ

z ≡ ΨA
ja+4jΨ

B
jb−4jγ

z

≡ 11Aja+2ΨB
jb−2γ

z ≡ 11Aja+2+4jΨ
B
jb−2−4jγ

z

≡ ΨA
ja+2+4j11

B
jb−2−4jγ

z,

ΣA
jaΣ

B
jb
γz ≡ ΣA

ja+2jΣ
B
jb−2jγ

z.

ΣΣ pairs have quantum dimension 2 so they split into simpler Abelian components

ΣA
jaΣ

B
jb

= S+
ja,jb

+ S−ja,jb , (4.12)

where each S± carries the same spin as the original Ising pair but differs from each

other by a unit fermion S± × ΨA/B = S∓. S+ and S− normally have non-trivial

mutual monodromy. We choose to condense the electrically neutral S+
1,−1 and its

multiples, while confining S−1,−1. This means ΣA
1 ΣB
−1 is condensed. The Σ pair around

11Aja11
B
jb

gives a phase of 2(ja − jb)/16 which is zero if ja − jb = 0 mod 8. The Σ pair

around 11AjaΨ
B
jb

gives a phase of 2(ja − jb)/16 + 1/2 which is zero if ja − jb = 4 mod

8. The Σ pair around ΣA
jaΣ

B
jb

gives a phase of 2(ja − jb)/16 ± 1/4 which is zero if

ja − jb = 2 or 6 mod 8.

The condensate is now complete, and we have the identification

11Aja11
B
jb
γz ≡ ΨA

ja,zΨ
B
jb,z
γz ≡ ΨA

ja+211
B
jb−2γ

z

≡ 11Aja+2ΨB
jb−2,zγ

z ≡ S±ja±1,jb∓1γ
z

≡ 11Aja+411
B
jb−4γ

z (4.13)

for ja ≡ jb mod 8 and ja, jb both even. These residual quasi-particles are just the

multiples of the parton 11A0 ΨB
4 together with the dyons γz. They generate the FTI

slab topological order, F when it has a pair of conjugate TR breaking surfaces.
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Equation 4.13 are just parton combinations. For instance, ψA = ΨA
4 11

B
0 ≡ 11A4 ΨB

4 =

ψB are now free to move inside both FTI slabs after gluing. The TO after the gluing

is generated by the partons and dyons, which behave identically to those in F of (4.1).

This proves (4.11). The anyon condensation or the gluing of a pair of T -Pf∗ states

preserves symmetries for the same reason it does for the conventional TI case [38, 140].

It is worth noting that a magnetic monopole can be mimicked by a magnetic flux

tube / Dirac string (with flux quantum hc/e) that originates at the TR symmetric

surface interface and passes through one of the two FTI slab, say the A slab. In

the prototype a = −2 and g = −1, the filling fraction νPf∗ = 1/2(2n + 1) of the

quasi-two-dimensional slab ensures, according to the Laughlin argument [130], that

the monopole associates to the fractional charge q = 1/2(2n + 1), which is carried

by the confined T -Pf∗ surface anyons 11A2 or ΨA
2 . This surface condensation picture

therefore provides a simple verification of the Witten effect [120] for θ = π/(2n+ 1).

At last notice that in the band insulator case for n = 0, F in (4.1) reduces to

the Chern insulator or the lowest Landau level (LLL), and Pf∗ in (4.10) is simply

the particle-hole (PH) symmetric Pfaffian state [143, 144, 145]. The PH symmetry is

captured by the relative tensor product (4.11), which can be formally rewritten into

Pf∗ = F � Pf∗ (4.14)

by putting Pf∗ on the other side of the equation. Here, the tensor product is rela-

tive with respect to some collection of condensed bosonic pairs, and Pf∗ is the TR

conjugate of Pf∗. Equation (4.14) thus equates Pf∗ with its PH conjugate, which is

obtained by subtracting itself from the LLL . In the fractional case with n > 0, (4.14)

suggests a generalized PH symmetry for Pf∗, whose PH conjugate is the subtraction

of itself from the FQH state F .
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Chapter 5

Conclusion

We constructed a coupled Majorana wire model in (2+1)D that imitates the massless

Majorana modes on the surface of a topological superconductor. This model had a

non-local “antiferromagnetic” time reversal symmetry and consequently was Z2 clas-

sified – rather than Z in the class DIII TSC case – under the single-body framework.

Despite the difference, this model adequately described the surface behavior of a TSC

when the number N of Majorana species was odd, and it was worth studying and

interesting in and of itself.

We introduced the 4-fermion gapping potentials in section 3.1. They relied on the

fractionalization or bipartition of the so(N)1 current along each wire into a pair of GN
channels (see eq.(3.4) and (3.5)). The two fractional channels were then backscattered

onto adjacent wires in opposite directions. This localized all the low energy degrees

of freedom and opened an excitations energy gap without breaking the time reversal

symmetry. When N = 2r was even, each wire could simply be split into a pair of

GN = so(r)1 channels. The fractionalization was not as obvious when N was odd.

We first made use of the conformal embedding that decomposed nine Majorana’s into

two subsectors, so(9)1 ⊇ so(3)3 ⊗ so(3)3 (see section 3.1.2.1). This division could be

generalized by all odd cases by splitting a subset of 9 Majorana’s into a pair of so(3)3
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and the remaining even number of Majorana’s into a pair of so(r)1. This could even

be applied when N is less then 9 because each wire could be reconstructed by adding

same number of right and left movers.

The surface GN topological order was inferred from the bulk-boundary corre-

spondence (see eq.(3.91)). These topological states followed a 32-fold periodicity

GN
∼= GN+32 and a relative tensor product structure GN1 �b GN2

∼= GN1+N2 . We

presented the quasiparticle types as well as their fusion and braiding statistics prop-

erties. We explained the relative tensor product structure using the notion of anyon

condenstion[110]. On a more fundamental level, one should be able to deduce the

topological order without the knowledge of the boundary by studying the modular

properties of the degenerate bulk ground states under a compact torus geometry[102],

or by directly looking at the exchange and braiding behaviors of bulk excitations (i.e.

on 2+1 D surface). In fact the coupled wire construction provided a fitting model

for this purpose. Being an exactly solvable model, a ground state could be explicitly

expressed as entangled superposition of tensor product ground states between each

pair of wires. In the simplest case when the model is bosonizable i.e. for the even N ,

a ground state could be specified by the pinned angle variables of a collection of sine-

Gordon potentials. The bulk excitations could be realized as kinks between a pair of

wires and could be created by vertex operators. We couldn’t find a straight-forward

method to find the ground states for the odd N case. Finding the ground state for odd

N case will also provide us the operators corresponding to the non-abelian anyons.

The non-abelian anyons corresponding to SO(3)3 TO has not appeared in any other

system. Hence finding the ground state for this interacting Hamiltonian for N = 9 is

an important problem and will be addressed in future.

We noticed that there were alternative ways of fractionalization that led to dif-

ferent gapping interactions and consequently different topological orders. We saw in

section 3.1.1.2 that N = 4 was an exceptional case that requires the special bipartition
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so(4)1 ⊇ su(2)1 × su(2)1 instead of two copies of so(2)1. We also saw in section 3.3

that when N = 16, the surface could be gapped by alternative interactions that corre-

sponded to a S̃O(8)1 or SO(4)4 topological order, none of which contained electronic

quasiparticle excitations. Other conformal embeddings so(n2)1 ⊇ so(n)n ⊗ so(n)n

could give rise to multiple possibilities. Our 32-fold topological states, which only

utilized so(9)1 ⊇ so(3)3⊗so(3)3, therefore should belong into a wider universal frame-

work. These is to be understood in future.

We also studied gapped FTI surface states with (i) TR breaking order, (ii) charge

U(1) breaking order, as well as (iii) symmetry preserving T -pfaffian∗ topological order.

The FTI was described using fractionally charged Dirac partons. We considered the

simplest type of FTI where partons coupled with a discrete Z2n+1 gauge theory for

integer n. We characterized the fractional interface channels sandwiched between

different gapped surface domains by describing their charge and energy response,

namely the differential electric and thermal conductance. The low-energy CFT for

these fractional interface channels corresponded to the TO of quasi-(2+1) dimensional

FTI slabs with the corresponding gapped top and bottom surfaces. In particular, a

FTI slab with TR conjugate ferromagnetic surfaces behaved like a fractional Chern

insulator with TO (4.1). For the specific values of the parameters in our model,

a = −1 and g = −2, its charge sector was identical to that of the Laughlin ν =

1/(2n+ 1) fractional quantum Hall state. When n = 3, CFT at the interface is given

by U(1)3/2 × SU(3)1 where the charged part U(1)3/2 correspond to the CFT for the

Laughlin state with filling fraction ν = 1
3
. The neutral part SU(3)1 corresponds to

gauge degrees of freedom. In future we will explore how to write a coupled elecron

wire model with inter-wire interaction, such that U(1)3/2 × SU(3)1 CFT will be left

behind at the edge after all the electrons in the bulk are localized. Such model will

give us the explicit electron interaction that results in 2 + 1 D topologically ordered

state with SU(3) gauge theory.
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We proposed a generalized T -Pf∗ TR symmetric surface state for the surface of

FTI slab. Combining the top TR symmetric T -Pf∗ surface with the FTI bulk as well

as the bottom TR breaking surface, this FTI slab exhibited a generalized Pfaffian TO

,Pf∗ (4.10). Here we have 2n + 1 times more anyons compared to the T -Pf surface

state. The anyons in this generalized state have additional gauge charges. The electro-

magnetic charge for these anyons were quantized in multiples of j
4(2n+1)

instead of j
4
,

which is charge quantum in T -Pf state. In fact n = 0 T -Pf∗ state is the T -Pf state.

The CFT corresponding to the generalized Pfaffian TO at the interface between TR

breaking gapped surface and TR symmetric gapped T -Pf∗ surface were shown to

have differential electrical conductance, σ = dI
dv

= 1
2n+1

e2

h
and thermal conductance,

1
2

π2k2
BT

3h
(see figure 4.1). For general n, the CFT was shown to be U(1)× Ising×Z2n+1

where only U(1) is a charged theory. Z2n+1 is the chiral part of Z2n+1 gauge theory.

Such CFT may also appear at the edge of a fractional quantum Hall state and should

be explored in future. Furthermore, we demonstrated the gluing of a pair of parallel

T -pfaffian∗ surfaces, which are supported by two FTI bulk on both sides. It was

captured by an anyon condensation picture that killed the T -pfaffian∗ TO and left

behind deconfined partons and confined gauge and magnetic monopoles in the bulk.

This condensation of a pair of generalized pfaffian TO to Laughlin-like F TO using

the corresponding Chern-Simon’s K- matrices will be explored in future.

A related work Ref. [140] also constructs the T -pfaffian∗ state of the FTI from the

field theoretic duality approach and is complementary to this work.
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Appendix A

The so(N) Lie algebra and its

representations

The so(N) Lie algebra are generated by real antisymmetric matrices t(rs) =
(
t
(rs)
ab

)
N×N

with entries

t
(rs)
ab = δraδ

s
b − δrbδsa (A.1)

for r, s = 1, . . . , N . There are N(N − 1)/2 linearly independent generators since

t(rs) = −t(sr) and t(rr) = 0. In the main text, we write the basis labels as β = (rs),

for r < s, for conciseness. The generators obey the commutator relation

[
t(rs), t(pq)

]
=
∑
m<n

f(rs)(pq)(mn)t
(mn) (A.2)

where the structure constant is

f(rs)(pq)(mn) =δmrδnqδsp − δmrδnpδsq

+ δmsδrqδnp − δmsδnqδrp. (A.3)
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The matrix representation (A.1) is referred as the fundamental representation

of so(N) and is labeled by ψ. In general the generators of so(N) can have different

irreducible matrix representations t
(rs)
λ = tβλ labeled by λ. Since the quadratic Casimir

operator

Q̂λ = −
∑
β

tβλt
β
λ (A.4)

commutes with all the generators, it must have a fixed eigenvalue Qλ that (incom-

pletely) characterizes the irreducible representation λ. For instance, the fundamental

representation in (A.1), denoted by ψ, has quadratic Casimir value Qψ = N − 1.

The spinor representation σ of so(N) makes use of the Clifford algebra[146]

{γa, γb} = γaγb + γbγa = 2δab where γ1, . . . , γN are hermitian matrices of dimen-

sion d = 2N/2 for N even or d = 2(N−1)/2 for N odd. The so(N) generators are

represented as the quadratic combination

t(rs)σ =
1

4

∑
ab

γat
(rs)
ab γb =

1

2
γrγs (A.5)

and satisfy (A.2). When N is even, the parity operator (−1)F = iN/2γ1 . . . γN com-

mutes with all t
(rs)
σ and the representation is decomposable into σ = s+ ⊕ s−, where

s± are 2N/2−1-dimensional sectors with (−1)F = ±1. The so(N) generators are then

irreducibly represented by

t(rs)s± = P±t
(rs)
σ P †± (A.6)

where P± are the projection operators onto the fixed parity subspaces. As t
(rs)
σ t

(rs)
σ =

−(1/4)11, the quadratic Casimir values (A.4) of spinor representations are

Qσ =
N(N − 1)

8
, Qs± =

N(N − 1)

8
. (A.7)
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The complexified so(N) Lie algebra has an alternative set of Cartan-Weyl genera-

tors. It consists of a maximal set of commuting hermitian generators H1, . . . , Hr, and

a finite set of raising of lowering operators Eα = (E−α)†, labeled by integral vectors

α = (α1, . . . , αr) ∈ ∆ called roots. The root lattice is given by the set

∆so(2r) = {±eI ± eJ : 1 ≤ I < J ≤ r}

∆so(2r+1) = ∆so(2r) ∪ {±eI : 1 ≤ I ≤ r} (A.8)

where eI are unit basis vectors of Rr. In particular, there are r simple roots α1, . . . ,αr

that forms a basis for the root lattice. For so(N) they can be chosen to be

αI =


eI − eI+1, for I = 1, . . . , r − 1

er, for I = r and N odd

er−1 + er, for I = r and N even

. (A.9)

The set of roots ∆ consists of integral combinations of the simple rootsα =
∑r

J=1 b
JαJ

so that its length is |α| =
√

2, for even N , or |α| = 1 or
√

2, for odd N .

The integer r is the rank of the so(N) Lie algebra and is determined by N = 2r

for N even or N = 2r + 1 for N odd. These generators satisfy

[
H i, Eα

]
= αiEα,

[
Eα, E−α

]
=

2

|α|2
r∑
i=1

αiH i (A.10)

[
Eα, Eβ

]
∝

 Eα+β, if α+ β ∈ ∆

0, if otherwise
, for α 6= β.

The Cartan matrix K = (KIJ)r×r of the algebra is defined by the scalar product

KIJ =
2αTI αJ
|αJ |2

=
r∑
i=1

2αiIα
i
J

|αJ |2
. (A.11)
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so(2r) is simply-laced in the sense that all roots have identical length and the Cartan

matrix is therefore symmetric

Kso(2r) =



2 −1 0 . . . 0

−1 2
. . .

...

0
. . . 2 −1 −1

... −1 2 0

0 . . . −1 0 2


. (A.12)

Sometimes it would be convenient to use the Chevalley basis so that the commuting

generators are redefined

hI =
2

|αI |2
r∑
i=1

αiIH
i (A.13)

so that the commutator relations (A.10) becomes

[
hI , E±αJ

]
= ±KIJE

±αJ ,
[
EαJ , E−αJ

]
= δIJhJ . (A.14)
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Appendix B

Bosonizing the so(2r)1 current

algebra

Here we review the bosonization[26, 27, 23] of a chiral wire with N = 2r Majorana

fermions, and express the so(2r)1 current operators in bosonized form. The 2r Ma-

jorana (real) fermions can be paired into r Dirac (complex) fermions and bosonized

into the normal ordered vertex operators

cj(z) =
ψ2j−1(z) + iψ2j(z)√

2
∼ exp

(
iφ̃j(z)

)
. (B.1)

Here we focus on a single wire, say at an even y, so that all fields depend on the holo-

morphic parameter z = eτ+ix. The r-component boson φ̃ = (φ̃1, . . . , φ̃r) is governed

by the Lagrangian density

L0 =
1

2π

r∑
j=1

∂xφ̃
j∂tφ̃

j =
1

2π
∂xφ̃∂tφ̃ (B.2)

and follows the algebraic relations

[
φ̃j(x, t), φ̃j

′
(x′, t)

]
= iπ

[
δjj
′
sgn(x′ − x) + sgn(j − j′)

]
(B.3)
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or equivalently the time-ordered correlation function

〈φ̃j(z)φ̃j
′
(w)〉 = −δjj′ log(z − w) +

iπ

2
sgn(j − j′) (B.4)

for sgn(s) = s/|s| when s 6= 0 and sgn(0) = 0. Operator product expansions between

unordered vertex operators can be evaluated by eA(z)eB(w) = eA(z)+B(w)+〈A(z)B(w)〉, for

A,B linear combination of the bosons φ̃j. For instance, the vertex operators in (B.1)

reproduce the product expansion of a pair of identical Dirac fermions

cj(z)
(
cj(w)

)†
=

1

z − w + i∂φ̃j(w) + . . . (B.5)

and the singular piece is dropped when the product is normal ordered in the limit

z → w. The non-singular sign factor iπsgn(j − j′) ensures fermions with distinct

flavors anticommutes

cj(z)cj
′
(w) = −cj′(w)cj(z). (B.6)

The so(2r)1 currents in the Cartan-Weyl basis can now be bosonized

Hj(z) = cj(z)cj(z)† = i∂zφ̃
j(z) (B.7)

Eα(z) =
r∏
j=1

cj(z)α
j

= exp
(
iα · φ̃(z)

)

where α = (α1, . . . , αr) ∈ ∆ are roots of so(2r) (see (A.8)) and the fermion products

are normal ordered. For instance, α has two and only two non-zero entries and Eα

must be of the form

Eα(z) = ci(z)±cj(z)± = ei(±φ̃
i(z)±φ̃j(z)). (B.8)
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Combining raising or lowering operators give

Eα(z)Eβ(w) = i−α·βε(α,β)
ei(α·φ̃(z)+β·φ̃(w))

(z − w)−α·β
(B.9)

where the vertex operator here is again normal ordered and the 2-cocyle is given by

the star product

ε(α,β) = (−1)α∗β = (−1)
∑
i>j α

iβj . (B.10)

As
∑r

i=1 α
i is even for all roots, we have the following simplification when interchang-

ing α↔ β

ε(α,β)ε(β,α) = (−1)α·β. (B.11)

Using the boson OPE (B.4), the product of the two vertex operators above is

singular only when (i) α = −β, or (ii) α · β = −1 in other words α + β ∈ ∆. To

summarize, the Cartan-Weyl generators satisfy the product expansion

H i(z)Hj(w) =
δij

(z − w)2
− ∂φ̃i(w)∂φ̃j(w) + . . .

H i(z)Eα(w) =
αi

z − wE
α(w) + . . .

Eα(z)E−α(w) =
1

(z − w)2
+

r∑
i=1

αi

z − wH
i(w) (B.12)

− 1

2

(
α · ∂φ̃(w)

)2

+ . . .

Eα(z)Eβ(w) =
iε(α,β)

z − w Eα+β(w) + . . . , if α · β = −1.

For instance, the 2-cocyle coefficient ε(α,β) ensures the OPE between Eα(z) and

Eβ(w) commute as the sign in (B.11) when exchanging α ↔ β cancels that in

1/(z − w) when switching z ↔ w.
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In certain derivations, especially when involving quasiparticle excitations, it may

be more convenient to use the Chevalley basis. Here fields are expressed in terms

of non-local bosons φ = (φ1, . . . , φr), which are related to the original ones by the

(non-unimodular) basis transformation

φ̃i =
r∑
I=1

αiIφ
I (B.13)

using the simple roots αI = (α1
I , . . . , α

r
I) ∈ Zr (see (A.9) in appendix A). The La-

grangian density (B.2) now becomes

L0 =
1

2π

r∑
I,J=1

KIJ∂xφ
I∂tφ

J (B.14)

where K = (KIJ)r×r = αI ·αJ is the Cartan matrix of so(2r)1 (see eq.(A.12)).

The current generators are rewritten in the Chevalley basis by

hI(z) =
r∑
i=1

αiIH
i(z) = i

r∑
J=1

KIJ∂zφ
J(z)

Eb(z) = Eβ(z) = exp
(
ibTKφJ(z)

)
(B.15)

where β =
∑

J b
JαJ are roots expressed in integral combinations of the simple ones,

for b = (b1, . . . , br) ∈ Zr. The Chevalley generators satisfy the modified current

relations from (B.12)

hI(z)hJ(w) =
KIJ

(z − w)2
+ . . .

hI(z)Eb(w) =
KIJb

J

z − wE
b(w) + . . . (B.16)

Eb(z)E−b(w) =
1

(z − w)2
+

r∑
I=1

bI

z − whI(w) + . . .

Eb1(z)Eb2(w) =
iε(β1,β2)

z − w Eb1+b2(w) + . . .
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if bT1Kb2 = −1.

The (normal ordered) energy-momentum tensor can be turned from the Sugawara

form (2.12) to the usual bosonic one

T (z) =
1

2(N − 1)

[
r∑
i=1

H i(z)H i(z) +
∑
α∈∆

Eα(z)E−α(z)

]

= −1

2
∂φ̃(z) · ∂φ̃(z) = −1

2
∂φ(z) ·K∂φ(z). (B.17)

Excitations in the CFT can be easily represented by vertex operators

V a(z) = exp (ia · φ(z)) = exp
(
ia∨ · φ̃(z)

)
(B.18)

labeled by integral lattice vectors a = (a1, . . . , ar), or equivalently dual root lattice

vectors a∨ = (a1
∨, . . . , a

r
∨) with rational entries

aj∨ =
∑
IJ

aI(K
−1)IJαjJ . (B.19)

The conformal dimension of V a can be read off by the inner product

ha =
1

2
aTK−1a =

1

2
(K−1)IJaIaJ

=
1

2
aT∨a∨ =

1

2
δija

i
∨a

j
∨. (B.20)

This can be evaluated from definition (2.16) using the energy-momentum tensor

(B.17) and the OPE

∂zφI(z)φJ(w) = −(K−1)IJ log(z − w) + . . . (B.21)

which is equivalent to (B.4).

Most vertex operators (B.18) however are not WZW primary and do not represent
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the so(2r)1 Kac-Moody algebra. The OPE with the current generators

hI(z)V a(w) =
aI

z − wV
a(w) + . . .

Eb(z)V a(w) = cba(z − w)a·bV a+Kb(w) + . . . (B.22)

would match the requirement (2.14) for a primary field only when the exponent of

the singular term is bounded below, i.e. a · b ≥ −1 for all roots β =
∑

I b
IαI . Such

lattice vectors a are called weights or Dynkin labels of so(2r) at level 1. When the

exponenet a ·b in (B.22) is −1, the vertex operators V a and V a+Kb are related by the

SO(2r)1 symmetry and belong to the same primary field sector. For example the unit

vector a = e1 is the highest weight that generates the fermion sector ψ. Applying

lowering operators E−b to V e1 = c1 gives all 2r Dirac fermions

Vψ = span
{

(cj)± = e±iφ̃
j

: j = 1, . . . , r
}

(B.23)

which in turn irreducibly represent the so(2r)1 algebra (see (2.14)) according to the

fundamental vector representation.

The unit vectors a = er−1 and er generate the two spinor sectors s− and s+

respectively. Each of them consists of 2r−1 twist fields

Vs± = σ1 . . . σ2r (B.24)

= span

{
exp

(
i

r∑
j=1

(−1)sj

2
φ̃j

)
:

r∏
j=1

(−1)sj = ±1

}
.

They irreducibly represent the so(2r)1 algebra according to the even and odd spinor

representations. These are the only primary fields of so(2r)1 and their conformal

dimensions are given by hψ = 1/2 and hs± = r/8.

The four primary fields 1, ψ, s± obey a set of fusion rules, which are OPE keeping
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only primary fields.

s± × ψ = s∓ (B.25)

s± × s±

 1, for r even

ψ, for r odd
, s± × s∓

 ψ, for r even

1, for r odd
. (B.26)

For instance, the OPE

Vs+(z)cr(w)† = ei
φ̃1(z)+...+φ̃r(z)

2 e−iφ̃
r(w)

∝ (z − w)−
1
2 ei

φ̃1(w)+...+φ̃r(w)−φ̃r(w)
2 + . . .

= (z − w)−
1
2Vs−(w) + . . . (B.27)

shows s+ × ψ = s−, and

ei
∑
j φ̃

j(z)/2e−i
∑
j φ̃

j(w)/2 ∝ (z − w)−
r
4 + . . . (B.28)

shows s+ × s+ = 1 for r even, or s+ × s− = 1 for r odd.
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Appendix C

Bosonizing the so(2r + 1)1 current

algebra

A chiral wire with N = 2r + 1 Majorana fermions can be partially bosonized by

grouping ψ1, . . . , ψ2r in pairs to form r Dirac fermions (see (B.1)). This leaves a

single Majorana ψ2r+1 behind. In order for the fermions to obey the correct anticom-

mutation relations, the bosonized complex fermions (B.1) have to be modified by a

Klein factor

cj(z) = (−1)Πeiφ̃
j(z) = eiφ̃

j(z)+iπΠ (C.1)

where (−1)Π is the fermion parity operator that anticommutes with ψ2r+1, and both

Π and ψ2r+1 commute with the rest of the bosons φ̃j. In a non-chiral system, (−1)Π

can be chosen to be the combination iγLγR, for γL/R the zero mode of ψ2r+1
L/R . In the

chiral case, it can be defined by iγγ∞ using an additional Majorana zero mode γ∞

that completes the Cliffort algebra {γ, γ∞} = 0.

The so(2r+1)1 current algebra extends the so(2r)1 algebra by the short roots with

length 1 (see (A.8)). It contains the so(2r)1 generators Hj = i∂φ̃j and Eα = eiα·φ̃

(see (B.7) in apendix B), for α ∈ ∆so(2r) the long roots with length |α| =
√

2. The
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remaining raising and lowering operators with the short roots are represented by the

normal ordered products

E±ej(z) = e±iφ̃
j(z)ψ2r+1(z). (C.2)

In addition to (B.12), the Cartan-Weyl generators satisfy the current relations

H i(z)E±ej(w) =
±δij
z − wE

±ej(w) + . . .

Eej(z)E−ej(w) =
1

(z − w)2
+

1

z − wH
j(w) (C.3)

− 1

2
∂φ̃j(w)∂φ̃j(w)

− ψ2r+1(w)∂ψ2r+1(w) + . . .

Es1ej1 (z)Es2ej2 (w) =
i−s1s2ε(ej1 , ej2)

z − w Es1ej1+s2ej2 (w)

+ . . .

for j1 6= j2 and s1, s2 = ±1. Moreover, when α · (±ej) = −1, i.e. α± ej ∈ ∆so(2r+1),

Eα(z)E±ej(w) =
iε(α, ej)(−1)

∑
j α

j/2

z − w Eα±ej(w) + . . .

where ε(m,n) = (−1)m∗n is defined in (B.10).

The (normal ordered) energy-momentum tensor can be turned from the Sugawara

form (2.12) to the usual bosonic and fermionic one

T (z) =
1

2(N − 1)

[
r∑
i=1

H i(z)H i(z) +
∑
α∈∆

Eα(z)E−α(z)

+
r∑
j=1

Eej(z)E−ej(z) + E−ej(z)Eej(z)

]

= −1

2
∂φ̃(z) · ∂φ̃(z)− 1

2
ψ2r+1(z)∂ψ2r+1(z). (C.4)
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There are only two non-trivial primary fields ψ and σ. The fermion sector ψ consists

of the 2r Dirac fermions cj, (cj)† in (B.23) as well as the remaining Majorana fermion

ψ2r+1. The σ sector consists of 2r twist fields

Vσ = σ1 . . . σ2r+1 (C.5)

= span

{
exp

(
i

r∑
j=1

(−1)sj

2
φ̃j

)
σ2r+1 : sj = 0, 1

}

which represents so(2r+ 1)1 according to the spinor representation. Their conformal

dimensions are given by hψ = 1/2 and hσ = (2r + 1)/16.
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Appendix D

Z6 parafermion model

Here we represent the Z6 parafermions using bosonized fields and Majorana fermions

in the so(9)1 CFT. We focus on a single Majorana wire containing 9 right mov-

ing real fermions. The CFT is fractionalized using the conformal embedding into

so(9)1 ⊇ so(3)+
3 × so(3)−3 (see section 3.1.2.1). Each so(3)3 sector is then further

decomposed into so(2)3 × “Z6” using the coset construction “Z6” = so(3)3/so(2)3

(see section 3.1.2.2). We now provide a more detail description of the Z6 parafermion

sector. We will focus on the one in so(3)−3 .

First we pair six Majorana channels into three Dirac fermions and bosonize c1 =

(ψ1 + iψ4)/
√

2 = eiφ̃
1
, c2 = (ψ2 + iψ5)/

√
2 = eiφ̃

2
and c3 = (ψ3 + iψ6)/

√
2 = eiφ̃

3
.

The Lagrangian density of the boson fields are given in (3.68). Like the so(N)1 case,

extra care is required so that the Dirac fermions cj satisfies the appropriate mutual

anticommutation relations. Here we use a slightly different but more convenient
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convention

〈
φ̃i(z)φ̃j(w)

〉
= −δij log(z − w) +

iπ

2
Sij (D.1)

Sij =


0 if i = j

1 if i− j ≡ 1 mod 3

−1 if i− j ≡ −1 mod 3

so that the constant phases Sij have a threefold cyclic symmetry. The so(2)3 sub-

theory is generated by the “charged” boson φρ = (φ̃1 + φ̃2 + φ̃3)/3. It satisfies

〈φρ(z)φρ(w)〉 = −1

3
log(z − w). (D.2)

The remaining “neutral” bosons φjσ = φ̃j−φρ are linearly dependent φ1
σ+φ2

σ+φ3
σ = 0

and obey the OPE

〈
φiσ(z)φjσ(w)

〉
= −

(
δij − 1

3

)
log(z − w) +

iπ

2
Sij. (D.3)

The “charge” and “neutral” sector completely decoupled so that 〈φρ(z)φjσ(w)〉 = 0.

Lastly, there are three remaining Majoranan fermions ψ7,8,9 in the so(9)1 theory. They

completely decouple with φσ and φρ. Although the vertex eiφρ anticommutes with

ψ7,8,9, this has no effect on any of our derivations. More importantly the “neutral”

vertices eiφ
j
σ commute with the remaining fermions.

In section 3.1.2.2, we defined the Z6 parafermion (3.75)

Ψ =
1√
3

(
eiφ

1
σψ7 + eiφ

2
σψ8 + eiφ

3
σψ9
)

(D.4)

which is part of the so(3)−3 current (see (3.74)). It generates the rest of the Z6
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parafermions

Ψ2 =
1√
15

[
3∑
j=1

ei2φ
j
σ

+ 2i
(
e−iφ

1
σψ89 + e−iφ

2
σψ97 + e−iφ

3
σψ78

)]

Ψ3 =

√
2

5

[
iψ789 − cos

(
φ1
σ − φ2

σ

)
ψ9 (D.5)

− cos
(
φ2
σ − φ3

σ

)
ψ7 − cos

(
φ3
σ − φ1

σ

)
ψ8
]

Ψ4 =
(
Ψ2
)†
, Ψ5 = (Ψ1)† , Ψ0 = Ψ6 = 1

where ψab = ψaψb and ψabc = ψaψbψc. Their conformal dimensions

hΨm =
m(6−m)

6
(D.6)

as well as the fusion rules

Ψm(z)Ψm′(w) =
cmm

′

(z − w)mm′/3
Ψm+m′(w) + . . . (D.7)

Ψm(z)Ψ6−m(w) =
1

(z − w)2hΨm

×
[
1 +

2hΨm

cZ6

(z − w)2TZ6 + . . .

]

match with the known result by Zamolodchikov and Fateev[45], for TZ6 the energy-

momentum tensor (3.73) with central charge cZ6 = 5/4 and

cmm
′
=

√
(m+m′)!(6−m)!(6−m′)!
m!m′!(6−m−m′)!6!

. (D.8)
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Appendix E

The S-matrices of the GN state

The surface topological orders of the time reversal symmetric gapped coupled wire

model are described in section 3.2. There are thirty two distinct topological states

defined in eq.(3.94) and (3.97), which we repeat here.

GN =

 SO(r)1, for N = 2r

SO(3)3 �b SO(r)1, for N = 9 + 2r
. (E.1)

In this appendix we summarize the modular properties of these states. In particular

we present there braiding S-matrices (3.88)

Sab =
1

D
∑

c

dcN
c
ab

θc

θaθb

(E.2)

which are identical to the modular S-matrix[26] of the GN WZW CFT. The fusion

matrices Nc
ab that characterize fusion rules a×b =

∑
cN

c
abc can in turned be deter-

mined by S-matrix throught the Verlinde formula[99] (3.58)

N s
s1s2

=
∑
s′

Ss1s′Ss2s′Sss′
S0s′

. (E.3)

The GN state is Abelian and carries four anyon types 1, ψ, s+, s− when N is a
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multiple of four. It is non-Abelian otherwise and carries three anyon types 1, ψ, σ

when N is 2 mod 4, or seven anyon types 1, α+γ+, β, γ−, α−, f when N is odd. The

quasiparticle exchange statistics θx and quantum dimensions dx are summarized in

table 3.2 and 3.3. The total quantum dimensions D =
√∑

x d
2
x are given by

DGN =

 2 for N even

2 csc(π/8) for N odd
(E.4)

where csc(π/8) =
√

4 + 2
√

2.

The S-matrices of GN for N = 2r even are well-known and are given by those of

the SO(r)1 states.[73, 111]

SGN =
1

DGN

(
1 1 1 1
1 1 −1 −1
1 −1 in −in
1 −1 −in in

)
, for N = 4n, (E.5)

SGN =
1

DGN

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
, for N = 4n+ 2. (E.6)

The S-matrices for the odd N cases are modification of the G9 = SO(3)3 prototype

(3.59)

SSO(3)3
s1s2

=
1

2
sin

[
π(2s1 + 1)(2s2 + 1)

8

]
(E.7)

where sj = 0, 1/2, 1, 3/2, 2, 5/2, 3 label the seven anyon types 1, α+, γ+, β, γ−, α−, f

(see table 3.1). For N = 9 + 2r mod 32, the S-matrix of GN is given by

SGN = F rSe(dr/2e)F−r (E.8)

where dr/2e ≥ r/2 is the smallest integral ceiling of r/2, Se(n) is the S-matrix when
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r = 2n is even

Se(n)s1s2 = in(4s1s2)2SSO(3)3
s1s2

(E.9)

and F is the operator that flips the fermion parity of α+ ↔ α− and γ+ ↔ γ−

F =

 1
1

1
1

1
1

1

 . (E.10)
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Appendix F

Abelian Chern-Simons theory of

dyons

The fractional topological insulator slab with time-reversal conjugate surfaces has

anyons which are dyons and partons. The neutral sector consists of only dyons. A

dyon γ is composed of a number of Z2n+1 gauge charge on each surface associated

with an unit gauge flux through the bulk. The dyons γm where m = 0, 1, . . . , 2n,

with 1 = γ0 being the vacuum, form the anyon content of an Abelian topological

state denoted as Z(2a)
2n+1. They have spins hγm = 2am2

2n+1
modulo 1 and satisfy the Z2n+1

fusion rule γm × γm′ = γ[m+m′], where [m + m′] is the remainder between 0 and 2n

when dividing m+m′ by 2n+ 1. For the case when a = −1, the Abelian topological

theory becomes Z(−2)
2n+1, which is actually identical to Z(n)

2n+1. This is because the dyon

e = γn has spin −2n2

2n+1
≡ n

2n+1
modulo 1. The collection {el : l = 0, 1, . . . , 2n} is of 1-1

correspondence with {γm : m = 0, 1, . . . , 2n}. For instance γ = e−2 = e2n−1. At the

same time, Z(n)
2n+1 = {el : l = 0, 1, . . . , 2n} is the anyon content of the Abelian Chern-

Simons SU(2n + 1)1 theory with Lagrangian density L2+1 = 1
4π

∫
2+1

KIJα
I ∧ dαJ ,
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where αI for I = 1, . . . , 2n are U(1) gauge fields, and

KSU(2n+1) =



2 −1

−1 2 −1

−1 2

. . .

2 −1

−1 2


(F.1)

is the Cartan matrix of SU(2n+ 1).
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